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Abstract
This thesis mainly deals with the Green’s function for linear generally anisotropic mate-
rials in the infinite three-dimensional space, also called the fundamental solution. The
detailed derivations and the numerical results of the explicit expressions of the Green’s
function and its first and second derivatives based on the residue calculus method (RCM),
Stroh formalism method (SFM) and unified explicit expression method (UEEM) are pre-
sented. The numerical examples of the three different methods are compared with each
other for the anisotropic elasticity. All three methods are accurate for an arbitrary point
in non-degenerate cases. For nearly degenerate cases, both the RCM and the SFM become
unstable while the UEEM keeps accurate. Moreover, the SFM is more stable than the
RCM. To overcome the difficulty in nearly degenerate cases and degenerate cases, some
material constants are slightly changed in the RCM and the SFM. Although the UEEM
has some advantages compared with the RCM and the SFM, it is difficult to be extended
to the multifield coupled materials. The RCM and SFM are extended to the piezoelectric
materials and compared with each other. Since the SFM has a better performance than
the RCM for the piezoelectric materials, it is extended further to the magnetoelectroelas-
tic materials. The UEEM is implemented into a Boundary Element Method (BEM) as an
application. Some demonstrative anisotropic elastic problems are solved by the developed
BEM.

Zusammenfassung
Diese Arbeit behandelt hauptsächlich die Greensche Funktion für lineare allgemein anisotrope
Materialien im unendlichen dreidimensionalen Raum, die auch als Fundamentallösung
bezeichnet wird. Die detaillierten Herleitungen und die numerischen Auswertungen der
expliziten Ausdrücke der Greenschen Funktion bzw. deren ersten und zweiten Ableitung,
die auf der Methode der Residuen (RCM), dem Stroh-Formalismus (SFM) sowie der
Unified Explicit Expression Method (UEEM) basieren, werden ebenfalls behandelt. Die
numerischen Beispiele der drei verschiedenen Methoden werden für die Elastizitätstheorie
miteinander verglichen. In nicht-degenerierten Fällen sind alle drei Methoden exakt für
einen beliebigen Punkt. Bei nahezu degenerierten Fällen werden sowohl die RCM als
auch die SFM instabil, während die UEEM ihre Gültigkeit behält. Ungeachtet dessen ist
die SFM etwas stabiler als die RCM. Um deren Instabilität in degenerierten und nahezu
degenerierten Fällen zu überwinden, werden in der RCM und der SFM einige Materialkon-
stanten leicht modifiziert. Trotz der Vorteile der UEEM im Vergleich zu RCM und SFM,
ergeben sich Schwierigkeiten bei der Erweiterung auf Mehrfeldmaterialien. Die RCM und
die SFM werden auf piezoelektrische Materialien erweitert und miteinander verglichen.
Dadurch, dass die SFM bessere Ergebnisse für piezoelektrische Materialien liefert als die



RCM, wird sie zusätzlich auf magnetoelektroelastische Materialien erweitert. Darüber
hinaus wird die UEEM als Anwendung in einem BEM-Programm implementiert, mit
dem sich einfache Elastizitätsprobleme lösen lassen.
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Chapter 1

Introduction

1.1 Anisotropic materials and Green’s function
A material is said to be anisotropic when the deformation behavior of the material depends
upon the orientation; that is, the stress-strain response of the material in one direction
is different from the others. An anisotropic material is quite different from an isotropic
material whose properties keep the same along all directions. Although the isotropic
material is easy to understand since most theories of elasticity are valid for isotropic
materials, the anisotropic materials are more common in the nature and daily life.

Early investigations of the anisotropy were motivated by the response of the natu-
rally anisotropic materials such as wood and crystalline solids. Anisotropic materials may
have special symmetries. Metals are typical anisotropic crystalline solids. They can be
divided into many classes according to their symmetry properties. Among the commonly
used metals, Al, Cu, Ni and Ag are cubic materials, Mg, Zn and Al2O3 are hexagonal or
transversely isotropic materials, and Sn and Zr are tetragonal materials. In the modern
technology, the extensive use of the composites (Jones, 1998) has brought forward many
new types of anisotropic materials. Recently, the magnetoelectroelastic coupling com-
posite materials have attracted much attention from engineers and scientists due to the
multi-physical energy conversion capacities and the design ability. Most composites are
essentially anisotropic.

A proper modeling of the behaviors of the anisotropic materials is required by the
designs and applications of the anisotropic materials. In the linear theory of elasticity,
the anisotropic property of materials is described by a symmetric matrix establishing a
relation between the stresses and the strains. For a certain type of anisotropic materials
referred to a coordinate system based on the symmetry of the materials, the matrix can
be of a simple form, i.e., most components of the matrix are zero and the number of the
independent non-zero components of the matrix is small. For example, a transversely
isotropic elastic material referred to a Cartesian coordinate system with the x3-axis along
the symmetry axis of the material has 12 non-zero components, among which only 5
components are independent. For a generally anisotropic material, the symmetric matrix
has 21 independent components which increases the difficulty to obtain the solution of
a particular problem for the anisotropic materials. Although with a proper choice on
the coordinate system the matrix of many materials can be kept simple, any transfor-
mation of the coordinate system will cause the matrix to be mathematically generally
anisotropic. Therefore general theory for the generally anisotropic materials is preferred.
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The theoretical formulations presented in this thesis are for generally or fully anisotropic
materials.

The Green’s function is a powerful tool to solve the boundary value problems. It can be
used to solve many anisotropic problems in the applied mechanics and solid physics such
as dislocation problems, inhomogeneous problems and contact problems. The derivatives
of the Green’s function are usually required to obtain the internal stresses in the solids.
Moreover, the Green’s function and its derivatives are the basic stones of the bound-
ary integral equation method or the boundary element method (BEM), which several
has advantages in the numerical analysis of many engineering problems such as fracture
mechanics problems and acoustic problems especially in the infinite domain.

Physically speaking, the Green’s function is the response at an observation point due
to a point source applied at a particular point. When the domain is infinite, the Green’s
function is also referred to as the displacement fundamental solution of the problem.
The static Green’s function in the infinite domain is simply called the Green’s function
throughout this thesis unless special statement is given. In elasticity, the Green’s function
for the isotropic materials has a simple form, while it is complicated for the generally
anisotropic materials. The analytical or exact Green’s function is only available for special
cases of anisotropic materials such as the transversely isotropic materials (Dederichs and
Liebfried, 1969; Pan and Chou, 1976). The study on the anisotropic Green’s function
can be traced back to the works of Fredholm (1900), Lifshitz and Rozenzweig (1947) and
Synge (1957). In the early research of the Green’s function, many approximate solutions of
the Green’s function were presented (Barnett, 1972; Gundersen and Lothe, 1987; Lie and
Koehler, 1968; Mura, 1987). Recently, Shiah et al. (2012) presented an efficient evaluation
of the Green’s function and its derivatives by representing the Green’s function as a Fourier
series and Tan et al. (2013) applied the evaluation technique in the BEM. Wang (1997)
re-investigated the explicit expression of the Green’s function for generally anisotropic
materials and suggested a mall perturbation on the material constants for the practical
applications. Since then many efforts have been made to derive the explicit expressions of
the Green’s function and its derivatives. The works of Malén (1971), Lavagnino (1995),
Ting and Lee (1997), Sales and Gray (1998), Lee (2003) and Buroni and Sáez (2013)
should be cited here among others. Here the word explicit means that no numerical
integration or differentiation method is needed in the calculation.

The main topic of this thesis is the derivation of the explicit expressions of the Green’s
function and its first and second derivatives for the three-dimensional (3D) generally
anisotropic materials including linear elastic, piezoelectric and magnetoelectroelastic ma-
terials. Although the Green’s function for 3D anisotropic elastic materials has been in-
vestigated very comprehensively since many years, it is still a highly demanding issue
especially in the BEM community where an accurate and efficient numerical evaluation
of the Green’s function and its derivatives is especially important.

1.2 State of the art and objectives
The line integral expression of the Green’s function was first presented by Fredholm (1900).
There are mainly two ways to evaluate the Green’s function explicitly. A straightforward
way is to apply the residue calculus to the line integral, which leads to an expression in
terms of the roots of a polynomial equation. The other way is using the so called Stroh
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formalism method, in which the expression is constructed from the eigenvectors of the
Stroh eigenvalue problem (Malén, 1971). The relation between the two approaches is that
the roots of the polynomial equation in the first approach is identical to the eigenvalues
of the Stroh eigenvalue problem in the second approach. The roots and the eigenvalues
are both called the Stroh eigenvalues. In these two approaches, the expression for distinct
Stroh eigenvalues is different from that for the repeated or degenerated Stroh eigenval-
ues. For the general application, additional numerical treatments should be made, for
example by a small perturbation on the material constants. To overcome the degeneracy
problem with repeated Stroh eigenvalues, Ting and Lee (1997) proposed a unified explicit
expression of the Green’s function. Here the word unified means that after a rewritten of
the expression for distinct Stroh eigenvalues, the expression remains applicable even when
the Stroh eigenvalues are identical. The word unified is used to emphasize the difference
from the explicit expression which changes when the multiplicity of the Stroh eigenvalues
changes.

Due to their applications in the BEM for the analysis of the anisotropic elastic bound-
ary value problems, many efforts have been made to derive the explicit expressions for
the first and second derivatives of the Green’s function. Most existing expressions are
obtained by taking the derivatives of the Green’s function with respect to the spherical
coordinates, which can be transformed to the Cartesian coordinate system if necessary.
Some representative examples of the previous investigations on the topic are the works
by Sales and Gray (1998), Lavagnino (1995), Phan et al. (2004, 2005), Lee (2009), Shiah
et al. (2010) and Buroni and Sáez (2013). The explicit expressions with high-order tensors
in the Cartesian coordinate system were presented by Lee (2003) and Buroni and Sáez
(2010). Different from the other works, Buroni and Sáez (2013) suggested a way to find
unified expressions which remain applicable even when the Stroh eigenvalues degenerate
or become identical.

The main aim of this thesis is to derive and investigate several explicit expressions
of the Green’s function and its first and second derivatives for the generally anisotropic
linear elastic, piezoelectric and magnetoelectroelastic materials and their numerical eval-
uations. With the explicit expressions given in the Cartesian coordinate system, the main
objectives of this thesis are

• to present alternative explicit expressions of the derivatives of the Green’s function
by using the residue calculus method, the Stroh formalism method and the method
similar to that suggested by Ting and Lee (1997);

• to give a comparison of the three explicit expressions regarding their accuracy and
efficiency in the numerical calculations for the anisotropic linear elastic materials;

• to obtain new explicit expressions for the linear piezoelectric and magnetoelectroe-
lastic materials; and finally,

• to implement the unified explicit expressions into a BEM and conduct the verifica-
tion tests by numerical examples.

3



1.3 Overview of the thesis
Throughout this thesis a vector, a tensor or a matrix is given either in index notation or
represented by a bold letter. The summation convention is applied over repeated indices
unless otherwise explicitly declared. The lowercase Latin indices take the values 1, 2, 3,
while the capital Latin indices take the values 1, 2, 3, 4 for piezoelectric materials, and
1, 2, 3, 4, 5 for magnetoelectroelastic materials. A comma after a quantity (),i denotes
spatial derivatives.

After a brief introduction in this chapter, Chapter 2 presents some theoretical foun-
dations which are essential to the study of the Green’s function for anisotropic materials.
In particular, the basic equations for the anisotropic linear elastic, piezoelectric and mag-
netoelectroelastic materials, the classical Stroh formalism and the basic concepts of the
Green’s function are introduced. In addition, the boundary integral equations for 3D
generally anisotropic and linear elastic materials are presented as an application of the
Green’s function and its derivatives.

In Chapter 3, three different explicit expressions of the Green’s function and its first
and second derivatives for the generally anisotropic linear elastic materials are presented.
Besides, the numerical integration method to calculate the Green’s function and its deriva-
tives are also presented. All the four methods are coded into FORTRAN programs and
compared with each other through numerical examples in details.

In Chapter 4, based on the comparison between the numerical evaluations of the dif-
ferent expressions in Chapter 3, the explicit expressions by using the residue calculus
method and the Stroh formalism method are extended to the anisotropic linear piezoelec-
tric materials. The two methods are verified by the analytical solutions and compared
with each other with respect to their efficiency and accuracy.

In Chapter 5, the explicit expressions of the Green’s function and its derivatives by
the Stroh formalism method are further extended to the anisotropic linear magnetoelec-
troelastic materials, since they have advantages in the accuracy and efficiency compared
with the expressions by the residue calculus method.

In Chapter 6, the unified explicit expressions for anisotropic linear elastic materials
are implemented into a BEM program, since they seem to be most accurate and efficient.
The BEM program is tested by some examples.

The last chapter summarizes the thesis with some concluding remarks and an outlook
on future research works.
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Chapter 2

Mathematical preliminaries

This chapter is about some basic aspects related to the study of the Green’s function
for the anisotropic materials in the three-dimensional infinite space. The basic equations
for the elastic, piezoelectric and magnetoelectroelastic materials are introduced in Sec-
otins 2.1, 2.2 and 2.3, respectively. In Section 2.4, the Stroh formalism, which is very
useful in solving the problems with anisotropic materials, is presented briefly with an
emphasis on the Stroh eigenvalue problem for an oblique plane, which will be used in the
following chapters. In Section 2.5, the role of the Green’s function in a general differ-
ential equation and the basic knowledge of the Green’s function for multifield materials
are discussed. Finally, the application of the Green’s function and its derivatives in the
boundary integral equations are shown in the last section.

2.1 Basic equations of anisotropic linear elasticity
For a 3D linear and homogeneous elastic solid, when it is distorted the strain tensor εij
is related to the derivative of the displacement ui by

εij = (ui,j + uj,i)/2, (2.1)

where the comma (),i denotes the spatial derivative. The components of the strain tensor
εij are to be distinguished from the usual engineering strains which are equal to εij for
i = j, but twice the value for i 6= j.

The general linear relation between the stress σij and the strain εij is usually given by
Hooke’s law

σij = cijklεkl, (2.2)
where the fourth-order tensor cijkl is the elastic stiffness tensor or the elasticity tensor. It
possesses full symmetry

cijkl = cjikl = cijlk = cklij (2.3)
and is positive definite in the sense that

cijklεijεkl > 0 (2.4)

for any non-zero strain tensor εij.
Considering the body force fi, the static equilibrium equation is given by

σij,i + fj = 0, (2.5)
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The governing equation in terms of the displacement ui for the elasticity problems can
be obtained by substituting the Eqs. (2.1) and (2.2) into Eq. (2.5), i.e.,

cijkluk,li + fj = 0. (2.6)

2.2 Basic equations of linear piezoelectricity
We consider a linear and homogeneous piezoelectric solid in a 3D Cartesian coordinate
system. The static equilibrium equation and the electrostatic equation are given by

σij,i + fj = 0,
Di,i − f e = 0,

(2.7)

where Di and f e are the electric displacement vector and the electric charge density,
respectively. The relation between the electric field Ei and the electric potential φ is
defined by the equation

Ei = −φ,i. (2.8)

The linear constitutive relations between σij, Di, εij and Ei are

σij = cijmnεmn − enijEn,
Di = eimnεmn + κinEn,

(2.9)

where eimn and κin are the piezoelectricity tensor and the dielectricity tensor, respectively.
They have the following symmetry relations

eimn = einm, κin = κni. (2.10)

Moreover the dielectricity tensor κij is positive definite, i.e.,

κijEiEj > 0, (2.11)

for any non-zero electric field vector Ei.
The basic equations (2.7)-(2.9) can be written into a compact form by introducing the

generalized stress and strain tensors and the generalized displacement vector as (Barnett
and Lothe, 1975)

σiJ =

σij, J = j ≤ 3,
Di, J = 4,

(2.12a)

εMn =

εmn, M = m ≤ 3,
−En, M = 4,

(2.12b)

uI =

ui, I = i ≤ 3,
φ, I = 4.

(2.12c)

With Eq. (2.12), Eq. (2.7) becomes

σiJ,i + fJ = 0, (2.13)
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where

fJ =

fj, J = j ≤ 3,
−f e, J = 4,

(2.14)

and Eq. (2.9) becomes
σiJ = ciJMnεMn = ciJMnuM,n, (2.15)

where

ciJMn =


cijmn, J = j ≤ 3, M = m ≤ 3,
enij, J = j ≤ 3, M = 4,
eimn, J = 4, M = m ≤ 3,
−κin, J = 4, M = 4,

(2.16)

with the symmetry relation
ciJMn = cnMJi. (2.17)

Substituting Eq. (2.15) into Eq. (2.13), we have the governing equations in terms of
the generalized displacement

ciJMnuM,ni + fJ = 0. (2.18)

2.3 Basic equations of linear magnetoelectroelastic-
ity

Let us consider a magnetoelectroelastic solid in a fixed 3D Cartesian coordinate system
xi (i = 1, 2, 3). The equilibrium equations and the Gauss equations are given by

σij,i + fj = 0,
Di,i − f e = 0, (2.19)
Bi,i − fm = 0,

where Bi and fm are the magnetic induction vector and the magnetic charge density,
respectively.

It should be remarked here that according to Maxwell’s equations for magnetism, the
magnetic charge density fm is always zero, because there are no magnetic monopoles
observed (Fitzpatrick, 2008). However, the magnetic charge density fm is taken into
account in this study as in many other references in literature, just for the mathematical
convenience.

The gradient equation representing magnetic field-potential relation is determined by

Hi = −ψ,i, (2.20)

where Hi and ψ are the magnetic field vector and the magnetic potential, respectively.
The constitutive equations are given by

σij = cijklεkl − elijEl − hlijHl,

Di = eiklεkl + κilEl + αilHl, (2.21)
Bi = hiklεkl + αilEl + µilHl,
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where µil, hikl and αil are the magnetic permeability, the piezomagnetic and the magne-
toelectric coefficients, respectively. The material property tensors µil, hikl and αil have
the following symmetry relations

µil = µli, hikl = hilk, αlk = αli. (2.22)

Moreover the magnetic permeability coefficients are positive definite in the sense that

µijHiHj > 0, (2.23)

for any non-zero magnetic field vector Hi.
Following the notation proposed by Barnett and Lothe (1975), the basic equations can

be written into a contract form. Introducing the generalized stress and body force as

σiJ =


σij J ≤ 3,
Di J = 4,
Bi J = 5,

and fJ =


fj J ≤ 3,
−f e J = 4,
−fm J = 5,

(2.24)

the equilibrium and Gauss equations (2.19) become

σiJ,i + fJ = 0. (2.25)

Introducing the generalized strain tensor, elasticity tensor and displacement vector as

εKl =


εkl K ≤ 3,
−El K = 4,
−Hl K = 5,

ciJKl =



cijkl J,K ≤ 3,
elij J ≤ 3, K = 4,
eikl J = 4, K ≤ 3,
qlij J ≤ 3, K = 5,
qikl J = 5, K ≤ 3,
−αil J = 4, K = 5 or J = 5, K = 4,
−κil J,K = 4,
−µil J,K = 5,

(2.26)

uI =


ui I ≤ 3,
φ I = 4,
ψ I = 5,

the constitutive equations (2.21) become

σiJ = ciJKlεKl = ciJKluK,l. (2.27)

Here the repeated capital subscript denotes the summation from 1 to 5, and ciJKl has the
following symmetry

ciJKl = clKJi. (2.28)
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Substituting Eq. (2.27) into Eq. (2.25), we have the following governing equations in
terms of the generalized displacement components,

ciJMnuM,ni + fJ = 0. (2.29)

The governing equations for the elastic, piezoelectric and magnetoelectroelastic mate-
rials, i.e., Eq. (2.6), Eq. (2.18) and Eq. (2.29), are very similar to each other except the
range of some indices.

In engineering it is more convenient to give a coefficient tensor in a matrix notation.
The contracted form of the coefficient tensor can be recast into a matrix by utilizing the
following mapping of indices (iJ or Mn→ P )

11→ 1, 22→ 2, 33→ 3, 23→ 4, 31→ 5, 12→ 6,
41→ 7, 42→ 8, 43→ 9, 51→ 10, 52→ 11, 53→ 12. (2.30)

The sizes of the matrix for elastic, piezoelectric and magnetoelectroelastic materials are
6× 6, 9× 9 and 12× 12, respectively.

2.4 Stroh formalism
The classic Stroh formalism is widely used in the analysis of the two-dimensional deforma-
tion for linear anisotropic materials. Here the two-dimensional deformation means that
the deformation is independent of one of the three coordinates. The first literature on
the two-dimensional deformation may be given by Eshelby et al. (1953). Not all results
for this well-known formalism are due to Stroh (1958, 1962). It was named after Stroh
because he laid the foundations for researchers who followed him. Most of the contents
presented in this section are excerpted from Ting (1996) and Hwu (2010).

Since the Stroh formalism for piezoelectric and magnetoelectroelastic materials can
be easily extended from the Stroh formalism for the elastic materials, in this section only
the elasticity case is considered.

2.4.1 A general solution in anisotropic linear elasticity
With absence of the body force and consideration of the symmetries cijkl = cjikl and
(),ij = (),ji, the governing equation (2.6) for the elastic materials becomes

cijkluk,jl = 0. (2.31)

For a three-dimensional elastic state in which the deformation is independent of one
(say x3) of the three Cartesian coordinates, Eshelby et al. (1953) gave a general solution
of the displacement

ui =
3∑

α=1
aiαfα(zα), (2.32)

where zα = x1 + pαx2, fα(z) is an arbitrary function, pα is a root with positive imaginary
part of a sextic equation

|ci1k1 + p(ci1k2 + ci2k1) + p2ci2k2| = 0, (2.33)
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and aiα, associated with pα, satisfies

{ci1k1 + p(ci1k2 + ci2k1) + p2ci2k2}ai = 0, (2.34)

in which aiα and pα are denoted as ai and p for simplify. Introducing a vector φi defined
by

φi,1 = σi2 φi,2 = −σi1, (2.35)

the general solution of the vector φi is

φi =
3∑

α=1
biαfα(zα), (2.36)

where bi = (ci2k1 + pci2k2)ai in which biα is simplified as bi.
p and ai, as well as bi, can be obtained by solving Eqs. (2.33) and (2.34), or by solving

a standard eigenvalue problem which is given in the vector and matrix notation by

Nξ = pξ, (2.37)

N =
(

N1 N2
N3 NT

1

)
, ξ =

{
a
b

}
, (2.38)

N1 = −T−1RT , N2 = T−1 = NT
2 , N3 = RT−1RT −Q, (2.39)

Qik = ci1k1, Rik = ci1k2, Tik = ci2k2. (2.40)

Note the eigenvalues of the standard eigenvalue problem Eq. (2.37), so called Stroh eigen-
relation, are three pairs of complex conjugates.

Introducing two matrices

A = [a1,a2,a3], B = [b1, b2, b3], (2.41)

and the orthonormal relation
bTαaβ + aTαbβ = δαβ, (2.42)

where δαβ is the Kronecker delta, there are three useful real matrices S, H and L defined
by

S = i(2ABT − I), H = 2iAAT , L = −2iBBT . (2.43)

The three matrices, known as Barnett-Lothe matrices often appear in the final solutions
of the two-dimensional anisotropic elasticity problems in which the deformation is inde-
pendent of one of the three Cartesian coordinates.

2.4.2 Stroh eigenvalue problem for an oblique plane
The standard Stroh eigenvalue problem is assumed to be associated with the plane per-
pendicular to the x3-axis. However it can be generalized to be associated with the plane
perpendicular to any position vector x. The form of the Stroh eigenvalue problem, as well
as the three matrices S, H and L, for an oblique plane keeps the same as Eqs. (2.37)-(2.39),
but the definitions of matrices Q, R and T are changed to be

Qij = ckijlnknl, Rij = ckijlnkml, Tij = ckijlmkml, (2.44)
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where n and m are any two orthogonal unit vectors on the oblique plane perpendicular
to x.

The Stroh eigenvalue problem and the Barnett-Lothe matrices for an oblique plane
are very useful in the three-dimensional anisotropy problems. Particularly, the matrix H
for an oblique plane is very important in the evaluation of the Green’s function in infinite
three-dimensional space which will be shown in the following chapters.

2.5 Fundamentals of the Green’s function

2.5.1 Green’s function in boundary value problems
Many physical and engineering problems can be modeled as boundary value problems
with second-order linear differential equations. To show the importance of the Green’s
function in solving these boundary value problems, let us first consider a simple boundary
value problem:

Lu(x) = −f(x), (2.45)
u(a) = α, u(b) = β, (2.46)

where L is a linear second-order differential operator, u(x) is the unknown function, f(x)
is known, a and b are the boundary of the problem, and α and β are two prescribed
constants on the boundary.

It is well known that the general solution of the linear differential equation Eq. (2.45)
is

u(x) = up(x) + uc(x), (2.47)

where up(x) is a particular solution of Eq. (2.45) and uc(x) is a general solution of the
homogeneous counterpart of Eq. (2.45). Then it is convenient to recast the boundary
value problem Eqs. (2.45) and (2.46) into two separate boundary value problems

Lup(x) = −f(x), up(a) = up(b) = 0 (2.48)

and
Luc(x) = 0, uc(a) = α, uc(b) = β. (2.49)

Since L is a second-order linear differential operator, the general solution uc(x) is of
the form

uc(x) = c1u1(x) + c2u2(x), (2.50)

where u1(x) and u2(x) are two linear independent solutions of Eq. (2.49)1, and c1 and c2
are determined by α and β.

To determine the particular solution up(x), we introduce the Dirac delta function δ(x)
who has the property

f(x) =
∫ +∞

−∞
f(y)δ(x− y)dy, (2.51)

and suppose
up(x) =

∫ +∞

−∞
G(x, y)f(y)dy, (2.52)

11



where G(x, y) is unknown and to be determined. Substitution of Eqs. (2.51) and (2.52),
with the assumption on the commutativity of the differential operator L with integration,
into Eq. (2.48)1 leads to

LG(x, y) = −δ(x− y). (2.53)

Substitution of Eq. (2.52) to Eq. (2.48)2,3 leads to

G(a, y) = G(b, y) = 0. (2.54)

If G(x, y) is determined by Eqs. (2.53) and (2.54), the particular solution up(x) is de-
termined and further the general solution u(x) of the original boundary value problem
Eqs. (2.45) and (2.46). Therefore G(x, y) is called the Green’s function of the original
boundary value problem.

It is shown by Eqs. (2.53) and (2.54) that the Green’s function is dependent on the
differential operator and the boundary of the problem. However, the Green’s function
in the infinite space is more fundamental, since the Green’s function in a finite space
can be constructed from it. For example, if the Green’s function in the infinite space
is G∞(x, y) satisfying Eq. (2.53), then we suppose the Green’s function in a finite space
G(x, y) = G∞(x, y) + cx + d which also satisfying Eq. (2.53). The coefficients c and d
can be determined by the boundary condition Eq. (2.54). Therefore, G(x, y) is the right
answer due to the uniqueness of the boundary value problems.

So far, the importance of the Green’s function in solving the boundary value problems,
as well as the procedure to the solutions, has been shown.

2.5.2 Green’s function for multifield coupled media
Generally speaking, the Green’s function represents the response of a point source. In
the framework of magnetoelectroelasticity which can be reduced to piezoelectricity or
elasticity, the Green’s function GIJ(x) (I, J = 1, 2, . . . , 5) denotes the elastic displacement
components at x in the xI-direction (I ≤ 3), the electric potential (I = 4) or the magnet
potential (I = 5) when a unit point force (J ≤ 3), a unit electric charge (J = 4), or a
unit magnetic charge (J = 5) is prescribed at the origin of the Cartesian coordinates.

Mathematically speaking, the Green’s function for the multifield materials is the fun-
damental solution of the governing equation, e.g., Eq. (2.6), Eq. (2.18) or Eq. (2.29). Since
the governing equations are highly similar in the form, the Green’s functions for different
materials can be written uniformly and thus satisfy the following differential equations

ciJMnGMR,ni(x) + δJRδ(x) = 0, (2.55)

where δJR is the Kronecker delta and δ(x) is the Dirac delta function centered at the
origin of the Cartesian coordinates. The ranges of the capital letters in Eq. (2.55) are
(1, 2, 3), (1, 2, . . . , 4) and (1, 2, . . . , 5) for the elastic, piezoelectric and magnetoelectroelas-
tic materials, respectively.

2.6 Boundary integral equations
Green’s function and its derivatives are the basic stones of the boundary integral equations.
For simplicity, we consider the boundary integral equations for a 3D anisotropic and linear
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elastic solid with the volume Ω bounded by the surface S = ∂Ω. The corresponding
equations for the piezoelectric and magnetoelectroelastic materials can be easily obtained
based on the following equations. By using the Betti reciprocal theorem, the displacement
components at an arbitrary internal point of the domain can be obtained by using the
following representation formula

ui(x) =
∫
S
uGij(x,y)tj(y)dS −

∫
S
tGij(x,y)uj(y)dS, x ∈ Ω, (2.56)

where uGij(x,y) denotes the displacement fundamental solution or Green’s function whose
source is located at y instead of the origin, in other words when y = 0 we have

uGij(x, 0) = Gij(x), (2.57)

tGij(x,y) = σGikj(x,y)nk(y) represents the traction fundamental solution with σGikj(x,y)
being the stress fundamental solution and nk(y) the outward unit normal vector on the
boundary S, tj = σjknk stands for the traction vector, x is the position vector of the
observation point, and y is the position vector of the source point, respectively. By
taking the limit process x→ S one obtains the following displacement boundary integral
equations

cij(x)uj(x) =
∫
S
uGij(x,y)tj(y)dS −

∫
S
tGij(x,y)uj(y)dS, x ∈ S, (2.58)

where the free-term coefficients cij depend on the smoothness of the surface at x.
Once the unknown boundary values have been obtained by solving the above boundary

integral equations, the displacement field in the interior domain of interest can be com-
puted by using the displacement representation formula (2.56). The corresponding stress
components at an arbitrary internal point of the domain can be obtained by substituting
the displacement representation formula (2.56) into Hooke’s law σij = Cijklεkl = Cijkluk,l,
which results in the following representation formula for the stress components

σkl(x) = −
∫
S
σGklj(x,y)tj(y)dS −

∫
S
sGklj(x,y)uj(y)dS, x ∈ Ω, (2.59)

where the stress fundamental solution σGklj(x,y) and the higher-order stress fundamental
solution are given by

σGklj = Cklim
∂uGij
∂ym

= −Cklim
∂uGij
∂xm

,

sGklj = Cklim
∂tGij
∂xm

= Cklimnp(y)
∂σGipj
∂xm

= −Cklimnp(y)
∂σGipj
∂ym

= −CklimCipnqnp(y)
∂2uGnj
∂yq∂ym

. (2.60)

It should be noted here that the relation ∂(·)/∂xi = −∂(·)/∂yi has been used in deriving
Eq. (2.60). By letting x to S, the corresponding stress or traction boundary integral
equations can be derived, which are of special interests in crack analysis.

From Eq. (2.60) it can be seen that the stress or traction fundamental solutions involve
the first derivative of the displacement fundamental solution or the Green’s function,
while the higher-order stress fundamental solution contain the second derivative of the
displacement fundamental solution or the Green’s function.
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Chapter 3

Green’s function in anisotropic linear
elasticity

3.1 Problem statement
For isotropic and linear elastic materials in the three-dimensional (3D) space, a simple and
closed-form elastostatic Green’s function is available. In contrast, the corresponding 3D
Green’s function for anisotropic materials is much more complicated, and it has closed-
form analytical expression only in some special cases such as for transversely isotropic
materials (Lifshitz and Rozenzweig, 1947; Pan and Chou, 1976; Willis, 1965). Instead of
an analytical expression, the 3D anisotropic Green’s function can be reduced to a line or
contour integral expression (Fredholm, 1900; Lifshitz and Rozenzweig, 1947; Synge, 1957).

Since the analytical expression of the Green’s function was invalid, there were many
approximate solutions proposed to evaluate the Green’s function and its derivatives. The
works of Lifshitz and Rozenzweig (1947), Dederichs and Liebfried (1969), Gray et al.
(1996), Lie and Koehler (1968), Mura and Kinoshita (1971), Barnett (1972), Gundersen
and Lothe (1987), Pan and Yuan (2000) and Shiah et al. (2012) should be cited among
others.

In order to find an accurate and efficient evaluation of the Green’s function and its
derivatives for generally anisotropic elastic materials, the explicit expressions had been
investigated by many researchers. There are many different explicit expressions, but they
can be generally classified to three categories: 1) explicit expressions in terms of the roots
of a polynomial equation which are also called Stroh eigenvalues, 2) explicit expressions
in terms of the solutions of the Stroh eigenvalue problem, 3) unified explicit expressions
in terms of the Stroh eigenvalues and valid for all cases.

The expressions in the first category arrive after the residue calculus on the line in-
tegrals. They have been well studied by Sales and Gray (1998), Lee (2003, 2009), Phan
et al. (2004, 2005), Shiah et al. (2010) and Buroni et al. (2011) among others. These
explicit expressions can be applicable in degenerate and non-degenerate cases. But care
should be taken in the nearly degenerate cases where significant numerical error may arise
(Buroni et al., 2011).

The explicit expressions in the second category are constructed from the solutions
of an eigenvalue problem. The Green’s function was investigated by Malén (1971) and
Nakamura and Tanuma (1997). The expressions of the derivatives could be found in the
PhD thesis written by Lavagnino (1995). Nakamura and Tanuma (1997) argued their
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expressions were valid no matter the Stroh eigenvalues are distinct or identical. While
the expressions of the derivatives were applicable only when the Stroh eigenvalues were
distinct.

The unified explicit expression of the Green’s function for generally anisotropic mate-
rials was firstly proposed by Ting and Lee (1997). Very recently, Buroni and Sáez (2013)
pointed out a way to get the unified explicit expressions of the derivatives of the Green’s
function. Although fully explicit expressions were not presented in the paper, they did
give the numerical results. The most important feature of the unified explicit expressions
is that they are valid in all cases including the nearly degenerate cases.

In this chapter, four different expressions of the Green’s function and its derivatives for
three-dimensional anisotropic elastic materials are presented. Firstly, the conventional line
integral expressions are re-investigated, resulting from alternative line integral expressions,
among which the expression of the second derivative of the Green’s function are new.
Secondly, application of the residue calculus to the novel line integrals leads to explicit
expressions, among which the Green’s function and its first derivative are in some sense
similar with existing ones, but the second derivative is new. Thirdly, since the Green’s
function can be constructed from the solutions of the Stroh eigenvalue problem, a new
way to construct the first and second derivatives of the Green’s function in terms of
the derivatives of the eigenvalues and eigenvectors is presented. All the above explicit
expressions are only applicable when it is in non-degenerate cases. Finally, in order
to overcome this difficulty, the novel line integrals are further expressed in terms of two
elementary line integrals, which are evaluated by the simple pole residue calculus and then
a proper rewritten. The resulting expressions remain applicable in degenerate, nearly-
degenerate and non-degenerate cases. These explicit expressions and the methodology
are presented for the first time. All these expressions are coded into FORTRAN and
compared with each other to have a direct comparison of the accuracy and the efficiency.

These contributions have been published or submitted in:

• L. Xie, C. Zhang, C. Hwu, J. Sladek, V. Sladek, A Comparison of Three Evaluation
Methods for Green’s Function and Its Derivatives for 3D General Anisotropic Solids.
European Journal of Computational Mechanics, accepted on Apr 11, 2016.

• L. Xie, C. Hwu, C. Zhang, Advanced Methods for Calculating Green’s Function
and Its Derivatives for Three-Dimensional Anisotropic Elastic Solids, International
Journal of Solids and Structures, 80:261-273, 2016.

• L. Xie, C. Zhang, J. Sladek, V. Sladek, Unified analytical expressions of the three-
dimensional fundamental solutions and their derivatives for linear elastic anisotropic
materials, Proceedings of the Royal Society of London A: Mathematical, Physical and
Engineering Sciences, 472:20150272, 2016.

3.2 Line integral Green’s function and its derivatives
By applying either Fourier transforms (Fredholm, 1900) or Radon transforms (Wang,
1997) to the Eq. (2.55) in the elasticity case followed by some elementary manipulations,
the Green’s function in terms of a double integral is

Gij(x) = 1
8π2

∫
S2
δ(ξ · x)K−1

ij (ξ)dS(ξ), (3.1)
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where ξ is a parameter vector, S2 is a unit sphere whose center is the origin, x is the
displacement from x to the origin, and Kij(ξ) = cikjlξkξl has the symmetry relation
Kij(ξ) = Kji(ξ). Straightforwardly, the derivatives of the Green’s function are

GIJ,k(x) = 1
8π2

∫
S2
δ′(ξ · x)ξkK−1

IJ (ξ)dS(ξ), (3.2)

GIJ,kl(x) = 1
8π2

∫
S2
δ′′(ξ · x)ξkξlK−1

IJ (ξ)dS(ξ), (3.3)

where the superscript prime ′ denotes the differential with respect to the argument, i.e.,
ξ ·x. Further, Mura (1987) presented the Green’s function and its derivatives in terms of
line integrals over a unit circle

Gij(x) = 1
8π2r

∮
S1
K−1
ij (ξ)dψ, (3.4)

Gij,k(x) = 1
8π2r2

∮
S1

[
−x̄kK−1

ij (ξ)

+ ξkclpmq(x̄pξq + ξpx̄q)K−1
li (ξ)K−1

mj(ξ)
]
dψ, (3.5)

Gij,kl(x) = 1
8π2r3

∮
S1

{
2x̄kx̄lK−1

ij (ξ)− 2[(x̄kξl + ξkx̄l)(x̄pξq + ξpx̄q) + ξkξlx̄px̄q]

× chpmqK−1
ih (ξ)K−1

jm(ξ) + ξkξlchpmq(x̄pξq + ξpx̄q)csatb(x̄aξb + ξax̄b)
×[K−1

jm(ξ)K−1
is (ξ)K−1

ht (ξ) +K−1
ih (ξ)K−1

js (ξ)K−1
mt (ξ)]

}
dψ, (3.6)

where r = |x|, x̄ = x/r, S1 is the unit circle on the oblique plane perpendicular to x, and
ψ is a parameter along the circle. Note that ξ in Eqs. (3.1)-(3.3) is a little different from
ξ in Eqs. (3.4)-(3.6): the former represents a vector in the unit sphere S2 on the ξ-space,
but the later represents a vector on the unit circle S1 in the oblique plane perpendicular
to x. The relations between S1, S2 and other parameters are illustrated in Fig. 3.1.

Fredholm (1900) firstly presented the line integral expression of the Green’s function
by using Fourier transformations. Vogel and Rizzo (1973) presented the same line in-
tegral expression with help of the decomposition of the delta function into plane wave
functions, similar with Radon transforms (Wang, 1997). The line integral expressions
of the derivatives of the Green’s function were firstly investigated by Barnett (1972).
Based on Barnett’s work, Mura (1987) presented Eqs. (3.4)-(3.6), and Lee (2003) pre-
sented reformulations of the Green’s function and its derivatives in terms of three line
integrals. However, the line integral expressions of the derivatives of the Green’s function
presented by Lee (2003) involved high order tensors, e.g. 10th-order, causing trouble in
the programming and reducing the efficiency of the program.

In the following, we present alternative reformulations of the Green’s function and its
derivatives based on Eqs. (3.4)-(3.6). The main target of the reformulations is to avoid
high order tensors in the expressions.

By choosing any two mutually orthogonal unit vectors n and m in the oblique plane
perpendicular to x, the vector ξ on the unit circle S1 can be written as

ξ = n cosψ +m sinψ, (3.7)

where ψ is the angle between n and ξ. After substitution of Eq. (3.7) into Eqs. (3.4)-
(3.6), the line integrals over the unit circle are transformed to line integrals over (−π

2 ,
π
2 ),

17



x3
ξ3
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S2 m

n

ξ
ψ

x2

x1

ξ2

ξ1

Figure 3.1: An illustration on the unit sphere S2, the oblique plane perpendicular to x,
the unit circle S1, ξ in S1, n, m and ψ.

or (0, π) if necessary, because the periods of the integrands in Eqs. (3.4)-(3.6) after the
substitution are π. The three newly introduced line integrals are

Aij(x̄) = 1
4π

∮
S1
Nij(ξ)D−1(ξ)dψ = 1

2π

∫ π/2

−π/2
Nij(ψ)D−1(ψ)dψ, (3.8)

Pijk(x̄) = 1
4π

∮
S1
ξkHij(ξ)D−2(ξ)dψ = 1

2π

∫ π/2

−π/2
ξkHij(ψ)D−2(ψ)dψ, (3.9)

Qijkl(x̄) = 1
4π

∮
S1
ξkξlMij(ξ)D−3(ξ)dψ = 1

2π

∫ π/2

−π/2
ξkξlMij(ψ)D−3(ψ)dψ, (3.10)

where Nij and D are respectively cofactors and determinant of the matrix Kij, and Hij

and Mij are defined as

Hij = FimNjm, Mij = Lij −RijD, (3.11)

with

Fim = EhmNih, Ehm = cphmq(x̄pξq + x̄qξp),
Lij = FjhHih, Rij = x̄px̄qcphmqNihNjm. (3.12)

Note that the arguments in Eqs. (3.11) and (3.12) could be ξ or ψ, or even p introduced
in the following. Then the reformulated line integral expressions of the Green’s function
and its derivatives are given by

Gij(x) = 1
2πrAij(x̄), (3.13)

Gij,k(x) = 1
2πr2 [−x̄kAij(x̄) + Pijk(x̄)] , (3.14)
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Gij,kl(x) = 1
πr3 {Aij(x̄)x̄kx̄l − [Pijk(x̄)x̄l + Pijl(x̄)x̄k] +Qijkl(x̄)} . (3.15)

These line integral expressions are a little different but equivalent to those proposed by
Barnett (1972) and Mura (1987). It should be mentioned that the symmetry of cijkl and
Kij is used to deduce Eqs. (3.14) and (3.15) from Eqs. (3.5) and (3.6).

Quadrature rules such as the standard Gaussian quadrature can be applied on Eqs. (3.8)-
(3.12) to calculate the Green’s function and its derivatives by Eqs. (3.13)-(3.15). The
numerical implementation of these reformulated line integral expressions of the Green’s
function and its derivatives associated with other methods is discussed in Section 3.5.

3.3 Explicit Green’s function and its derivatives
In this section, we investigate the explicit expressions of the Green’s function and its
derivatives in terms of distinct Stroh eigenvalues and/or eigenvectors. Here, explicit ex-
pressions have mainly two meanings: firstly, they have no integrals; and secondly, they
become algebraically analytical as long as the Stroh eigenvalues and/or eigenvectors are
algebraically analytical.

3.3.1 Residue calculus method
For the easy use of the residue calculus, the intervals of the line integrals in Eqs.(3.8)-(3.10)
are further transformed from (−π/2,+π/2) to (−∞,+∞). To illustrate the procedure,
we take Aij(x̄) as an example.

By setting p = tanψ, we have

ξ = cosψ(n+ pm), dp = 1
cos2 ψ

dψ. (3.16)

Note that due to the definition of Kij(ξ) we have

Nij(ξ) = cos4 ψNij(n+ pm), D(ξ) = cos6 ψD(n+ pm). (3.17)

Then we can obtain

Nij(ψ)D−1(ψ) = Nij(ξ)D−1(ξ) = 1
cos2 ψ

Nij(p)D−1(p), (3.18)

where n and m are omitted in the last term for simplicity, and Nij(p) and D(p) are cofac-
tors and determinant of the matrix Kij(p) = cikjlξ

∗
kξ
∗
l , where ξ∗ = n+ pm. Substitution

of Eq. (3.16)2 and Eq. (3.18) into Eq. (3.8) leads to

Aij(x̄) = 1
2π

∫ +∞

−∞
Nij(p)D−1(p)dp. (3.19)

Similarly, Pijk(x̄) and Qijkl(x̄) become

Pijk(x̄) = 1
2π

∫ +∞

−∞
ξ∗kHij(p)D−2(p)dp, (3.20)

Qijkl(x̄) = 1
2π

∫ +∞

−∞
ξ∗kξ
∗
lMij(p)D−3(p)dp, (3.21)
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where Hij(p) and Mij(p) are determined by Eqs. (3.11) and (3.12), in which ξ is replaced
by ξ∗. All ξ∗, Nij(p), Hij(p) and Mij(p) are polynomials in p.

Suppose f(p) is a rational polynomial function of the following form

f(p) = P (p)
Q(p) , (3.22)

where P (p) and Q(p) are polynomials in p, and the order of Q(p) is higher than the order
of P (p). Then by using the Cauchy residue theorem, it is easy to conclude that if there
are n different poles pk, k = 1, 2, . . . , n with Im(pk) > 0 among the poles of f(x), then

∫ +∞

−∞
f(p)dp = 2πi

n∑
k=1

Res(pk). (3.23)

If pk is a pole of mth order, then

Res(pk) = 1
(m− 1)! lim

p→pk

dm−1

dpm−1 [(p− pk)mf(p)]. (3.24)

For detailed derivation, readers refer to the Appendix A.
Under the assumption that the Stroh eigenvalues, which are zeros of the polynomial

D(p) with positive imaginary parts, are distinct, Aij(x̄), Pijk(x̄) and Qijkl(x̄) have the
same 3 poles. The orders of the 3 poles are the same in Aij(x̄), Pijk(x̄) or Qijkl(x̄), but
orders of each pk in Aij(x̄), Pijk(x̄) and Qijkl(x̄) are respectively 1, 2 and 3. In virtue of
Eqs. (3.23) and (3.24), Eqs. (3.19)-(3.21) become

Aij(x̄) = − Im
3∑

n=1

Nij(pn)
D′(pn) , (3.25)

Pijk(x̄) = − Im
3∑

n=1

D′(pn)Ĥ ′ijk(pn)−D′′(pn)Ĥijk(pn)
D′3(pn) , (3.26)

Qijkl(x̄) = − Im
3∑

n=1

1
2D′5(pn)

{
D′2(pn)M̂ ′′

ijkl(pn)− 3D′(pn)D′′(pn)M̂ ′
ijkl(pn)

+
[
3D′′2(pn)−D′′′(pn)D′(pn)

]
M̂ijkl(pn)

}
, (3.27)

where
Ĥijk(p) = ξ∗kHij(p), M̂ijkl(p) = ξ∗kξ

∗
lMij(p), (3.28)

in which Ĥijk(p) and M̂ijkl(p) are polynomials of 10th-order and 16th-order, respectively.
Substitution of Eq. (3.25) into Eq. (3.13) yields the following explicit Green’s function

Gij(x) = − 1
2πr Im

3∑
n=1

Nij(pn)
D′(pn) , (3.29)

which was known as Fredholm’s formula in the early literature (Dederichs and Liebfried,
1969). Sales and Gray (1998) firstly gave explicit expressions of the derivatives of the
Green’s function in terms of the Stroh eigenvalues. The starting point of Sales and Gray
(1998) was a modulation function, like Aij(x̄) in Eq. (3.19). The explicit expressions
of the derivatives of the Green’s function were obtained after the differentiation of the
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modulation function with respect to two angles, namely polar angle and azimuthal an-
gle in the spherical coordinate system, which determined the orientation of x. Based
on another three integrals, Lee (2003) presented the explicit expressions of the deriva-
tives of the Green’s function with respect to the Cartesian coordinates. Note that the
Fredholm’s formula, explicit expressions by Sales and Gray (1998) and Lee (2003), and
Eqs. (3.25)-(3.27) are only applicable when the Stroh eigenvalues are distinct. For a gen-
eral evaluation, a small perturbation on the material constants is suggested to keep the
Stroh eigenvalues distinct. Using multiple pole residue calculus, Phan et al. (2004, 2005)
extended the work of Sales and Gray (1998) by giving explicit expressions of the Green’s
function and its derivatives for repeated Stroh eigenvalues. Buroni et al. (2011) extended
the work of Lee (2003). The explicit expressions by Sales and Gray (1998) and Lee (2003)
were either with respect to spherical coordinates or contained tensors of the orders higher
than 4. Our newly proposed explicit derivatives of the Green’s function are given in the
Cartesian coordinate system with low order tensors.

3.3.2 Stroh formalism method
In three-dimensional theory of linear elasticity, the equation for the 6-dimensional Stroh
eigenvalue problem on the oblique plane perpendicular to x is given by Eqs. (2.37)-(2.39)
and (2.44) (Hwu, 2010; Ting, 1996).

Since the fundamental elasticity matrix N is not symmetric, ξ in Eq. (2.37) is a right
eigenvector. The left eigenvector denoted by η satisfies

ηTN = pηT . (3.30)

Ting (1996) had proved that

η =
{
b
a

}
. (3.31)

As long as the elasticity tensor ckijl is positive definite, in the sense that ckijlekiejl > 0
for any non-zero eij, the eigenvalues of Eq. (2.37) are three pairs of complex conjugates.
It is assumed that Im(pk) > 0, pk+3 = p̄k, k = 1, 2, 3 and pk are distinct which causes all
the eigenvectors being independent of each other.

By defining
A = [a1,a2,a3] , B = [b1, b2, b3] , (3.32)

and with the normalized orthogonality relations between eigenvectors

ηTαξβ = δαβ, α, β = 1, 2, . . . , 6, (3.33)

where δαβ was the Kronecker delta, Ting (1996) showed that the Green’s function could
be written as

G(x) = 1
4πrH(x̄), H = 2iAAT , (3.34)

in which H was one of the three Barnett-Lothe tensors in the oblique plane perpendicular
to x.

Suppose ξ∗ is an arbitrary eigenvector of the fundamental elasticity matrix N, and

ξ∗ =
{
a∗

b∗

}
. (3.35)
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In order to find the right eigenvector satisfying Eq. (3.33), we suppose

ξ = γξ∗, (3.36)

where γ is a nonzero constant to be determined. Substitution of Eq. (3.36) into Eq. (3.33)
yields

γ = 1√
2a∗ · b∗

. (3.37)

Therefore, the right eigenvector ξ required by the Green’s function can be determined by
Eqs. (3.35)-(3.37).

By using now called the Stroh formalism, Malén (1971) constructed the explicit ex-
pression of the Green’s function from the solutions of the Stroh eigenvalue problem with
the distinctness assumption of the eigenvalues, while Nakamura and Tanuma (1997) with-
out the distinctness assumption. Hwu (2010) gave explicit components of A in terms of
the Stroh eigenvalues. For the derivatives of the Green’s function, Malén (1971) obtained
the explicit expression of the first derivative in terms of Stroh eigenvalues and eigenvec-
tors. Xie et al. (2015a) presented the expressions of the first and second derivatives by
differentiating the explicit components of A.

In the following, we present new explicit expressions of the first and second derivatives
of the Green’s function in terms of the Stroh eigenvalues and eigenvectors. Instead of
using the spherical coordinate system (Malén, 1971), the Cartesian coordinate system is
used directly.

The derivatives of the Green’s function become straightforward by differentiating
Eq. (3.34) with respect to xi and further to xj, i.e.,

G,i(x) = 1
4πr2

(
−xi
r

H + rH,i

)
, (3.38)

G,ij(x) = 1
4πr3

((3xixj
r2 − δij

)
H− (xiH,j + xjH,i) + r2H,ij

)
, (3.39)

where

H,i = 2i
(
A,iAT +

[
A,iAT

]T)
, (3.40)

H,ij = 2i
(
A,ijAT + A,iAT

,j +
[
A,ijAT + A,iAT

,j

]T)
. (3.41)

According to the above equations, the derivatives of A are required to calculate the
derivatives of the Green’s function G(x). The differentiation of Eq. (2.37), which is
associated with the eigenvalue pα and the corresponding right eigenvector ξα, with respect
to xi leads to

(N− pαI)ξα,i = −(N,i − pα,iI)ξα. (3.42)

Note that the repeated Greek letter in the above equation does not imply summation, neither
does in the following. Since the derivative of an eigenvector is a 6-dimensional vector, it
is a linear combination of the six independent eigenvectors, i.e.,

ξα,i =
6∑

β=1
c

(i)
αβξβ. (3.43a)
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and
ηα,i =

6∑
β=1

c
(i)
αβηβ. (3.43b)

In Eq. (3.43), the coefficients c(i)
αβ are constants. In virtue of Eqs. (2.37), (3.30) and (3.33),

the substitution of Eq. (3.43a) into Eq. (3.42) followed by the premultiplication by ηTβ
yields

c
(i)
αβ(pβ − pα) = −ηTβ (N,i − pα,iI)ξα. (3.44)

When β = α, the derivative of the eigenvalue pα is given from Eq. (3.44) as

pα,i = ηTαN,iξα. (3.45)

If β 6= α the coefficients c(i)
αβ in the expressions of the derivatives of eigenvectors ξα,i are

c
(i)
αβ =

ηTβN,iξα
pα − pβ

. (3.46)

Substitution of Eqs. (3.33) and (3.43) into the first derivative of Eq. (3.33) leads to

c
(i)
αβ + c

(i)
βα = 0. (3.47)

When β = α, we have
c(i)
αα = 0. (3.48)

So far, all the coefficients c(i)
αβ are determined. The 1st derivative of eigenvector can

be expressed in terms of all eigenvectors by Eq. (3.43). And further easily arrives A,i by
differentiating Eq. (3.32).

In order to get the 2nd derivative of A, the 2nd derivatives of the right eigenvectors
ξα,ij are required. In the same way, ξα,ij is a linear combination of the six independent
right eigenvectors:

ξα,ij =
6∑

β=1
d

(ij)
αβ ξβ. (3.49)

Taking derivative of Eq. (3.42) with respect to xj followed by the premultiplication by
ηTβ , and with the substitution of Eq. (3.49) yields

d
(ij)
αβ (pβ − pα) = −ηTβ (N,ij − pα,ijI)ξα − ηTβ (N,i − pα,iI)ξα,j − ηTβ (N,j − pα,jI)ξα,i. (3.50)

Using the same approach for the 1st derivative of the eigenvectors, the 2nd derivatives of
the eigenvalues pα,ij and the coefficients d(ij)

αβ are

pα,ij = ηTαN,ijξα + ηTαN,iξα,j + ηTαN,jξα,i, (3.51)
d(ij)
αα = −(ηTα,iξα,j + ηTα,jξα,i)/2, (3.52)

d
(ij)
αβ =

ηTβN,ijξα + ηTβ (N,i − pα,iI)ξα,j + ηTβ (N,j − pα,jI)ξα,i
pα − pβ

, β 6= α. (3.53)

N,i and N,ij can be given by taking derivatives of Eqs. (2.37) and (2.44). Appendix
B presents the explicit expressions of N,i and N,ij as well as the proper choise of n, m
and their derivatives.
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3.4 Unified explicit Green’s function and its deriva-
tives

In Section 3.2, the Green’s function and its derivatives are expressed in terms of three
integrals, Aij, Pijk and Qijkl. In Section 3.3.1, the direct evaluation of the three integrals
by Cauchy residue calculus leads to explicit expressions. However, the explicit expressions
and the counterpart by the Stroh formalism method (Section 3.3.2), are only applicable
when the Stroh eigenvalues are distinct. In this section, we derive unified explicit expres-
sions of the Green’s function and its derivatives which remain applicable no matter the
Stroh eigenvalues are distinct or not. The word unified is used to emphasize the difference
from the piecewise explicit expressions derived by the multiple pole residue calculus.

3.4.1 Rearrangements of the integrals
The evaluations of the integrals Aij, Pijk and Qijkl are the main tasks in the calculations
of the Green’s function and its derivatives. In this section, we present the rearrangements
of the three integrals.

The determinant D(p) is a 6th order polynomial in p. Because the elasticity tensor
cijkl is positive definite, the roots of the determinant D(p) are three pairs of complex
conjugates. So D(p) can be written as

D(p) = α(p− p1)(p− p2)(p− p3)(p− p̄1)(p− p̄2)(p− p̄3),

= α
3∏
i=1

(p− pi)(p− p̄i), (3.54)

where α, the coefficient of p6 in D(p), is equal to the determinant of the matrix cijklmjml,
pk (Im [pk] > 0, k = 1, 2, 3) are known as the Stroh eigenvalues, and the overbar denotes
the complex conjugate. Since D(p) is the determinant of Kij(p) = cikjlξ

∗
kξ
∗
l , it can be

concluded that the Stroh eigenvalues depend on the material constants, the direction of
the observation point x and maybe the chosen coordinates in the oblique plane.

Since Nij(p), Ĥijk(p) and M̂ijkl(p) are polynomials with highest orders 4, 10 and 16,
respectively, they can be written as

Nij(p) =
4∑

n=0
anijp

n, (3.55)

Ĥijk(p) =
10∑
n=0

anijkp
n, (3.56)

M̂ijkl(p) =
16∑
n=0

anijklp
n, (3.57)

where anij, anijk and anijkl are independent of p. Substituting Eqs. (3.54)-(3.57) into Eqs. (3.19)-
(3.21), the three integrals become

Aij(x̄) = 1
α

4∑
n=0

anijI
n
3 , (3.58)

Pijk(x̄) = 1
α2

10∑
n=0

anijkI
n
6 , (3.59)
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Qijkl(x̄) = 1
α3

16∑
n=0

anijklI
n
9 , (3.60)

where

In3 =
∫ +∞

−∞

pn

f(p)dp, 0 ≤ n ≤ 4, (3.61)

In6 =
∫ +∞

−∞

pn

f 2(p)dp, 0 ≤ n ≤ 10, (3.62)

In9 =
∫ +∞

−∞

pn

f 3(p)dp, 0 ≤ n ≤ 16, (3.63)

in which
f(p) =

3∏
i=1

(p− pi)(p− p̄i). (3.64)

Although the coefficients anij, anijk and anijkl are too complicated to be explicit, they can be
obtained nearly exactly in a program by using the polynomial algorithms (Press, 2007).
Besides it is not difficult to find that both the coefficients and the integrals In3 , In6 and In9
are real-valued.

If the three Stroh eigenvalues p1, p2 and p3 are distinct, the orders of poles in Eqs. (3.62)
and (3.63) are, respectively, 2 and 3, which increases the difficulty to obtain the explicit
expressions by using the residue calculus. Therefore, instead of Eqs. (3.62) and (3.63) we
consider

In6 =
∫ +∞

−∞

pn∏6
i=1(p− pi)(p− p̄i)

dp, 0 ≤ n ≤ 10, (3.65)

In9 =
∫ +∞

−∞

pn∏9
i=1(p− pi)(p− p̄i)

dp, 0 ≤ n ≤ 16, (3.66)

which are identical to Eqs. (3.62) and (3.63) when p4 and p7, p5 and p8, p6 and p9 are
respectively set to be p1, p2 and p3.

Further, In3 , In6 and In9 can be expressed in terms of two elementary integrals, which
are

I0
m =

∫ +∞

−∞

1∏m
i=1(p− pi)(p− p̄i)

dp, (3.67)

I1
m =

∫ +∞

−∞

p∏m
i=1(p− pi)(p− p̄i)

dp. (3.68)

The expressions of In3 in terms of I0
m (m = 1, 2, 3) and I1

m (m = 2, 3) are given by

I2
3 =I0

2 + 2 Re(p3)I1
3 − |p3|2I0

3 ,

I3
3 =I1

2 + 2 Re(p3)I2
3 − |p3|2I1

3 ,

I4
3 =I0

1 + 2 Re(p2 + p3)I3
3 −

[
|p2|2 + |p3|2 + 4 Re(p2) Re(p3)

]
I2

3

+ 2
[
Re(p2)|p3|2 + Re(p3)|p2|2

]
I1

3 − |p2|2|p3|2I0
3 . (3.69)

The expressions of In6 in terms of I0
m (m = 1, 2, . . . , 6) and I1

m (m = 2, 3, . . . , 6) are given
by

I2
6 = I0

5 −
2∑
i=1

(−1)iE(66)
i I2−i

6 , I3
6 = I1

5 −
2∑
i=1

(−1)iE(66)
i I3−i

6 ,
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I4
6 = I0

4 −
4∑
i=1

(−1)iE(65)
i I4−i

6 , I5
6 = I1

4 −
4∑
i=1

(−1)iE(65)
i I5−i

6 ,

I6
6 = I0

3 −
6∑
i=1

(−1)iE(64)
i I6−i

6 , I7
6 = I1

3 −
6∑
i=1

(−1)iE(64)
i I7−i

6 ,

I8
6 = I0

2 −
8∑
i=1

(−1)iE(63)
i I8−i

6 , I9
6 = I1

2 −
8∑
i=1

(−1)iE(63)
i I9−i

6 ,

I10
6 = I0

1 −
10∑
i=1

(−1)iE(62)
i I10−i

6 , (3.70)

in which

E
(kl)
i =


ei(pk, p̄k, . . . , pl, p̄l), l < k,

ei(pk, p̄k), l = k,
(3.71)

where ei(x1, . . . , xn) is the elementary symmetric polynomial, the sum of all products of
i distinct variables out of x1, . . . , xn. That is

e1(x1, . . . , xn) =
n∑
i=1

xi,

e2(x1, . . . , xn) =
∑

1≤i1<i2≤n
xi1xi2 ,

...
em(x1, . . . , xn) =

∑
1≤i1<···<im≤n

xi1 . . . xim ,

...
en(x1, . . . , xn) = x1x2 . . . xn. (3.72)

Finally, the expressions of In9 in terms of I0
m (m = 1, 2, . . . , 9) and I1

m (m = 2, 3, . . . , 9)
are given by

I2
9 = I0

8 −
2∑
i=1

(−1)iE(99)
i I2−i

9 , I3
9 = I1

8 −
2∑
i=1

(−1)iE(99)
i I3−i

9 ,

I4
9 = I0

7 −
4∑
i=1

(−1)iE(98)
i I4−i

9 , I5
9 = I1

7 −
4∑
i=1

(−1)iE(98)
i I5−i

9 ,

I6
9 = I0

6 −
6∑
i=1

(−1)iE(97)
i I6−i

9 , I7
9 = I1

6 −
6∑
i=1

(−1)iE(97)
i I7−i

9 ,

I8
9 = I0

5 −
8∑
i=1

(−1)iE(96)
i I8−i

9 , I9
9 = I1

5 −
8∑
i=1

(−1)iE(96)
i I9−i

9 ,

... ...

I14
9 = I0

2 −
14∑
i=1

(−1)iE(93)
i I14−i

9 , I15
9 = I1

2 −
14∑
i=1

(−1)iE(93)
i I15−i

9 ,

I16
9 = I0

1 −
16∑
i=1

(−1)iE(92)
i I16−i

9 . (3.73)
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By now, the Green’s function and its derivatives are expressed in terms of I0
m (m =

1, 2, . . . , 9) and I1
m (m = 2, 3, . . . , 9) . These expressions keep the same no matter Stroh

eigenvalues are distinct or not.
Besides, we mention an implicit recursive relation which may be helpful in program-

ming. We define

Inm =
∫ +∞

−∞

pn∏m
i=1(p− pi)(p− p̄i)

dp, 0 ≤ n ≤ 2m− 2. (3.74)

then In3 , In6 and In9 are subsets of Inm. Eqs. (3.69), (3.70) and (3.73) have a recursive
relation, i.e.,

In+2
m − 2 Re(pm)In+1

m + |pm|2Inm = Inm−1. (3.75)
Eqs. (3.69), (3.70), (3.73) and (3.75) show that I0

m(1 ≤ m ≤ 3) and I1
m(2 ≤ m ≤ 3) are

required for the calculation of In3 which is needed by the Green’s function; I0
m(4 ≤ m ≤ 6)

and I1
m(4 ≤ m ≤ 6) are required for the calculation of In6 which is needed by the first

derivative of the Green’s function; and I0
m(7 ≤ m ≤ 9) and I1

m(7 ≤ m ≤ 9) are required
for the calculation of In9 which is needed by the second derivative of the Green’s function.
So unified explicit expressions of I0

m(1 ≤ m ≤ 9) and I1
m(2 ≤ m ≤ 9) are required by the

unified explicit expressions of the Green’s function and its derivatives.

3.4.2 Unified explicit expressions
By applying the Cauchy residue theorem to Eq. (3.74) with the distinctness assumption
of pi, Inm becomes the following explicit algebraic expression in terms of pi

Inm = 2πi
m∑
i=1

pni
(pi − p̄i)

∏
1≤j 6=i≤m(pi − pj)(pi − p̄j)

. (3.76)

However, the denominator in this expression has the factor pi − pj, which makes the
expression invalid and may also cause remarkable errors in the numerical computation
when pi and pj are very close to each other. To overcome this difficulty, the rearrangement
of Inm is required by removing the factor pi − pj in the denominator.

When m = 1, 2, 3, the rearranged Inm(n = 0, 1) are

I0
1 = π

β1
,

In2 =− π

β1β2
Im

(
pn1

p1 − p̄2

)
,

In3 =− π

2β1β2β3
Re

[
pn1

(p1 − p̄2)(p1 − p̄3) + pn2
(p2 − p̄1)(p2 − p̄3)

+ pn3
(p3 − p̄1)(p3 − p̄2)

]
, (3.77)

where βi is the imaginary part of pi. Note that Inm are real-valued.
The most important advantage of Eq. (3.77) is that the rearranged explicit expressions

are applicable not only when pi are distinct but also when some pi are equivalent as
well as any two pi are very close to each other. This advantage will be proved in the
following numerical evaluation. Besides, the Green’s function in terms of unified explicit
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Inm(n = 0, 1,m = 1, 2, 3) are equivalent to the explicit expressions proposed by Ting and
Lee (1997).

The unified explicit expressions of Inm(n = 0, 1,m = 4, 5, 6) are required by the first
derivative of the Green’s function. The rearranged Inm(n = 0, 1,m = 4, 5, 6) followed by
the substitutions p4 = p1, p5 = p2 and p6 = p3 are

In4 = π

4β2
1β2β3

Im
[

−ipn1
β1(p1 − p̄2)(p1 − p̄3) + pn2

(p2 − p̄1)2(p2 − p̄3)

+ pn3
(p3 − p̄1)2(p3 − p̄2) + 2F (n)

0 (1, 2, 1̄, 3̄) + F
(n)
0 (1, 1, 2̄, 3̄)

]
,

In5 = π

8β2
1β

2
2β3

Re
[

−pn1 i
β1(p1 − p̄2)2(p1 − p̄3) + −pn2 i

β2(p2 − p̄1)2(p2 − p̄3)

+ pn3
(p3 − p̄1)2(p3 − p̄2)2 + 4F (n)

1 (1, 2, 1̄, 2̄, 3̄) + 2F (n)
1 (1, 3, 1̄, 2̄, 2̄)

+2F (n)
1 (2, 3, 1̄, 1̄, 2̄) + F

(n)
1 (1, 1, 2̄, 2̄, 3̄) + F

(n)
1 (2, 2, 1̄, 1̄, 3̄)

]
,

In6 = −π
16β2

1β
2
2β

2
3

Im
[

−pn1 i
β1(p1 − p̄2)2(p1 − p̄3)2 + −pn2 i

β2(p2 − p̄1)2(p2 − p̄3)2

+ −pn3 i
β3(p3 − p̄1)2(p3 − p̄2)2 + 4F (n)

2 (1, 2, 1̄, 2̄, 3̄, 3̄) + 4F (n)
2 (1, 3, 1̄, 2̄, 2̄, 3̄)

+ 4F (n)
2 (2, 3, 1̄, 1̄, 2̄, 3̄) + F

(n)
2 (1, 1, 2̄, 2̄, 3̄, 3̄) + F

(n)
2 (2, 2, 1̄, 1̄, 3̄, 3̄)

+ F
(n)
2 (3, 3, 1̄, 1̄, 2̄, 2̄) + 4F (n)

3 (1, 2, 3, 1̄, 2̄, 3̄) + 2F (n)
3 (1, 1, 2, 2̄, 3̄, 3̄)

+2F (n)
3 (1, 2, 2, 1̄, 3̄, 3̄) + 2F (n)

3 (1, 1, 3, 2̄, 2̄, 3̄)
]
. (3.78)

In Eq. (3.78), the abbreviations pk=k and p̄k=k̄ for the variables of the functions F (n)
m (...)

(n = 0, 1,m = 1, 2, 3) are introduced for convenience, and

F
(0)
0 (x1, . . . , x4) =

[ 4∏
i=3

(x1 − xi)(x2 − xi)
]−1

× (x1 + x2 − x3 − x4) ,

F
(0)
1 (x1, . . . , x5) =

[ 5∏
i=3

(x1 − xi)(x2 − xi)
]−1

×

[(x1 − x3)(x1 − x4) + (x1 − x3)(x2 − x5) + (x2 − x4)(x2 − x5)],

F
(0)
2 (x1, . . . , x6) =

[ 6∏
i=3

(x1 − xi)(x2 − xi)
]−1

×

[(x1 − x3)(x1 − x4)(x1 − x5) + (x1 − x3)(x1 − x4)(x2 − x6)
+ (x1 − x3)(x2 − x5)(x2 − x6) + (x2 − x4)(x2 − x5)(x2 − x6)],

F
(0)
3 (x1, . . . , x6) =

[ 6∏
i=4

(x1 − xi)(x2 − xi)(x3 − xi)
]−1

×

[y2
2 − y1y3 + y3y4 + y2(−y1y4 + y2

4 − 2y5)
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+ (y1 − y4)y6 + y5(y2
1 − y1y4 + y5)],

F
(1)
0 (x1, . . . , x4) = [(x1 − x3)(x2 − x3)]−1 + x4F

(0)
0 (x1, . . . , x4),

F
(1)
1 (x1, . . . , x5) = F

(0)
0 (x1, . . . , x4) + x5F

(0)
1 (x1, . . . , x5),

F
(1)
2 (x1, . . . , x6) = F

(0)
1 (x1, . . . , x5) + x6F

(0)
2 (x1, . . . , x6),

F
(1)
3 (x1, . . . , x6) = F

(0)
1 (x4, x5, x1, x2, x3) + x6F

(0)
3 (x1, . . . , x6). (3.79)

In Eq. (3.79), yi are elementary symmetric polynomials defined by

yi =


ei(x1, x2, x3), i = 1, 2, 3,

ei−3(x4, x5, x6), i = 4, 5, 6.
. (3.80)

The unified explicit expressions of Inm(n = 0, 1,m = 7, 8, 9) are required by the second
derivative of the Green’s function. The rearranged Inm(n = 0, 1,m = 7, 8, 9) followed by
the substitutions p7 = p4 = p1, p8 = p5 = p2 and p9 = p6 = p3 are

In7 = −π
32β3

1β
2
2β

2
3

Re
[

−3pn1
4β2

1(p1 − p̄2)2(p1 − p̄3)2 + −pn2 i
β2(p2 − p̄1)3(p2 − p̄3)2

+ −pn3 i
β3(p3 − p̄1)3(p3 − p̄2)2 + 6F (n)

4 (1, 2, 1̄, 1̄, 2̄, 3̄, 3̄)

+ 6F (n)
4 (1, 3, 1̄, 1̄, 2̄, 2̄, 3̄) + 4F (n)

4 (2, 3, 1̄, 1̄, 1̄, 2̄, 3̄)
+ 3F (n)

4 (1, 1, 1̄, 2̄, 2̄, 3̄, 3̄) + F
(n)
4 (2, 2, 1̄, 1̄, 1̄, 3̄, 2̄)

+ F
(n)
4 (3, 3, 1̄, 1̄, 1̄, 2̄, 2̄) + 12F (n)

5 (1, 2, 3, 1̄, 1̄, 2̄, 3̄)
+ 6F (n)

5 (1, 1, 2, 1̄, 2̄, 3̄, 3̄) + 6F (n)
5 (1, 1, 3, 1̄, 2̄, 2̄, 3̄)

+ 3F (n)
5 (1, 2, 2, 1̄, 1̄, 3̄, 3̄) + 3F (n)

5 (1, 3, 3, 1̄, 1̄, 2̄, 2̄)
+ 2F (n)

5 (2, 2, 3, 1̄, 1̄, 1̄, 3̄) + 2F (n)
5 (2, 3, 3, 1̄, 1̄, 1̄, 2̄)

+F (n)
5 (1, 1, 1, 2̄, 2̄, 3̄, 3̄)

]
, (3.81a)

In8 = π

64β3
1β

3
2β

2
3

Im
[

−3pn1
4β2

1(p1 − p̄2)3(p1 − p̄3)2 + −3pn2
4β2

2(p2 − p̄1)3(p2 − p̄3)2

+ −pn3 i
β3(p3 − p̄1)3(p3 − p̄2)3 + 9F (n)

6 (1, 2, 1̄, 1̄, 2̄, 2̄, 3̄, 3̄)

+ 6F (n)
6 (1, 3, 1̄, 1̄, 2̄, 2̄, 2̄, 3̄) + 6F (n)

6 (2, 3, 1̄, 1̄, 1̄, 2̄, 2̄, 3̄)
+ 3F (n)

6 (1, 1, 1̄, 2̄, 2̄, 2̄, 3̄, 3̄) + 3F (n)
6 (2, 2, 1̄, 1̄, 1̄, 2̄, 3̄, 3̄)

+ F
(n)
6 (3, 3, 1̄, 1̄, 1̄, 2̄, 2̄, 2̄) + 18F (n)

7 (1, 2, 3, 1̄, 1̄, 2̄, 2̄, 3̄)
+ 9F (n)

7 (1, 1, 2, 1̄, 2̄, 2̄, 3̄, 3̄) + 9F (n)
7 (1, 2, 2, 1̄, 1̄, 2̄, 3̄, 3̄)

+ 6F (n)
7 (1, 1, 3, 1̄, 2̄, 2̄, 2̄, 3̄) + 6F (n)

7 (2, 2, 3, 1̄, 1̄, 1̄, 2̄, 3̄)
+ 3F (n)

7 (2, 3, 3, 1̄, 1̄, 1̄, 2̄, 2̄) + 3F (n)
7 (1, 3, 3, 1̄, 1̄, 2̄, 2̄, 3̄)

+ F
(n)
7 (1, 1, 1, 2̄, 2̄, 2̄, 3̄, 3̄) + F

(n)
7 (2, 2, 2, 1̄, 1̄, 1̄, 3̄, 3̄)
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+ 18F (n)
8 (1, 1, 2, 3, 1̄, 2̄, 2̄, 3̄) + 9F (n)

8 (1, 1, 2, 2, 1̄, 2̄, 3̄, 3̄)
+ 3F (n)

8 (1, 1, 3, 3, 1̄, 2̄, 2̄, 2̄) + 3F (n)
8 (1, 1, 1, 2, 2̄, 2̄, 3̄, 3̄)

+2F (n)
8 (1, 1, 1, 3, 2̄, 2̄, 2̄, 3̄)

]
, (3.81b)

In9 = π

128β3
1β

3
2β

3
3

Re
[

−3pn1
4β2

1(p1 − p̄2)3(p1 − p̄3)3 + −3pn2
4β2

2(p2 − p̄1)3(p2 − p̄3)3

−3pn3
4β2

3(p3 − p̄1)3(p3 − p̄2)3 + 9F (n)
9 (1, 2, 1̄, 1̄, 2̄, 2̄, 3̄, 3̄, 3̄)

+ 9F (n)
9 (1, 3, 1̄, 1̄, 2̄, 2̄, 2̄, 3̄, 3̄) + 9F (n)

9 (2, 3, 1̄, 1̄, 1̄, 2̄, 2̄, 3̄, 3̄)
+ 3F (n)

9 (1, 1, 1̄, 2̄, 2̄, 2̄, 3̄, 3̄, 3̄) + 3F (n)
9 (2, 2, 1̄, 1̄, 1̄, 2̄, 3̄, 3̄, 3̄)

+ 3F (n)
9 (3, 3, 1̄, 1̄, 1̄, 2̄, 2̄, 2̄, 3̄) + 27F (n)

10 (1, 2, 3, 1̄, 1̄, 2̄, 2̄, 3̄, 3̄)
+ 9F (n)

10 (1, 1, 2, 1̄, 2̄, 2̄, 3̄, 3̄, 3̄) + 9F (n)
10 (1, 2, 2, 1̄, 1̄, 2̄, 3̄, 3̄, 3̄)

+ 9F (n)
10 (1, 1, 3, 1̄, 2̄, 2̄, 2̄, 3̄, 3̄) + 9F (n)

10 (2, 2, 3, 1̄, 1̄, 1̄, 2̄, 3̄, 3̄)
+ 9F (n)

10 (2, 3, 3, 1̄, 1̄, 1̄, 2̄, 2̄, 3̄) + 9F (n)
10 (1, 3, 3, 1̄, 1̄, 2̄, 2̄, 3̄, 3̄)

+ F
(n)
10 (1, 1, 1, 2̄, 2̄, 2̄, 3̄, 3̄, 3̄) + F

(n)
10 (2, 2, 2, 1̄, 1̄, 1̄, 3̄, 3̄, 3̄)

+ F
(n)
10 (3, 3, 3, 1̄, 1̄, 1̄, 2̄, 2̄, 2̄) + 27F (n)

11 (1, 1, 2, 3, 1̄, 2̄, 2̄, 3̄, 3̄)
+ 27F (n)

11 (1, 2, 2, 3, 1̄, 1̄, 2̄, 3̄, 3̄) + 27F (n)
11 (1, 2, 3, 3, 1̄, 1̄, 2̄, 2̄, 3̄)

+ 9F (n)
11 (1, 1, 2, 2, 1̄, 2̄, 3̄, 3̄, 3̄) + 9F (n)

11 (1, 1, 3, 3, 1̄, 2̄, 2̄, 2̄, 3̄)
+ 9F (n)

11 (2, 2, 3, 3, 1̄, 1̄, 1̄, 2̄, 3̄) + 3F (n)
11 (1, 1, 1, 2, 2̄, 2̄, 3̄, 3̄, 3̄)

+ 3F (n)
11 (1, 1, 1, 3, 2̄, 2̄, 2̄, 3̄, 3̄) + 3F (n)

11 (1, 2, 2, 2, 1̄, 1̄, 3̄, 3̄, 3̄)
+ 3F (n)

11 (1, 3, 3, 3, 1̄, 1̄, 2̄, 2̄, 2̄) + 3F (n)
11 (2, 2, 2, 3, 1̄, 1̄, 1̄, 3̄, 3̄)

+3F (n)
11 (2, 3, 3, 3, 1̄, 1̄, 1̄, 2̄, 2̄)

]
, (3.81c)

The explicit expressions for the functions F (n)
m (· · · ) (n = 0, 1,m = 4, . . . , 11) are quite

lengthy and thus they are given in Appendix C.
In conclusion, substitution of Eq. (3.77) into Eq. (3.69) and then into Eqs. (3.58) yields

the explicit expression of Aij(x̄); substitution of Eqs. (3.77) and (3.78) into Eq. (3.70) and
then into Eq. (3.59) yields the explicit expression of Pijk(x̄); substitution of Eqs. (3.77),
(3.78) and (3.81) into Eq. (3.73) and then into Eq. (3.60) yields the explicit expression of
Qijkl(x̄). Further, the Green’s function and its derivatives are determined by Eqs. (3.13)-
(3.15) with the unified explicit expressions of Aij(x̄), Pijk(x̄) and Qijkl(x̄).

3.5 Verifications and comparison of the different meth-
ods

In the previous sections, we presented four formulae to calculate the 3D Green’s function
and its derivatives for generally anisotropic elastic materials. In this section, we focus
on the numerical evaluation. For convenience, the methods based on the four different
formulae are named as the numerical integration method (NIM), the residue calculus

30



method (RCM), the Stroh formalism method (SFM) and the unified explicit expression
method (UEEM), respectively.

The NIM is relatively simple. It requires only a certain numerical integration of the
line integrals in Eqs. (3.8)-(3.10) and the substitution of the results into Eqs. (3.13)-(3.15).
The numerical integration can be the standard Gaussian quadrature. Different from the
other three methods, the NIM doesn’t need to know the Stroh eigenvalues.

The RCM is an alternative of the NIM. It applies the residue calculus to the line
integrals in Eqs. (3.8)-(3.10) instead of the numerical integration. Resulting from the
substitutions of Eqs. (3.25)-(3.27) into Eqs. (3.13)-(3.15), the expressions of the Green’s
function and its derivatives are explicit, but valid only when the Stroh eigenvalues are
distinct. The explicit expressions are analytical if the Stroh eigenvalues are analytical.
However, the Stroh eigenvalues are analytical only for special cases, for example when the
material is isotropic or transversely isotropic. Generally, a numerical subroutine is needed
to find the Stroh eigenvalues. In our program, the Stroh eigenvalues are calculated as the
eigenvalues of the fundamental elasticity matrix N on an oblique plane to have a better
accuracy.

The SFM is different from the other methods. It is based on the fact that the Green’s
function can be constructed from the solutions of an Stroh eigenvalue problem. Therefore,
the explicit expressions of the Green’s function and its derivatives in the SFM are in terms
of the eigenvalues and the eigenvectors of the Stroh eigenvalue problem, not only the Stroh
eigenvalues like in the RCM. For the convenience of the readers, the relations between the
equations in the SFM are illustrated in Fig. 3.2. In the numerical calculation, the Stroh
eigenvalue problem is solved by using the subroutine ZGEEV in the LAPACK library
(Anderson et al., 1999).

m,n,x, Cijkl
(B.6) or (B.10)

N
(2.37)

pα
Normalized ξα (3.33)

ηα (3.30)
A (3.32) G (3.34)

n,i,m,i

(B.9) or (B.11) N,i
c

(i)
αβ

(3.46) & (3.48)

pα,i (3.45)
ξα,i (3.43a)
ηα,i(3.43b)

A,i G,i (3.38)

n,ij,m,ij

(B.9) or (B.11) N,ij
d

(ij)
αβ

(3.52) & (3.53)
ξα,ij (3.49) A,ij G,ij (3.39)

Figure 3.2: Diagram of the Stroh formalism method.

The UEEM is an improvement of the RCM. It results in unified explicit expressions of
the Green’s function and its derivatives, i.e., the explicit expressions remain valid when
the Stroh eigenvalues repeat. For the Green’s function, the unified explicit expression is a
straightforward rewritten of the explicit expression in RCM when the Stroh eigenvalues are
distinct. The feature, the explicit expression in the RCM when the Stroh eigenvalues are
distinct can be recast into a unified explicit one, was firstly found by Ting and Lee (1997).
But the use of this feature in the derivatives of the Green’s function was not yet fully
explored. In Section 3.4, the feature in the derivatives of the Green’s function is found by
presenting the unified explicit expressions of the derivatives of the Green’s function after
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reformulations of the three integrals. The procedure is thus not as simple as that in the
RCM. For the convenience of readers, Fig. 3.3 is a diagram of the procedure of the UEEM
with the known Stroh eigenvalues. In the numerical calculation, the Stroh eigenvalues are
evaluated as the eigenvalues of the fundamental elasticity matrix N associated with the
oblique plane perpendicular to x.

Inm (3.77)
(n = 0, 1,m = 1, 2, 3)

In3 (3.69)
(n = 0, 1, . . . , 4) Aij(x̄) (3.58) Gij(x) (3.13)

Inm (3.78)
(n = 0, 1,m = 4, 5, 6)

In6 (3.70)
(n = 0, 1, . . . , 10) Pijk(x̄) (3.59) Gij,k(x) (3.14)

Inm (3.81)
(n = 0, 1,m = 7, 8, 9)

In9 (3.73)
(n = 0, 1, . . . , 16) Qijkl(x̄) (3.60) Gij,kl(x) (3.15)

Figure 3.3: Diagram of the unified explicit expression method with known Stroh eigen-
values.

In the following, firstly, we verify the four different methods by the comparison with
the analytical Green’s function for transversely isotropic materials (Pan and Chou, 1976)
which is evaluated by using the algebra algorithm software MATHEMATICA, as well as
its derivatives. Secondly, the abilities of the different methods to deal with the nearly
degenerate cases are investigated by the numerical evaluations near a fully degenerate
point in a transversely isotropic material. Then the CPU times for calculating the Green’s
function and its derivatives of different methods are obtained to give a direct comparison
on the efficiencies of the four methods. Finally, a general evaluation of the Green’s function
and its derivatives on a unit sphere by the UEEM is presented.

3.5.1 Verification of the numerical integration method
The numerical integration method (NIM) avoids the need of solving a polynomial equation
or the Stroh eigenvalue problem, but requires the numerical integration. The standard
Gaussian quadrature is adopted for the numerical evaluation of the three integrals, i.e.,
Eqs. (3.8)-(3.10). Since transversely isotropic materials have analytical Green’s function
(Pan and Chou, 1976), we use the transversely isotropic materials Mg and C as examples
to verify the NIM, and investigate the effect of the number of the Gaussian points on the
accuracy. Choosing the symmetry axis of the transversely isotropic material as the x3
coordinate axis, the nonzero elastic constants Cij of Mg and C are, respectively,

C11 = C22 = 59.7GPa, C33 = 61.7GPa, C13 = C23 = 21.7GPa,
C12 = 26.2GPa, C44 = C55 = 16.4GPa, C66 = 16.75GPa, (3.82)

and

C11 = C22 = 1160GPa, C33 = 46.6GPa, C13 = C23 = 109GPa,
C12 = 290GPa, C44 = C55 = 2.3GPa, C66 = 435GPa. (3.83)

Here the capital C represents the elastic constant matrix, i.e., the elasticity tensor cijkl in
Voigt notation.
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NIM Pan and Chou (1976) Unit
G11 8.3782981337130575× 10−4 8.3782981337130640× 10−4

10−9m

G12 6.0007221557104541× 10−5 6.0007221557104690× 10−5

G13 8.0163881274800664× 10−5 8.0163881274800705× 10−5

G22 9.2784064570696238× 10−4 9.2784064570696325× 10−4

G23 1.6032776254960144× 10−4 1.6032776254960141× 10−4

G33 1.0578889644135979× 10−3 1.0578889644135983× 10−3

G11,1 −5.9117971638181820× 10−6 −5.9117971638178034× 10−6

1

G12,1 4.7768458294984388× 10−5 4.7768458294984570× 10−5

G13,1 6.1775349906881231× 10−5 6.1775349906880784× 10−5

G22,1 −8.4277163614102321× 10−5 −8.4277163614102660× 10−5

G23,1 −3.6777062735840222× 10−5 −3.6777062735839842× 10−5

G33,1 −1.2597090883943352× 10−4 −1.2597090883943393× 10−4

G11,11 −1.5317520185559242× 10−5 −1.5317520185560475× 10−5

109m−1

G12,11 −3.2300147619148905× 10−5 −3.2300147619146344× 10−5

G13,11 −4.7740579505162444× 10−5 −4.7740579505166856× 10−5

G22,11 −6.2581146860783276× 10−5 −6.2581146860784102× 10−5

G23,11 −2.1927033538652794× 10−5 −2.1927033538654044× 10−5

G33,11 −8.3977103691749630× 10−5 −8.3977103691742474× 10−5

Table 3.1: Components of the Green’s function and its derivatives by the numerical
integration method with 25 Gaussian points and analytical solutions for transversely
isotropic material Mg at the point (1, 2, 3).

NIM Pan and Chou (1976) Unit
G11 4.3827891652552302× 10−5 4.3827896221260168× 10−5

10−9m

G12 4.6263482483389481× 10−7 4.6263223755486290× 10−7

G13 2.8820782772483946× 10−5 2.8820815639128441× 10−5

G22 4.4521843889803126× 10−5 4.4521844577592456× 10−5

G23 5.7641565544967844× 10−5 5.7641631278256881× 10−5

G33 3.7072713618185576× 10−3 3.7072624469392692× 10−3

G11,1 5.5705998231869374× 10−7 5.5707948825936928× 10−7

1

G12,1 2.6022193925293714× 10−7 2.6022823188120547× 10−7

G13,1 1.9733666048006437× 10−5 1.9731677292333889× 10−5

G22,1 −2.0914680362270449× 10−7 −2.0915875780597971× 10−7

G23,1 −1.8179372682933386× 10−5 −1.8178276693589096× 10−5

G33,1 −6.6489143291522670× 10−4 −6.6490424049481050× 10−4

G11,11 1.3079233547358874× 10−7 1.3037961156879091× 10−7

109m−1

G12,11 −4.4897325479577848× 10−7 −4.4871709609986970× 10−6

G13,11 −2.1307363510067809× 10−5 −2.1314882684275725× 10−5

G22,11 6.8035444137838627× 10−9 6.6917582324103661× 10−9

G23,11 −6.2707614770661805× 10−6 −6.2732119813732549× 10−6

G33,11 −3.0808030564059499× 10−4 −3.0719075049198089× 10−4

Table 3.2: Components of the Green’s function and its derivatives by the numerical
integration method with 25 Gaussian points and analytical solutions for transversely
isotropic material C at the point (1, 2, 3).
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Tables 3.1 and 3.2 are respectively the numerical results for the transversely isotropic
materials Mg and C by the NIM, as well as the analytical ones. The numerical results by
the NIM in Table 3.1 agree well with the analytical results. Compared with the numerical
results for the material Mg, the results by the NIM for the material C in Table 3.2 have
less accuracy, but are of practical interest. The less accuracy of the NIM for the material
C may be due to the larger difference between the material constants of the material C.
Therefore it can be concluded that the larger difference between the material constants,
the more Gaussian points are needed to ensure the same accuracy.

To investigate the effect of the number of the Gaussian points on the accuracy, the
relative error is defined as

e = |(b− a)/a|, (3.84)

where a is the analytical result and b is the numerical result by the NIM. For simplicity, we
choose 3 maximum relative errors in the components of Gij, Gij,1 and Gij,11, respectively.
Fig. 3.4 shows the relation between the 3 maximum relative errors and the number of
Gaussian points. For both materials, the maximum relative errors decrease with the
increment of the number of the Gaussian points until the number reach a certain value.
Thereafter, the maximum relative errors become unstable around a certain value. This
may be due to the use of the double precision real numbers. Therefore, we suggest that
the number of Gaussian points should be less than 25 for the material Mg, and 60 for the
material C. But for practical interest where the efficiency is very important, the number
of the Gaussian points could be 10 for the material Mg, and 30 for the material C.
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Figure 3.4: The maximum relative errors in Gij, Gij,1 and Gij,11 versus the number of
Gaussian points for the transversely isotropic materials Mg and C at point (1, 2, 3).

3.5.2 Verification of the residue calculus method
Instead of the numerical integration of the line integrals in Eqs. (3.8)-(3.10), the residue
calculus method (RCM) applies Cauchy residue theorem to the line integrals in Eqs. (3.19)-
(3.21). Eqs. (3.25)-(3.27) are the resulting explicit expressions for the three line integrals
when the Stroh eigenvalues, the poles of the integrands, are distinct. The explicit expres-
sions when the Stroh eigenvalues repeat could be derived in the same way, but would be
rather complicated. For simplicity, this section focuses on the simple explicit expressions.
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When the Stroh eigenvalues repeat, the numerical evaluation of the Green’s function and
its derivatives based on the RCM is discussed in Section 3.6.1.

The Stroh eigenvalues are essential in the numerical implementation of the RCM. As
described in Section 3.3, there are two ways to find the Stroh eigenvalues. One way is
to find the zeros of the polynomial D(p), the other way is to solve the Stroh eigenvalue
problem Eq. (2.37). In practice, the Jenkins and Traub algorithm (Jenkins and Traub,
1970) known as the subroutine RPOLY (Jenkins, 1975) is used to find the zeros of the
polynomial D(p), and the subroutine ZGEEV in the LAPACK library (Anderson et al.,
1999) is used to solve the Stroh eigenvalue problem. The author finds that the later gives
more accurate results.

Table 3.3 is the numerical results of the RCM with the Stroh eigenvalues solved by
the subroutine ZGEEV for transversely materials Mg and C. The underlined digits are
exactly the same as the analytical results. Like the NIM, numerical results by the RCM
for the material Mg are more accurate than those for the material C.

RCM (Mg) RCM (C) Unit
G11 8.3782981337141092× 10−4 4.3824896404691421× 10−5

10−9m

G12 6.0007221556859634× 10−5 4.6241642169880919× 10−7

G13 8.0163881274806153× 10−5 2.8817891209387289× 10−5

G22 9.2784064570683217× 10−4 4.4491366507167915× 10−5

G23 1.6032776254963158× 10−4 5.7578050333220220× 10−5

G33 1.0578889644135944× 10−3 3.7070971754411272× 10−3

G11,1 −5.9117971643756500× 10−6 5.5694078578199283× 10−7

1

G12,1 4.7768458294935781× 10−5 2.6005858060506650× 10−7

G13,1 6.1775349906918487× 10−5 1.9730968193245177× 10−5

G22,1 −8.4277163613431945× 10−5 −2.0872808972732553× 10−7

G23,1 −3.6777062735798426× 10−5 −1.8168694111521020× 10−5

G33,1 −1.2597090883938349× 10−4 −6.6489947207387407× 10−4

G11,11 −1.5317520228453641× 10−5 1.3037528193975853× 10−7

109m−1

G12,11 −3.2300147602260451× 10−5 −4.4853020715143876× 10−7

G13,11 −4.7740579727232704× 10−5 −2.1308729164912853× 10−5

G22,11 −6.2581147470664643× 10−5 6.8659218966670354× 10−9

G23,11 −2.1927033545174070× 10−5 −6.2606845775305411× 10−6

G33,11 −8.3977104326935273× 10−5 −3.0717839128942558× 10−4

Table 3.3: Components of the Green’s function and its derivatives by the residue calculus
method for transversely isotropic materials Mg and C at the point (1, 2, 3).

3.5.3 Verification of the Stroh formalism method
The SFM is an alternative of the RCM resulting in the explicit expressions of the Green’s
function and its derivatives. It constructs the Green’s function with the help of the
solutions of the Stroh eigenvalue problem Eq. (2.37), which means, in some sense, the
governing equation Eq. (2.55) in elasticity case can be replaced by the Stroh eigenvalue
problem Eq. (2.37). Therefore, the Green’s function and its derivatives can be solved in
the theory of the eigenvalue problems.

Like the RCM, the explicit expressions in the SFM are only applicable when the Stroh
eigenvalues are distinct. The numerical evaluation when the Stroh eigenvalues repeat is
discussed in Section 3.6.1 together with the RCM.
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In the FORTRAN program, the Stroh eigenvalue problem is solved by the subroutine
ZGEEV in the LAPACK library. Table 3.4 contains the corresponding numerical results
of the Green’s function and its derivatives for the materials Mg and C. The underlined
digits are exactly the same as the analytical solutions. The numerical results for the
material C are less accurate than those for the material Mg. However, compared with
the results by the NIM and the RCM, the numerical results by the SFM for the material
C are more accurate. So the SFM are better at evaluating the Green’s function and its
derivatives for strongly anisotropic materials like C than the NIM and the RCM.

SFM (Mg) SFM (C) Unit
G11 8.3782981337134370× 10−4 4.3827896251658357× 10−5

10−9m

G12 6.0007221557027949× 10−5 4.6263216287962473× 10−7

G13 8.0163881274811818× 10−5 2.8820815639255452× 10−5

G22 9.2784064570692107× 10−4 4.4521844547125352× 10−5

G23 1.6032776254961957× 10−4 5.7641631278404827× 10−5

G33 1.0578889644135981× 10−3 3.7072624469392723× 10−3

G11,1 −5.9117971638054452× 10−6 5.5707858596426121× 10−7

1

G12,1 4.7768458294993996× 10−5 2.6022661806317575× 10−7

G13,1 6.1775349906884700× 10−5 1.9731677300777066× 10−5

G22,1 −8.4277163614110222× 10−5 −2.0915785653823394× 10−7

G23,1 −3.6777062735840134× 10−5 −1.8178276707770339× 10−5

G33,1 −1.2597090883943480× 10−4 −6.6490424049476117× 10−4

G11,11 −1.5317520185524825× 10−5 1.3033886315670495× 10−7

109m−1

G12,11 −3.2300147619145314× 10−5 −4.4956207299378750× 10−7

G13,11 −4.7740579505173436× 10−5 −2.1314880907310438× 10−5

G22,11 −6.2581146860816642× 10−5 6.7320118850785253× 10−9

G23,11 −2.1927033538643924× 10−5 −6.2732112011148431× 10−6

G33,11 −8.3977103691742081× 10−5 −3.0719075049768016× 10−4

Table 3.4: Components of the Green’s function and its derivatives by the Stroh formalism
method for transversely isotropic materials Mg and C at the point (1, 2, 3).

3.5.4 Verification of the unified explicit expressions
The UEEM is based on the RCM. The explicit expressions by the UEEM are in terms of
the Stroh eigenvalues. Although the expressions by the UEEM are more complicated than
those by the RCM, they are applicable not only when the Stroh eigenvalues are distinct
but also when they repeat.

For the Green’s function, the explicit expressions in the UEEM is a straightforward
reformulation of those in the RCM. Ting and Lee (1997) presented the unified explicit
expression of the Green’s function for the first time. It is easy to find out that our new
explicit expression of the Green’s function is equivalent to that proposed by Ting and Lee
(1997). Very recently, Buroni and Sáez (2013) presented unified or unique explicit expres-
sions for the derivatives of Green’s function by taking the derivatives of the expression of
Green’s function by Ting and Lee (1997).

In the FORTRAN program, the Stroh eigenvalues are obtained by solving the Stroh
eigenvalue problem Eq. (4.1). Table 3.5 contains the numerical results of the Green’s
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function and its derivatives by the UEEM for materials Mg and C. The underlined digits
agree well with the analytical solutions. In the Table 3.5, the number of underlined
digits for the material C is almost equal to that for the material Mg, where the number
of underlined digits for material C is significantly less than that for material Mg. This
implies that compared with the NIM, the RCM and the SFM, the UEEM has the most
advantage of accuracy in computing the Green’s function and its derivatives for strongly
anisotropic materials.

UEEM (Mg) UEEM (C) Unit
G11 8.3782981337130402× 10−4 4.3827896221260154× 10−5

10−9m

G12 6.0007221557104867× 10−5 4.6263223755486468× 10−7

G13 8.0163881274800475× 10−5 2.8820815639128454× 10−5

G22 9.2784064570696130× 10−4 4.4521844577592456× 10−5

G23 1.6032776254960092× 10−4 5.7641631278256841× 10−5

G33 1.0578889644135964× 10−3 3.7072624469392710× 10−3

G11,1 −5.9117971638177865× 10−6 5.5707948825936864× 10−7

1

G12,1 4.7768458294984333× 10−5 2.6022823188120584× 10−7

G13,1 6.1775349906880689× 10−5 1.9731677292333828× 10−5

G22,1 −8.4277163614102633× 10−5 −2.0915875780597619× 10−7

G23,1 −3.6777062735839781× 10−5 −1.8178276693589039× 10−5

G33,1 −1.2597090883943341× 10−4 −6.6490424049481234× 10−4

G11,11 −1.5317520185560367× 10−5 1.3037961156922419× 10−7

109m−1

G12,11 −3.2300147619146337× 10−5 −4.4871709610018432× 10−7

G13,11 −4.7740579505166646× 10−5 −2.1314882684264957× 10−5

G22,11 −6.2581146860783736× 10−5 6.6917582325344854× 10−9

G23,11 −2.1927033538653885× 10−5 −6.2732119813698278× 10−6

G33,11 −8.3977103691742231× 10−5 −3.0719075049293141× 10−4

Table 3.5: Components of the Green’s function and its derivatives by the unified explicit
expression method for transversely isotropic materials Mg and C at the point (1, 2, 3).

3.5.5 Comparison of the efficiency
Before the general evaluations of the Green’s function and its derivatives by the four
methods, a comparison of the four methods on the efficiency is presented first.

The FORTRAN programs of the four different methods are implemented under the
same computing environment. Fig. 3.5 is a comparison of the computing time required by
the four methods. The material is Mg, and the evaluation point is (1, 2, 3)m. The number
of the Gaussian points in the NIM is set to be 25 for a comparable accuracy with the other
methods. The bottom box of each method represents the computing time for the Green’s
function including the time for the Gaussian points and the weights in the NIM, the Stroh
eigenvalues in the RCM and the UEEM, and the eigenvalues and eigenvectors of N in the
SFM. The middle box represents the additional computing time for the first derivative of
the Green’s function excluding the time for the Green’s function. The total computing
time for the second derivative of the Green’s function is represented by the three boxes,
i.e., the stacked column. From Fig. 3.5, the explicit methods, namely the RCM, the SFM
and the UEEM, have a higher efficiency for computing the Green’s function and its first
derivative compared to the NIM, but may lose the advantage for computing the second
derivative of the Green’s function, especially, in the RCM and the SFM. Both the RCM
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Figure 3.5: The CPU time for calculating the Green’s function and its derivatives by the
four methods.

and the UEEM need more computing time than the SFM for the Green’s function. It is
maybe due to the algorithm we have chosen for the Stroh eigenvalues in the RCM and
the UEEM. Besides, the UEEM has great advantage in computing the first derivative of
the Green’s function and is the most efficient one among the four different methods for
computing the first and the second derivatives of the Green’s function.

3.6 Numerical examples
In the last section, the NIM, the RCM, the SFM and the UEEM are numerically eval-
uated at a specific point for transversely isotropic materials Mg and C. The numerical
results agree well with the analytical solutions (Pan and Chou, 1976), which verifies the
correctness of the formulae in the four different methods. In this section, the stabilities
of different methods in nearly degenerate case are investigated. And then the UEEM is
used to evaluation the Green’s function and its derivatives on a unit sphere centered at
the origin.

3.6.1 Numerical results near the degenerated point
The expressions in the NIM are in terms of line integrals, while the expressions in the
RCM, the SFM and the UEEM are in terms of the Stroh eigenvalues, which are the zeros
of D(p) or the eigenvalues of the fundamental elasticity matrix N.

According to the derivations of the explicit expressions of the Green’s function and its
derivatives, the expressions in the RCM, the SFM and UEEM are only applicable when
the Stroh eigenvalues are distinct. However, like the expression proposed by Ting and
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Lee (1997), the explicit expressions in the UEEM are assumed to be applicable when the
Stroh eigenvalues repeat which will be proved by the numerical examples.

Since the expressions are dependent on the Stroh eigenvalues, here we give a study on
the Stroh eigenvalues for transversely isotropic materials whose symmetry axis is along
with the x3-axis. When ξ is defined in Eq. (3.16)1, the zeros of D(p) are equal to those
of D(ξ). The expression of D(ξ) is (Mura, 1987)

D(ξ) =
(
α′η2 + γξ2

3

) {
αγη4 +

(
αβ + γ2 − γ′2

)
η2ξ2

3 + βγξ4
3

}
, (3.85)

where

α = C11 = C22, α′ = C66 = (C11 − C12) /2,
β = C33, γ′ − γ = C13 = C23, (3.86)
γ = C44 = C55, η2 = ξ2

1 + ξ2
2 .

Generally, the zeros of Eq. (3.85) are three distinct pairs of complex conjugates, i.e.,
three distinct Stroh eigenvalues. But the Stroh eigenvalues repeat when x = (0, 0, a), a 6=
0. When x = (0, 0, a), a 6= 0, the corresponding n and m can be arbitrarily chosen as

n = (cos θ, sin θ, 0), m = (− sin θ, cos θ, 0), (3.87)

where θ is a parameter in the plane x3 = 0. Substitution of Eq. (3.87) into Eq. (3.16)1
yields

ξ3 = 0, η2 = cos2 ψ(1 + p2). (3.88)

Furthermore, substitution of Eq. (3.88) into Eq. (3.85) leads to the unique zeros p = ±i,
which means the three Stroh eigenvalues are identical or fully degenerated when x =
(0, 0, a).

To investigate the abilities of the expressions in the NIM, the RCM, the SFM and the
UEEM in dealing with the degenerate and nearly degenerate cases, a numerical evalua-
tion of the four methods near the fully degenerated point (0, 0, 1) is performed. For the
numerical examples, the material is taken as the transversely isotropic material Mg, and
the evaluation points are x = (0, sin θ, cos θ) near θ = 0.

Fig. 3.6 is the numerical results of a component of the Green’s function evaluated by
the expressions in the NIM, the RCM, the SFM and the UEEM for the material Mg near
the point x = (0, 0, 1). The results evaluated by the NIM, the SFM and the UEEM are
almost the same even at the degenerated point (when θ = 0). But the results evaluated
by the RCM become unstable near the degenerated point. Therefore, the applicability of
the expressions in the SFM and the UEEM for the Green’s function in degenerate and
nearly degenerate cases is confirmed but not the expression in the RCM. The numerical
errors of the explicit expression in the RCM may be due to the items like (pi − pj) in
denominators, which is close to zero in the nearly degenerate cases.

Fig. 3.7 is the numerical results of G33,2 evaluated by the expressions in the four
methods for the transversely isotropic matherial Mg near the degenerate point. The
results evaluated by the NIM and the UEEM still agree perfectly with each other, even
at the degenerate point. In the RCM, significant errors arise when θ < 1.5◦, moreover the
numerical errors are too large to plot the results in the figure near the area very close to
the degenerate point. In the SFM, numerical errors arise when θ < 0.1◦. The numerical
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the denegerated point for the transversely isotropic material Mg

errors in the SFM may also come from the items like (pi − pj) in the denominators. But
the error area in the SFM is about 6.67% of that in the RCM.

Fig. 3.8 is the numerical results of G33,22 evaluated by the expressions in the four
methods for the transversely isotropic material Mg near the degenerate point. The results
evaluated by the NIM and the UEEM agree perfectly with each other. But the numerical
errors arise near the degenerate point in both the RCM and the SFM. The error area in
the evaluation of G33,22 by the RCM is about θ < 8◦ which is about 5.3 times of the error
area in the evaluation of G33,2 by the RCM. The error area of the second derivative G33,22
in the SFM is similar with that of the first derivative G33,2 in the SFM, and is about
1.25% of that in the RCM.

Through the above numerical evaluations, it may be concluded on the three explicit
methods that

1. The expressions of the Green’s function and its derivatives in the UEEM and the
expression of the Green’s function in the SFM may be applicable no matter the
Stroh eigenvalues are distinct or not.

2. The expressions of the Green’s function and its derivatives in the RCM and the
expression of the derivatives of the Green’s function in the SFM are only applicable
when the Stroh eigenvalues are distinct (the non-degenerate case). They fail when
the Stroh eigenvalues repeat (the degenerate case) and cause significant numerical
errors at the area very close to the degenerated point (the nearly degenerate case).

3. The SFM is more stable than the RCM near the fully degenerate cases.

Besides, although the RCM and the SFM are not applicable in the degenerate and
nearly-degenerate cases, they are still of practical interest as long as the Stroh eigenvalues
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keep distinct by using some numerical techniques, For example, a small perturbation such
as 10−6 on some material constants.

3.6.2 Numerical results for an arbitrary point on a unit sphere
As the previous sections reveal, compared to the other three methods, the UEEM has the
most advantage in the numerical evaluation of the Green’s function and its derivatives
for 3D anisotropic materials. In this section, the Green’s function and its derivatives on a
unit sphere are evaluated by the UEEM. The evaluation points on the upper half sphere
are denoted by (cos θ cosφ, cos θ sinφ, sin θ) with φ ∈ (0, 2π) and θ ∈ (0, π). The geometry
of the sphere is illustrated by Fig. 3.9. The material is the transversely isotropic material

x

1

1

1

x3

x2

x1

𝜃

𝜙

Figure 3.9: Spherical coordinates of the field point x

Mg. Figs. 3.10-3.12 are respectively the numerical results of the Green’s function, its first
derivative and its second derivative on the upper half sphere, and the contours of the
Green’s function and its derivatives are presented on the base planes of the coordinate
systems. It is observed that the periods of the Green’s function and its derivatives are π
in θ, and 2π in φ, while for some components may be π in φ.

Similar figures can be plotted by the NIM. In order to give the similar figures by the
RCM and the SFM, a small perturbation of the material constants is required to keep
the Stroh’s eigenvalues distinct so that the explicit expressions can be used for practical
interest.

3.7 Concluding remarks
Four different methods for computing the Green’s function and its first and second deriva-
tives are presented in this chapter. The Green’s function and its derivatives are expressed
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Figure 3.10: General evaluation of the anisotropic elastic Green’s function by the UEEM.
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Figure 3.11: General evaluation of the first derivative of the anisotropic elastic Green’s
function by the UEEM.
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Figure 3.12: General evaluation of the second derivative of the anisotropic elastic Green’s
function by the UEEM.

in terms of three line integrals. The line integral expressions are a little different from
the conventional line integral expressions of the 3D anisotropic Green’s function and its
derivatives, especially for the second derivative of the Green’s function where the sym-
metry of some tensors is used to simplify it. The first method (NIM) is straightforwardly
based on the numerical integration of the line integrals. The second method (RCM) is
based on the explicit expressions derived by applying the residue calculus with the dis-
tinctness assumption of the Stroh eigenvalues to the line integrals. The integrals in the
first and second methods are the same. In the third method (SFM), the Green’s function
and its derivatives are constructed from the solutions of a six-dimensional formulation
of an eigenvalue problem. In the fourth method (UEEM), the line integrals are firstly
expressed in terms of two elementary line integrals, and then evaluated by the simple pole
residue calculus followed by a rewritten of the resulting explicit expressions. Although
the explicit expressions in the UEEM are derived with the distinctness assumption of
the Stroh eigenvalues, after the rewritten they are applicable when the Stroh eigenvalues
repeat. The correctness of the expressions in the four methods is confirmed by comparing
the numerical results of the Green’s function and its derivatives for transversely isotropic
materials at an arbitrary point with the analytical results. The numerical results of the
RCM and the SFM near a degenerate point may become unstable, while the NIM and
UEEM remain applicable near and at the degenerate point. According to the CPU times
used by the four different methods to calculate the Green’s function and its derivatives,
the UEEM seems to be the most efficient one.
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Chapter 4

Green’s function in linear
piezoelectricity

4.1 Problem statement
In linear elasticity, the 3D anisotropic Green’s function has been well studied. It was
first investigated by Fredholm (1900). There are now many methods to evaluate the
Green’s function, among which we only mention the numerical integration method, the
residue calculus method and the Stroh formalism method (Fredholm, 1900; Malén, 1971).
To calculate the derivatives of the 3D anisotropic elastic Green’s function, Malén (1971)
used the Stroh formalism method, Barnett (1972) used the numerical integration method,
and Sales and Gray (1998) used the residue calculus method. The last two methods were
based on the line integral expressions. Both the Stroh formalism and the residue calculus
methods can lead to explicit expressions of the 3D anisotropic elastic Green’s function
and its derivatives. The residue calculus method has been further investigated by Ting
and Lee (1997), Phan et al. (2004, 2005), Lee (2003, 2009), Buroni and Sáez (2013) and
Xie et al. (2013) among others.

However, in contrast to the 3D anisotropic elastic Green’s function and its derivatives,
relatively few studies can be found in the literature on the 3D anisotropic piezoelectric
Green’s function and its derivatives. For transversely isotropic piezoelectric materials,
Dunn and Wienecke (1996) and Ding et al. (1996) derived the analytical expression of the
Green’s function, while Soh et al. (2003) presented 3D Green’s function for transversely
isotropic magnetoelectroelastic solids. In contrast, the 3D Green’s function and its deriva-
tives for generally anisotropic piezoelectric materials are very complicated and have no
analytical expressions known in literature. Deeg (1980) derived the Green’s function in
terms of line integrals by using Radon transform. Chen (1993) and Chen and Lin (1993)
derived the Green’s function and its derivatives as line integrals by Fourier transform and
then computed them by numerical integration. Dunn (1994) and Pan and Tonon (2000)
obtained the Green’s function by applying the residue calculus method to the infinite line
integrals. And the later also evaluated the first derivative of the Green’s function by a
finite difference scheme. By using the Stroh formalism method, Akamatsu and Tanuma
(1997) gave an explicit expression for the 3D anisotropic piezoelectric Green’s function
but not its derivatives. The advantage of the Stroh formalism and the residue calcu-
lus methods is that they give rise to explicit expressions instead of integral expressions.
Though the residue calculus method was used to derive the Green’s function and its first
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and second derivatives for magneto-electro-elastic solids by Buroni and Sáez (2010), no
numerical results of the second derivative were presented. An excellent monograph on
static Green’s functions in anisotropic media was recently published by Pan and Chen
(2015), and interested readers may find a detailed review, comprehensive references and
many new results in this monograph.

In this Chapter, explicit expressions for the Green’s function and its first and second
derivatives in 3D anisotropic piezoelectricity are derived by both the Stroh formalism
method and the residue calculus method. In the Stroh formalism method, the approach
to calculate the derivatives of the eigenvectors proposed by Nelson (1976) is used to derive
the explicit expressions for the derivatives of the Green’s function. In the residue calculus
method, line integral expressions of the Green’s function and its derivatives are obtained
by generalizing the elastic results of Mura (1987), which are subsequently evaluated by
using the Cauchy’s residue theorem. Different from the expressions given by Lee (2003),
the present integral expressions are easy to evaluate, especially for the second derivative
of the Green’s function, since they do not involve tensors higher than 4th-order. The
explicit expressions obtained by both methods are coded into FORTRAN programs. The
accuracy and the efficiency of both methods are compared with each other by numerical
examples.

The contributions in the chapter have be published in

• L. Xie, C. Zhang, C. Hwu, J. Sladek, V. Sladek, On two accurate methods for com-
puting 3D Green’s function and its first and second derivatives in piezoelectricity,
Engineering Analysis with Boundary Elements, 61:183-193, 2015.

4.2 Stroh formalism method
The generalized displacement Green’s function GIJ(x) is governed by the equation (2.55)
in piezoelectricity case.

The Green’s function GIJ(x) (I, J = 1, 2, . . . , 4) denotes the mechanical displacement
at x in the xI-direction (I ≤ 3) or the electric potential (I = 4) when a unit point force at
the origin in the xJ -direction (J ≤ 3), or a unit point charge at origin (J = 4) is applied.
Besides, the Green’s function and its derivatives vanish when |x| → ∞.

Malén (1971) showed that the Green’s function in 3D linear elasticity can be expressed
in terms of the solution of an eigensystem, which is known as the Stroh eigen-relation. So
the Green’s function in piezoelectric solids could be expressed in terms of the solution of
the Stroh eigen-relation in piezoelectricity.

4.2.1 Representation of the Green’s function
The Stroh eigen-relation or the Stroh eigenvalue problem at a point x in a piezoelectric
solid with the material constants ckIJl is given by a 8-dimensional eigensystem as (Hwu,
2010)

Nξ = pξ, (4.1a)

in which

N =
(

N1 N2
N3 NT

1

)
, ξ =

{
a
b

}
, (4.1b)
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N1 = −T−1RT , N2 = T−1 = NT
2 , N3 = RT−1RT −Q,

and
QIJ = ckIJlnknl, RIJ = ckIJlnkml, TIJ = ckIJlmkml, (4.1c)

where n and m are two mutually orthogonal unit vectors on the oblique plane perpen-
dicular to x. Since N is not symmetric, ξ in Eq. (4.1a) is a right eigenvector. The left
eigenvector denoted by η satisfies

ηTN = pηT , (4.2)

where Ting (1996) had proved that

η =
{
b
a

}
. (4.3)

It can be shown that the eigenvalues of Eq. (4.1a) are four pairs of complex con-
jugates (Akamatsu and Tanuma, 1997). It is assumed that Im(pk) > 0, pk+4 = p̄k,
k = 1, 2, 3, 4 and pk are distinct which causes that all the eigenvectors are independent of
each other.

By defining
A = [a1,a2,a3,a4] , B = [b1, b2, b3, b4] , (4.4)

and with the relation between the eigenvectors

ηTαξβ = δαβ, α, β = 1, 2, . . . , 8, (4.5)

where δαβ is the Kronecker delta, the Green’s function can be expressed as

G(x) = 1
4πrH(x̄), H = 2iAAT , (4.6)

in which r = |x|, x̄ is the unit vector of x, and H is one of the three Barnett-Lothe
matrices in linear piezoelectricity. The explicit expression of A can be found in Hwu
(2010), and is listed in Appendix D for the completeness.

4.2.2 First derivative of the Green’s function
The first derivative of the Green’s function becomes straightforward by differentiating
Eq. (4.6) with respect to xi, i.e.,

G,i(x) = 1
4πr2

(
−xi
r

H + rH,i

)
, (4.7a)

where

H,i = 2i
(
A,iAT +

[
A,iAT

]T)
. (4.7b)

According to the above equations, the first derivatives of A is required to calculate the
derivative of G(x). All components of A and its derivatives in 3D linear elasticity can
be expressed explicitly in terms of the Stroh eigenvalues (Hwu, 2010), So the derivatives
of A can be obtained by taking the derivatives of all the components. However the
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expressions would be too complex. In the following we present an alternative way to get
the derivatives of A for 3D linear piezoelectric materials.

Taking the derivative of Eq. (4.1a), which is associated with the eigenvalue pα and the
corresponding right eigenvector ξα, with respect to xi leads to

(N− pαI)ξα,i = −(N,i − pα,iI)ξα. (4.8)

Note that the repeated Greek indices in the above equation do not imply summation, neither
do in the following. Since the derivative of an eigenvector is an 8-dimensional vector, it
is a linear combination of the 8 independent eigenvectors, i.e.,

ξα,i =
8∑

β=1
c

(i)
αβξβ, (4.9a)

and
ηα,i =

8∑
β=1

c
(i)
αβηβ. (4.9b)

In Eq. (4.9), the coefficients c(i)
αβ are constants. In virtue of Eqs. (4.1a), (4.2) and (4.5),

the substitution of Eq. (4.9a) into Eq. (4.8) followed by the premultiplication by ηTβ gives

c
(i)
αβ(pβ − pα) = −ηTβ (N,i − pα,iI)ξα. (4.10)

When β = α, the derivative of the eigenvalue pα is given from Eq. (4.10) as

pα,i = ηTαN,iξα. (4.11)

If β 6= α the coefficients c(i)
αβ in the expressions of the derivatives of the eigenvectors ξα,i

are given by

c
(i)
αβ =

ηTβN,iξα
pα − pβ

. (4.12)

Substitution of Eqs. (4.5) and (4.9) into the first derivative of Eq. (4.5) leads to

c
(i)
αβ + c

(i)
βα = 0. (4.13)

When β = α, we have
c(i)
αα = 0. (4.14)

So far, all the coefficients c(i)
αβ are determined. The first derivative of the eigenvector

can be expressed in terms of all eigenvectors by Eq. (4.9). And one further easily arrives
at A,i by differentiating Eq. (4.4). The explicit expressions of the N,i are presented in
Appendix B. It should be mentioned that different explicit expressions of the derivatives
of the anisotropic elastic Green’s function were investigated by Lavagnino (1995).

4.2.3 Second derivative of the Green’s function
The second derivative of the Green’s function is obtained by taking derivative of Eq. (4.7)
with respect to xj, i.e.,

G,ij(x) = 1
4πr3

[(3xixj
r2 − δij

)
H− (xiH,j + xjH,i) + r2H,ij

]
, (4.15a)
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where

H,ij = 2i
(
A,ijAT + A,iAT

,j +
[
A,ijAT + A,iAT

,j

]T)
. (4.15b)

In order to get the second derivative of A, the second derivative of the right eigenvec-
tors ξα,ij is required. In the same way, ξα,ij is a linear combination of the 8 independent
right eigenvectors as

ξα,ij =
8∑

β=1
d

(ij)
αβ ξβ. (4.16)

Taking the derivative of Eq. (4.8) with respect to xj followed by the premultiplication by
ηTβ with the substitution of Eq. (4.16) yields

d
(ij)
αβ (pβ − pα) = −ηTβ (N,ij − pα,ijI)ξα − ηTβ (N,i − pα,iI)ξα,j − ηTβ (N,j − pα,jI)ξα,i. (4.17)

Using the same approach for the first derivative of the eigenvectors, the second derivative
of the eigenvalues pα,ij and the coefficients d(ij)

αβ are

pα,ij = ηTαN,ijξα + ηTαN,iξα,j + ηTαN,jξα,i, (4.18)
d(ij)
αα = −(ηTα,iξα,j + ηTα,jξα,i)/2, (4.19)

d
(ij)
αβ =

ηTβN,ijξα + ηTβ (N,i − pα,iI)ξα,j + ηTβ (N,j − pα,jI)ξα,i
pα − pβ

, β 6= α. (4.20)

In Eqs. (4.18)-(4.20), N,i and N,ij can be straightforwardly obtained by taking the
derivatives of Eqs. (4.1b) and (4.1c). Appendix B presents the explicit expressions of N,ij

as well as the proper choice of n, m and their derivatives.

4.3 Residue calculus method
Since the Green’s function can be reduced to a line integral, it is straightforward to
evaluate the Green’s function by using the Cauchy’s residue theorem. In this section, we
introduce this alternative method.

4.3.1 Representation of the Green’s function
Eq. (2.55) in piezoelectricity case can be solved by using either Fourier transform or Radon
transform (Qin, 2010). The Green’s function can be expressed by an area integral as

GIJ(x) = 1
8π2

∫
S2
δ(ξ · x)K−1

IJ (ξ)dS(ξ), (4.21)

where ξ is a parameter vector, S2 is the surface of the unit sphere in the ξ-space and
KIJ(ξ) = ckIJlξkξl with the symmetry relation KIJ = KJI .

Further, the area integral can be reduced to be a line integral over a unit circle as

GIJ(x) = 1
8π2r

∮
S
K−1
IJ (ξ)dφ, (4.22)
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where S is the unit circle on the oblique plane perpendicular to x and φ is a parameter
in the oblique plane.

To get the explicit expressions of the Green’s function, the line integrals over the unit
circle are transformed into improper integrals from −∞ to +∞. By choosing any two
mutually orthogonal unit vectors n and m on the oblique plane as the bases, ξ can be
written as

ξ = n cosφ+m sinφ, (4.23)

where φ is the angle between n and ξ. Setting

p = tanφ, ξ∗ = n+ pm, (4.24)

we have
ξ = cosφ ξ∗, dφ = cos2 φdp. (4.25)

Substituting Eq. (4.25) into Eqs. (4.22), the Green’s function yields

GIJ(x) = 1
2πrAIJ(x̄), (4.26)

where
AIJ(x̄) = 1

2π

∫ +∞

−∞
NIJ(p)D−1(p)dp. (4.27)

In Eqs. (4.27), NIJ(p) and D(p) are the cofactors and the determinant of KIJ(p) =
ckIJlξ

∗
kξ
∗
l , respectively.

D(p) is an 8th-order polynomial, which leads to eight roots with four pairs of complex
conjugates. Note that n or m in the Stroh’s formalism method and the residue calculus
method are not necessarily the same, but if they are chosen the same, the roots of D(p)
are equal to the eigenvalues of the Stroh’s eigen-relation (4.1).

By now, the Green’s function is expressed in terms of an improper line integral, i.e.,
Eq. (4.27). Since NIJ(p) is a 6th-order polynomial in p, the explicit expression of the
Green’s function can be obtained by applying Cauchy’s residue theorem on the improper
line integral AIJ(x̄).

With distinctness assumption on the four pairs of the complex conjugates, the explicit
expression of AIJ(x̄) is given by

AIJ(x̄) = − Im
4∑

n=1

NIJ(pn)
D′(pn) , (4.28)

where the prime ′ denotes the derivative with respect to p and pn are the complex roots
of D(p) with positive imaginary parts. For details, the readers refer to Appendix A.

Therefore the explicit expression of the Green’s function is obtained by substituting
Eq. (4.28) into Eq. (4.26).

4.3.2 First derivative of the Green’s function
Differentiating Eq. (4.21) with respect to xk leads to the first derivative of the Green’s
function as

GIJ,k(x) = 1
8π2

∫
S2
δ′(ξ · x)ξkK−1

IJ (ξ)dS(ξ), (4.29)
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where the prime ′ denotes the derivative with respect to the argument, i.e., ξ · x.
After some mathematical elementary manipulations, Eq. (4.29) can be recast into the

following line integrals over a unit circle as

GIJ,k(x) = 1
8π2r2

∮
S

[
−x̄kK−1

IJ (ξ)

+ ξkcpLMq(x̄pξq + ξpx̄q)K−1
LI (ξ)K−1

MJ(ξ)
]
dφ. (4.30)

Similar equations as above for the elastic materials with detailed derivations were pre-
sented by Mura (1987). For simplify, Eq. (4.30) can be rewritten as the following equation

GIJ,k(x) = 1
2πr2 [−x̄kAIJ(x̄) + PIJk(x̄)] , (4.31)

in which AIJ(x̄) is defined by Eq. (4.27) and

PIJk(x̄) = 1
2π

∫ +∞

−∞
ξ∗kHIJ(p)D−2(p)dp, (4.32)

where HIJ(p) is given by

HIJ(p) = FIM(p)NJM(p), FIM(p) = EHM(p)NIH(p),
FIM(p) = EHM(p)NIH(p). (4.33)

In Eq. (4.32) ξ∗i is a 1st-order polynomial in p and HIJ(p) is a 13th-order polynomial
in p. Therefore following the derivation in Appendix A, the explicit expression of PIJk(x̄)
is given by

PIJk(x̄) = − Im
4∑

n=1

D′(pn)Ĥ ′IJk(pn)−D′′(pn)ĤIJk(pn)
D′3(pn) , (4.34)

where
ĤIJk(p) = ξ∗kHIJ(p). (4.35)

The first derivative of the Green’s function is obtained by substituting Eqs. (4.28) and
(4.34) into Eq. (4.31).

4.3.3 Second derivative of the Green’s function
The second derivative of the Green’s function is given by taking the derivative of Eq. (4.29)
with respect to xj, i.e.,

GIJ,kl(x) = 1
8π2

∫
S2
δ′′(ξ · x)ξkξlK−1

IJ (ξ)dS(ξ). (4.36)

After some manipulations (Mura, 1987), the second derivative of the Green’s function
becomes

GIJ,kl(x) = 1
4π2r3

∮
S

{
x̄kx̄lK

−1
IJ (ξ)− [(x̄kξl + ξkx̄l)(x̄pξq + ξpx̄q) + ξkξlx̄px̄q]

× cpHMqK
−1
IH(ξ)K−1

JM(ξ) + ξkξlcpHMq(x̄pξq + ξpx̄q)caSTb(x̄aξb + ξax̄b)
×K−1

JM(ξ)K−1
IS (ξ)K−1

HT (ξ)
}
dφ, (4.37)
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Note that Eq. (4.37) is a little different from the corresponding equation by Mura (1987)
for the elastic materials, since the symmetry relations of ciJMn and KIJ are used. Further
Eq. (4.37) can be recast into the following equation

GIJ,kl(x) = 1
πr3 {AIJ(x̄)x̄kx̄l − [PIJk(x̄)x̄l + PIJl(x̄)x̄k] +QIJkl(x̄)} , (4.38)

where AIJ(x̄) is defined by Eq. (4.27), PIJk(x̄) is defined by Eq. (4.32), and QIJkl(x̄) is
defined by

QIJkl(x̄) = 1
2π

∫ +∞

−∞
ξ∗kξ
∗
lMIJ(p)D−3(p)dp, (4.39)

in which MIJ(p) is given by

MIJ(p) = LIJ(p)−RIJ(p)D(p), LIJ(p) = FJH(p)HIH(p),
RIJ(p) = x̄px̄qCpHMqNIH(p)NJM(p). (4.40)

Since MIJ(p) is a 20th-order polynomial in p, following the derivation in Appendix A,
the explicit expression of QIJkl(x̄) is given by

QIJkl(x̄) =− Im
4∑

n=1

1
2D′5(pn)

{
D′2(pn)M̂ ′′

IJkl(pn)− 3D′(pn)D′′(pn)M̂ ′
IJkl(pn)

+
[
3D′′2(pn)−D′′′(pn)D′(pn)

]
M̂IJkl(pn)

}
, (4.41)

where
M̂IJkl(p) = ξ∗kξ

∗
lMIJ(p). (4.42)

Here, M̂IJkl(p) is a polynomial of 22th-order respectively.
Since D(p), ĤIJk(p) and M̂IJkl(p) are polynomials, they and their derivatives can be

calculated almost exactly by proper algorithms for polynomials.
Finally, the second derivative of the Green’s function is obtained by substituting

Eqs. (4.28), (4.34) and (4.41) into Eq. (4.38).

4.4 Numerical procedures
The numerical procedure for each of the two methods can be divided into four steps. In
the SFM, the four steps are:

i) Determination of n, m and their derivatives.
n and m can be any two mutually orthogonal unit vectors on the oblique plane
perpendicular to the given position vector x. In our analysis n and m are chosen
as Eq. (B.6) or Eq. (B.10), and their derivatives are evaluated correspondingly by
Eq. (B.9) or Eq. (B.11).

ii) Determination of the Stroh fundamental piezoelectricity matrix N and its derivatives.
N is determined by Eq. (4.1). The derivatives of N can be derived from Eq. (4.1)
and the derivatives of n and m.
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iii) Computation of the eigenvalues pα, the right eigenvectors ξα and their derivatives.
In our analysis, the subroutine ZGEEV in LAPACK library (Anderson et al., 1999)
is used to calculate pα and ξα. Eqs. (4.9a) and (4.11) are used to calculate the first
derivatives of ξα and pα. Eqs. (4.16) and (4.18) are used to calculate the second
derivatives of ξα and pα.

iv) Computation of GIJ(x), GIJ,k(x) and GIJ,kl(x).
The Green’s function and its derivatives are computed by Eqs. (4.6), (4.7) and (4.15).
For this purpose, ξα and their derivatives are used to construct A and its derivatives.

In the RCM, the four steps are:

i) Determination of n and m.
There is no need to calculate the derivatives of n and m. In our method, n and m
are chosen as (B.6) or (B.10).

ii) Computation of the Stroh eigenvalues pk (k = 1, 2, 3, 4).
The eigenvalues pk are zeros of the polynomial D(p), which is the determinant of
KIJ(p) = ckIJlξ

∗
kξ
∗
l with ξ∗ = n + pm. Many algorithms can be used to find the

zeros of D(p). In our method, we use the same algorithm as in the SFM to find
pk (k = 1, 2, 3, 4), since the zeros of the polynomial D(p) are equal to the eigenvalues
of N if n and m are the same.

iii) Evaluation of NIJ(p), D(p), ĤIJk(p), M̂IJkl(p) and their derivatives.
Because NIJ(p), D(p), ĤIJk(p) and M̂IJkl(p) are polynomials, their coefficients can
be determined in an accurate way by using the suitable algorithms for polynomials
in a computer program.

iv) Computation of GIJ(x), GIJ,k(x) and GIJ,kl(x).
The Green’s function and its derivatives can be determined by AIJ(x̄), PIJk(x̄) and
QIJkl(x̄) with Eqs. (4.26), (4.31) and (4.38). The Green’s function GIJ(x) is de-
termined by AIJ(x̄) only. Additionally, PIJk(x̄) is required to determine the first
derivative of the Green’s function GIJ,k(x). And the second derivative of the Green’s
function GIJ,kl(x) is determined by AIJ(x̄), PIJk(x̄) and QIJkl(x̄), which are defined
by Eqs. (4.28), (4.34) and (4.41), respectively.

It should be mentioned that the Green’s function can be evaluated without assuming the
distinctness of the eigenvalues pα of N, also known as the Stroh eigenvalues (Akamatsu
and Tanuma, 1997), but according to Eqs. (4.12) and (4.20) the distinctness assumption
is necessary to evaluate the derivatives of the Green’s function in the SFM. However,
the distinctness of the Stroh eigenvalues is required in the RCM for both the Green’s
function and its derivatives. Hence, for the cases with repeated Stroh eigenvalues, a small
perturbation on the material constants is suggested to avoid repeated or degenerated
eigenvalues in the RCM.

4.5 Numerical examples and discussions
The transversely isotropic piezoelectric material, Lead Zirconate Titanate (PZT), is used
in the numerical examples. Choosing the axis of the material symmetry as the x3-axis,
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the non-zero components of the elasticity tensor Cijkl in contracted notation are given by

C11 = C22 = 139, C12 = 77.8, C13 = C23 = 74.3, (4.43)
C33 = 115, C44 = C55 = 25.6, C66 = 30.6,

(
unit: 109N/m2

)
The non-zero components of the piezoelectric constants enij in contracted notation are

e31 = e32 = −5.1, e33 = 15.1, e24 = e15 = 12.7, (unit: C/m) , (4.44)

and the non-zero components of the dielectric constants κin are

κ11 = κ22 = 6.461, κ33 = 5.620,
(
unit: 10−9C/(Vm)

)
. (4.45)

The source of the Green’s function is located at the origin of the Cartesian coordinate
system and the observation point is arbitrarily chosen as (1, 2, 3).

In order to compare the numerical results with the analytical results, the analytical
solution for transversely isotropic piezoelectric material presented by Ding et al. (1996) is
evaluated by MATHEMATICA to give the exact results of the Green’s function and its
derivatives. The SFM is implemented in double precision and the RCM is implemented
in quadruple precision to have a similar accuracy in the two methods. Tables 4.1, 4.2 and
4.3 present the numerical results of the Green’s function, its first derivatives and second
derivatives, respectively. The numerical results show that both methods can give highly
accurate results.

GIJ (×10−4) SFM RCM Ding et al. (1996)
G11 4.505586760 4.505586760 4.505586760
G12 0.341535419 0.341535419 0.341535419
G13 0.442087059 0.442087059 0.442087059
G14 0.586632878 0.586632878 0.586632878
G22 5.017889889 5.017889889 5.017889889
G23 0.884174119 0.884174119 0.884174119
G24 1.173265756 1.173265756 1.173265756
G33 4.016244535 4.016244535 4.016244535
G34 7.703838268 7.703838268 7.703838268
G44 −18.56559227 −18.56559227 −18.56559227

Table 4.1: Components of the Green’s function GIJ for PZT at point (1, 2, 3)

Table 4.4 shows the CPU time needed in the two methods for evaluating the Green’s
function and its derivatives. The second column in the table is the computing time for
the Green’s function including the time for solving the Stroh eigensystem. The third
column in the table is the additional time needed to evaluate the first derivatives of the
Green’s function. The fourth column in the table is the time needed to evaluate the
second derivatives of the Green’s function apart from the time for the Green’s function
and its first derivatives. The table shows that the SFM is much more efficient than the
RCM, if a similar accuracy should be ensured.
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GIJ,1 (×10−5) SFM RCM Ding et al. (1996)
G11,1 0.273798678 0.273798678 0.273798678
G12,1 2.807551643 2.807551643 2.807551643
G13,1 3.670552502 3.670552502 3.670552502
G14,1 4.720160351 4.720160351 4.720160351
G22,1 −4.053259346 −4.053259345 −4.053259346
G23,1 −1.500636194 −1.500636194 −1.500636194
G24,1 −2.292336860 −2.292336860 −2.292336860
G33,1 −3.586215224 −3.586215224 −3.586215224
G34,1 −7.208139532 −7.208139532 −7.208139532
G44,1 8.156849750 8.156849750 8.156849750

Table 4.2: Components of the first derivative of the Green’s function GIJ,1 for PZT at
point (1, 2, 3)

GIJ,11 (×10−5) SFM RCM Ding et al. (1996)
G11,11 −0.292020389 −0.292020390 −0.292020389
G12,11 −1.646729346 −1.646729347 −1.646729346
G13,11 −2.045111717 −2.045111717 −2.045111717
G14,11 −3.074641374 −3.074641373 −3.074641374
G22,11 −3.138455843 −3.138455844 −3.138455843
G23,11 −1.088951047 −1.088951047 −1.088951047
G24,11 −1.564609027 −1.564609026 −1.564609027
G33,11 −2.797084793 −2.797084793 −2.797084793
G34,11 −5.431632234 −5.431632234 −5.431632234
G44,11 7.407256662 7.407256662 7.407256662

Table 4.3: Components of the second derivative of the Green’s function GIJ,11 for PZT at
point (1, 2, 3)

CPU Time [10−4s] GIJ GIJ,k GIJ,kl

SFM 0.91204977 1.09204865 4.14409828
RCM 4.16835785 8.00323486×10−3 73.1817322

Table 4.4: Computing time for the Green’s function and its derivatives for PZT at point
(1, 2, 3)
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It should be noted that the explicit expressions in both methods are applicable only
when the Stroh eigenvalues are distinct. The explicit expressions are much more com-
plicated when the Stroh eigenvalues are identical. In practical applications, a small per-
turbation can be applied to the material constants CiJKl, to keep the Stroh eigenvalues
distinct. In the following, by using the SFM, the Green’s function and its derivatives are
evaluated at the field point (cos θ cosφ, cos θ sinφ, sin θ) where θ and φ are illustrated in
Fig. 3.9. It is observed that considerable numerical error occurs around θ = π/2, i.e.,
(0, 0, 1) with the direct use of the SFM. According to the authors’ experience, similar
error appears in the explicit expressions of the Green’s function and its derivatives for
transversely isotropic solids, when the evaluation point is chosen along the symmetry
axis of the material, i.e., x3 where the Stroh eigenvalues degenerate. So the numerical
error around the point (0, 0, 1) in the SFM for piezoelectric solids may result from the
degeneracy of the Stroh eigenvalues. To get rid of the error, the SFM is used with a
very small perturbation, say 10−6, on some material constants of PZT, e.g., C22, C55 and
κ22. Figs. 4.1 and 4.2 show the components of the Green’s function, while Figs. 4.3 and
4.4 present some components of the first and second derivatives of the Green’s function,
respectively. All figures show that good results for the Green’s function and its derivatives
for 3D piezoelectric solids can be achieved by using the SFM with a small perturbation
on the material constants. By the way, similar results can also be obtained from the
RCM with a small perturbation greater than 10−4 to avoid repeated or degenerated Stroh
eigenvalues.
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4.6 Concluding remarks
In this chapter, two accurate methods are presented for computing the Green’s function
and its first and second derivatives for three-dimensional anisotropic piezoelectric solids.
The derivatives of the generalized displacement Green’s function are needed for comput-
ing the generalized stress and higher-order stress Green’s functions, which are required by
the displacement-based and stress-based BEM or by the integral representation formulae
for calculating the generalized displacement and stress at internal points in the analyzed
domain. In the first method, the Stroh formalism is applied to derive explicit expressions
for the Green’s function as well as its first and second derivatives as a linear combination
of the Stroh eigenvectors. The coefficients are expressed in terms of the eigenvalues and
the eigenvectors. In the second method, the Cauchy residue theorem is applied to the
infinite or improper line integrals arising in the Green’s function and its derivatives, which
can be evaluated analytically. Both methods work well under the assumption that the
Stroh eigenvalues are distinct. The obtained new expressions by the two methods are
implemented into a FORTRAN code. Good accuracy of both methods is verified by the
results from the analytical solutions. If a similar accuracy is required, the expressions ob-
tained by the Stroh formalism method are much more efficient than those by the residue
calculus method. Although the new explicit expressions in both methods are only appli-
cable when the Stroh eigenvalues are distinct, a general evaluation of the Green’s function
and its derivatives can be performed by using these expressions with a small perturbation
in the material constants to avoid repeated or identical eigenvalues.
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Chapter 5

Green’s function in linear
magnetoelectroelasticity

5.1 Problem statement
Magnetoelectroelastic solids and/or multiferroic materials have magneto-electro-mechanical
energy conversion capacities. Due to the potential applications in the technologies of
smart and adaptive materials and structures such as magnetic/electric transducers, ac-
tuators and sensors, the magnetoelectroelastic solids have drawn increasing interest of
the scientists and engineers. The natural single-phase multiferroic materials have very
weak magnetoelectric coupling at room temperature, while the magnetoelectric compos-
ites constituting of piezoelectric and piezomagnetic material phases, reported for example
by van Suchtelen (1972), may have a strong magnetoelectric coupling even at room tem-
perature (Eerenstein et al., 2006; Srinivasan, 2010).

Although there is no magnetoelectric coupling in either piezoelectric materials or piezo-
magnetic materials, the magnetoelectric composites have a magnetoelectric coupling due
to the interaction between the electromechanical and magnetomechanical behaviors of the
constituent materials. Many investigations can be found in literature on the theoretical
modeling of magnetoelectric composites. Alshits et al. (1992) investigated the existence
of the surface wave in semi-infinite anisotropic magnetoelectroelastic solids, Benveniste
(1995), Huang and Kuo (1997) and Li and Dunn (1998) analyzed the inclusion and inho-
mogeneity problems of the magnetoelectric composites by treating both the piezoelectric
and the piezomagnetic materials as single-phase magnetoelectroelastic materials. These
previous works may be considered as some of the pioneer works on the magnetoelectroe-
lastic materials after which numerous theoretical models have been proposed.

The Green’s function in the magnetoelectroelastic materials has already been investi-
gated by some researchers. For the transversely isotropic magnetoelectroelastic materials,
the Green’s function could be obtained analytically by using the potential theory. Wang
and Shen (2002) derived the fundamental solution for the dislocation and the Green’s
function in a half-space magnetoelectroelastic solid. Soh et al. (2003) and Ding and Jiang
(2003) derived the Green’s function in a full-space magnetoelectroelastic solid and the
later authors implemented the Green’s function in the BEM. For generally anisotropic
materials, the Green’s function can be represented explicitly in terms of the Stroh eigen-
values or Stroh eigenvectors. Chung and Ting (1995) presented the two-dimensional (2D)
Green’s function for anisotropic magnetoelectroelastic materials with an elliptic hole or
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rigid inclusion by the Stroh formalism in magnetoelectroelasticity. Liu et al. (2001) pre-
sented the 2D Green’s function for anisotropic magnetoelectroelastic solids with an el-
liptical cavity or a crack based on the Stroh formalism combined with the technique of
conformal mapping and the Laurent series expansion. Further, Pan (2002) derived the
three-dimensional (3D) Green’s functions in anisotropic magnetoelectroelastic full-space,
half-space, and bimaterials based on the Stroh formalism. Qin (2004) derived the Green’s
functions with an arbitrarily oriented half-plane or bimaterial interface. Buroni and Sáez
(2010) presented the 3D anisotropic magnetoelectroelastic Green’s function and its first
and second derivatives in terms of the Stroh eigenvalues by the Cauchy residue calcu-
lus applied to the line integrals. More details on the anisotropic and multifield coupled
Green’s function can be found in the textbooks by Qin (2010) and Pan and Chen (2015).

In this Chapter, the explicit expression for the 3D generally anisotropic magnetoelec-
troelastic Green’s function is derived by using the Stroh formalism associated with an
oblique plane in the 3D full-space. Since the derivatives of the Green’s function are also
essential issues in BEM as well as many other applications, the explicit derivatives of
the Green’s function are also derived based on the Stroh eigen-relation on the oblique
plane and the orthonormal or orthogonality relation for the Green’s function. The main
difference between the novel expressions and those proposed by Buroni and Sáez (2010)
are that in the present paper, we utilize the Stroh formalism while the later used Cauchy
residue calculus to evaluate the Green’s function and its derivatives. Although the numer-
ical results of the second derivative of the Green’s function was not presented, Buroni and
Sáez (2010) pointed out that it could be obtained by applying the Cauchy residue calculus
to the line integral. In this work, not only the explicit expressions for the first derivative
but also for the second derivative of the Green’s function as well as the corresponding
numerical results are presented. Besides, Xie et al. (2015b) demonstrated that the Stroh
formalism method may have advantages compared to the residue calculus method for the
numerical calculations of the Green’s function and its derivatives. The newly proposed
expressions for 3D generally anisotropic magnetoelectroelastic solids are verified by the
comparison of the present numerical results and those evaluated by the analytical solu-
tions derived by Ding and Jiang (2003) for transversely isotropic magnetoelectroelastic
solids at a particular point. The CPU time for the calculation of the Green’s function and
its derivatives is also given. In addition, for degenerate and nearly degenerate cases the
Green’s function and its derivatives at arbitrary field points by the present novel explicit
expressions with a small perturbation on some material coefficients are also computed
and discussed for practical interest.

The contribution in this chapter has been published in:

• L. Xie, C. Zhang, C. Hwu, E. Pan, On novel explicit expressions of Green’s func-
tion and its derivatives for magnetoelectroelastic materials. European Journal of
Mechanics – A/Solids. submitted.

5.2 Stroh formalism method
In Chapters 3 and 4, it is demonstrated that compared to the residue calculus method, the
Stroh formalism may have higher accuracy and efficiency in the numerical calculation of
the Green’s function and its derivatives. So in this section, we extend the Stroh formalism
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method proposed in Chapter 3 and 4 to derive the Green’s function and its first and second
derivatives for linear generally anisotropic magnetoelectroelastic materials.

5.2.1 Representation of the Green’s function
In linear elastic and piezoelectric solids, the Green’s function can be constructed from
the solutions of the Stroh eigenvalue problem. Similarly, in linear magnetoelectroelastic
solids, the 3D Green’s function can also be constructed from the solutions of the Stroh
eigenvalue problem in magnetoelectroelasticity. The Stroh eigenvalue problem in the
linear magnetoelectroelastic solids in terms of the fundamental magnetoelectroelasticity
matrix N is given by

Nξ = pξ, (5.1)
where

N =
(

N1 N2
N3 NT

1

)
, (5.2a)

N1 = −T−1RT , N2 = T−1 = NT
2 , N3 = RT−1RT −Q,

in which
QIJ = ckIJlnknl, RIJ = ckIJlnkml, TIJ = ckIJlmkml. (5.2b)

Here, n and m are two mutually orthogonal unit vectors on the oblique plane perpendic-
ular to x. Since the fundamental magnetoelectroelasticity matrix N is a non-symmetric
10×10 matrix, the vector ξ is a 10-dimensional right eigenvector of the matrix N. If the
right eigenvector ξ is denoted as

ξ =
{
a
b

}
, (5.3)

where a and b are two 5-dimensional vectors, then as proved by Ting (1996) in linear
elastic solids, the corresponding left eigenvector η of the matrix N is determined by

η =
{
b
a

}
. (5.4)

Similar to the elastic and piezoelectric cases, the eigenvalues of the matrix N should
be 5 pairs of complex conjugates. Among the eigenvalues, we choose Im(pK) > 0, K =
1, 2, . . . , 5, which are known as Stroh eigenvalues, and pK+5 = p̄K . Further, we assume that
the Stroh eigenvalues pK (K = 1, 2, . . . , 5) are distinct, which ensures that the eigenvectors
associated with the different Stroh eigenvalues are independent of each other.

By defining
A = [a1,a2,a3,a4,a5] , B = [b1, b2, b3, b4, b5] , (5.5)

and with the following orthonormal relation between the left and the right eigenvectors

ηTαξβ = δαβ, α, β = 1, 2, . . . , 10, (5.6)

where δαβ is the Kronecker delta, the Green’s function can be expressed as

G(x) = 1
4πrH(x̄), H = 2iAAT , (5.7)

in which r = |x|, x̄ is the unit vector of x, and H is one of the three Barnett-Lothe
matrices in linear magnetoelectroelasticity.
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5.2.2 First derivative of the Green’s function
Differentiation of Eq. (5.7) with respect to xi yields the first derivative of the Green’s
function as

G,i(x) = 1
4πr2

(
−xi
r

H + rH,i

)
, (5.8a)

where
H,i = 2i

(
A,iAT +

[
A,iAT

]T)
. (5.8b)

The columns of the matrix A are parts of the eigenvectors satisfying Eq. (5.6). So in
order to calculate the first derivative of the Green’s function, we need to firstly calculate
the first derivatives of the eigenvectors satisfying Eqs. (5.1) and (5.6). In the following,
with the distinctness assumption of the eigenvalues, the derivation of the first derivatives
of the eigenvectors is presented.

Differentiating Eq. (5.1), associated with the eigenvalue pα and the corresponding right
eigenvector ξα, with respect to xi leads to

(N− pαI)ξα,i = −(N,i − pα,iI)ξα. (5.9)

Note here that the repeated Greek indices do not imply summation. As the 10-dimensional
eigenvectors associated with distinct eigenvalues are independent of each other and the
derivative of an eigenvector is still a vector in the 10-dimensional space, the first derivative
of the right eigenvector ξα,i is a linear combination of the 10 independent eigenvectors,
i.e.,

ξα,i =
10∑
β=1

c
(i)
αβξβ, (5.10a)

and
ηα,i =

10∑
β=1

c
(i)
αβηβ, (5.10b)

where c
(i)
αβ are constants to be determined. Substitution of Eq. (5.10a) into Eq. (5.9)

followed by the pre-multiplication by ηTβ yields

c
(i)
αβ(pβ − pα) = −ηTβ (N,i − pα,iI)ξα, (5.11)

which results from the use of Eqs. (5.1) and (5.6). When β = α, the derivative of the
eigenvalue pα is obtained by

pα,i = ηTαN,iξα. (5.12)

If β 6= α, the coefficients c(i)
αβ are given by

c
(i)
αβ =

ηTβN,iξα
pα − pβ

. (5.13)

Substitution of Eqs. (5.6) and (5.10) into the first derivative of Eq. (5.6) leads to

c
(i)
αβ + c

(i)
βα = 0. (5.14)

When β = α, we have
c(i)
αα = 0. (5.15)
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Although similar expressions as Eqs. (5.13) and (5.15) were derived by Malén (1971),
Lavagnino (1995) and Pan and Chen (2015), the present expression may be preferred since
it is in the Cartesian coordinate system rather than in the spherical coordinate system. In
the conventional methods, in order to get the expressions of the derivatives of the Green’s
function in the Cartesian coordinate system, the corresponding expressions in the spherical
coordinate system have to be tranformed into the desired ones in the Cartesian coordinate
system. While in the present method, the vectors n andm are expressed directly in terms
of the Cartesian coordinates and consequently also the expressions of the derivatives of
the Green’s function.

So far, since all coefficients c(i)
αβ are determined, the first derivatives of the eigenvectors

can be determined explicitly in terms of the eigenvalues and the eigenvectors. The explicit
expression of the derivative of the fundamental magnetoelectroelasticity matrix N,i is
presented in Appendix B. Thereafter the first derivatives of the eigenvectors can be used
to construct the matrices A,i as well as the first derivative of the Green’s function.

5.2.3 Second derivative of the Green’s function
Differentiating Eq. (5.8) with respect to xj yields the second derivative of the Green’s
function

G,ij(x) = 1
4πr3

[(3xixj
r2 − δij

)
H− (xiH,j + xjH,i) + r2H,ij

]
, (5.16a)

where
H,ij = 2i

[
A,ijAT + A,iAT

,j +
(
A,ijAT + A,iAT

,j

)T ]
. (5.16b)

In order to calculate the second derivative of the Green’s function, we need to know the
second derivative of the matrix A which is constructed from the second derivatives of the
eigenvectors ξα,ij (α = 1, 2, . . . , 5). Since ξα,ij is a 10-dimensional vector, it is a linear
combination of the 10 independent eigenvectors, i.e.,

ξα,ij =
10∑
β=1

d
(ij)
αβ ξβ, (5.17)

where d(ij)
αβ are constants to be determined. Following the similar procedure to determine

c
(i)
αβ, the expressions of d(ij)

αβ can be derived by differentiating Eqs. (5.1) and (5.6) with
respect to xi and further to xj. They are

d(ij)
αα = −(ηTα,iξα,j + ηTα,jξα,i)/2,

d
(ij)
αβ =

ηTβN,ijξα + ηTβ (N,i − pα,iI)ξα,j + ηTβ (N,j − pα,jI)ξα,i
pα − pβ

, β 6= α. (5.18)

The explicit expressions of N,ij can be found in Appendix B.

5.3 Numerical examples and discussions
The verification of the present novel expressions of the Green’s function and its derivatives
is presented in the following for a virtual transversely isotropic magnetoelectroelastic
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solid used by Pan (2002). The nonzero coefficients of the virtual solid in the contracted
notations are given by

c11 = 166, c12 = 77, c13 = 78, c33 = 162, c44 = 43, c66 = 44.5,
e31 = −4.4, e33 = 18.6, e15 = 11.6, κ11 = 11.2, κ33 = 12.6, (5.19)
h31 = 580.3, h33 = 699.7, h15 = 550, µ11 = 5, µ33 = 10.

The units of the coefficients cij, eij, κij, hij and µij are 109N/m2, C/m2, 10−9C/(Vm),
N/(Am) and 10−6Ns2/C2, respectively.

In order to validate the derived formulae, they are implemented into FORTRAN code.
The Stroh eigen-relation Eq. (5.1) is solved by the subroutine ZGEEV in LAPACK li-
brary (Anderson et al., 1999). Note the eigenvectors should be normalized by Eqs. (3.36)
and (3.37) to be the right ones for the Green’s function and its derivatives. The numeri-
cal results are compared with those of the analytical solutions derived by Ding and Jiang
(2003) which are obtained by the software MATHEMATICA where the derivatives of the
Green’s function are evaluated by algebraic algorithm. We point out here that in our
Green’s function solutions, the only numerical technique involved is the solution of the
Stroh eigenequation. However, by controlling the accuracy in the Stroh eigenvalues and
eigenvectors, one can obtain the Green’s function as accurate as one wishes. For exam-
ple, Tables 5.1-5.3 are the numerical results from the present method, which are exactly
the same as those of the analytical solutions in Ref.(Ding and Jiang, 2003) even after 10
digits. The high accuracy of the numerical results demonstrate that the present novel for-
mulae are correct and accurate for generally anisotropic magnetoelectroelastic materials.
It should be noted here that the remaining components of the Green’s function and its
derivatives, which are not listed in Tables 1-3, can be obtained by using the symmetry
property of the Green’s function.

G11 314.16063654 G12 22.361037823 G24 71.012378811
G22 347.70219328 G13 42.153781088 G25 -3.3834594255
G33 97.861922990 G14 35.506189405 G34 82.045333135
G44 -1788.9486757 G15 -1.6917297128 G35 33.169143465
G55 -4.8033844483 G23 84.307562176 G45 38.107859915

Table 5.1: Numerical results of the Green’s function Gij(×10−6) at the point (1, 2, 3)m.

The efficiency of the present novel expressions is revealed by the CPU time for the
calculation of the Green’s function and its derivatives on the high performance computer
cluster of the University of Siegen, Germany. The second column of Table 5.4 is the
CPU time for the calculation of the Green’s function. The third column is the additional
CPU time for the calculation of the first derivative of the Green’s function. And the last
column is the additional CPU time for the calculation of the second derivative of the
Green’s function.

The accuracy of the present novel formulae is confirmed by the numerical example eval-
uated at the point (1, 2, 3)m for the transversely isotropic magnetoelectroelastic material.
However, strictly speaking, the formulae are inapplicable when some Stroh eigenvalues
are identical (degenerate cases), and in the numerical evaluation, significant errors may
arise when some Stroh eigenvalues are very close to each other (nearly degenerate cases).
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G11,1 -28.206176634 G12,1 168.20787807 G24,1 -91.773348299
G22,1 -334.92030509 G13,1 352.28107640 G25,1 -5.2660645067
G33,1 118.21555830 G14,1 309.17521990 G34,1 124.96734313
G44,1 1556.4933188 G15,1 -19.550329381 G35,1 -46.365430933
G55,1 2.2943477126 G23,1 -138.51346896 G45,1 -41.327661854
G11,2 -503.63310972 G12,2 1.0001888071 G24,2 171.51519746
G22,2 -222.61985373 G13,2 -138.51346896 G25,2 -27.449426141
G33,2 236.43111660 G14,2 -91.773348299 G34,2 249.93468625
G44,2 3112.9866377 G15,2 -5.2660645067 G35,2 -92.730861866
G55,2 4.5886954251 G23,2 144.51087296 G45,2 -82.655323709
G11,3 -702.04465645 G12,3 -131.27287797 G24,3 -320.46027824
G22,3 -898.95397340 G13,3 -165.59731645 G25,3 31.333170348
G33,3 -523.23234047 G14,3 -160.23013912 G34,3 -481.76334899
G44,3 3369.0067211 G15,3 15.666585174 G35,3 -33.288093328
G55,3 12.187368640 G23,3 -331.19463290 G45,3 -58.146763294

Table 5.2: Numerical results of the components of the first derivative of the Green’s
function Gij,k(×10−7) at the point (1, 2, 3)m.

To overcome this difficulty, some special numerical techniques can be used to evaluate the
Green’s function and its derivatives by the present novel formulae when the Stroh eigen-
values are identical or very close for the practical interest. One of the numerical techniques
is the small perturbation method in which some material constants are modified slightly,
i.e., Σ→ Σ(1 + ε), where Σ is a material constant, and ε is a small perturbation param-
eter. In the next numerical example, the stability of the formulae with the perturbation
method is investigated by the numerical results at field points. The perturbation param-
eter ε is chosen as 10−5, the modified material constants are c22, c55, κ22 and µ22, and
the evaluation points are defined by (cos θ cosφ, cos θ sinφ, sin θ), φ ∈ [0, 2π], θ ∈ [0, π].
The geometry of the field points is illustrated in Fig. 3.9. Figs. 5.1-5.10 are the compo-
nents of the magnetoelectroelastic Green’s function and its derivatives at the field points.
The Green’s function and its derivatives at the considered field points are smooth which
indicates that the present novel formulae in conjunction with the perturbation method
are stable and therefore suitable for the evaluation of the generally anisotropic magne-
toelectroelastic Green’s function and its derivatives, even for the degenerate and nearly
degenerate cases. Although some material constants are modified slightly, the numerical
results are practically identical to that of the original unperturbed magnetoelectroelastic
material, since the modification of the constants is very small.

5.4 Concluding remarks
In this chapter, the 3D Green’s function for generally anisotropic and linear magneto-
electroelastic materials are constructed from the solutions of the 3D Stroh eigenvalue
problem in the linear magnetoelectroelasticity and the orthonormal relation of the eigen-
vectors. With the distinctness assumption on the Stroh eigenvalues, the derivatives of
the eigenvectors are expressed as linear combinations of the Stroh eigenvectors, where the
coefficients are obtained from the derivatives of the Stroh eigenvalue problem equation
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G11,11 -84.923711750 G12,11 -143.43833544 G24,11 -93.425960108
G22,11 -246.67909237 G13,11 -199.22866956 G25,11 1.2064201003
G33,11 -5.2122015353 G14,11 -138.48632835 G34,11 18.552929152
G44,11 1136.3796110 G15,11 -4.6628544565 G35,11 -32.565220675
G55,11 2.7269371665 G23,11 -121.43040120 G45,11 -31.699237588
G11,22 -35.466694098 G12,22 -75.130840388 G24,22 -281.93049213
G22,22 -201.56507722 G13,22 -35.090598953 G25,22 10.091744908
G33,22 -375.49548105 G14,22 -49.191897767 G34,22 -300.69031277
G44,22 -123.96151242 G15,22 10.311936961 G35,22 8.8354100986
G55,22 4.0247055283 G23,22 -347.20813583 G45,22 -2.8139647883
G11,33 211.55693097 G12,33 84.382350809 G24,33 111.92891588
G22,33 338.13045718 G13,33 35.419945056 G25,33 -25.056412010
G33,33 202.99260238 G14,33 55.964457942 G34,33 233.85887683
G44,33 -818.83147104 G15,33 -12.528206005 G35,33 -16.749738620
G55,33 -3.0993622005 G23,33 70.839890112 G45,33 -3.3693045985
G11,12 -2.6300699248 G12,12 18.837268767 G24,12 -49.191897767
G22,12 65.677425129 G13,12 -121.43040120 G25,12 10.311936961
G33,12 -246.85551967 G14,12 -93.425960108 G34,12 -212.82882795
G44,12 -840.22741562 G15,12 1.2064201003 G35,12 27.600420516
G55,12 0.86517890784 G23,12 -35.090598953 G45,12 19.256848533
G11,13 48.865401622 G12,13 -76.883986080 G24,13 125.11881741
G22,13 261.72161743 G13,13 -87.490893614 G25,13 -3.7660550027
G33,13 87.497374760 G14,13 -97.670730413 G34,13 52.390013497
G44,13 -856.30380581 G15,13 13.783557673 G35,13 23.365080503
G55,13 -3.0153301358 G23,13 156.21284568 G45,13 25.280288077
G11,23 360.27655919 G12,23 43.141344798 G24,23 90.007495707
G22,23 260.89747892 G13,23 156.21284568 G25,23 8.1344751687
G33,23 174.99474952 G14,23 125.11881741 G34,23 104.78002699
G44,23 -1712.6076116 G15,23 -3.7660550027 G35,23 46.730161006
G55,23 -6.0306602716 G23,23 146.82837490 G45,23 50.560576154

Table 5.3: Numerical results of the components of the second derivative of the Green’s
function Gij,kl(×10−7) at the point (1, 2, 3)m.

GIJ GIJ,k GIJ,kl

CPU Time (10−4s) 1.40805340 2.18008423 7.67242527

Table 5.4: The CPU time for the calculation of the Green’s function and its derivatives
by the novel explicit expressions
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Figure 5.1: Variation of the Green’s function GIJ on upper half unit sphere with the
source point at the origin.
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Figure 5.2: Variation of the first derivative of the Green’s function GIJ,1 on upper half
unit sphere with the source point at the origin.
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Figure 5.3: Variation of the first derivative of the Green’s function GIJ,2 on upper half
unit sphere with the source point at the origin.
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Figure 5.4: Variation of the first derivative of the Green’s function GIJ,3 on upper half
unit sphere with the source point at the origin.
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Figure 5.5: Variation of the second derivative of the Green’s function GIJ,11 on upper half
unit sphere with the source point at the origin.
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Figure 5.6: Variation of the second derivative of the Green’s function GIJ,22 on upper half
unit sphere with the source point at the origin.

74



G11,33

×10
-3

0

π

θ
π2π

φ

-3.0

1.0

G22,33

×10
-3

0

π

θ
π2π

φ

-3.0

1.0

G33,33

×10
-3

0

π

θ
π2π

φ

-1.0

1.0

G44,33

×10
-3

0

π

θ
π2π

φ

-7.0

1.0

G55,33

×10
-5

0

π

θ
π2π

φ

-1.0

3.0

G12,33

×10
-3

0

π

θ
π2π

φ

-2.0

1.0

G13,33

×10
-4

0

π

θ
π2π

φ

-9.0

9.0

G14,33

×10
-4

0

π

θ
π2π

φ

-9.0

9.0

G15,33

×10
-4

0

π

θ
π2π

φ

-2.0

2.0

G23,33

×10
-3

0

π

θ
π2π

φ

-1.0

1.0

G24,33

×10
-3

0

π

θ
π2π

φ

-1.0

1.0

G25,33

×10
-4

0

π

θ
π2π

φ

-2.0

2.0

G34,33

×10
-4

0

π

θ
π2π

φ

-9.0

5.0

G35,33

×10
-4

0

π

θ
π2π

φ

-1.0

1.0

G45,33

×10
-4

0

π

θ
π2π

φ

-2.0

1.0

Figure 5.7: Variation of the second derivative of the Green’s function GIJ,33 on upper half
unit sphere with the source point at the origin.
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Figure 5.8: Variation of the second derivative of the Green’s function GIJ,12 on upper half
unit sphere with the source point at the origin.
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Figure 5.9: Variation of the second derivative of the Green’s function GIJ,13 on upper half
unit sphere with the source point at the origin.
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Figure 5.10: Variation of the second derivative of the Green’s function GIJ,23 on upper
half unit sphere with the source point at the origin.
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and the orthonormal relation of the eigenvectors. Once the derivatives of the Stroh eigen-
vectors are determined, the derivatives of the Green’s function can be constructed from
them. The accuracy of the present novel explicit expressions of the Green’s function and
its derivatives for generally anisotropic magnetoelectroelastic materials is verified by the
analytical solutions for transversely isotropic magnetoelectroelastic materials. The CPU
time for the calculation is provided to show the efficiency of the present novel expressions.
For evaluation of the Green’s function and its derivatives in degenerate (identical eigen-
values) and nearly degenerate (very close eigenvalues) cases, a small perturbation on the
material constants is suggested to avoid the presence of the identical or very close Stroh
eigenvalues.
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Chapter 6

Applications of the Green’s function
and its derivatives in the BEM

6.1 Preliminary remarks

The boundary element method (BEM) is a general and efficient numerical method for
many practical problems. It is sometimes called the boundary integral equation (BIE)
method, because the BEM is based on the discretization of the BIE. Some of the ad-
vantages of the BEM are (1) the reduction of the dimension of problems to be solved,
from three dimension to two dimension, or from two dimension to one dimension, (2) the
accuracy of the BEM due to the nature of integrals used in the formulation, and (3) the
easy and accurate modeling for problems in infinite domain without additional conditions
at infinity due to the properties of the kernel function or the Green’s function.

The BIE method and its numerical evaluation were first formulated to solve the po-
tential problems by Jaswon (1963), Jaswon and Ponter (1963) and Symm (1963). Later
Rizzo (1967) extended this method to solve the elastic problems. Following these early
works, extensive research efforts had been made to use the BIE method as well as the
BEM to solve many problems in applied mechanics and engineering. Among the sub-
sequent contributions, Cruse (1968, 1974), Cruse and Rizzo (1968), Lachat and Watson
(1976), Rizzo and Shippy (1977), Wilson and Cruse (1978), Sladek and Sladek (1982),
Tanaka et al. (1994), Aliabadi (1997) and Tan et al. (2013) should be mentioned. A
comprehensive review with recent advances and some future directions of the BEM was
given by Liu et al. (2011). A recent overview of the BEM was given by Mukherjee and
Liu (2013). For textbooks on the BEM, readers are referred to Aliabadi (2002) and Gaul
et al. (2003).

In this chapter, the Green’s function and its derivatives for anisotropic linear elastic
materials are implemented into a BEM, which serves as a typical application of the Green’s
function and its derivatives. Some representative numerical examples are presented to
demonstrate the correctness and the accuracy of the developed BEM.

81



6.2 Description of the BEM for anisotropic linear
elasticity

For a general problem, the BIE (2.58) is usually solved numerically. The discretization
of the boundary S with so-called boundary elements S(e), S = ∑E

e=1 S
(e) where E is the

number of elements, is applied to the BIE (2.58), and then point collocation on the nodes
of the discretization leads a system of equations for the unknown boundary values. The
BIE (2.58) becomes

cij(x)uj(x) =
E∑
n=1

∫
S(e)

uGij(x,y)t(e)j (y)dS(e) −
E∑
n=1

∫
S(e)

tGij(x,y)u(e)
j (y)dS(e). (6.1)

To simplify the evaluation of the integrals in the BIE (6.1), each boundary element
is transformed to a local reference element in the local coordinates s1 and s2, as shown
in Fig. 6.1. The field variables, i.e., point coordinates y, the displacements u and the

x1

x2
x3

s1

s2

Figure 6.1: Transformation of a boundary element to a local reference element

tractions t, inside the boundary element are approximated by the interpolation method.
In virtue of the isoparametric concept, the different field variables are approximated by
the same interpolation technique

y(e)(s1, s2) =
N(e)∑
n=1

Φn(s1, s2)ẏ(e)
n , (6.2a)

u(e)(s1, s2) =
N(e)∑
n=1

Φn(s1, s2)u̇(e)
n , t(e)(s1, s2) =

N(e)∑
n=1

Φn(s1, s2)ṫ(e)n , (6.2b)

where the matrix notation is used, N (e) is the number of nodes in an element, Φn(s1, s2)
is the n-th shape function, and ẏ(e)

n , u̇(e)
n and ṫ(e)n are the nodal coordinates, displacements

and tractions at the n-th node of element (e). Now locating the source point at the l-th
node of the discretization and substituting Eq. (6.2) into Eq. (6.1), we obtained the BIE
in the matrix form

c(xl)u(xl) =
E∑
n=1

N(e)∑
n=1

(∫
S(e)

uG(xl,y)Φn(y)dS(e)
)
ṫ

(e)
n

82



−
E∑
n=1

N(e)∑
n=1

(∫
S(e)

tG(xl,y)Φn(y)dS(e)
)
u̇(e)
n . (6.3)

The integrands in the above equation are products of the fundamental solutions with the
shape functions. Evaluation of the Eq. (6.3) over all N global nodes will set up a system
of equations for the unknown boundary values.

Assuming that there are only 3 unknowns at any node (Cruse, 1974), the system
contains 3N linearly independent equations for the 3N unknown boundary variables. By
combining the unknowns in a vector x, the system yields

Ax = f , (6.4)

where f contains the products of the coefficients from Eq. (6.3) and the known boundary
data. The resulting system can be solved by standard methods, for example, the DGESV
subroutine in the library LAPACK (Anderson et al., 1999).

6.3 Numerical examples
In this section, the conventional BEM is coded by FORTRAN with the Green’s func-
tion and its derivatives calculated by the unified explicit expression method (UEEM).
The boundary elements are 9-node quadrilaterals. On the numerical calculation of the
integrals, the rigid body movement method is applied to calculate the strongly singular
integrals; the Lachat-Watson Transformation (Lachat and Watson, 1976) is applied to
calculate the weakly singular integrals; and the Gaussian quadrature with 8 × 8 nodes
is applied to calculate the regular double integrals. The algorithm proposed by Cruse
(1974) is used to deal with the discontinuous tractions. And the linear system is solved
by the DGESV subroutine in the library LAPACK (Anderson et al., 1999).

6.3.1 Cube under tension
This is a test of the BEM program. A cube of length 2a is prescribed with uniaxial
tension σ0. The Fig. 6.2 is one-eighth of the cube. Due to the symmetry of the problem,
the symmetric boundary conditions are imposed on the planes x1 = 0, x2 = 0 and
x3 = 0 where the normal displacements and the inplane tractions vanish. The boundary
is discretized by 6 elements, that is one element per face. The number of nodes is totally
26.

For the demonstration of the applicability of the BEM program for the general anisotropy,
the transversely isotropic material Mg is taken for the numerical example. Letting the
x3 coordinate axis of the Cartesian coordinate system along with the symmetry axis of
the transversely isotropic material, the material constants in Voigt notation are listed in
Eqs. (3.5.1). Table 6.1 is the numerical results of the BEM program for the displacements
of some points when a = 1 m and σ0 = 1 GPa. The underlined digits in the table agree
exactly with the analytical results. These numerical results show the high accuracy of the
BEM program and the calculation of the Green’s function and its derivatives.

To give mathematically generally anisotropic materials, the Cartesian coordinates are
clockwise rotated about the x1-axis by an angle α, about the x2-axis by β, and about the
x3-axis by γ. The rotations are illustrated in Fig. 6.3. The transformation matrix from
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a

σ0

x1
x2

x3

Figure 6.2: One-eighth of a cube under tension

Points u1 (10−3m) u2 (10−3m) u3 (10−3m)
(1.0, 1.0, 1.0) -4.9790686007 -4.9790686007 19.7097507377
(0.5, 0.5, 1.0) -2.4895346247 -2.4895346247 19.7097333807
(1.0, 0.5, 0.5) -4.9790717447 -2.4895319447 9.85487006790
(0.5, 1.0, 0.5) -2.4895319447 -4.9790717447 9.85487006790
(1.0, 0.5, 1.0) -4.9790705923 -2.4895335628 19.7097415567
(0.5, 1.0, 1.0) -2.4895335628 -4.9790705923 19.7097415567
(1.0, 1.0, 0.5) -4.9790558988 -4.9790558988 9.85487214820

Table 6.1: Displacements of the cube under tension with transversely isotropic material
Mg
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x1

x2

x3

α

β

γ

Figure 6.3: Rotations of the coordinates.

the origin system to the new system is

Ω =

cos β cos γ sinα sin β cos γ − cosα sin γ cosα sin β cos γ + sinα sin γ
cos β sin γ cosα cos γ + sinhα sin β sin γ − sinα cos γ + cosα sin β sin γ
− sin β sinα cos β cosα cos β

. (6.5)

Then the elasticity tensor in the new Cartesian coordinate system is
c∗ijkl = ΩimΩjnΩksΩltcmnst. (6.6)

When the angles, α, β and γ, are arbitrary, the material constant matrix in Voigt notation
in the new coordinate system is generally anisotropic. However, due to the symmetry
required by the analysis, we choose α = π/2, β = 0 and γ = 0. In this case, the material
constant matrix is given by

59.7 21.7 26.2 0 0 0
61.7 21.7 0 0 0

59.7 0 0 0
16.4 0 0

Sym. 16.75 0
16.4


(GPa). (6.7)

Table 6.2 are the numerical results of the BEM program with the rotated material Mg,
compared with the results of the software COMSOL. The results are accurate, although
the number of the elements is small.

6.3.2 Cube with a spheroidal cavity under tension
In this example, we consider a cube of length 2a under tension σ0 with a small spheroid
cavity in the center. Fig. 6.4 (a) is the cube and Fig. 6.4 (b) is one-eighth of it, which
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Points u1|uc1 (10−3m) u2|uc2 (10−3m) u3|uc3 (10−3m)
(1.0, 1.0, 1.0) -7.8469021|-7.8468439 -4.9790358|-4.9790626 22.003965|22.003902
(0.5, 0.5, 1.0) -3.9234047|-3.9234219 -2.4895393|-2.4895313 22.003853|22.003902
(1.0, 0.5, 0.5) -7.8466707|-7.8468439 -2.4895052|-2.4895313 11.001962|11.001951
(0.5, 1.0, 0.5) -3.9234025|-3.9234219 -4.9790578|-4.9790626 11.001947|11.001951
(1.0, 0.5, 1.0) -7.8468756|-7.8468439 -2.4895172|-2.4895313 22.003957|22.003902
(0.5, 1.0, 1.0) -3.9234330|-3.9234219 -4.9790884|-4.9790626 22.003913|22.003902
(1.0, 1.0, 0.5) -7.8468622|-7.8468439 -4.9789869|-4.9790626 11.001973|11.001951

Table 6.2: Displacements of the cube under tension with rotated transversely isotropic
material Mg; ui are the present results; uci are evaluated by COMSOL Multiphysics with
1000 elements.

is used for the numerical computation. The axes of the Cartesian coordinate system are

2a

σ0

(a)

o x1

x2

x3 σ0

a

a

a

(b)

Figure 6.4: Model of the cube with a cavity under tension.

along with the axes of the spheroid. We set a = 10 m and σ0 = 1 GPa. The long axis of
the spheroid is 2 m and the short axis 1 m. Thus the equation of the spheroid is

(x2
1 + x2

2)/4 + x2
3 = 0. (6.8)

The rotated Mg is used for the numerical computation. The material constant matrix
is given by Eq. (6.7).

The boundary is discretized by 9-node quadrilaterals. Fig. 6.5 (a) is an illustration of
the discretization of the boundary. There are totally 131 elements and 526 nodes. Fig. 6.5
(b) is the mesh of the one-eighth spheroid, the edges of which can be easily described by
introducing θ and φ

x1 = 2 sin θ cosφ, x2 = 2 sin θ sinφ, x3 = cos θ. (6.9)

The edges are respectively represented by θ = π/2, φ = 0 and φ = π/2.
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Figure 6.5: The mesh of the cube with a spheroidal cavity

As a case study, we investigate the displacements on the edges of the one-eighth
spheroid. The numerical results of the present BEM program are compared with the
results obtained by the finite element software COMSOL. Figs. 6.6-6.8 show that the
displacements on the edges of the one-eighth spheroid obtained with the present BEM
program agree well with those obtained by the software COMSOL.
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Figure 6.6: The displacement u1 on the edges of the one-eighth spheroid.

6.4 Concluding remarks
In this chapter, a boundary element method (BEM) is developed in FORTRAN, in which
the Green’s function and its derivatives for anisotropic elastic solids are evaluated by the
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Figure 6.7: The displacement u2 on the edges of the one-eighth spheroid.
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Figure 6.8: The displacement u3 on the edges of the one-eighth spheroid.
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unified explicit expressions method (UEEM). The program is tested by a problem which
has analytical solutions. The numerical results suggested the correctness of the coded
BEM program and therefore the correctness of the Green’s function and its derivatives.
Then the BEM program is used to solve the problem of a cube with a spheroid cavity in
the center under tension. The results agree well with the numerical results by the FEM
software COMSOL. So the present BEM can be used for general structural analysis in 3D
anisotropic elasticity.
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Chapter 7

Summary and outlook

Novel explicit expressions of the 3D Green’s function and its derivatives for linear elastic,
piezoelectric and magnetoelectroelastic materials are presented and investigated in this
thesis. The starting point for deriving the explicit expressions of the Green’s function and
its derivatives is the line integral expression of the Green’s function and its derivatives,
which can be derived by applying the Fourier transform or Radon transform followed by
some elementary mathematical manipulations to the governing equations for the Green’s
function. A straightforward way to derive the explicit expressions is applying the residue
calculus to the line integrals, which is referred to as the residue calculus method (RCM)
in this thesis. An alternative way is to construct the explicit expressions in terms of the
solutions of a standard eigenvalue problem, or Stroh eigenvalue problem. This method
is referred to as the Stroh formalism method (SFM) in this thesis. However, the numer-
ical evaluation of the RCM and SFM has some troubles in the degenerate and nearly
degenerate cases when the Stroh eigenvalues or the roots of the characteristic equation
are identical or very close to each other. By a proper rewritten of the explicit expressions
resulting from the residue calculus, novel unified explicit expressions of the Green’s func-
tion and its derivatives are obtained. Here, unified means that the explicit expressions
keep the same form and are applicable for all cases including non-degenerate, nearly de-
generate and degenerate cases. The serious difficulty arising in the numerical evaluation
of the RCM and SFM doesn’t occur in the numerical evaluation of the unified explicit
expressions. This method is referred to as unified explicit expression method (UEEM) in
this thesis.

The derivations of the explicit expressions of the Green’s function and its derivatives
for anisotropic linear elastic materials by the three methods as well as the numerical in-
tegration method (NIM) are presented in Chapter 3. For the numerical computation, the
RCM and SFM require a small perturbation on the material constants to avoid the nearly
degenerate and degenerate cases in order to keep a general evaluation procedure for the
Green’s function and its derivatives, while the UEEM does not has such a requirement.
The accuracy and efficiency of the three methods, as well as the NIM, are compared with
each other. It is shown that the UEEM exhibits the highest accuracy and efficiency for the
numerical evaluation of the Green’s function and its derivatives for the anisotropic linear
elastic materials. However, due to the mathematical complexity, the UEEM is difficult to
be extended directly to the derivative evaluations of the Green’s function for the linear
piezoelectric and magnetoelectroelastic materials. For this reason, in Chapter 4, only the
RCM and SFM are directly extended to derive the explicit expressions of the Green’s func-
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tion and its derivatives for the anisotropic linear piezoelectric materials. By the numerical
evaluations of these two methods, it is shown that 1) if similar accuracy is required, the
SFM is more efficient than the RCM, and 2) to retain a generally valid evaluation pro-
cedure, the required perturbation of the material constants by the SFM is smaller than
that by the RCM. Thus, only the SFM is extended to derive the explicit expressions of
the Green’s function and its derivatives for the anisotropic linear magnetoelectroelastic
materials in Chapter 5. As representative applications, the UEEM is implemented into a
boundary element method (BEM) FORTRAN-program for anisotropic linear elastic ma-
terials. The numerical examples by using the developed BEM program in Chapter 6 show
the correctness and accuracy of the implemented BEM program in this work. Therefore,
the potential applications of the UEEM in the BEM programming are demonstrated.

As future research works, the UEEM should be extended to the linear piezoelectric
and magnetoelectroelastic materials, because it is in all likelihood the most efficient and
accurate one among the three aforementioned methods with explicit expressions. Be-
sides, the implementations of different explicit expressions of the Green’s function and
its derivatives for linear piezoelectric and magnetoelectroelastic materials into the BEM
should be conducted in future.
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Appendix A

Residue calculus of an improper line
integral

In the complex analysis, the Cauchy residue theorem is a powerful tool to calculate the
contour integrals, i.e., the line integrals defined over closed curves; it can be used to
evaluate real integrals as well. In the complex plane, the equation of Cauchy residue
theorem is ∮

γ
f(z)dz = 2πi

∑
Res(f, pk), (A.1)

where γ is a closed curve, variables pk are poles of the function f(z) inside the curve γ,
and Res(f, pk) is the residue of the function f(z) at a pole pk. If pk is a pole of m-order,
then

Res(f, pk) = 1
(m− 1)! lim

p→pk

dm−1

dpm−1 [(p− pk)mf(p)]. (A.2)

The integral ∫ +∞

−∞
f(x)dx, (A.3)

where f(x) = ∑m
k=0 bkx

k/
∑n
k=0 akx

k with an 6= 0 and n > m, arises in the study of
the Green’s function for the general anisotropic materials. It resists the techniques of
elementary calculus but can be evaluated as a limit of a contour integral in the complex
plane. As illustrated in Fig. A.1, the contour goes along the real line from A to B, and
then counterclockwise along a semicircle centered at the origin from B to A through C.
The radius ξ of the semicircle is large enough to allow the semicircle includes all poles
with positive imaginary parts. The contour integral is

∮
Γ f(z)dz. Since the contour can

be divided into a straight line AB and an arc BCA, we have∮
Γ
f(z)dz =

∫
AB

f(z)dz +
∫
BCA

f(z)dz = 2πi
∑

Res(f, pk), Im(pk) > 0. (A.4)

When z is on the straight line AB, the integral on the line is∫
AB

f(z)dz =
∫ +ξ

−ξ
f(x)dx (A.5)

When z is on the arc BCA, substitution of z = x+ yi = ξeiθ into f(z) leads to∫
BCA

f(z)dz =
∫ π

0

∑m
k=0 bkξ

kekθi∑n
k=0 akξ

kekθi
dθ. (A.6)
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Figure A.1: The contour Γ.

When ξ → ∞, the integrand of the right integral in Eq. (A.6) vanish since n > m while
θ is independent of ξ. Therefore limξ→∞

∫
BCA f(z)dz = 0. Then we have∫ +∞

−∞
f(x)dx = 2πi

∑
Res(f, pk), Im(pk) > 0. (A.7)

Some literature on the explicit evaluation of the Green’s function by the residue cal-
culus had directly given the above equation. We give the proof here for the reader’s
convenience to understand Eq. (A.7), which will be used in the following chapters.
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Appendix B

Explicit expressions of N,i and N,ij

In this appendix, the derivatives of N for elastic, piezoelectric and magnetoelectroelastic
materials are presented in a unified form.

Given any two orthogonal unit vectors n and m on the oblique plane perpendicular
to x, N is defined as

N =
(

N1 N2
N3 NT

1

)
, (B.1)

N1 = −T−1RT , N2 = T−1 = NT
2 , N3 = RT−1RT −Q,

with
QIJ = CkIJlnknl, RIJ = CkIJlnkml, TIJ = CkIJlmkml, (B.2)

where the repeated lowercase letters denote summation from 1 to 3, and the capital letters
I and J are from 1 to 3 in elasticity, from 1 to 4 in piezoelectricity, and from 1 to 5 in
magnetoelectroelasticity. In the program, it is convenience to note that

N2 = T−1, N1 = −N2RT , N3 = −RN1 −Q. (B.3)

The derivatives of N mainly consist of the derivatives of N1, N2 and N3. Since (T−1),i =
−T−1T,iT−1, which can be obtained by taking the derivative of T−1T = I, the first
derivatives of N1, N2 and N3 are

N2,i = −N2T,iN2, N1,i = −N2,iRT −N2RT
,i , N3,i = −R,iN1 −RN1,i −Q,i. (B.4)

The second derivative is obtained by taking an additional the derivative of the first deriva-
tive, i.e.,

N2,ij = −N2,jT,iN2 −N2T,ijN2 −N2T,iN2,j,

N1,ij = −N2,ijRT −N2,iRT
,j −N2,jRT

,i −N2RT
,ij, (B.5)

N3,ij = −R,ijN1 −R,iN1,j −R,jN1,i −RN1,ij −Q,ij.

The derivatives of Q, R and T are expressed in terms of n andm and their derivatives
which are presented in the following after a proper choice of n and m.

For any point except x1 = x2 = 0, n and m are chosen as

n = 1
ρ

[−x2, x1, 0] , m = 1
ρr

[
−x1x3,−x2x3, x

2
1 + x2

2

]
, (B.6a)
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where
ρ =

√
x2

1 + x2
2, r =

√
x2

1 + x2
2 + x2

3. (B.6b)

The non-zero derivatives of ρ and r are

ρ,i = xi/ρ, ρ,ij = (δij − ρ,iρ,j)/ρ, i, j 6= 3,
r,i = xi/r, r,ij = (δij − r,ir,j)/r. (B.7)

Introducing

n̂ = [−x2, x1, 0] , m̂ =
[
−x1x3,−x2x3, x

2
1 + x2

2

]
, (B.8)

the derivatives of n and m are given by

n,i = (n̂,i − ρ,in)/ρ,
n,ij = −(ρ,ijn+ ρ,in,j + ρ,jn,i)/ρ, (B.9a)
m,i = [m̂,i − (ρr),im] /(ρr),

m,ij = [m̂,ij − (ρr),ijm− (ρr),im,j − (ρr),jm,i] /(ρr),

where

(ρr),i = ρ,ir + ρr,i,

(ρr),ij = ρ,ijr + ρ,ir,j + ρ,jr,i + ρr,ij,

n̂,i = [−δ2i, δ1i, 0] , n̂,ij = 0,
m̂,i = [−δ1ix3 − δ3ix1,−δ2ix3 − δ3ix2, 2x1δ1i + 2x2δ2i] ,

m̂,ij = [−δ1iδ3j − δ3iδ1j,−δ2iδ3j − δ3iδ2j, 2δ1iδ1j + 2δ2iδ2j] . (B.9b)

Another possible choice for the orthogonal vectors n and m is

n = 1
ρ

[−x3, 0, x1] , m = 1
ρr

[
−x1x2, x

2
1 + x2

3,−x2x3
]
, (B.10a)

where
ρ =

√
x2

1 + x2
3, r =

√
x2

1 + x2
2 + x2

3. (B.10b)

Note that this choice is applicable everywhere except on the line x1 = x3 = 0, and we
apply it at points x1 = x2 = 0, x3 6= 0 which are excluded in the previous choice for
vectors n and m. Following the previous procedure, when x1 = x2 = 0, most components
of the derivatives of n and m are zero except the following ones

n3,1 = 1/|x3|, n1,11 = sgn(x3)/x2
3,

n3,13 = n3,31 = −sgn(x3)/x2
3,

m3,2 = −1/x3, m1,12 = m1,21 = −1/x2
3,

m2,22 = −1/x2
3, m3,23 = m3,32 = 1/x2

3. (B.11)

By using the above given relations, the explicit expressions for the derivatives of N
can be obtained.
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Appendix C

Auxiliary functions F (n)
m for the

second derivative of the Green’s
function

The functions F (α)
m (...) for m = 4, 5, ..., 11 and α = 0, 1 arising in Eq. (3.81) are given in

the following.

F
(0)
4 (x1, . . . , x7) =

[ 7∏
i=3

(x1 − xi)(x2 − xi)
]−1

×

[y4
1 + y2

2 − y3
1y3 − y2y4 + y2

1(−3y2 + y4) + y1(2y2y3 − y5) + y6],

F
(0)
5 (x1, . . . , x7) =

[ 7∏
i=4

(x1 − xi)(x2 − xi)(x3 − xi)
]−1

[y3
2 + y2

3 + y2
2(−y1y4 + y2

4 − 2y5) + y3y4(y2
1 − y1y4 + y5)− 2y3y6

+ y6(−y1(y2
1 − y1y4 + y5) + y6)− (y2

1 − y1y4 + y5)y7

+ y2(y3y4 + y2
1y5 + y2

5 − y1(2y3 + y4y5 − 3y6)− 2y4y6 + y7)],
F (1)
m (x1, . . . , x7) = F

(0)
m−2(x1, . . . , x6) + x7F

(0)
m (x1, . . . , x7), m = 4, 5. (C.1)

In Eq. (C.1), yi in F
(0)
4 (x1, . . . , x7) are defined by

yi =


ei(x1, x2), i = 1, 2,

ei−2(x3, . . . , x7), i = 3, 4, . . . , 7,
(C.2)

and yi in F
(0)
5 (x1, . . . , x7) are defined by

yi =


ei(x1, x2, x3), i = 1, 2, 3,

ei−3(x4, . . . , x7), i = 4, 5, . . . , 7.
(C.3)

Here and in what follows, ei(. . .) is the elementary symmetric polynomial defined by Eq.
(3.72).

F
(0)
6 (x1, . . . , x8) =

[ 8∏
i=3

(x1 − xi)(x2 − xi)
]−1

×
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[y5
1 − y4

1y3 + y3
1(−4y2 + y4) + y2

1(3y2y3 − y5)
+ y2(−y2y3 + y5) + y1(3y2

2 − 2y2y4 + y6)− y7], (C.4a)

F
(0)
7 (x1, . . . , x8) =

[ 8∏
i=4

(x1 − xi)(x2 − xi)(x3 − xi)
]−1

×

[y4
2 + y2

3y
2
4 + y3

2(−y1y4 + y2
4 − 2y5)− y2

3y5 + y3y5y6 + y4
1y7 − 2y3y4y7

+ y2
2(y3y4 + y2

1y5 + y2
5 − y1(3y3 + y4y5 − 3y6)− 2y4y6 + 2y7) + y3y8

+ y3
1(y8 − y3y5 − y4y7) + y2

1(y2
3 + y3y4y5 + y5y7 − y4y8)− y6y8

+ y2
7 − y1(2y2

3y4 + y3(y2
5 − 3y7) + y6y7 − y5y8) + y2(2y2

3 − 2y5y7

+ y3(2y1(y1 − y4)y4 + (2y1 + y4)y5 − 3y6) + y2
6 + y2

1(y4y6 − 4y7)
− y1(y5y6 − 3y4y7 + 2y8)− y3

1y6 + y4y8)], (C.4b)

F
(0)
8 (x1, . . . , x8) =

[ 8∏
i=5

(x1 − xi)(x2 − xi)(x3 − xi)(x4 − xi)
]−1

×

[y3
3 + y2

2y4y5 − y2
4y5 + y2y4y

3
5 − 2y2y4y5y6 + y4y5y

2
6 − y3

2y7 + 2y2y4y7

− y2
2y

2
5y7 − y4y

2
5y7 + 2y2

2y6y7 − 2y4y6y7 + 2(y4y5 + (−y2 + y6)y7)y8

− y2
3(y2y5 − y1y

2
5 + y3

5 + 2y1y6 − 3y5y6 + 3y7)− y2y
2
6y7 + 2y2y5y

2
7

+ y2
1(y4(y5y6 − 2y7)− y7(y2y6 + y5y7) + (y5(y2 + y6) + y7)y8)− y3

7

+ y1(y2
4 − y4y5(y5(y2 + y6)− 3y7) + y7(y2

2y5 + y2y5y6 − 3y2y7 + y6y7)
− 2y4y8 − (y2

2 + y2(y2
5 − 2y6) + y2

6 + y5y7)y8 + y2
8) + y3(−y4y

2
5 + y2

2y6

+ 2y4y6 + y3
6 − 3y5y6y7 + 3y2

7 − y2(2y4 + y1y5y6 − y2
5y6 + 2y2

6 − 3y1y7

+ y5y7 − 2y8) + 2y2
5y8 − 2y6y8 + y2

1(y2
6 − 2y5y7 + y8)

+ y1(y4y5 + 2y2
5y7 + y6y7 − y5(y2

6 + 3y8)))− y5y
2
8 + y3

1(y2
7 − y6y8)], (C.4c)

F (1)
m (x1, . . . , x8) = F

(0)
m−2(x1, . . . , x7) + x8F

(0)
m (x1, . . . , x8), m = 6, 7,

F
(1)
8 (x1, . . . , x8) = F

(0)
5 (x5, x6, x7, x1, . . . , x4) + x8F

(0)
8 (x1, . . . , x8). (C.4d)

In Eq. (C.4), yi in F
(0)
6 (x1, . . . , x8) are defined by

yi =


ei(x1, x2), i = 1, 2,

ei−2(x3, . . . , x8), i = 3, 4, . . . , 8,
(C.5)

yi in F
(0)
7 (x1, . . . , x8) are defined by

yi =


ei(x1, x2, x3), i = 1, 2, 3,

ei−3(x4, . . . , x8), i = 4, 5, . . . , 8,
(C.6)

and yi in F
(0)
8 (x1, . . . , x8) are defined by

yi =


ei(x1, . . . , x4), i = 1, 2, 3, 4,

ei−4(x5, . . . , x8), i = 5, 6, 7, 8.
(C.7)
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F
(0)
9 (x1, . . . , x9) =

[ 9∏
i=3

(x1 − xi)(x2 − xi)
]−1

×

[y6
1 − y5

1y3 + y4
1(−5y2 + y4) + y3

1(4y2y3 − y5) + y2
1(6y2

2 − 3y2y4 + y6)
− y2(y2

2 − y2y4 + y6)− y1(3y2
2y3 − 2y2y5 + y7) + y8], (C.8a)

F
(0)
10 (x1, . . . , x9) =

[ 9∏
i=4

(x1 − xi)(x2 − xi)(x3 − xi)
]−1

×

[y5
2 + y3

3y4 + y4
2(y2

4 − y1y4 − 2y5) + y2
3y

2
5 − y2

3y4y6 − y2
3y7 + y3y6y7 + y2

8

+ y3
2(y3y4 + y2

1y5 + y2
5 − y1(4y3 + y4y5 − 3y6)− 2y4y6 + 2y7)− y5

1y8

− 2y3y5y8 − y7y9 + y2
1(y2

3(y2
4 + y5) + y3(y5y6 − 4y8) + y6y8 − y5y9)

+ y2
2(3y2

3 + y3(3y1(y1 − y4)y4 + (4y1 + y4)y5 − 3y6)− y3
1y6 + y2

6

+ y2
1(y4y6 − 4y7)− 2y5y7 + 2y4y8 − y1(y5y6 − 3y4y7 + 5y8)− y9)

− y3
1(y3y4(y3 + y6) + y5y8 − y4y9) + y4

1(y3y6 + y4y8 − y9) + y3y4y9

− y1(2y3
3 + y2

3(2y4y5 − 3y6) + y7y8 − y6y9 + y3(y2
6 − 3y4y8 + 2y9))

+ y2(y2
3(2y2

4 − 3y5) + y4
1y7 + y2

7 − y3
1(2y3y5 + y4y7 − 5y8)− 2y6y8

+ y5y9 + y2
1(3y2

3 + 2y3y4y5 − 3y3y6 + y5y7 − 4y4y8 + 3y9)
− y1(4y2

3y4 + 2y3(y2
5 − y4y6 − 2y7) + y6y7 − 3y5y8 + 2y4y9)

+ y3(y5y6 − 3y4y7 + 4y8))], (C.8b)

F
(0)
11 (x1, . . . , x9) =

[ 9∏
i=5

(x1 − xi)(x2 − xi)(x3 − xi)(x4 − xi)
]−1

×

[y4
3 − y3

4 + y2
1y

2
4y

2
5 − y1y

2
4y

3
5 − y2

1y
2
4y6 + y1y

2
4y5y6 + y2

4y
2
5y6 − y2

4y
2
6

− 2y2
4y5y7 + y3

1y4y6y7 − y2
1y4y5y6y7 + y1y4y

2
6y7 − y4y6y

2
7 + 3y2

4y8

− y3
3(y2y5 − y1y

2
5 + y3

5 + 2y1y6 − 3y5y6 + 3y7) + y4
2y8 + 2y2

1y4y
2
5y8

+ y2
1y4y6y8 − 3y1y4y5y6y8 + y4y

2
6y8 + 2y4y5y7y8 + y4

1y
2
8 − 3y4y

2
8

− y1y7y
2
8 + y3

8 + (−y4
1y7 + y3

1(y4 + y5y7 + y8)− y2
1(3y4y5 + y6y7

+ y5y8) + y1(y4(2y2
5 + y6) + y2

7 + y6y8)− 2(y4y5y6 − y4y7 + y7y8))y9

+ (y2
1 − y1y5 + y6)y2

9 + y3
2(y5(−y1 + y5)y8 − y6(y4 + 2y8) + y1y9)

+ y2
2(y2

4 + y4y6((y1 − y5)y5 + 2y6)− 3y4y8 + y8(y6(y2
1 − y1y5 + y6)

+ (3y1 − 2y5)y7 + 2y8) + y1(−y1y5 + y2
5 − 2y6)y9) + y2

3(−y4y
2
5 + y2

2y6

+ 2y4y6 + y3
6 − 3y5y6y7 + 3y2

7 − y2(3y4 + y1y5y6 − y2
5y6 + 2y2

6 − 3y1y7

+ y5y7 − 4y8) + 3y2
5y8 − 3y6y8 + y2

1(y2
6 − 2y5y7 + 2y8)− 2y5y9

+ y1(y4y5 + 2y2
5y7 + y6y7 − y5(y2

6 + 5y8) + 3y9)) + y2(y8(y2
7 − 2y6y8)

+ y2
1(3y4y8 − y4y

2
6 + y5y7y8 − 4y2

8 − y5y6y9 + 3y7y9) + y3
1(y6y9 − y7y8)

− y4(y3
6 + 2y2

5y8 − 2y6(y5y7 + y8)) + y2
4y

2
5 + y1(y4y5y

2
6 − y6y7y8

− 2y2
4y5 − 3y4y6y7 + y4y5y8 + 3y5y

2
8 + (y4 + y2

6 − 2y5y7 − 3y8)y9)
− y2

9 + 2y5y8y9) + y3(y4y5y
2
6 − y2

4y5 − y3
2y7 − 2y4y

2
5y7 − y4y6y7 − y3

7
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+ 4y4y5y8 + 3y6y7y8 − 3y5y
2
8 + 3y5y6y9 − 2(y4 + y2

6 − y5y7 − y8)y9

+ y2
2(2y4y5 − y2

5y7 + 2y6y7 + y5y8 − 2y9) + y3
1(y2

7 − 2y6y8 + y5y9)
+ y2(2y5y

2
7 − y2

6y7 + y4(2y3
5 − 5y5y6 + 3y7) + y5y6y8 − 5y7y8 − 2y2

5y9

+ 4y6y9) + y2
1(y4y5y6 − 3y4y7 − y2y6y7 − y5y

2
7 + 3y2y5y8 + 2y5y6y8

+ y7y8 − (2y2 + y2
5 + 2y6)y9) + y1(2y2

4 + y6y
2
7 + y2

2(y5y7 − 4y8)
− 2y2

6y8 − y5y7y8 + 4y2
8 − y4(2y2(y2

5 − y6) + y2
5y6 − 5y5y7 + 6y8)

− 4y7y9 + y2(y5y6y7 − 3y2
7 − 3y2

5y8 + 4y6y8 + 3y5y9)))
+ y1y

2
4y7 − 2y3

1y4y5y8 − y3
1y5y

2
8 + y2

1y6y
2
8]

F (1)
m (x1, . . . , x9) = F

(0)
m−3(x1, . . . , x8) + x9F

(0)
m (x1, . . . , x9), m = 9, 10, 11. (C.9)

In Eq. (C.9), yi in F
(0)
9 (x1, . . . , x9) are defined as

yi =


ei(x1, x2), i = 1, 2,

ei−2(x3, . . . , x9), i = 3, 4, . . . , 9,
(C.10)

yi in F
(0)
10 (x1, . . . , x9) are defined as

yi =


ei(x1, x2, x3), i = 1, 2, 3,

ei−3(x4, . . . , x9), i = 4, 5, . . . , 9,
(C.11)

and yi in F
(0)
11 (x1, . . . , x9) are defined as

yi =


ei(x1, . . . , x4), i = 1, 2, 3, 4,

ei−4(x5, . . . , x9), i = 5, 6, . . . , 9.
(C.12)

It should be mentioned here that yi in different F (α)
m (...) have different definitions.
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Appendix D

Explicit expression of the Stroh
eigenvector ξ

In this appendix, we list the explicit expressions of the Stroh eigenvectors ξ, i.e., a and
b. Note that the notations in this appendix follow those in Ref. Hwu (2010). For more
details, please refer to Ref. Hwu (2010).

The explicit expressions of a and b are given by

a =


a1
a2
a3
a4

 =


p1b2 + q1b3 + r1b4

(p2b2 + q2b3 + r2b4) /µ
(p4b2 + q4b3 + r4b4) /µ
p4b2 + q7b3 + r7b4

 , (D.1a)

where

pj = µ2Ŝ
′D
j1 + Ŝ

′D
j2 − µŜ

′D
j6 ,

qj = Ŝ
′D
j4 − µŜ

′D
j5 ,

rj = Ŝ
′D
j8 − µŜ

′D
j7 , j = 1, 2, 4, 7, (D.1b)

and

b =


b1
b2
b3
b4

 = c


µl∗4
−l∗4
l∗3
m∗3

 , or c


µl∗3
−l∗3
l∗2
m∗2

 , or c


µm∗3
−m∗3
m∗2
ρ∗2

 . (D.2)

In Eq. (D.2),

l∗2 = l4ρ2 −m2
3, l∗3 = m2m3 − l3ρ2, l∗4 = l2ρ2 −m2

2,

m∗2 = l3m3 − l4m2, m∗3 = l3m2 − l2m3, ρ∗2 = l2l4 − l23, (D.3)

where

l2 = Ŝ
′D
55 µ

2 − 2Ŝ ′D
45 µ+ Ŝ

′D
44 ,

l3 = Ŝ
′D
15 µ

3 −
(
Ŝ

′D
14 + Ŝ

′D
56

)
µ2 +

(
Ŝ

′D
25 + Ŝ

′D
46

)
µ− Ŝ ′D

24 ,

l4 = Ŝ
′D
11 µ

4 − 2Ŝ ′D
16 µ

3 +
(
2Ŝ ′D

12 + Ŝ
′D
66

)
µ2 − 2Ŝ ′D

26 µ+ Ŝ
′D
22 ,

m2 = ĝ
′

15µ
2 −

(
ĝ

′

14 + ĝ
′

25

)
µ+ ĝ

′

24,
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m3 = ĝ
′

11µ
3 −

(
ĝ

′

21 + ĝ
′

16

)
µ2 +

(
ĝ

′

12 + ĝ
′

26

)
µ− ĝ′

22,

ρ2 = −β̂ ′σ
11µ

2 + 2β̂ ′σ
12µ− β̂

′σ
22. (D.4)

In the above equations, Ŝ ′D
ij , ĝ′

ij and β̂ ′σ
ij are the reduced piezoelectric compliances, and µ

represents the Stroh eigenvalues which are the roots of

l2l4ρ2 + 2l3m2m3 − l2m2
3 − l4m2

2 − ρ2l
2
3 = 0. (D.5)

In Eq. (D.2) c is the scaling factor. To have a unique value for the eigenvectors, for each
Stroh eigenvalue µk the scaling factor ck is determined by

c2
k = 1

2(a1kb1k + a2kb2k + a3kb3k + a4kb4k)
, k = 1, 2, 3, 4, (D.6)

where ajk and bjk are the components of a and b before scaling.
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