
Grammar-based compression
for strings and trees

DISSERTATION
zur Erlangung des Grades eines Doktors

der Naturwissenschaften

vorgelegt von
Danny Hucke, Dipl. Math. (FH)

eingereicht bei der Naturwissenschaftlich-Technischen Fakultät
der Universität Siegen

Siegen 2019

Betreuer und erster Gutachter
Prof. Dr. Markus Lohrey

Universität Siegen

Zweiter Gutachter
Prof. Dr. Johannes Fischer

Technische Universität Dortmund

Tag der mündlichen Prüfung

25.11.2019

Abstract

The goal of grammar-based compression is to represent a string by a small
context-free grammar that produces only this string. Such a grammar is called
a straight-line program (SLP). Grammar-based compression is a powerful tool
to efficiently store data and process the compressed representation without
decompressing it. In the first part of this work, we study the grammar-based
compressors LZ78, BiSection, RePair, Greedy and LongestMatch, which are among
the most popular compressors in this area. In the seminal work “The smallest
grammar problem” by Charikar et al., the authors derived lower and upper
bounds on the approximation ratios of several grammar-based compressors
including the algorithms mentioned above. Unfortunately, for none of the
compressors the presented bounds matched. Here, we close the gaps for LZ78
and BiSection. To be more precise, we show that the approximation ratio of LZ78
is Θ((n/ log n)2/3) and the approximation ratio of BiSection is Θ(

√
n/ log n).

For RePair, we improve the lower bound from Ω(
√

log n) to Ω(log / log log n) and
for Greedy from approximately 1.138 to approximately 1.348. The best known
upper bound in both cases is O((n/ log n)2/3). Moreover, we improve a result
of Arpe and Reischuk which relates grammar-based compression for arbitrary
alphabets and binary alphabets.

In the second part of this work, we consider grammar-based compression for
trees. The main principle is similar, because the goal is to represent a tree by a
small linear context-free tree grammar that produces only this tree. Such a tree
grammar is called a tree straight-line program (TSLP). As a main contribution,
we present two algorithms that produce a TSLP of size O(n/ logσ n) for any
given tree with n nodes and σ many node labels, where we assume that the
maximal number of children of a node in the tree is bounded by a constant.
Additionally, the obtained TSLP has logarithmic depth. We show that those
properties can be achieved in logarithmic space, or alternatively, in linear time.
Similar results on the worst-case size of SLPs are well known.

We use our constructions for two applications: First, we apply TSLPs to
the problem of transforming arithmetical formulas into equivalent circuits of
size O((n · logm)/ log n) and depth O(log n), where n is the size of the formula
and m is number of different variables occurring in the formula. As a second
application, we present a binary encoding of unlabeled binary trees based on
grammar-based tree compression. We prove that this encoding is worst-case
universal and thus asymptotically optimal for certain tree sources.

v

vi

Acknowledgements

I would like to thank my advisor Markus Lohrey. He is a brilliant researcher
and a patient mentor, who helped me to evolve from a student to a researcher.
Although I had my problems with the city of Siegen at the beginning, I am very
thankful for the opportunity he gave me and I would definitely make the decision
to follow him from Leipzig to Siegen again.

I am also very grateful to Johannes Fischer for coexamining this thesis.
Further, I want to thank all of my coauthors and colleagues for many fruitful
discussions about various interesting topics. A special thanks in this context
goes to Moses Ganardi, who had to sit next to me for years and endured so many
questions from my side without being annoyed (as far as I noticed). At least it
was not in vain, because I really like the many different results we achieved over
the years together with Markus and the others.

Last but not least, I want to thank my wonderful family for the huge support
over the years. My parents always let me be who I am and I know that I was
not the easiest child you could have. I can only hope that my little daughter
Luna thinks the same about me when she is an adult. A special thanks goes to
my beautiful wife Christiane. She has to do the double work at home during my
stays in Siegen, but she never complains and her loving support in all situations
means the world to me.

Finally, this work is dedicated to my beloved grandma, whom I miss more
than words can ever say.

vii

viii

Contents

1 Introduction 1

2 Preliminaries 9
2.1 Numbers and functions . 9
2.2 Words, alphabets and languages 10
2.3 Graphs and trees . 11
2.4 Distributions and empirical entropy 12
2.5 Computational models . 13

3 Grammar-based string compression 15
3.1 Straight-line programs . 18
3.2 Approximation ratio . 22
3.3 BiSection . 28
3.4 LZ78 . 34
3.5 Global algorithms . 38
3.6 RePair . 39
3.7 Greedy . 46
3.8 LongestMatch . 62
3.9 Universal coding based on SLPs 63
3.10 Conclusion and open problems 66

4 Grammar-based tree compression 69
4.1 Trees and patterns . 72
4.2 Tree straight-line programs . 76
4.3 Directed acyclic graphs . 80
4.4 TreeBiSection . 86
4.5 BU-Shrink . 98
4.6 Arithmetical circuits . 104
4.7 Source coding for unlabeled binary trees 110
4.8 Universal coding based on DAGs 112
4.9 Universal coding based on TSLPs 116
4.10 Conclusion and open problems 130

1

2

Chapter 1

Introduction

The amount of digital data around the world is beyond imagination and with more
and more people having access to the world wide web, the speed of producing
data accelerates. According to a report of the International Data Corporation
(IDC) from November 2018 [98], the size of the global datasphere was about 33
zettabytes in 2018 and it is predicted to grow to 175 zettabytes in 2025. For
readers unfamiliar with this magnitude, one zettabyte is one trillion gigabytes, so
if one would try to download 175 zettabytes at an average of 45 megabytes per
second, then it would take one person one billion years to do it. But not only the
pure amount of data grows massively, the importance of collecting, storing and
analyzing digital data increases in almost all economic sectors. The hardware and
software systems needed to store, protect and share data are complex, difficult
to manage and therefore expensive. This motivates the goal of storing data as
efficient and succinct as possible from the perspective of modern economy. In this
work, we investigate a compression method called grammar-based compression,
where a text is represented by a context-free grammar. This topic has become
an active research field of lossless data compression during the past 25 years.

Before we start a detailed explanation of this approach, let us briefly revisit
the path data compression has taken to make this work possible. Probably
the first instance of data compression is the famous Morse code from the 19th
century, where common letters in the english language have short codes while
less frequent letters are represented by longer codes. Later, when mainframe
computers began to take hold in the middle of the 20th century, Claude Shannon
and Robert Fano invented Shannon-Fano coding [40, 105]. The rough idea
is again that symbols with high probabilities are represented by short codes
and symbols with lower probabilities are represented by longer codes. This
approach was optimized by David Huffman, who constructed a similar yet more
efficient encoding; the Huffman code [62]. In fact, the Huffman code is an
optimal prefix-free binary encoding of symbols based on given probabilities (or
relative frequencies) and it is part of practical compression methods such as,
for example, bzip2. In 1977, Abraham Lempel and Jacob Ziv published their
groundbreaking compression algorithm LZ77 [112], the first dictionary-based

1

compression algorithm. In contrast to the codes mentioned so far, dictionary-
based compression does not rely exclusively on the frequencies of the occurring
symbols but exploits the repetitiveness that most of the fastest-growing datasets
exhibit. LZ77 is a greedy left-to-right parse of the input text into maximal
factors such that each factor is either a symbol or already occurs to the left;
factorizations with this property are known as unidirectional factorizations. The
LZ77 algorithm computes an optimal unidirectional factorization, where the size
is measured in the number of factors. One year after LZ77, Lempel and Ziv
introduced a second dictionary-based compression algorithm known as LZ78 [113].
The LZ78 algorithm also performs a greedy left-to-right parse of the input into
maximal factors, but here each factor is either a symbol or a concatenation of a
previous factor followed by a symbol. This brings us back to grammar-based
compression already, because LZ78 can be seen as the first example of this
compression technique (even if it was not introduced this way).

Grammar-based string compression. The goal of grammar-based com-
pression is to represent a given word or text w by a small context-free grammar
that produces only w. Consider the grammar with the following rules:

S → bXY Z bZY, X → an, Y → Xas, Z → Xd

Here, S is the start variable (or nonterminal) of the grammar. Applying the
above rules as rewrite rules yields

S ⇒ bXY Z bZY ⇒∗ banXas Xd bXdXas⇒∗ bananas and bandanas

as the text represented by the grammar. Such context-free grammars, where
exactly one word is produced, are called straight-line programs (SLPs for short).
This formalism was introduced independently in different contexts [13, 37, 100]
and under different names. For instance, in [13, 37] the term word chains was used
since SLPs generalize addition chains from numbers to words. An algorithm that
computes an SLP for a given word w is called a grammar-based compressor. There
are various grammar-based compressors that can be found in many places in the
literature. Besides LZ78, well known examples are BiSection [74], RePair [77],
Greedy [7, 8] and LongestMatch [72], just to mention the algorithms which will
be the subject of further investigation in this work.

In the best case, one gets an SLP of size Θ(log n) for a word of length n,
where the size of an SLP is defined as the sum of the lengths of all right-hand
sides of the rules (the SLP above has size 16, including the two blanks). Consider
for example the SLP with rules Ak → ab and Ai−1 → AiAi for 1 ≤ i ≤ k, where

A0 is the start nonterminal. The produced word is (ab)2k and the SLP has size
2k+2. On the negative side, it is shown in [29, 102] that an SLP of size m can be
transformed into a unidirectional factorization of size at most m, which implies
that the LZ77 factorization of any word is at most as big as a smallest SLP
for this word. Further, it is known from [29, 108] that in general it is not even
possible to compute a smallest SLP for a given word in polynomial time unless

2

P = NP. An unfamiliar reader might wonder at this point why grammar-based
compression is worth further investigation. A significant advantage of SLPs over
other compression methods such as LZ77 is that a lot of computational tasks can
be efficiently performed on the compressed representation of the data without
decompressing it. This is a beneficial property, because in a lot of applications
the compressed data is not only stored, but also processed on demand, and
decompressing the data for every access defeats the purpose of having a succinct
representation in the first place. The basic example here is accessing random
positions of a compressed text. If a text is compressed via LZ77, then random
access essentially requires to decompress the text from the beginning. In contrast,
for a given SLP of size m producing a text of size n, one can construct in time
O(m) a data structure of size O(m) (in words of bit length log n) such that the
access time is O(log n) [17, 48], or alternatively, for any ε > 0 one can construct
in time O(m logε n) a data structure of size O(m logε n) (again in words of
bit length log n) such that the access time is O(log n/ log log n) [12, 48]1. A
more detailed comparison between grammar-based compression and LZ77 (and a
third compression technique known as compressed suffix arrays) for the indexing
problem can be found in [92]. Other basic problems where given SLPs admit
efficient algorithms are for example pattern matching [51, 63, 67, 80, 91], equality
checking [57, 89, 96] and testing membership in a regular language given by
a finite automaton [87, 97]. The reader can find a more detailed overview for
algorithmics on SLP-compressed inputs in [81]. An interesting application in
this context is that in some situations one can even speed up computations by
first compressing the (uncompressed) inputs using SLPs and then applying the
solution strategy to the SLPs in order to efficiently solve the problem. This
approach is known as acceleration by compression and the reader can find an
example in [35, 56], where the edit-distance of two given strings is computed in
sub-quadratic time. It is worth mentioning here that the acceleration is based
on the fact that there are linear time grammar-based compressors such as LZ78
where it is guaranteed that the produced SLP has size O(n/ logσ n) for any word
of length n over an alphabet of size σ. This worst-case result is well known
for SLPs (see e.g. [13, 34, 74]) and will play a crucial role later when we apply
grammar-based compression to trees.

A second point in favor of grammar-based compression is that the gap between
the size of a smallest SLP and the size of the LZ77 factorization is bounded by a
factor that depends only logarithmically on the word length. To be more accurate,
one can efficiently construct an SLP of size O(m · log(n/m)) for an input of
length n, where m is the size of the LZ77 factorization [29, 102]. It is also shown
in [29] that this construction is almost optimal, i.e, there is an infinite family of
words such that the smallest SLP has size Ω(m · (log n/ log log n)), where n is
again the word length and m is the size of the LZ77 factorization. As mentioned
above, the size of the LZ77 factorization is a lower bound for the size of a smallest
SLP, so the grammar-based compressors presented in [29, 102] approximate a

1In [12] this result was only shown for balanced SLPs, whereas in [48] it is shown that one
can balance a given SLP such that the size only increases by a constant multiplicative factor.

3

smallest grammar for a given word of length n by the same multiplicative factor
O(log n). Other grammar-based compressors that achieve the same upper bound
are presented in [64, 65, 103]. The study of grammar-based compressors as
approximation algorithms for a smallest SLP was initiated in the seminal work
of Charikar et al. [29] and will be the main subject of the first part of this work.
Formally, for a grammar-based compressor C that computes an SLP C(w) for a
word w, one defines the approximation ratio of C on w as the quotient of the
size of C(w) and the size g(w) of a smallest SLP for w. The approximation ratio
αC(n) is the maximal approximation ratio of C among all words of length n.

Results for grammar-based string compression (Chapter 3). In [29]
the authors provide lower and upper bounds for the approximation ratios of
several grammar-based compressors, among them are the compressors LZ78,
BiSection, RePair and Greedy, but for none of the compressors the lower and
upper bounds match. These compression algorithms are among the most popular
grammar-based compressors. Before we state our results, let us briefly justify the
interest that those compressors arouse. As mentioned before, LZ78 is a classical
algorithm and it is the basis of several widely used text compressors such as
LZW (Lempel-Ziv-Welch). RePair and Greedy belong to the same family of
grammar-based compressors known as global algorithms. Global algorithms show
excellent practical compression results in many applications. In [8] the authors
observe that compression based on Greedy outperforms gzip (based on LZ77) and
bzip2 (based on the Burrows-Wheeler Transform [25] and Huffman coding) on
DNA sequences. RePair, probably the best known global algorithm, achieves the
best compression results among the tested grammar-based compressors in [16, 44]
and found applications, among others, in web graph compression [31], searching
compressed texts [69], suffix array compression [54] and (in a slightly modified
form in) XML compression [82]. Some variants and improvements of RePair
can be found in [16, 43, 44, 49, 88]. BiSection was first studied in the context
of universal lossless compression [74] (called MPM there). On binary strings
of length 2n, BiSection basically produces the ordered binary decision diagram
(OBDD) of the Boolean function represented by the bit string (each bit represents
the output of the function for some input from {0, 1}n); see also [71]. OBDDs
are widely used as a data structure in the area of hardware verification.

In this work, we present improved lower bounds on the approximation ra-
tios of LZ78, BiSection, RePair and Greedy. For LZ78 and BiSection, these
improvements yield the first known matching bounds for grammar-based com-
pressors. To be more precise, we show that the approximation ratio of LZ78 is
Θ((n/ log n)2/3) and the approximation ratio of BiSection is Θ(

√
n/ log n). For

the global algorithms, we improve the lower bound for RePair from Ω(
√

log n)
to Ω(log / log log n) and for Greedy from approximately 1.138 to approximately
1.348. The best known upper bound in both cases is O((n/ log n)2/3) [29]. The
obtained results are summarized in Table 1.1. Additionally, we investigate the
approximation ratios of those algorithms and another global algorithm known
as LongestMatch in the setting where inputs are restricted to be unary. In this

4

Algorithm
Approximation ratio

Lower bound Upper bound

BiSection Θ(
√
n/ log n)

LZ78 Θ((n/ log n)2/3)

RePair Ω(log n/ log log n) O((n/ log n)2/3)

Greedy 1.34847194 . . . O((n/ log n)2/3)

Table 1.1: The best known bounds on the approximation ratios of the grammar-
based compressors studied in this work. The red colored bounds are presented in
Chapter 3. For BiSection and LZ78 we provide the matching lower bounds, the
corresponding upper bounds as well as all non-colored bounds are shown in [29].

setting, grammar-based compression is strongly related to the field of addition
chains. The reader can find a more detailed summary of those latter achievements
at the beginning of Chapter 3.

Another result presented in this work connects the hardness of grammar-
based compression over binary alphabets to arbitrary alphabets. We show that if
there is a polynomial time grammar-based compressor with approximation ratio
c (a constant) on binary words, then there is a polynomial time grammar-based
compressor with approximation ratio 6c on arbitrary words. This improves upon
a result of Arpe and Reischuk [10], where a quite technical block encoding of
arbitrary alphabets is used. Our approach uses a very simple construction, where
the i-th symbol of the arbitrary alphabet is encoded by aib (the binary alphabet
is {a, b}).

Finally, we revisit two previously known results for grammar-based string
compression: We prove that the worst-case size of SLPs produced by BiSection is
O(n/ logσ n) [74] for inputs of size n over an alphabet of size σ, and we show how
grammar-based compression is used for universal source coding in [72]. Both
topics play an important role in the second part of this work, where we achieve
similar results for grammar-based tree compression.

Grammar-based tree compression. In [26], grammar-based compression
was extended from strings to trees. Trees are ubiquitous in computer science
and they appear in various data structures such as, for example, suffix trees,
binary search trees, Cartesian trees, wavelet trees, red-black trees and AVL-
trees; see [20] for details. More generally, a lot of data has a more complex
structure than a one-dimensional text. In particular, quite often data features a
hierarchical structure, which can be modeled as a tree. The basic example here
is XML, the universal format for structured documents and data on the world
wide web. While it is possible to flatten trees and compress the result using
string compression, this disregards the structure of the data and might make
processing the compressed representation less efficient [47]. This motivates the
goal of compressing trees without losing too much of the structure. The trees we

5

aim to compress in this work are rooted ordered trees over a ranked alphabet, i.e.,
every node has an order among its children and is labeled by a ranked symbol,
where the rank of this symbol is equal to the number of children of the node.

The basic formalism that we use is the tree counterpart of context-free string
grammars: Linear context-free tree grammars (see [32] for details about tree
grammars). A linear context-free tree grammar that produces only a single tree
is called a tree straight-line program (TSLP) or straight-line context-free tree
grammar (SLCF tree grammar) and an algorithm which computes a TSLP for
a given tree is called a grammar-based tree compressor. It is a nice property
of TSLPs that they can be seen as a generalization of directed acyclic graphs
(DAGs), which are widely used as a compact tree representation. Whereas DAGs
only allow to share repeated subtrees of a given tree, TSLPs can also share
repeated internal tree patterns. DAGs found applications in numerous areas
such as compiler construction [3, Chapter 6.1 and 8.5], unification [95], XML
querying [24, 42], and symbolic model-checking (binary decision diagrams) [22].

Similar to SLPs, it is known that TSLPs efficiently support various computa-
tional tasks. Let us first mention the problem of navigating in a tree represented
by a given TSLP. Tree navigation plays an important role, for example, when it
comes to querying or transforming XML documents as it is done by widely used
languages such as XQuery or XSLT. In [84], the authors show that for a given
TSLP of size m, one can precompute in time O(m) a data structure of size O(m)
that allows to move from a node of the tree in constant time to its parent node or
to its i-th child and to return in constant time the node label of the current node.
Further, this data structure is extended in the same paper such that subtree
equality checks can be carried out in constant time as well. This problem occurs
in several contexts, see for instance [27]. Other basic examples where TSLPs
admit polynomial time algorithms are equality checking [104] and evaluating
tree automata [85]. The reader can find more details in the survey [81].

While it is not possible to compute a smallest TSLP in polynomial time
unless P = NP (this follows directly from the corresponding result for SLPs),
several grammar-based tree compressors are published [5, 19, 26, 66, 82]2. The
algorithms from [53, 66] achieve an approximation ratio of O(log n) compared
to a smallest TSLP (for a constant set of node labels), which matches the best
known bound for SLPs as described above. It is worth mentioning that in [53],
the authors use a familiar approach: First, they extended the LZ77 factorization
from strings to trees. Then, for a given tree with n nodes, the LZ77 factorization
of size m is transformed into a TSLP of size O(m · log(n/m)). Similar to strings,
the LZ77 factorization of a tree is a lower bound on the size of a smallest TSLP,
which yields the claimed approximation ratio. On the other hand, for none of the
mentioned compressors it is known whether for every input tree with n nodes the
size of the TSLP is bounded by O(n/ log n) as it is the case for grammar-based
string compression.

2The tree compressor presented in [5] is based on a different type of tree grammars, so-called
elementary ordered tree grammars.

6

Results for grammar-based tree compression (Chapter 4). Our main
result for grammar-based tree compression addresses the worst-case size of
TSLPs. We present two grammar-based compressors, TreeBiSection and BU-
Shrink, which compute TSLPs of size O(n/ logσ n) for a given tree with n nodes
and σ many different node labels. It is important that this result is based
on the assumption that the maximal number of children of a node in the tree
is bounded by a constant. The first compressor TreeBiSection is basically an
extension of the BiSection algorithm [74] from strings to trees. An important
part of this algorithm is that one can hierarchically decompose a given tree in a
top-down way into pieces of roughly equal size. This decomposition is based on
a well known technique from [78]. In a second step, we use DAG compression
to identify identical pieces produced by this decomposition and form a TSLP
based on this information. The TSLP obtained by TreeBiSection is balanced,
i.e., the depth of the corresponding derivation tree is bounded by O(log n). We
prove that TreeBiSection can be implemented in logarithmic space and, using an
alternative implementation, achieves the running time O(n log n). We are not
aware of a linear time implementation for this algorithm and therefore we present
a second algorithm called BU-Shrink (for bottom-up shrink) that constructs
a TSLP of size O(n/ logσ n) in linear time. In a first step, BU-Shrink merges
nodes of the input tree in a bottom-up way. Thereby it constructs a partition
of the input tree into O(n/ logσ n) many connected parts of small size. Every
such connected part represents a pattern occurring in the input tree. We then
apply DAG compression to the forest consisting of all those patterns in order to
share identical patterns using the same nonterminal. The final TSLP is then
produced by replacing the patterns in the shrinked version of the input tree by
the obtained nonterminals. A more detailed summary of both algorithms can be
found at the beginning of Chapter 4. While the TSLP produced by BU-Shrink
is not balanced, we present a combination of this algorithm and TreeBiSection
which yields a linear running time for constructing a TSLP of size O(n/ logσ n)
and depth O(log n). It is worth mentioning that one could achieve the same
result without using TreeBiSection by applying a balancing technique recently
introduced in [48] to the TSLP obtained by BU-Shrink.

As mentioned above, it is important to note that our size bound O(n/ logσ n)
only holds for trees in which the maximal number of children of a node is bounded
by a constant. In particular, it does not directly apply to unranked trees, which
are the standard tree model for XML documents. To overcome this limitation,
one can transform an unranked tree into its first-child-next-sibling encoding [76],
which is a ranked tree of the same size as the original tree. Then, the first-child-
next-sibling encoding can be transformed into a TSLP of the claimed size. A
second possibility is to use a recently introduced generalization of TSLPs for
unranked trees called forest straight-line programs (or FSLPs) [50]. It is shown
in [50] that FSLPs for unranked trees and TSLPs for the first-child-next-sibling
encoding of unranked trees are equally succinct up to constant multiplicative
factors and that one can change between both representations in linear time.
This directly yields an FSLP of size O(n/ logσ n) for unranked trees of size n
with σ many node labels based on the grammar-based compressors described

7

above. FSLPs are strongly related to another well studied compression technique
called top dags [14, 15, 39, 58]. It is again shown in [50] that a top dag can be
transformed in linear time into an equivalent FSLP with a constant multiplicative
blow-up.

We present two applications of the worst-case size results mentioned above:
A first application concerns arithmetical circuits. We refine a result of Brent [21],
which states that an arithmetical formula of size n over a commutative (semi)ring
can be transformed into an equivalent circuit of size O(n) and depth O(log n).
By applying our constructions, we transform a formula (which is a tree) into an
equivalent circuit of size O((n · logm)/ log n) and depth O(log n), where m is
the number of different variables in the formula.

As a second application, we use grammar-based tree compression for universal
coding. Universal source coding for strings over a finite alphabet Σ is a well-
established topic of information theory. Its goal is to find prefix-free lossless
codes that are universal (or optimal) for classes of information sources. In a
series of papers, Cosman, Kieffer, Nelson, and Yang developed grammar-based
codes that are universal for the class of finite state sources [72, 73, 74, 109];
the code presented in [72] is presented in Chapter 3. Over the last few years,
we have seen increasing efforts aiming to extend universal source coding to
structured data like trees [75, 86, 111] and graphs [30, 70]. In [111], Kieffer,
Yang, and Zhang started to extend their work on grammar-based source coding
from strings to unlabeled binary trees using DAG compression. The authors
obtain an average-case universal code for certain tree sources. In this work, we
extend the binary encodings presented in [72] (for SLPs) and [111] (for DAGs)
in order to present a new encoding for unlabeled binary trees based on TSLPs.
Based on the fact that the grammar-based tree compressors described above
produce TSLPs of size O(n/ log n) for unlabeled binary trees of size n, we prove
that our code is worst-case universal for certain tree sources.

A more detailed summary of those applications can again be found at the
beginning of Chapter 4.

8

Chapter 2

Preliminaries

2.1 Numbers and functions

Numbers. By N we denote the natural numbers (including 0) and for i, j ∈ N,
let [i, j] = {i, i + 1, . . . , j} for i ≤ j and [i, j] = ∅ otherwise. By R we denote
the real numbers and we use R≥0 for the positive real numbers including 0
and R>0 = R≥0 \ {0}. Further, we use R[0,1] = {x ∈ R | 0 ≤ x ≤ 1} which
occurs especially when probabilities are used. The set of integers is denoted by
Z and we use Zn = {0, 1, . . . , n − 1}. For m,n ∈ N, we denote by m div n the
integer division of m and n. We denote by m mod n the modulo of m and n,
i.e., m mod n ∈ [0, n− 1] and

m = (m div n) · n+ (m mod n).

If m/n or m
n is used, then this refers to the standard division over R. Note that

m div n = bm/nc and (m div n) + (m mod n) ≥ m/n.

O-Notation and functions. We use the O-notation in the usual sense. For-
mally, for a function f : N→ R≥0 we use the following notation:

• O(f) = {g : N→ R≥0 | ∃c > 0 ∃n0 ∈ N ∀n ≥ n0 : g(n) ≤ c · f(n)}

• o(f) = {g : N→ R≥0 | ∀c > 0 ∃n0 ∈ N ∀n ≥ n0 : g(n) ≤ c · f(n)}

• Ω(f) = {g : N→ R≥0 | ∃c > 0 ∃n0 ∈ N ∀n ≥ n0 : g(n) ≥ c · f(n)}

• Θ(f) = O(f) ∩ Ω(f)

As usual, we write g(n) ≥ Ω(f(n)), g(n) = Θ(f(n)) and g(n) ≤ O(f(n)) instead
of g(n) ∈ Ω(f(n)), g(n) ∈ Θ(f(n)) and g(n) ∈ O(f(n)) to emphasize the relation
of f and g. For lower bounds we often use phrases like

“For infinitely many n, we have g(n) ≥ Ω(f(n)).”

9

which formally means that there exists c > 0 such that g(n) ≥ c · f(n) holds for
infinitely many different n ∈ N. In particular, for each n′ ∈ N there exists n ∈ N
such that n > n′ and g(n) ≥ c · f(n).

If we use the logarithm log without a base, then this refers to log2. Note
that logb(x) = Θ(logb′(x)) for fixed constants b and b′ due to the well known
identity logb(x) = logb′(x)/ logb′(b).

Binary numbers. Occasionally, we use numeral systems with other bases
than the decimal numeral system. A base b numeral system represents n ∈ N
such that

n =

blogb nc∑
i=0

cn,i · bi,

where cn,i ∈ [0, b− 1] for i ∈ [0, blogb nc]. If base b = 2 is used, then we denote
by bn,i ∈ {0, 1} the binary coefficient of 2i, i.e.,

n =

blognc∑
i=0

bn,i · 2i. (2.1)

If n is clear from the context, then we just write bi instead of bn,i. The binary
representation of n is the concatenation of the binary coefficients beginning with
the most significant bit bblognc and ending with the least significant bit b0. For
example the binary representation of 6 is 110. We denote by

ν(n) =

blognc∑
i=0

bn,i (2.2)

the number of 1’s in the binary representation of n, for example we have ν(6) = 2.
Note that ν(n) ≤ log n+ 1.

2.2 Words, alphabets and languages

Words and alphabets. Let w = a1 · · · an (a1, . . . , an ∈ Σ) be a word or
string over an alphabet Σ. The length |w| of w is n and we denote by ε the word
of length 0. For i, j ∈ [1, n], we use w[i : j] = ai · · · aj if i ≤ j and w[i : j] = ε
otherwise. Further, we simply use w[i] = w[i : i] = ai for i ∈ [1, n]. As usual,
Σ∗ denotes the set of all words over Σ and we use Σ+ = Σ∗ \ {ε} for the set of
all nonempty words. Further, for n ∈ N we denote by Σn = {w ∈ Σ∗ | |w| = n}
the set of all words of length n. For u, v ∈ Σ∗, we write u · v or simply uv to
represent the concatenation of u and v. For w ∈ Σ+, we call v ∈ Σ+ a factor
of w if there exist x, y ∈ Σ∗ such that w = xvy. If x = ε (respectively y = ε)
then we call v a prefix (respectively suffix) of w. If v is a factor of w, we also
write that v occurs in w. A factorization of w is a decomposition w = f1 · · · f`
into factors f1, . . . , f` for ` ≥ 1. For n ∈ N and w ∈ Σ∗, we use wn = w · · ·w for
the word where w is repeated n times. For words w1, . . . , wn ∈ Σ∗, we further
denote by

∏n
i=j wi the word wjwj+1 · · ·wn if j ≤ n and ε otherwise.

10

Regular expressions. A language L ⊆ Σ∗ is a set of words. We use regular
expressions over ∗, + and concatenation to describe languages in the usual sense.
Formally, we use the following inductive definition:

• The empty set ∅ and the empty word ε are regular expressions and we
have L(∅) = ∅ and L(ε) = {ε}.

• Every a ∈ Σ is a regular expression and we have L(a) = {a}.

• If α and β are regular expressions, then αβ is a regular expression and we
have L(αβ) = L(α)L(β) = {uv | u ∈ L(α), v ∈ L(β)}.

• If α is a regular expression, then α∗ is a regular expression and we have
L(α∗) = {w1 · · ·wn | n ≥ 0, wi ∈ L(α) for all i ∈ [1, n]}.

• If α is a regular expression, then α+ is a regular expression and we have
L(α+) = {w1 · · ·wn | n ≥ 1, wi ∈ L(α) for all i ∈ [1, n]}.

When we use a regular expression α in the following, we do not distinguish
between α and L(α) due to better readability. For example, we simply use
w ∈ 0∗ instead of w ∈ L(0∗) to describe w = 0n for some n ≥ 0.

Context-free languages. A second formalism which we use to describe cer-
tain languages are context-free grammars. A context-free grammar G is a tuple
G = (N,Σ, P, S), where N is a finite set of nonterminals with N ∩Σ = ∅, S ∈ N
is the start nonterminal, and P is a finite set of productions (or rules) of the
form A → w for A ∈ N , w ∈ (N ∪ Σ)∗. A word u ∈ (N ∪ Σ)∗ can be derived
from a word v ∈ (N ∪ Σ)∗, if and only if there exists a rule (A→ w) ∈ P and
v = xAy and u = xwy for A ∈ N and x, y ∈ (N ∪Σ)∗. We write u⇒G v in this
case or just u⇒ v if G is clear from the context. The language L(G) produced
by a context-free grammar G is defined as L(G) = {w ∈ Σ∗ | S ⇒∗G w}, where
⇒∗G is the reflexive, transitive closure of ⇒G, i.e., u⇒∗G v if and only if u = v or
there exists n ≥ 0 and u1, . . . , un such that u⇒G u1 ⇒G · · · ⇒G un ⇒G v.

Context-free grammars which produce a language L such that |L| = 1 play a
central role in Chapter 3 (see Section 3.1 for further information).

2.3 Graphs and trees

Graphs. A (directed) graph G = (V,E) consists of a finite set V of nodes and
a finite set E ⊆ V × V of edges. For an edge e = (u, v) ∈ E, we say that e
starts in u and ends in v. The in-degree of v is the number of edges that end
in v and the out-degree of v is the number of edges that start in v. There is a
(directed) path of length n from u ∈ V to v ∈ V if and only if there are nodes
u = v0, v1, . . . , vn = v such that (vi, vi+1) ∈ E for i ∈ [0, n − 1]. Note that for
each node v ∈ V there is a path of length 0 from v to v. The digraph G is acyclic
if and only if for all v ∈ V there is no path of length n ≥ 1 from v to v.

11

Trees. A graph G = (V,E) is a rooted tree with root node r ∈ V if and only if
(i) for each v ∈ V there is a path from r to v and (ii) the in-degree of r is zero
and the in-degree of each node v ∈ (V \ {r}) is exactly one. Let G = (V,E) be
a rooted tree with root r ∈ V . A node v is a child of u if and only if (u, v) ∈ E.
In this case, we also refer to u as the parent node of v. A node u is an ancestor
of v if and only if there is path of length n ≥ 1 from u to v. A node v is called a
leaf if it has out-degree zero. The depth or level of a node v ∈ V is the length of
the path from r to v. The depth or height of a tree is the maximal depth of a
node v ∈ V . We use the depth-first left-to-right order of nodes in V , where we
assume an order of the children of each node: A node u ∈ V comes before v ∈ V
with respect to the depth-first order if u is an ancestor of v or if there exists a
node w ∈ V and i < j such that the i-th child of w is an ancestor of u and the
j-th child of w is an ancestor of v.

In this work, we mainly deal with labeled trees, i.e., each node is labeled by
some information. Trees occur in this work in two contexts: At multiple points
throughout this work, we model a certain problem or information using a tree
as it is widely spread in computer science and mathematics. In this context, we
often put less emphasis on the formal definition of the tree and focus on the
intuition behind it. The second context is strongly related to a main part of this
work which is presented in Chapter 4, where we abstract away from the concrete
purpose of a tree and consider it as a data structure which we want to compress.
In this context, we consider so-called ranked trees which we define as terms over
a ranked alphabet. We defer the formal definitions to Section 4.1 for the sake of
better readability of this chapter.

2.4 Distributions and empirical entropy

A discrete probability distribution p : A→ R[0,1] on a countably (not necessarily

finite) set A satisfies
∑
a∈A p(a) = 1. If A is finite and p(a) = 1

|A| for all a ∈ A,

then we call p the uniform distribution on A.

Let a = (a1, a2, . . . , an) be a tuple of elements with ai ∈ A for i ∈ [1, n]. The
empirical distribution pa : {a1, a2, . . . , an} → R[0,1] of a is defined by

pa(a) =
|{i | 1 ≤ i ≤ n, ai = a}|

n
.

Note that the empirical distribution is a probability distribution on A. We
use this definition also for words over some alphabet by identifying a word
w = a1a2 · · · an with the tuple (a1, a2, . . . , an). The unnormalized empirical
entropy of a is

H(a) = −
n∑
i=1

log pa(ai).

A well known generalization of Shannon’s inequality states that for all real

12

numbers p1, . . . , pk, q1, . . . , qk > 0, if
∑k
i=1 pi = 1 ≥

∑k
i=1 qi then

k∑
i=1

−pi log(pi) ≤
k∑
i=1

−pi log(qi);

see [1] for a proof. As a consequence, for a tuple a = (a1, a2, . . . , an) with
a1, . . . , an ∈ A and real numbers q(a) > 0 (a ∈ A) with

∑n
i=1 q(ai) ≤ 1 we have

n∑
i=1

− log(pa(ai)) ≤
n∑
i=1

− log(q(ai)). (2.3)

2.5 Computational models

We will consider time and space bounds for computational problems. For time
bounds, we will use the standard RAM model. We make the assumption that for
an input of size n, arithmetical operations on numbers with O(log n) bits can be
carried out in time O(1). We assume that the reader has some familiarity with
logspace computations, see e.g. [9, Chapter 4.1] for more details. A function
can be computed in logspace, if it can be computed on a Turing machine with
three tapes: a read-only input tape, a write-only output tape, and a read-write
working tape of length O(log n), where n is the length of the input. It is an
important fact that if functions f and g can be computed in logspace, then the
composition of f and g can be computed in logspace as well. We will use this
fact implicitly.

13

14

Chapter 3

Grammar-based string
compression

In this chapter we start our investigation of grammar-based compression, where a
word w is represented by a context-free grammar that produces exactly {w}. Such
a grammar is called a straight-line program (SLP) for w and an algorithm which
computes an SLP for a given input word is called a grammar-based compressor.
The problem of computing a smallest SLP for a given word is known as the
smallest grammar problem. Storer and Szymanski [108] and Charikar et al. [29]
proved that the smallest grammar problem cannot be solved in polynomial time
unless P = NP. Even worse, unless P = NP one cannot compute in polynomial
time for a given word w an SLP of size smaller than (8569/8568) · g(w) [29],
where g(w) is the size of a smallest SLP for w. The construction in [29] uses an
alphabet of unbounded size, and it was unknown whether this lower bound holds
also for words over a fixed alphabet. In [29] it is remarked that the construction
in [108] shows that the smallest grammar problem for words over a ternary
alphabet cannot be solved in polynomial time unless P = NP. But this is not
clear at all as Casel et al. explain in [28]. In the same paper [28], the authors
prove that the smallest grammar problem for an alphabet of size 24 cannot be
solved in polynomial time unless P = NP using a rather complex extension of
the constructions in [29, 108].

In Section 3.2.1, we follow an approach from [10] which might yield a similar
hardness result for binary alphabets in the future. We show that if there is a
polynomial time grammar-based compressor with constant approximation ratio
c on binary words, then there is a polynomial time grammar-based compressor
with approximation ratio 6c on arbitrary words. The approximation ratio αC(n)
of a grammar-based compressor C is defined as the worst-case quotient of the
size of the SLP produced by C and the size of a smallest SLP over all words of
length n. By the results above, lowering the constant 6 in our construction to a
value smaller than 8569/8568 would imply that the smallest grammar problem
over binary alphabets cannot be solved in polynomial time unless P = NP.

15

The biggest part of this chapter deals with the approximation ratios of
the grammar-based compressors BiSection (Section 3.3), LZ78 (Section 3.4),
RePair (Section 3.6), Greedy (Section 3.7) and LongestMatch (Section 3.8). We
distinguish for every algorithm between the approximation ratio restricted to
unary inputs, and the general approximation ratio where inputs over arbitrary
alphabets are allowed. Grammar-based compression on unary words is strongly
related to the field of addition chains, which has been studied for decades
(see [76, Chapter 4.6.3] for a survey) and still is an active topic due to the strong
connection to public key cryptosystems (see [93] for a review from that point
of view). An addition chain for an integer n of size m is a sequence of integers
1 = k1, k2, . . . , km = n such that for each d ∈ [2,m], there exists i, j (1 ≤ i, j < d)
such that ki + kj = kd. It is straightforward to compute from an addition chain
for an integer n of size m an SLP for an of size 2m − 2. Vice versa, an SLP
for an of size m yields an addition chain for n of size m. So when we study
grammar-based compressors restricted to unary inputs, this research could also
be interpreted as a study of those algorithms as addition chain solvers. More
detailed information on the relation between grammar-based compression and
addition chains can be found in Section 3.2.2.

For RePair and LongestMatch, it turns out that for all unary inputs the SLP
produced by RePair has the same size as the SLP produced by LongestMatch. In
fact, both algorithms are basically identical to the binary method that produces
an addition chain for n by creating powers of two using repeated squaring, and
then the integer n is represented as the sum of those powers of two that correspond
to a one in the binary representation of n. Based on that information, we show
that for any unary input w the produced SLPs of RePair and LongestMatch
have size at most log(3) · g(w), and we provide a matching lower bound. The
BiSection algorithm follows the same strategy as RePair and LongestMatch for
unary inputs, but the corresponding SLP has a slightly different form resulting
in an extra factor 4

3 , i.e., for every unary input w the size of the produced SLP
is at most 4

3 log(3) · g(w), and we provide again a matching lower bound. LZ78
is the only algorithm studied in this work which is not able to produce SLPs
of logarithmic size in the length of the input. For a unary word an, the LZ78
factors are a, a2, a3, . . . , am, a`, where ` ∈ [0,m] and `+

∑m
i=1 i = n. It follows

that LZ78 produces an SLP of size Θ(m) = Θ(
√
n) for any word of length n,

which yields the approximation ratio Θ(
√
n/ log n).

Unfortunately, when it comes to Greedy, it is hard to analyze the behavior of
this algorithm even for unary inputs due to the discrete optimization problem
in each round. The rather technical upper bound that we achieve on the size
of the SLP produced by Greedy on input an is O((log n)9(log log n)3), which
yields the approximation ratio O((log n)8(log log n)3) in this setting. On the
positive side, we use unary inputs to provide a new lower bound of 1.348...1 for
the approximation ratio of Greedy that improves the best known lower bound
for inputs over arbitrary alphabets. The key to achieve the new bound is the

1The table on page 2556 in [29] states the better lower bound of 1.37 . . ., but the authors
only show the lower bound 1.137 . . ., see [29, Theorem 11].

16

Algorithm
Approximation ratio (unary)

Lower bound Upper bound

BiSection (4/3) log(3)

LZ78 Θ(
√
n/ log n)

RePair log(3)

Greedy 1.34847194 . . . O((log n)8(log log n)3)

LongestMatch log(3)

Table 3.1: The bounds on the approximation ratio restricted to unary inputs of
the grammar-based compressors studied in this work.

sequence yk = y2
k−1 + 1 with y0 = 2, which has been studied in [4] (among other

sequences), where it is shown that yk = bγ2kc for γ = 2.258... . In order to prove
the lower bound, we show that the SLP produced by Greedy on input ayk has
size 3 · 2k − 1, while a smallest SLP for ayk has size 3 · log3(γ) · 2k + o(2k) (this
follows from a construction used to prove the lower bound for Greedy in [29]).
The results on the approximation ratios for unary inputs are shown in Table 3.1.

The best known lower and upper bounds in the general setting can be found
in Table 1.1, where inputs over arbitrary alphabets are considered. We present
improved lower bounds for LZ78, BiSection and RePair in this work (we also
improve the result for Greedy in the general setting, but this is already discussed
in the unary case). For LZ78 and BiSection those improvements yield matching
bounds on the approximation ratios. In particular, the approximation ratio of
LZ78 is Θ((n/ log n)2/3) and the approximation ratio of BiSection is Θ(

√
n/ log n).

For RePair we improve the lower bound from Ω(
√

log n) to Ω(log / log log n). It
is worth mentioning in this context that a grammar-based compressor with
an approximation ratio of o(log n/ log log n) would improve Yao’s method for
computing a smallest addition chain for a set of numbers [110], which is a long
standing open problem. So our new lower bound for RePair excludes it as a
candidate for improving Yao’s method. Moreover, we present in Section 3.6.3
a modified version of RePair such that it matches the approximation ratio of
O(log n/ log log n) for computing a smallest addition chain for a set of numbers
as it is presented in [110]. More details about the relation of grammar-based
compression and addition chains for a set of numbers can be found in Section 3.2.2.

Finally, we present two previously known results about grammar-based
compression: We prove in Section 3.3.3 that the worst-case size of SLPs produced
by BiSection is O(n/ logσ n) [74] for inputs of size n over an alphabet of size σ.
Later, we extend BiSection to tree compression and prove a similar result on
the worst-case size of the obtained tree compressor. In Section 3.9, we present
a second known result which applies grammar-based compression to universal
coding in the information-theoretical sense. In [72], the authors present a binary
encoding of words based on SLPs such that a universal code for so-called finite-
state information sources is obtained. Again, we show a similar result for tree

17

compression later in this work. It is worth mentioning in this context that
the recent paper [94] bounds the size of the encoding presented in [74] by the
(unnormalized) k-th order empirical entropy of the encoded string plus some
lower order terms in case the encoding is based on so-called irreducible SLPs
(this includes SLPs produced by the compressors studied in this work).

Results of this chapter are published in [59, 61].

3.1 Straight-line programs

A straight-line program A = (N,Σ, P, S), briefly SLP, is a context-free grammar
that produces a single word w ∈ Σ+. Syntactically, this is a achieved if

(i) for every A ∈ N , there exists exactly one production (A→ w) ∈ P , and

(ii) the relation {(A,B) ∈ N ×N | (A→ w) ∈ P, B occurs in w} is acyclic.

It is straightforward to show that if (i) and (ii) are satisfied, then for any
nonterminal A ∈ N there exists a unique w ∈ Σ+ such that A ⇒∗A w. We use
valA(A) = w to denote the unique w ∈ Σ+ with A ⇒∗A w. If A is clear from
the context, we omit the subscript and just write val(A). The string defined by
the SLP A is val(A) = valA(S), i.e., L(A) = {val(A)}. If val(A) = w, then we
also write that A is an SLP for w or A produces w. The size of the SLP A is
|A| =

∑
(A→w)∈P |w|. We denote by g(w) the size of a smallest SLP producing

the word w ∈ Σ+. The smallest grammar problem is the problem of computing
an SLP of size g(w) for a given input w.

Example 3.1. Consider the SLP A = ({S,X1, X2}, {a, b}, P, S) with rules
P = {S → X2X1bX1a, X1 → bbX2aX2, X2 → ab}. We have |A| = 12 and

• val(X2) = ab,

• val(X1) = bb · val(X2) · a · val(X2) = bb ab a ab,

• val(S) = val(X2) · val(X1) · b · val(X1) · a = ab bbabaab b bbabaab a.

It follows that val(A) = val(S) = abbbabaabbbbabaaba and |val(A)| = 18.

3.1.1 Basic results

In the following we present basic results about SLPs that we use several times
throughout this chapter. It is easy to see that g(w) ≤ |w| since for each word w
there is the trivial SLP for w that has a single rule S → w. The following theorem
gives a better bound on the worst-case size of an SLP for a word w ∈ Σ+.

Theorem 3.1.1 (E.g. [13, 34, 74]). For every word w ∈ Σ+ of length n, we
have

g(w) ≤ O

(
n

log|Σ| n

)
.

18

A proof of Theorem 3.1.1 is provided in Section 3.3.3, where we show that
the BiSection algorithm constructs an SLP of the claimed size (a proof of this
result in a more general framework is provided in [74]). In fact, any algorithm
studied in this chapter achieves this upper bound. For LZ78 (Section 3.4), this
result is well known (see e.g. [34, Lemma 12.10.1]). For any global algorithm
(Section 3.5), this upper bound follows from [72, Lemma 2] and [29, Lemma 7].
In [72, Lemma 2] it is shown that any so-called irreducible SLP for a word of
length n has size O(n/ log|Σ| n) and in [29, Lemma 7] it is shown that SLPs
produced by global algorithms are irreducible.

On the other hand, explicit examples of strings for which the smallest SLP has
size Ω(n/ log n) were constructed in [6, 13, 99]. The following lemma from [29]
provides a lower bound on the size of an SLP for a word of length n.

Lemma 3.1.2 ([29, Lemma 1]). For every word w ∈ Σ+ of length n, we have
g(w) ≥ 3 log3(n)− 3.

Proof. Let A = (N,Σ, P, S) be an SLP of size |A| = m. For a nonterminal A,
let MA = {X ∈ N | (A→ w) ∈ P and X occurs in w}. We define a sequence of
pairwise different nonterminals such that

(i) X1 = S,

(ii) if |MXi | > 0, then Xi+1 ∈ MXi such that |val(Xi+1)| is maximal, i.e.,
|val(Xi+1)| = max{|val(X)| | X ∈MXi}

(iii) if otherwise MXi = ∅, then the sequence ends with Xi.

If according to point (ii) more than one nonterminal produces a word of maximal
length, we choose an arbitrary nonterminal with this property. Let ` be the
length of this sequence. For i ∈ [1, `], we set ki = |wi| where (Xi → wi) ∈ P . We
have |val(Xi)| ≤ ki · |val(Xi+1)| due to the fact that Xi+1 evaluates to a longest
word among all symbols that occur on the right-hand side of the rule of Xi. It
follows that |val(X1)| ≤

∏`
i=1 ki by an inductive argument. On the other hand,∑`

i=1 ki ≤ m because ki is the number of symbols on the right-hand side of the
rule of Xi and the nonterminals in the sequence are pairwise different. It is well
known that a set of positive integers with sum at most m has product at most
3dm/3e. It follows that

n = |val(A)| = |val(X1)| ≤ 3d
m
3 e ≤ 3

m
3 +1.

This yields m = |A| ≥ 3 log3(n)− 3 for every SLP A which produces a word of
length n.

For unary words, i.e., words of the form an for some symbol a ∈ Σ, one can
always find an SLP that almost matches this lower bound as the following lemma
from [29] shows.

Lemma 3.1.3 ([29, Proof of Theorem 11]). For every unary word w ∈ Σ+ of
length n, we have g(w) ≤ 3 log3(n) + o(log n).

19

Proof. We construct an SLP A for an of size |A| ≤ 3 log3(n) + o(log n). Consider
the representation of n as a numeral in base b = 3j for some j ∈ N that we will
define later. Let t = blogb(n)c. We have

n =
t∑
i=0

ci · bi,

where ci ∈ [0, b− 1] for i ∈ [0, t]. First, we create rules T1 → a and Ti → Ti−1a
for i ∈ [2, b − 1], i.e., val(Ti) = ai for i ∈ [1, b − 1]. In the following, we create
nonterminals Uk for k ∈ [0, t] such that

|val(Ut)| = ct and |val(Ui)| = |val(Ui+1)| · b+ ci for i ∈ [0, t− 1].

Note that this yields |val(U0)| =
∑t
i=0 ci · bi = n by an inductive argument. We

start with Ut, where we only need to introduce the rule Ut → Tct . For Ui with
|val(Ui)| = |val(Ui+1)| · 3j + ci, we define rules

Zi,1 → Ui+1Ui+1Ui+1,

Zi,k → Zi,k−1Zi,k−1Zi,k−1 for k ∈ [2, j] and

Ui → ZjTci .

The start nonterminal of A is U0. Recall that b = 3j which yields

|A| = (3j + 2) · t+ 2 · 3j ≤ (3j + 2) · logb n+ 2 · 3j

= (3j + 2) · log3 n

j
+ 2 · 3j

= 3 log3 n+
2

j
log3 n+ 2 · 3j .

Setting j = b(1/2) log3 log3 nc yields

|A| ≤ 3 log3 n+ 2
√

log3 n+
4 log3 n

log3 log3 n
,

which finishes the proof.

The following lemma relates the size g(w) of a smallest SLP to the number
of distinct factors of a certain length occurring in the word w. It has been shown
in [29], where it is called mk Lemma.

Lemma 3.1.4 ([29, Lemma 3]). Let A be an SLP with val(A) = w ∈ Σ+ and
|A| = m. Then w contains at most m · k distinct factors of length k.

Proof. Let A = (N,Σ, P, S) with |A| = m and val(A) = w. For A ∈ N , we define
MA = {X ∈ N | (A → u) ∈ P and X occurs in u}. For a rule (A → u) ∈ P ,
we bound the number of factors of length k of val(A) which are not already a
factor of val(B) for some B ∈MA. Each such factor either begins with a symbol
a ∈ Σ that occurs in u or else begins with a suffix of val(B) for some B ∈MA of
length between 1 and k− 1. Hence there are at most |u| · k such length-k factors
in val(A). Summing over all rules in P yields m · k as an upper bound on the
factors of w of length k.

20

When we apply Lemma 3.1.4, we often use it in the following way: If a word w
has ` distinct factors of length k, then any SLP for w has size at least `/k. Before
we move on, we need one more lemma that summarizes some straightforward
results about SLPs.

Lemma 3.1.5.

(i) For an SLP A and a natural number n > 0, there exists an SLP B of size
|A|+O(log n) such that val(B) = val(A)n.

(ii) For SLPs A1 and A2 there exists an SLP B of size |A1|+ |A2| such that
val(B) = val(A1)val(A2).

(iii) For given words w1, . . . , wn ∈ Σ∗, u ∈ Σ+ and SLPs A1,A2 such that
val(A1) = u and val(A2) = w1xw2x · · ·wn−1xwn for a symbol x 6∈ Σ, there
exists an SLP B with val(B) = w1uw2u · · ·wn−1uwn and |B| = |A1|+ |A2|.

Proof. We start with point (i). We extend the SLP A to an SLP B such that
val(B) = val(A)n. Let A0 be the start nonterminal of A and m = blog nc. Using
fresh nonterminals A1, . . . , Am, we introduce rules Ai → Ai−1Ai−1 for i ∈ [1,m].

It follows that val(Ai) = val(A)2i . We now construct val(A)n using the binary
representation of n =

∑m
i=0 bi · 2i, where bi ∈ {0, 1} for i ∈ [0,m]. The fresh

start rule of the SLP B concatenates Ai’s where bi = 1, i.e., S → Ab00 A
bi
1 · · ·Abmm .

We have val(S) = val(A)n and |B| ≤ |A|+ 3 log n.
The SLP B in point (ii) is achieved by adding a rule S → A1A2 to the rules

in A1 and A2, where Ai is the start nonterminal of Ai (i ∈ [1, 2]). Note that we
assume that the sets of nonterminals of A1 and A2 are disjoint.

The proof of point (iii) is also straightforward: Simply replace in the SLP
A2 every occurrence of the symbol x by the start nonterminal of A1 and add all
rules in A1 to A2, where we assume again that the nonterminals of A1 and A2

are disjoint.

As a first minor result, we show that there are words of length 2k2 + 2k + 1
over an alphabet of size k for which the size of a smallest SLP equals the word
length. Additionally, we show that all longer words have strictly smaller SLPs.

Proposition 3.1.6. Let Σk be an alphabet of size k and let nk = 2k2 + 2k + 1.
Then for all k > 0, there exists wk ∈ Σ∗k of length nk such that g(wk) = |wk| = nk.
Further, for each word w ∈ Σ∗k of length |w| > nk, we have g(w) < |w|.

Proof. Let Σk = {a1, . . . , ak} and let Mn,` ⊆ Σ∗k be the set of all words w ∈ Σ∗k
where a factor v of length ` occurs at least n times without overlap. It is easy
to see that g(w) < |w| if and only if w ∈M3,2 ∪M2,3. Hence, we have to show
that every word w /∈M3,2 ∪M2,3 has length at most 2k2 + 2k+ 1. Moreover, we
present words wk ∈ Σ∗k of length 2k2 + 2k + 1 such that wk /∈M3,2 ∪M2,3.

Assume that w /∈ M3,2 ∪ M2,3 and consider a factor aiaj of length two,
where i, j ∈ [1, k]. If i 6= j then this factor can not overlap itself, and thus
aiaj occurs at most twice in w. Now consider aiai. Then w contains at most

21

four (possibly overlapping) occurrence of aiai, because (i) a5
i /∈M3,2 ∪M2,3 has

four (overlapping) occurrences of aiai and (ii) five occurrences of aiai would
yield at least three non-overlapping occurrences of aiai. It follows that w has at
most 2(k2 − k) + 4k positions where a factor of length 2 starts, which implies
|w| ≤ 2k2 + 2k + 1.

Now we create a word wk /∈M3,2 ∪M2,3 which realizes the maximal occur-
rences of factors of length 2 as stated above:

wk =

(
k∏
i=1

a5
k−i+1

)
k−1∏
i=1

 k∏
j=i+2

(ajai)
2

 ai+1aiai+1

For example we have w3 = a5
3a

5
2a

5
1(a3a1)2a2a1a2a3a2a3. It is straightforward to

verify |wk| = 2k2 + 2k + 1 and wk /∈M3,2 ∪M2,3.

3.2 Approximation ratio

A grammar-based compressor C computes for a word w an SLP C(w) such that
val(C(w)) = w. The approximation ratio αC(w) of C for an input w is defined as
|C(w)|/g(w). The worst-case approximation ratio αC(k, n) of C is the maximal
approximation ratio over all words of length n over an alphabet of size k:

αC(k, n) = max{αC(w) | w ∈ [1, k]n} = max

{
|C(w)|
g(w)

| w ∈ [1, k]n
}

If there is no restriction on the alphabet size, i.e., we allow alphabets of size |w|,
then we write αC(n) instead of αC(n, n). Note that this is the definition of the
worst-case approximation ratio in [29]. We study the approximation ratios of the
grammar-based compressors BiSection [74], LZ78 [113], RePair [77], Greedy [7, 8]
and LongestMatch[72] in this work. We will abbreviate the approximation ratio of
BiSection by αBS and the approximation ratio of LongestMatch by αLM. For each
algorithm, we distinguish between the approximation ratio αC(1, n) restricted to
unary inputs and the general approximation ratio αC(k, n) for k ≥ 1.

Before we start to analyze those algorithms, we discuss two aspects of the
general difficulty of approximating a smallest grammar. First, we relate grammar-
based compression over binary alphabets to grammar-based compression over
unbounded alphabets. Afterwards, we describe the relations between grammar-
based compression and the well-studied field of addition chains. The latter one
is of special interest when unary inputs are considered.

3.2.1 Hardness for binary alphabets

In this section, we discuss the hardness of the smallest grammar problem for
words over a binary alphabet. Recall that it is not possible to compute an SLP
of size (8569/8568) · g(w) for a given input word w over an alphabet of size at
least 24 unless P = NP [28]. It is far from clear whether this approach can be

22

adapted such that it works also for a binary alphabet. Another idea in order
to obtain the hardness result for an alphabet of size 2 is to reduce the smallest
grammar problem for arbitrary alphabets to the smallest grammar problem
for a binary alphabet. This route was investigated in [10], where the following
result was shown: If there is a polynomial time grammar-based compressor with
approximation ratio c (a constant) on binary words, then there is a polynomial
time grammar-based compressor with approximation ratio 24c + ε for every
ε > 0 on arbitrary words. The construction in [10] uses a quite technical block
encoding of arbitrary alphabets into a binary alphabet. Here, we present a very
simple construction, which encodes the i-th alphabet symbol by aib and yields
the same result as [10] but with 24c+ ε replaced by 6c. Formally, the goal of
this section is to prove the following result:

Theorem 3.2.1. Let c ≥ 1 be a constant. If there exists a polynomial time
grammar-based compressor C with αC(2, n) ≤ c then there exists a polynomial
time grammar-based compressor D with αD(n) ≤ 6c.

We split the proof of Theorem 3.2.1 into two lemmas that state translations
between SLPs over arbitrary alphabets and SLPs over a binary alphabet. For
the rest of this section fix the alphabets Σ = {c0, . . . , ck−1} and Σ2 = {a, b}. To
translate between these two alphabets, we define an injective homomorphism
ϕ : Σ∗ → Σ∗2 by

ϕ(ci) = aib (i ∈ [0, k − 1]). (3.1)

Lemma 3.2.2. Let w ∈ Σ∗ be such that every symbol from Σ occurs in w. From
an SLP A for w one can construct in polynomial time an SLP B for ϕ(w) of
size at most 3 · |A|.

Proof. To translate A into an SLP B for ϕ(w), we first add the productions
A0 → b and Ai → aAi−1 for every i ∈ [1, k − 1]. Finally, we replace in A
every occurrence of ci ∈ Σ by Ai. This yields an SLP B for ϕ(w) of size
|A| + 2k − 1. Because k ≤ |A| (since every symbol from Σ occurs in w), we
obtain |B| ≤ 3 · |A|.

Lemma 3.2.3. Let w ∈ Σ∗ such that every symbol from Σ occurs in w. From
an SLP B for ϕ(w) one can construct in polynomial time an SLP A for w of
size at most 2 · |B|.

Proof. Let B = (N,Σ2, P, S) be an SLP for ϕ(w), where w ∈ Σ∗. We can assume
that every right-hand side of B is a non-empty string. Consider a nonterminal
A ∈ N of B. Since B produces ϕ(w), A produces a factor of ϕ(w), which is a word
from {a, b}∗. We cannot directly translate val(A) back to a word over Σ∗ because
val(A) does not have to belong to the image of ϕ. But val(A) is a factor of a string
from ϕ(Σ∗). Note that a string over {a, b} is a factor of a string from ϕ(Σ∗) if and
only if it does not contain a factor ai with i ≥ k. Let val(A) = ai1b · · · ainbain+1

be such a string, where n ≥ 0, and 0 ≤ i1, . . . , in+1 < k. We factorize val(A) into
three parts in the following way. If n = 0 (i.e., val(A) = ai1) then we split val(A)
into ε, ε, and ai1 . If n > 0 then we split val(A) into ai1b, ai2b · · · ainb, and ain+1 .

23

Let us explain the intuition behind this factorization. We concentrate on the
case n > 0; the case n = 0 is simpler. Note that irrespective of the context in
which an occurrence of val(A) appears in val(B), we can translate the middle
part ai2b · · · ainb into ci2 · · · cin . We will therefore introduce in the SLP A for w
a variable A′ that produces ci2 · · · cin . For the left part ai1b we can not directly
produce ci1 because an occurrence of val(A) could be preceded by an a-block
ai0 , yielding the symbol ci0+i1 . Therefore, the algorithm that produces A will
only memorize the symbol ci1 without writing it directly on a right-hand side of
an A-production. Similarly, the algorithm will memorize the length in+1 of the
final a-block of val(A).

Let us now come to the formal details of the proof. As usual, we write Zk
for {0, 1, . . . , k − 1} and w.l.o.g. we assume that Σ ∩ Zk = ∅. Consider a word
s = ai1b · · · ainbain+1 , where n ≥ 0, and 0 ≤ i1, . . . , in+1 < k. Motivated by the
above discussion, we define `(s) ∈ Σ ∪ {ε}, m(s) ∈ Σ∗ and r(s) ∈ Zk as follows:

`(s) =

{
ci1 if n ≥ 1,

ε if n = 0,

m(s) = ci2 · · · cin ,
r(s) = in+1.

Note that `(s) = ε implies m(s) = ε. Finally, we define the word ψ(s) ∈ Σ∗Zk as

ψ(s) = `(s)m(s)r(s).

For a nonterminal A ∈ N we define `(A) = `(val(A)), m(A) = m(val(A)) and
r(A) = r(val(A)). We now define an SLP A′ that contains for every nonterminal
A ∈ N a nonterminal A′ such that val(A′) = m(A). Moreover, the algorithm
also computes `(A) ∈ Σ ∪ {ε} and r(A) ∈ Zk.

We define the productions of A′ inductively over the structure of B. Consider
a production (A → α) ∈ P , where α = v0A1v1A2 · · · vn−1Anvn 6= ε with
n ≥ 0, A1, . . . , An ∈ N , and v0, v1, . . . , vn ∈ Σ∗2. Let `i = `(Ai) ∈ Σ ∪ {ε} and
ri = r(Ai) ∈ Zk, which have already been computed. The right-hand side for A′

is obtained as follows. We start with the word

ψ(v0) `1A
′
1 r1 ψ(v1) `2A

′
2 r2 · · ·ψ(vn−1) `nA

′
n rn ψ(vn). (3.2)

Note that each of the factors `iA
′
iri produces (by induction) ψ(val(Ai)). Next we

remove every A′i that derives the empty word (which is equivalent to m(Ai) = ε).
After this step, every occurrence of a symbol i ∈ Zk in (3.2) is either the last
symbol of the above word or it is followed by a symbol from Zk ∪ Σ (but not
followed by a nonterminal A′j). To see this, recall that `j = ε implies m(Aj) = ε,
in which case A′j is removed in (3.2).

The above fact allows us to eliminate all occurrences of symbols i ∈ Zk
in (3.2) except for the last one using the two reduction rules i j → i + j for
i, j ∈ Zk (which corresponds to aiaj = ai+j) and i cj → ci+j (which corresponds
to aiajb = ai+jb). If we perform these rules as long as possible (the order of

24

applications is not relevant since these rules form a confluent and terminating
system), only a single occurrence of a symbol i ∈ Zk at the end of the string will
remain. The resulting string α′ produces ψ(A). Hence, we obtain the right-hand
side for the nonterminal A′ by removing the first symbol of α′ if it is from Σ
(this symbol is then `(A)) and the last symbol of α′, which must be from Zk
(this symbol is r(A)). Note that if α′ does not start with a symbol from Σ, then
α′ belongs to Zk, in which case we have `(A) = ε.

Note that ψ(ϕ(w)) = w0 for every w ∈ Σ∗, so for the start variable S of B
we must have r(S) = 0, since valB(S) ∈ ϕ(Σ∗). Let S′ → σ be the production
for S′ in A′. We obtain the SLP A by replacing this production by S′ → `(S)σ.
Since valA′(S

′) = m(S) and valB(S) = ϕ(w) we have valA(S′) = `(S)m(S) = w.
To bound the size of A consider the word in (3.2) from which the right-hand

side of the nonterminal A′ is computed. All occurrences of symbols from Zk are
eliminated when forming this right-hand side. This leaves a word of length at
most |α|+ n (where α is the original right-hand side of the nonterminal A). The
additive term n comes from the symbols `1, . . . , `n. Hence, |A′| is bounded by
the size of B plus the total number of occurrences of nonterminals in right-hand
sides of B, which is at most 2|B| − 1 (there is at least one terminal occurrence in
a right-hand side). Since |A| = |A′|+ 1 we get |A| ≤ 2|B|.

The algorithm’s runtime for a production A → α is linear in |α|. This is
because we start with the string (3.2) which can be computed in time Ø(|α|).
From this string, we remove all the A′i that produce ε and we also apply the
two rewriting rules. Both of these can be done in a single left-to-right sweep
over the string. The number of operations needed is linear in |α|, where each
operation needs constant time, i.e. removing an A′i takes constant time, and
using one of the rewriting rules also takes constant time. Since the algorithm
uses the structure of B to visit each of its productions once, we overall obtain a
linear running time in the size of B.

Example 3.2. Consider the production A→ a3ba5A1a
3A2a

2b2A3a
2 and assume

that val(A1) = a2, val(A2) = aba3ba and val(A3) = ba2ba3. Hence, when
we produce the right-hand side for A′ we have: val(A′1) = ε, val(A′2) = c3,
val(A′3) = c2, `1 = ε, r1 = 2, `2 = c1, r2 = 1, `3 = c0, r3 = 3. We start with the
word (every digit is a single symbol)

c3 5A′1 2 3 c1A
′
2 1 c2c0 0 c0A

′
3 3 2.

Then we replace A′1 by ε and obtain c3 5 2 3 c1A
′
2 1 c2c0 0 c0A

′
3 3 2. Applying the

reduction rules finally yields c3c11A
′
2c3c0c0A

′
35. Hence, we have `(A) = c3,

r(A) = 5 and the production for A′ is A′ → c11A
′
2c3c0c0A

′
3.

Proof of Theorem 3.2.1. Let C be an arbitrary grammar-based compressor work-
ing in polynomial time such that αC(2, n) ≤ c. The grammar-based compres-
sor D works for an input word w over an arbitrary alphabet as follows: Let
Σ = {c0, . . . , ck−1} be the set of symbols that occur in w and let ϕ be de-
fined as in (3.1). Using C, one first computes an SLP B for ϕ(w) such that
|B| ≤ c · g(ϕ(w)). Then, using Lemma 3.2.3, one computes from B an SLP A

25

for w such that |A| ≤ 2c · g(ϕ(w)). Lemma 3.2.2 implies g(ϕ(w)) ≤ 3 · g(w) and
hence |A| ≤ 6c · g(w), which proves the theorem.

3.2.2 Addition chains

When inputs are restricted to be unary, then grammar-based compression is
strongly related to the field of addition chains as we will describe in the following.
An addition chain of size m for an integer n is a sequence of integers k1, k2, . . . , km
such that k1 = 1, km = n and for all d ∈ [2,m] we have kd = ki + kj for some
i, j ∈ [1, d− 1]. The addition chain problem is to compute a smallest addition
chain for a given integer n.

Example 3.3. An addition chain for n = 22 is 1, 2, 4, 8, 10, 11, 22, because
1 + 1 = 2, 2 + 2 = 4, 4 + 4 = 8, 2 + 8 = 10, 1 + 10 = 11, and 11 + 11 = 22.

Let Σ = {a} be unary alphabet, then an addition chain for n translates into
an SLP for an and vice versa as the following propositions show.

Proposition 3.2.4. If there is an addition chain for n of size m, then there is
an SLP A for an of size at most 2m− 2.

Proof. Let 1 = k1, k2, . . . , km = n be an addition chain for n. We introduce a
nonterminal Ad for each kd with d ∈ [2,m]. Let h(1) = a and h(d) = Ad for
d ∈ [2,m]. We add for each d ∈ [2,m] a rule Ad → h(i)h(j) where we choose
i, j ∈ [1, d− 1] such that kd = ki + kj . The start nonterminal is Am. It follows
that this SLP produces an since k1, k2, . . . , km is an addition chain for n.

Proposition 3.2.5. If there is an SLP A for an of size m, then there is an
addition chain for n of size at most m.

Proof. Let A = (N, {a}, P, S) be an SLP such that val(A) = an. We construct
an addition chain 1 = k1, . . . , k` = n such that ` ≤ |A|. The first integer k1 = 1 is
always part of an addition chain. The remaining integers are created such that for
each rule (X → w) ∈ P , we add at most |w|−1 integers. Let X1 < · · · < Xm = S
be an order of the nonterminals in N such that the nonterminals Xi+1, . . . , Xm

do not occur on the right-hand side of the rule Xi → w for all i ∈ [1,m − 1].
Note that such an order exists since A is acyclic. We process the rules in this
order, i.e., we start with the unique rule for X1. We define kX ∈ N for each
X ∈ N ∪ {a} such that ka = 1 and kX = |val(X)| for X ∈ N . Now consider
a rule X → w1 . . . wt, where wi ∈ N ∪ {a} for i ∈ [1, t]. If t = 1, we have
kX = kw1 and we do nothing (kw1 is added to the addition chain in a previous
step). If otherwise t ≥ 2, we add integers kX,2, . . . , kX,t = kX to the addition
chain, where kX,2 = kw1

+ kw2
and kX,i = kX,i−1 + kwi for i ∈ [3, t]. This means

kX is created by adding integers that correspond to symbols on the right-hand
side and we do it symbol by symbol, see also Example 3.4. Note that in the
base case (which occurs at least for X1), we have a rule X → ad and thus the
integers 2, . . . , d = kX are added to the addition chain. At the end, we created
an addition chain for kS = n inductively using |w| − 1 integers for each rule
(X → w) ∈ P plus the integer ka = k1 = 1. This proves the proposition.

26

Example 3.4. Consider the SLP A = ({S,X1, X2}, {a}, P, S) such that P
contains the rules X1 → aaa, X2 → X1aX1a and S → X2X1. We have
val(A) = a11. We transform A into an addition chain for 11 based on the proof
of Proposition 3.2.5. Initially the addition chain only contains the integer ka = 1.

• We start with the rule X1 → aaa: We add kX1,2 = ka + ka = 2 and
kX1 = kX1,3 = kX1,2 + ka = 3.

• We proceed with X2 → X1aX1a: We add kX2,2 = kX1 + ka = 4, kX2,3 =
kX2,2 + kX1

= 7 and kX2
= kX2,4 = kX2,3 + ka = 8.

• Finally, we process S → X2X1: We add kS = kS,2 = kX1
+ kX2

= 11.

The final addition chain is 1, 2, 3, 4, 7, 8, 11.

As a consequence of those propositions, we can adapt the approximation
ratio αC(1, n) of a grammar-based compressor C on unary inputs to the problem
of approximating a smallest addition chain for n using the constants described
in the propositions above.

In the remaining section we describe a second connection between grammar-
based compression and addition chains. Addition chains have been general-
ized to a set of integers n1, n2, . . . , np as follows: An addition chain of size
m for n1, n2, . . . , np is a sequence of integers k1, k2, . . . , km such that k1 = 1,
{n1, n2, . . . , np} ⊆ {k1, k2, . . . , km} and for all d ∈ [2, k] we have kd = ki + kj
for some i, j ∈ [1, d − 1]. The general addition chain problem is to compute a
smallest addition chain for integers n1, n2, . . . , np. For example, the addition
chain in Example 3.3 is also an addition chain for 4, 10, 22. The connection to
grammar-based compression is described in the following proposition, where we
use an alphabet Σ = {a, b1, . . . , bk−1} of size k. The proof idea is similar to the
proofs for the propositions above and the reader can find a detailed proof in [29].

Proposition 3.2.6. [29, Theorem 2] If there is an addition chain for the in-
tegers n1, . . . , nk of size m, then there is an SLP A for an1b1a

n2 · · · bk−1a
nk =

(
∏k−1
i=1 a

nibi)a
nk of size at most 4m. If there is an SLP A for (

∏k−1
i=1 a

nibi)a
nk

of size m, then there is an addition chain of size at most m for n1, . . . , nk.

Even though addition chains have been studied for decades, there is no poly-
nomial time algorithm that computes for integers n1, . . . , nk a general addition
chain of size m∗ · o(logN/ log logN), where N = max{ni | i ∈ [1, k]} and m∗ is
the size of a smallest addition chain for n1, . . . , nk. In particular, the best approx-
imation ratio for the general addition chain problem is O(logN/ log logN) [110].
By Proposition 3.2.6, it follows that a polynomial time grammar-based compres-
sor C with αC(n) ∈ o(log n/ log log n) would improve upon this more than 30 year
old result. In Section 3.6.3, we present a general addition chain solver based on
RePair [77] that matches the best known approximation ratio O(logN/ log logN).

27

a b a b b b a b b b a b a b

a b a b b b a b b b a b a b

a b a b b b a b b b a b a b

a b a b b b a b

Figure 3.1: The splits of BiSection on input ababbbaabbabab are depicted. The
top line shows the input. The second line illustrates the factors obtained by the
first split. The third line shows the factors that occur when those factors are
split again, and so on. A colored box refers to a factor obtained by a split and if
a factor occurs multiple times, then the boxes share the same color. A factor is
not split again if either it has length at most 2 or the factor occurs before.

3.3 BiSection

The BiSection algorithm [74] first splits an input word w with |w| ≥ 2 as
w = w1w2 such that |w1| = 2j for the unique number j with 2j < |w| ≤ 2j+1.
This process is recursively repeated for the obtained factors w1 and w2 until we
obtain words of length 1. During the process, we introduce a nonterminal for
each distinct factor of length at least two and create a rule with two symbols
on the right-hand side corresponding to the split. If a factor a ∈ Σ of length 1
is obtained at some point, then we simply represent it by the symbol a in the
corresponding rule.

Example 3.5. We construct the SLP that is obtained by BiSection on input
w = ababbbabbbabab. We use different colors for different factors obtained at
some point of the algorithm and multiple occurrences of a factor are colored the
same. Further, each nonterminal is colored the same as the corresponding factor
obtained during a split of the algorithm. In Figure 3.1, the example is illustrated
using the same coloring.

(1) w = w1w2 with w1 = ababbbab, w2 = bbabab
Introduced rule: S →W1W2

(2) w1 = x1x2 with x1 = abab, x2 = bbab, and w2 = x2x3 with x3 = ab
Introduced rules: W1 → X1X2, W2 → X2X3, X3 → ab

(3) x1 = x3x3, x2 = yx3 with y = bb
Introduced rules: X1 → X3X3, X2 → Y X3, Y → bb

28

3.3.1 Unary inputs

We start our analysis of BiSection by studying the approximation ratio αBS(1, n),
i.e., we consider unary inputs first. To do so, recall that ν(n) denotes the
number of 1’s in the binary representation of n, see equation (2.2) for the formal
definition.

Proposition 3.3.1. For all n ≥ 3, we have

|BiSection(an)| = 2(blog nc+ ν(n)− 1).

Proof. Let n1, n2 be the integers representing the first split of BiSection on input
an, i.e., an = an1an2 . If n = 2k for some k ≥ 1, then we have n1 = n2 = 2k−1

and a rule S → XX, otherwise we have n1 = 2blognc, n2 = n − n1. In both
cases, n1 is a power of two and thus the algorithm recursively splits a factor
of the form a2i into a2i−1

twice for i ∈ [2, log n1]. The procedure stops when
factors of length 2 are reached. This results in rules Xi → Xi−1Xi−1 for
i ∈ [2, log n1] and X1 → aa, where X = Xlogn1

represents the factor an1 in
the start rule. If n = 2k, then the algorithm stops at this point and we have
|BiSection(an)| = 2k = 2(blog nc + ν(n) − 1) since ν(2k) = 1 for each k ≥ 0.
Otherwise the size of the rules obtained so far is 2blog nc and the algorithm
proceeds with the factor an2 . If n2 = 1, then the algorithm stops as well and the
start rule is S → Xa. The produced SLP has size 2blog nc+2, which matches the
claimed result because ν(2k + 1) = 2. If otherwise n2 = n−n1 ∈ [2, n1− 1], then
the algorithm proceeds for an2 in the same manner as it is described above, but
we represent each occurring factor of length 2i (for some i ∈ [1, blog nc−1]) by the
already existing nonterminal Xi. In particular, each left factor obtained by a split
is represented by a nonterminal that already exists. So the remaining number
of splits only depends on the right factors. Note that the binary representation
of n2 is achieved from the binary representation of n by inverting the most
significant bit bblognc from 1 to 0 and then deleting the leading zeros. We have
ν(n2) = ν(n)− 1. If n2 is not a power of two, then the length of the right factor
obtained by splitting an2 is again achieved by inverting the most significant bit
of n2 and so on. This procedure is repeated until the binary representation of
the length n′ of a right factor satisfies ν(n′) = 1 and thus n′ is a power of two.
The latest possible point where this happens is when only the least significant
bit remains after inverting all other 1’s in the binary representation of n2. Hence
there are ν(n2) = ν(n)− 1 splits for an2 , where each split adds a rule of length
two. This gives the total size |BiSection(an)| = 2blog nc+ 2(ν(n)− 1).

Theorem 3.3.2. For all n, we have

αBS(1, n) ≤ 4

3
log(3).

Proof. If n = 1 or n = 2, then BiSection produces on input an the trivial SLP
containing the single rule S → an, which is also optimal in this case. If otherwise
n ≥ 3, then it follows from Proposition 3.3.1 that

|BiSection(an)| = 2(blog nc+ ν(n)− 1) ≤ 4 log n

29

since ν(n) − 1 ≤ log n. By Lemma 3.1.2, we have g(an) ≥ 3 log3 n − 3, which
together with (4 log n)/(3 log3 n) = (4/3) log(3) finishes the proof.

Theorem 3.3.3. For infinitely many n, we have

αBS(1, n) ≥ 4

3
log(3).

Proof. Let sk = a2k−1 for k ≥ 2. We have blog |sk|c = k− 1 and ν(|sk|) = k. By
Proposition 3.3.1 it follows that

|BiSection(sk)| = 4k − 4.

By Lemma 3.1.3, we have

g(sk) ≤ 3 log3(2k − 1) + o(log(2k − 1)) ≤ 3 log3(2) · k + o(k).

The equality 4/(3 log3(2)) = (4/3) log(3) finishes the proof.

3.3.2 General case

The following upper bound on the approximation ratio of BiSection for arbitrary
alphabets is shown in [29]:

Theorem 3.3.4 ([29, Theorem 6]). For all n, we have

αBS(n) ≤ O
(√

n

log n

)
.

Further, it is shown in [29, Theorem 5] that αBS(2, n) ≥ Ω(
√
n/ log n) for

infinitely many n. We improve this lower bound such that it matches the upper
bound. Note that if w = u1u2 · · ·uk with |ui| = 2n for some n and for all
i ∈ [1, k], then the SLP produced by BiSection contains at least |{ui | i ∈ [1, k]}|
many different nonterminals, because each ui is the result of a split at some
point of the algorithm.

Theorem 3.3.5. For all k ≥ 2 and infinitely many n, we have

αBS(k, n) ≥ Ω

(√
n

log n

)
.

Proof. We first show that αBS(3, n) ≥ Ω(
√
n/ log n). In a second step, we encode

a ternary alphabet into a binary alphabet while preserving the approximation
ratio.

For every k ≥ 2, we define a function bink : [0, k − 1] → {0, 1}dlog ke such
that bink(j) is the binary representation of j padded with leading zeros for
j ∈ [0, k − 1] (e.g. bin9(3) = 0011). We further define for every k ≥ 2 the word

uk =

k−2∏
j=0

bink(j)amk

 bink(k − 1),

30

where mk = 2k−dlog ke − dlog ke. For instance k = 4 leads to mk = 2 and
u4 = 00aa01aa10aa11. We analyze the approximation ratio αBS(sk) for the word

sk =
(
uka

mk+1
)mk

uk.

Claim 1. |BiSection(sk)| ≥ Ω(2k)

Proof. If sk is factorized into consecutive, non-overlapping factors of length
mk + dlog ke = 2k−dlog ke, then all resulting factors are pairwise different and the
set Fk which contains all these factors is

Fk = {aibink(j)amk−i | j ∈ [0, k − 1], i ∈ [0,mk]}.

For example s4 consecutively consists of the factors 00aa, 01aa, 10aa, 11aa, a00a,
a01a, a10a, a11a, aa00, aa01, aa10 and aa11. We have |Fk| = (mk+1)·k = Θ(2k),
because mk = Θ(2k/k). It follows that the SLP produced by BiSection on input
sk has size Ω(2k), because all factors in Fk have the same length 2k−dlog ke and
thus BiSection creates a nonterminal for each distinct factor in Fk.

Claim 2. g(sk) ≤ O(k)

Proof. There is an SLP of sizeO(logmk) = O(k) for the word amk by Lemma 3.1.5,
point (i). This yields an SLP for uk of size O(k) + g(u′k) by Lemma 3.1.5,

point (iii), where u′k = (
∏k−2
i=0 bink(i)x)bink(k−1) is obtained from uk by replac-

ing all occurrences of amk by a fresh symbol x. The word u′k has length Θ(k log k).
Note that u′k is a word over a ternary alphabet. Applying Theorem 3.1.1 yields

g(u′k) ≤ O
(

k log k

log(k log k)

)
= O

(
k log k

log k + log log k

)
= O(k).

Hence g(uk) ≤ O(k). Finally, the SLP of size O(k) for uk yields an SLP of size
O(k) for sk again using Lemma 3.1.5, points (i) and (ii).

In conclusion: We showed that a smallest SLP for sk has size O(k), while
|BiSection(sk)| ≥ Ω(2k). It follows that αBS(sk) ≥ Ω(2k/k). Let n = |sk|. Since
sk is the concatenation of Θ(2k) factors of length Θ(2k/k), we have n = Θ(22k/k)
and thus

√
n = Θ(2k/

√
k). This yields αBS(sk) ≥ Ω(

√
n/k). Together with

k = Θ(log n) we obtain αBS(3, n) ≥ Ω(
√
n/ log n).

Let us now encode words over {0, 1, a} into words over {0, 1}. Consider the
homomorphism f : {0, 1, a}∗ → {0, 1}∗ with f(0) = 00, f(1) = 01 and f(a) = 10.
The same lower bound as above holds for αBS(f(sk)): The size of a smallest
SLP for f(sk) is at most twice as large as the size of a smallest SLP for sk,
because an SLP for sk can be transformed into an SLP for f(sk) by replacing
every occurrence of a symbol x ∈ {0, 1, a} by f(x). Moreover, if we split f(sk)
into non-overlapping factors of twice the length as we considered for sk, then
we obtain the factors from f(Fk), whose length is again a power of two. Since
f is injective, we have |f(Fk)| = |Fk|, which implies the same lower bound on
|BiSection(f(sk))|.

31

abaaabaabbaaa

abaaabaa

abaa

ab

a b

aa

a a

abaa

bbaaa

bbaa

bb

b b

aa

a

Figure 3.2: The tree described in the proof of Theorem 3.3.6 for the input
w = abaaabaabbaaa.

3.3.3 Worst-case size

We already stated in Theorem 3.1.1 that for a word w ∈ Σ+ of length n, there
is always an SLP for w of size O(n/ log|Σ| n). In the remaining section, we
prove this theorem by showing that BiSection produces an SLP of the claimed
size. The reader can find a proof of this result in a more general framework
in [74]. We present a direct proof here because in Section 4.4 of the next chapter
we generalize BiSection from strings to trees and show a similar result for the
obtained grammar-based tree compressor. The high level proof idea is essentially
the same for both algorithms and builds on a cut-point strategy that is used in
the context of binary decision diagrams, see for instance [55, 79].

Theorem 3.3.6. For all words w ∈ Σ+ of length n, we have

|BiSection(w)| ≤ O

(
n

log|Σ| n

)
.

Proof of Theorem 3.1.1 and Theorem 3.3.6. Assume an input word w of length
n and consider a binary tree that is obtained as follows: The root node is labeled
by the input w and if a factor x is split into x1 and x2 during the execution
of BiSection, i.e., x = x1x2, then the corresponding node labeled by x gets a
left child labeled by x1 and a right child labeled by x2. A node is a leaf if the
label of the node is a factor of length one or if there is a node with the same
label that occurs before. The order of the nodes is arbitrary, but we can assume
depth-first left-to-right order (starting with the root node) here, i.e., if a factor
x of length at least 2 occurs more than once as a node label, then the first node
in this order that is labeled by x is split again and all other nodes with label x
are leaves. In Figure 3.2 this tree is depicted for the input w = abaaabaabbaaa.

Let the level of a node be the length of the path from this node to the root.
At level 0, there is only the root node that is labeled by the input string w of

32

length n. If |w| > 1, then at level 1 there are two nodes labeled by words w1 and
w2 such that w = w1w2 and |w1| = 2j such that 2j < n ≤ 2j+1 and |w2| ≤ |w1|
(|w1| = 2blognc). At level 2, there are at most 4 nodes, where each node is labeled
by a word of length at most 2j−1 ≤ n/2. At level 3, there are at most 8 nodes,
where each node is labeled by a word of length at most 2j−2 ≤ n/4, and so on.
An inductive argument shows that each node that occurs at level ` is labeled by
a word of length at most n/2`−1.

Note that the SLP produced by BiSection on input w is twice as big as the
number of inner nodes of the tree since each nonterminal produced by BiSection
uniquely corresponds to a distinct factor of length at least 2 obtained by a split
and thus each nonterminal corresponds to an inner node of the tree. The leaves
of the tree are not represented by a nonterminal since BiSection only introduces
nonterminals for factors of length at least two and multiple occurrences of a
factor are represented by the same nonterminal. Additionally, each rule produced
by BiSection has two symbols on the right-hand side.

Let k be an integer which will be defined later. In order to bound the number
of inner nodes by O(n/ log|Σ| n), we first bound the number of inner nodes that
are labeled by a word of length at most k and afterwards the number of inner
nodes that are labeled by a word of length more than k. There are |Σ|i different
words of length i and

k∑
i=2

|Σ|i =
|Σ|k+1 − |Σ|2

|Σ| − 1
≤ |Σ|k+1

different words of length at least 2 and at most k. All inner nodes of the tree are
labeled by different words since only the first occurrence of a factor of length at
least 2 is split again and factors of length 1 are always leaf labels. It follows that
|Σ|k+1 is also an upper bound on the number of inner nodes that are labeled by
words of length at most k. On the other side, if the level ` of a node is at least
log n− log k+ 1, then the node is labeled by a word of length at most k because
each node at level ` is labeled by a word of length at most n/2`−1 as argued
above. It follows that only nodes at level at most log n − log k are labeled by
words of length more than k. There are at most 2i many nodes at level i and at
most

logn−log k∑
i=0

2i = 2logn−log k+1 − 1 =
2n

k
− 1

many nodes at level at most log n− log k. It follows that |Σ|k+1 + 2n/k− 1 is an
upper bound on the number of inner nodes. For k = blog|Σ| n− log|Σ| log nc − 1,
this yields

|Σ|k+1 +
2n

k
− 1 ≤ |Σ|log|Σ| n−log|Σ| logn +

2n

log|Σ| n− log|Σ| log n− 2
− 1

=
n

log n
+

2n

log|Σ| n− log|Σ| log n− 2
− 1.

This proves the theorem.

33

a a b a a a b a b a b a b a a

Figure 3.3: The LZ78-factorization of w = aabaaababababaa is shown. Distinct
factors have differently colored frames, where the colors refer to the nonterminals
in the corresponding SLP presented in Examlpe 3.6.

3.4 LZ78

The LZ78 algorithm [113] on input w ∈ Σ+ creates the so-called LZ78-factorization
w = f1 · · · f` such that the following properties hold, where we set f0 = ε:

• The factors are pairwise different, i.e., fi 6= fj for all i, j ∈ [0, `− 1] with
i 6= j.

• For all i ∈ [1, `− 1], there exist j ∈ [0, i− 1], a ∈ Σ such that fi = fja.

• For the last factor f`, we have f` = fi for some i ∈ [0, `− 1].

Note that the LZ78-factorization is unique for each word w. To compute it, the
LZ78 algorithm needs ` steps performed by a single left-to-right pass. In the
k-th step (k ∈ [1, ` − 1]) it chooses the factor fk as the shortest prefix of the
unprocessed suffix fk · · · f` such that fk 6= fi for all i < k. If there is no such
prefix, then the end of w is reached and the algorithm sets f` to the (possibly
empty) unprocessed suffix of w.

The factorization f1, . . . , f` yields an SLP for w of size at most 3` as described
in the following example:

Example 3.6. The LZ78-factorization of w = aabaaababababaa is f1 = a,
f2 = f1b = ab, f3 = f1a = aa, f4 = f2a = aba, f5 = b, f6 = f4b = abab
and f7 = f3 = aa. The factorization is depicted in Figure 3.3, where distinct
factors are colored differently. We use the same coloring for the corresponding
nonterminals in the following SLP that naturally arises from the factorization:

• S → F1F2F3F4F5F6F3

• F1 → a, F2 → F1b, F3 → F1a, F4 → F2a, F5 → b, F6 → F4b

For each i ∈ [1, 6], we have a nonterminal Fi such that val(Fi) = fi. The last
factor f7 = f3 = aa is represented in the start rule by F3.

3.4.1 Unary inputs

The LZ78-factorization of an (n > 0) is a1, a2, . . . , am, ak, where k ∈ [0,m] such
that n = k +

∑m
i=1 i. Note that m = Θ(

√
n) and thus

αLZ78(1, n) = Θ

(√
n

log n

)
.

34

3.4.2 General case

The following upper bound on the worst-case approximation ratio of LZ78 for
arbitrary alphabets is provided in [29]:

Theorem 3.4.1 ([29, Theorem 4]). For all n, we have

αLZ78(n) ≤ O

((
n

log n

)2/3
)
.

Further, the lower bound αLZ78(2, n) ≥ Ω(n2/3/ log n) for infinitely many n
is shown in [29, Theorem 3]. In the following, we improve this lower bound such
that it matches the upper bound.

Theorem 3.4.2. For all k ≥ 3 and infinitely many n, we have

αLZ78(k, n) ≥ Ω

((
n

log n

)2/3
)
.

Proof. We show αLZ78(3, n) ≥ Ω((n/ log n)2/3). For k ≥ 2 and m ≥ 1, let

um,k =
(
akbmc

)k(m+2)−1
and vm,k =

(
m∏
i=1

biak

)k2

.

We now analyze the approximation ratio of LZ78 on the words

sm,k = ak(k+1)/2 bm(m+1)/2 um,k vm,k.

For example, we have s2,4 = a10 b3 u2,4 v2,4, where u2,4 = (a4b2c)15 and v2,4 =
(ba4b2a4)16. The full LZ78 factorization of s2,4 can be found in Example 3.7.

Claim 1. |LZ78(sm,k)| = Θ(k2m)

Proof. We consider the LZ78-factorization f1, . . . , f` of sm,k. The prefix ak(k+1)/2

produces the factors fi = ai for i ∈ [1, k] and bm(m+1)/2 produces the factors
fk+i = bi for i ∈ [1,m].

We next show that um,k then produces (among other factors) all factors
aibj , where i ∈ [1, k] and j ∈ [1,m]. All other factors produced by um,k
contain the symbol c and therefore do not affect the factorization of the final
suffix vm,k ∈ {a, b}∗. The first factors of um,k in sm,k are fk+m+1 = akb and
fk+m+2 = bm−1c, which together form the first occurrence of akbmc. The next
two factors are akb2 and bm−2c. This pattern continues and the prefix (akbmc)m

of um,k yields 2m many factors, namely fk+m+2i−1 = akbi and fk+m+2i = bm−ic
for i ∈ [1,m]. The factorization of um,k continues with fk+3m+1 = akbmc followed
by fk+3m+2 = akbmca. Next, we have fk+3m+3 = ak−1b and fk+3m+4 = bm−1ca,
which is the beginning of a similar pattern as we discovered for (akbmc)m.
Therefore, the next 2m factors are fk+3m+2i+1 = ak−1bi and fk+3m+2i+2 =
bm−ica for i ∈ [1,m]. The next two factors are fk+5m+3 = ak−1bmc followed by
fk+5m+4 = akbmca2. The iteration of these arguments yields k (consecutive)
blocks of 2m+ 2 factors (respectively 2m+ 1 in the last block) for um,k:

35

1st block:
∏m
i=1

(
akbi bm−ic

)
akbmc akbmca

2nd block:
∏m
i=1

(
ak−1bi bm−ica

)
ak−1bmc akbmca2

· · ·
(k − 1)th block:

∏m
i=1

(
a2bi bm−icak−2

)
a2bmc akbmcak−1

kth block:
∏m
i=1

(
abi bm−icak−1

)
abmc

We will show that the remaining suffix vm,k of sm,k produces then the set of
factors {

aibpaj | i ∈ [0, k − 1], j ∈ [1, k], p ∈ [1,m]
}
.

Let x = k + m + k(2m + 2) − 1 and note that this is the number of factors
that we have produced so far. The factorization of vm,k in sm,k slightly differs
whether m is even or is odd. We now assume that m is even and explain
the difference to the other case afterwards. The first factor of vm,k in sm,k is
fx+1 = ba. We have already produced the factors ak−1bi for every i ∈ [1,m] and
hence fx+i = ak−1bia for i ∈ [2,m] and fx+m+1 = ak−1ba. The next m factors
are fx+m+i = ak−1bia2 if i ∈ [2,m] is even, fx+m+i = ak−2bia if i ∈ [2,m] is
odd and fx+2m+1 = ak−2ba. This pattern continues: The next m factors are
fx+2m+i = ak−1bia3 if i ∈ [2,m] is even, fx+2m+i = ak−3bia if i ∈ [2,m] is odd
and fx+3m+1 = ak−3ba and so on. Hence, we get the following sets of factors for
(
∏m
i=1 b

iak)k:

(i) {ak−ibpa | i ∈ [1, k], p ∈ [1,m] is odd} for fx+1, fx+3 . . . , fx+km−1

(ii) {ak−1bpaj | j ∈ [1, k], p ∈ [1,m] is even} for fx+2, fx+4, . . . , fx+km

The remaining factorization starts fy+1 = ba2, where y = x + km. Now the
former pattern can be adapted to the next k repetitions of

∏m
i=1 b

iak which gives
us the following factors:

(i) {ak−ibpa2 | i ∈ [1, k], p ∈ [1,m] is odd} for fy+1, fy+3 . . . , fy+km−1

(ii) {ak−2bpaj | j ∈ [1, k], p ∈ [1,m] is even} for fy+2, fy+4, . . . , fy+km

The iteration of this process then reveals the whole pattern and thus yields
the claimed factorization of vm,k in sm,k into factors aibpaj for i ∈ [0, k − 1],
j ∈ [1, k] and p ∈ [1,m]. If m is odd then the patterns in (i) and (ii) switch after
each occurrence of

∏m
i=1 b

iak, which does not affect the result but makes the
pattern slightly more complicated. But the case that m is even suffices in order
to derive the lower bound from the theorem.

We conclude that there are exactly k + m + k(2m + 2) − 1 + k2m factors
(ignoring f` = ε) and hence |LZ78(sm,k)| = Θ(k2m).

Claim 2. g(sm,k) ≤ O(log k +m)

Proof. We will combine the points stated in Lemma 3.1.5 to prove this claim.
Repeatedly applying the points (i) and (ii) yield an SLP of size O(log k + logm)
for the prefix ak(k+1)/2 bm(m+1)/2 um,k. To bound the size of an SLP for
vm,k, note that there is an SLP of size O(log k) producing ak by applying
point (i). By point (iii) and again point (i), it follows that there is an SLP of

36

size O(log k) + g(v′m,k) for vm,k, where v′m,k =
∏m
i=1 b

ix for some fresh symbol
x. To get a small SLP for v′m,k, we introduce m nonterminals B1, . . . , Bm and

rules B1 → b and Bi+1 → Bib for i ∈ [1,m− 1], i.e., val(Bi) = bi for i ∈ [1,m].
Replacing the maximal b-blocks in v′m,k by those nonterminals is enough to get
an SLP of size O(m) for v′m,k and therefore an SLP of size O(log k + m) for
vm,k. Together with our first observation and point (ii), this yields an SLP of
size O(log k +m) for sm,k.

Claim 1 and 2 imply αLZ78(sm,k) ≥ Ω(k2m/(log k + m)). Let us now fix
m = dlog ke. We get αLZ78(sm,k) ≥ Ω(k2). Moreover, let n = |sm,k| be the
length of sm,k. We have n = Θ(k3m + k2m2) = Θ(k3 log k). It follows that
αLZ78(sm,k) ≥ Ω((n/ log k)2/3), which together with log n = Θ(log k) finishes the
proof.

Example 3.7. Here is the complete LZ78 factorization of

s2,4 = a10b3 (a4b2c)15︸ ︷︷ ︸
u2,4

(ba4b2a4)16︸ ︷︷ ︸
v2,4

.

Factors of a10: a, a2, a3, a4

Factors of b3: b, b2

Factors of u2,4:

a4b bc a4b2 c a4b2c a4b2ca

a3b bca a3b2 ca a3b2c a4b2ca2

a2b bca2 a2b2 ca2 a2b2c a4b2ca3

ab bca3 ab2 ca3 ab2c

Factors of v2,4:

ba a3b2a

a3ba a3b2a2

a2ba a3b2a3

aba a3b2a4

ba2 a2b2a

a3ba2 a2b2a2

a2ba2 a2b2a3

aba2 a2b2a4

ba3 ab2a

a3ba3 ab2a2

a2ba3 ab2a3

aba3 ab2a4

ba4 b2a

a3ba4 b2a2

a2ba4 b2a3

aba4 b2a4

37

In [11], our lower bound is extended to binary alphabets. More precisely, the
words um,k from the proof of Theorem 3.4.3 are slightly changed in order to
eliminate occurrences of the symbol c while preserving the factorization of sm,k.
This yields the following theorem:

Theorem 3.4.3 ([11, Theorem 3.4]). For all k ≥ 2 and infinitely many n, we
have

αLZ78(k, n) ≥ Ω

((
n

log n

)2/3
)
.

3.5 Global algorithms

For a given SLP A, a word γ is called a maximal string of A if

• |γ| ≥ 2,

• γ appears at least twice without overlap as a factor of the right-hand sides,

• if m is the maximal number of non-overlapping occurrences of γ on right-
hand sides of A, then any word of length > |γ| has at most m − 1 non-
overlapping occurrences on right-hand sides of A.

Example 3.8. Let A = ({S,X, Y , Z}, {a, b}, P, S) such that P contains

• S → aXXXXbbY ZY Z,

• X → Y bbY ZY Za,

• Y → bbbZZaZ, and

• Z → abb.

The maximal strings of A are bb, Y Z and bbY ZY Z. The factors bb and Y Z
occur four times on the right-hand sides without overlap and bbY ZY Z occurs
twice without overlap. All other factors of the right-hand sides have length at
most 5 and occur at most twice without overlap.

A global grammar-based compressor (or simply global algorithm) starts on
input w with the SLP A0 = ({S},Σ, {S → w}, S). In each round i ≥ 1,
the algorithm selects a maximal string γ of Ai−1 and updates Ai−1 to Ai by
replacing a largest set of pairwise non-overlapping occurrences of γ in Ai−1 by
a fresh nonterminal X. Additionally, the algorithm introduces the rule X → γ
in Ai. The algorithm stops when no maximal string occurs. Note that the
replacement is not unique, e.g. the word a5 has a unique maximal string γ = aa,
which yields SLPs with rules S → XXa,X → aa or S → XaX,X → aa or
S → aXX,X → aa. We assume the first variant here, i.e., maximal strings are
replaced from left to right.

The global grammar-based compressors studied in the following sections are
RePair [77], Greedy [7, 8] and LongestMatch [72]. The best known upper bound
on the approximation ratio of those algorithms for arbitrary alphabets is shown
in [29], where the authors provide the following result for any global algorithm.

38

Theorem 3.5.1 ([29, Theorem 9]). For any global grammar-based compressor
C and for all n, we have

αC(n) ≤ O

((
n

log n

)2/3
)
.

3.6 RePair

In this section we analyze the global grammar-based compressor RePair [77].
RePair selects in each round a most frequent maximal string. While in the original
version RePair always selects a most frequent digram (a factor of length two), we
follow the definition of [29] where RePair possibly selects a longer maximal string
if this string occurs exactly as often as the most frequent digram. However, the
bounds we present work in both settings.

Example 3.9. Let w = aaaaabbababbbaaabb. We have

A0 : S → aaaaabbababbbaaabb,

A1 : S → aaaaXbXXbbaaXb, X → ab,

A2 : S → Y Y XbXXbbY Xb, X → ab, Y → aa,

A3 : S → Y Y ZXZbY Z, X → ab, Y → aa, Z → Xb,

A4 : S → Y AXZbA, X → ab, Y → aa, Z → Xb, A→ Y Z.

Note that in round 2, instead of the maximal string aa the algorithm could also
choose the maximal string Xb (that is chosen in round 3), because both factors
occur three times without overlap.

3.6.1 Unary inputs

We first study the approximation ratio αRePair(1, n), i.e., we consider unary
inputs. Recall the function ν(n) that denotes the number of 1’s in the binary
representation of n, see equation (2.2).

Proposition 3.6.1. For all n ≥ 2, we have

|RePair(an)| = 2blog nc+ ν(n)− 1.

Proof. If n ∈ [2, 3] then an has no maximal string and thus the final SLP has a
single rule S → an. We have n = 2blog nc+ ν(n)− 1 for n ∈ [2, 3].

Assume n ≥ 4 in the following and let m = blog nc − 1. On input an, RePair
runs for exactly m rounds. Let Xi be the nonterminal introduced in round
i, then RePair creates rules X1 → aa and Xi → Xi−1Xi−1 for i ∈ [2,m], i.e.,

val(Xi) = a2i . Those rules have total size 2m = 2blog nc − 2. The missing part
of RePair(an) is the start rule. We have

S → XmXmX
bm
m X

bm−1

m−1 · · ·X
b1
1 ab0 ,

39

where bi is the coefficient of 2i in the binary representation of n, see equation (2.1).
In other words, the symbol a only occurs in the start rule if the least significant
bit b0 = 1, and the nonterminal Xi (i ∈ [1,m− 1]) occurs in the start rule if and
only if bi = 1. Since RePair only replaces words with at least two occurrences,
the most significant bit bm+1 = 1 is represented by XmXm. A third Xm occurs
in the start rule if and only if bm = 1. The size of the start rule is 2 + ν(n)− 1,
which yields a total size of 2blog nc+ ν(n)− 1.

Theorem 3.6.2. For all n, we have

αRePair(1, n) ≤ log(3).

Proof. As a consequence of Proposition 3.6.1, RePair produces an SLP of size
2blog nc + ν(n) − 1 ≤ 3 log n. By Lemma 3.1.2, we have g(an) ≥ 3 log3 n − 3.
The equality log n/ log3 n = log(3) finishes the proof.

Theorem 3.6.3. For infinitely many n, we have

αRePair(1, n) ≥ log(3).

Proof. Let sk = a2k−1. We have 2k − 1 =
∑k−1
i=0 2i and thus ν(2k − 1) = k. By

Proposition 3.6.1, we have |RePair(sk)| = 3k − 3. By Lemma 3.1.3, we have
g(sk) ≤ 3 log3(2k − 1) + o(log(2k − 1)) ≤ 3 log3(2) · k + o(k). The equality
1/ log3(2) = log(3) finishes the proof.

3.6.2 General case

As mentioned in Section 3.5, the best known upper bound on the approxima-
tion ratio of RePair is αRePair(n) ≤ O((n/ log n)2/3) (Theorem 3.5.1). Further,
αRePair(n) ≥ Ω

(√
log n

)
is shown for infinitely many n in [29, Theorem 12]. The

proof of this lower bound assumes an alphabet of unbounded size. To be more
accurate, the authors construct for every k a word wk of length Θ(

√
k2k) over

an alphabet of size Θ(k) such that g(w) ≤ O(k) and |RePair(wk)| ≥ Ω(k3/2).
We will improve this lower bound using only a binary alphabet. To do so,

recall how RePair compresses unary strings (Proposition 3.6.1). In particular,
the start rule produced by RePair on a unary input an (n ≥ 4) is

S → XmXmX
bm
m X

bm−1

m−1 · · ·X
b1
1 ab0 ,

where m = blog nc, bi is the coefficient of 2i in the binary representation of n for

i ∈ [0,m] and Xi is a nonterminal such that val(Xi) = a2i for i ∈ [1,m].
We will use De Bruijn sequences [36] in the following theorem. A binary De

Bruijn sequence of order k is a string Bk ∈ {0, 1}∗ of length 2k such that every
string from {0, 1}k is either a factor of Bk or a suffix of Bk concatenated with a
prefix of Bk. Further, each word of length k occurs at most once as factor in
Bk. As an example, the string 1100 is a De Bruijn sequence of order 2, since 11,
10 and 00 occur as factors and 01 occurs as a suffix concatenated with a prefix.

40

Note that De Bruijn sequences are not unique, for example the homomorphism
f(0) = 1 and f(1) = 0 transforms a binary De Bruijn sequence w into a different
binary De Bruijn sequence f(w).

Theorem 3.6.4. For all k ≥ 2 and infinitely many n, we have

αRePair(k, n) ≥ Ω

(
log n

log log n

)
.

Proof. For k ≥ 2, we construct binary words sk ∈ {a, b}∗ such that the claimed
lower bound holds for αRePair(sk). To do so, we start with a binary De Bruijn
sequence Bdlog ke ∈ {0, 1}∗ of length 2dlog ke. We have k ≤ |Bdlog ke| < 2k. We
assume that the De Bruijn sequence starts with 1. We define a homomorphism
h : {0, 1}∗ → {0, 1}∗ by h(0) = 01 and h(1) = 10. The words wk of length 2k
are defined as

wk = h(Bdlog ke[1 : k]).

For example k = 4 and B2 = 1100 yield w4 = 10100101. For i ∈ [1, k], let ni be
the number such that wk[1 : k + i] is the binary representation of ni, i.e.,

ni =
k+i−1∑
j=0

wk[k + i− j] · 2j .

We will analyze the approximation ratio of RePair for the binary words

sk = an1ban2 · · · bank =

k−1∏
i=1

(anib) ank .

For example we have s4 = a20ba41ba82ba165. Since Bdlog ke[1] = wk[1] = 1, we

have 2k+i−1 ≤ |ani | ≤ 2k+i − 1 for i ∈ [1, k] and thus |sk| = Θ
(
4k
)
.

Claim 1. |RePair(sk)| ≥ Ω
(

k2

log k

)
Proof. The idea is that due to the properties of the De Bruijn sequence, RePair
creates at some point of the algorithm a start rule which has Θ(k2) distinct
factors of length Θ(log n). This leads to a lower bound on the size of the final
SLP produced by RePair using Lemma 3.1.4.

On unary inputs of length n, the start rule produced by RePair is strongly
related to the binary representation of n as described in Proposition 3.6.1. On
input sk, the algorithm begins to produce a start rule that is similarly related
to the binary representations wk[1 : k + i] of ni for i ∈ [1, k]. Consider the SLP
Ak−1 which is produced by RePair after k − 1 rounds on input sk. We claim
that up to this point RePair is not affected by the b’s in sk and therefore has
introduced the rules X1 → aa and Xi → Xi−1Xi−1 for i ∈ [2, k − 1]. If this is
true, then the first a-block is modified in the start rule after k − 1 rounds as
follows:

S → Xk−1Xk−1X
wk[2]
k−1 X

wk[3]
k−2 · · ·X

wk[k+2]
1 awk[k+1]b · · ·

41

All other a-blocks are longer than the first one and hence each of the k factors
of the start rule which corresponds to an a-block begins with Xk−1Xk−1.

Since the symbol b occurs only k−1 times in sk, it follows that our assumption
is correct and RePair is not affected by the b’s in the first k − 1 rounds on input
sk. Further, for each block ani the i − 1 least significant bits of wk[1 : k + i]
(i ∈ [1, k]) are represented in the corresponding factor of the start rule of Ak−1,
i.e., the start rule contains non-overlapping factors vi such that

vi = X
wk[2+i]
k−2 X

wk[3+i]
k−3 · · ·Xwk[k−1+i]

1 awk[k+i], (3.3)

where i ∈ [1, k]. For example after 3 rounds on input s4 = a20ba41ba82ba165, we
have the start rule

S → X3X3X2︸ ︷︷ ︸
a20

bX3
5a︸ ︷︷ ︸

a41

bX3
10X1︸ ︷︷ ︸
a82

bX3
20X2a︸ ︷︷ ︸
a165

,

where v1 = X2, v2 = a, v3 = X1 and v4 = X2a. The length of a factor
vi ∈ {a,X1, . . . , Xk−2}∗ from equation (3.3) is exactly the number of 1’s in
wk[i + 2 : k + i]. Since wk is constructed by the homomorphism h, it is easy
to see that |vi| ≥ (k − 3)/2. Note that no symbol occurs more than once in vi,
hence g(vi) = |vi|. Further, each factor of length 2dlog ke + 2 occurs at most
once in v1, . . . , vk, because otherwise there would be a factor of length dlog ke
occurring more than once in Bdlog ke. It follows that there are at least

k ·
(⌈

k − 3

2

⌉
− 2dlog ke − 1

)
= Θ(k2)

different factors of length 2dlog ke+2 = Θ(log k) on the right-hand side of the start
rule of Ak−1. By Lemma 3.1.4, it follows that a smallest SLP for the right-hand
side of the start rule has size Ω(k2/ log k) and thus |RePair(sk)| ≥ Ω(k2/ log k).

Claim 2. g(sk) ≤ O(k)

Proof. There is an SLP A of size O(k) for an1 by Lemma 3.1.5, point (i) and
n1 = Θ(2k). Let A be the start nonterminal of A. Note that the binary
representation of n2 is obtained from the binary representation of n1 by adding
a least significant bit wk[k + 2]. Hence, we only need one additional rule for
an2 : If wk[k + 2] = 0, then n2 = 2n1 and we can produce an2 by the fresh rule
B → AA. Otherwise, if wk[k + 2] = 1, then n2 = 2n1 + 1 and B → AAa. By
the same reasoning, we can produce the third a-block with one additional rule
and so. The iteration of that process yields for an2 , . . . , ank a single rule of size
at most 3. If we replace the a-blocks in sk by nonterminals as described, then
the resulting word has size 2k + 1 and hence g(sk) ≤ O(k).

In conclusion: We showed that a smallest SLP for sk has size O(k), while
RePair produces on input sk an SLP of size Ω(k2/ log k). It follows that
αRePair(sk) ≥ Ω(k/ log k), which together with n = |sk| and k = Θ(log n) finishes
the proof.

42

Note that in the proof, RePair chooses in the first k − 1 rounds a factor of
length two as the maximal string. Therefore, our lower bound also holds for the
original RePair-variant where a digram is chosen in each round.

3.6.3 RePair extension for general addition chains

In the following, we provide evidence that based on our approach it is not possible
to improve the lower bound even further. To do so, we present an algorithm that
behaves like RePair on input an1b1a

n2 · · · bk−1a
nk as long as only rules X1 → aa

and Xi+1 → XiXi for some i are introduced, and achieves approximation ratio
O(logN/ log logN) on those inputs, where N = max{n1, n2, . . . , nk}. Note first
that in the proof of Theorem 3.6.4 we stopped RePair at a point where only rules
of this form have been introduced and afterwards analyzed the obtained SLP,
so the lower bound holds for the new algorithm as well. Further, the alphabet
in Theorem 3.6.4 is binary, i.e., bi = b for all i ∈ [1, k − 1], but each SLP for

(
∏k−1
i=1 a

nibi)a
nk yields an SLP for (

∏k−1
i=1 a

nib)ank of equal size by replacing the
bi’s by b. Finally, note that in Theorem 3.6.4 we have logN = Θ(log n) where n
is the total length of the input string, which yields the matching upper bound
for the new algorithm on those inputs.

We fix a set of integers {n1, n2, . . . , nk} for the remainder of this section.
Basically, we describe an algorithm that creates a general addition chain for
n1, . . . , nk in terms of grammar-based compression, i.e., we create an SLP
for (

∏k−1
i=1 a

nibi)a
nk (see Section 3.2.2 for the relation between grammar-based

compression and general addition chains). Let t = blogNc, where we set
N = max{ni | i ∈ [1, k]} as above. We first create all powers of two up to 2t by
repeated squaring:

X0 → a, Xi+1 → XiXi (i ∈ [0, t− 1])

Note that RePair does not introduce X0 → a, but the new algorithm does due
to better readability in the following. We have val(Xi) = a2i for i ∈ [0, t].

Further, we start with a start rule S → (
∏k−1
i=1 a

nibi)a
nk and the algorithm

successively replaces a maximal pairwise non-overlapping set of XiXi by Xi+1

in the same manner as RePair (with the difference that a is represented by X0).
More formally, consider the binary representation of ni for each i ∈ [1, k]. Let

ni =
t∑

j=0

bi,j · 2j ,

where bi,j ∈ {0, 1} for all i ∈ [1, k] and j ∈ [0, t]. Let

vi = X
bi,t
t · · ·Xbi,1

1 X
bi,0
0 .

It follows that val(vi) = ani for i ∈ [1, k] and after the replacements, the start rule
is S → v1b1v2 · · · bk−1vk. The obtained SLP has (worst-case) size 2t+ k(t+ 1).
In a final step, we compress this start rule in order to achieve our final SLP. Let

43

s < t be an integer which will be defined later and let d = d(t + 1)/se. The
strategy is to divide each vi into d many blocks such that each block contains
at most s many nonterminals. We get a factorization vi = vi,d · · · vi,2vi,1 for all
i ∈ [1, k], where

vi,j = X
bi,js−1

js−1 · · ·Xbi,(j−1)s

(j−1)s

for j ∈ [1, d− 1] and vi,d = X
bi,t
t · · ·Xbi,(d−1)s

(d−1)s . Note that some of the vi,j might

be empty (this is the case when all occurring exponents are 0). Now consider
the set Vj = {vi,j | i ∈ [1, k]}. We have |Vj | ≤ 2s for each j ∈ [1, d], because
each word in Vj is uniquely defined by (at most) s exponents that are either 0
or 1. It follows that we can define nonterminals for all distinct vi,j ’s using at
most 2s · d many rules, where each right-hand side of a rule has length at most
s. Finally, we update the start rule such that each vi is produced by a sequence
of at most d of those nonterminals. The updated start rule has size k · (d+ 1)
and the total grammar has size 2t+ h(s), where h(s) = k · (d+ 1) + 2s · d · s. By
applying d = d(t+ 1)/se and t = blogNc, we get

h(s) = k ·
(⌈
blogNc+ 1

s

⌉
+ 1

)
+ 2s ·

⌈
blogNc+ 1

s

⌉
· s

≤ k ·
(

logN

s
+ 3

)
+ 2s ·

(
logN

s
+ 2

)
· s

= k ·
(

logN

s
+ 3

)
+ 2s · logN + 2s+1s

Choosing s = bα log logN − β log log logNc yields

h(s) ≤k ·
(

logN

α log logN − β log log logN − 1
+ 3

)
+

(logN)1+α

(log logN)β
+

+
2(logN)α(α log logN − β log log logN)

(log logN)β
.

For example α = 1 and β = 2 yield an SLP of size

k ·
(

logN

log logN − 2 log log logN − 1
+ 3

)
+O

(
(logN)2

(log logN)2

)
. (3.4)

Let g = g((
∏k−1
i=1 a

nibi)a
nk) be the size of a smallest SLP for (

∏k−1
i=1 a

nibi)a
nk .

Then the algorithm described above produces an SLP of size

g · O
(

logN

log logN

)
,

because dividing (3.4) by g, where g ≥ k (
∏k−1
i=1 a

nibi)a
nk has k different symbols)

and g ≥ Ω(logN) (Lemma 3.1.2) bounds the approximation ratio by

logN

log logN − 2 log log logN − 1
+ o

(
logN

log logN

)
.

44

In Figure 3.4 the pseudocode of the described algorithm is depicted.

There are two major implications. First of all, new approaches are necessary
in order to improve our lower bound on the approximation ratio of RePair since
from the point where we stopped RePair in Theorem 3.6.4, it is not possible to
derive a better lower bound as the new algorithm shows. Second, it is worth
mentioning that the approximation ratio O(logN/ log logN) that we achieved

for the new algorithm on input (
∏k−1
i=1 a

nibi)a
nk asymptotically matches the best

known approximation ratio that a polynomial-time algorithm achieves for the
general addition chain problem [110]. So the presented algorithm is of interest
on its own as a general addition chain solver.

input : Integers n1, . . . , nk
N := max{n1, . . . , nk}
t := blogNc
V := {S} ∪ {Xi | i ∈ [0, t]} (set of nonterminals)

P := {X0 → a} ∪ {Xi+1 → XiXi | i ∈ [0, t− 1]} (set of rules)

s := blog logN − 2 log log logNc
d := d(t+ 1)/se

Let bi,j ∈ {0, 1} be the coefficient of 2j in ni =
∑t
j=0 bi,j · 2j for i ∈ [1, k].

Let vi,j = X
bi,js−1

js−1 · · ·Xbi,(j−1)s

(j−1)s for i ∈ [1, k] and j ∈ [1, d− 1]

and vi,d = X
bi,t
t · · ·Xbi,(d−1)s

(d−1)s for i ∈ [1, k].

M := {vi,j | i ∈ [1, k], j ∈ [1, d]} (set of distinct vi,j’s)
foreach w ∈M do

Let X be a fresh nonterminal.
V := V ∪ {X}
P := P ∪ {X → w} (rules for distinct vi,j’s)

end
foreach i = 1 to k do

Let Yj ∈ V be the nonterminal such that (Yj → vi,j) ∈ P for j ∈ [i, d].
ui := Y1 · · ·Yd (ani is represented by d nonterminals)

end
P := P ∪ {S → u1b1u2 · · · bk−1uk} (start rule)

while P contains a rule of the form X → ε do
Remove all occurrences of X on right-hand sides of rules in P .
P := P \ {X → ε} (elimination of ε-rules)

end
return SLP A = (V, {a, b1, . . . , bk−1}, P, S)

Figure 3.4: The algorithm that computes for given integers n1, . . . , nk an
SLP for (

∏k−1
i=1 a

nibi)a
nk as described in Section 3.6.3.

45

3.7 Greedy

The global grammar-based compressor Greedy [7, 8] selects in each round i ≥ 1 a
maximal string of Ai−1 such that Ai has minimal size among all possible choices
of maximal strings of Ai−1.

Example 3.10. Let w = aaaaabbababbbaaabb. We have

A0 : S → aaaaabbababbbaaabb,

A1 : S → aaaaXabXbaaX, X → abb,

A2 : S → Y Y XabXbY X, X → abb, Y → aa,

A3 : S → Y Y XZXbY X, X → Zb, Y → aa, Z → ab,

A4 : S → Y AZXbA, X → Zb, Y → aa, Z → ab, A→ Y X.

Note that in the first round, instead of the maximal string abb the algorithm
could also choose the maximal string aaabb, because both choices yield SLPs of
minimal size 15. In the second round, instead of aa the algorithm could also
choose aaX, because both choices yield SLPs of size 14. Finally, the order of the
choices ab (round 3) and Y X (round 4) could be switched because both choices
yield SLPs of unchanged size 14.

3.7.1 Unary inputs

In contrast to the algorithms we discussed so far, we are not able to prove a
matching upper and lower bound on the approximation ratio of Greedy when
the inputs are unary. The challenge is the recursive character of the algorithm
combined with the discrete optimization problem that has to be solved during
each round. Basically, the optimal solution obtained in some round is the input
of the optimization problem during the next round. The rather technical proof
of the following upper bound on the size of Greedy(an) reflects this hardness.

Proposition 3.7.1. For all n, we have

|Greedy(an)| ∈ O((log n)9 · (log log n)3).

First, we need to prove several lemmas that are fulfilled for any global
algorithm. When we apply specific arguments for Greedy at some point, we draw
attention to it. For better readability, we will use X0 = a in the following, i.e.,
the input is Xn

0 . Further, let Ai = (Ni, {X0}, Pi, S) be the SLP obtained by
the global algorithm on input Xn

0 after i rounds. Note that until the algorithm
stops, we have |Ni \ {S}| = i since exactly one fresh nonterminal is introduced
in each round. If we quantify over the rounds of the algorithm in the following,
we always implicitly mean that the statements hold until the algorithm stops.
If i is mentioned without a quantification, then the statement holds for any Ai
constructed after some round i of the algorithm.

46

Lemma 3.7.2. For every i, there is a fixed order Xi > Xi−1 > · · · > X1 of the
nonterminals in Ni \ {S} such that every right-hand side of a rule (X → w) ∈ Pi
satisfies

w ∈ X∗i X∗i−1 · · ·X∗1X∗0 .

Proof. We prove this property by induction. Initially, the property holds for
the SLP A0 since N0 \ {S} = ∅ and the only rule S → Xn

0 satisfies Xn
0 ∈ X∗0 .

Now assume the claim is true for Ai, i.e., each right-hand side of a rule in Pi
is a word from X∗i X

∗
i−1 · · ·X∗1X∗0 . Note that any nonempty factor of such a

right-hand side is a word from X∗k · · ·X∗j+1X
+
j for some i ≥ k > j ≥ 0. So,

assume the global algorithm chooses a maximal string γ ∈ X∗k · · ·X∗j+1X
+
j in

round i + 1 and (X → γ) ∈ Pi+1 is the corresponding new rule. We show
w ∈ X∗i X∗i−1 · · ·X∗X∗j · · ·X∗1X∗0 for all rules (Y → w) ∈ Pi+1, i.e, the order of
the nonterminals after round i+ 1 is obtained by inserting the fresh nonterminal
X directly before Xj in the previous order. First of all, this is obviously true
for the new rule X → γ as well as for all rules that have not been modified
during round i+ 1. It remains to check rules (Y → w) ∈ Pi+1 that are obtained
from a rule (Y → w′) ∈ Pi by replacing a largest set of pairwise non-overlapping
occurrences of γ in w′ by the fresh nonterminal X. If γ = Xd

j (d ≥ 2) is unary and

X`
j is the single maximal Xj-block that occurs in w′, then replacing occurrences

of γ from left to right yields X` div dX` mod d
j as the new maximal blocks of X and

Xj in w. It follows that w ∈ X∗i X∗i−1 · · ·X∗X∗j · · ·X∗1X∗0 . If otherwise γ is not a

unary word, i.e., γ ∈ X+
k · · ·X∗j+1X

+
j for i ≥ k > j ≥ 0, then w′ has exactly one

occurrence of γ as a factor. It follows that w ∈ X∗i X∗i−1 · · ·X∗kXX∗j · · ·X∗1X∗0
and thus w satisfies the claim. This finishes the induction.

In other words, there is at most one maximal block for each symbol on each
right-hand side and the order of those blocks is the same for all rules. Similar
to the case distinction in the last steps of the proof of Lemma 3.7.2, we will
distinguish two types of nonterminals in the following. Let X → γ be the
introduced rule in some round of the algorithm. If γ is unary, then we call X
a unary nonterminal. Otherwise we call X non-unary. We categorize X0 as
a unary nonterminal, although formally X0 is not a nonterminal. Note that
the type of a nonterminal is decided when it is introduced and does not change
later, i.e., even if the right-hand side of a unary nonterminal becomes non-unary
during the execution of the algorithm, the type of the nonterminal stays the
same. Our strategy to prove Theorem 3.7.1 is to bound the total number of
occurrences of unary nonterminals and non-unary nonterminals on right-hand
sides independently. It follows from Lemma 3.7.2 that every factor that occurs
more than once on the right-hand side of a single rule is unary. The following
lemma is a direct consequence of that fact.

Lemma 3.7.3. Every non-unary nonterminal occurs at most once on the right-
hand side of each rule at any time of a global algorithm.

Corollary 3.7.4. If a unary nonterminal X is introduced and X → Zd with
d ≥ 2 is the corresponding rule for X, then Z is a unary nonterminal.

47

As a next step, we bound the number of rules that contain a unary nonterminal
X on the right-hand side. To do so, we use the following definition for all
nonterminals and X0. Let

#i(X) = |{(Y → w) ∈ Pi | X occurs in w}|

be the number of rules of Ai where X occurs on the right-hand side. The next
two lemmas describe how #i evolves depending on the type of the introduced
nonterminal.

Lemma 3.7.5. If a non-unary nonterminal X is introduced in some round i+1,
then for every X ′ 6= X (including X0), we have #i+1(X ′) ≤ #i(X

′).

Proof. In order to prove this point, we use that all rules (Y → w) ∈ Pi satisfy
w ∈ X∗i X∗i−1 · · ·X∗1X∗0 (Lemma 3.7.2). Since X is non-unary, the chosen maximal

string γ satisfies γ ∈ X+
k · · ·X∗j+1X

+
j for i ≥ k > j ≥ 0. If a nonterminal X ′

does not occur in γ, then #i+1(X ′) = #i(X
′). So assume the nonterminal

X ′ occurs in γ, i.e., X ′ = Xt for t ∈ [j, k]. Note first that Xt occurs on the
right-hand side of the fresh rule (X → γ) ∈ Pi+1. It follows that in order to
prove the claimed result, we must show that for at least one rule (Y → w) ∈ Pi
such that Xt occurs in w, all occurrences of Xt must disappear, i.e., Xt does not
occur in w′ for (Y → w′) ∈ Pi+1. Let

M = {Y ∈ Ni | (Y → w) ∈ Pi and γ is a factor of w} ⊆ Ni

be the set of nonterminals of Ai where the corresponding rule is modified in
round i+ 1. Note that |M | ≥ 2 since a maximal string occurs at least twice on
all right-hand sides and γ occurs at most once as factor of each rule since X is
non-unary (Lemma 3.7.3). If k < t < j then for all Y ∈M and (Y → w′) ∈ Pi+1,
the nonterminal Xt does not occur in w′ anymore since the complete Xt-block
(among other symbols) has been replaced. This means that #i+1(Xt) < #i(Xt)
since one new rule contains Xt on the right-hand side, while for at least two
rules the occurrences of Xt has been removed in round i+ 1. If otherwise t = k
or t = j, then the same argument fails since for Y ∈M and (Y → w′) ∈ Pi+1,
the right-hand side w′ could still contain Xt since it is not necessarily true
that the complete Xt-block has been replaced. But due to the properties of a
maximal string, we show that Xt does not occur in w′ for at least one Y ∈M and
(Y → w′) ∈ Pi+1. Towards a contradiction, assume Xt occurs in w′ for all Y ∈M
and (Y → w′) ∈ Pi+1. That means that for all Y ∈ M and (Y → w) ∈ Pi,
the length of the maximal Xt-block that occurs in w is strictly larger then the
length of the maximal Xt-block that occurs in γ. If t = k, if follows that Xkγ
is a factor of w for all Y ∈ M and (Y → w) ∈ Pi, and symmetrically, if t = j
then γXj is a factor of w for all Y ∈ M and (Y → w) ∈ Pi. This contradicts
the property that no strictly longer string than γ occurs at least as often on the
right-hand sides of the rules. It follows that in this case #i+1(Xt) ≤ #i(Xt),
which finishes the proof.

48

Lemma 3.7.6. If a unary nonterminal X is introduced in some round i + 1
and X → Zd with d ≥ 2 is the corresponding rule, then #i+1(X) ≤ #i(Z) and
#i+1(Z) ≤ #i(Z) + 1.

Proof. Both points are straightforward: A rule (Y → w) ∈ Pi+1 only contains
X on the right-hand side if Zd is a factor of w′ for (Y → w′) ∈ Pi, which shows
#i+1(X) ≤ #i(Z). For the second point, note that if (Y → w) ∈ Pi does not
contain Z on the right-hand side, then the same is true for (the unchanged rule)
(Y → w) ∈ Pi+1. The only rule where Z occurs new is the fresh rule X → Zd,
and thus #i+1(Z) ≤ #i(Z) + 1.

So far, we have showed that when a unary nonterminal X is introduced and
X → Zd with d ≥ 2 is the corresponding rule, then Z is a unary nonterminal as
well (Corollary 3.7.4). Further, we argued that introducing a non-unary nonter-
minal does not increase the number of rules where a unary nonterminal occurs
on the right-hand side (Lemma 3.7.5). It follows that we can upper bound the
number of unary nonterminals and the number of rules where those nonterminals
occur on right-hand sides independently of the non-unary nonterminals.

To do so, we inductively define a binary tree Ti that describes how the unary
nonterminals evolve until Ai is reached. All nodes in the tree are labeled by
(X, k), where X is a unary nonterminal and k is an upper bound on #j(X) for
some j.

(i) Initially, the tree T0 only contains a single node that is labeled by (X0, 1).

(ii) If a rule X → Zd is introduced in round i + 1 for some d ≥ 2, then we
update Ti to Ti+1 by adding two children to the unique leaf that is labeled
by (Z, k) for some k. The fresh left child is labeled by (Z, k + 1) and the
fresh right child is labeled by (X, k) as depicted on the left of Figure 3.5.

(iii) If otherwise a non-unary nonterminal is introduced in round i + 1, then
Ti+1 = Ti, i.e., non-unary nonterminals are ignored.

The initial tree T0 reflects that the only unary nonterminal of A0 is X0 and
#0(X0) = 1. If the tree is modified according to point (ii) of the definition, this
refers to Lemma 3.7.6, where #i+1(X) ≤ #i(Z) and #i+1(Z) ≤ #i(Z) + 1 is
shown when a rule X → Zd for d ≥ 2 is introduced.

The level of a node is the length of the path from the node to the root. For
a unary nonterminal X ∈ Ni, we denote by leveli(X) the level of the unique leaf
of T3 that is labeled by (X, k) for some k.

Example 3.11. Assume that the first three rules introduced by a global algo-
rithm are X2 → Xd1

0 in the first round, X1 → Xd2
0 in the second round and

X3 → Xd3
2 in the third round for d1, d2, d3 ≥ 2. The tree T3 that corresponds to

these introduced rules is depicted on the right of Figure 3.5. The indices for the
introduced nonterminals are chosen such that the ordering of the nonterminals in
N3 \ {S} (see Lemma 3.7.2) is X3 > X2 > X1, i.e., all right-hand sides of rules
are contained in X∗3X

∗
2X
∗
1X
∗
0 . The corresponding SLPs A0, A1, A2 and A3 are

49

(Z, k)

(Z, k + 1) (X, k)

(X0, 1)

(X0, 2)

(X0, 3) (X1, 2)

(X2, 1)

(X2, 2) (X3, 1)

Figure 3.5: On the left, the general pattern that is applied during the construction
of Ti is illustrated, where the split refers to a rule X → Zd that has been
introduced by the global algorithm. On the right, the tree T3 that corresponds
to the introduced rules of Example 3.11 is shown.

depicted in the following, where we simply use ∗ instead of the exact exponents
of the symbols due to better readability.

A0: S → X∗0

A1: S → X∗2X
∗
0

X2 → X∗0

A2: S → X∗2X
∗
1X
∗
0

X2 → X∗1X
∗
0

X1 → X∗0

A3: S → X∗3X
∗
2X
∗
1X
∗
0

X2 → X∗1X
∗
0

X1 → X∗0
X3 → X∗2

Note that in this example, we have #3(X0) ≤ 3, #3(X2) ≤ 2, #3(X1) ≤ 2,
#3(X3) ≤ 1 and this is exactly the information contained in the second compo-
nents of the leaf-labels in T3. Further, we have level3(Xi) = 2 for i ∈ [0, 3] in
this example.

The following lemma is a direct consequence of the fact that the maximal k
that occurs for some label (X, k) is incremented from one level to the next level
(as described in Lemma 3.7.6).

Lemma 3.7.7. For each node of Ti at level m that is labeled by (X, k) for some
unary nonterminal X ∈ Ni, we have k ≤ m+ 1. Let further X ∈ Ni be a unary
nonterminal, then we have #i(X) ≤ leveli(X) + 1.

So far, we provided information about the number of rules where a unary
nonterminal occurs. In the following, we move on to the total number of
occurrences of a unary nonterminal on all right-hand sides. We denote by ti(X)
the total number of occurrences of X on right-hand sides of rules in Ai. We
have #i(X) ≤ ti(X) by the definition of both functions and for a non-unary
nonterminal X, we have #i(X) = ti(X) due to Lemma 3.7.3.

Lemma 3.7.8. Let X → γ be the rule that is introduced in some round i + 1
and let M = {Y ∈ Ni | Y occurs in γ}. We have

(i) ti+1(Y) ≤ ti(Y) for all Y ∈ Ni = Ni+1 \ {X}, and

(ii)
∑
Y ∈M ti+1(Y) + ti+1(X) ≤

∑
Y ∈M ti(Y).

Proof. Point (i) is straightforward: For Y ∈M let Y ` be the maximal Y -block
that occurs as a factor in γ for some ` ≥ 1 . Replacing γ on right-hand sides

50

yields that at least two occurrences of Y ` are eliminated while only Y ` is added
as a part of the fresh rule X → γ. If otherwise Y /∈ M , then ti+1(Y) = ti(Y)
because the occurrences of Y are not effected by the new rule.

Point (ii) is also based on a simple observation. Note that
∑
Y ∈M ti(Y)

describes the part of the SLP Ai that is effected by the replacement of γ in round
i + 1, and

∑
Y ∈M ti+1(Y) + ti+1(X) is the size of that part in Ai+1 after the

occurrences of γ are replaced by X plus the new occurrences in the introduced
rule. All other parts of Ai are not effected by the fresh rule. Now the properties
of a maximal string ensure that |Ai+1| ≤ |Ai|. The extreme case where γ has
length two and occurs only twice non-overlapping on the right-hand sides of rules
in Ai satisfies |Ai+1| = |Ai|, all other cases even satisfy |Ai+1| < |Ai|. Point (ii)
directly follows.

Our next goal is to bound ti(X) in dependence on leveli(X) for a unary
nonterminal X. To do so, we now apply specific arguments for Greedy. Recall
that Greedy selects a maximal string that minimizes the size of the obtained
SLP in each round.

Lemma 3.7.9. Let Z ∈ Ni ∪ {X0} be a unary nonterminal and assume a rule
X → Zd for some d ≥ 2 is introduced by Greedy in round i+ 1. We have

ti+1(X) + ti+1(Z) ≤ 2
√
ti(Z)

√
#i(Z) + 1 + 1.

Proof. If a unary nonterminal X and a rule X → Zd with d ≥ 2 are introduced in
round i+1, then the choice of d only depends on the maximal Z-blocks occurring
on all right-hand sides of rules in Ai since the remaining part of Ai does not
change. Assume #i(Z) = k and let `1, . . . , `k be the lengths of the maximal

Z-blocks occurring on right-hand sides of Ai, i.e.,
∑k
j=1 `j = ti(Z). Then Greedy

minimizes ti+1(X) + ti+1(Z) = d+
∑k
j=1(`j div d) + (`j mod d), where d is the

size of the fresh rule X → Zd and for each j ∈ [1, k] a maximal block Z`j on the
right-hand side of a rule in Ai is transformed into X`j div dZ`j mod d. Due to the
greedy nature of the algorithm, the following equation holds for all d ≥ 1:

ti+1(X) + ti+1(Z) ≤ d+
k∑
j=1

(`j div d) + (`j mod d)

≤ d+
k∑
j=1

`j
d

+ k(d− 1)

= d+
ti(Z)

d
+ k(d− 1).

Note that the chosen maximal string has length at least 2, but the upper bound
also holds for d = 1 since in this case we have ti+1(X) + ti+1(Z) ≤ ti(Z) due to

51

Lemma 3.7.8 (point (ii)). If we apply d =
⌈√

ti(Z)/
√
k + 1

⌉
, we get

ti+1(X) + ti+1(Z) ≤

⌈√
ti(Z)√
k + 1

⌉
+

ti(Z)⌈√
ti(Z)√
k+1

⌉ + k

(⌈√
ti(Z)√
k + 1

⌉
− 1

)

≤
√
ti(Z)√
k + 1

+ 1 +
ti(Z)√
ti(Z)√
k+1

+ k

(√
ti(Z)√
k + 1

)

= (k + 1)

√
ti(Z)√
k + 1

+
ti(Z) ·

√
k + 1√

ti(Z)
+ 1

= 2
√
ti(Z)

√
k + 1 + 1.

Together with k = #i(Z) this proves the lemma.

The following lemma is essential for the proof of Theorem 3.7.1 since we
bound the total number of occurrences of a unary nonterminal in dependence on
its level.

Lemma 3.7.10. Let X ∈ Ni∪{X0} be a unary nonterminal with leveli(X) = m.
We have

ti(X) ≤ 22−21−m
n2−m

m∏
j=1

(m+ 2− j)2−j . (3.5)

Proof. We prove the lemma by induction on m = leveli(X) and we start with
m = 0. The only SLP Ai that contains a unary nonterminal X such that
leveli(X) = 0 is the initial SLP A0 and the unary nonterminal is X = X0. Note
that the maximal string γ chosen by any global algorithm in the first round
on input Xn

0 trivially satisfies γ ∈ X∗0 and thus the two unary nonterminals
of A1 have level one. We have t0(X0) = n and this is exactly what comes out
when m = 0 is used on the right side of equation (3.5) (the empty product is
considered to be 1).

Now assume any unary nonterminal that has level m satisfies the claimed
bound and we consider a unary nonterminal X such that leveli(X) = m+ 1 > 0
for some i. It follows from the definition that there is a leaf node at level m+ 1
in Ti that is labeled by (X, k) for some k. There are two cases that need to be
distinguished. Either this leaf is a left child or a right child of its parent node.
Assume that (X, k) is the label of a right child and let (Z, k + 1) be the label
of the left sibling of that node. In order to prove both cases simultaneously,
we prove the upper bound for X and for Z, i.e., we use Z to cover the second
case that the node is a left child. The parent node of (Z, k + 1) and (X, k) is
labeled by (Z, k) (see Figure 3.5 on the left). Let i′ < i be the maximal i′ such
that leveli′(Z) = m, i.e., X → Zd for d ≥ 2 is the introduced rule in round
i′ + 1 and (Z, k) is the label of a leaf at level m in Ti′ . By induction, we have

ti′(Z) ≤ 22−21−m
n2−m

∏m
j=1(m+ 2− j)2−j . Now by Lemma 3.7.9, we have

ti′+1(X) + ti′+1(Z) ≤ 2
√
ti′(Z)

√
#i′(Z) + 1 + 1.

52

Together with #i′(Z) ≤ m+ 1 (Lemma 3.7.7), this yields

ti′+1(X) + ti′+1(Z) ≤ 2

22−21−m
n2−m

m∏
j=1

(m+ 2− j)2−j

 1
2

(m+ 2)
1
2 + 1

= 22−2−mn2−m−1
m∏
j=1

(m+ 2− j)2−j−1

(m+ 2)2−1

+ 1

= 22−2−mn2−m−1
m+1∏
j=2

(m+ 2− j + 1)2−j (m+ 2)2−1

+ 1

= 22−2−mn2−m−1
m+1∏
j=1

(m+ 2− j + 1)2−j + 1.

Using the information ti′+1(X) ≥ 2 (there are at least two non-overlapping
occurrences of a maximal string) and ti′+1(Z) ≥ 2 (the fresh rule contains Z at
least twice) yield the claimed upper bound on ti′+1(X) and ti′+1(Z). Finally,
this upper bound holds for i ≥ i′ + 1 due to Lemma 3.7.8 (point (i)).

Corollary 3.7.11. Let X ∈ Ni∪{X0} be a unary nonterminal with leveli(X) =
m. We have

ti(X) ≤ 4n2−m(m+ 2).

Proof. Note that 22−2−m ≤ 4 for all m ≥ 0. We upper bound the right side of
equation (3.5) (Lemma 3.7.10) as follows:

22−21−m
n2−m

m∏
j=1

(m+ 2− j)2−j ≤ 4n2−m
m∏
j=1

(m+ 2)2−j

= 4n2−m(m+ 2)
∑m
j=1 2−j

≤ 4n2−m(m+ 2)

What we achieved so far is to bound the total size ti(X) that a unary
nonterminal X contributes on right-hand sides of the rules in dependence on
leveli(X). Next we bound the size that non-unary nonterminals contribute to
|Ai| in dependence on the levels of all unary nonterminals. To do so, we need the
following definitions. Let Ri(X) be the number of distinct right neighbors of X
(which are not equal to X) on right-hand sides plus the number of occurrences
of X as the last symbol of a right-hand side in Ai, i.e.,

Ri(X) =|{A ∈ Ni ∪ {X0} | A 6= X, XA occurs on a right-hand side in Ai}|
+ |{(Y → vX) ∈ Pi | Y ∈ Ni, v ∈ (Ni ∪ {X0})∗}|.

53

Let Li(X) be the number of distinct left neighbors of X (which are not equal to
X) on right-hand sides plus the number of occurrences of X as the first symbol
of a right-hand side in Ai, i.e.,

Li(X) =|{A ∈ Ni ∪ {X0} | A 6= X, AX occurs on a right-hand side in Ai}|
+ |{(Y → Xv) ∈ Pi | Y ∈ Ni, v ∈ (Ni ∪ {X0})∗}|.

Let further fi(X) = #i(X) − Ri(X) and gi(X) = #i(X) − Li(X). Note that
Ri(X) ≤ #i(X) and Li(X) ≤ #i(X) since for each right-hand side of a rule
there is at most one right (respectively, left) neighbor A 6= X for some occurrence
of X due to Lemma 3.7.2 and each right-hand side can contain X at most once
as the last (respectively, first) symbol. Further, #i(X) = Ri(X) means that all
maximal X-blocks on right-hand sides are either at the end of the right-hand
side or followed by a distinct symbol. Similarly, #i(X) = Li(X) means that
all maximal X-blocks on right-hand sides are either at the beginning of the
right-hand side or preceded by a distinct symbol. The following lemmas describe
how the functions fi(X) and gi(X) evolve.

Lemma 3.7.12. If X ∈ Ni ∪ {X0} then fi+1(X) ≤ fi(X). If a non-unary
maximal string γ = Xw is selected in round i+ 1 for some w ∈ (Ni ∪ {X0})+,
then fi+1(X) < fi(X).

Proof. Let Y → γ be the introduced rule in round i+1. If X does not occur in γ,
then it is straightforward to see that fi+1(X) ≤ fi(X) since #i+1(X) = #i(X)
and Ri+1(X) ≥ Ri(X). The fresh nonterminal Y could be a new right neighbor
for some occurrences of X, but all occurrences of X which have this new right
neighbor Y in Ai+1 shared the same right neighbor in Ai (the first symbol of γ).

If otherwise X occurs in γ, then first assume γ = Xd for some d ≥ 2. Note
that replacing an occurrence of γ on the right-hand side of a rule (Z → u) ∈ Pi
either removes all occurrences of X on this right-hand side (in case u contains a
maximal X-blocks of length k · d for some integer k ≥ 1) or the right neighbor of
the maximal X-block in u does not change in the modified rule (Z → u′) ∈ Pi+1

since occurrences of γ are replaced from left to right. It follows that the only way
to obtain Ri+1(X) < Ri(X) is to remove all occurrences of X on a right-hand
side, but then #i(X) decreases by the same value. Additionally, the fresh rule
Y → Xd adds a new right-hand side to #i+1(X), but since X is the last symbol
on this right-hand side it follows that Ri+1(X) is incremented as well. Together
this yields fi+1(X) ≤ fi(X) in this case.

It remains the case where γ is non-unary and X occurs in γ. In this case, we
have #i+1(X) ≤ #i(X) due to Lemma 3.7.5 and γ occurs at most once on each
right-hand side due to Lemma 3.7.2. But again, the only way to reduce Ri+1(X)
compared to Ri(X) is to remove all occurrences of X on a right-hand side, but
then again #i+1(X) decreases by the same value. This yields fi+1(X) ≤ fi(X).

Assume now a non-unary maximal string γ = Xw for some w ∈ (Ni∪{X0})+

is selected in round i+1. We show that fi+1(X) < fi(X). If X only occurs in the
fresh rule in Ai+1 after occurrences of γ are replaced on all right-hand sides in Ai,
i.e., all modified rules do not contain X anymore, then #i+1(X) < #i(X) because

54

at least two right-hand sides do not contain X as a factor anymore while only
the fresh rule Y → γ adds a new right-hand side which contains X to #i+1(X).
Further, we have Ri+1(X) = Ri(X) in this case and thus fi+1(X) < fi(X)
because all rules where the maximal X-block is removed shared the same right
neighbor due to the fact that γ = Xw is the chosen maximal string. But Xw
still occurs in the fresh rule of Ai+1 and thus Ri+1(X) = Ri(X). If otherwise
at least one of the modified rules still contains X on the right-hand side, then
XY is a factor of this right-hand side in Ai+1 after the replacement of γ. It
follows that Ri+1(X) > Ri(X) in this case and thus fi+1(X) < fi(X) because
each distinct right neighbor of X in Ai is still a right neighbor of X in Ai+1 as
argued above, but additionally XY is new since Y is a fresh nonterminal.

The same result does not hold for gi(X). In particular, gi+1(X) > gi(X) is
possible when a rule Y → Xd is introduced in round i+ 1 for some d ≥ 2 due to
the assumption that global algorithms replace occurrences of the maximal string
from left to right. For example, assume that AX4, BX7 and CX10 are the
maximal X-blocks on right-hand sides of Ai including distinct left neighbors for
each X-block (A, B and C). Therefore, we have #i(X) = 3, Li(X) = 3 and thus
gi(X) = 0 in this example. If now a rule Y → X3 is introduced, then this yields
AYX, BY 2X and CY 3X after replacing X3. Hence we have #i+1(X) = 4,
Li+1(X) = 2 and thus gi+1(X) = 2. We show in the following lemma that this
is the only case where gi+1(X) > gi(X) occurs.

Lemma 3.7.13. Let X ∈ Ni ∪ {X0}. If a rule Y → γ is introduced in round
i + 1 such that γ /∈ X+, then gi+1(X) ≤ gi(X). If a non-unary maximal
string γ = Xw is selected in round i + 1 for some w ∈ (Ni ∪ {X0})+, then
gi+1(X) < gi(X)

Proof. The arguments are similar to the corresponding cases in Lemma 3.7.12.
Let Y → γ be the introduced rule in round i+ 1. If X does not occur in γ, then
gi+1(X) ≤ gi(X) since #i+1(X) = #i(X) and Li+1(X) ≥ Li(X). The fresh
nonterminal Y could be a new left neighbor for some occurrences of X in Ai+1,
but all of these occurrences of X shared the same left neighbor in Ai (the last
symbol of γ).

If otherwise γ is non-unary and contains X, then we have #i+1(X) ≤ #i(X)
due to Lemma 3.7.5 and γ occurs at most once on each right-hand side due to
Lemma 3.7.2. The only way to obtain Li+1(X) < Li(X) is again to remove all
occurrences of X on a right-hand side, but then #i+1(X) decreases by the same
value. Note that due to the assumption that γ is non-unary, it is not possible to
modify two (or more) rules such that the maximal X-blocks have different left
neighbors in Ai and after the replacement those X-blocks share the same left
neighbor in Ai+1. This yields gi+1(X) ≤ gi(X).

Assume now a non-unary maximal string γ = wX is selected in round i+ 1
for some word w ∈ (Ni ∪ {X0})+. We show gi+1(X) < gi(X). If X only occurs
in the fresh rule in Ai+1, i.e., X does not occur in the modified rules, then we
have #i+1(X) < #i(X) because at least two right-hand sides do not contain
X as a factor anymore while only the fresh rule Y → γ adds a new right-hand

55

side which contains X to #i+1(X). Moreover, we have Li+1(X) = Li(X) in
this case because all rules where the maximal X-block is removed shared the
same left neighbor since γ = wX is the selected non-unary maximal string. But
wX still occurs on the right-hand side of the fresh rule of Ai+1. It follows that
gi+1(X) < gi(X). If otherwise at least one of the modified rules still contains X
on the right-hand side, then Y X is a factor of this right-hand side in Ai+1 after
the replacement of γ. It follows Li+1(X) > Li(X) and thus gi+1(X) < gi(X)
because each distinct left neighbor of X in Ai is still a left neighbor of X in Ai+1

for some occurrence of X. Additionally, Y is a new left neighbor.

Lemma 3.7.14. Let Ui = {X ∈ Ni ∪ {X0} | X is a unary nonterminal} be the
set of unary nonterminals and let Mi = Ni \ Ui be the set of all non-unary
nonterminals. We have∑

X∈Mi

ti(X) ≤
∑
X∈Ui

(leveli(X) + 1) · (leveli(X) + 1 + (leveli(X) + 1)2)

Proof. Let s(i) =
∑
X∈Mi

ti(X) be the total size that all non-unary nonterminals
contribute to the size of Ai. We first bound the number of rounds where the
function s increases, i.e., we bound |{j ∈ [0, i − 1] | s(j + 1) > s(j)}|. If a
unary nonterminal is introduced in some round j + 1, then s(j + 1) = s(j), i.e.,
we can ignore those rules. So consider some round j + 1 where a non-unary
nonterminal X is introduced and let X → γ be the introduced rule. Let further
M = {Z ∈ Nj | Z occurs in γ} be the set of nonterminals that occur at least
once in γ. We first show that if k = |Mj ∩M | ≥ 2, then s(j + 1) ≤ s(j). In
other words, if two non-unary nonterminals occur in γ, then s(j + 1) ≤ s(j). Let
r be the number of rules (Z → w) ∈ Pj such that γ is a factor of w. Recall that
non-unary factors and nonterminals occur at most once on the right-hand side of
a single rule (Lemma 3.7.3). We have s(j + 1)− s(j) = k + r − k · r because the
fresh non-unary nonterminal X occurs now on r right-hand sides, γ contains k
non-unary nonterminals which occur exactly once in γ each, and the replacement
of γ on right-hand sides deletes those k nonterminals on r right-hand sides. We
have r ≥ 2 (due to the properties of a maximal string) which together with k ≥ 2
yields s(j+1)−s(j) ≤ 0. Hence we can assume k = |Mj ∩M | ≤ 1. The maximal
string γ has length |γ| ≥ 2 and is not unary, so the first and the last symbol of
γ are different and at least one of both is unary due to our assumption that at
most one non-unary nonterminal occurs in γ. Let Y be this unary nonterminal
and assume Y is the first symbol, i.e, the non-unary maximal string is γ = Y w
for some (non-empty) w. Afterwards we discuss the case where Y is the last
symbol, i.e., γ = wY .

We bound the number of rounds where a non-unary maximal string γ = Y w
is selected for some w. Let j0 ≤ i be the round where the unary nonterminal Y
has been introduced. We have

fj0(Y) ≤ #j0(Y) ≤ levelj0(Y) + 1 ≤ leveli(Y) + 1

due to Lemma 3.7.7 and levelj(Y) ≤ leveli(Y) for all j ≤ i. Further, we have
fj+1(Y) ≤ fj(Y) for j ∈ [j0, i − 1] by Lemma 3.7.12. Even more, if Y w is

56

the selected non-unary maximal string in round j + 1 for some w, then we
have fj+1(Y) < fj(Y) again by Lemma 3.7.12. It follows that after at most
leveli(Y) + 1 many rounds where the chosen maximal string is non-unary and
has the form Y w for some (non-empty) w, we have fi(Y) = 0. In this case
all maximal Y blocks have distinct right neighbors or occur at the end of a
right-hand side. Hence there is no possibility to select a non-unary maximal
string Y w anymore.

Now we similarly bound the number of rounds such that a non-unary maximal
string γ = wY is selected for some w. But care has to be taken in this case,
because it is possible that gj+1(Y) > gj(Y) when a rule X ′ → Y d for d ≥ 2 is
introduced in round j + 1 as explained above. Fortunately, rules of this form
(the selected maximal string is from Y +) are introduced at most leveli(Y) times
up to round i by the definition of leveli(Y). Let j0 ≤ i be the round where the
unary nonterminal Y has been introduced. We have

gj(Y) ≤ #j(Y) ≤ levelj(Y) + 1 ≤ leveli(Y) + 1

for each j ∈ [j0, i] due to Lemma 3.7.7 and levelj(Y) ≤ leveli(Y) for all j ≤ i.
Further, if the selected maximal string in round j + 1 (j ≥ j0) is not from Y +,
we have gj+1(Y) ≤ gj(Y) due to Lemma 3.7.13. Moreover, if the maximal string
γ is non-unary and γ = wY for some (non-empty) w, then gj+1(Y) < gj(Y). It
follows that between two rounds where maximal strings from Y + are selected,
there are at most leveli(Y) + 1 many rounds where a non-unary maximal string
of the form wY is chosen because then gj(Y) = 0 is reached (for some j) and
thus all maximal Y blocks have distinct left neighbors or occur at the beginning
of a right-hand side. Hence no non-unary string of the form wY for some w
occurs twice on right-hand sides. Since maximal strings from Y + are chosen at
most leveli(Y) times up to round i, it follows that the number of rounds where
a non-unary maximal string of the form wY for some w is selected is at most
(leveli(Y) + 1)2.

Further, the maximal increase max{s(j + 1)− s(j) | j ∈ [0, i− 1]} in a single
round is at most leveli(Y)+1, because the fresh non-unary nonterminal occurs in
Aj+1 on at most #j(Y) ≤ levelj(Y) + 1 ≤ leveli(Y) + 1 many right-hand sides of
rules for any j ≤ i and the total number of occurrences of all other (non-unary)
nonterminals does not increase (Lemma 3.7.8, point (i)).

We conclude that for each unary nonterminal Y , at most

leveli(Y) + 1 + (leveli(Y) + 1)2

rules are introduced such that the non-unary maximal string γ satisfies γ = Y w or
γ = wY for some w and each of those rules increases the total size that non-unary
nonterminals contribute by at most leveli(Y) + 1. In all other cases, we showed
that the size that non-unary nonterminals contribute does not increase.

Now we are able the prove Proposition 3.7.1.

Proof of Proposition 3.7.1. Let Af = Greedy(Xn
0) be the final SLP obtained by

Greedy, i.e., after f rounds the algorithm stops because Af has no maximal

57

string. First, we want to bound the level of unary nonterminals occurring in Af .
Assume there is a unary nonterminal X such that leveli(X) = dlog log ne after
some round i ≤ f of the algorithm. By Corollary 3.7.11, we have

ti(X) ≤ 4n2− log log n

(log log n+ 3) ≤ 8(log log n+ 3).

Consider the unique leaf node vX in the tree Ti which has level dlog log ne and
label (X, k) for some k. If in some round j ∈ [i+ 1, f], two children with labels
(X, k + 1) and (Y, k) are attached to vX , i.e., the introduced rule in round j is
Y → Xd for some d ≥ 2, then we have tj(X) + tj(Y) ≤ tj−1(X) ≤ ti(X) by
Lemma 3.7.8. To be more specific, if the length of the chosen maximal string
Xd is exactly d = 2 and this maximal string XX occurs exactly twice without
overlap in Aj−1, then we have tj(X) + tj(Y) = tj−1(X) (and |Aj | = |Aj−1|).
Note that in this case, there does not exist a maximal string Xd or Y d of Ak for
all k ∈ [j, f] (since Y occurs only twice and XX does not occur on right-hand
sides of Aj), i.e., the children of the node vX in Tk are leaves for k ∈ [j, f].
Otherwise, if the maximal string has length d ≥ 3 or occurs at least three times
without overlap, then we have tj(X)+ tj(Y) < tj−1(X) since |Aj | < |Aj−1| holds
in this setting. This means that when a new branch occurs in the tree Tj for
some j, then the new children of the branching node are either leaves of the final
tree Tf or the corresponding nonterminals contribute strictly less to the size of
the current SLP than the nonterminal which corresponds to the parent node did
before the branch. We can iterate this argument to the children of the children
of vX and so on, i.e., if we consider the subtree rooted at vX in Tf , then from
level to level the size that the nonterminals contribute decreases until only leaves
occur at some level. Since ti(X) ≤ 8(log log n+ 3), it follows that the subtree of
Tf rooted at vX has depth at most 8(log log n+ 3) + 1 and thus the maximal
level of any unary nonterminal in Af is bounded by

dlog log ne+ 8(log log n+ 3) + 1 ≤ 9 log log n+ 26.

As a consequence, the number of unary nonterminals (the number of leaves of Tf)
is bounded by O((log n)9) since Tf is a binary tree of depth at most 9 log log n+26.
Further, each unary nonterminal X in Af satisfies tf (X) ≤ O(log log n). Either
X fulfills that there is a round i ≤ f such that leveli(X) = dlog log ne and thus
tf (X) ≤ ti(X) ≤ 8(log log n+ 3) by Corollary 3.7.11 and Lemma 3.7.8, point (i).
Or, if levelf (X) = m < dlog log ne, then tf (X) ≤ m+ 3 ≤ log log n+ 3, because
there is at most one non-overlapping occurrence of XX on right-hand sides of
Af (otherwise there would exist a maximal string of Af) and the number of rules
where X occurs on the right-hand side is #f (X) ≤ m+ 1 by Lemma 3.7.7. To
be more precise, a single right-hand side of Af could have a maximal X-block of
length 3 and all other right-hand sides must have at most one occurrence of X
since two different right-hand sides where X-blocks of length 2 occur as well as
one right-hand side where an X-block of length 4 occurs would contradict the fact
that Af has no maximal string. It follows that the size which unary nonterminals
contribute to Af is O((log n)9 · log log n). By Lemma 3.7.14, we can bound the
size that non-unary nonterminals contribute by O((log n)9 · (log log n)3) since

58

there are at most O((log n)9) unary nonterminals and each has level at most
O(log log n) as argued above. It follows that |Af | ≤ O((log n)9 · (log log n)3),
which proves the proposition.

The following theorem follows directly from Proposition 3.7.1 and Lemma 3.1.2,
where g(w) ≥ Ω(log n) is shown for words w of length n.

Theorem 3.7.15. For all n, we have

αGreedy(1, n) ≤ O((log n)8 · (log log n)3).

We proceed with the lower bound on the approximation ratio of Greedy. The
best known lower bound [29, Theorem 11] so far is

αGreedy(k, n) ≥ 5

3 log3(5)
= 1.13767699...

for all k ≥ 1 and infinitely many n. In particular, this bound is achieved using
unary input strings. A key concept to prove a better lower bound is the sequence
xn described in the following lemma by [4]:

Lemma 3.7.16 ([4, Example 2.2]). Let xn+1 = x2
n + 1 with x0 = 1 and

β = exp

(∞∑
i=1

1

2i
log

(
1 +

1

x2
i

))
.

We have xn =
⌊
β2n
⌋
.

In this work, we use the shifted sequence yn = xn+1, i.e., we start with
y0 = 2. It follows that yn =

⌊
γ2n
⌋
, where γ = β2 = 2.25851845... . Additionally,

we need the following lemma:

Lemma 3.7.17. Let m ≥ 1 be an integer. Let fm : R>0 → R with

fm(x) = x+
m2 + 1

x
.

We have fm(x) > 2m for all x > 0.

Proof. The unique minimum of fm(x) is 2
√
m2 + 1 for x =

√
m2 + 1. It follows

that fm(x) ≥ 2
√
m2 + 1 > 2

√
m2 = 2m.

Now we are able to prove the new lower bound for Greedy:

Theorem 3.7.18. For all k ≥ 1 and infinitely many n, we have

αGreedy(k, n) ≥ 1

log3(γ)
= 1.34847194... .

59

S → ayk

X1 → ayk−1

X2 → ayk−2 X1 → X
yk−2
2 a

S → X
yk−1
1 a

X3 → X
yk−2
1 S → X

yk−2
3 X1a

Figure 3.6: Three rounds of Greedy on input ayk .

Proof. Let Σ = {a} be a unary alphabet. We define wk = ayk . By Lemma 3.7.16,

we have |wk| ≤ γ2k . Applying Lemma 3.1.2 yields

g(wk) ≤ 3 · log3(γ) · 2k + o(2k).

In the remaining proof we show that on input wk, Greedy produces an SLP of
size 3 · 2k − 1, which directly implies αGreedy(1, n) ≥ 3/(3 log3(γ)). We start with
the SLP A0 which has the single rule S → ayk . Consider now the first round
of the algorithm, i.e., we need to find a maximal string ax of A0 such that the
grammar A1 with rules

X1 → ax, S → Xyk div x
1 ayk mod x

has minimal size. We have |A1| = x+ (yk div x) + (yk mod x) ≥ x+ yk/x. By
the definition of yk we have |A1| ≥ x+ (y2

k−1 + 1)/x. Applying Lemma 3.7.17
yields |A1| ≥ 2yk−1 + 1. Note that for x = yk−1 this minimum is achieved, i.e.,
we can assume that Greedy selects the maximal string ayk−1 and A1 is

X1 → ayk−1 , S → X
yk−1

1 a.

Each maximal string of A1 is either a unary word over X or a unary word over a,
i.e., we can analyze the behavior of Greedy on both rules independently. The rule
X1 → ayk−1 is obviously treated similarly as the initial SLP A0, so we continue
with analyzing S → X

yk−1

1 a. But again, the same arguments as above show that
Greedy introduces a rule X3 → X

yk−2

1 which yields S → X
yk−2

3 X1a as the new
start rule. This process can be iterated using the same arguments for the leading
unary strings of length yi for some i ∈ [1, k].

The reader might think of this process as a binary tree, where each node is
labeled by a rule (the root is labeled by S → ayk) and the children of a node
are the two rules obtained by Greedy when the rule has been processed. We
assume that the left child represents the rule for the chosen maximal string and
the right child represents the parent rule where all occurrences of the maximal
string are replaced by the fresh nonterminal. In Figure 3.6 this binary tree is
depicted for the steps we discussed above. Note that when a rule is processed,
the longest common factor of the two new rules has length 1 (the remainder).

60

More generally, after each round there is no word of length at least two that
occurs as a factor in two different rules, since a possibly shared remainder has
length 1 and otherwise only fresh nonterminals are introduced. It follows that
we can iterate this process independently for each rule until no maximal string
occurs. This is the case when each rule starts with a unary string of length
y0 = 2 or, in terms of the interpretation as a binary tree, when a full binary
tree of height k is produced. Each right branch occurring in this tree adds a
new remainder to those remainders that already occur in the parent rule and a
left branch introduces a new (smaller) instance of the start problem. We show
by induction that at level i ∈ [0, k] of this full binary tree of height k, there is
one rule of size yk−i + i and 2i−j−1 many rules of size yk−i + j for j ∈ [0, i− 1].
At level 0, this is true since there is only a single rule of size yk + 0. Assuming
that our claim is true at level i < k, we derive from each rule at level i two
new rules at level i+ 1: A right branch yields a rule that starts with a leading
unary string of size yk−i−1 and adds a new remainder to the parent rule. A left
branch yields a rule that contains only a unary string of size yk−i−1. If we first
consider the left branches, we derive that each of the 2i many rules at level i
adds a rule of size yk−i−1 at level i+ 1. For the right branches, the single rule of
size yk−i + i at level i yields a rule of size yk−i−1 + i+ 1 at level i+ 1. Further,
each of the 2i−j−1 many rules of size yk−i + j (j ∈ [0, i− 1]) yields a rule of size
yk−i−1 + j + 1. When we put everything together, we get that at level i + 1
there is a single rule of size yk−i−1 + i+ 1 and 2i−j many rules of size yk−i−1 + j
for j ∈ [0, i]. That finishes the induction. It follows that the final SLP (which
consists of the rules at level k) has a single rule of size y0 + k = 2 + k and 2k−j−1

many rules of size 2 + j for j = 0, . . . , k − 1. This gives a total size of

2 + k +
k−1∑
j=0

2k−j−1(2 + j) = 2 + k + 2k
k−1∑
j=0

2−j + 2k
k−1∑
j=0

2−j−1j

= 2 + k + 2k(2− 2−k+1) + 2k(−2−kk − 2−k + 1)

= 2 + k + 2k+1 − 2− k − 1 + 2k

= 2k+1 + 2k − 1

= 3 · 2k − 1.

3.7.2 General case

The general upper bound on the approximation ratio of any global algorithm
provided in Theorem 3.5.1 is also the best known upper bound for Greedy, i.e.,
αGreedy(n) ≤ O((n/ log n)2/3). When it comes to lower bounds, the bound on the
approximation ratio of Greedy for unary inputs presented in Theorem 3.7.18 is
also the best known lower bound in the general setting.

61

3.8 LongestMatch

The global grammar-based compressor LongestMatch [72] selects a longest maxi-
mal string in each round.

Example 3.12. Let w = aaaaabbababbbaaabb. We have

A0 : S → aaaaabbababbbaaabb,

A1 : S → aaXababbbX, X → aaabb,

A2 : S → aaXabY bX, X → aaY , Y → abb,

A3 : S → ZXabY bX, X → ZY , Y → abb, Z → aa,

A4 : S → ZXAY bX, X → ZY , Y → Ab, Z → aa, A→ ab.

Note that the choices of the maximal strings aa (round 3) and ab (round 4) could
be switched, because both have length 2.

3.8.1 Unary inputs

We start again by considering unary inputs. It turns out that the size of the
SLP produced by LongestMatch on input an has the same size as we proved for
RePair in Proposition 3.6.1.

Proposition 3.8.1. For all n ≥ 2, we have

|LongestMatch(an)| = 2blog nc+ ν(n)− 1.

Proof. If n ∈ [2, 3] then an has no maximal string and thus the final SLP has a
single rule S → an. We have n = 2blog nc+ ν(n)− 1 for n ∈ [2, 3].

Let bi be the coefficient of 2i in the binary representation of n (see equa-
tion (2.1)). In the first round, the chosen maximal string is abn/2c, which yields
rules X1 → abn/2c and S → X1X1a

b0 , i.e., the symbol a occurs in the start rule if
and only if n is odd and thus the least significant bit b0 = 1. Assuming n ≥ 8, this
procedure is now repeated for the rule X1 → abn/2c (for n < 8 there is no maximal
string and the algorithm stops after the first round). This yields X2 → abn/4c,
X1 → X2X2a

b1 and S → X1X1a
b0 (note that b(bn/2c)/2c = bn/4c). After

m = blog nc − 1 steps, the iteration of that process results in the final SLP with
rules S → X1X1a

b0 , Xi → Xi+1Xi+1a
bi for i ∈ [1,m − 1] and Xm → aaabm .

The size of this SLP is 2 · (m+ 1) +
∑m
i=0 bi, which directly implies the claimed

result for LongestMatch.

Since LongestMatch and RePair produce equal size SLPs for unary inputs, we
can take the results that we achieved for αRePair(1, n) (Theorems 3.6.2 and 3.6.3)
and use these for αLM(1, n) as well.

Corollary 3.8.2. For all n, we have αLM(1, n) ≤ log(3) and for infinitely many
n, we have αLM(1, n) ≥ log(3).

62

3.8.2 General case

Similar to RePair and Greedy, the upper bound in Theorem 3.5.1 is the best
known upper bound for LongestMatch, i.e., αLM(n) ≤ O((n/ log n)2/3). On the
other hand, the best known lower bound is shown in [29]:

Theorem 3.8.3 ([29, Theorem 10]). For infinitely many n, we have

αLM(n) ≥ Ω(log log n).

The proof of this theorem works with an alphabet of unbounded size. In
particular, the lower bound is shown for words σk of length |σk| = Θ(k2k) where
an alphabet of size Θ(k) is used.

3.9 Universal coding based on SLPs

In Section 4.9 of the next chapter, we show how grammar-based tree compression
can be used to achieve universal lossless source coding. Since the techniques we
apply there build on a similar work by Kieffer and Yang [72] for grammar-based
string compression, we give a short survey of this work in the following. We
focus on the binary encoding of SLPs used in [72] such that a universal code for
so-called finite-state information sources is obtained. An information source S
emits words over a fixed alphabet Σ with certain probabilities pS : Σ∗ → R[0,1].
It is required that pS satisfies pS(ε) = 1 and pS(w) =

∑
a∈Σ pS(wa) for all

w ∈ Σ∗, i.e., pS is a probability distribution on all words of length n for each
n ≥ 0. An information source is called a finite-state information source if it
can be simulated by a probabilistic finite-state machine, see [72] for the precise
definition. For a binary encoding E : Σ+ → {0, 1}+ of words over Σ and an
information source S, the so-called worst-case redundancy (or maximal pointwise
redundancy) for strings of length n is defined as

R(E,S, n) = max
w∈Σn,pS(w)>0

1

n
· (|E(w)|+ log pS(w)). (3.6)

Thus, the worst-case redundancy measures the maximal additive deviation of the
code length from the self information with respect to pS , normalized by the length
of the source string. A binary encoding E is called a (worst-case) universal code
for an information source S if and only if the worst-case redundancy R(E,S, n)
converges to zero for n→∞.

The universal code achieved in [72] for finite-state information sources is based
on so-called asymptotically compact grammar-based compressors. A grammar-
based compressor C is asymptotically compact if the following conditions are
satisfied:

(i) Let Nw be the set of nonterminals of the SLP C(w) for w ∈ Σ+. Then for
all w ∈ Σ+ it is required that different nonterminals in Nw produce different
words, i.e., valC(w)(X) 6= valC(w)(Y) for all X,Y ∈ Nw with X 6= Y .

63

(ii) The function rC(n) = maxw∈Σn(C(w)/n) converges to zero for n→∞.

Note that any grammar-based compressor studied in this work is asymptotically
compact. For BiSection this is true since point (i) is fulfilled by the definition of the
algorithm and rBiSection(n) ≤ O(1/ log|Σ| n) follows from the fact that BiSection
produces an SLP of size O(n/ log|Σ| n) for inputs of length n (Theorem 3.3.6).
But as we argued in Section 3.1.1, any algorithm studied in this work achieves
this upper bound and thus satisfies point (ii). For LZ78, point (i) follows directly
from the definition of the algorithm and for any global algorithm point (i) is
provided in [29, Lemma 7].

Based on a grammar-based compressor C, we describe in the following the
binary encoding EC : Σ+ → {0, 1}+ of words over Σ such that EC encodes the
SLP C(w). Before we do so, we need an assumption about the naming of the
nonterminals. Let A = (N,Σ, P, S) be an SLP. We define the derivation tree DA
of A as follows:

• The root node is labeled by the start nonterminal S.

• If A ∈ N and (A → w1w2 · · ·wm) ∈ P with wi ∈ (Σ ∪ N) for i ∈ [1,m],
then any node labeled by A has m (ordered) children and the i-th child is
labeled by wi for i ∈ [1,m].

• A node is a leaf if and only if it is labeled by a ∈ Σ.

In the following, we assume that the set N of nonterminals of an SLP A with
|N | = k satisfies N = {A0, A1 . . . , Ak−1} such that A0, A1, . . . , Ak−1 is obtained
when the nonterminals are listed in order of their first appearance in DA using
breadth-first left-to-right search. In particular, A0 is the start nonterminal. In
Example 3.13, we describe the renaming of the nonterminals of an SLP such
that it fulfills the assumption.

Example 3.13. Let B = ({S,X, Y , Z}, {a, b}, P, S) be an SLP such that P
contains rules S → Y XY , X → ZZ, Y → aXa and Z → bb. The derivation
tree DB is depicted in Figure 3.7. The breadth-first left-to-right traversal of DB is

S Y X Y a X a Z Z a X a Z Z b b b b Z Z b b b b b b b b.

Hence we rename S into A0, Y into A1, X into A2 and Z into A3. The obtained
SLP A is shown in Example 3.14.

Before we describe the encoding of an SLP A = ({A0, . . . , Ak−1},Σ, P,A0),
we define words ρA and ωA over Σ∪ {A1, . . . , Ak−1} which are the foundation of
the encoding. Let ρA = w0w1 · · ·wk−1 with |ρA| = |A|, where wi is the right-hand
side of (Ai → wi) ∈ P for i ∈ [0, k − 1]. Further, ωA is obtained from ρA by
removing the first (left-to-right) occurrence of each nonterminal.

Example 3.14. The SLP A = ({A0, A1, A2, A3}, {a, b}, P, S) is obtained by
renaming the nonterminals from the SLP B as described in Example 3.13. The
rules are A0 → A1A2A1, A1 → aA2a, A2 → A3A3 and A3 → bb. We have
ρA = A1A2A1aA2aA3A3bb and ωA = A1aA2aA3bb.

64

S

Y

a X

Z

b b

Z

b b

a

X

Z

b b

Z

b b

Y

a X

Z

b b

Z

b b

a

Figure 3.7: The derivation tree DB for the SLP B described in Example 3.13.

Let Σ = {σ1, . . . , σ|Σ|} such that σ1 < σ2 < · · · < σ|Σ| is the lexicographic
order of the symbols in Σ. The binary encoding B(A) ∈ {0, 1}+ of an SLP
A = ({A0, . . . , Ak−1},Σ, P,A0) is B(A) = B1B2B3B4B5B6 such that

• B1 = 0k−11 indicates the set of nonterminals.

• B2 = b1b2 · · · b|Σ| where bi = 1 if and only if σi ∈ Σ occurs in ρA for
i ∈ [1, |Σ|].

• B3 =
∏
a∈Σ′ 0

ka−11
∏k−1
i=1 0kAi−11 where Σ′ ⊆ Σ contains the alphabet

symbols which occur in the word ρA and kx is the number of occurrences
of x ∈ Σ′∪{A1, . . . , Ak−1} in ρA. The factors in the product

∏
a∈Σ′ 0

ka−11
are ordered with respect to the lexicographical order of the alphabet.

• B4 =
∏k−1
i=0 0|wi|−11 where wi is the right-hand side of (Ai → wi) ∈ P .

• B5 = b1b2 · · · b|A| where bi = 1 if and only if a nonterminal occurs first
(left-to-right) at position i in ρA for i ∈ [1, |A|].

• B6 encodes the word ωA using enumerative encoding [33]. Let M be the set
of all words which contain every symbol x ∈ Σ ∪ {A1, . . . , Ak−1} exactly
as often as it occurs in ωA. Let v0, v1, . . . v|M |−1 be the lexicographic
enumeration of the words in M where σ1 < · · · < σ|Σ| < A1 < · · · < Ak−1

is the order of the symbols. Then B6 is the binary representation of the
unique index i such that vi = ωA.

Note that for a given code B(A) we can determine the SLP A. The number of
nonterminals is given in B1 and alphabet symbols which occur on right-hand
sides of rules in A are given in B2. Using B3 it is straightforward to get the
number of occurrences of any symbol in ωA, which together with B6 allows the
reconstruction of ωA. Additionally, B5 allows to reconstruct ρA from ωA since the
nonterminals are numbered such that at the fist left-to-right position described

65

in B5 we insert the nonterminal A1, at the second position we insert A2, and so
on. Finally, B4 allows to factorize ρA such that the rules in A are reconstructed.

Example 3.15. Assume the SLP A from example 3.14. We describe the binary
encoding B(A) = B1B2B3B4B5B6. We have B1 = 0001 because the set of
nonterminals is {A0, A1, A2, A3}. We have B2 = 11 because both alphabet
symbols occur in ρA = A1A2A1aA2aA3A3bb. Further, B3 = 0101010101 because
any symbol x ∈ {a, b, A1, A2, A3} occurs exactly twice in the word ρA. We have
B4 = 0010010101 because |A1A2A1| = |aA2a| = 3 and |A3A3| = |bb| = 2.
Moreover, B5 = 1100001000 since the first left-to-right occurrence of A1 in ρA is
at position 1, the first occurrence of A2 is at position 2 and the first occurrence of
A3 is at position 7. Concerning B6, there are 1260 words such that the number
of occurrences of each symbol is exactly the same as in ωA = A1aA2aA3bb and if
those words are ordered lexicographically, then ωA is the 758-th word. Therefore,
B6 is the binary representation of 758− 1 = 757 (we start the enumeration with
zero), i.e., B6 = 1011110101.

For a grammar-based compressor C and for all words w ∈ Σ+, we define the
encoding EC(w) = B(C(w)). Based on this encoding, the main result in [72] is
the following:

Theorem 3.9.1 ([72, Theorem 7]). Let C be an asymptotically compact grammar-
based compressor and S be a finite-state information source. Then EC is a
universal code for S. In particular, we have R(EC ,S, n) ≤ O(γ(rC(n))), where
rC(n) = maxw∈Σn(C(w)/n) and γ(x) = x log(1/x).

If the encoding EC is based on a grammar-based compressor C such that
C(w) ≤ O(n/ log n) for all w ∈ Σn, then Theorem 3.9.1 yields worst-case
redundancy R(EC ,S, n) ∈ O(log log n/ log n). In [73], the authors improved upon
this result and achieve R(E,S, n) ≤ O(1/ log n) for any finite-state information
source S, where E is a new grammar-based code. The rough idea in order to
achieve convergence rate O(1/ log n) is to encode the structure of the SLP (the
derivation tree) and the actual data independently.

3.10 Conclusion and open problems

Conclusion. We presented in this chapter various results about grammar-
based string compression. We showed in Section 3.2.1 that any polynomial time
grammar-based compressor that achieves constant approximation ratio c for
binary inputs can be extended to a polynomial time grammar-based compressor
which achieves approximation ratio 6c for inputs over arbitrary alphabets. This
improves a rather technical construction presented in [10].

In the main part of this chapter we analyzed the approximation ratios of the
grammar-based compressors BiSection (Section 3.3), LZ78 (Section 3.4), RePair
(Section 3.6), Greedy (Section 3.7) and LongestMatch (Section 3.8). For each
of those algorithms, we distinguished between unary inputs and inputs over
arbitrary alphabets. The obtained bounds are depicted in Table 3.1 for the

66

unary case and Table 1.1 for the general case. The matching bounds in the
general setting for LZ78 and BiSection deserve a special mentioning.

In Section 3.9 we revisited a paper of [72] where a universal code based on
grammar-based compression is presented. A key ingredient in order to obtain
universality for grammar-based codes is the fact that any word of length n (over
an alphabet of constant size) is produced by an SLP of size O(n/ log n). This
result is well known for grammar-based string compression and a proof can be
found in Section 3.3.3. Both topics - O(n/ log n) worst-case size and universal
coding - are the main components of the next chapter, where we extend the
described techniques from grammar-based string compression to grammar-based
tree compression.

Open problems. The first question concerns the connection between grammar-
based compression over binary inputs and arbitrary inputs. Constant approxi-
mation ratio c for binary inputs yields approximation ratio 6c for inputs over
arbitrary alphabets as described above. It remains open whether the constant
6 can be reduced even further. Concerning the hardness of grammar-based
compression in general, recall that there is no polynomial time algorithm which
computes a smallest SLP for inputs over an alphabet of size at least 24 unless
P = NP [28]. It is one of the major open challenges in this context to prove a
similar hardness result for smaller alphabets (in particular binary alphabets) or
otherwise to come up with an optimal polynomial time algorithm for inputs over
small alphabets.

The obvious questions that arise in this chapter concern the huge gaps
between lower and upper bounds for the approximation ratios of the global
grammar-based compressors RePair, Greedy and LongestMatch. The best known
approximation ratio of a polynomial time grammar-based string compressor is
O(log(n/g)) [29, 64, 65, 102, 103], where g is the size of a smallest SLP for the
given input. Concerning the lower bounds for the global algorithms, it is still
possible that any of those achieve approximation ratio o(log n). Moreover, the
best known polynomial time general addition chain solver produces a general
addition chain for n1, . . . , nk of size m∗ ·O(logN/ log logN), where m∗ is the size
of a smallest general addition chain for n1, . . . , nk and N = max{ni | i ∈ [1, k]}.
From what we know, it is still possible that Greedy and LongestMatch improve
upon this more than 30 year old result (see Section 3.2.2 for the connection
between grammar-based compression and general addition chains). In particular,
the lower bound on the general approximation ratio of Greedy is unsatisfactory
since (i) it is constant and (ii) it is achieved using unary inputs. Concerning the
upper bounds, we only have a general upper bound for any global algorithms
which already indicates space for improvement. When inputs are restricted to
be unary, then Greedy is the only algorithm (considered in this work) where
the lower and upper bound do not match. We conjecture that Greedy produces
an SLP of size O(log n) and thus have constant approximation ratio for unary
inputs of size n.

67

68

Chapter 4

Grammar-based tree
compression

In the following, we consider trees instead of strings as the data we want to
compress. Grammar-based compression was extended from strings to trees in
[26], where linear context-free tree grammars are used in order to represent a
given tree. A linear context-free tree grammar that produces a single tree is
called a tree straight-line program or TSLP for short. We call an algorithm
which computes a TSLP for a given tree a grammar-based tree compressor.

The main result of this chapter are grammar-based tree compressors that
produce for a given node-labeled tree of size n with σ different node labels (we
always assume that σ ≥ 2), a TSLP of size O(n/ logσ n) and depth O(log n),
where the depth of a TSLP is the depth of the corresponding derivation tree.
An important assumption here is that the maximal number of children of any
node in the tree is bounded by a constant. In particular, for an unlabeled binary
tree we get a TSLP of size O(n/ log n). After introducing the grammar-based
compressors, we apply our result to arithmetical circuits and universal source
coding. In the following, we present a summary of those results.

Our first compressor is an extension of the BiSection algorithm presented
in [74] from strings to trees and is therefore called TreeBiSection. The algorithm
is presented in Section 4.4 and we give an outline for binary trees in the following.
In a first step, TreeBiSection hierarchically decomposes in a top-down way the
input tree into pieces of roughly equal size. This is a well known technique that
is also known as the (1/3, 2/3)-Lemma [78]. But care has to be taken in order to
bound the ranks of the nonterminals of the resulting TSLP, which corresponds
to the number of holes in the tree patterns occurring on the right-hand sides
of the rules of the TSLP. Therefore, when the decomposition produces a tree
pattern with three holes, we have to do an intermediate step that decomposes
this pattern into two pieces having only two holes each. This may involve an
unbalanced decomposition, but such steps are only necessary in every second
step. The technique to bound the number of holes was used by Ruzzo [101] for

69

space-bounded alternating Turing machines. We identify the TSLP produced in
this first step with its derivation tree, which is weakly balanced in the following
sense: For each edge (u, v) in the derivation tree such that both u and v are
internal nodes, the derivation tree is balanced at u or v. This follows directly from
the decomposition described above. In a second step, TreeBiSection computes
the minimal directed acyclic graph (minimal DAG) of the derivation tree, which
is a widely used tree compression technique obtained by writing down repeated
subtrees only once (see Section 4.3). We show in Section 4.3.1 that the minimal
DAG of a weakly balanced tree has size at most O(n/ logσ n), which is a result
of independent interest. The nodes of the DAG of the derivation tree are the
nonterminals of the final TSLP produced by TreeBiSection. We prove that the
algorithm sketched above can be implemented so that it works in logarithmic
space or running time O(n log n), see Section 4.4.1.

In Section 4.5, we present BU-Shrink (for bottom-up shrink) that constructs
a TSLP of size O(n/ logσ n) in linear time. The following outline assumes again
binary trees. In a first step, BU-Shrink merges nodes of the input tree in a bottom-
up way. Thereby it constructs a partition of the input tree into O(n/ logσ n)
many connected parts of size at most c · logσ n, where c is a suitably chosen
constant. Every connected part is a pattern occurring in the input tree, where at
most two subtrees were removed (i.e., a pattern with at most two holes). Using
again DAG compression, we associate with each distinct pattern a nonterminal of
rank at most two. We obtain a TSLP for the input tree consisting of a start rule
S → s, where s consists of O(n/ logσ n) many nonterminals of rank at most two,
each having a right-hand side consisting of c · logσ n many terminal symbols. By
choosing the constant c suitably, we can bound the number of different subtrees
of these right-hand sides by

√
n ≤ O(n/ logσ n), where we use the formula for the

number of binary trees of size m given by the Catalan numbers. This allows to
build up the right-hand sides for the non-start nonterminals using O(n/ logσ n)
many nonterminals.

Since BU-Shrink does not yield logarithmic depth of the produced TSLP,
we present an algorithm which combines BU-Shrink and TreeBiSection — we
call it BU-Shrink+TreeBiSection — such that a TSLP of size O(n/ logσ n) and
depth O(log n) is constructed in linear time. This last step could be replaced by
a balancing technique recently introduced in [48]. More precisely, it is shown
in [48] that it is possible to balance a TSLP in linear time such that the size of
the obtained TSLP increases only by a multiplicative constant.1

The case where the number of children of a node is not bounded by a constant
(as it is the case for unranked trees) is discussed in Section 4.4.3. While most
of what we explained so far fails in this setting, we give a simple workaround
solution based on the first-child-next-sibling encoding [76], which encodes a
given (unranked) tree by a ranked binary tree of the same size. Then, the
first-child-next-sibling encoding can be transformed into a TSLP. This solution
is strongly related to so-called forest straight-line programs [50].

1The authors in [48] show this balancing result for a more general formalism, which includes
SLPs and TSLPs.

70

Transforming formulas into circuits. In Section 4.6, we apply our con-
structions of small TSLPs to the classical problem of transforming a given
formula into a small circuit. Spira [106] has shown that for every Boolean
formula of size n there exists an equivalent Boolean circuit of depth O(log n)
and size O(n), where the size of a circuit is the number of gates and the depth
of a circuit is the length of a longest path from an input gate to the output
gate. Brent [21] extended Spira’s theorem to formulas over arbitrary semir-
ings and moreover improved the constant in the O(log n) bound for the depth.
Subsequent improvements that mainly concern constant factors can be found
in [18, 23]. We show that as a consequence of our constructions, we have for
every (not necessarily commutative) semiring (or field), every formula of size
n, in which only m ≤ n different variables occur, can be transformed into a
circuit of depth O(log n) and size O(n/ logσ n). Hence, we refine the size bound
from O(n) to O((n · logm)/ log n) (Theorem 4.6.3). The transformation can be
achieved in logspace and, alternatively, in linear time. Another interesting point
of our formula-to-circuit conversion is that most of the construction (namely
the construction of a TSLP for the input formula) is purely syntactic. The
remaining part (the transformation of the TSLP into a circuit) is straightforward.
In contrast, the constructions from [18, 21, 23, 106] construct a log-depth circuit
from a formula in one step.

Universal coding for unlabeled binary trees. In [111], Kieffer, Yang, and
Zhang presented grammar-based source coding for unlabeled binary trees. For
this, they first represent the input tree by its minimal DAG. In a second step,
the minimal DAG is encoded by a binary string; this step is similar to the binary
coding of SLPs from [72] presented in Section 3.9. Combining both steps yields
a tree encoder Edag : T → {0, 1}∗, where T denotes the set of all unlabeled
binary trees. In order to define universality of such a tree encoder, the classical
notion of an information source on finite sequences is replaced in [111] by the
notion of a structured tree source. A tree source is a collection of probability
distributions (pn)n∈N, where every pn is a distribution on a finite non-empty
subset Pn ⊆ T , and these sets partition T . The main cases considered in [111]
as well as in this work are (i) leaf-centric sources, where Pn is the set of all
binary trees with n leaves, and (ii) depth-centric sources, where Pn is the set of
all binary trees of depth n. Then, the authors of [111] introduce two properties
on binary tree sources: The domination property (see Section 4.8, where it is
called the weak domination property) and the representation ratio negligibility
property. The latter states that the average compression ratio achieved by the
minimal DAG for trees of size n converges to zero for n → ∞, where the size
of a binary tree t is measured in the number of leaves of the tree (denoted by
leafsize(t)). The technical main result of [111] states that for every structured
tree source (pn)n∈N satisfying the domination property and the representation
ratio negligibility property the average-case redundancy∑

t∈Pn,pn(t)>0

1

leafsize(t)
· (|Edag(t)|+ log pn(t)) · pn(t) (4.1)

71

converges to zero for n → ∞. Finally, two classes of tree sources having the
domination property and the representation ratio negligibility property are
presented in [111]. One is a class of leaf-centric sources, the other one is a class
of depth-centric sources. Both classes have the property that every tree with a
non-zero probability is balanced in a certain sense, the precise definitions can be
found in Section 4.8.1 and Section 4.8.2. As a first contribution, we show that
for these sources not only the average-case redundancy but also the worst-case
redundancy

max
t∈Pn,pn(t)>0

1

leafsize(t)
· (|Edag(t)|+ log pn(t)) (4.2)

converges to zero for n→∞. More precisely, we show that (4.2) is bounded by
O(log log n/ log n) (respectively, O((log log n)2/ log n)) for the presented class of
leaf-centric tree sources (respectively, depth-centric tree sources). To prove this,
we use that the minimal DAG of weakly balanced binary trees has size O(n/ log n)
as described above. Further, we use a result presented in [58] according to which
the size of the minimal DAG of a suitably balanced binary tree of size n is
bounded by O(n · log log n/ log n) (see also Section 4.3.1, Theorem 4.3.4).

Our main resut in the context of universal coding is the application of TSLPs.
In Section 4.9.2, we define a binary encoding of TSLPs similar to the ones for
SLPs [72] and DAGs [111]. We then consider the tree encoder Etslp : T → {0, 1}∗
based on TSLPs and prove that its worst-case redundancy (that is defined as
in (4.2) with Edag replaced by Etslp) is bounded by O(log log n/ log n) for every
structured tree source that satisfies the strong domination property defined
in Section 4.9.3. The strong domination property is a strengthening of the
domination property from [111], and this is what we have to pay extra for our
TSLP-based encoding in contrast to the DAG-based encoding from [111]. On the
other hand, our approach has two main advantages over [111]: The representation
ratio negligibility property from [111] is no longer needed and we get bounds
on the worst-case redundancy instead of the average-case redundancy. Both
advantages are based on the fact that the grammar-based compressor described
above compute a TSLP of worst-case size O(n/ log n) for an unlabeled binary
tree of size n. Finally, we present a class of leaf-centric sources (Section 4.8.1)
as well as a class of depth-centric sources (Section 4.8.2) having the strong
domination property. These classes are orthogonal to those considered in [111].

The results of this chapter appeared in [45, 46].

4.1 Trees and patterns

Ranked alphabets and ranked trees. A ranked alphabet F is a finite set
of symbols where each symbol f ∈ F has an associated rank i ∈ N. We denote
by Fi ⊆ F the set of symbols of rank i. We assume that F0 6= ∅, i.e., there is at
least one symbol of rank 0. The idea is that a tree consists of nodes which are
labeled by symbols from F and if a node has a label f ∈ Fi, then this node has
exactly i ordered children.

72

a

f

ba

f

g

b

f

aa

f

g

f

g

b

a

f

f

bf

aa

b

Figure 4.1: The trees t1, t2, t3 and t4 (from left to right) described in Example 4.1.

We consider ranked, ordered, labeled trees in this chapter (which we simply
call trees). The trees are ranked and labeled because each node of a tree is labeled
by a symbol from a ranked alphabet F and the rank of the label determines the
number of children of the node. The trees are ordered because the children of
each node are linearly ordered. Formally, we define trees as terms that are built
from the symbols of F according to their rank. Let T (F) be the smallest set
such that

• for all a ∈ F0 we have a ∈ T (F) and

• if f ∈ Fi for i ≥ 1 and t1, . . . , ti ∈ T (F), then f(t1, . . . , ti) ∈ T (F).

A tree t over a ranked alphabet F is an element in the set T (F) and the set
T (F) contains all trees over F .

Example 4.1. Let F = {a, b, g, f} such that a and b are symbols of rank 0, g
is a symbol of rank 1 and f is a symbol of rank 2, i.e., F0 = {a, b}, F1 = {g},
F2 = {f} and Fi = ∅ for i ∈ N \ {0, 1, 2}. For example t1 = a ∈ T (F) denotes
the tree that consists of a single (root) node labeled by a. Another example is
t2 = f(a, b) which denotes the tree with root node labeled by f and two children,
the left child is labeled by a and the right child is labeled by b. More complex
examples are t3 = f(f(a, a), g(b)) and t4 = f(f(b, f(f(a, a), b)), g(f(a, g(b)))).
The trees t1, t2, t3 and t4 are depicted in Figure 4.1.

On multiple points throughout this chapter, we will consider a tree t ∈ T (F)
as a graph with nodes and edges in the usual way (see Section 2.3). In this
setting, we denote by nodes(t) the set of nodes of t and we use the function
λt : nodes(t) → F such that λt(v) is the label of node v. If t is clear from
the context, we omit the subscript and just write λ(v). Further, we denote
by labels(t) = {λt(v) | v ∈ nodes(t)} the set of symbols that occur as a label
in the tree t. A node v ∈ nodes(t) is a leaf if and only λt(v) has rank 0 and
thus v has no children. The size |t| of a tree t is the number of nodes of t,
i.e., |t| = |nodes(t)|. The leaf size leafsize(t) of t is the number of leaves, i.e.,
leafsize(t) = |{v ∈ nodes(t) | λt(v) ∈ F0}|.

73

A tree t is called a binary tree if every node has either zero or two children,
i.e., labels(t) ⊆ F0 ∪ F2. Binary trees play a special role among trees in this
work as well as in various applications. Note that for a binary tree t we have
|t| = 2 · leafsize(t)− 1.

Example 4.2. Let a, b ∈ F0 and f ∈ F2. Consider the binary tree t = f(a, b)
such that the root node of t is v0, the left child node of v0 is v1 and the right child
of v0 is v2 (this tree is called t2 in Example 4.1 and is depicted at the second
left-to-right position in Figure 4.1). We have nodes(t) = {v0, v1, v2}, λt(v0) = f ,
λt(v1) = a, λt(v2) = b and labels(t) = {a, b, f}. The nodes v1 and v2 are leaves
because they are labeled by symbols of rank 0. Further, we have |t| = 3 and
leafsize(t) = 2 because two of the three nodes of t are leaves.

Occasionally, we consider unlabeled trees. We model unlabeled trees as
follows: The set T (F) consists of unlabeled trees if and only if the ranked
alphabet satisfies |Fi| ≤ 1 for all i ≥ 0. This means that for unlabeled trees the
number of children of a node uniquely determines the label and thus the label
is basically irrelevant. In particular, we discuss universal coding for unlabeled
binary trees in Section 4.7 and the following sections. We model this class as
trees over the ranked alphabet F = {a, f} where a ∈ F0 and f ∈ F2.

The depth d(t) of a tree t is recursively defined by d(a) = 0 for a ∈ F0 and
d(f(t1, . . . , tn)) = max{d(ti) | i ∈ [1, n]} + 1 for f ∈ Fn. Note that the depth
d(t) is still the maximal length of a path from the root to a leaf as it is defined
in Section 2.3. For a tree t and a node v ∈ nodes(t), we denote by subtreet(v)
the subtree of t rooted at v. Vice versa, a tree t′ is a subtree of t if there is
a node v ∈ nodes(t) such that t′ = subtreet(v). Occasionally, we use the leaf
size leafsizet(v) of a node v of t which refers to the leaf size of subtreet(v), i.e.,
leafsizet(v) = leafsize(subtreet(v)). If t is clear from the context, we again omit
the subscript and just write subtree(v), respectively leafsize(v).

Example 4.3. Let a, b ∈ F0, g ∈ F1, f ∈ F2 and t = f(f(a, a), g(b)) (this tree
is called t3 in Example 4.1 and is depicted at the third left-to-right position in
Figure 4.1). The depth of t is d(t) = 2. Let v be the unique node in nodes(t) such
that λt(v) = g. We have subtreet(v) = g(b) and leafsize(v) = 1 since subtreet(v)
has exactly one leaf node.

The following well known counting lemma will be needed several times:

Lemma 4.1.1. Let |F| ≤ σ. The number of trees t ∈ T (F) such that |t| ∈ [1, n]
is bounded by 4

3 (4σ)n.

Proof. The number of rooted ordered (but unranked trees) with k nodes is

1

k + 1

(
2k

k

)
≤ 4k

(the k-th Catalan number, see e.g. [41, 107]). Hence, the number of trees in the
lemma can be bounded by

σn ·
n∑
k=1

4k ≤ σn · 4n+1 − 1

3
≤ 4

3
(4σ)n.

74

Tree patterns and contexts. Fix a ranked alphabet F in the following. Let
X = {x1, x2, . . . } be a countably infinite set of symbols of rank 0 which we
call parameters. We assume F ∩ X = ∅. We use the parameters as leaf labels
in the same sense as we use symbols from F0. Intuitively, a tree pattern or
simply pattern is an incomplete tree with holes which are represented by different
parameters. Formally, let T (F ∪ X) be the smallest set such that

• xi ∈ T (F ∪ X) for i ≥ 1,

• for all a ∈ F0 we have a ∈ T (F ∪ X) and

• if f ∈ Fi for i ≥ 1 and t1, . . . , ti ∈ T (F∪X), then f(t1, . . . , ti) ∈ T (F∪X).

An element t ∈ T (F ∪ X) is called a pattern if and only if there do not exist
different nodes in t that are labeled by the same parameter, i.e., no parameter
xi occurs more than once in the term t for i ≥ 1. For example, if h ∈ F3

then h(x1, x21, x99) and h(x1, x2, x3) are patterns, whereas h(x1, x1, x3) is not a
pattern since x1 is used twice as a label. Nodes that are labeled by parameters
are also called parameter nodes. Note that each tree t ∈ T (F) is a pattern. We
naturally extend the definitions of nodes(t), λt and labels(t) from trees over a
ranked alphabet F to patterns over F ∪ X as it can be seen in Example 4.4.
The size of a pattern t is |t| = |{v ∈ nodes(t) | λt(v) /∈ X}|, i.e., we do not count
parameter nodes. Similarly, the leaf size leafsize(t) of t is the number of leaves
of t which are not labeled by a parameter.

Example 4.4. Let a ∈ F0 and f ∈ F2. Consider the pattern t = f(a, x1) such
that v0 is the root node of t, the left child of v0 is v1 and the right child of v0

is v2. We have nodes(t) = {v0, v1, v2}, λt(v0) = f , λt(v1) = a, λt(v2) = x1 and
labels(t) = {x1, a, f}. We have |t| = 2 and leafsize(t) = 1 because there are two
nodes which are not parameter nodes and one of those is a leaf. The pattern t is
depicted at the first left-to-right position in Figure 4.2.

We use <t for the depth-first-order on nodes(t). Formally, u <t v if u is an
ancestor of v or if there exists a node w and i < j such that the i-th child of w is
an ancestor of u and the j-th child of w is an ancestor of v. A pattern t is valid
if (i) labels(t) ∩ X = {x1, . . . , xn} for some n ≥ 0 and (ii) for all u, v ∈ nodes(t)
with λ(u) = xi, λ(v) = xj and u <t v we have i < j. In other words, a pattern
t is valid if and only if the parameter nodes in t are consecutively numbered
(starting with x1) with respect to the depth-first-order. Note that in the term
representation of a pattern t, the left-to-right order of the nodes in the term
matches the depth-first-order of the nodes in the pattern. For example, if h ∈ F3

then the patterns h(x21, x2, x99), h(x10, x11, x99) and h(x4, x5, x6) are not valid,
whereas h(x1, x2, x3) is valid. For a pattern t we define valid(t) as the unique
valid pattern which is obtained from t by renaming the parameters. For instance,
if h ∈ F3 then valid(h(x21, x2, x99)) = h(x1, x2, x3). For a valid pattern t in

75

which the parameters x1, . . . , xn occur, we write rank(t) = n (the rank of the
pattern t is n). Note that a valid pattern of rank 0 is just a tree.

We call a valid pattern of rank 1 a context, i.e., a context has exactly one
leaf which is labeled by a parameter x1. In Section 4.6 and Section 4.9 where
contexts are mainly used, we label the single parameter node by x instead of x1

since there is no other parameter occurring in a context.
We say that a valid pattern p ∈ T (F ∪X) of rank n occurs in a tree t ∈ T (F)

if there exist trees t1, . . . , tn ∈ T (F) such that replacing the parameter xi by ti for
i ∈ [1, n] yields a subtree of t. We also write p[t1, . . . , tn] for the tree (or pattern)
which is obtained from the pattern p and the trees (or patterns) t1, . . . , tn by
replacing the parameter xi by ti for i ∈ [1, n]. Note that in general p[t1, . . . , tn]
is not a (valid) pattern if t1, . . . , tn are patterns because parameters could occur
more than once after the replacements, but whenever we use replacements of this
form we make sure that the result is a (valid) pattern. For example, if h ∈ F3

and s = t = h(x1, x2, x3) then s[x1, t[x2, x3, x4], x5] = h(x1, h(x2, x3, x4), x5) is
a valid pattern.

In the case of two contexts s and t, the single parameter ensures that s[t]
and t[s] are again contexts. The depth d(t) of a pattern t is the depth of the
tree t[a, . . . , a] for some a ∈ F0, i.e., the depth of a pattern is still the maximal
length of a path from the root to a leaf (including leaves labeled by parameters).

Example 4.5. Let a, b ∈ F0, g ∈ F1 and f ∈ F2. Consider the valid
pattern p = f(f(x1, a), x2)) with rank(t) = 2. The pattern p is depicted
at the second left-to-right position in Figure 4.2. Further, consider the tree
t = f(f(b, f(f(a, a), b)), g(f(a, g(b)))) (this tree is called t4 in Example 4.1 and
is depicted at the last left-to-right position in Figure 4.1). The pattern p occurs
in t because p[a, b] = f(f(a, a), b)) is a subtree of t.

We extend the definition of subtreet(v) from trees to patterns as follows: For
a valid pattern t ∈ T (F ∪ X) and a node v ∈ nodes(t) we denote by subtreet(v)
the valid pattern valid(s), where s is the subtree rooted at v in t. We further
write t \ v for the valid pattern valid(r), where r is obtained from t by replacing
the subtree rooted at v by a new parameter.

Example 4.6. Let a ∈ F0, f ∈ F2 and h ∈ F3. Consider the valid pattern
t = h(a, h(x1, a, f(a, x2)), x3) and let v be the unique f-labeled node. We have
subtreet(v) = f(a, x1) and t \ v = h(a, h(x1, a, x2), x3). The patterns t (third
left-to-right position), subtreet(v) (first left-to-right position) and t \ v (last
left-to-right position) are depicted in Figure 4.2.

4.2 Tree straight-line programs

For the purpose of defining tree grammars, we need two types of ranked alphabets:
Terminals and nonterminals. The ranked alphabet of terminals is mainly called F
in the following and we denote by N the ranked alphabet for the nonterminals. As
before, we use Fi ⊆ F for the terminals of rank i andNi ⊆ N for the nonterminals

76

f

x1a

f

x2f

ax1

h

x3h

f

x2a

ax1

a

h

x3h

x2ax1

a

Figure 4.2: The patterns described in Example 4.4, Example 4.5 and Example 4.6.

of rank i. Further, we use X = {x1, x2, . . . } for the set of parameters as above.
We assume that the three sets are pairwise disjoint, i.e., N ∩ F = ∅, N ∩ X = ∅
and F ∩ X = ∅. A tree straight-line program (TSLP) G is a context-free tree
grammar (see [32] for more details on context-free tree grammars) with the
property that exactly one tree is derived. We use calligraphic capital letters
(e.g. G) for TSLPs in the following to distinguish from the notation we used for
SLPs. The crucial point in order to extend SLPs (see Section 3.1) to TSLPs is
the following: A rule of an SLP is of the form A→ w where w is a string over
the nonterminals and the alphabet symbols. A rule of a TSLP is of the form
A→ t where t is a valid pattern over F ∪N ∪ X .

Formally, a TSLP is a tuple G = (N ,F , S, P), where S ∈ N0 is the start
nonterminal, and P is a finite set of rules (or productions) of the form A→ t. If
n ≥ 0 and A ∈ Nn, then it is required that t ∈ T (F ∪N ∪ X) is a valid pattern
such that rank(t) = n. For instance, if A ∈ N0 then t ∈ T (F ∪N) is a tree over
the ranked alphabet F ∪N . As for SLPs, we have the following conditions in
order to obtain the property that exactly one tree is derived from G:

• For every A ∈ N there is exactly one rule (A→ t) ∈ P .

• The relation {(A,B) ∈ N ×N | (A→ t) ∈ P,B ∈ labels(t)} is acyclic.

The above conditions ensure that from every nonterminal A ∈ Nn exactly one
valid pattern valG(A) ∈ T (F ∪ X) with rank(valG(A)) = n is derived by using
the rules as rewrite rules in the usual sense until no nonterminal occurs.

Formally, for valid patterns t, t′ ∈ T (F ∪ N ∪ X) we say t′ is derived from
t by G, briefly t ⇒G t′, if and only if there is A ∈ Nn (for some n ≥ 0) and
a rule (A → s) ∈ P such that t contains a node v ∈ nodes(t) with λt(v) = A
and replacing the subtree A(t1, . . . , tn) rooted at v in t by s[t1, . . . , tn] yields
the valid pattern t′. Let ⇒∗G be the reflexive, transitive closure of ⇒G . Then
we have valG(A) ∈ T (F ∪ X) with A ∈ Nn is the uniqe pattern such that
A(x1, . . . , xn)⇒∗G valG(A).

We omit the subscript G and simply use val(A) and ⇒ if the TSLP G is clear
from the context. The tree defined by G is val(G) = valG(S). The size |G| of a
TSLP G = (N ,F , S, P) is the total size of all patterns on the right-hand sides of
rules in P , i.e., |G| =

∑
(A→t)∈P |t|.

77

S =⇒

f

B

A

A =⇒

f

B

A

B

B

b

=⇒

f

B

A

f

aB

b

∗
=⇒

f

f

af

af

ab

f

af

ab

Figure 4.3: A derivation of the TSLP from Example 4.7.

Example 4.7. Let G = ({S,A,B}, {a, b, f}, S, P) with S,A ∈ N0, B ∈ N1,
a, b ∈ F0, f ∈ F2 and rules

P = {S → f(A,B(A)), A→ B(B(b)), B → f(x1, a)}.

A possible derivation of val(G) from S is depicted in Figure 4.3. We have |G| = 9.

Note that for the size of a TSLP we do not count nodes of right-hand sides
that are labeled by a parameter. To justify this, we use the following internal
representation of valid patterns (which is also used in [66]): For every non-
parameter node v of a tree, with children v1, . . . , vn we store in a list all pairs
(i, vi) such that vi is a non-parameter node. Moreover, we store for every symbol
(node label) its rank. This allows to reconstruct the valid pattern, since we know
the positions where parameters have to be inserted.

Chomsky normal form and monadic TSLPs. A TSLP is in Chomsky
normal form (see e.g. [85]) if for every rule A→ t with A ∈ Nn for some n ≥ 0
one of the following two cases holds:

t = B(x1, . . . , xi−1, C(xi, . . . , xk), xk+1, . . . , xn) for B,C ∈ N (4.3)

t = f(x1, . . . , xn) for f ∈ Fn. (4.4)

If the tree t in the corresponding rule A→ t is of type (4.3), we write index(A) = i.
If otherwise t is of type (4.4), we write index(A) = 0. One can transform every
TSLP efficiently into an equivalent TSLP in Chomsky normal form with a small
size increase. More precisely, it is shown in [85, Theorem 5] that from a TSLP
G, where all terminals and nonterminals have rank at most r, one can construct
in time O(r · |G|) a TSLP G′ in Chomsky normal form of size |G′| ≤ O(G) such
that val(G′) = val(G).

We define the rooted, ordered derivation tree DG of a TSLP G = (N ,F , S, P)
in Chomsky normal form: The inner nodes of the derivation tree are labeled by
nonterminals and the leaves are labeled by terminal symbols. Formally, we start
with the root node of DG and label it by the start nonterminal S. Then, for

78

every nonterminal A whose corresponding right-hand side is of type (4.3) and
every node in DG labeled by A, we attach a left child labeled by B and a right
child labeled by C. If the right-hand side of the rule for A is of type (4.4), we
attach a single child labeled by f to A. Note that these nodes are the leaves of
DG and they represent the nodes of the tree val(G). We denote by depth(G) the
depth of the derivation tree DG .

A TSLP is called monadic if every nonterminal has rank at most one and
thus each right-hand side is a pattern of rank at most one (a tree or a context).
The following result was shown in [85]:

Theorem 4.2.1 ([85, Theorem 10]). From a given TSLP G in Chomsky normal
form such that every nonterminal has rank at most k and every terminal symbol
has rank at most r, one can compute in time O(|G| · k · r) a monadic TSLP H
with the following properties:

• val(G) = val(H),

• |H| ≤ O(|G| · r),

• depth(H) ≤ O(depth(G)).

Moreover, one can assume that every rule of H = (N ,F , S, P) has one of the
four forms

• A→ B(C) (A,C ∈ N0, B ∈ N1)

• A→ f(A1, . . . , An) (A,A1, . . . , An ∈ N0)

• A→ B(C(x1)) (A,B,C ∈ N1)

• A→ f(A1, . . . , Ai−1, x1, Ai, . . . , An−1) (A1, . . . , An−1 ∈ N0, A ∈ N1)

where f ∈ Fn is a terminal symbol.

When we use monadic TSLPs later we will simply label the parameter node
by x instead of x1 (since there is at most one parameter occurring on each
right-hand side).

Grammar-based tree compressors. A grammar-based tree compressor ψ
is an algorithm which constructs from a given tree t ∈ T (F) a TSLP ψ(t)
which produces the tree t. Key results of this chapter are the constructions of
two grammar-based tree compressors: TreeBiSection (Section 4.4) and BU-Shrink
(Section 4.5). Both algorithms use a well known tree compression technique where
a tree is represented by a directed acyclic graph. This concept is explained in the
next section. The main achievement of both grammar-based tree compressors is
that the produced TSLP has size O(n/ logσ n), where n is the size of the input
tree t and σ = |labels(t)| is the number of labels occurring in t. It is important
that this result is based on the assumption that the maximal number of children
of a node in t is bounded by a constant. In Section 4.4.3 the reader finds a
discussion as well as a simple workaround solution for the case that the number
of children of a node is unrestricted.

79

f

f

aa

f

af

aa

f

f

f

a

Figure 4.4: A tree (left) and its minimal DAG (right).

4.3 Directed acyclic graphs

A commonly used tree compression scheme is obtained by writing down repeated
subtrees only once. In that case all occurrences except for the first are replaced
by a pointer to the first one. This leads to a node-labeled minimal directed
acyclic graph or briefly minimal DAG for a tree. It is well known that every tree
t has a unique minimal DAG which we call simply the DAG of t or DAG(t) in
the following. The size |DAG(t)| is the number of nodes of the DAG of t, i.e.,
|DAG(t)| is the number of different (pairwise non-isomorphic) subtrees of the
input tree t. An example can be found in Figure 4.4 where the minimal DAG of
size 4 is shown for the input tree t = f(f(f(a, a), a), f(a, a)).

The DAG of a tree can be seen as a TSLP in which every nonterminal has
rank zero: Each node v of the DAG corresponds to a nonterminal Av ∈ N0.
A node v with label f ∈ Fn and n children v1, . . . , vn corresponds to the
rule Av → f(Av1

, . . . , Avn). The root node of the DAG corresponds to the
start nonterminal. In this form, the DAG can be seen as grammar-based tree
compressor where the produced TSLP has size at most r · |DAG(t)|, where r is
the maximal rank of a symbol in the input tree t. The TSLP which corresponds
to the DAG depicted in Figure 4.4 is shown in Example 4.8.

Example 4.8. Let a ∈ F0, f ∈ F2 and t = f(f(f(a, a), a), f(a, a)). The tree
t is depicted on the left of Figure 4.4. The minimal DAG of t is depicted
on the right of Figure 4.4. If this DAG is represented by a TSLP, we obtain
({A0, A1, A2, A3}, {f, a}, A0, P), where

P = {A0 → f(A1, A2), A1 → f(A2, A3), A2 → f(A3, A3), A3 → a}.

Vice versa, it is straightforward to transform a TSLP in which every non-
terminal has rank zero into an equivalent (not necessarily minimal) directed
acyclic graph. It is shown in [38] that the DAG of a tree t can be constructed
in time O(|t|). The following lemma shows that the DAG of a tree can be also
constructed in logspace.

Lemma 4.3.1. The DAG of a given tree t can be computed in logspace.

80

Proof. Assume that the node set of the input tree t is nodes(t) = {1, . . . , n}.
Given two nodes i, j of t one can verify in logspace whether the subtrees subtreet(i)
and subtreet(j) are isomorphic (we write subtreet(i) ∼= subtreet(j) in this case)
by performing a depth-first left-to-right traversal over both trees and thereby
comparing the two trees symbol by symbol.

The nodes and edges of the DAG of t can be enumerated in logspace as
follows. A node i ∈ [1, n] of t is a node of the DAG if there is no j < i with
subtreet(i) ∼= subtreet(j). By the above remark, this can be checked in logspace.
Let i be a node of the DAG and let j be the k-th child of i in t. Then j′

is the k-th child of i in the DAG where j′ is the smallest number such that
subtreet(j

′) ∼= subtreet(j). Again by the above remark this j′ can be found in
logspace.

The following example first shows that DAG compression is not enough
to obtain a TSLP of size o(n) for an input tree t of size n even if t is an
unlabeled binary tree. Further, it shows the advantage of TSLPs over DAGs
when nonterminals of rank greater than zero are allowed:

Example 4.9. Consider the binary tree tn = f(f(f(· · · f(a, a), · · · a), a), a),
where f ∈ F2 occurs n times and a ∈ F0 occurs n+ 1 times, i.e., |tn| = 2n+ 1
and leafsize(tn) = n+ 1. All subtrees of tn which are rooted at an f -labeled node
have different size and thus are pairwise non-isomorphic. Adding the subtree
with a single node labeled by a yields |DAG(t)| = n+ 1.

Consider the TSLP Gk = ({A0, . . . , Ak}, {a, f}, A0, P), where P contains

Ak → f(x1, a), Ai → Ai+1(Ai+1(x1)) for i ∈ [1, k − 1], A0 → A1(A1(a)).

We have val(Gk) = t2k and |Gk| = 2k + 3.

4.3.1 DAG compression of weakly balanced binary trees

We provide a key result of this chapter in the following. We prove in Theorem 4.3.2
that the DAG of certain weakly balanced binary trees has size O(n/ logσ n),
where σ is the number of different labels occurring in the input tree. We will use
this result in Section 4.4.2, where we analyze the size of the TSLP produced by
the grammar-based tree compressor TreeBiSection. Further, we apply this result
in Section 4.8, where DAG compression is used for universal source coding.

Let t ∈ T (F) be a binary tree, i.e., all nodes of t have either zero or two
children and thus labels(t) ⊆ F0 ∪ F2. Let β ∈ R such that 0 < β ≤ 1. Recall
that the leaf size leafsizet(v) of a node v ∈ nodes(t) is the number of leaves of
the subtree rooted at v, i.e., leafsizet(v) = leafsize(subtreet(v)). We say that an
inner node v with children v1 and v2 is β-balanced if the following holds: If
leafsizet(vi) = ni for i ∈ [1, 2], then n1 ≥ βn2 and n2 ≥ βn1. We say that t is
β-balanced if the following holds: For all inner nodes u and v such that v is a
child of u, we have that u is β-balanced or v is β-balanced.

81

Theorem 4.3.2. If t is a β-balanced binary tree such that |labels(t)| = σ and
leafsize(t) = n, then |DAG(t)| ≤ O

(
α·n

logσ n

)
, where α = 1 + log1+β(β−1) only

depends on β.2

Proof. Let us fix a binary tree t with leafsize(t) = n and |labels(t)| = σ as in the
theorem. First, note that |t| = 2n− 1 and σ ≤ 2n− 1. Let us fix a number k
that will be defined later. We first bound the number of different subtrees with
at most k leaves in t. Afterwards we will estimate the size of the remaining top
tree. The same strategy is used for instance in [55, 79] to derive a worst-case
upper bound on the size of binary decision diagrams.

Claim 1. The number of different subtrees of t with at most k leaves is bounded
by dk with d = 16σ2.

Proof. A subtree of t with at most k leaves has at most 2k − 1 nodes, each of
which is labeled by one of σ many labels. Hence, by Lemma 4.1.1 we can bound
the number of different subtrees of t with at most k leaves by

4

3
(4σ)2k−1 =

1

3σ
(4σ)2k ≤ (16σ2)k.

Let top(t, k) be the tree obtained from t by removing all nodes with leaf size
at most k. Recall that α = 1 + log1+β(β−1).

Claim 2. The number of nodes of top(t, k) is bounded by 4α · nk .

Proof. The tree top(t, k) has at most n/k leaves since it is obtained from t by
removing all nodes with leaf size at most k. Each node in top(t, k) has still at
most two children but in contrast to the tree t there might be nodes with exactly
one child in top(t, k) since it is possible that only one of the two children of a
node in t has leaf size at most k. We show that the length of every unary chain
in top(t, k) is bounded by 2α, where a unary chain is a sequence of (parent-child)
nodes with exactly one child each. This implies that top(t, k) has at most 4α ·n/k
many nodes.

Let v1, . . . , vm be a unary chain in top(t, k) where vi is the single child node
of vi+1 for i ∈ [1,m− 1]. Moreover, let v′i be the removed sibling of vi in t, see
Figure 4.5. Note that each node v′i has leaf size at most k.

We claim that the leaf size of v2i+1 is larger than (1 + β)ik for all i with
2i+ 1 ≤ m. For i = 0 note that v1 has leaf size more than k since otherwise it
would have been removed in top(t, k). For the induction step, assume that the
leaf size of v2i−1 is larger than (1 + β)i−1k. One of the nodes v2i and v2i+1 must
be β-balanced. Hence, v′2i−1 or v′2i must have leaf size at least β(1 + β)i−1k.
Hence, v2i+1 has leaf size more than (1 + β)i−1k + β(1 + β)i−1k = (1 + β)ik.

If m ≥ 2α+ 1, then v2α−1 exists and has leaf size at least (1 + β)α−1k = k/β,
which implies that the leaf size of v′2α−1 or v′2α (both nodes exist) is more than
k, which is a contradiction. Hence, we must have m ≤ 2α. Figure 4.5 shows an
illustration of our argument.

2Since 0 < β ≤ 1, we have α ≥ 1.

82

≤ k ≤ k

v1 v′1

v2 v′2

v3 v′3

v4 v′4

v5

≥ βk

≥ βk

≥ β(1 + β)k

≥ β(1 + β)k

≥ k

OR

OR

Figure 4.5: A chain within a top tree. The subtree rooted at v1 has more than
k leaves.

Using Claim 1 and 2 we can now prove the theorem: The number of nodes
of the DAG of t is bounded by the number of different subtrees with at most
k leaves (Claim 1) plus the size of the remaining tree top(t, k) (Claim 2). Let
k = 1

2 logd n. Recall that d = 16σ2 and hence log d = 4 + 2 log σ, which implies
that logd n = Θ(logσ n). With Claim 1 and 2 we get the following bound on the
size of DAG(t):

dk + 4α · n
k

= d(logd n)/2 +
8α · n
logd n

=
√
n+

8α · n
logd n

≤ O
(
α · n

logd n

)
= O

(
α · n

logσ n

)
This proves the theorem.

Obviously, one could relax the definition of a β-balanced tree by only requiring
that if (v1, v2, . . . , vδ) is a path down in the tree, where δ is a constant, then one
of the nodes v1, v2, . . . , vδ must be β-balanced. Theorem 4.3.2 would still hold
in this setting with α depending linearly on δ.

In the remaining section we present some more results on the size of DAGs
that are related to Theorem 4.3.2. If β is a constant, then a β-balanced binary
tree t has depth O(log |t|). One might think that this logarithmic depth is
responsible for the small size of the DAG in Theorem 4.3.2. But this intuition is
wrong:

83

Figure 4.6: Tree t16 from the proof of Theorem 4.3.3. The labels (and the edge
directions) are omitted due to better clarity of the figure. Formally, each leaf is
labeled by a, each node with one child is labeled by b and each node with two
children is labeled by c.

Theorem 4.3.3. There is a family of trees tn ∈ T ({a, b, c}) with a ∈ F0, b ∈ F1,
and c ∈ F2 (n ≥ 1) with the following properties:

• The depth of tn is Θ(log n).

• |tn| = Θ(n)

• |DAG(tn)| ≥ n

Proof. Let k = n/ log n (we ignore rounding problems with log n, which only af-
fect multiplicative factors). Choose k different binary trees s1, . . . , sk ∈ T ({a, c}),
each having log n many internal nodes. This is possible: By the asymptotic
formula for the Catalan numbers (see e.g. [41, p. 38]) the number of different
binary trees with log n many internal nodes is asymptotically equal to

4logn√
π · log3 n

=
n2√

π · log3 n
> n.

Then consider the trees s′i = blogn(si), i.e., s′i starts with a unary chain of
log n many nodes (all labeled by b) and at the end of this chain we attach the
tree si. Each of these trees has size Θ(log n) and depth Θ(log n). Next, let
un ∈ T ({c} ∪ X) be a pattern of rank k (un contains the parameters x1, . . . , xk
as leaf labels) such that un is a balanced binary valid pattern (all non-parameter
nodes are labeled by c) of depth Θ(log k) = Θ(log n) and size Θ(k) = Θ(n/ log n).
We finally take tn = un[s′1, . . . , s

′
k]. Figure 4.6 shows the tree t16. We obtain

|tn| = Θ

(
n

log n

)
+ Θ(k · log n) = Θ(n).

The depth of tn is Θ(log n). Finally, in the DAG of tn the unary b-labeled
nodes cannot be shared. Basically, the pairwise different trees s1, . . . , sk work
as different leaf labels that are attached to the b-chains. But the number of
b-labeled nodes in tn is k · log n = n.

84

Note that the trees from Theorem 4.3.3 are not β-balanced for any constant
0 < β < 1, and by Theorem 4.3.2 this is necessarily the case. Interestingly, if
we assume that every subtree s of a binary tree t has depth at most O(log |s|),
then Hübschle-Schneider and Raman [58] have implicitly shown the bound
O((n · log logσ n)/ logσ n) for the size of the minimal DAG.

Theorem 4.3.4 ([58]). Let α be a constant. Then there is a constant β that
only depends on α such that the following holds: If t is a binary tree of size n
with |labels(t)| = σ such that every subtree s of t has depth at most α log |s|+ α,

then |DAG(t)| ≤ β·n·log logσ n
logσ n

+ β.

We can show that the bound in this result is (asymptotically) sharp:

Theorem 4.3.5. There is a family of trees tn ∈ T ({a, b, c}) with a ∈ F0, b ∈ F1,
and c ∈ F2 (n ≥ 1) with the following properties:3

• |tn| = Θ(n)

• Every subtree s of a tree tn has depth O(log |s|).

• The size of the minimal dag of tn is Ω(n·log log n
logn).

Proof. The tree tn is similar to the one from the proof of Theorem 4.3.3. Again,
let k = n/ log n. Fix a balanced binary tree vn ∈ T ({a, c}) with log k = Θ(log n)
many leaves. From vn we construct k many different trees s1, . . . , sk ∈ T ({a, b, c})
by choosing in vn an arbitrary subset of leaves (there are k such subsets) and
replacing all leaves in that subset by b(a). Note that |si| = Θ(log n). Moreover,
every subtree s of a tree si has depth O(log |s|) (since vn is balanced). Then
consider the trees s′i = blog log n(si) (so, in contrast to the proof of Theorem 4.3.3,
the length of the unary chains is log log n). Clearly, |s′i| = Θ(log n). Moreover,
we still have the property that every subtree s of a tree s′i has depth O(log |s|):
If the subtree s is rooted in a node from si, then this is clear. Otherwise,
the subtree s has the form bh(si) for some h ≤ log log n. This tree has depth
h+ Θ(log log n) = Θ(log log n) and size Θ(log n). Finally we combine the trees
s′1, . . . , s

′
k ∈ T ({a, b, c}) in a balanced way to a single tree using the binary

valid pattern un of rank k from the proof of Theorem 4.3.3, i.e., we define
tn = un[s′1, . . . , s

′
k]. Then, |tn| = Θ(n). Moreover, by the same argument as in

the proof of Theorem 4.3.3,we have

|DAG(tn)| ≥ Ω

(
n · log log n

log n

)
since the nodes in the k = n/ log n many unary chains of length log log n
cannot be shared with other nodes. It remains to show that every subtree
s of tn has depth O(log |s|). For the case that s is a subtree of one of the
trees s′i, this has been already shown above. But the case that s is rooted

3Again, the unary node label b can replaced by the pattern c(d, x), where d ∈ F0 \ {a} to
obtain a binary tree.

85

in a node from the pattern un is also clear: In that case, s is of the form
s = u′[s′i, . . . , s

′
j], where u′ = subtreeun(v) for some node v ∈ nodes(un) and

1 ≤ i ≤ j ≤ k. Assume that d is the depth of u′. Since un is a balanced, we
have |u′| ≥ Ω(2d) and j − i + 1 ≥ Ω(2d). Hence, s = u′[s′i, . . . , s

′
j] has size

Ω(2d + 2d · log n) = Ω(2d · log n) and depth d + Θ(log log n). This shows the
desired property since log(2d · log n) = d+ log log n.

Hübschle-Schneider and Raman [58] used Theorem 4.3.4 to prove the upper
bound O((n · log logσ n)/ logσ n) for the size of the top dag of an unranked tree
of size n with σ many node labels.

4.4 TreeBiSection

Let t ∈ T (F) be a tree of size n over a ranked alphabet F with |labels(t)| = σ.
In this section we present the grammar-based tree compressor TreeBiSection.
The goal is to construct a TSLP for t of size O(n/ logσ n) and depth O(log n),
assuming the maximal rank of symbols in labels(t) is bounded by a constant.
TreeBiSection achieves this while only using logarithmic space, but needs time
O(n · log n). In the next section, we introduce a second algorithm (BU-Shrink)
which constructs a TSLP of size O(n/ logσ n) in linear time, but the depth of the
constructed TSLP is not necessarily logarithmic. We then combine BU-Shrink
and TreeBiSection to obtain a linear time algorithm that achieves the claimed
size as well as logarithmic depth4.

TreeBiSection is a generalization of the grammar-based string compressor
BiSection described in Section 3.3. A key aspect of TreeBiSection is the well
known idea of splitting a tree recursively into smaller parts of roughly equal size,
see e.g. [21, 106]. The following lemma is well known, at least for binary trees
(see e.g. [78]).

Lemma 4.4.1. Let t ∈ T (F ∪ X) be a pattern over some ranked alphabet F
with |t| ≥ 2 such that every node has at most r children. Then there is a node
v ∈ nodes(t) such that

1

2(r + 2)
· |t| ≤ |subtreet(v)| ≤ r + 1

r + 2
· |t|.

Proof. We start a search at the root node, checking at each node v whether
|subtreet(v)| ≤ d+1

d+2 ·|t|, where d is the number of children of v. If the property does
not hold, we continue the search at a child that spawns a largest subtree (using an
arbitrary deterministic tie-breaking rule that is fixed for the further discussion).
Note that we eventually reach a node such that |subtreet(v)| ≤ d+1

d+2 · |t|: If

|subtreet(v)| = 1, then |subtreet(v)| ≤ 1
2 |t| since |t| ≥ 2.

4By a recently introduced balancing technique presented in [48] one could achieve logarithmic
depth for the TSLP obtained by BU-Shrink in linear time without using TreeBiSection.

86

So, let v be the first node with |subtreet(v)| ≤ d+1
d+2 · |t|, where d is the number

of children of v. We get

|subtreet(v)| ≤ d+ 1

d+ 2
· |t| ≤ r + 1

r + 2
· |t|.

Moreover v cannot be the root node. Let u ∈ nodes(t) be the parent node of v
and let e be the number of children of u. Since v spans a largest subtree among
the children of u, we get e · |subtreet(v)|+ 1 ≥ |subtreet(u)| ≥ e+1

e+2 · |t|, i.e.,

|subtreet(v)| ≥ e+ 1

e(e+ 2)
· |t| − 1

e

=

(
e+ 1

e(e+ 2)
− 1

|t| · e

)
· |t|

≥
(

e+ 1

e(e+ 2)
− 1

2e

)
· |t|

=
1

2(e+ 2)
· |t|

≥ 1

2(r + 2)
· |t|.

This proves the lemma.

For the remainder of this section we refer with split(t) to the unique node in a
tree or pattern t which is obtained by the procedure from the proof above. Based
on Lemma 4.4.1 we now construct a TSLP Gt = (N ,F , S, P) with val(Gt) = t
for a given tree t ∈ T (F). It is not the final TSLP produced by TreeBiSection.
For our later analysis, it is important to bound the number of parameters in the
TSLP Gt by a constant. To achieve this, we use an idea from Ruzzo’s paper [101].

We will first present the construction and analysis of Gt only for trees in
which every node has at most two children, i.e., we consider trees over a ranked
alphabet F such that Fi = ∅ for i ≥ 3. Let us fix a ranked alphabet F≤2 with
this property in the following (the naming emphasizes the bound on the rank).
In Section 4.4.3, we will consider trees of larger branching degree. For the case
that r = 2, Lemma 4.4.1 yields for every pattern s ∈ T (F≤2 ∪ X) with |s| ≥ 2 a
node v = split(s) such that

1

8
· |s| ≤ |subtrees(v)| ≤ 3

4
· |s|. (4.5)

Consider an input tree t ∈ T (F≤2) (we assume that |t| ≥ 2). The TSLP Gt
we are going to construct has the property that every nonterminal has rank at
most three. Our algorithm stores two sets of rules, Ptemp and Pfinal. The set
Pfinal will contain the rules in the TSLP Gt and the rules from Ptemp ensure
that the TSLP with rules Ptemp ∪ Pfinal produces t at any given time of the
procedure. We start with the initial setting Ptemp = {S → t} and Pfinal = ∅,
where S is the start nonterminal. While Ptemp is non-empty we proceed for each
rule (A→ s) ∈ Ptemp as follows:

87

x1 x2 x3

v

x1 x2 x3

v

Figure 4.7: Splitting a tree with three parameters

Remove A → s from Ptemp. Let A ∈ Nr. If r ≤ 2 we determine the node
v = split(s) in s. Then we split the pattern s into subtrees(v) and s \ v. Let
r1 = rank(subtrees(v)) and r2 = rank(s\v). We add two fresh nonterminals to N
such that A1 ∈ Nr1 and A2 ∈ Nr2 . Note that r = r1 + r2−1. If |subtrees(v)| > 1
(|s \ v| > 1, respectively) then we add the rule A1 → subtrees(v) (A2 → s \ v,
respectively) to Ptemp. Otherwise we add it to Pfinal as a final rule. Let k be
the number of nodes of s that are labeled by a parameter and that are smaller
(w.r.t. <s) than v. To link the nonterminal A to the fresh nonterminals A1 and
A2 we add the rule

A→ A1(x1, . . . , xk, A2(xk+1, . . . , xk+r2), xk+r2+1, . . . , xr)

to the set of final rules Pfinal.
To bound the rank of the introduced nonterminals by three we handle rules

A→ s with A ∈ N3 as follows. Let v1, v2, v3 ∈ nodes(s) be the parameter nodes
of s, where λs(vi) = xi for i ∈ [1, 3]. Instead of choosing the node v by split(s)
we set v to the lowest common ancestor of (v1, v2) or (v2, v3), depending on
which one has the greater distance from the root node (see Figure 4.7). This
step ensures that the two trees subtrees(v) and s \ v have rank 2, so in the next
step each of these two trees will be split in a balanced way according to (4.5).
As a consequence, the resulting TSLP Gt has depth O(log |t|) but size O(|t|).
Also note that Gt is in Chomsky normal form.

Example 4.10. Let tn be the complete binary tree of height n, i.e. t0 = a and
tn+1 = f(tn, tn) where f ∈ F2 and a ∈ F0. Figure 4.8 illustrates how the tree
t3 is decomposed hierarchically during the algorithm. We only explain the first
steps of the algorithm. Final rules are framed.

1. We start with the rule S → t3.

2. Possible split nodes of t3 are the children of its root. We split S → t3 into

S → A(B) , A→ f(x1, t2) and B → t2 , where A ∈ N1 and B ∈ N0.

88

t3

S

t2

B

t1

af(x1, a)

af(x1, x2)

f(x1, t1)

f1

af(x1, a)

af(x1, x2)

f(x1, x2)

f(x1, t2)

A

t1

D

af(x1, a)

af(x1, x2)

f(x1, f(x2, t1))

C

t1

F

af(x1, a)

af(x1, x2)

f(x1, f(x2, x3))

E

f(x1, x2)

H

f(x1, x2)

G

Figure 4.8: The hierarchical decomposition of a tree produced by TreeBiSection.

3. We continue to split the rule A→ f(x1, t2). After two more steps we obtain

A→ C(x1, D) , D → t1 , C → E(x1, x2, F) , E → f(x1, f(x2, x3)) and

F → t1 , where C ∈ N2, D,F ∈ N0 and E ∈ N3.

4. Since the nonterminal E has rank 3, we have to decompose f(x1, f(x2, x3))
along the lowest common ancestor of two parameters as described above, in
this case of x2 and x3.5 Hence, the rule for the nonterminal E is split into

the rules E → G(x1, H(x2, x3)) , G→ f(x1, x2) and H → f(x1, x2) ,

where G,H ∈ N2.

In the next step we want to compact the TSLP by considering the DAG of
the derivation tree. For this we first build the derivation tree Dt := DGt from
the TSLP Gt as described in Section 4.2.

We now want to identify nonterminals that produce the same pattern. Note
that if we just omit the nonterminal labels from the derivation tree, then there
might exist isomorphic subtrees of the derivation tree whose root nonterminals
produce different patterns. This is due to the fact that we lost for an A-labeled
node of the derivation tree with a left child labeled by a nonterminal B and
a right child labeled by a nonterminal C the information at which argument
position of B the nonterminal C is substituted. This information is exactly given
by index(A) ∈ {0, 1, 2, 3}, which was defined in Section 4.2. Moreover, we remove
every leaf v and write its label into its parent node. We call the resulting tree
the modified derivation tree and denote it by D∗t . Note that D∗t is a binary tree
(each node has two or zero children) with node labels from {1, 2, 3} ∪ labels(t).
The modified derivation tree for Example 4.10 is shown on the left of Figure 4.9.

As for trees and patterns, we denote by subtreeD∗t (v) the subtree of D∗t rooted
at node v. The following lemma shows that nonterminals which correspond to

5Here the lowest common ancestor of x2 and x3 happens to coincide with the node
split(f(x1, f(x2, x3))).

89

1

1

1

a2

af

2

1

a2

af

f

2

1

a2

af

3

1

a2

af

2

ff

1

A1

2A2

1 A3

3A4

2 A5

1 A6

2 A8

a A10

2A7

fA9

Figure 4.9: Modified derivation tree of the TSLP from Example 4.10 and its
minimal DAG.

the same subtree in D∗t produce the same pattern, i.e., we can compact the
TSLP Gt by considering the DAG of D∗t .

Lemma 4.4.2. Let u and v be nodes of Dt labeled by A and B, respectively.
Moreover, let u′ and v′ be the corresponding nodes in D∗t . Then, the subtrees
subtreeD∗t (u′) and subtreeD∗t (v′) are isomorphic (as labeled ordered trees) if and
only if valGt(A) = valGt(B).

Proof. For the if-direction assume that valGt(A) = valGt(B). Hence, when produc-
ing the TSLP Gt, the intermediate productions A→ valGt(A) and B → valGt(B)
are split in exactly the same way (since the splitting process is deterministic).
This implies that subtreeD∗t (u′) and subtreeD∗t (v′) are isomorphic.

We prove the other direction by induction over the size of the two subtrees
subtreeD∗t (u′) and subtreeD∗t (v′). Consider u and v labeled by A and B, respec-
tively. We have index(A) = index(B) = i. For the induction base assume that
i = 0. Then u′ and v′ are both leaves labeled by the same terminal. Hence,
valGt(A) = valGt(B) holds. For the induction step assume that i > 0. Let A1

be the label of the left child of u and let A2 be the label of the right child
of u. Further, let B1 be the label of the left child of v and let B2 be the
label of the right child of v. By induction, we get valGt(A1) = valGt(B1) = s
for some pattern s of rank m > 1 (since s corresponds to a left child in Dt)
and valGt(A2) = valGt(B2) = s′ for some pattern s′ of rank m′. Therefore,
rank(A) = rank(B) = m+m′ − 1 and

valGt(A) = s[x1, ..., xi−1, s
′[xi, ..., xi+m′−1], xi+m′ , ..., xm+m′−1] = valGt(B).

This proves the lemma.

By Lemma 4.4.2, if two subtrees of D∗t are isomorphic we can eliminate the
nonterminal of the root node of one subtree. Hence, we can compact our TSLP

90

by constructing the minimal DAG of D∗t . The minimal DAG of the modified
derivation tree that corresponds to the TSLP of Example 4.10 is shown on the
right of Figure 4.9. The nodes of DAG(D∗t) are the nonterminals of the final
TSLP produced by TreeBiSection. For a nonterminal that corresponds to an
inner node of DAG(D∗t), we obtain a rule whose right-hand side has the form (4.3)
and for a leaf of DAG(D∗t) the right-hand side has the form (4.4). Let n1 be the
number of inner nodes of DAG(D∗t) and n2 be the number of leaves. Then the
size of our final TSLP is 2n1 + n2, which is bounded by twice the number of
nodes of DAG(D∗t).

Example 4.11. We continue Example 4.10 and obtain the final TSLP from the
minimal DAG of D∗t shown in Figure 4.9 on the right. We assign to each node
of DAG(D∗t) a fresh nonterminal and define the rules according to the labels as
follows. Here the start nonterminal is A1.

A1 → A2(A3) A2 → A4(x1, A6)

A3 → A5(A6) A4 → A7(x1, x2, A6)

A5 → A9(x1, A6) A6 → A8(A10)

A7 → A9(x1, A9(x2, x3)) A8 → A9(x1, A10)

A9 → f(x1, x2) A10 → a

We have A1, A3, A6, A10 ∈ N0, A2, A5, A8 ∈ N1, A4, A9 ∈ N2 and A7 ∈ N3.

Figure 4.10 shows the pseudocode of TreeBiSection. There, we denote for
a valid pattern s of rank k by lcas(xi, xj) the lowest common ancestor of the
unique leaves that are labeled by xi and xj (i, j ≤ k).

In Section 4.4.1 we will analyze the running time of TreeBiSection, and we
will present a logspace implementation. In Section 4.4.2 we will analyze the size
of the produced TSLP using Theorem 4.3.2.

4.4.1 Running time and space consumption

In this section, we show that TreeBiSection can be implemented so that it works
in logspace, and alternatively in time O(n · log n). Note that these are two
different implementations.

Lemma 4.4.3. Given a tree t ∈ T (F≤2) of size n one can compute (i) in time
O(n log n) and (using a different algorithm) (ii) in logspace the TSLP produced
by TreeBiSection on input t.

Proof. Let t be the input tree of size n. The DAG of a tree can be computed in
(i) linear time [38] and (ii) in logspace by Lemma 4.3.1. Hence, it suffices to show
that the modified derivation tree D∗t for t can be computed in time O(n · log n)
as well as in logspace.

For the running time let us denote with Ptemp,i the set of productions Ptemp

after i iterations of the while loop. Moreover, let ni be the sum of the sizes of

91

input : t ∈ T (F≤2)
N := ∅
Ptemp := {S → t}
Pfinal := ∅
while Ptemp 6= ∅ do

foreach (A→ s) ∈ Ptemp do
Ptemp := Ptemp \ {A→ s}
if rank(s) = 3 then

v := the lower of nodes lcas(x1, x2), lcas(x2, x3)
else

v := split(s)
end
t1 := subtrees(v); t2 := s \ v
r1 := rank(t1); r2 := rank(t2)
Let A1 and A2 be fresh nonterminals.
N := N ∪ {A1, A2}
foreach i = 1 to 2 do

if |ti| > 1 then
Ptemp := Ptemp ∪ {Ai → ti}

else
Pfinal := Pfinal ∪ {Ai → ti}

end

end
r := r1 + r2 − 1
Let k be the number of nodes in s labeled by parameters that are
smaller than v w.r.t. <s.
p := A→ A1(x1, . . . , xk, A2(xk+1, . . . , xk+r2), xk+r2+1, . . . , xr)
Pfinal := Pfinal ∪ {p}

end

end
Let G be the TSLP (N ,F≤2, S, Pfinal).
Construct the modified derivation tree D∗t of G.
Compute DAG(D∗t) and let H be the corresponding TSLP.
return TSLP H

Figure 4.10: TreeBiSection

92

all right-hand sides in Ptemp,i. Then, we have ni+1 ≤ ni: When a single rule
A → s is replaced with A1 → t1 and A2 → t2 then each non-parameter node
in t1 or t2 is one of the nodes of s. Hence, we have |s| = |t1|+ |t2| (recall that
we do not count parameters for the size of a tree). We might have ni+1 < ni
since rules with a single terminal symbol on the right-hand side are put into
Pfinal. We obtain ni ≤ n for all i. Hence, splitting all rules in Ptemp,i takes time
O(n), and a single iteration of the while loop takes time O(n) as well. On the
other hand, since every second split reduces the size of the tree to which the
split is applied by a constant factor (see (4.5)). Hence, the while loop is iterated
at most O(log n) times. This gives the time bound.

The inquisitive reader may wonder whether our convention of neglecting
parameter nodes for the size of a tree affects the linear running time. This is not
the case: Every right-hand side s in Ptemp,i has at most three parameters, i.e.,
the total number of nodes in s is at most |s|+ 3 ≤ 4|s|. This implies that the
split node can be computed in time O(|s|). Doing this for all right-hand sides in
Ptemp,i yields the time bound O(n) as above.

For the logspace version, we first describe how to represent a single valid
pattern occurring in t in logspace and how to compute its split node. Let s be
a valid pattern which occurs in t and has k parameters (rank(s) = k) where
k ∈ [0, 3], i.e., s[t1, . . . , tk] is a subtree of t for some subtrees t1, . . . , tk of t. We
represent the pattern s by the tuple rep(s) = (v0, v1 . . . , vk) where v0, v1, . . . , vk
are the nodes in t corresponding to the roots of s, t1, . . . , tk, respectively. Note
that rep(s) can be stored using O((k+ 1) · log(n)) many bits. Given such a tuple
rep(s) = (v0, . . . , vk), we can compute in logspace the size |s| by a depth-first
left-to-right traversal of t, starting from v0 and skipping subtrees rooted in the
nodes v1, . . . , vk. We can also compute in logspace the split node v of s: If s
has at most two parameters, then v = split(s). Note that the procedure from
Lemma 4.4.1 can be implemented in logspace since the size of a subtree of s can
be computed as described before. If s has three parameters, then v is the lowest
common ancestor of either v1 and v2, or of v2 and v3, depending on which node
has the larger distance from v0. The lowest common ancestor of two nodes can
also be computed in logspace by traversing the paths from the two nodes to
the root upwards. From rep(s) = (v0, . . . , vk) and a split node v we can easily
determine rep(subtrees(v)) and rep(s \ v) in logspace.

Using the previous remarks we are ready to present the logspace algorithm
in order to compute D∗t . Since D∗t is a binary tree of depth O(log n) we can
identify a node of D∗t with the string u ∈ {0, 1}∗ of length at most c · blog nc that
stores the path from the root to the node, where c > 0 is a suitable constant.
We denote by su the tree (with at most three parameters) described by a node u
of D∗t in the sense of Lemma 4.4.2. That is, if u′ is the corresponding node of the
derivation tree Dt and u′ is labeled by the nonterminal A, then su = valGt(A).

To compute D∗t , it suffices for each string w ∈ {0, 1}∗ of length c · blog nc to
check in logspace whether it is a node of D∗t and in case it is a node, to determine
the label of w in D∗t . For this, we compute for each prefix u of w, starting with
the empty word, the tuple rep(su) and the label of u in D∗t , or a bit indicating
that u is not a node of D∗t (in which case also w is not a node of D∗t). Thereby

93

we only store the current bit strings w, u and the value of rep(su), which fit into
logspace. If u = ε, then rep(su) consists only of the root of t. Otherwise, we first
compute in logspace the size |su| from rep(su). If |su| = 1, then u is a leaf in D∗t
with label λ(u) and no longer prefixes represent nodes in D∗t . If |su| > 1, then
u is an inner node in D∗t and, as described above, we can compute in logspace
from rep(su) the tuples rep(su0) and rep(su1), from which we can easily read off
the label of u from {1, 2, 3}. If u = w, then we stop, otherwise we continue with
ui and rep(sui), where i ∈ {0, 1} is such that ui is a prefix of w.

4.4.2 Size of the TSLP produced by TreeBiSection

In order to bound the size of the TSLP produced by TreeBiSection we have to
bound the number of nodes in the DAG of the modified derivation tree. Let us
fix the TSLP Gt for a tree t ∈ T (F≤2) that has been produced by the first part
of TreeBiSection. Let n = |t| and |labels(t)| = σ be the number of the different
node labels that appear in t. For the modified derivation tree D∗t we have the
following:

• D∗t is a binary tree (every node has zero or two children) with n leaves and
hence 2n− 1 nodes.

• There are σ + 3 possible node labels, namely labels(t) ∪ {1, 2, 3}.

• D∗t is (1/7)-balanced (see Section 4.3.1 for the definition of β-balanced
binary trees). If we have two successive nodes in D∗t , then we split at one
of the two nodes according to (4.5). Now, assume that we split at node v
according to (4.5). Let v1 and v2 be the children of v, let ni be the leaf
size of vi for i ∈ [1, 2], and let n = n1 + n2 be the leaf size of v. We get
1
8n ≤ n1 ≤ 3

4n and 1
4n ≤ n2 ≤ 7

8n (or vice versa). Hence, n1 ≥ 1
8n ≥

1
7n2

and n2 ≥ 1
4n ≥

1
3n1.

Recall that the nodes of DAG(D∗t) are the nonterminals of the TSLP produced by
TreeBiSection and that this TSLP is in Chomsky normal form. Moreover, recall
that the depth of D∗t is in O(log n). Hence, with Theorem 4.3.2 and Lemma 4.4.3
we get:

Corollary 4.4.4. Let t ∈ T (F≤2) be a tree of size n with |labels(t)| = σ. Then
TreeBiSection produces a TSLP in Chomsky normal form of size O

(
n

logσ n

)
and

depth O(log n). Every nonterminal of the produced TSLP has rank at most 3,
and the algorithm can be implemented in logspace and, alternatively, in time
O(n · log n).

In particular, if the size of the ranked alphabet is a fixed constant (e.g. in
the case of unlabeled trees) we obtain TSLPs of size O(n/ log n) for input trees
of size n.

94

4.4.3 Extension to trees of larger degree

If the input tree t has nodes with many children, then we cannot expect good
compression by TSLPs. The extreme case is tn = fn(a, . . . , a) where fn is a
symbol of rank n. Hence, |tn| = n+ 1 and every TSLP for tn has size at least
n+ 1. On the other hand, for trees in which the maximal rank is bounded by a
constant r ≥ 1, we can easily generalize TreeBiSection. Lemma 4.4.1 allows to
find a splitting node v satisfying

1

2(r + 2)
· |t| ≤ |subtreet(v)| ≤ r + 1

r + 2
· |t|. (4.6)

The maximal arity of nodes also affects the arity of patterns: we allow patterns of
rank up to r. Now assume that t is a valid pattern of rank r+ 1, where r is again
the maximal number of children of a node. Then we find a subtree containing
k parameters, where 2 ≤ k ≤ r: Take a smallest subtree that contains at least
two parameters. Since the root node of that subtree has at most r children, and
every proper subtree contains at most one parameter (due to the minimality of
the subtree), this subtree contains at most r parameters. By taking the root of
that subtree as the splitting node, we obtain two valid patterns with at most r
parameters each. Hence, we have to change TreeBiSection in the following way:

• As long as the number of parameters of the tree is at most r, we choose
the splitting node according to Lemma 4.4.1.

• If the number of parameters is r + 1 (note that in each splitting step, the
number of parameters increases by at most 1), then we choose the splitting
node such that the two resulting fragments have rank at most r.

As before, this guarantees that in every second splitting step we split in a
balanced way. But the balance factor β from Section 4.3.1 now depends on
r. More precisely, if in the modified derivation tree D∗t we have a node v with
children v1 and v2 of leaf size n1 and n2, respectively, and this node corresponds
to a splitting satisfying (4.6), then we get

1

2(r + 2)
· n ≤ n1 ≤

r + 1

r + 2
· n,

1

r + 2
· n =

(
1− r + 1

r + 2

)
· n ≤ n2 ≤

(
1− 1

2(r + 2)

)
· n =

2r + 3

2(r + 2)
· n

or vice versa. This implies

n1 ≥ 1

2(r + 2)
· n ≥ 1

2r + 3
· n2,

n2 ≥ 1

r + 2
· n ≥ 1

r + 1
· n1 ≥

1

2r + 3
· n1.

Hence, the modified derivation tree becomes β-balanced for β = 1/(2r + 3).
Moreover, the possible number of different labels in the modified derivation

95

tree now is at most σ + r + 1 (since the TSLP produced in the first step has
nonterminals of rank at most r + 1). Theorem 4.3.2 yields the following bound
on size of the DAG of the modified derivation tree and hence the size of the final
TSLP:

O
(

n

logσ+r(n)
· log1+ 1

2r+3
(2r + 3)

)
= O

(
n

logσ+r(n)
· log(2r + 3)

log(1 + 1
2r+3)

)
Note that log(1 + x) ≥ x for 0 ≤ x ≤ 1. Hence, we can simplify the bound to

O
(
n · log(σ + r) · r · log r

log n

)
.

By Lemma 4.4.1, the depth of the produced TSLP can be bounded by 2 · d,
where d is any number that satisfies

n ·
(
r + 1

r + 2

)d
≤ 1.

Hence, we can bound the depth by

2 ·
⌈

log n

log(1 + 1
r+1)

⌉
≤ 2 · d(r + 1) · log ne ≤ O(r · log n).

Theorem 4.4.5. Let t ∈ T (F) be a tree of size n with |labels(t)| = σ such
that each symbol in labels(t) has rank at most r. Then TreeBiSection produces a

TSLP in Chomsky normal form of size O
(n·log(σ+r)·r·log r

logn

)
and depth O(r · log n).

Every nonterminal of that TSLP has rank at most r + 1.

For the running time we obtain the following bound:

Theorem 4.4.6. TreeBiSection can be implemented such that it works in time
O(r · n · log n) for a tree of size n in which each symbol has rank at most r.

Proof. TreeBiSection makes O(r · log n) iterations of the while loop (this is the
same bound as for the depth of the TSLP) and each iteration takes time O(n).
To see the latter, our internal representation of valid patterns from Section 4.1
is important. Using this representation, we can still compute the split node in
a right-hand side s from Ptemp in time O(|s|): We first compute for every non-
parameter node v of s (i) the size of the subtree rooted at v (as usual, excluding
parameters) and (ii) the number of parameters below v. This is possible in time
O(|s|) using a straightforward bottom-up computation. Using this information,
we can compute the split node in s in time O(|s|) for both cases (the number
of parameters in s is r + 1 or smaller than r + 1) by searching from the root
downwards.

In particular, if r is bounded by a constant, TreeBiSection computes a TSLP
of size O(n/ logσ n) and depth O(log n) in time O(n · log n). Moreover, our
logspace implementation of TreeBiSection (see Lemma 4.4.3) directly generalizes
to the case of a constant rank.

96

Unranked trees. For unranked trees in which the number of children of a
node is arbitrary and not determined by the node label (which is the standard
tree model in XML) all this fails: TreeBiSection only yields TSLPs of size Θ(n)
and this is unavoidable as shown by the example fn(a, . . . , a) from the beginning
of this subsection. Moreover, the logspace implementation from Section 4.4.1 no
longer works since nonterminals have rank at most r + 1 and we cannot store
the pattern derived from a nonterminal in space O(log n) anymore (we have to
store r + 1 many nodes in the tree).

Fortunately, there is a simple workaround for all these problems: An unranked
tree can be transformed into a binary tree of the same size using the well
known first-child next-sibling encoding [19, 76]. Then, one can simply apply
TreeBiSection to this encoding to get in logspace and time O(n · log n) a TSLP
of size O(n/ logσ n).

For the problem of traversing a compressed unranked tree t (which is addressed
in [15] for top dags) another (equally well known) encoding is more favorable.
Let c(t) be a compressed representation (e.g., a TSLP or a top dag) of t. The
goal is to represent t in space O(|c(t)|) such that one can efficiently navigate
from a node to (i) its parent node, (ii) its first child, (iii) its next sibling, and (iv)
its previous sibling (if they exist). For top dags [15], it was shown that a single
navigation step can be done in time O(log |t|). Using a suitable binary encoding,
we can prove the same result for TSLPs: Let r be the maximal rank of a node of
the unranked tree t. We define the binary encoding bin(t) by adding for every
node v of rank s ≤ r a binary tree of depth dlog se with s many leaves, whose
root is v and whose leaves are the children of v. This introduces at most 2s many
new binary nodes, which are labeled by a new symbol. We get |bin(t)| ≤ 3|t|. In
particular, we obtain a TSLP of size O(n/ logσ n) for bin(t), where n = |t| and
σ is the number of different node labels. Note that a traversal step in the initial
tree t (going to the parent node, first child, next sibling, or previous sibling) can
be simulated by O(log r) many traversal steps in bin(t) (going to the parent node,
left child, or right child). But for a binary tree s, it was recently shown that a
TSLP G for s can be represented in space O(|G|) such that a single traversal step
takes time O(1) [83].6 Hence, we can navigate in t in time O(log r) ≤ O(log |t|).

Even simpler is the following approach for unranked trees: In [50] the authors
introduced so-called forest straight-line programs (FSLPs) which can be seen as a
proper generalization of TSLPs in order to compress unranked trees. It is shown
there that FSLPs for unranked trees and TSLPs for the first-child-next-sibling
encoding of unranked trees are equally succinct up to constant multiplicative
factors and that one can change between both representations in linear time.
A direct consequence is that based on our construction one obtains an FSLP
of size O(n/ logσ n) for an unranked tree t of size n. It seems likely that the
traversing techniques presented in [84] for TSLPs can be extended to FSLPs.

6This generalizes a corresponding result for strings [52].

97

4.5 BU-Shrink

We showed that TreeBiSection can be implemented such that it works in time
O(n · log n) for a tree of size n. In this section we present a linear time algorithm
BU-Shrink (for bottom-up shrink) that also constructs a TSLP of size O(n/ logσ n)
for a given tree of size n with σ many node labels of constant rank. The basic
idea of BU-Shrink is to merge in a bottom-up way nodes of the tree to patterns
of size roughly k, where k is defined later. This is a bottom-up computation in
the sense that we begin with individual nodes and gradually merge them into
larger fragments (the term “bottom-up” should not be understood in the sense
that the computation is done from the leaves of the tree towards the root). The
DAG of the small trees represented by the patterns then yields the compression.

For a valid pattern p of rank d we define the weight of p as |p| + d. This
is the total number of nodes in p including those nodes that are labeled by a
parameter (which are not counted in the size |p| of p). A pattern tree is a tree
in which the labels of the tree are valid patterns. If a node v is labeled by the
valid pattern p and rank(p) = d, then we require that v has d children in the
pattern tree. For convenience, BU-Shrink also stores in every node the weight of
the corresponding pattern. For a node v, we denote by pv its pattern and by
w(v) the weight of pv.

Let us fix a number k ≥ 1 that will be specified later. Given a tree t of size
n such that all node labels in t are of rank at most r, BU-Shrink first creates a
pattern tree t′ by replacing every label f ∈ Fd by the valid pattern f(x1, . . . , xd)
of rank d and weight d+1. Note that the parameters in these patterns correspond
to the edges of the tree t. We will keep this invariant during the algorithm,
which will shrink the pattern tree t′. Hence, the total number of all parameter
occurrences in the patterns that appear as labels in the current pattern tree t′

will be always the number of nodes of the current tree t′ minus 1. This allows us
to ignore the cost of handling parameters for the running time of the algorithm.

After generating the initial pattern tree t′, BU-Shrink creates a queue Q that
contains references to all nodes of t′ having at most one child (excluding the root
node) in an arbitrary order. During the run of the algorithm, the queue Q will
only contain references to non-root nodes of the current tree t′ that have at most
one child (but Q may not contain references to all such nodes). For each node v
of the queue we proceed as follows. Let v be the i-th child of its parent node u.
If w(v) > k or w(u) > k, we simply remove v from Q and proceed. Otherwise we
merge the node v into the node u. More precisely, we delete the node v, and set
the i-th child of u to the unique child of v if it exists (otherwise, u loses its i-th
child). The pattern pu is modified by replacing the parameter at the position of
the i-th child by the pattern pv and re-enumerating all parameters to get a valid
pattern. We also set the weight w(u) to w(v) +w(u)− 1 (which is the weight of
the new pattern pu). Note that in this way both the number of edges of t′ and
the total number of parameter occurrences in all patterns decreases by 1. For
example, let u be a node with pu = f(x1, x2) and let v be its second child with
pv = g(x1). Then the merged pattern becomes f(x1, g(x2)), and its weight is 4.
If the node u has at most one child after the merging and its weight is at most

98

k, then we add u to Q (if it is not already in the queue). We do this until the
queue is empty. Note that every pattern appearing in the final pattern tree has
rank at most r (the maximal rank of a symbol in the initial tree).

Now consider the forest (a disjoint union of trees or patterns) which consists
of all patterns appearing in the resulting final pattern tree. We construct the
DAG of this forest, which yields rules for all patterns with shared nonterminals.
The DAG of a forest is constructed in the same way as for a single tree. This DAG
has for every subtree appearing in the forest exactly one node. The parameters
x1, x2, . . . , xr that appear in the patterns are treated as ordinary leaf labels when
constructing the DAG. As usual, the DAG can be viewed as a TSLP, where
the nodes of the DAG correspond to the nonterminals. Here, we only introduce
nonterminals for nodes which correspond to patterns of size at least two while
patterns of size at most one are inserted directly into the rules where they occur.
Note that in this way we omit rules of the form A→ x1 and A→ f(x1, . . . , xd)
for f ∈ Fd which only increase the size of the TSLP. We obtain a TSLP in
which each pattern is derived by a nonterminal of the same rank as the pattern.
Finally, we add to the TSLP the start rule S → s, where s is obtained from the
pattern tree by labelling each node v with the unique nonterminal A such that
A derives the pattern pv. Figure 4.11 shows the pseudocode for BU-Shrink and
an example can be found in Example 4.12 and Figure 4.12.

Example 4.12. Let a ∈ F0, g ∈ F1 and f ∈ F2. Consider the input tree
t = f(g(f(g(a), g(a))), f(g(a), f(g(a), g(a)))) and the corresponding pattern tree
depicted in Figure 4.12 (bottom right). Assuming no further mergings are done,
the corresponding TSLP has rules

S → A(B(C), B(B(C))), A→ f(g(x1), x2)

B → f(C, x1), C → g(a).

It is easy to see that BU-Shrink runs in time O(n) for a tree of size n. First
of all, the number of mergings is bounded by n, since each merging reduces the
number of nodes of the pattern tree by one. Moreover, if a node is removed
from Q (because its weight or the weight of its parent node is larger than k)
then it will never be added to Q again (since weights are never reduced). A
single merging step needs only a constant number of pointer operations and a
single addition (for the weights). For this, it is important that we do not copy
patterns, when the new pattern (for the node u in the above description) is
constructed. The forest, for which we construct the DAG, has size O(n): The
number of non-parameter nodes is exactly n, and the number of parameters is
at most n− 1: Initially the forest has n− 1 parameters (as there is a parameter
for each node except the root) and during BU-Shrink we can only decrease the
total amount of parameters.

Let us now analyze the size of the constructed TSLP. In the following, let t
be the input tree of size n and let r be the maximal rank of a label in t. Further,
let |labels(t)| = σ.

Lemma 4.5.1. Let tp be the pattern tree resulting from BU-Shrink. Then
|tp| ≤ 4·r·n

k + 2.

99

input : tree t ∈ T (F), number k ≤ |t|
Q := ∅
foreach v ∈ nodes(t) do

let f = λt(v) ∈ Fd be the label of node v
w(v) := 1 + d (the weight of node v)
pv := f(x1, . . . , xd) (the pattern stored in node v)
if d ≤ 1 and v is not the root then

Q := Q ∪ {v}
end

end
while Q 6= ∅ do

choose arbitrary node v ∈ Q and set Q := Q \ {v}
let u be the parent node of v
if w(v) ≤ k and w(u) ≤ k then

d := rank(pv); e := rank(pu)
let v be the i-th child of u
w(u) := w(u) + w(v)− 1
pu := pu(x1, . . . , xi−1, pv(xi, . . . , xi+d−1), xi+d, . . . , xd+e−1)
if v has a (necessarily unique) child v′ then

set v′ to the i-th child of u
end
delete node v
if d+ e− 1 ≤ 1 and w(u) ≤ k then

Q := Q ∪ {u}
end

end

end
compute the minimal DAG D for the forest consisting of all patterns pv
P := ∅
N := {S}
foreach node v of the t do

create a fresh nonterminal Av of rank d := rank(pv)
N := N ∪Av
create a rule in P for Av with val(Av) = pv according to the DAG D
λt(v) := Av (the new label of node v)

end
return TSLP (N ,F , S, P ∪ {S → t})

Figure 4.11: BU-Shrink

100

f

f

f

g

a

g

a

g

a

g

f

g

a

g

a

f(x1, x2)

f(x1, x2)

f(x1, x2)

g(x1)

a

g(x1)

a

g(x1)

a

g(x1)

f(x1, x2)

g(x1)

a

g(x1)

a

f(g(x1), x2)

f(x1, x2)

f(x1, x2)

g(a)g(a)

g(a)

f(x1, x2)

g(a)g(a)

f(g(x1), x2)

f(g(a), x2)

f(g(a), x2)

g(a)

f(g(a), x2)

g(a)

Figure 4.12: BU-Shrink first transforms the input tree on the top left into the
pattern tree on the top right (the weights are omitted to improve readability).
Then it starts to shrink this pattern tree. The two trees at the bottom depict
possible intermediate trees during the shrinking process.

Proof. Let us first assume that r ≥ 2. The number of non-root nodes in tp of
arity at most one is at least |tp|/2− 1. For each of those nodes, either the node
itself or the parent node has weight at least k. We now map in tp each non-root
node of arity at most one to a node of weight at least k: Let u be a node of tp
(which is not the root) having arity at most one. If the weight of u is at least k,
we map u to itself, otherwise we map u to its parent node, which then must be
of weight at least k. Note that at most r nodes are mapped to a fixed node v: If
v has arity at most one, then v and its child (if it exists) can be mapped to v; if
v has arity greater than one then only its children can be mapped to v, and v
has at most r children. Therefore there must exist at least (|tp| − 2)/(2r) many
nodes of weight at least k. Because the sum of all weights in tp is at most 2n.
This yields

|tp| − 2

2r
· k ≤ 2n,

which proves the lemma for the case r ≥ 2. The case r = 1 can be proved in the
same way: Clearly, the number of non-root nodes of arity at most one is |tp| − 1
and at most 2 nodes are mapped to a fixed node of weight at least k (by the
above argument). Hence, there exist at least (|tp| − 1)/2 = (|tp| − 1)(2r) many

101

nodes of weight at least k.

Note that each node in the final pattern tree has weight at most 2k since
BU-Shrink only merges nodes of weight at most k. By Lemma 4.1.1 the number of
different patterns in T (labels(t) ∪ {x1, . . . , xr}) of weight at most 2k is bounded
by 4

3 (4(σ+r))2k ≤ dk for d = (6(σ+r))2. Hence, the size of the DAG constructed
from the patterns is bounded by dk. Adding the size of the start rule, i.e., the
size of the resulting pattern tree (Lemma 4.5.1) we get the following bound for
the constructed TSLP:

dk +
4 · r · n
k

+ 2.

Let us now set k = 1
2 logd n. We get the following bound for the constructed

TSLP:

d
1
2 ·logd n +

8 · n · r
logd n

+ 2 =
√
n+O

(
n · r

logd n

)
= O

(
n · r

logσ+r n

)
= O

(
n · log(σ + r) · r

log n

)
.

Theorem 4.5.2. Let t ∈ T (F) such that |labels(t)| = σ and the maximal rank
of symbol in labels(t) is r. Then BU-Shrink computes in time O(n) a TSLP for t

of size O
(n·log(σ+r)·r

logn

)
. Every nonterminal of that TSLP has rank at most r.

Clearly, if r is bounded by a constant, we obtain the bound O(n/ logσ n).
On the other hand, already for r ≥ Ω(log n) the bound above exceeds O(n). But
note that the size of the TSLP produced by BU-Shrink is at most n.

Combining TreeBiSection and BU-Shrink. In the remaining section, we aim
to construct in linear time a TSLP of size O(n/ logσ n) and depth O(log n) for a
given tree t of size n with |labels(t)| = σ (we assume here again that the maximal
rank of a symbol in labels(t) is bounded by a constant). Fist of all, Ganardi, Jeż
and Lohrey recently introduced a technique which allows to balance a given TSLP
in linear time such that the size of the TSLP increases only by a multiplicative
constant factor [48], i.e., we can apply the balancing algorithm presented in [48]
to the TSLP produced by BU-Shrink in order to achieve the targeted properties.
On the other side, it is a nice bonus of the two grammar-based tree compressors
TreeBiSection and BU-Shrink that we achieve the same goal by a combination of
those algorithms as we show in the following.

Recall that TreeBiSection produces a TSLP in Chomsky normal form of
logarithmic depth, which will be important in the next section. Clearly, a TSLP
produced by BU-Shrink is not in Chomsky normal form. To get a TSLP in
Chomsky normal form we have to further partition the right-hand sides of the
TSLP. As mentioned above, we assume in the following that the maximal rank of
symbols appearing in the input tree is bounded by a constant. Hence, BU-Shrink
produces for an input tree t of size n with σ many node labels a TSLP of size
O(n/ logσ n). The weight and hence also the depth of the patterns that appear in

102

the pattern tree tp produced by BU-Shrink is O(logd n) = O(logσ n) ≤ O(log n).
The productions that arise from the DAG of the forest of all patterns have
the form A → f(A1, . . . , Ar) and A → xi (for some i ≥ 1) where f is a node
label of the input tree and r is bounded by a constant (recall that in the DAG
construction, we consider the parameters appearing in the patterns as ordinary
leaf labels). Productions A→ xi are eliminated by replacing all occurrences of
A in a right-hand side by the parameter xi. All resulting productions (except
the start rule S → s) have the form A → f(α1, . . . , αr) where r is a constant
and every αi is either a nonterminal or a parameter. These productions are then
split such that all resulting productions (except the start rule S → s) are in
Chomsky normal form. This is straightforward. For instance the production
A→ f(A1, A2, A3) is split into A→ B(A3), B → C(A2, x1), C → D(A1, x1, x2)
and D → f(x1, x2, x3). Recall that we assume that the maximal rank of terminal
symbols is bounded by a constant. Therefore, the above splitting increases the
size and depth only by a constant.

Recall that for the start rule S → s returned by BU-Shrink, the tree s has
size O(n/ logσ n) = O((n · log σ)/ log n). We want to apply TreeBiSection to
balance the tree s. But we cannot use it directly because the resulting running
time would not be linear if σ is not a constant: Since TreeBiSection needs time
O(|s| log |s|) on trees of constant rank (see Theorem 4.4.6), this yields the time

O(|s| log |s|) = O
(
n · log σ

log n
· log

(
n · log σ

log n

))
= O

(
n · log σ

log n
· (log n+ log log σ − log log n)

)
= O(n log σ).

To eliminate the factor log σ, we apply BU-Shrink again to the tree s with
k = log σ ≤ log n. Note that the maximal rank in s is still bounded by a
constant (the same constant as for the input tree). By Lemma 4.5.1 this
yields in time O(|s|) ≤ O(n) a tree s′ of size O(n/ log n) on which we may
now use TreeBiSection to get a TSLP for s′ in Chomsky normal form of size
O(|s′|) = O(n/ log n) (note that every node of s′ may be labeled by a different
symbol, in which case TreeBiSection cannot achieve any compression for s′, when
we count the size in bits) and depth O(log |s′|) = O(log n). Moreover, the
running time of TreeBiSection on s′ is

O(|s′| · log |s′|) = O
(

n

log n
log

(
n

log n

))
= O

(
n

log n
· (log n− log log n)

)
= O(n).

Let us call this combined algorithm BU-Shrink+TreeBiSection.

Theorem 4.5.3. Let t be a tree of size n with |labels(t)| = σ such that the
maximal rank of a symbol in labels(t) is bounded by a constant. Then BU-
Shrink+TreeBiSection computes for t in time O(n) a TSLP in Chomsky normal
form of size O

(
n

logσ n

)
and depth O(log n). The rank of every nonterminal of

that TSLP is bounded by the maximal rank of a symbol in labels(t) (a constant).

103

·

+

1y2

·

+

1y2

·

y1y1

·

·

·

y1

+

y2 1

Figure 4.13: An artithmetical formula (left) and an arithmetical circuit (right).
Both evaluate to the polynomial (y2

1 · (y2 + 1)) · (y2 + 1) = y2
1y

2
2 + 2y2

1y2 + y2
1 .

4.6 Arithmetical circuits

In this section, we present an application of Corollary 4.4.4 and Theorem 4.5.3.
Let S = (S,+, ·) be a (not necessarily commutative) semiring. Thus, (S,+) is a
commutative monoid with identity element 0, (S, ·) is a monoid with identity
element 1, and · left and right distributes over +.

We use the standard notation of arithmetical formulas and circuits over S:
An arithmetical formula is just a labeled binary tree in which internal nodes
are labeled by the semiring operations + and ·, and leaf nodes are labeled by
variables y1, y2, . . . or the constants 0 and 1. An arithmetical circuit is a (not
necessarily minimal) directed, acyclic graph whose internal nodes are labeled
by + and · and whose leaf nodes are labeled by variables or the constants 0
and 1. The depth of a circuit is the length of a longest path from the root node
to a leaf. An arithmetical circuit evaluates to a multivariate noncommutative
polynomial p(y1, . . . , yn) over S, where y1, . . . , yn are the variables occurring at
the leaf nodes. An example is depicted in Figure 4.13. Two arithmetical circuits
are equivalent if they evaluate to the same polynomial.

Brent [21] has shown that every arithmetical formula of size n over a com-
mutative ring can be transformed into an equivalent circuit of depth O(log n)
and size O(n) (the proof easily generalizes to semirings). By first constructing a
TSLP of size O((n · logm)/ log n), where m is the number of different variables
in the formula, and then transforming this TSLP into a circuit, we will refine the
size bound to O((n · logm)/ log n). Moreover, by Corollary 4.4.4 (Theorem 4.5.3,
respectively) this conversion can be done in logspace (linear time, respectively).

In the following, we consider TSLPs over a ranked alphabet Fm which consists
of the symbols + and · of rank 2 and the symbols 0, 1, y1, . . . , ym of rank 0 for
some m. For our formula-to-circuit conversion, it will be important to work with
monadic TSLPs, i.e., TSLPs in which every nonterminal has rank at most one
(see Section 4.2). When we use this kind of TSLPs in the following, we label the
single parameter node by x instead of x1.

Lemma 4.6.1. From a given tree t ∈ T (Fm) of size n one can construct in
logspace (linear time, respectively) a monadic TSLP H of size O

(
n·logm

logn

)
and

104

depth O(log n) with val(H) = t such that all productions are of the following
forms:

• A→ B(C) for A,C ∈ N0, B ∈ N1,

• A→ B(C(x)) for A,B,C ∈ N1,

• A→ f(B,C) for f ∈ {+, ·}, A,B,C ∈ N0,

• A→ f(x,B), A(x)→ f(B, x) for f ∈ {+, ·}, A ∈ N1, B ∈ N0,

• A→ a for a ∈ {0, 1, y1, . . . , ym}, A ∈ N0,

• A→ B(x) for A,B ∈ N1,

• A→ x for A ∈ N1.

Proof. The linear time version is an immediate consequence of Theorem 4.2.1
and Theorem 4.5.3.7 It remains to show the logspace version. We first apply
TreeBiSection (Corollary 4.4.4) to get in logspace a TSLP G in Chomsky normal
form of size O((n · logm)/ log n) and depth O(log n) with val(G) = t. Note that
every nonterminal of G has rank 3. Moreover, for every nonterminal A of rank
k ≤ 3, TreeBiSection computes k + 1 nodes v0, v1, . . . , vk of t that represent the
pattern valG(A): v0 is the root node of an occurrence of valG(A) in t and vi
(1 ≤ i ≤ k) is the node of the occurrence to which the parameter xi is mapped,
see also the proof of Lemma 4.4.3. We can assume that for every nonterminal A
of rank k this tuple sA has been computed.

We basically show that the construction from [85], which makes a TSLP
monadic, works in logspace if all nonterminals and terminals of the input TSLP
have constant rank.8 For a nonterminal A of rank 3 with sA = (v0, v1, v2, v3), the
pattern valG(A) has two possible branching structures, which are the branching
structures shown in Figure 4.7. By computing the paths from the three nodes
v1, v2, v3 up to v0, we can compute in logspace, which of the two branching
structures valG(A) has. Moreover, we can compute the two binary symbols
f1, f2 ∈ {+, ·} at which the three paths that go from v1, v2, and v3, respectively,
up to v0 meet. We finally associate with each of the five dashed edges in
Figure 4.7 a fresh unary nonterminal Ai (0 ≤ i ≤ 4) of the TSLP H. In this way
we can built up in logspace what is called the skeleton tree for A. It is one of the
following two valid patterns, depending on the branching structure of valG(A),
see also Figure 4.14:

1. A0(f1(A1(f2(A2(x1), A3(x1))), A4(x3)))

2. A0(f1(A1(x1), A2(f2(A3(x2), A4(x3)))))

7Note that productions of the form A→ B(x) and A→ x do not appear in Theorem 4.2.1.
We allow them in the lemma, since they make the logspace part of the lemma easier to show
and do not pose a problem in the remaining part of this section.

8We only consider the case that nonterminals have rank at most three and terminals have
rank zero or two, which is the case we need, but the general case, where all nonterminals
and all terminals of the input TSLP have constant rank could be handled in a similar way in
logspace.

105

A0

f1

A1

f2

A2

x1

A3

x2

A4

x3

A0

f1

A1

x1

A2

f2

A3

x2

A4

x3

Figure 4.14: The two possible skeleton trees for a nonterminal A of rank three

For a nonterminal A of rank two there is only a single branching structure and
hence a single skeleton tree A0(f(A1(x1), A2(x2))) for f ∈ {+, ·}. Finally, for
a nonterminal A of rank at most one, the skeleton tree is A itself (this is in
particular the case for the start nonterminal S, which will be also the start
nonterminal of H), and this nonterminal then belongs to H (nonterminals of
G that have rank larger than one do not belong to H). What remains is to
construct in logspace productions for the nonterminals of H that allow to rewrite
the skeleton tree of A to valG(A). For this, let us consider the productions
of G, whose right-hand sides have the form (4.3) and (4.4). A production
A→ f(x1, . . . , xk) with k ≤ 1 is copied to H. On the other hand, if k = 2, then
A does not belong to H and hence, we do not copy the production to H. Instead,
we introduce the productions Ai → x (0 ≤ i ≤ 2) for the three nonterminals
A0, A1, A2 that appear in the skeleton tree of A. Now consider a production

A→ B(x1, . . . , xi−1, C(xi, . . . , xi+l−1), xi+l, . . . , xk),

where k, l, k− l+1 ≤ 3 (note that l is the rank of C and k− l+1 is the rank of B).
We have constructed the skeleton trees tA, tB , tC for A,B, and C, respectively.
We now introduce the productions for the nonterminals that appear in tA in
such a way that tA can be rewritten to the valid pattern

tB [x1, . . . , xi−1, tC [xi, . . . , xi+l−1], xi+l, . . . , xk].

There are several cases depending on k, l, and i. Let us only consider two
typical cases (all other cases can be dealt in a similar way): The patterns tA and
tB [x1, tC [x2, x3]] for a production A→ B(x1, C(x2, x3)) are shown in Figure 4.15.
Note that the skeleton tree tA is the right tree from Figure 4.14. We add the
following productions to H:

A0 → B0(x) A1 → B1(x) A2 → B2(C0(x))

A3 → C1(x) A4 → C2(x)

Let us also consider the case A → B(x1, x2, C). The valid patterns tA and
tB [x1, x2, tC] are shown in Figure 4.16 (we assume that the skeleton tree for B

106

A0

f1

A1

x1

A2

f2

A3

x2

A4

x3

B0

f1

B1

x1

B2

C0

f2

C1

x2

C2

x3

A0

A1 A2

A3 A4

Figure 4.15: The skeleton tree tA and the pattern tB [x1, tC [x2, x3]]

is the left one from Figure 4.14). We add the following productions to H:

A0 → B0(f1(B1(x), B4(C))), A1 → B2(x), A2 → B3(x) (4.7)

Other cases can be dealt with similarly. In each case we write out a constant
number of productions that clearly can be produced by a logspace machine
using the shape of the skeleton trees. Correctness of the construction (i.e.,
val(G) = val(H)) follows from valH(tA) = valG(A), which can be shown by a
straightforward induction, see [85]. Clearly, the size and depth of H is linearly
related to the size and depth, respectively, of G. Finally, productions of the
form A → B(f(C(x), D(E))) (or similar forms) as in (4.7) can be easily split
in logspace into productions of the forms shown in the lemma. For instance,
A→ B(f(C(x), D(E))) is split into A→ B(F (x)), F → G(C(x)), G→ f(x,H),
H → D(E). Again, the size and depth of the TSLP increases only by a linear
factor.

Going from a monadic TSLP to a circuit that evaluates over every semiring
to the same noncommutative polynomial is easy:

Lemma 4.6.2. From a given monadic TSLP G over the terminal alphabet
Fm such that all productions are of the form shown in Lemma 4.6.1, one can
construct in logspace (linear time, respectively) an arithmetical circuit C of
depth O(depth(G)) and size O(|G|) such that over every semiring, C and val(G)
evaluate to the same noncommutative polynomial in m variables.

Proof. Fix an arbitrary semiring S and let R be the polynomial semiring R =
S[y1, . . . , ym]. Clearly, for a nonterminal A of rank 0, valG(A) is a tree without
parameters that evaluates to an element pA of the semiring R. For a nonterminal
A of rank 1, valG(A) is a context in which the only parameter x occurs exactly
once. Such a context evaluates to a noncommutative polynomial pA(x) ∈ R[x].
Since the parameter x occurs exactly once in the tree val(A), it turns out that

107

A0

f2

A1

x1

A2

x2

B0

f1

B1

f2

B2

x1

B3

x2

B4

C

A0

A1 A2

Figure 4.16: The skeleton tree tA and the tree tB [x1, x2, tC]

pA(x) is linear and contains exactly one occurrence of x. More precisely, by
induction on the structure of the TSLP G we show that for every nonterminal A
of rank 1, the tree valG(A) evaluates in R[x] to a noncommutative polynomial
of the form

pA(x) = A0 +A1xA2,

where A0, A1, A2 ∈ R = S[y1, . . . , ym]. Using the same induction, one can build
up a circuit of size O(|G|) and depth O(depth(G)) that contains gates evaluating
to A0, A1, A2. For a nonterminal A of rank zero, the circuit contains a gate that
evaluates to the semiring element pA ∈ R, and we denote this gate with A as
well.

The induction uses a straightforward case distinction on the rule for A. The
cases that the unique rule for A has the form A→ x, A→ B(x), A→ f(x,B),
A→ f(B, x), A→ f(B,C), or A→ a is clear (f ∈ {+, ·}, a ∈ {0, 1, y1, . . . , ym}).
For instance, for a rule A→ +(B, x), we have pA(x) = B + 1 · x · 1, i.e., we set
A0 := B, A1 := 1, A2 := 1. Now consider a rule A→ B(C(x)) (for A→ B(C)
the argument is similar). We have already built up a circuit containing gates
that evaluate to B0, B1, B2, C0, C1, C2, where

pB(x) = B0 +B1x1B2, pC(x) = C0 + C1xC2.

We get

pA(x) = pB(pC(x))

= B0 +B1(C0 + C1xC2)B2

= (B0 +B1C0B2) +B1C1x1C2B2

and therefore set

A0 := B0 +B1C0B2, A1 := B1C1, A2 := C2B2.

108

So we can define the polynomials A0, A1, A2 using the gates B0, B1, B2, C0, C1,
C2 with only 5 additional gates. Note that also the depth only increases by a
constant factor (in fact, 2).

The output gate of the circuit is the start nonterminal of the TSLP G. The
above construction can be carried out in linear time as well as in logspace.

Now we can show the main result of this section:

Theorem 4.6.3. A given arithmetical formula F of size n having m differ-
ent variables can be transformed in logspace (linear time, respectively) into an
arithmetical circuit C of depth O(log n) and size O

(
n·logm

logn

)
such that over ev-

ery semiring, C and F evaluate to the same noncommutative polynomial in m
variables.

Proof. Let F be an arithmetical formula of size n and let y1, . . . , ym be the
variables occurring in F . Fix an arbitrary semiring S and let R be the polynomial
semiring R = S[y1, . . . , ym]. Using Lemma 4.6.1 we can construct in logspace
(linear time, respectively) a monadic TSLP G of size O((n · logm)/ log n) and
depth O(log n) such that val(G) = F . Finally, we apply Lemma 4.6.2 in order to
transform G in logspace (linear time, respectively) into an equivalent circuit of
size O((n · logm)/ log n) and depth O(log n).

Theorem 4.6.3 can also be shown for fields instead of semirings. In this case,
the expression is built up using variables, the constants −1, 0, 1, and the field
operations +, · and /. The proof is similar to the semiring case. Again, we start
with a monadic TSLP of size O((n · logm)/ log n) and depth O(log n) for the
arithmetical expression. Again, one can assume that all rules have the form A→
B(C(x)), A → B(C), A → f(x,B), A → f(B, x), A → f(B,C), A → B(x),
A→ x, or A→ a, where f is one of the binary field operations and a is either
−1, 0, 1, or a variable. Using this particular rule format, one can show that every
nonterminal A of rank 1 evaluates to a rational function (A0 +A1x)/(A2 +A3x)
for polynomials A0, A1, A2, A3 in the circuit variables, whereas a nonterminal of
rank 0 evaluates to a fraction of two polynomials. Finally, these polynomials can
be computed by a single circuit of size O((n · logm)/ log n) and depth O(log n).

Lemma 4.6.2 has an interesting application to the problem of checking
whether the polynomial represented by a TSLP over a ring is the zero polynomial.
The question, whether the polynomial computed by a given circuit is the zero
polynomial is known as polynomial identity testing (PIT). This is a famous
problem in algebraic complexity theory. For the case that the underlying ring is
Z or Zn (n ≥ 2) polynomial identity testing belongs to the complexity class coRP
(the complement of randomized polynomial time), see [2]. PIT can be generalized
to arithmetic expressions that are given by a TSLP. Using Lemma 4.6.2 and
Theorem 4.2.1 we obtain:

Theorem 4.6.4. Over any semiring, the question, whether the polynomial
computed by a given TSLP is the zero polynomial, is equivalent with respect to
polynomial time reductions to PIT. In particular, if the underlying semiring is Z

109

f

f

aa

f

af

aa

f

af

f

aa

x

Figure 4.17: A tree from T (left) and a context from C (right)

or Zn, then the question, whether the polynomial computed by a given TSLP is
the zero polynomial, belongs to coRP.

4.7 Source coding for unlabeled binary trees

In the following sections we aim to apply grammar-based tree compression to
universal source coding for unlabeled binary trees. In particular, we extend the
encoding presented in [72] from SLPs (see Section 3.9) to TSLPs (Section 4.9).
The key to derive strong universality bounds for the new tree encoding is the
fact that each unlabeled binary tree of size n is produced by a TSLP of size
O(n/ log n) (Corollary 4.4.4 and Theorem 4.5.3). A similar attempt, but based
on DAGs instead of general TSLPs, was made in [111]. As a second contribution,
we will sharpen some universality bounds presented in [111] in the next section.
To do so, we use that the minimal DAG has size O(n/ log n) for unlabeled
β-balanced binary trees of size n as discussed in Section 4.3.1.

Unlabeled binary trees. We start with some notations. We fix a ranked
alphabet F = {a, f} with a ∈ F0 and f ∈ F2 in the following and we simply
denote by T = T (F) the set of unlabeled binary trees, i.e., T is the smallest
set of terms such that (i) a ∈ T and (ii) if t1, t2 ∈ T then also f(t1, t2) ∈ T .
Further, we deal with patterns of rank at most one in the remaining chapter and
thus we are restricted to trees and contexts in the following. As a consequence,
instead of numbering the parameters beginning with x1, we just use the label x
for the single leaf of a context which is labeled by a parameter. We denote by C
the set of all contexts over F ∪ {x}, i.e., C is the smallest set such that (i) x ∈ C
and (ii) if s ∈ C and t ∈ T then also f(s, t), f(t, s) ∈ C. Examples for a tree in
T and a context in C are depicted in Figure 4.17.

Since we exclusively deal with binary trees in the following, we mainly use
the leaf size leafsize(t) of a tree or context t ∈ T ∪C instead of the size |t|. Recall
that if t ∈ T then |t| = 2 · leafsize(t)− 1 and if t ∈ C then |t| = 2 · leafsize(t) since
we do not count the leaf labeled by the parameter (neither in leafsize(t) nor in |t|).
Let Tn = {t ∈ T | leafsize(t) = n} for n ≥ 1 and Cn = {t ∈ C | leafsize(t) = n}
for n ≥ 0 (the context x satisfies leafsize(x) = 0). It is well known that the

110

number of trees in Tn is exactly the (n− 1)-th Catalan number. Let ck be the
k-th Catalan number. The following asymptotic is well known, see e.g. [41]:

ck ∼
4k
√
πk

3
2

In fact, we have ck ≤ 4k for all k ≥ 0 and thus |Tn| ≤ 4n−1 (this refines
Lemma 4.1.1 for the case of unlabeled binary trees). We also consider the set of all
trees of a certain depth in the following and we denote by T d = {t ∈ T | d(t) = d}
the set of all trees of depth d for d ≥ 0.

Tree sources. A tree source S is a pair S = ((Pi)i∈N, pS) such that

• Pi ⊆ T is non-empty and finite for every i ≥ 0,

• Pi ∩ Pj = ∅ for i 6= j and
⋃
i≥0 Pi = T , i.e., the sets Pi partition T ,

• pS : T → R[0,1] such that
∑
t∈Pi pS(t) = 1 for every i ≥ 0, i.e., pS is a

probability distribution on Pi for each i ≥ 0.

We consider two cases for the partition (Pi)i∈N in this work:

(i) Pi = Ti+1 for all i ∈ N (leaf-centric)

(ii) Pi = T i for all i ∈ N (depth-centric)

For the leaf-centric tree sources described in case (i), we start with T1 because
there is no tree t ∈ T such that leafsize(t) = 0. For the depth-centric tree sources
described in case (ii) we have d(t) = 0 for the tree t = a and thus we start with
T 0 in this case.

Tree encoders and redundancy. A tree encoder is an injective mapping
E : T → {0, 1}∗ such that the range E(T) is prefix-free, i.e., there do not exist
t, t′ ∈ T with t 6= t′ such that E(t) is a prefix of E(t′). We define the worst-case
redundancy of E with respect to the fixed tree source S = ((Pi)i∈N, pS) as the
mapping n 7→ R(E,S, n) (n ∈ N) with

R(E,S, n) = max
t∈Pn,pS(t)>0

1

leafsize(t)
· (|E(t)|+ log pS(t))

(the maximum is taken over all trees t ∈ Pn such that pS(t) > 0). The worst-case
redundancy is also known as the maximal pointwise redundancy. A tree encoder
E is (worst-case) universal for a tree source S if R(E,S, n) converges to zero for
n→∞. Moreover, we define the average-case redundancy of E with respect to
the tree source S = ((Pi)i∈N, pS) as the mapping n 7→ R∅(E,S, n) (n ∈ N) with

R∅(E,S, n) =
∑

t∈Pn,pS(t)>0

1

leafsize(t)
· (|E(t)|+ log pS(t)) · pS(t).

A tree encoder E is (average-case) universal for a tree source S if R∅(E,S, n)
converges to zero for n→∞.

111

4.8 Universal coding based on DAGs

In this section we sharpen some of the results from [111], where universal source
coding of unlabeled binary trees based on the minimal DAG is investigated.
Recall that the DAG of a tree is a directed, acyclic graph such that each distinct
subtree of t occurs only once (see Section 4.3). In [111], only bounds on the
average-case redundancy for certain classes of tree sources were shown. Here
we extend these bounds (for the same classes of tree sources) to the worst-case
redundancy. To do so, we use two results presented in Section 4.3.1. First, we use
the bound on the size of the DAG of β-balanced trees provided in Theorem 4.3.2.
Second, we use the bound on the size of the DAG of trees where each subtree
has logarithmic depth in dependence on its size (see Theorem 4.3.4; this result
was implicitly shown in [58]).

The following condition on a tree source was introduced in [111], where it
is called the domination property (later, we will introduce a strong domination
property, so we call it weak domination property here): Let S = ((Pi)i∈N, pS)
be a tree source. We say that S has the weak domination property if there exists
a mapping λ : T → R>0 with the following properties:

(i) λ(t) ≥ pS(t) for every t ∈ T ,

(ii) λ(f(s, t)) ≤ λ(s) · λ(t) for all s, t ∈ T ,

(iii) There are constants c1, c2 such that
∑
t∈Tn λ(t) ≤ c1 · nc2 for all n ≥ 1.

In [111], the authors define a binary encoding B(DAG(t)) ∈ {0, 1}∗, such
that B(DAG(t)) is not a prefix of B(DAG(t′)) for all t, t′ ∈ T with t 6= t′. The
precise definition of B(DAG(t)) is not important for us; all we need is the
following bound from [111], where Edag : T → {0, 1}∗ is the tree encoder with
Edag(t) = B(DAG(t)).

Lemma 4.8.1 ([111, Theorem 2]). Assume that S = ((Pi)i∈N, pS) has the weak
domination property. Let t ∈ Tn with n ≥ 2 and pS(t) > 0, then we have

1

n
· (|Edag(t)|+ log(pS(t))) ≤ O

(
|DAG(t)|

n

)
+O

(
|DAG(t)|

n
· log

(
n

|DAG(t)|

))
.

Based on this lemma, the following bound on the average-case redundancy
was derived:

Theorem 4.8.2 ([111, Theorem 2]). Consider the mapping g(x) = x · log(1/x)
and assume that the tree source S = ((Pi)i∈N, pS) has the weak domination
property. There exists a positive real number k, depending only on S, such that
for all n ∈ N we have

R∅(Edag,S, n) ≤ k · g

(∑
t∈Pn

pS(t) · |DAG(t)|
leafsize(t)

)
.

112

This bound is used to show that for certain leaf-centric and depth-centric
tree sources the encoding Edag is universal in the sense that the average-case
redundancy converges to zero. Here, we want to show that for the same tree
sources already the worst-case redundancy converges to zero. Let us first define
the specific classes of tree sources studied in [111].

4.8.1 Leaf-centric binary tree sources

We recall the definition of a natural class of leaf-centric tree sources from [111]:
Let Σleaf be the set of all functions σ : (N \ {0})× (N \ {0})→ R[0,1] such that
for all n ≥ 2: ∑

i,j≥1, i+j=n

σ(i, j) = 1. (4.8)

For σ ∈ Σleaf we define pσ : T → R[0,1] inductively by:

pσ(a) = 1, (4.9)

pσ(f(s, t)) = σ(leafsize(s), leafsize(t)) · pσ(s) · pσ(t). (4.10)

We have
∑
t∈Tn pσ(t) = 1 and thus ((Ti)i≥1, pσ) is a leaf-centric tree source.

Example 4.13. Here are three examples of leaf-centric tree sources of the above
form, which are also discussed in [75] with respect to their entropy rates:

• The binary search tree model ((Ti)i≥1, pσbst
), where

σbst(k, n− k) =
1

n− 1

for all k ∈ [1, n− 1].

• The uniform model ((Ti)i≥1, pσuni), where

σuni(k, n− k) =
ck−1 · cn−k−1

cn−1

for all k ∈ [1, n− 1]. Here, pσuni
is the uniform distribution on Ti for i ≥ 1.

• The binomial random tree model ((Ti)i≥1, pσbin
) where

σbin(k, n− k) =

(
n− 2

k − 1

)
· 1

2n−2

for all k ∈ [1, n− 1].

The following result is implicitly shown in [111] and can also be found in the
proof of Theorem 4.9.9.

Lemma 4.8.3. For every σ ∈ Σleaf, the leaf-centric tree source ((Ti)i≥1, pσ) has
the weak domination property.

113

Worst-case redundancy

We say that a mapping σ ∈ Σleaf is leaf-balanced if there exists a constant c such
that for all (i, j) ∈ (N \ {0})× (N \ {0}) with σ(i, j) > 0 we have

i+ j

min{i, j}
≤ c.

In [111] it is shown that for a leaf-balanced σ ∈ Σleaf, the tree source ((Ti)i≥1, pσ)
has the so-called representation ratio negligibility property. This property states
that the average compression ratio achieved by the minimal DAG (formally,∑
t∈Tn pσ(t) · |DAG(t)|/n) converges to zero for n→∞. Using our result from

Section 4.3.1 (Theorem 4.3.2), we show the following stronger property.

Lemma 4.8.4. For every leaf-balanced mapping σ ∈ Σleaf, there exists a constant
α such that for each t ∈ Tn with pσ(t) > 0 we have

|DAG(t)| ≤ α · n

log n
.

Proof. Recall the notion of β-balanced trees presented in Section 4.3.1. By
Theorem 4.3.2, we know that for every constant β there exists a constant α
(depending only on β) such that the minimal DAG of a β-balanced tree t ∈ Tn
satisfies |DAG(t)| ≤ α · n/ log n. It follows that we only need to show that
a tree t ∈ Tn with pσ(t) > 0 (where σ is leaf-balanced) is β-balanced for a
constant β. Since the mapping σ is leaf-balanced, every subtree f(t1, t2) of t
with ni = leafsize(ti) for i ∈ [1, 2] satisfies n1 + n2 ≤ c ·min{n1, n2}, where c ≥ 1
is a constant. Without loss of generality assume that n1 ≤ n2. We get n1 ≤ c ·n2

and

n2 ≤ n1 + n2 ≤ c ·min{n1, n2} = c · n1,

which shows that t is c-balanced.

Corollary 4.8.5. Let σ ∈ Σleaf be leaf-balanced, and let S = ((Ti)i≥1, pσ) be the
corresponding leaf-centric tree source. Then, we have

R(Edag,S, n) ≤ O
(

log log n

log n

)
.

Proof. Let α be the constant from Lemma 4.8.4. Let t ∈ Tn such that pσ(t) > 0.
Lemma 4.8.4 implies |DAG(t)| ≤ α ·n/ log n. With Lemma 4.8.1 and 4.8.3 we get

1

n
· (|Edag(t)|+ log(pσ(t))) ≤ O

(
log log n

log n

)
.

This proves the corollary.

114

4.8.2 Depth-centric binary tree sources

We recall the definition of a natural class of depth-centric tree sources from [111]:
Let Σdepth be the set of all mappings σ : N× N→ R[0,1] such that for all n ≥ 1:∑

i,j≥0, max(i,j)=n−1

σ(i, j) = 1. (4.11)

For σ ∈ Σdepth, we define pσ : T → [0, 1] by

pσ(a) = 1, (4.12)

pσ(f(s, t)) = σ(d(s), d(t)) · pσ(s) · pσ(t). (4.13)

We have
∑
t∈T n pσ(t) = 1 and thus ((T i)i≥0, pσ) is a depth-centric tree source.

The following result is implicitly shown in [111] and can also be found as a
part of the proof of Theorem 4.9.10.

Lemma 4.8.6. For every σ ∈ Σdepth, the depth-centric tree source ((T i)i≥0, pσ)
has the weak domination property.

We say the mapping σ ∈ Σdepth is depth-balanced if there exists a constant c
such that for all (i, j) ∈ N× N with σ(i, j) > 0 we have |i− j| ≤ c. In [111], the
authors define a condition on σ that is slightly stronger than depth-balancedness,
and show that for every such σ, the tree source ((T i)i≥0, pσ) has the repre-
sentation ratio negligibility property. Similarly to Lemma 4.8.4, we will show
an even stronger property. To do so, we introduce β-depth-balanced trees for
β ∈ N. A tree t is called β-depth-balanced if for each subtree f(t1, t2) of t we
have |d(t1) − d(t2)| ≤ β. Note that for a depth-balanced mapping σ ∈ Σdepth,
there is a constant β such that every tree t with pσ(t) > 0 is β-depth-balanced.
We will use the following lemma:

Lemma 4.8.7. Let β ∈ N and c = 1 + 1
1+β (thus, 1 < c ≤ 2). For every

β-depth-balanced binary tree t, we have leafsize(t) ≥ cd(t).

Proof. We prove the lemma by induction on d(t). For the only tree t = a of
depth d(t) = 0, we have leafsize(t) = 1 = c0. Consider now a β-depth-balanced
tree t = f(t1, t2) of depth d(t) > 0. We assume d(t1) ≥ d(t2), the other case is
symmetric. Since t is β-depth-balanced, it follows that d(t2) ≥ d(t1)− β. Let
n = leafsize(t) and ni = leafsize(ti) for i ∈ [1, 2]. To estimate the size n = n1 +n2,
we apply the induction hypothesis to t1 and t2, which yields

n = n1 + n2 ≥ cd(t1) + cd(t2) ≥ cd(t1) + cd(t1)−β = cd(t1) ·
(
1 + c−β

)
.

Since d(t1) + 1 = d(t), it only remains to show that 1 + c−β ≥ c, which can be
easily done by induction on β ∈ N.

Lemma 4.8.7 together with Theorem 4.3.4 (which was implicitly shown in [58])
implies:

115

Lemma 4.8.8. For every depth-balanced mapping σ ∈ Σdepth there exists a
constant α such that for every binary tree t ∈ Tn with pσ(t) > 0 we have

|DAG(t)| ≤ α · n · log log n

log n
.

Proof. If pσ(t) > 0, then there exists a constant β such that t and each of its
subtrees is β-depth-balanced. By Lemma 4.8.7 this implies that every subtree t′

has depth at most c·log |t′| for a constant c that only depends on σ. Theorem 4.3.4
it follows that there exists a constant α (again, only dependent on σ) such that
|DAG(t)| ≤ α · (n · log log n)/ log n.

Corollary 4.8.9. Let σ ∈ Σdepth be depth-balanced and let S = ((T i)i≥0, pσ) be
the corresponding depth-centric tree source. Then, we have

R(Edag,S, n) ≤ O
(

(log log n)2

log n

)
.

Proof. Let α be the constant from Lemma 4.8.8. Let t ∈ T n such that pσ(t) > 0
and let ` = leafsize(t). Lemma 4.8.1 and 4.8.6 imply

1

`
· (|Edag(t)|+ log(pσ(t))) ≤ O

(
|DAG(t)|

`

)
+O

(
|DAG(t)|

`
· log

(
`

|DAG(t)|

))
.

Consider the mapping g(x) = x · log(1/x). It is monotonically increasing for
0 ≤ x ≤ 1/e. Note that for all t ∈ T n we have leafsize(t) ≥ n + 1. Hence, if
n is large enough, then Lemma 4.8.8 yields for all t ∈ T n with pσ(t) > 0 and
` = leafsize(t) that

|DAG(t)|
`

≤ α · log log `

log `
≤ log(log(n+ 1))

log(n+ 1)
≤ 1/e.

We obtain

1

leafsize(t)
· (|Edag(t)|+ log(pσ(t))) ≤ O

(
(log log n)2

log n

)
.

This proves the corollary.

4.9 Universal coding based on TSLPs

In this section, we will use TSLPs in order to obtain a worst-case universal code
for unlabeled binary trees. The limitations of DAGs for universal source coding
can be best seen for a tree source S = ((Pi)i∈N, pS) such that pS(t) > 0 for all
t ∈ T . As it is shown in Example 4.9, the tree tn = f(f(f(· · · f(a, a), · · · a), a), a)
(where f occurs n times) has leaf size n+ 1 and |DAG(tn)| = n+ 1. Together
with pS(tn) > 0 this implies that the bound stated in Lemma 4.8.1 cannot be
used to show that the worst-case redundancy converges to zero. In the following
we encode unlabeled binary trees using general TSLPs, where we can use the
results achieved in Corollary 4.4.4 and Theorem 4.5.3. First, we present a normal
form which we use to encode TSLPs.

116

4.9.1 TSLPs in normal form

In this section, we use TSLPs in a certain normal form. Basically, a normal form
TSLP is a monadic TSLP combined with a specification on the naming of the
nonterminals. Formally, a TSLP G = (N ,F , A0, P) with F0 = {a}, F2 = {f}
and F = F0 ∪ F2 is in normal form if the following conditions hold:

• N = N0 ∪N1 = {A0, A1, . . . , An−1} for some n ∈ N \ {0}.

• For every Ai ∈ N0, we have (Ai → Aj(α)) ∈ P for some Aj ∈ N1 and
α ∈ N0 ∪ {a}.

• For every Ai ∈ N1, we have (Ai → Aj(Ak(x))) ∈ P , or (Ai → f(α, x)) ∈ P ,
or (Ai → f(x, α)) ∈ P , where Aj , Ak ∈ N1 and α ∈ N0 ∪ {a}.

• For every Ai ∈ N define the word ρ(Ai) ∈ (N ∪ {a})∗ as follows:

ρ(Ai) =


Ajα if (Ai → Aj(α)) ∈ P
AjAk if (Ai → Aj(Ak(x))) ∈ P
α if (Ai → f(α, x)) ∈ P or (Ai → f(x, α)) ∈ P

Let ρG = ρ(A0)ρ(A1) · · · ρ(An−1) ∈ {a,A1, A2, . . . , An−1}∗. Then it is
required that ρG is of the form ρG = A1u1A2u2 · · ·An−1un−1 such that
ui ∈ {a,A1, A2, . . . , Ai}∗, i.e., the nonterminals are numbered according
to their first left-to-right occurrence in ρG .

• valG(Ai) 6= valG(Aj) for i 6= j

A normal form TSLP as it is defined above can not produce the singleton tree a
and thus we also allow the TSLP Ga = ({A0},F , A0, {A0 → a}). In this case,
we set ρGa = ρ(A0) = a. Note that |ρG | is the total number of occurrences of
symbols from N ∪ {a} on all right-hand sides of G. We have |ρG | ≤ |G| ≤ 2 · |ρG |
because the size of G is |ρG | plus the (missing) number of occurrences of f on
right-hand sides and if the right-hand side of a rule contains the symbol f , then
it contains a symbol from N ∪ {a} as well due to the normal form.

It is not hard to show that a given TSLP G′ can be transformed into a
normal form TSLP G of size |G| ≤ O(|G′|) that produces the same unlabeled
binary tree. Basically, one transforms G′ into a monadic TSLP as described
in Theorem 4.2.1 (which is proven in [85, Theorem 10]), followed by some
straightforward adjustments in order to obtain the required forms of the right-
hand sides. For example, rules A → a are deleted and A is replaced by a on
all right-hand sides, and a rule A → f(α1, α2) (αi ∈ N0 ∪ {a} for i ∈ [1, 2]) is
modified to A→ f(x, α2) and occurrences of A on right-hand sides are replaced
by A(α1). Finally, the nonterminals are renamed accordingly in order to satisfy
the conditions described above. An example of such a transformation is shown
in Example 4.14.

Let G = (N ,F , A0, P) be a normal form TSLP with N = {A0, A1, . . . , An−1}
for the further definitions. Let ωG be the word obtained from ρG by removing

117

for every i ∈ [1, n − 1] the first occurrence of Ai from ρG . Thus, if ρG =
A1u1A2u2 · · ·An−1un−1 with ui ∈ {a,A1, A2, . . . , Ai}∗, then ωG = u1u2 · · ·un−1.
The entropy H(G) of the normal form TSLP G is defined as the empirical
unnormalized entropy (see Section 2.4) of the word ωG :

H(G) = H(ωG).

Example 4.14. Let G′ = (N ′,F , S, P ′) be a TSLP with F = {a, f}, F0 = {a},
F2 = {f}, N ′ = {S,A,B}, N ′0 = {S,A}, N ′1 = {B} and

P ′ = {S → f(A,B(a)), A→ B(B(a)), B → f(x, a)}.

We get valG′(B) = f(x, a), valG′(A) = f(f(a, a), a) and val(G′) = valG′(S) =
f(f(f(a, a), a), f(a, a)). This tree is depicted on the left of Figure 4.17.

The corresponding normal form TSLP is G = (N ,F , A0, P) with N =
{A0, A1, A2, A3, A4}, N0 = {A0, A2, A3}, N1 = {A1, A4}, where P contains

A0 → A1(A2), A1 → f(x,A3), A2 → A4(A3),

A3 → A4(a), A4 → f(x, a).

We have val(G) = val(G′), ρG = A1A2A3A4A3A4aa (u1 = u2 = u3 = ε, u4 =
A3A4aa), |ρG | = 8, |G| = 10 and ωG = A3A4aa.

Recall the definition of the derivation tree of a TSLP in Chomsky normal
form (see Section 4.2). Here, we use an adapted version of a derivation tree based
on normal form TSLPs: The normal form derivation tree TG of the normal form
TSLP G is a rooted tree, where every node is labeled by a symbol from N ∪ {a}.
We use TG (instead of DG) to distinguish the normal form derivation tree we use
here from the derivation tree we defined for TSLPs in Chomsky normal form,
but we simply call TG the derivation tree of G. Formally, the root of TG is labeled
by A0 and nodes labeled by a are the leaves of TG. A node v that is labeled by
a nonterminal Ai has |ρ(Ai)| many children. If ρ(Ai) = α ∈ N0 ∪ {a} then the
single child of v is labeled by α. If ρ(Ai) = Ajα with α ∈ N ∪ {a} then the left
(resp., right) child of v is labeled by Aj (resp., α). We denote by leafsize(TG) the
number of leaves of TG as usual. Note that leafsize(TG) = leafsize(val(G)).

For every node v of TG we define the tree or context tv = valG(Ai) if the
label of v is Ai (for some i ∈ [0, n − 1]) and tv = a if v is labeled by a. Note
that if the label of v is α ∈ N0 ∪ {a} then tv ∈ T and if α ∈ N1 then tv ∈ C.
Recall that for a tree or context t ∈ T ∪ C and a context s ∈ C, we denote by
s[t] the tree or context which results from s by replacing the parameter x by t.
We have leafsize(s[t]) = leafsize(s) + leafsize(t) since the unique occurrence of the
parameter x does not count to the leaf size of the context. The tree or context
tv can be inductively defined by the following rules:

• If v is labeled by a then tv = a.

118

A0

A1

A3

A4

a

a

A2

A4

a

A3

A4

a

a

A0

A1

A3

A4

a

a

A2

A4 A3

Figure 4.18: The derivation tree TG of the TSLP from Example 4.14 (left) and
an initial subtree T ′ of TG (right).

• If v is labeled by Ai ∈ N1 and has a single child node u that is labeled by
α ∈ N0 ∪ {a}, then tv = f(tu, x) if (Ai → f(α, x)) ∈ P and tv = f(x, tu) if
(Ai → f(x, α)) ∈ P (note that the right hand side of the rule for Ai must
be of the form f(x, α) or f(α, x) since v has exactly one child in TG).

• If v has the left child u1 and the right child u2, then tv = tu1
[tu2

] (note
that if a node has two children in the derivation tree, then the left child u1

is labeled by a nonterminal from N1 and thus tu1
is a context from C).

An initial subtree of the derivation tree TG is a tree that can be obtained from
TG as follows: Take a subset U of the nodes of TG and remove from TG all proper
descendants of nodes from U , i.e., all nodes that are located strictly below a
node from U .

Example 4.15. Let G be the normal form TSLP from Example 4.14. The
derivation tree TG is shown in Figure 4.18 on the left; an initial subtree T ′ of it
is shown on the right.

Lemma 4.9.1. Let T ′ be an initial subtree of TG and let v1, . . . , v` be the sequence
of all leaves of T ′ (in left-to-right order). Then

leafsize(val(G)) =
∑̀
i=1

leafsize(tvi).

Proof. Let u be a node of TG and let Tu be the subtree of TG rooted in u. Let us
first show by induction that leafsize(tu) = leafsize(Tu) holds (where leafsize(Tu)
denotes the number of leaves of Tu as usual). Recall that leafsize(tu) is the number
of a-labeled leaves of tu, i.e., a leaf labeled by the parameter x is not counted. If
u is a leaf of TG then we have tu = a and therefore leafsize(tu) = 1 = leafsize(Tu).
If u has two children u1 and u2 then tu = tu1 [tu2] and we get

leafsize(tu) = leafsize(tu1
[tu2

]) = leafsize(tu1
) + leafsize(tu2

).

Hence, we get by induction

leafsize(tu) = leafsize(Tu1
) + leafsize(Tu2

) = leafsize(Tu).

119

Finally, if the node u has a single child v in TG then either tu = f(x, tv) or
tu = f(tv, x). In both cases we get by induction

leafsize(tu) = leafsize(tv) = leafsize(Tv) = leafsize(Tu).

This proves leafsize(tu) = leafsize(Tu).
To finish the proof of the lemma, recall that leafsize(val(G)) = leafsize(TG)

(by the definition of the derivation tree). Since T ′ is an initial subtree of TG we
get

leafsize(TG) =
∑̀
i=1

leafsize(Tvi) =
∑̀
i=1

leafsize(tvi).

For a grammar-based tree compressor ψ that produces for a given tree t ∈ T
a TSLP Gt in normal form, we define the compression ratio of ψ as the mapping
n 7→ γψ(n) with

γψ(n) = max
t∈Tn

|Gt|
n
.

Based on Corollary 4.4.4 and Theorem 4.5.3, we know that there are grammar-
based compressors which construct a TSLP of size O(n/ log n) for an unlabeled
binary tree of (leaf) size n. Additionally, we explained above that a TSLP can
be transformed into normal form such that the size of the TSLP increases only
by a constant multiplicative factor. Together this yields the following theorem,
which will be crucial in order to derive a universal tree encoder in the sense that
the worst-case redundancy converges to zero.

Theorem 4.9.2. There exists a grammar-based tree compressor ψ such that

γψ(n) ≤ O
(

1
logn

)
.

4.9.2 Binary coding of TSLPs in normal form

In this section we introduce a binary encoding for normal form TSLPs. This en-
coding is similar to the one for SLPs [72] and DAGs [111]. Let G = (N ,F , A0, P)
be a TSLP in normal form with n = |N |. Let further m = |ρG | and recall that
m = Θ(|G|). We define the type type(Ai) ∈ {0, 1, 2, 3} of a nonterminal Ai ∈ N
as follows:

type(Ai) =


0 if (Ai → Aj(α)) ∈ P for some Aj ∈ N1 and α ∈ N0 ∪ {a}
1 if (Ai → Aj(Ak(x))) ∈ P for some Aj , Ak ∈ N1

2 if (Ai → f(α, x)) ∈ P for some α ∈ V0 ∪ {a}
3 if (Ai → f(x, α)) ∈ P for some α ∈ V0 ∪ {a}

We define the binary word B(G) = w0w1w2w3w4, where the words wi ∈ {0, 1}∗
for i ∈ [0, 4] are defined as follows:

• w0 = 1n−10,

120

• w1 = a0b0a1b1 · · · an−1bn−1, where ajbj is the 2-bit binary encoding of
type(Aj) for j ∈ [0, n− 1],

• Let ρG = A1u1A2u2 · · ·An−1un−1 with ui ∈ {a,A1, A2, . . . , Ai}∗. Then
w2 = 1|u1|01|u2|0 · · · 1|un−1|0, which is ε in case n = 1. Note that |w2| = m.

• For i ∈ [1, n−1] let ki ≥ 1 be the number of occurrences of the nonterminal
Ai in the word ρG . Then w3 = 1k1−101k2−10 · · · 1kn−1−10, which is ε in
case n = 1. Note that |w3| ≤ m.

• The word w4 encodes the word ωG using the well known enumerative
encoding [33]. Every nonterminal Ai (i ∈ [1, n− 1]), has η(Ai) := ki − 1
occurrences in ωG . The symbol a has η(a) := m − (k1 + · · · + kn−1)
many occurrences in ωG . Let S be the set of words over the alphabet
{a,A1, . . . , An−1} with η(a) occurrences of a and η(Ai) occurrences of Ai
for every i ∈ [1, n− 1]. Hence,

|S| = (m− n+ 1)!

η(a)! ·
∏n−1
i=1 η(Ai)!

. (4.14)

Let v0, v1, . . . , v|S|−1 be the lexicographic enumeration of the words from S
with respect to the alphabet order a,A1, . . . , An−1. Then w4 is the binary
encoding of the unique index i such that ωG = vi, where |w4| = dlog |S|e
(leading zeros are added to the binary encoding of i to obtain the length
dlog |S|e).

Example 4.16. Consider the normal form TSLP G from Example 4.14. We
have w0 = 11110, w1 = 0011000011, w2 = 00011110 and w3 = 001010. To
compute w4, note first that there are |S| = 12 words with two occurrences of a and
one occurrence of A3 and A4. It follows that |w4| = dlog(12)e = 4. Further, since
the order of the alphabet is a,A3, A4, there are only three words in S (A4A3aa,
A4aA3a and A4aaA3), which are lexicographically larger than ωG = A3A4aa.
Hence, ωG = v8 and thus w4 = 1000.

Lemma 4.9.3. The set of code words B(G), where G ranges over all TSLPs in
normal form, is a prefix code.

Proof. Let B(G) = w0w1w2w3w4 as defined above. We show how to recover the
TSLP G. From B(G) and the fact that w0 = 1n−10 we can compute n = |N |
and the suffix w1w2w3w4. Since |w1| = 2n we can then determine w1 and the
suffix w2w3w4. The word w1 encodes the type of every nonterminal. Since
w2 = 1|u1|01|u2|0 · · · 1|un−1|0 and we know n we can compute from w2w3w4 the
word w2 and the suffix w3w4. The word w2 allows to compute the positions
where we have deleted the nonterminals A1, A2, . . . , An−1 (in that order) from
ρG during the computation of ωG . Hence, in order to compute ρG , one only needs
ωG . Since w3 = 1k1−101k2−10 · · · 1kn−1−10 and we know n, we can compute
w3 and w4. The word w3 determines the frequencies η(a), η(A1), . . . , η(An−1)
of the symbols in ωG . Using these frequencies one computes the size |S| from

121

f

f

f

a a

a

f

a a

Figure 4.19: The tree val(G) of the TSLP from Example 4.14. The
canonical occurrences of the trees/contexts in (a, a, valG(A4), valG(A3)) =
(a, a, f(x, a), f(a, a)) used in the proof of Lemma 4.9.5 are highlighted.

(4.14) and hence the length dlog |S|e of w4. From w4, one can then compute ωG .
Finally, ρG together with the types of the nonterminals (which are encoded by
w1) completely determines G. The argument shows also that B(G) cannot be a
prefix of B(G′) for different normal form TSLPs G and G′.

Note that |B(G)| ≤ O(|G|) + |w4| because |ρG | ≤ |G| and |N | ≤ |G|. By using
the well known bound on the enumerative encoding [34, Theorem 11.1.3], we
get:

Lemma 4.9.4. For the binary coding B(G) we have |B(G)| ≤ O(|G|) +H(G).

4.9.3 Universal coding based on TSLPs in normal form

Let S = ((Pi)i∈N, pS) be a tree source as defined in Section 4.7. We say that S
has the strong domination property if there exists a mapping λ : T ∪ C → R>0

with the following properties:

(i) λ(t) ≥ pS(t) for every t ∈ T .

(ii) λ(f(s, t)) ≤ λ(s) · λ(t) for all s, t ∈ T

(iii) λ(s[t]) ≤ λ(s) · λ(t) for all s ∈ C and t ∈ T

(iv) There are constants c1, c2 such that
∑
t∈Tn∪Cn λ(t) ≤ c1 · nc2 for all n ≥ 1.

Recall the definition of the trees/contexts tu for a node u of a derivation tree of
a normal form TSLP from Section 4.9.1.

Lemma 4.9.5. Let λ : T ∪ C → R>0 be a mapping that satisfies the properties
(ii) and (iii) of the strong domination property. Let G = (N ,F , A0, P) be a TSLP
in normal form with val(G) = t and let T ′ be an initial subtree of the derivation

tree TG. Let v1, . . . , v` be the sequence of leaves of T ′. Then λ(t) ≤
∏`
i=1 λ(tvi).

Proof. Consider a node u of the derivation tree TG . The tree/context tu clearly
occurs in t. One can define a canonical occurrence of tu in t which is identified
with a set Vu ⊆ nodes(t) of nodes of t. For the root r, Vr = nodes(t) is the set

122

of all nodes of t. Now consider a node u of TG for which Vu has been defined.
If u has two children u1 and u2 then tu = tu1 [tu2]. Then Vu1 and Vu2 can be
uniquely defined by the following conditions: there is a node y ∈ Vu such that
Vu2

contains all nodes z ∈ Vu that are descendants of y in the tree t (including y),
Vu1

= Vu \ Vu2
and the nodes in Vui induce an occurrence of ti in t for i ∈ [1, 2].

If the node u has a single child v in TG then either tu = f(x, tv) or tu = f(tv, x).
Let y ∈ Vu be the root node of Vu. If tu = f(tv, x) then Vv contains the nodes in
the subtree of t rooted in the left child of y and if tu = f(x, tv) then Vv contains
the nodes in the subtree of t rooted in the right child of y.

Now consider the nodes v1, . . . , v` from the lemma. Figure 4.19 shows the
node sets Vv1

, Vv2
, Vv3

, Vv4
for the four leaf nodes of the initial subtree T ′ from

Figure 4.18. Since these nodes are pairwise incomparable with respect to the
ancestor relation of TG , the node sets Vvi are pairwise disjoint. This allows us to

prove λ(t) ≤
∏`
i=1 λ(tvi) inductively. The case that t = a is clear. Now assume

that t = f(t1, t2). First assume that the root node of t does not belong to some
of the sets Vvi . Then every set Vvi is either contained in the left subtree t1 or in
the right subtree t2. W.l.o.g. assume that Vv1

, . . . , Vvk are contained in t1 and
Vvk+1

, . . . , Vv` are contained in t2. By induction and condition (ii) of the strong
domination property we get

λ(t) ≤ λ(t1) · λ(t2) ≤
k∏
i=1

λ(tvi) ·
∏̀

i=k+1

λ(tvi).

Now assume that the root node of t belongs to a set Vvi . W.l.o.g. assume that
i = 1. If tv1 is a tree then we must have t = tv1 and ` = 1 and the statement
of the lemma holds. Otherwise, tv1

is a context, t = tv1
[t′] and all Vv2

, . . . , Vv`
are contained in t′. By induction and condition (iii) of the strong domination
property we get

λ(t) ≤ λ(tv1
) · λ(t′) ≤ λ(tv1

) ·
∏̀
i=2

λ(tvi).

This concludes the proof of the lemma.

The proof of the following lemma combines ideas from [72] and [111].

Lemma 4.9.6. Assume that S = ((Pi)i∈N, pS) has the strong domination prop-
erty. Let t ∈ Tn with n ≥ 2 and pS(t) > 0, and let G = (N ,F , A0, P) be a TSLP
in normal form with val(G) = t. We have

H(G) ≤ − log pS(t) +O(|G|) +O
(
|G| · log

(
n

|G|

))
.

Proof. Let m = |ρG | ≤ |G|, k = |N |, and ` := m + 1 − k ≤ m. We define an
initial subtree T ′ of the derivation tree TG as follows: We walk in depth-first
left-to-right order over the tree TG . Every time we visit a non-leaf node v that
is labeled by a nonterminal that has been seen before during the traversal, we

123

remove from TG all proper descendants of v. Thus, for every Ai ∈ V there
is exactly one non-leaf node in T ′ that is labeled by Ai. For the TSLP from
Example 4.14, the tree T ′ is shown in Figure 4.18 on the right.

Note that T ′ has exactly m + 1 many nodes and k non-leaf nodes. Thus,
T ′ has ` leaves. Let v1, v2, . . . , v` be the sequence of all leaves of T ′ (w.l.o.g.
in depth-first left-to-right order) and let αi ∈ {a,A1, . . . , Ak−1} be the label of
vi. Let α = (α1, α2, . . . , α`). Then the number of occurrences of each symbol
α ∈ {a,A1, . . . , Ak−1} in ωG is exactly the same as in α. Hence, pα and pωG
describe the same empirical distribution (see Section 2.4). For the normal form
TSLP from Example 4.14 we get α = (a, a,A4, A3) (this is the sequence of labels
of the leaf nodes for the tree in Figure 4.18 on the right). Let ti = valG(αi) ∈ T ∪C.
Since valG(Ai) 6= valG(Aj) for all i 6= j and valG(Ai) 6= a for all i (this holds for
every normal form TSLP that produces a tree of size at least two), the tuple
t = (t1, t2, . . . , t`) satisfies pωG (αi) = pt(ti) for all i ∈ [1, `]. For the TSLP from
Example 4.14 we get t = (a, a, valG(A4), valG(A3)) = (a, a, f(x, a), f(a, a)) (see
Figure 4.19).

Let ni = leafsize(ti). Lemma 4.9.1 yields

∑̀
i=1

ni = n (4.15)

since t ∈ Tn, whereas Lemma 4.9.5 yields

λ(t) ≤
∏̀
i=1

λ(ti). (4.16)

For j ∈ N with j ≥ 1 let

Mj =
∑

u∈Tj∪Cj

λ(u) ≤ c1 · jc2 ,

where c1 and c2 are the constants from condition (iv) of the strong domination
property. Let D := 6/π2 ≥ 1/2 and define for every u ∈ Tj ∪ Cj :

q(u) :=
D · λ(u)

Mj · j2
> 0. (4.17)

We get ∑
j≥1

∑
u∈Tj∪Cj

q(u) = D ·
∑
j≥1

1

j2
= 1.

Hence, we have q(t1) + q(t2) + · · ·+ q(t`) ≤ 1. Using Shannon’s inequality (2.3)
we get

H(G) = H(ωG) =
∑̀
i=1

− log pωG (αi) =
∑̀
i=1

− log pt(ti) ≤
∑̀
i=1

− log q(ti).

124

Using (4.17) and D ≥ 1/2 we obtain

H(G) ≤
∑̀
i=1

− log

(
D · λ(ti)

Mni · n2
i

)

= −` · logD −
∑̀
i=1

log λ(ti) +
∑̀
i=1

logMni + 2
∑̀
i=1

log ni

≤ `−
∑̀
i=1

log λ(ti) +
∑̀
i=1

(log c1 + c2 log ni) + 2
∑̀
i=1

log ni

= (1 + log c1) · `−
∑̀
i=1

log λ(ti) + (2 + c2) ·
∑̀
i=1

log ni.

From (4.16) and condition (i) of the strong domination property we get

∑̀
i=1

log λ(ti) ≥ log λ(t) ≥ log pS(t).

Moreover, Jensen’s inequality and (4.15) gives

∑̀
i=1

log ni ≤ ` · log

(
1

`
·
∑̀
i=1

ni

)
= ` · log(n/`).

With ` ≤ m we obtain

H(G) ≤ (1 + log c1) · `− log pS(t) + (2 + c2) · ` · log(n/`)

≤ − log pS(t) + (1 + log c1) ·m+ (2 + c2) ·m · log(n/m).

This shows the lemma.

Let ψ be a grammar-based tree compressor which produces for an input
tree t ∈ T the TSLP Gt. We then consider the tree encoder Eψ : T → {0, 1}∗
defined by Eψ(t) = B(Gt). Recall the definition of the worst-case redundancy
R(Eψ,S, n) from Section 4.7 and the compression ratio γψ from Section 4.9.1.

Theorem 4.9.7. Assume that S = ((Pi)i∈N, pS) has the strong domination
property. Let ψ be a grammar-based compressor such that γψ(n) ≤ γ(n) for
a monotonically decreasing function γ(n) with limn→∞ γ(n) = 0. Let further
mi = min{leafsize(t) | t ∈ Pi} and assume that mi < mi+1 for all i ∈ N.9 Then,
we have

R(Eψ,S, n) ≤ O
(
γ(mn) · log

(
1

γ(mn)

))
.

9This is the case for leaf-centric and depth-centric tree sources.

125

Proof. Let t ∈ T such that ` = leafsize(t) and ψ(t) = Gt. With Lemma 4.9.4 and
4.9.6 we get

1

`
· (|B(Gt)|+ log pS(t)) ≤ 1

`
· (H(Gt) +O(|Gt|) + log pS(t))

≤ 1

`
· (O(|Gt|) +O

(
|Gt| · log

(
`

|Gt|

))
= O

(
|Gt|
`

)
+O

(
|Gt|
`
· log

(
`

|Gt|

))
.

Consider the mapping g with g(x) = x · log(1/x). It is monotonically increasing
for 0 ≤ x ≤ 1/e. If n is large enough, we have for all t ∈ Pn with ` = leafsize(t)
that

|Gt|
`
≤ γψ(`) ≤ γ(`) ≤ γ(mn) ≤ 1

e
.

Hence, we get

|Gt|
`
· log

(
`

|Gt|

)
= g

(
|Gt|
`

)
≤ g(γ(mn)) = γ(mn) · log

(
1

γ(mn)

)
.

This implies

R(Eψ,S, i) = max
t∈Pn,pS(t)>0

1

leafsize(t)
· (|B(Gt)|+ log pS(t))

≤ O(γ(mn)) +O
(
γ(mn) · log

(
1

γ(mn)

))
= O

(
γ(mn) · log

(
1

γ(mn)

))
,

which proves the theorem.

Note that the minimal leaf size of a tree in Tn+1 (resp. T n) is n+ 1. Hence,
Theorem 4.9.2 and Theorem 4.9.7 yield:

Corollary 4.9.8. There exists a grammar-based tree compressor ψ such that
for every leaf-centric or depth-centric tree source S which satisfies the strong

domination property, we have R(Eψ,S, n) ≤ O
(

log log n
logn

)
.

In the following, we will present classes of leaf-centric and depth-centric tree
sources that have the strong domination property.

4.9.4 Leaf-centric binary tree sources

Recall the definition of the class of mappings Σleaf by equations (4.8), (4.9), and
(4.10) in Section 4.8.1 and the corresponding class of leaf-centric tree sources.
In this section, we state a condition on the mapping σ ∈ Σleaf that enforces the
strong domination property for the leaf-centric tree source ((Ti)i≥1, pσ). This
allows to apply Corollary 4.9.8.

126

Theorem 4.9.9. If σ ∈ Σleaf satisfies

σ(i, j) ≥ σ(i, j + 1) and σ(i, j) ≥ σ(i+ 1, j) (4.18)

for all i, j ≥ 1, then ((Ti)i≥1, pσ) has the strong domination property.

Proof. First, we naturally extend pσ to a context t ∈ C using equations (4.9)
and (4.10), where we set σ(0, k) = σ(k, 0) = 1 for all k ≥ 1 and pσ(x) = 1.
Note that leafsize(x) = 0. Also note that pσ is not a probability distribution
on Cn. For instance, we have

∑
t∈C1 pσ(t) = pσ(f(x, a)) + pσ(f(a, x)) = 2. Let

Bn = |Tn| = cn−1 (the (n − 1)-th Catalan number) for n ≥ 1. Note that we
have Bm+k ≥ Bm ·Bk for all m, k ≥ 0 since this inequality is well known for the
Catalan numbers. We set B0 = 1 and define λ : T ∪ C → R>0 by

λ(t) = max

{
1

Bleafsize(t)
, pσ(t)

}
.

In the following, we show the four points from the strong domination property
for the mapping λ. The first point of the strong domination property, i.e.,
λ(t) ≥ pσ(t) for all t ∈ T , is obviously true. We now prove the second point, i.e.,
λ(f(s, t)) ≤ λ(s) · λ(t) for all s, t ∈ T . Let leafsize(s) = m and leafsize(t) = k
and assume first that λ(f(s, t)) = 1/Bm+k. The inequality Bm+k ≥ Bm · Bk
yields

1

Bm+k
≤ 1

Bm
· 1

Bk
≤ λ(s) · λ(t). (4.19)

On the other hand, if λ(f(s, t)) = pσ(f(s, t)), then we have

pσ(f(s, t)) = σ(m, k) · pσ(s) · pσ(t) ≤ pσ(s) · pσ(t) ≤ λ(s) · λ(t),

since 0 ≤ σ(i, j) ≤ 1 for all i, j.
We now consider the third point, i.e., λ(s[t]) ≤ λ(s) · λ(t) for all s ∈ C

and t ∈ T . Note first that the case λ(s[t]) = 1/Bleafsize(s[t]) follows again from
equation (4.19), since leafsize(s[t]) = leafsize(s) + leafsize(t). So we assume that
λ(s[t]) = pσ(s[t]). Let ` be the depth of the unique x-labeled node in s, i.e., the
length of the path (measured in the number of edges) from the root of s to the
parameter node in s. We show pσ(s[t]) ≤ pσ(s) · pσ(t) by induction over ` ≥ 0. If
` = 0 then s = x and we get pσ(s[t]) = pσ(t) = pσ(x) · pσ(t) = pσ(s) · pσ(t). Let
us now assume that ` ≥ 1. Then, s must have the form s = f(u, v). Without loss
of generality assume that x occurs in u; the other case is of course symmetric.
Therefore, we have s[t] = f(u[t], v). The tree u[t] fulfills the induction hypothesis
and therefore pσ(u[t]) ≤ pσ(u) · pσ(t). Moreover, we have

σ(leafsize(u[t]), leafsize(v)) = σ(leafsize(u) + leafsize(t), leafsize(v))

≤ σ(leafsize(u), leafsize(v))

due to σ(i, j) ≥ σ(i+ 1, j) for all i, j ≥ 1. We get

pσ(s[t]) = pσ(f(u[t], v)) = pσ(u[t]) · σ(leafsize(u[t]), leafsize(v)) · pσ(v)

≤ pσ(t) · pσ(u) · σ(leafsize(u), leafsize(v)) · pσ(v)

= pσ(t) · pσ(s).

127

For the fourth property we show
∑
t∈Tn∪Cn λ(t) ≤ 8n− 2 for all n ≥ 1. First,

we have ∑
t∈Tn

λ(t) ≤
∑
t∈Tn

(
B−1
n + pσ(t)

)
= 2, (4.20)

because pσ as well as p = 1/Bn are probability distributions on Tn (the latter
one is the uniform distribution). We show that

∑
t∈Cn λ(t) ≤ 8n − 4. Every

tree t ∈ Tn has 2n− 1 nodes. Let v be a node of t and recall that subtreet(v) is
the subtree of t rooted at v. We obtain two contexts from t and v by replacing
subtreet(v) in t by either f(x, subtreet(v)) or f(subtreet(v), x). Let us denote the
resulting contexts by tv,1 and tv,2. We have λ(tv,1) = λ(tv,2) = λ(t) for every
node v of t since leafsize(x) = 0 and σ(0, k) = σ(k, 0) = 1 for all k ≥ 1. Moreover,
for every context t ∈ Cn there exists a tree t′ ∈ Tn and a node v ∈ nodes(t′) such
that t′v,1 = t or t′v,2 = t (depending on whether x is the left or right child of its
parent node in t). Since |nodes(t′)| = 2n− 1 for t′ ∈ Tn, we get∑

t∈Cn

λ(t) ≤ (4n− 2) ·
∑
t∈Tn

λ(t). (4.21)

Together with equation (4.20) we have
∑
t∈Tn∪Cn λ(t) ≤ 8n− 2.

Example 4.17. Let us come back to the three leaf-centric tree sources from
Example 4.13. The mappings σbst and σuni satisfy the condition from (4.18).
Hence, the grammar-based compressor Eψ achieves a worst-case redundancy of
O(log log n/ log n) for the binary search tree model and the uniform model by
Corollary 4.9.8.

4.9.5 Depth-centric binary tree sources

Recall the definition of the class of mappings Σdepth by equations (4.11), (4.12),
and (4.13) in Section 4.8.2, and the corresponding class of depth-centric tree
sources. In this section, we state a condition on the mapping σ ∈ Σdepth

that enforces the strong domination property for the depth-centric tree source
((T i)i≥1, pσ). This allows again to apply Corollary 4.9.8.

Theorem 4.9.10. If σ ∈ Σdepth satisfies

σ(i, j) ≥ σ(i, j + 1) and σ(i, j) ≥ σ(i+ 1, j)

for all i, j ≥ 0, then ((T i)i≥0, pσ) has the strong domination property.

Proof. Recall that the depth of a context t ∈ C is defined as the depth of
the tree t[a]. Using this information, we extend pσ to a context t ∈ C using
equations (4.12) and (4.13), where we set pσ(x) = 1. Similarly to the proof of
Theorem 4.9.9 for leaf-centric tree sources, we define

λ(t) = max

{
1

Bleafsize(t)
, pσ(t)

}
.

128

The first point of the strong domination property, i.e., λ(t) ≥ pσ(t) for all t ∈ T ,
follows directly from the definition of λ. Now we prove the second point, i.e.,
λ(f(s, t)) ≤ λ(s) ·λ(t) for all s, t ∈ T . Let leafsize(s) = m and leafsize(t) = k and
assume first that λ(f(s, t)) = 1/Bm+k. This case is covered by equation (4.19).
If otherwise λ(f(s, t)) = pσ(f(s, t)), then

pσ(f(s, t)) = σ(d(s), d(t)) · pσ(s) · pσ(t) ≤ pσ(s) · pσ(t) ≤ λ(s) · λ(t),

since 0 ≤ σ(i, j) ≤ 1 for all i, j.

Consider now the third point, i.e., λ(s[t]) ≤ λ(s) ·λ(t) for all s ∈ C and t ∈ T .
Note that the case λ(s[t]) = 1/Bleafsize(s[t]) follows again from equation (4.19).
Hence, we can assume that λ(s[t]) = pσ(s[t]). Similarly to the proof of Theo-
rem 4.9.9, we prove pσ(s[t]) ≤ pσ(s) · pσ(t) by induction over the depth ` ≥ 0
of the unique x-labeled node in s. If ` = 0 then s = x and pσ(s) = 1, which
gives us pσ(s[t]) = pσ(t) = pσ(s) · pσ(t). We now assume ` ≥ 1 and s = f(u, v).
Without loss of generality assume that x occurs in u; the other case is symmetric.
Therefore, we have s[t] = f(u[t], v). We apply the induction hypothesis to the
tree u[t], which yields pσ(u[t]) ≤ pσ(u) · pσ(t). Moreover, since d(u) ≤ d(u[t]) we
have σ(d(u[t]), d(v)) ≤ σ(d(u), d(v)). It follows that

pσ(s[t]) = pσ(f(u[t], v)) = pσ(u[t]) · σ(d(u[t]), d(v)) · pσ(v)

≤ pσ(t) · pσ(u) · σ(d(u), d(v)) · pσ(v)

= pσ(t) · pσ(s).

For the fourth property we show
∑
t∈Tn∪Cn λ(t) ≤ 4n2 + 3n − 1 for all n ≥ 1.

First, we have ∑
t∈Tn

λ(t) ≤
∑
t∈Tn

(
B−1
n + pσ(t)

)
= 1 +

∑
t∈Tn

pσ(t). (4.22)

Note that pσ is not a probability distribution on Tn since this section deals with
depth-centric tree sources. But for each t ∈ Tn we have d(t) ∈ [dlog(n)e, n− 1],
which yields

∑
t∈Tn

pσ(t) ≤
n−1∑

i=dlog(n)e

∑
t∈T i

pσ(t) = n− dlog(n)e ≤ n.

Together with equation (4.22) we get
∑
t∈Tn λ(t) ≤ n+ 1. The remaining part∑

t∈Cn λ(t) can be estimated with help of equation (4.21) from the corresponding
part in the proof of Theorem 4.9.9. In total, we have∑

t∈Tn∪Cn

λ(t) ≤ (4n− 1)
∑
t∈Tn

λ(t) ≤ (4n− 1)(n+ 1) = 4n2 + 3n− 1.

129

4.10 Conclusion and open problems

Conclusion. The main result of this chapter is the construction of a TSLP of
sizeO(n/ logσ n) for an input tree t of size n with |labels(t)| = σ, where we assume
that the maximal rank of the symbols in labels(t) is bounded by a constant. The
grammar-based tree compressor TreeBiSection (Section 4.4) produces a TSLP
of the claimed size in time O(n · log n) and can be implemented in logspace.
Additionally, the obtained TSLP has depth O(log n). The grammar-based tree
compressor BU-Shrink (Section 4.5) produces a TSLP of the claimed size in linear
time, but the depth of the TSLP is not necessarily logarithmic. A TSLP of
size O(n/ logσ n) and depth O(log n) can be obtained in linear time by using
a recently introduced balancing technique [48] for the TSLP obtained by BU-
Shrink. Alternatively, one can use a combination of BU-Shrink and TreeBiSection
as described at the end of Section 4.5.

The construction and analysis of the grammar-based tree compressor Tree-
BiSection is strongly related to DAG compression. A key result of this chapter
is that the DAG of certain weakly balanced binary trees has size O(n/ logσ n)
(Section 4.3.1), where again n is the size of the input tree and σ is the number of
different labels occurring in the tree. This result is used (i) to prove the claimed
size of the TSLP produced by TreeBiSection and (ii) to sharpen some of the
results presented in [111], where universal source coding of unlabeled binary
trees based on the minimal DAG is investigated (Section 4.8).

A first application of constructing a TSLP of size O(n/ logσ n) and depth
O(log n) refines a contribution of Brent [21] in the area of arithmetical circuits,
which states that every arithmetical formula of size n over a commutative ring
can be transformed into an equivalent circuit of depth O(log n) and size O(n).
Based on our constructions, we reduce the circuit size to O((n · logm)/ log n),
where m is the number of different variables in the formula (see Section 4.6).
As a second application, we use grammar-based tree compression for universal
source coding (Section 4.9). We present an encoding of unlabeled binary trees
based on TSLPs such that a worst-case universal code is achieved for certain
tree sources.

Open problems. It would be interesting to know the worst-case size of the
TSLP produced by the grammar-based tree compressor from [66]. It works
in linear time and produces a TSLP of size O(rg log(n/rg)) for a tree of size
n and maximal rank r, where g is the size of a smallest TSLP. Since this
function is monotonically increasing with g and g ≤ O(n/ logσ n) for trees of
constant rank, the algorithm in [66] yields for a tree of constant rank a TSLP
of size O((n log logσ n)/ logσ n). It remains open, whether the additional factor
log logσ n is necessary. Vice versa, we plan to investigate the approximation ratio
of the grammar-based tree compressors BU-Shrink and TreeBiSection, but it seems
unlikely that those compressors construct TSLPs of size O(rg log(n/rg)) as the
grammar-based tree compressor in [66]. For TreeBiSection, it seems possible that
ideas used in Section 3.3 are applicable, where we proved that the grammar-based
string compressor BiSection has approximation ratio Ω(

√
n/ log n).

130

In [15] the authors proved that the so-called top dag of a given tree t of
size n is at most by a factor log n larger than the minimal DAG of t. It is not
clear, whether the TSLP constructed by TreeBiSection has this property. The
construction of the top dag is done in a bottom-up way, and as a consequence
identical subtrees are compressed in the same way. This property is crucial for
the comparison with the DAG. TreeBiSection works in a top-down way. Hence,
it is not guaranteed that identical subtrees are compressed in the same way. In
contrast, BU-Shrink works bottom-up (although in a somehow different way as for
the DAG) and thus it might be easier to compare the size of the TSLP produced
by BU-Shrink with the size of the minimal DAG. Anyway, since a DAG can be
seen as a TSLP, one could produce the TSLP of TreeBiSection (respectively,
BU-shrink) and the TSLP which corresponds to the DAG in parallel and simply
take the smaller one as the output. Note that in general this would not yield
logarithmic depth of the produced TSLP but the balancing technique presented
in [48] can be used to obtain depth O(log n).

In the context of tree source coding, it would be nice to show the strong
domination property also for other classes of tree sources. An interesting class
are the tree sources derived from stochastic context-free grammars [90]. Another
interesting question is, whether the convergence rate of O(log log n/ log n) in
Corollary 4.9.8 can be improved to O(1/ log n). In the context of grammar-
based string compression, such an improvement has been accomplished in [73].
Moreover, we would like to extend the encoding presented in Section 4.9.2 beyond
unlabeled binary trees. A first step in this direction was taken in the recent
paper [60], where our encoding is extended to labeled binary trees. To be more
precise, the extended encoding is based on TSLPs for binary trees over an
(unranked) alphabet of terminal symbols, where any node of the binary tree can
be labeled by any symbol of the alphabet (inner nodes and leaf nodes share the
same set of labels). Note that it is straightforward to use TSLPs for this tree
model as well since the rank of the terminal symbols is not mandatory in order
to define TSLPs. It is shown in [60] that the size of this extended encoding is
bounded by the k-th order empirical entropy of the binary tree plus some low
order terms. It would be interesting to extend this encoding even further by
considering FSLPs [50] for unranked trees instead of TSLPs for binary trees.
Using a small detour, one can use the encoding from [60] for unranked trees
by first computing the well known first-child next-sibling encoding [19, 76] of
the unranked tree and then encode the obtained binary tree. It remains open
whether those codes for unranked trees achieve strong theoretical results in the
context of entropy bounds and universal coding.

More generally, it was recently shown that many compression methods that
exploit the repetitiveness of a text such as LZ77, grammar-based compression
or the run-length Burrows-Wheeler transform can be generalized to a common
formalism known as string attractors [68]. A string attractor for a string of
length n is a subset of the positions [1, n] such that every distinct substring of
the string has an occurrence crossing one of the elements of the attractor. It is
an open challenge to extend string attractors to trees.

131

132

Bibliography

[1] Janos Aczél. On Shannon’s inequality, optimal coding, and characteri-
zations of Shannon’s and Renyi’s entropies. Technical Report AA-73-05,
University of Waterloo, 1973. https://cs.uwaterloo.ca/research/tr/

1973/CS-73-05.pdf.

[2] Manindra Agrawal and Ramprasad Saptharishi. Classifying polynomials
and identity testing. Current Trends in Science – Platinum Jubilee Special,
pages 149–162, 2009.

[3] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles,
Techniques, and Tools. Addison-Wesley series in computer science / World
student series edition. Addison-Wesley, 1986.

[4] Alfred V. Aho and Neil J. A. Sloane. Some doubly exponential sequences.
Fibonacci Quarterly, 11(4):429–437, 1973.

[5] Tatsuya Akutsu. A bisection algorithm for grammar-based compression of
ordered trees. Information Processing Letters, 110(18-19):815–820, 2010.

[6] Ingo Althöfer. Tight lower bounds on the length of word chains. Information
Processing Letters, 34(5):275–276, 1990.

[7] Alberto Apostolico and Stefano Lonardi. Some theory and practice of
greedy off-line textual substitution. In Data Compression Conference,
DCC 1998, pages 119–128, 1998.

[8] Alberto Apostolico and Stefano Lonardi. Compression of biological se-
quences by greedy off-line textual substitution. In Data Compression
Conference, DCC 2000, pages 143–152, 2000.

[9] Sanjeev Arora and Boaz Barak. Computational Complexity - A Modern
Approach. Cambridge University Press, 2009.

[10] Jan Arpe and Rüdiger Reischuk. On the complexity of optimal grammar-
based compression. In Data Compression Conference, DCC 2006, pages
173–182, 2006.

133

https://cs.uwaterloo.ca/research/tr/1973/CS-73-05.pdf
https://cs.uwaterloo.ca/research/tr/1973/CS-73-05.pdf

[11] Hideo Bannai, Momoko Hirayama, Danny Hucke, Shunsuke Inenaga, Artur
Jeż, Markus Lohrey, and Carl P. Reh. The smallest grammar problem
revisited. Technical report, arXiv.org, 2019. http://arxiv.org/abs/

1908.06428.

[12] Djamal Belazzougui, Patrick H. Cording, Simon J. Puglisi, and Yasuo Tabei.
Access, rank, and select in grammar-compressed strings. In Algorithms -
ESA 2015 - 23rd Annual European Symposium, pages 142–154, 2015.

[13] Jean Berstel and Srecko Brlek. On the length of word chains. Information
Processing Letters, 26(1):23–28, 1987.

[14] Philip Bille, Finn Fernstrøm, and Inge Li Gørtz. Tight bounds for top
tree compression. In International Symposium on String Processing and
Information Retrieval, SPIRE 2017, pages 97–102, 2017.

[15] Philip Bille, Inge Li Gørtz, Gad M. Landau, and Oren Weimann. Tree
compression with top trees. Information and Computation, 243:166–177,
2015.

[16] Philip Bille, Inge Li Gørtz, and Nicola Prezza. Space-efficient Re-Pair
compression. In Data Compression Conference, DCC 2017, pages 171–180,
2017.

[17] Philip Bille, Gad M. Landau, Rajeev Raman, Kunihiko Sadakane, Srini-
vasa Rao Satti, and Oren Weimann. Random access to grammar-
compressed strings and trees. SIAM Journal on Computing, 44(3):513–539,
2015.

[18] Maria L. Bonet and Samuel R. Buss. Size-depth tradeoffs for boolean
fomulae. Information Processing Letters, 49(3):151–155, 1994.

[19] Mireille Bousquet-Mélou, Markus Lohrey, Sebastian Maneth, and Eric
Noeth. XML compression via DAGs. Theory of Computing Systems,
57(4):1322–1371, 2015.

[20] Peter Brass. Advanced Data Structures. Cambridge University Press, 2008.

[21] Richard P. Brent. The parallel evaluation of general arithmetic expressions.
Journal of the ACM, 21(2):201–206, 1974.

[22] Randal E. Bryant. Symbolic boolean manipulation with ordered binary-
decision diagrams. ACM Computing Surveys, 24(3):293–318, 1992.

[23] Nader H. Bshouty, Richard Cleve, and Wayne Eberly. Size-depth tradeoffs
for algebraic formulas. SIAM Journal on Computing, 24(4):682–705, 1995.

[24] Peter Buneman, Martin Grohe, and Christoph Koch. Path queries on
compressed XML. In International Conference on Very Large Data Bases,
VLDB 2003, pages 141–152, 2003.

134

http://arxiv.org/abs/1908.06428
http://arxiv.org/abs/1908.06428

[25] Michael Burrows and David Wheeler. A block-sorting lossless data compres-
sion algorithm. Technical report, DIGITAL SRC Research Report, 1994.
https://www.hpl.hp.com/techreports/Compaq-DEC/SRC-RR-124.pdf.

[26] Giorgio Busatto, Markus Lohrey, and Sebastian Maneth. Efficient memory
representation of XML document trees. Information Systems, 33(4–5):456–
474, 2008.

[27] Jiazhen Cai and Robert Paige. Using multiset discrimination to solve
language processing problems without hashing. Theoretical Computer
Science, 145(1-2):189–228, 1995.

[28] Katrin Casel, Henning Fernau, Serge Gaspers, Benjamin Gras, and
Markus L. Schmid. On the complexity of grammar-based compression over
fixed alphabets. In International Colloquium on Automata, Languages,
and Programming, ICALP 2016, pages 122:1–122:14, 2016.

[29] Moses Charikar, Eric Lehman, Ding Liu, Rina Panigrahy, Manoj Prab-
hakaran, Amit Sahai, and Abhi Shelat. The smallest grammar problem.
IEEE Transactions on Information Theory, 51(7):2554–2576, 2005.

[30] Yongwook Choi and Wojciech Szpankowski. Compression of graphical
structures: Fundamental limits, algorithms, and experiments. IEEE Trans-
actions on Information Theory, 58(2):620–638, 2012.

[31] Francisco Claude and Gonzalo Navarro. Fast and compact web graph
representations. ACM Transactions on the Web, 4(4):16:1–16:31, 2010.

[32] Hubert Comon, Max Dauchet, Remi Gilleron, Florent Jacquemard, Denis
Lugiez, Christof Löding, Sophie Tison, and Marc Tommasi. Tree automata
techniques and applications, 2007. http://tata.gforge.inria.fr/.

[33] Thomas M. Cover. Enumerative source encoding. IEEE Transactions on
Information Theory, 19(1):73–77, 1973.

[34] Thomas M. Cover and Joy A. Thomas. Elements of Information Theory.
Wiley, 2nd edition, 2006.

[35] Maxime Crochemore, Gad M. Landau, and Michal Ziv-Ukelson. A sub-
quadratic sequence alignment algorithm for unrestricted scoring matrices.
SIAM Journal on Computing, 32(6):1654–1673, 2003.

[36] Nicolaas G. de Bruijn. A combinatorial problem. Koninklijke Nederlandse
Akademie van Wetenschappen: Section of Sciences, 49(7):758–764, 1946.

[37] Ajit A. Diwan. A new combinatorial complexity measure for languages.
Tata Institute, Bombay, India, 1986.

[38] Peter J. Downey, Ravi Sethi, and Robert E. Tarjan. Variations on the
common subexpression problem. Journal of the ACM, 27(4):758–771, 1980.

135

https://www.hpl.hp.com/techreports/Compaq-DEC/SRC-RR-124.pdf
http://tata.gforge.inria.fr/

[39] Bart lomiej Dudek and Pawe l Gawrychowski. Slowing down top trees for
better worst-case compression. In Symposium on Combinatorial Pattern
Matching, CPM 2018, pages 16:1–16:8, 2018.

[40] Robert M. Fano. The transmission of information. Technical Report 65,
Research Laboratory of Electronics at MIT, 1949.

[41] Philippe Flajolet and Robert Sedgewick. Analytic Combinatorics. Cam-
bridge University Press, 2009.

[42] Markus Frick, Martin Grohe, and Christoph Koch. Query evaluation on
compressed trees (extended abstract). In Annual IEEE Symposium on
Logic in Computer Science, LICS 2003, pages 188–197, 2003.

[43] Isamu Furuya, Takuya Takagi, Yuto Nakashima, Shunsuke Inenaga, Hideo
Bannai, and Takuya Kida. MR-RePair: Grammar compression based on
maximal repeats. In Data Compression Conference, DCC 2019, pages
508–517, 2019.

[44] Travis Gagie, Tomohiro I, Giovanni Manzini, Gonzalo Navarro, Hiroshi
Sakamoto, and Yoshimasa Takabatake. Rpair: Rescaling RePair with
Rsync. In International Symposium on String Processing and Information
Retrieval, SPIRE 2019, 2019.

[45] Moses Ganardi, Danny Hucke, Artur Jeż, Markus Lohrey, and Eric Noeth.
Constructing small tree grammars and small circuits for formulas. Journal
of Computer and System Sciences, 86:136–158, 2017.

[46] Moses Ganardi, Danny Hucke, Markus Lohrey, and Louisa Seelbach
Benkner. Universal tree source coding using grammar-based compres-
sion. IEEE Transactions on Information Theory, 65(10):6399–6413, 2019.

[47] Moses Ganardi, Danny Hucke, Markus Lohrey, and Eric Noeth. Tree
compression using string grammars. Algorithmica, 80(3):885–917, 2018.

[48] Moses Ganardi, Artur Jeż, and Markus Lohrey. Balancing straight-line
programs. In Symposium on Foundations of Computer Science, FOCS
2019, 2019.

[49] Michal Ganczorz and Artur Jeż. Improvements on Re-Pair grammar
compressor. In Data Compression Conference, DCC 2017, pages 181–190,
2017.

[50] Adrià Gascón, Markus Lohrey, Sebastian Maneth, Carl P. Reh, and Kurt
Sieber. Grammar-based compression of unranked trees. In Computer
Science - Theory and Applications - 13th International Computer Science
Symposium in Russia, CSR 2018, pages 118–131, 2018.

136

[51] Leszek Gasieniec, Marek Karpinski, Wojciech Plandowski, and Wojciech
Rytter. Efficient algorithms for Lempel-Ziv encoding (extended abstract).
In Scandinavian Workshop on Algorithm Theory, SWAT 1996, volume
1097, pages 392–403, 1996.

[52] Leszek Gasieniec, Roman M. Kolpakov, Igor Potapov, and Paul Sant. Real-
time traversal in grammar-based compressed files. In Data Compression
Conference, DCC 2005, page 458, 2005.

[53] Pawel Gawrychowski and Artur Jeż. LZ77 factorisation of trees. In
Foundations of Software Technology and Theoretical Computer Science,
FSTTCS 2016, pages 35:1–35:15, 2016.

[54] Rodrigo González and Gonzalo Navarro. Compressed text indexes with
fast locate. In Symposium on Combinatorial Pattern Matching, CPM 2007,
pages 216–227, 2007.

[55] Mark A. Heap and Melvin R. Mercer. Least upper bounds on OBDD sizes.
IEEE Transactions on Computers, 43(6):764–767, 1994.

[56] Danny Hermelin, Gad M. Landau, Shir Landau, and Oren Weimann.
Unified compression-based acceleration of edit-distance computation. Al-
gorithmica, 65(2):339–353, 2013.

[57] Yoram Hirshfeld, Mark Jerrum, and Faron Moller. A polynomial algorithm
for deciding bisimilarity of normed context-free processes. Theoretical
Computer Science, 158(1-2):143–159, 1996.

[58] Lorenz Hübschle-Schneider and Rajeev Raman. Tree compression with top
trees revisited. In International Symposium on Experimental Algorithms,
SEA 2015, volume 9125, pages 15–27, 2015.

[59] Danny Hucke. Approximation ratios of RePair, LongestMatch and Greedy
on unary strings. In International Symposium on String Processing and
Information Retrieval, SPIRE 2019, 2019.

[60] Danny Hucke, Markus Lohrey, and Louisa Seelbach Benkner. Entropy
bounds for grammar-based tree compressors. In IEEE International Sym-
posium on Information Theory, ISIT 2019, 2019.

[61] Danny Hucke, Markus Lohrey, and Carl P. Reh. The smallest grammar
problem revisited. In International Symposium on String Processing and
Information Retrieval, SPIRE 2016, pages 35–49, 2016.

[62] David A. Huffman. A method for the construction of minimum-redundancy
codes. Proceedings of the Institute of Radio Engineers, 40(9):1098–1101,
1952.

[63] Artur Jeż. Faster fully compressed pattern matching by recompression.
In International Colloquium on Automata, Languages, and Programming,
ICALP 2012, pages 533–544, 2012.

137

[64] Artur Jeż. Approximation of grammar-based compression via recompres-
sion. Theoretical Computer Science, 592:115–134, 2015.

[65] Artur Jeż. A really simple approximation of smallest grammar. Theoretical
Computer Science, 616:141–150, 2016.

[66] Artur Jeż and Markus Lohrey. Approximation of smallest linear tree
grammars. In Symposium on Theoretical Aspects of Computer Science,
STACS 2014, pages 445–457, 2014.

[67] Marek Karpinski, Wojciech Rytter, and Ayumi Shinohara. Pattern-
matching for strings with short descriptions. In Symposium on Com-
binatorial Pattern Matching, CPM 95, pages 205–214, 1995.

[68] Dominik Kempa and Nicola Prezza. At the roots of dictionary compression:
string attractors. In Symposium on Theory of Computing, STOC 2018,
pages 827–840, 2018.

[69] Takuya Kida, Tetsuya Matsumoto, Yusuke Shibata, Masayuki Takeda,
Ayumi Shinohara, and Setsuo Arikawa. Collage system: A unifying
framework for compressed pattern matching. Theoretical Computer Science,
298(1):253–272, 2003.

[70] John C. Kieffer. A survey of Bratteli information source theory. In IEEE
International Symposium on Information Theory, ISIT 2016, pages 16–20,
2016.

[71] John C. Kieffer, Philippe Flajolet, and En-Hui Yang. Universal lossless
data compression via binary decision diagrams. Technical report, arxiv.org,
2011. http://arxiv.org/abs/1111.1432.

[72] John C. Kieffer and En-Hui Yang. Grammar-based codes: A new class of
universal lossless source codes. IEEE Transactions on Information Theory,
46(3):737–754, 2000.

[73] John C. Kieffer and En-Hui Yang. Structured grammar-based codes for
universal lossless data compression. Communications in Information and
Systems, 2(1):29–52, 2002.

[74] John C. Kieffer, En-Hui Yang, Gregory J. Nelson, and Pamela C. Cosman.
Universal lossless compression via multilevel pattern matching. IEEE
Transactions on Information Theory, 46(4):1227–1245, 2000.

[75] John C. Kieffer, En-Hui Yang, and Wojciech Szpankowski. Structural
complexity of random binary trees. In IEEE International Symposium on
Information Theory, ISIT 2009, pages 635–639, 2009.

[76] Donald E. Knuth. The Art of Computer Programming, Volume II, 3rd
Edition. Addison-Wesley, 1998.

138

http://arxiv.org/abs/1111.1432

[77] N. Jesper Larsson and Alistair Moffat. Offline dictionary-based compression.
In Data Compression Conference, DCC 1999, pages 296–305, 1999.

[78] Philip M. Lewis II, Richard E. Stearns, and Juris Hartmanis. Memory
bounds for recognition of context-free and context-sensitive languages. In
IEEE Symposium on Switching Circuit Theory and Logic Design, SWCT
1965, pages 191–202, 1965.

[79] Heh-Tyan Liaw and Chen-Shang Lin. On the OBDD-representation of
general boolean functions. IEEE Transactions on Computers, 41(6):661–
664, 1992.

[80] Yury Lifshits. Processing compressed texts: A tractability border. In
Symposium on Combinatorial Pattern Matching, CPM 2007, pages 228–240,
2007.

[81] Markus Lohrey. Algorithmics on SLP-compressed strings: A survey. Groups
Complexity Cryptology, 4(2):241–299, 2012.

[82] Markus Lohrey, Sebastian Maneth, and Roy Mennicke. XML tree structure
compression using RePair. Information Systems, 38(8):1150–1167, 2013.

[83] Markus Lohrey, Sebastian Maneth, and Carl P. Reh. Traversing grammar-
compressed trees with constant delay. In Data Compression Conference,
DCC 2016, pages 546–555, 2016.

[84] Markus Lohrey, Sebastian Maneth, and Carl P. Reh. Constant-time
tree traversal and subtree equality check for grammar-compressed trees.
Algorithmica, 80(7):2082–2105, 2018.

[85] Markus Lohrey, Sebastian Maneth, and Manfred Schmidt-Schauß. Param-
eter reduction and automata evaluation for grammar-compressed trees.
Journal of Computer and System Sciences, 78(5):1651–1669, 2012.

[86] Abram Magner, Krzysztof Turowski, and Wojciech Szpankowski. Lossless
compression of binary trees with correlated vertex names. In IEEE Inter-
national Symposium on Information Theory, ISIT 2016, pages 1217–1221,
2016.

[87] Nicolas Markey and Philippe Schnoebelen. A PTIME-complete match-
ing problem for SLP-compressed words. Information Processing Letters,
90(1):3–6, 2004.

[88] Takuya Masaki and Takuya Kida. Online grammar transformation based
on re-pair algorithm. In Data Compression Conference, DCC 2016, pages
349–358, 2016.

[89] Kurt Mehlhorn, Rajamani Sundar, and Christian Uhrig. Maintaining dy-
namic sequences under equality tests in polylogarithmic time. Algorithmica,
17(2):183–198, 1997.

139

[90] Michael I. Miller and Joseph A. O’Sullivan. Entropies and combinatorics of
random branching processes and context-free languages. IEEE Transactions
Information Theory, 38(4):1292–1310, 1992.

[91] Masamichi Miyazaki, Ayumi Shinohara, and Masayuki Takeda. An im-
proved pattern matching algorithm for strings in terms of straight-line
programs. In Symposium on Combinatorial Pattern Matching, CPM 1997,
pages 1–11, 1997.

[92] Gonzalo Navarro. Indexing highly repetitive collections. In International
Workshop on Combinatorial Algorithms, IWOCA 2012, pages 274–279,
2012.

[93] Adamu M. Noma, Abdullah Muhammed, Mohamad A. Mohamed, and
Zuriati A. Zulkarnain. A review on heuristics for addition chain problem:
Towards efficient public key cryptosystems. Journal of Computer Science,
13(8):275–289, 2017.

[94] Carlos Ochoa and Gonzalo Navarro. RePair and all irreducible grammars
are upper bounded by high-order empirical entropy. IEEE Transactions
on Information Theory, 65(5):3160–3164, 2019.

[95] Mike Paterson and Mark N. Wegman. Linear unification. Journal of
Computer and System Sciences, 16(2):158–167, 1978.

[96] Wojciech Plandowski. Testing equivalence of morphisms on context-free
languages. In European Symposium on Algorithms, ESA 1994, pages
460–470, 1994.

[97] Wojciech Plandowski and Wojciech Rytter. Complexity of language recog-
nition problems for compressed words. In Juhani Karhumäki, Hermann A.
Maurer, Gheorghe Paun, and Grzegorz Rozenberg, editors, Jewels are
Forever, Contributions on Theoretical Computer Science in Honor of Arto
Salomaa, pages 262–272. Springer, 1999.

[98] David Reinsel, John Gantz, and John Rydning. The digi-
tization of the world from edge to core. Technical report,
International Data Corporation (IDC) (sponsored by Seagate),
2018. https://www.seagate.com/files/www-content/our-story/

trends/files/idc-seagate-dataage-whitepaper.pdf.

[99] Peter Roth. A note on word chains and regular languages. Information
Processing Letters, 30(1):15–18, 1989.

[100] Frank Rubin. Experiments in text file compression. Communications of
the ACM, 19(11):617–623, 1976.

[101] Walter L. Ruzzo. Tree–size bounded alternation. Journal of Computer
and System Sciences, 21:218–235, 1980.

140

https://www.seagate.com/files/www-content/our-story/trends/files/idc-seagate-dataage-whitepaper.pdf
https://www.seagate.com/files/www-content/our-story/trends/files/idc-seagate-dataage-whitepaper.pdf

[102] Wojciech Rytter. Application of Lempel-Ziv factorization to the approx-
imation of grammar-based compression. Theoretical Computer Science,
302(1–3):211–222, 2003.

[103] Hiroshi Sakamoto. A fully linear-time approximation algorithm for
grammar-based compression. Journal of Discrete Algorithms, 3(2-4):416–
430, 2005.

[104] Manfred Schmidt-Schauß. Polynomial equality testing for terms with
shared substructures. Technical Report 21, Institut für Informatik, J. W.
Goethe-Universität Frankfurt am Main, 2005.

[105] Claude E. Shannon. A mathematical theory of communication. The Bell
System Technical Journal, 27(3):379–423, 7 1948.

[106] Philip M. Spira. On time-hardware complexity tradeoffs for boolean
functions. In Hawaii International Conference on System Sciences, HICSS
1971, pages 525–527, 1971.

[107] Richard P. Stanley. Catalan Numbers. Cambridge University Press, 2015.

[108] James A. Storer and Thomas G. Szymanski. Data compression via textural
substitution. Journal of the ACM, 29(4):928–951, 1982.

[109] En-Hui Yang and John C. Kieffer. Efficient universal lossless data compres-
sion algorithms based on a greedy sequential grammar transform - part
one: Without context models. IEEE Transactions on Information Theory,
46(3):755–777, 2000.

[110] Andrew C. Yao. On the evaluation of powers. SIAM Journal on Computing,
5(1):100–103, 1976.

[111] Jie Zhang, En-Hui Yang, and John C. Kieffer. A universal grammar-
based code for lossless compression of binary trees. IEEE Transactions on
Information Theory, 60(3):1373–1386, 2014.

[112] Jacob Ziv and Abraham Lempel. A universal algorithm for sequential data
compression. IEEE Transactions on Information Theory, 23(3):337–343,
1977.

[113] Jacob Ziv and Abraham Lempel. Compression of individual sequences via
variable-rate coding. IEEE Transactions on Information Theory, 24(5):530–
536, 1978.

141

	Title page
	Abstract
	Acknowledgements
	Contents
	1 Introduction
	2 Preliminaries
	2.1 Numbers and functions
	2.2 Words, alphabets and languages
	2.3 Graphs and trees
	2.4 Distributions and empirical entropy
	2.5 Computational models

	3 Grammar-based string compression
	3.1 Straight-line programs
	3.2 Approximation ratio
	3.3 BiSection
	3.4 LZ78
	3.5 Global algorithms
	3.6 RePair
	3.7 Greedy
	3.8 LongestMatch
	3.9 Universal coding based on SLPs
	3.10 Conclusion and open problems

	4 Grammar-based tree compression
	4.1 Trees and patterns
	4.2 Tree straight-line programs
	4.3 Directed acyclic graphs
	4.4 TreeBiSection
	4.5 BU-Shrink
	4.6 Arithmetical circuits
	4.7 Source coding for unlabeled binary trees
	4.8 Universal coding based on DAGs
	4.9 Universal coding based on TSLPs
	4.10 Conclusion and open problems

	Bibliography

