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Abstract 

Among the positioning techniques in indoor environments, the approach on the basis of 

exploiting Wi-Fi is attractive, which is expected to yield a cost-effective and easily accessible 

solution. Most Wi-Fi localization methodologies rely on the received signal strength (RSS) 

measurements. In this work, different Wi-Fi RSS based positioning algorithms are explored. 

The performance of each approach is shown with experimental results. 

Considering the complementary nature of Wi-Fi positioning and inertial navigation system 

(INS), the combination of both systems yields a synergetic effect resulting in higher 

performance. For indoor vehicle navigation, the performance of the INS/Wi-Fi integrated 

system can be further improved without hardware change. An enhanced integration, which 

employs adaptive Kalman filtering (AKF) and vehicle constraints, is presented. The 

experimental results show that the enhanced integrated system provides higher navigation 

accuracy, compared to using Wi-Fi positioning and conventional INS/Wi-Fi integration. 

For personal navigation applications, the pedestrian dead reckoning (PDR) system is 

employed. With a foot mounted IMU, zero velocity update (ZUPT) and zero angular rate 

update (ZARU) methodologies can be applied to re-calibrate the IMU, which can reduce the 

INS drift errors. For personal navigation with the IMU embedded in the portable device, the 

adapted PDR based on device placement mode classification is presented. Three typical 

placement modes are discussed. The classification performances with different classifiers are 

shown with real test results. The adapted PDR is further combined with Wi-Fi positioning. 

The experimental results show that the integrated system outperforms the standalone 

navigation systems. 

Attitude estimation is a challenging topic for indoor navigation. The camera based visual 

gyroscope technique can transform information found from images into the camera rotation. 

Unlike the rate gyroscope in an IMU, the visual-gyro using vanishing points does not suffer 

from drift errors. In this work, an INS/visual-gyro integration using direction cosine matrix 

(DCM) based models is presented. Compared to the conventional Euler angle models, the 

usage of DCM can provide linear system models and avoid singularity problems. The 

performance of attitude and gyro bias estimation using the integrated system is shown with 

turntable test and experimental results. 

 



Kurzfassung  

 v 

 

Kurzfassung 

Bei den Positionierungstechniken in Innenräumen ist der auf der Nutzung von Wi-Fi 

basierende Ansatz attraktiv. Durch den Ansatz wird erwartet, eine kostengünstige und leicht 

zugängliche Lösung einzubringen. Die meisten Wi-Fi-Lokalisierungsmethoden sind auf 

Messungen der empfangenen Signalstärke (RSS) angewiesen. In dieser Arbeit werden 

verschiedene, auf Wi-Fi RSS basierende Algorithmen für die Positionierung erforscht. Die 

Leistung von jedem Ansatz wird mit experimentellen Ergebnissen gezeigt.  

In Anbetracht des komplementären Charakters der Wi-Fi-Positionierung und des 

Trägheitsnavigationssystems (INS) ergibt die Kombination der beiden Systeme einen 

synergetischen, zu höheren Leistungen führenden Effekt. Für die Fahrzeugsnavigation im 

Innenraum lässt sich die Leistung des INS/Wi-Fi integrierten Systems ohne Änderung der 

Hardware verbessern. Eine verbesserte Integration, die die adaptive Kalman-Filterung (AKF) 

in verbindung mit Fahrzeugeinschränkungen verwendet, wird vorgestellt. Die 

experimentellen Ergebnisse zeigen, dass das verbesserte integrierte System eine höhere 

Navigationsgenauigkeit bietet, im Vergleich zur Verwendung der Wi-Fi-Positionierung und 

der konventionellen INS/Wi-Fi-Integration. 

Für persönliche Navigationsanwendungen wird die Fußgänger-Koppelnavigation (PDR) 

eingesetzt. Mit einer am Fuß montierten IMU sind das Null-Geschwindigkeit-Update (ZUPT) 

und das Nullwinkelrate-Update (ZARU) Methoden anzuwenden, um die IMU neu zu 

kalibrieren, dadurch können die Driftfehler vom INS reduziert werden. Für persönliche 

Navigation mit der in dem tragbaren Gerät eingebetteten IMU wird die angepasste PDR auf 

Basis der Klassifizierung vom Geräteplatzierungsmodus vorgestellt. Drei typische 

Platzierungsmodi werden diskutiert. Die Leistungen der Klassifizierung mit verschiedenen 

Klassifikatoren werden mit echten Testergebnissen gezeigt. Die angepasste PDR wird weiter 

mit der Wi-Fi-Positionierung kombiniert. Die Versuchsergebnisse zeigen, dass das integrierte 

System die allein operierenden Navigationssysteme leistungsmäßig übertrifft.  

Die Schätzung der Orientierung ist eine Herausforderung für die Indoor-Navigation. Die 

visuelle, auf Kamera basierende Technik des Gyroskops kann die aus Bilder generierte 

Information in die Rotation der Kamera verwandeln. Anders als das Gyroskop in einer IMU 

leidet der visuelle Kreisel mit Fluchtpunkten nicht unter Driftfehlern. In dieser Arbeit wird 

eine Integration des INS und des visuellen Kreisels, die die auf Richtungskosinusmatrix 
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(DCM) basierenden Modelle anwendet, vorgestellt. Im Vergleich zu den herkömmlichen 

Modellen des Eulerwinkels kann die Verwendung von DCM lineare systemmodelle 

bereitstellen und die Probleme der Singularität vermeiden. Die Leistung der Einstellung und 

der Schätzung der Kreiselabweichung unter Verwendung des integrierten Systems werden mit 

experimentellen Testergebnissen gezeigt. 
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Chapter 1 
Introduction 

1.1 Subject of research 

1.1.1 Indoor localization with Wi-Fi based approaches 

Indoor navigation is a challenging topic for low-cost vehicle and pedestrian applications 

nowadays. Many positioning techniques have been developed. Among these techniques, 

the approach on the basis of exploiting 802.11 WLAN (Wi-Fi) is attractive, which is 

expected to yield a cost-effective and easily accessible solution. Regarding this topic, 

some researchers focus on the usage of time of arrival (TOA) and angle of arrival (AOA). 

However, in the context of indoor WLANs, the approaches using the information of 

received signal strength (RSS) are mostly employed. In this work, we explore the Wi-Fi 

RSS positioning techniques, which include the methods based on radio propagation 

models and the methods using RSS fingerprinting. 

1.1.2 Indoor vehicle navigation using integration of INS and Wi-Fi 
positioning 

Microelectromechanical systems (MEMS) based inertial measurement units (IMUs) are 

commonly used in low cost dead reckoning navigation applications. The inertial 

navigation system (INS) provides the motion information of the object with a high update 

rate and it can achieve a high precision in short time duration. However, the INS suffers 

from local anomalies and error drifts over time. In contrast, the Wi-Fi positioning 

approaches provide a relatively low accuracy and update rate but its localization error 

does not propagate with time. Considering the complementary nature of INS and Wi-Fi 

positioning, the combination of both systems is expected to yield a synergetic effect 

resulting in higher navigation performance. In this work, the integration of INS and Wi-Fi 

positioning for indoor vehicle navigation is explored. To further improve the integrated 

system, the enhancements making use of vehicle constraints and adaptive Kalman 

filtering algorithm are presented. 

1.1.3 Adapted pedestrian navigation using PDR/Wi-Fi integration 

IMU based pedestrian dead reckoning (PDR) is widely used for personal navigation. It 

consists of three parts: step detection, stride length estimation, and user’s heading 
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determination. Like other inertial systems, it suffers from a propagating drift error 

because of IMU biases. In this work, the PDR algorithm with a foot-mounted IMU is 

studied. The zero speed of the IMU can be detected during the stance phase of the gait 

cycle. In this case, zero velocity update (ZUPT) and zero angular rate update (ZARU) can 

be used to re-estimate the IMU biases and hence reduce the drift error of the dead 

reckoning system. To design an adaptive PDR algorithm for portal devices which can be 

arbitrarily placed on the user’s body, the step detection method needs to be changed 

according to different sensor placement modes. Three typical placement modes are 

considered and classified based on measurement outputs of accelerometers and 

gyroscopes. Then the adapted PDR is further combined with Wi-Fi based positioning to 

improve the navigation performance from the standalone systems. 

1.1.4 Indoor attitude estimation using INS/Visual-Gyroscope integration 

Attitude estimation is a challenging topic for indoor navigation. The camera based visual 

gyroscope technique can transform information found from images into the camera 

rotation. Many researchers focus on systems with a priori formed database containing 

images of recognizable features in the surroundings attached with position and attitude 

information. However, the database based procedure is restricted to predefined and hence 

known areas. In contrast, the methods directly calculating the motion of the camera from 

consecutive images yield a universal solution for real applications. As one of these 

methods, the vanishing point based visual gyroscope (visual-gyro) technique is employed 

in this work. Unlike the rate gyroscope in an IMU, the visual-gyro does not suffer from 

drift errors. But the visual-gyro’s availability highly depends on the indoor environment 

and its performance for fast rotation is limited by the low update rate. In order to 

overcome the drawbacks of the standalone systems, an INS/visual-gyro integration using 

direction cosine matrix (DCM) models is presented. Compared to the conventional Euler 

angle models, the usage of DCM can provide linear system models and avoid singularity 

problems. 

1.2 Structure of the dissertation 

In Chapter 2, Wi-Fi positioning techniques are explored. The background and concepts of 

WLAN localization are overviewed. Wi-Fi signal propagation models and localization 

methods using the propagation model are introduced. Wi-Fi RSS fingerprinting methods 

using different database building approaches and location determination algorithms are 
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presented. One field experiment is carried out and the performances of the introduced Wi-

Fi positioning approaches are compared and analyzed with experimental results. 

In Chapter 3, indoor vehicle navigation using integration of INS and Wi-Fi positioning is 

described. The system modelling is made for the integration. The system process model is 

derived based on strap-down INS mechanization equations and the system observation 

model is provided by Wi-Fi based positioning. The integration structure can be either 

tightly-coupled or loosely-coupled depending on the employed Wi-Fi positioning method. 

Because of the nonlinearities of the system models, the unscented Kalman filter is 

employed for the integration. An enhanced INS/Wi-Fi integration aided with vehicle 

constraints and adaptive Kalman filtering algorithm is presented. One field experiment is 

performed, and the results show the advantages of the INS/Wi-Fi integrated system and 

the enhanced integration with respect to the standalone Wi-Fi positioning approaches. 

In Chapter 4, indoor pedestrian navigation using integration of PDR and Wi-Fi is 

explored. PDR with a foot-mounted IMU is described. Three parts of PDR, namely step 

detection, stride length estimation and heading determination, are introduced. To reduce 

the PDR drift error caused by IMU biases, ZUPT and ZARU algorithms are employed to 

re-estimate the IMU biases and the improvements are shown with experimental results. 

The adapted PDR designed for portable devices is presented. Device placement mode 

definition and features for mode classification are introduced. The corresponding 

classification results are provided with real test data. The adapted PDR is further 

combined with Wi-Fi positioning. A field experiment is carried out to show the 

performance of PDR/Wi-Fi integration compared to the standalone navigation systems. 

In Chapter 5, indoor attitude estimation using INS/visual-gyro integration is presented. To 

illustrate the theoretical background of vanishing point based visual-gyro, the projective 

geometry is introduced. Three steps of vanishing point detection from an image, namely 

edge detection, line detection and vanishing point localization, are described. Attitude 

estimation with detected vanishing points is provided. To overcome the limitations of INS 

and visual-gyro, the integration of both systems is presented. DCM based system 

modelling is made and Kalman filtering algorithm is utilized for sensor fusion. One turn-

table test and one pedestrian experiment are carried out. To show the performance of the 

integrated system, the numerical results are given and analyzed. 

Last but not the least, in Appendix A and B, two pattern recognition algorithms, artificial 

neural network (ANN) and support vector machine (SVM), are described respectively. 
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They are utilized in this work for device placement mode classification. The detailed 

introduction and derivation of the classifiers are presented. In Appendix C, the unscented 

Kalman filter (UKF), which is employed for the nonlinear system estimation, is 

introduced. 
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Chapter 2 
Wi-Fi Based Localization Techniques 

For outdoor positioning and navigation, solutions based on global navigation satellite 

system (GNSS) are satisfactory in most applications. But such technology is not utilizable 

for most indoor applications. Therefore, other positioning techniques have been 

developed for indoor environments lately, e.g., the methods based on wireless local area 

network (WLAN), Bluetooth, radio frequency identification (RFID), ultra-wideband 

(UWB), infrared and ultrasound, etc. Among these techniques, the approach on the basis 

of exploiting 802.11 WLAN (Wi-Fi) is attractive, which is expected to yield a cost-

effective and easily accessible solution. Most localization methodologies based on Wi-Fi 

rely on signal to noise ratio (SNR) or received signal strength (RSS). Most of them, 

comprising the widely referred RADAR method, employ fingerprinting methods. In [1], 

two approaches have been proposed to build the fingerprinting database, namely, the 

empirical method and the wall attenuation factor (WAF) model based method. The first 

method always yields relatively better performance but requires significant 

implementation effort [2]. On the other hand, the positioning can also be achieved by 

directly employing field propagation models with least squares estimation method, 

although the estimation accuracy shows large deviations [3]. 

In this chapter, the background and concept of Wi-Fi localization are briefly described in 

Section 2.1. In Section 2.2, some widely used Wi-Fi signal propagation models are 

introduced and localization method using the WAF propagation model is presented. In 

Section 2.3, Wi-Fi RSS fingerprinting localization methods using different database 

building approaches and location determination algorithms are explored. Last but not 

least, in Section 2.4, one indoor experiment is carried out and the performances of the 

introduced Wi-Fi positioning approaches are compared with the numerical results. 

2.1 Background and concept of Wi-Fi based localization 

A WLAN represents a reliable solution to connect two or more wireless devices by using 

some wireless distribution methods and it can also provide a connection through access 

points to a wider internet. WLAN gives users the mobility to move around within a local 

coverage area and still be connected to the network. The most modern WLANs are based 

on the IEEE 802.11 standards (Wi-Fi).  
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The term Wi-Fi suggests wireless fidelity. The Wi-Fi Alliance was established in 1990 by 

the wireless Ethernet compatibility alliance (WECA) [4]. It consists of hundreds of 

companies which have the task to unite the standards of the products from different 

manufacturers based on IEEE-802.11 standards [5]. Therefore, Wi-Fi is a wireless 

standard for connecting electronic devices. And it can enable devices to connect to the 

Internet when the devices are within the range of a wireless network [6]. 

Basically, there are two parts of the wireless station: access points and clients. Access 

points (APs), namely routers, are basic devices that allow wireless devices to connect to a 

wired network using Wi-Fi. Wireless clients are the wireless network’s interface. There 

are many kinds of clients like mobile devices such as laptops, IP phones, personal digital 

assistants and other smartphones, or fixed devices such as desktops and workstations 

which are equipped with a wireless network interface. A single access point has a range 

of about 120 meters in indoor environments. For outdoor applications, it has an even 

wider range and therefore multiple overlapping APs can cover large areas. The following 

figure shows the relationship between the bandwidth and the range of a wireless net [7].  

 
Figure 2.1: Bandwidth and range of Wi-Fi 

The basic service set (BSS) is a set of all the stations that can communicate with each 

other. Normally there are two types of BSS: independent BSS and infrastructure BSS. 

Every BSS has an identification (ID), the so-called the BSSID. It is also the MAC address 

of the access point. An independent BSS (IBSS) is an ad-hoc network and it contains no 

access points, which means that it cannot connect to any other basic service sets. An 

infrastructure BSS can communicate with other stations that are not in the same basic 

service sets by communicating through access points.  



Chapter 2  Wi-Fi Based Localization Techniques  

7 

WLAN positioning, also called Wi-Fi based localization in this work, refers to the use of 

radio wave signal to determine the location of a mobile device in a reference coordinate 

system. Regarding this topic, some researchers have explored the usage of time of arrival 

(TOA) [8] and angle of arrival (AOA) [9]. However, in the context of indoor WLANs, 

received signal strength (RSS) based approaches are generally employed for WLAN 

positioning. This is due to the fact that RSS measurements can be obtained relatively 

effortlessly and inexpensively without the need for additional hardware [10][11]. 

Moreover, RSS based positioning is noninvasive, as all sensing tasks can be carried out 

on the mobile client, eliminating the necessity for central processing.  

2.2 Wi-Fi localization using radio propagation model 

There are many existing radio propagation models. Most of them tend to focus on a 

particular characteristic such as signal fading or inter-floor loss. The models, which yield 

a relationship between the signal decaying power and the propagation distance, can be 

employed for position estimation in a Wi-Fi environment. 

2.2.1 Radio propagation models 

Rayleigh fading model 

Rayleigh fading is a statistical model for the effect of a propagation environment on a 

radio signal, such as that used by wireless devices. According to a Rayleigh distribution, 

Rayleigh fading models assume that the magnitude of a signal that has passed through 

such a transmission medium will vary randomly, or fade. It describes small-scale rapid 

amplitude fluctuation in the absence of a strong received component [12].  

The Rayleigh distribution is widely used to describe multipath fading because of its 

elegant theoretical explanation and the occasional empirical justification [13]. The 

Rayleigh model is mostly employed in heavily built-up urban environments. However, 

there is an assumption made in deriving this distribution is that all signals reaching the 

receiver have equal strength. In general, this is unrealistic for the applications inside a 

building. [1] 

Rician fading model 

Rician fading is a stochastic model for radio propagation when there is no line of sight 

(NLOS) signal. The signal arrives at the receiver by several different paths (multipath), 

and at least one of the paths is changing. Rician fading occurs when one of the paths is 
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much stronger than the others; that is to say, there is the strongest path which has much 

less attenuation than other paths [14]. By Rician fading, the amplitude gain is 

characterized by a Rician distribution. The Rayleigh distribution is a special case of the 

Rician distribution when the strong path is eliminated, the amplitude distribution becomes 

Rayleigh. 

Free space path loss 

The free space model provides a measurement of path loss as a function of transmitter-

receiver (T-R) separation when the transmitter and receiver are within LOS range in a 

free space environment. This model is not directly applicable to indoor signal propagation, 

it is a theoretical model, and it is the foundation for all other models. It can be used to 

compute the path loss at a close-in reference distance as required by the models which are 

discussed in the following section. The model is given by Equation (2.1) [12]: 

2
t r

L 2 2( ) 10log
(4 )
G G

P d
d

 (2.1) 

where tG  and rG  are the radio gains of the transmitting and receiving antennas 

respectively,  is the wavelength in meters, and d is the T-R separation in meters. L ( )P d  

is the power loss from the transmitter. 

Log-distance path loss 

The log-distance path loss model assumes that path loss varies exponentially with 

distance and the path loss in dB is given as the following equation: 

L L 0
0

( ) ( ) 10 log( )d
P d P d a

d
 (2.2) 

where a is the path loss factor; d is the T-R separation in meters; 0d  is the close-in 

reference distance in meters. The path loss factor a depends upon the environment. In free 

space, a is equal to 2. In practice, the value of a depends upon the empirical data. The 

log-distance path loss model is mainly an outdoor model and neglects the effect due to the 

surrounding objects [11].  
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Log-Normal Shadowing 

The log-distance path loss model has a disadvantage that it ignores the shadowing effects 

that can be caused by varying degrees of clutter between the transmitter and receiver. But 

the log-normal shadowing can make a compensation for the disadvantage. 

The log-normal shadowing model predicts path loss as a function of T-R separation by 

the equation: 

L L 0
0

( ) ( ) 10 log( )d
P d P d a w

d
 (2.3) 

where w  is a zero-mean Gaussian random variable. In comparison with Equation (2.3), 

the random variable w  compensates for random shadowing effects. And the values of n 

and  depend upon the empirical data. 

In order to achieve a more accurate and realistic indoor propagation model, the 

surrounding environment must be considered. The path between receiver and transmitter 

is usually blocked by walls, ceilings and other obstacles [4]. In this case, the measured 

signal strength is less than that predicted by the log-distance path loss model. Shadowing 

and wall attenuation factor (WAF) are the main factors affecting the propagation in an 

indoor environment. 

A receiver in a Wi-Fi network is said to be in the shadow region when there is an obstacle 

blocking its line-of-sight to the access point [6]. Different materials produce varying 

amounts of attenuation in the shadow region and the amount of attenuation is also 

frequency dependent. WAF represents the reflection of the electromagnetic signal on the 

wall. The WAF model is described by: 

W WA W W
L L 0

W WA W W0

( ) ( ) 10 log( )
       
     {N Nd

P d P d a w Nd

F C
C F C  (2.4) 

where WN  is the number of obstructions between the transmitter and the receiver; WC  is 

the maximum number of obstructions (walls); WAF  is the wall attenuation factor. In 

general, the values of a and WAF  depend on the building layout and construction material. 

The value of 0( )P d  can be derived empirically or obtained from the wireless network 

hardware specifications. The WAF model is widely used for indoor applications [15]. 
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2.2.2 Localization using propagation model with WAF 

The propagation model with WAF is employed for Wi-Fi based localization in this work. 

This model can be reformulated as: 

ob, ref , w, WA ,
ref ,

10 log( )l
l l l l s l

l

S S a N F  (2.5) 

where ob,lS  denotes RSS from AP l at the position of the object; ref ,lS  denotes RSS from 

AP l at the reference point; a is the signal decaying rate; l  represents the distance 

between the object and the AP l; ref ,l  is the distance between the reference points and 

the AP l; wN  denotes number of walls in the signal path; WAF  is the wall attenuation 

factor. ,s l  is the Gaussian noise term. To simplify Equation (2.5), it can be formulated 

as 

ob, ,10 log( )l l l l s lS a  

with 

2 2 2
AP( ), AP( ), AP( ),( ) ( ) ( )l x l x y l y z l zr r r r r r  

(2.6) 

From above equation, 
T

x y zr r rr  denotes the position vector of the object and 

AP( )lr  denotes the position of the AP l. la  and l  are the parameters of the signal 

propagation model from AP l. With real test data, they can be pre-estimated using linear 

regression. After the parameters are estimated, with at least three independent observation 

models ( 3l ), the position of the object can be obtained using least squares estimation 

method. 

2.3 Wi-Fi localization using RSS fingerprinting 

2.3.1 Methods for database building 

Fingerprinting methods are widely used for Wi-Fi RSS based localization. They operate 

in two distinguished phases: database building phase and location determination phase. In 

the first phase, a database or a radio map is constructed, which contains the signals 

emitted by the Wi-Fi AP on a grid of fix known positions. 

This task can be performed by the collection of direct in-situ measurements, which is also 

called the empirical method. The received signal strength (RSS) at every survey point, 
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which is recorded in the fingerprinting database, is the mean value of the collected 

samples. 

The second method to build the database is using field propagation models instead of 

using real measurements, which is called propagation model based method. If the AP 

position and the survey point position are known, the RSS at the survey point can be 

calculated using the propagation models introduced in Section 2.2.1. In this work, the 

simplified WAF model shown with Equation (2.6) is employed for database building. The 

knowledge of the AP position is the prerequisite of this method.  

According to the existing research results, the empirical method can provide a more 

reliable Wi-Fi fingerprinting database [1]. However, this method yields a labor-intensive 

survey phase and requires more implementation effort. 

2.3.2 Methods for location determination 

In the location determination phase, the localization can be done by comparison of the 

RSS measurement at the object position and the RSSs composing the database. Two 

localization methods are introduced in this work, which include nearest neighbor method 

and Kernel based method. 

Nearest neighbor method 

The nearest neighbor in signal space is a widely studied location determination method 

for Wi-Fi fingerprinting approaches [11]. The idea is to compute the Euclidean distance 

SSd  (in signal space) between the observed set of RSS measurements of the object OBS  

and the RSSs at a fixed set of locations recorded in database DBS , which is expressed as: 

( ) 2
SS, OB, DB, 

1
( ) ,      ( )

L
i

i l l
l

d S S i I j  (2.7) 

where L is the total number of available APs and ( )I j  is the location index set of the 

database. Then the location i , i.e., * RSS,RSS,
min ( )ii

d d i I j , is picked for positioning 

the object. 

Kernel-based positioning method 

Most RSS positioning efforts have been geared toward addressing the biggest challenge 

in fingerprinting: that of obtaining an estimate based on a new RSS observation. This 

essentially involves the calculation of a distance between the new RSS observation and 
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the training record at each survey point. In the simplest case, the Euclidean distance is 

used to find the distance between the observation and the center of the training RSS 

vectors at each survey point. The location estimate is either the survey point whose 

fingerprint has the smallest distance to the observation (nearest neighbor algorithm) or the 

average of k closest survey points (KNN). Despite its simplicity, the Euclidean distance 

may fail to deliver adequate performance in cases where the distribution of RSS training 

vectors included in the fingerprints are nonconvex [16]. 

The kernel-based positioning method produces a position estimate without abandoning 

any training information. That is, a function ,1 ,2 ,ˆ , ,..., Mg DB DB DBr r r r  is sought to 

estimate the object position r̂  with respected to all survey points (position vector: DBr ) 

recorded in the fingerprinting database. If g  is restricted to a kind of linear functions, 

the problem is reduced to determine a set of weights W  such that 

OB DB, ,
1

ˆ ,
N

i i
i

W DBr S F r  (2.8) 

where N is the total number of the survey points, OBS  is the observation RSS vector from 

the object receiver and the fingerprinting database matrix DB,iF  with raw data is an L×N 

matrix defined as 

(1) (1)

DB,
( ) ( )

1

1

i i

i
L L

i i

S S N

S S N
F

(1)S N(1)
i Ni Nii

( ))

i

)( N( )(
iS NiS N( )( )(

 (2.9) 

where L is the number of APs, N implies the number of samples that are collected at each 

survey point, ( )l
iS n  indicates the RSS measurement of the nth sample collected from 

the AP l at survey point i in the fingerprinting database building phase. 

The weight functions are required to be decreasing functions so that survey points whose 

training records closely match the observation are assigned with high weights. In 

particular, they should satisfy the following properties. [10] 

1. OB DB,
1

, 1
M

i
i

W S F  so that the estimated position belongs to the convex hull 

defined by the set of survey positions. This can be achieved by including a 

normalization term in Equation (2.7). 
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2. OB DB,, iW S F  is a monotonically decreasing function in both arguments with respect 

to a distance measure OB DB,, id S F  

OB DB, OB DB, OB DB, OB DB, , , , ,i j i jd d W WS F S F S F S F  (2.10) 

The average normalized inner product of training vectors and observation vector is 

chosen as the weight function. 

OB

OB DB,
1 OB

2
OB

OB DB,
1 OB

2

,1,

1,

N
i

i
n i

N
i

i
n i

W
n

n

n

n
N

d
N

S S
S F

S S

SSS F
SS

 (2.11) 

In this case, as shown in Equation (2.11) the weight function is actually the average of the 

cosines between the observation vector and training vectors. The maximum distance 

occurs when these two vectors are orthogonal. However, according to [10], it is proved 

experimentally unpractical to use this measure since the angular measure between two 

vectors in L-dimensional space is relatively small. Furthermore, owing to the complexity 

of the RSS patterns, it is also required to improve the efficiency of the weight function 

(e.g., use nonlinear weight function instead of linear weight function). Figure 2.2 displays 

the complex distribution of the RSS patterns for six given survey points with real test 

data. The RSSs are shown in dBs in Figure 2.2. 

 

Figure 2.2: Example of RSS measurement space for different locations (three APs) 
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Hence, the RSS vectors are nonlinearly mapped to a higher (possibly infinite) 

dimensional space F , where the computation of the weights takes place. The mapping is 

given by : LS SLL SSLL F . 

It seems to be intractable to calculate the weights in a possibly infinite dimensional space 

due to the computational complexity. However, the kernel trick can be used to calculate 

the inner product in high dimensional feature space without the need for explicit 

evaluation of the mapping function S . That is, the kernel trick allows the replacement 

of inner products in high dimensional feature space by a kernel evaluation on the low 

dimensional input vectors [16]. So the kernelized weight function now becomes 

OB

OB DB,
1 OB

OB

1 OB OB

,

( )

, ,

,1

,1

N i

i
n i

N
i

n i i

n
W

n

K n

K K n n

N

N

S S
S F

S S

S S

S S S S

 (2.12) 

A number of widely used kernel functions have been already developed (such as linear 

kernel, polynomial kernel, exponential kernel and Gaussian kernel). Among them, the 

Gaussian kernel has been widely studied and applied to plenty of pattern classification 

problems. Using Gaussian kernel guarantees the weight function outputs values in the 

interval of [0, 1]. Moreover, the mapped features ϕ(Si(1)), ϕ(Si(2)) ,…, ϕ(Si(N)) are 

linearly independent in the high dimensional space. The Gaussian kernel is defined in 

Equation (2.13) [16].  

2

2exp
2

,K
α βα β  (2.13) 

Then the weight function becomes 

OB
OB DB, 2

1

2
, exp

2
1 N

i
i

n

n
W

N
S S

S F  (2.14) 

where parameter  determines the width of the kernel. 

An approach for determination of the kernel width parameter capitalizes on the 

knowledge available in Parzen-window density estimation. Specifically, given the sample
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vector i nS , n=1,…, N, from a sequence of independent and identically distributed 

random variables, the kernel density estimate (KDE) of the unknown density OB
ˆ | ipf S  

is 

,OB OB OB DB,
1

,ˆ |
NL

L
i i i

n

p K n W
N

f S S S S F  (2.15) 

In general, the parameter  is determined to minimize the asymptotic mean integrated 

square error (AMISE) between the estimated and true densities [16][17]. It can be shown 

that, for the multivariate KDE, the optimal bandwidth is on the order of 
1

4 LO n , 

corresponding to a minimum AMISE that is on the order of 
4

4 LO n . In particular, the 

following formula is recommended in [18] as a quick estimate of the parameter for a 

Gaussian kernel. 

1
14* +4

2 2

1

4 ˆ
2 1

1ˆ l
i

L
L

L

r
l

n
L

L

 (2.16) 

where 2ˆ  is the average of marginal variances. 

And the scaled Gaussian weights is finally chosen for the location estimation, which is 

shown as 

2
OB

OB DB, 2
1

,
22

1 exp
N

i
i L

n

n
W

N

S S
S F  (2.17) 

In this case, the position estimate becomes 

OB DB, , , OB
1 1 1

OB DB, OB
1 1 1

, ,
ˆ

, ,

M M N
L

i i i i i
i i n

I M N
L

i i i
i i n

W K n

W K n

DB DBS F r r S S
r

S F S S
 (2.18) 

where K(·) is the Gaussian kernel function.  
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2.4 Field experiment and numerical results 

2.4.1 Hardware and test-bed 

To test the stationary localization performance of each aforementioned approach, a field 

experiment has been carried out, which is in the corridor on the second floor of 

Hoelderlinstr.-F building at the University of Siegen. The test-bed scenario is shown in 

Figure 2.3. There are 11 available access points and 5 of them are with known positions, 

which are marked in Figure 2.3. The dimension of the whole floor is about 42 m by 37 m 

and the test field (the corridor) is about 25 m by 22 m. The fingerprinting database is built 

of RSS measurements at 182 survey points with a separation distance of 1 meter. 20 pre-

surveyed points are chosen for propagation model parameter estimation using a least-

square algorithm. 

The experimental hardware shown in Figure 2.4 includes: 

1) Wi-Fi Access points: 

4 pieces of Linksys, TL-WN722NC, 2.4GHz, wireless-G broadband router 

1 piece of D-LINK, Air plus Xtreme G, 802.11g, wireless access point 

2) Wireless receiver:  

1 piece of TP-LINK TL-WN722N 150Mbps Wi-Fi adapter 

 
Figure 2.3: Experiment test-bed 

AP3

AP5

AP1 AP4

AP2



Chapter 2  Wi-Fi Based Localization Techniques  

17 

 

   
             (a)                                                (b)                                              (c) 

Figure 2.4: Experimental hardware: (a) Linksys router; (b) D-Link router; (c) TP-
Link Wi-Fi adapter 

 

2.4.2 Results and analysis 

100 random chosen blind points are localized with three Wi-Fi based approaches 

respectively. The first method is empirical fingerprinting (database building with the 

empirical method); the second one is model based fingerprinting (database building with 

WAF propagation model); the third one is positioning directly using WAF propagation 

model for position estimation. Both fingerprinting approaches employ the nearest 

neighbor method for location determination. 

 
Figure 2.5: Positioning error cumulative distribution functions (CDFs) 
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Table 2.1: Error means and standard deviations 

 Empirical FP Model based FP Propagation model 

Mean error [m] 2.48 2.93 4.33 

Standard deviation [m] 1.81 2.11 3.18 
 

The positioning results are described with error distances shown in Figure 2.5 and Table 

2.1. It can be found that empirical fingerprinting provides better positioning performance 

(mean error: 2.48 m) than the one based on WAF model (mean error: 2.93 m). That is, 

compared to the model based fingerprinting, the empirical method can not only build a 

more reliable database with real RSS collection but also take advantage of the RSS 

information from the APs with unknown positions. The model based fingerprinting yields 

better performance than the method directly using the propagation model (mean error: 

4.33 m). That is, the fingerprinting approaches can take advantage of map constrained 

information. 

 
Figure 2.6: Positioning error CDFs 

Table 2.2: Error means and standard deviations 
 Kernel based method Nearest neighbor 

Mean [m] 2.20 2.48 
Standard deviation [m] 1.44 1.81 

 

To show the influence on fingerprinting positioning performance with different location 

determination methods, nearest neighbor and Kernel based method are tested and 

compared. The database is built with the empirical method. The results are shown in 
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Figure 2.6 and Table 2.2. It can be found that the Kernel based fingerprinting can provide 

a better positioning result. 

2.5 Summary 

In this chapter, the background and concept of Wi-Fi based positioning are discussed. The 

Wi-Fi localization approaches are explored, which include the one directly using radio 

propagation model and the ones employing RSS fingerprinting. The fingerprinting 

approach consists of two steps: database building phase and localization phase. The 

database can be built with empirical method or model based method, and the localization 

phase can be done with nearest neighbor method or kernel based method. The field 

experiment is performed, and the results show that 1) the approach directly using the 

propagation model yields higher positioning errors than the fingerprinting approaches; 2) 

the empirical fingerprinting provides a better positioning performance than the model 

based fingerprinting; 3) kernel based localization method yields lower positioning errors 

comparing to the nearest neighbor method. 
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Chapter 3 
Indoor Vehicle Navigation Using Enhanced INS/Wi-Fi 

Integration 

For indoor continuous navigation applications, especially those related to mobile object 

tracking, other approaches for Wi-Fi based continuous localization can be employed, such 

as Viterbi-like algorithms and Baum-Welch algorithms [19][20]. However, they are based 

on the "most likely" trajectory or the path model which limits their robustness in practical 

applications. The micro-electromechanical systems (MEMS) based IMU is widely used in 

navigation applications. The IMU can provide the motion information of the object with a 

relatively accurate output within a short time and a high update rate. Nevertheless, for a 

low-cost IMU, its navigation solutions drift quickly over time due to the accumulation of 

sensor errors (i.e., sensor bias, noise, scale factors, etc) [21]. Therefore, in outdoor 

environments, the IMU is often integrated with the global positioning system (GPS) 

receiver. The integration of INS and GPS has been proven to be a reliable solution for 

continuous outdoor navigation [22]-[28]. Considering the complementary nature of INS 

and Wi-Fi positioning, the combination of both systems is expected to yield a synergetic 

effect resulting in higher navigation performance. 

In this chapter, system models of INS/Wi-Fi integration are derived in Section 3.1. The 

state propagation model is provided by INS mechanization and the observation model is 

from Wi-Fi positioning approaches. The unscented Kalman filter is employed for system 

integration. To further improve the performance of the integration, the enhancements 

using vehicle constraints and adaptive Kalman filtering are presented in Section 3.2. In 

Section 3.3, one field experiment is made and the results show the advantages of the 

INS/Wi-Fi integrated system and the enhanced integration with respect to the standalone 

Wi-Fi positioning approaches. 

3.1 System modelling for INS/Wi-Fi integration 

3.1.1 INS process model using Euler angles 

There are four reference frames related to indoor navigation, which are the inertial frame, 

earth frame, navigation frame and body frame. The inertial frame is a reference frame in 

which Newton’s law of motion applies. All the inertial sensors make measurements 

relative to an inertial frame [24]. We can take any point as its origin in the inertial 
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coordinate system, and consider three mutually perpendicular directions as its axes. The 

earth frame has its origin fixed on the center of the earth. The navigation frame is 

attached to a fixed point on the surface of the earth at some convenient point for local 

measurements. The body frame is rigidly attached to the vehicle of interest, usually at a 

fixed point such as the gravity center of the vehicle, which is also the origin of the body 

coordinate system [29]. In this work, two frames are mainly considered, which are the 

local navigation frame and the body frame. The vector in the body frame is denoted as bυ  

while the local navigation frame is the default frame in this work, which means nυ υ . 

Regarding the system modelling for our integrated system, the system state vector x  is 

composed of position r, velocity v and attitude ψ  in the navigation frame. The strap-

down INS mechanization model is defined as the system process model [30]. For low-

cost MEMS based IMUs, the effects from the earth rotation cannot be observed, so the 

Coriolis and centrifugal terms are not considered in the INS process model. In this model, 

the gravity is assumed as a constant and the transport rate is no longer considered for 

simplicity [31]. The simplified mechanization model in discrete time can be expressed in 

navigation frame as: 

1 1 , 1

n bias
1 b, 1 b, 1 b , 1

n bias
1 b, 1 b, 1 b , 1

ˆ( )

ˆ( )

k k k k

k k k k k

k k k k k

t

t

t

r

v

ψ

r r v w

v v C f f g w

ψ ψ Φ ω ω w

biasˆbias
b, bb, 1 b

bias
b, 1 bb, 1 bb 1 bb 1 b

b as
b 1 bb 1

b, bb, 1 bb, 1 bb 1 b
bibibi

b 1 b

 (3.1) 

where t  is the sampling time; bfbfb  is the acceleration measurement vector from IMU 

(accelerometers); bωbω  represents the measurement vector of angular rate from IMU 

(gyroscopes); bias
bf̂  and bias

bω̂  are the pre-estimated accelerometer and gyroscope bias 

error terms; w terms represent the corresponding white noise of the model; n
bC  is the 

frame rotation matrix from the body frame to navigation frame. It is assumed that the 

object has an attitude which can be obtained by three successive rotation angles ,  and 

 around the x, y and z axis. 

n
b

c c c s s s c c s c s s
s c s s s c c s s c c s

s c s c c
C  (3.2)
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n
b  is the rotation rate matrix between body frame and navigation frame, and it can be 

expressed as: 

n
b,

1 s t c t
0 c s
0 s / c c / c

kΦ  (3.3) 

In the Equation (3.2) and (3.3), c =cosX X , s =sinX X , t = tanX X  and , ,  

represent the roll, pitch and yaw respectively. Equation (3.1) is employed as the system 

propagation model in the integration system. 

3.1.2 Observation models with Wi-Fi positioning 

The simplified propagation model is derived in Section 2.2.1 as Equation (2.6). It can be 

rewritten as the measurement equation with respect to the position of the object: 

2 2 2
OB, AP( ), AP( ), AP( ), , 10 log( ( ) ( ) ( ) )l l x l x y l y z l z l s lS a r r r r r r  (3.4) 

where OB, lS  is the received signal strength measurements from AP l; r and AP( )nr  

represent the position vectors of the object and AP l respectively; ,s l  is additional 

Gaussian noise term; na  and l  are the Wi-Fi signal related parameters which can be 

pre-estimated. It can be found that Equation (3.4) can be directly used as the observation 

model for the INS/Wi-Fi integration, which yields a tightly coupled integration structure. 

If a Wi-Fi fingerprinting approach is employed for the integration instead of direct usage 

of the propagation model, the RSS measurements are pre-processed by a fingerprinting 

algorithm and the estimated position vector is the input of measurement update. In this 

case, the integration yields a loosely coupled structure. The tightly coupled and loosely 

coupled integration structures are illustrated in Figure 3.1.  

Due to the nonlinearities of the system models, the unscented Kalman filter (UKF) is used 

for the tightly/loosely coupled integration systems. The discrete-time UKF is described in 

Section 3.1.3. 
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Figure 3.1: Diagram of INS/Wi-Fi integration with tightly/loosely coupled structure 

3.1.3 Unscented Kalman filtering 

The derivations of time update and measurement update equations of the UKF are shown 

as follows. 

A discrete system model with additional zero mean Gaussian white noises is formulated 

as: 

1 1( )
( )
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y h x η

w 0,Q
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 (3.5) 

Among many UKF algorithms, the following algorithm with 2n equally weighted sigma 

points is employed in this work [32]: 

1) Initialize the state and covariance 
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2) Choose the sigma points (SPs) for time update ( n  denotes the dimension of the state 

vector) 

( ) ( )
1 1

( )
1

( )
1

ˆ ˆ      1,2,...,2
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i i
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i n

n i n
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 (3.7) 

3) Time update to obtain the priori state estimate and covariance 
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4) Choose SPs for measurement update 
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5) Predict measurements 
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6) Estimate the covariance and cross covariance 
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7) Measurement update to obtain the posteriori state estimate and covariance 

1
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The UKF uses a deterministic sampling approach to capture the mean and covariance 

estimate with a minimal set of sample points, and its estimation accuracy can reach up to 

the third order of the Taylor series expansion for any nonlinearity [33]. While the 

extended Kalman filter (EKF) based on linearizing the nonlinear system with Jacobian 

matrices, which yields a first order approximation [34][35]. The detailed description and 

derivation of the UKF are introduced in Appendix C. 

3.2 Enhancements using adaptive Kalman filtering and vehicle 
constraints 

3.2.1 Adaptive Kalman filtering (AKF) 

When the prior statistics of the system process and measurement noises are known, the 

KF methods can provide reliable system estimates. In most practical applications, these 

statistics are not possible to be known analytically, because they are strongly related to 

the type of application at hand, in our case, the dynamic of the complicate Wi-Fi signal 

environments. In such cases, using the prior given statistics may degrade the system 

performance. In order to improve the estimation accuracy, the prompt reflection of the 

changes in the noise statistics from the external influences is required. The AKF is 

designed for adapting the measurement and the process noise statistics. Innovation-based 

AKF and residual based AKF are the existing approaches for estimating time-varying 

noise covariance matrices [36]. However, innovation based AKF may cause numerical 

problems in calculation procedures and hence, make the filter diverge [37]. In this work, 

residual-based AKF is used. 

For the INS/Wi-Fi integrated system discussed in this work, the IMU measurements are 

used in the system dynamic model. The error statistics can be found in the IMU product 

specifications, or most of them can be detected through self-alignment and calibration 

processes. Therefore, the parameters in the process noise covariance matrix ‘Q’ can be 

determined approximately. However, the Wi-Fi positioning measurements used in the 

system observation model are related to many external influences such as multipath, wall 

attenuation and Wi-Fi signal fluctuations. Hence, in this work, with the assumption that 

the statistical information about the ‘Q’ is known approximately; the measurement noise 

covariance ‘R’ is to be estimated. 

In residual based AKF, the residual sequence is computed as the discrepancy between the 

incoming measurements and the ones calculated from the observation model: 
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ˆk k kz y y  (3.13) 

where ˆ ˆ( )k k ky h x . An estimate of the residual sequence covariance matrix is obtained 

by averaging the previous residual sequence over a window length N, which is shown as: 

,
1

1ˆ
k

T
k j j

j k NNηC z z  (3.14) 

The estimated measurement error covariance matrix ˆ
kR  for the UKF discussed in Section 

2 can be estimated adaptively as: 

2
( ) ( )

,
1

1ˆˆ ˆ ˆ ˆ ˆ
2

n Ti i
k k k k k k

inηR C y y y y  (3.15) 

3.2.2 Vehicle constraints 

Vehicle constraints take advantage of the knowledge of the vehicle’s dynamics and the 

physical conditions based on practical application experiences, which can be used to 

reduce the system drift error caused by IMU biases [38]. In this work, three constraints 

are explored, which are body velocity constraint (BVC), constant height constraint (HC) 

and body angular velocity constraint (AVC). The constraints are used as pseudo-

measurements to be added to the observation model of the integrated system. 

Body Velocity Constraint 

The body velocity constraint is based on the assumption that vehicles travel on the ground 

without significant side sliding. Therefore, velocities in the body frame along the y and z 

axes can be assumed to be almost zero ( b, 0yv and b, z 0v ) [39]. 

The body velocity constraint can be employed as a pseudo-measurement added to the 

observation model for our system and the corresponding measurement equation is derived 

as: 

b, 
, ,

b, z

0
( )

0
y

k k k

v
vvc vc vcy h x ηb yvb 0b yb, yb y, y

00b, zvb 0
, y  (3.16) 

With  
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s c s s s c c s s c c s
( )

s c s c cvch x v  (3.17) 

where v denotes the velocity of the object and ,kvcη  is the measurement noise vector. 

Height Constraint 

The height constraint utilizes the fact that elevation remains almost constant for short time 

durations ( , hcz kr r  and , 0z kv ). The pseudo-measurement equation can be derived as 

hc
h , h h ,( )

0k k k

r
c c cy h x η  (3.18) 

With  

hc ( ) z

z

r
v

h x  (3.19) 

Angular Velocity Constraint 

Based on the scenarios in which vehicles travel on the ground, the angular velocity 

constraint assumes that among the three angular velocities, only the change in the heading 

angle is not zero [39]. The corresponding pseudo-measurement equation is: 

av , av av ,

0
( )

0k k kc c cy h x η  (3.20) 

With  

1
hc

1

ˆ
( ) ˆ

k k
k

k k

h x  (3.21) 

where 1ˆk  and 1k̂  are estimated roll and pitch from the previous step. 

3.2.3 Enhanced INS/Wi-Fi integration 

After employing AKF and vehicle constraints in the INS/Wi-Fi integrated system 

discussed in Section 3.1, an enhanced system can be obtained, which is shown in Figure 

3.2. The measurement noise covariance is re-estimated with AKF algorithm. The vehicle 

constraints provide the extra observation models, described with Equation (3.16), (3.18) 

and (3.20), for the system measurement update. 
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Figure 3.2: Diagram of enhanced INS/Wi-Fi integration 

3.3 Field experiment and results 

3.3.1 Hardware and test-bed 

 

Figure 3.3: Experimental hardware 
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Table 3.1: Specification and parameters of Xsens MTi IMU [40] 

 
A mobile robot, which is shown in Figure 3.3 has been employed as the object that needs 

to be tracked. The Wi-Fi measurements are collected from a low-cost Wi-Fi antenna (TP-

Link TL-ANT2408C) and a MEMS-based IMU (Xsens MTi) is used in the test. The 

update rate of the IMU measurement is 50Hz while the update rate of the Wi-Fi RSS is 

1Hz. The specification and parameters of the IMU are shown in Table 3.1. 

 
Figure 3.4: Experimental scenario 

The field experiment is carried out in the same test-bed introduced in Section 2.4.1. There 

are 5 available APs with known positions (shown in Figure 3.4) and 6 APs with unknown 

positions. To implement the empirical fingerprinting method, about 182 database points 

AP3

AP5

AP1 AP4

AP2

Vehicle
trajectory

Vehicle
with

sensors



Chapter 3  Indoor Vehicle Navigation Using Enhanced INS/Wi-Fi Integration  

30 

have been collected with the RSS measurements from 11 APs in database building phase. 

The distance between two adjacent points in the corridor is 1 meter. For propagation 

model based fingerprinting, 20 pre-surveyed points have been used to estimate 

parameters of the propagation model. 

The initial IMU bias errors are detected by averaging IMU measurements when the 

platform is stationary. The robot movement lasts 221 s. The reference trajectory (shown 

in Fig. 2) has been measured manually. The RSS measurements received from the APs 

with known positions are shown in Figure 3.5. When the robot is approaching a certain 

AP, the received signal strength increases, and, vice versa, when the vehicle is leaving, 

the signal power decreases. 

 

Figure 3.5: RSS measurements during the robot movement 

3.3.2 Results and comparison 

Figure 3.6 shows the first group of the position estimation results separately using the 

three discussed approaches: (1) Wi-Fi empirical fingerprinting, (2) integration of INS and 

empirical fingerprinting using UKF and (3) enhanced INS/Wi-Fi integration aided with 
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model-based fingerprinting and the corresponding integrated systems are shown in Figure 

3.7. It should be noted that the positioning errors mentioned in this work denote the 

distances between the estimated positions and the corresponding reference positions, 

which are magnitudes of the positioning error vectors. 

 
(a) 

 
(b) 

 
(c) 

Figure 3.6: Positioning errors (1st group) using: (a) Wi-Fi empirical fingerprinting 

positioning; (b) integration of INS and empirical fingerprinting; (c) enhanced INS/Wi-Fi 

integration 
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(a) 

 
(b) 

 
(c) 

Figure 3.7: Positioning errors (2nd group) using: (a) propagation model based 

fingerprinting positioning; (b) integration of INS and model based fingerprinting; (c) 

enhanced INS/Wi-Fi integration 
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Figure 3.8: Positioning error CDFs (1st group) 

Table 3.2: Position error comparison (1st group) 

Method 

Error [m] 
Wi-Fi only INS/Wi-Fi Enhanced 

INS/Wi-Fi 

Maximum 8.57 6.18 4.49 

Median 2.16 1.83 1.29 

Mean 2.42 2.11 1.56 

Standard deviation 1.62 1.32 0.94 
 

 
Figure 3.9: Positioning error CDFs (2nd group) 
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Table 3.3: Position error comparison (2nd group) 

Method 

Error [m] 
Wi-Fi only INS/Wi-Fi 

Enhanced 

INS/Wi-Fi 

Maximum 10.70 6.71 5.78 

Median 2.19 1.99 1.80 

Mean 2.74 2.41 1.96 

Standard deviation 1.73 1.45 1.01 
 

3.4 Summary 

In this chapter, the indoor vehicle navigation with integration of INS and Wi-Fi based 

positioning is discussed. The system time update model is provided by strap-down INS 

mechanization, and the measurement update model is from Wi-Fi positioning. Due to the 

nonlinearities of the system models, the UKF is employed for the integration. To further 

improve the INS/Wi-Fi integration, the enhancements using the vehicle constraints and 

AKF are proposed. The results of the experiment show that the INS/Wi-Fi integration 

provides a better tracking performance compared to the standalone Wi-Fi positioning, and 

the integration with the enhancements can further improve the tracking performance. 
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Chapter 4 
Adapted Indoor Pedestrian Navigation Using PDR/Wi-Fi 

Integration 

IMU based pedestrian dead reckoning (PDR) is widely studied in the personal navigation 

field [41][42]. Like other dead reckoning systems that use inertial sensors, it can achieve 

a high precision for short time but suffers from a propagating drift error because of IMU 

biases. Many researchers focus on foot-mounted systems [43][44]. Using a foot-mounted 

IMU, zero speed situations can be detected during the user’s walking. In this case, zero 

velocity update (ZUPT) and zero angular rate update (ZARU) algorithms can be 

employed to reduce the heading estimation drift [45]. To design a PDR algorithm for 

portal devices which can be arbitrarily placed on the user’s body, the step detection 

method needs to be chosen adaptively for different placement modes [46]. In this case, 

the placement mode classification is necessary for the PDR [47]. To further improve the 

indoor localization performance of the PDR, the dead reckoning system is integrated with 

Wi-Fi based positioning. In [48], a Wi-Fi assisted pedestrian dead reckoning navigation 

system is proposed and the experimental results are encouraging. 

In this chapter, IMU based foot-mounted PDR is explored in Section 4.1. The 

methodologies of step detection, stride length and heading estimation are introduced. The 

application of ZUPT and ZARU are also described and the improvements are shown with 

pedestrian test results. In Section 4.2, an adapted PDR with portable devices is presented. 

The placement mode definition and classification, as well as the classification results are 

given. The integration of the adapted PDR and Wi-Fi positioning using a Kalman filter is 

described. In Section 4.3, a field experiment is carried out to show the performance of 

PDR/Wi-Fi integration compared to the standalone navigation systems. 

4.1 IMU based foot-mounted pedestrian dead reckoning 

The pedestrian dead reckoning (PDR) includes the solution of the navigation equations by 

estimating the user’s position, velocity, and attitude (PVA) in a reference navigation 

frame from sensor measurements in the body frame of the user. Pedestrian dead 

reckoning methods explore the kinematics of human gait with the travelled distance and 

heading information [49]. Essentially, the pedestrian dead reckoning is the determination 
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of a new position from the knowledge of a previous position utilizing current distance and 

heading information [43]. 

 
Figure 4.1: Pedestrian dead reckoning course 

PDR consists of three important components: stride detection; stride length ( strdL ) 

estimation of the distance traveled by the user since previous step 1n  and the user’s 

heading ( ) during the step 1n  to n . The coordinates ( ,x nr , ,y nr ) of a new position 

with respect to a position of the previous stride ( , 1x nr , , 1y nr ) can be computed as follows: 
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4.1.1 Gait cycle and step detection 

 
Figure 4.2: Gait cycle with foot-mounted IMU 
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Figure 4.3: Acceleration measurement along x-axis of foot-mounted IMU 

The step detection is based on pedestrian gait cycle [50]. A gait cycle includes four 

sequential phases, namely push-off, swing, heel strike and stance (shown in Figure 4.2) 

[46]. The percentage of each phase in a gait cycle is user dependent. As shown in Figure 

4.2, the IMU is mounted on user’s foot. The steps and gait phases can be detected from 

the IMU measurement using a sliding window and predefined thresholds. Figure 4.3 

shows the detected steps and gait cycle phases based on the accelerometer output. The 

IMU used in this test is Xsens MTi IMU, which is employed in Section 3.3.1. 

The stride length of pedestrian walking can be estimated from the detected frequency. A 

linear relationship is built to relate the step frequency to the stride length. The 

mathematical relationship is computed by curve fitting of various test subjects. 

4.1.2 Stride length estimation 

The stride length of pedestrian walking can be estimated from the detected stride 

frequency introduced in Section 4.1.1. In this work, a linear relationship is built to relate 
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where the thk  stride is detected at time kt  from the previous stride at 1kt ; a and b are 

the parameters of the linear mathematical relationship, which is computed by linear 

regression of various test subjects. In this work, four users take part in this walking test 

and each of them walks 3 times. As shown in Figure 4.4, the linear regression is done 
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using the average values of stride length and stride frequency from different users in each 

test, so that the parameters can be determined. 

 
Figure 4.4: Linear regression of stride frequency vs. stride length 

One test has been carried out and Figure 4.5 shows the error of stride length estimation, 

the values of error and accumulative error. The dots marked on the result curves represent 

the detected steps. It can be found that the accumulative error is about 1.1 m within 31 

strides (about 45 m walking length) which is acceptable for pedestrian navigation. 
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4.1.3 Heading determination 

The magnetometer is affected by magnetic disturbances, which limits the use of 

magnetometer in indoor navigation [51]. The ideal case is that the device is firmly tied on 

the human body and the orientation of the device is aligned with the body. The local 

frame is defined as follows: the positive directions of x-axis and y-axis are represented in 

Figure 4.3, the positive direction of z-axis indicates the inverse direction of gravity. In 

case of a local frame, the update of the heading information can be easily estimated as the 

integral of the gyro output in z-axis z  during the period between two adjacent steps, 

plus heading of the previous step 1i , as shown in Equation (4.3). 

1
1

i

i

t
zi it

t dt  (4.3) 

However, due to the variable placement of the device, the measured signals in the body 

frame are misaligned with the real attitude in the local frame. Thus, a rotation matrix is 

needed for the conversion of the sensor signals. Via the rotation matrix, the sensor 

outputs with an arbitrary orientation can be transformed into the local navigation frame. 

The discrete propagation equation of the attitude can be rewritten as: 

n bias
1 b, 1 b, 1 b, 1 , 1

n
b,

( )
with

1 s t c t
0 c s
0 s / c c / c

k k k k k k

k

t ψψ ψ Φ ω ω w

Φ

bi
b, b,

bi
b, 1 b,b, 1 b,b 1 b

bi
bb 1 b

 
(4.4) 

where c =cosX X , s =sinX X , t = tanX X ; t  is the sampling time; Tψ  

denotes the attitude (Euler angles) vector in navigation frame; , ,  represent the 

roll, pitch and yaw; n
bΦ  is the rotation rate matrix between body frame and navigation 

frame; bωbω  represents the measurement vector of angular rate from the gyroscopes; bias
bω  

denotes the gyroscope bias error term; ψw  is the white noise of the propagation model. 

4.1.4 Zero velocity update and zero angular rate update 

For a foot-mount IMU, in the gait cycle (shown in Figure 4.2), the stance phase, where 

the velocity and angular rate of the IMU are approximately zero, can be detected from 

IMU output using predefined thresholds. In this case, zero velocity update (ZUPT) and 

zero angular rate update (ZARU) can be applied to estimate the IMU bias errors. 
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System modelling 

For system modelling to estimate the IMU biases, the system state vector x is composed 

of velocity v, attitude ψ , accelerometer bias vector bias
bf  and gyro bias vector bias

bω . The 

simplified INS mechanization model is defined as the system process model, which is 

introduced in Section 3.1.1. The discrete process model is shown as:  

n bias
1 b, 1 b, 1 b, 1 , 1

n bias
1 b, 1 b, 1 b, 1 , 1

bias bias
b, b, 1 ,bias, 1

bias bias
b, b, 1 ,bias, 1

( )

( )
k k k k k k

k k k k k k

k k k

k k k

t

t

v

ψ

f

ω

v v C f f g w

ψ ψ Φ ω ω w

f f w

ω ω w

biasbias
b, b,b, 1 b,1 b,

bias
b, 1 b,1 b,b, 1 b,1 b,b 1 b1 bb 1 bb 1 b1 b

bias
b 1 b1 bb 1

bi
b, b,

bi
b, 1 b,b, 1 b,b 1 b

bi
b 1 b  (4.5) 

The bias terms bias
bf  and bias

bω  are modelled as random walk; w  terms denote the 

process noises; n
bC  is the frame rotation matrix from the body frame to navigation frame. 

n
b

c c c s s s c c s c s s
s c s s s c c s s c c s

s c s c c
C  (4.6) 

n
b  is the rotation rate matrix between body frame and navigation frame, and it can be 

expressed as: 

n
b,

1 s t c t
0 c s
0 s / c c / c

kΦ  (4.7) 

Making use of the fact that velocity and angular rate are approximately zero during the 

stance phase ( v 0  and ω 0 ). The system observation model can be derived as 

( )k k ky h x η 6 10  (4.8) 

with 

1
( ) ˆ

k

k k k

t

v
h x ψ ψ  (4.9) 

Because the process model is nonlinear, the extended Kalman filter (EKF) is employed 

here to estimate the system states. 
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Extended Kalman filtering 

The Extended Kalman filter (EKF), is the most widely used nonlinear state estimation 

technique that has been applied in the past few decades. The principal feature of the EKF 

is linearization of the system equation and the measurement equation around the previous 

estimate or the current prediction. The linearized system is then represented by the 

Jacobian transformations of the nonlinear process and measurement functions. The 

normal KF formulas are then applied to the linearized system. 

Suppose the system model is: 

1 1 1( , , )
( , )

~

~

k k k k

k k k

k k

k k

N

N

x f x u w
y h x η

w 0,Q

η 0,R

 (4.10) 

A Taylor series expansion of the state equation can be performed around 1 1ˆk kx x  and 

1kw = 0  to obtain the following: 

1 1

1 1 1 1 1
ˆ ˆ

1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1

ˆ ˆ( , , )

ˆ ˆ   ( , , )

ˆ ˆ   ( , , )
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k k k k k k

k k k k k k k
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x w

f f
x f x u 0 x x w

x w

f x u 0 F x x L w

F x f x u 0 F x L w

F x u w 1k k111u w1k 1

 (4.11) 

1kF  and 1kL  are defined by the above equation. The known input signal 1ku 1ku  and the 

noise vector 1kw 1kw  are defined as follows: 

1

ˆ ˆ( , , )

~ ,
k k k k k

T
k k k kN

u f x u 0 F x

w 0 L Q L
k k( ,ˆ( ˆu f ( ˆk ( ,((

k 1w 0~k 1 N
 (4.12) 

The measurement equation can be linearized around ˆk kx x  and 1kη = 0  to obtain: 
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kH  and kM  are defined by the above equation. The vector kz  and the noise vector keke  

are defined as 

ˆ ˆ( , )

~ ,
k k k k

T
k k k kN

z h x 0 H x

η 0 M R M~k ,Nη 0,
 (4.14) 

Then we obtain a linear process model in Equation (4.12) and a linear measurement 

model in Equation (4.14), which means that the state can be estimated with the standard 

KF equations as follows: 

1. Time update equation 

1 1 1 1 1 1

1 1,ˆ ˆ( , )

T T
k k k k k k k

k k k

-P F P F L Q L
x f x u 0

 (4.15) 

2. Measurement update equation 

1
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 (4.16) 

Test results 

To show the performance of ZUPT and ZARU, one field test is carried out using a 

MEMS based IMU (Xsens MTi) mounted on the user’s foot. Figure 4.5 shows the 

estimated IMU bias errors during one detected stance phase which lasts about 0.29 s. 
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Figure 4.6: Estimated IMU bias errors 

For every gait cycle, the biases are re-estimated during the stance phase using ZUPT and 

ZARU. The estimated accelerometer bias errors are not used in the pedestrian dead 

reckoning calculation. The estimated gyro biases are used in attitude determination via 

the following equation: 

n bias
1 b, 1 b, 1 b, 1( )k k k k k tψ ψ Φ ω ωbi

b, b,
bi

b, 1 b,b, 1 b,b 1 b
bi

b 1 b  (4.17) 

Combined with the stride detection introduced in Section 4.1.1 and the stride length 

estimation introduced in Section 4.1.2, the user’s trajectory can be estimated using 

Equation (4.1). 
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Figure 4.7: Trajectory estimation results 

Figure 4.7 shows the trajectory estimation results. Through estimating and subtracting the 

gyro bias errors, the PDR using ZUPT and ZARU can provide a much better heading 

estimation than the PDR using the IMU raw data with the bias errors. 

4.2 Adapted pedestrian dead reckoning with portable devices 

4.2.1 Device placement mode definition and features for mode classification 

Unlike the foot-mounted systems, personal portable devices (such as smartphones and 

tablet PCs) can be either mounted on the user’s body or carried by the user. The sensor 

unit, especially the IMU embedded in the device, may respond to additional dynamics 

due to the movement of the user’s body [52][53]. In that case, the navigation output of the 

IMU depends on its placement, its orientation relative to the subject, and the subject’s 

posture and activity. 

One solution is to identify the device placement information using intelligent context 

awareness so that the system can adapt proper pedestrian dead reckoning algorithm. From 

the user’s experience of commonly used portable digital device, three typical placement 

modes are defined as: (1) device mounted on body, such as placed in the pocket: body 

mounted mode (pocket mode); (2) device dangling in hand during walking: dangling 

mode; (3) device held in front of the body when the user is reading or messaging: reading 

mode. Figure 4.8 illustrates the application cases for every placement mode. The mode 
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definition in this work is not exhaustively all-inclusive for practical applications, but 

representative to study the impact of typical sensors placement from a navigation 

perspective. 

 

(a)                                    (b)                                            (c) 

Figure 4.8: Placement cases: (a) body mounted mode (pocket mode); (b) dangling mode; 

(c) reading mode 
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Figure 4.10: IMU measurements (training and test data from different users) in different 

placement modes 

Mode classification, which is also called as pattern recognition, is based on the output 

data of the IMU. The measurements from gyroscopes and accelerometers in 3-axis are 

chosen as the features for the classification. Figure 4.9 and Figure 4.10 show the training 
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reasonable values are then added [54]. Figure 4.11 shows the performance of the 

smoothing with moving-average algorithm (time-based window size: 0.2 s). 

 

Figure 4.11: Comparison between smoothed data and original data 

4.2.2 Classification algorithms 
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KNN is a non-parametric learning algorithm, which means that it does not make any 

assumptions on the underlying data distribution (e.g., Gaussian mixtures, linearly 

separable). It is also a lazy algorithm. It does not use training data points for 

generalization. There is no explicit training phase or it is very minimal. The training 

phase is fast. The training data is needed during the testing phase. There is a nonexistent 

or minimal training phase but a costly testing phase (cost in terms of time and memory) 

[57]. In the worst case, all data points might take part in decision, more time is needed. 

As all training data needs to be stored, the required memory is relatively large. 

It is assumed by KNN that data is in a feature space. Data points are in a metric space. 

Data can be scalar data or multidimensional vector data. Training data consists of vectors 

and class label associated with each vector. It will be either positive or negative classes. 

KNN works equally well with an arbitrary number of classes. 

The given number "k" decides how many neighbors (where the neighbor is defined based 

on the similarity) influence the classification. This is usually an odd number if the number 

of classes is 2. If k=1, then the algorithm is simply called the nearest neighbor algorithm. 

The KNN algorithm is sensitive to the local structure of the data. The best choice of k 

depends upon the data; generally, larger values of k reduce the effect of noise on the 

classification but make boundaries between classes less distinct. 

The most popular way to evaluate a similarity measure is the use of distance measures. 

And the widely used distance measure is the Euclidean distance, defined as 

2
, ,

1
( )( , )

Nd

u w u j w j
j

d z zz z  (4.18) 

where zu and zw are two instances in feature space. 

The purpose of learning is to know how to discern the samples whose labels are not 

known. Now a new sample is collected and used for the judge. The KNN classifier 

calculated the distances between the new one and each of the known samples, which is 

the worst case. Through kd-tree algorithm, the data space can be partitioned and then the 

corresponding data-indices are constructed. In this way, the exhaustive search can be 

avoided. Thus actually within KNN algorithm, there is no real training cause, because 

each time a new sample is collected a computation based on almost all of the training data 

would be processed. 
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Artificial Neural Networks 

As a mathematical model derived from biological neural networks, an ANN consists of 

simple and highly interconnected processing elements, the neurons. Each of them 

receives one or more inputs and sums them to produce an output, which works in a 

similar way to biological neurons [58]. In most cases a neural network is an adaptive 

system that adjusts its structure continually during the training phase, thus it is very 

efficient to use ANN model complex relationships between inputs and outputs or to find 

patterns in data. 

There are various sorts of ANN algorithms such as back-propagation neural network and 

Hopfield network. The one employed in this work is the probabilistic neural network 

(PNN). PNN is a kind of feed-forward neural networks. It is predominantly a classifier 

that maps input patterns to a quantity of classifications [60]. Yet it can be also forced into 

a more general function approximator. A PNN is an implementation of a statistical 

algorithm called kernel discriminant analysis in which the operations are organized into a 

multilayered network with four layers: (a) input layer; (b) pattern layer; (c) summation 

layer; (d) output layer. 

When an input is presented, the pattern layer produces a vector whose elements indicate 

how close the input is to the vectors of the training set. The summation layer calculates 

the average of the output of the probability density function (PDF) for all samples in each 

single population [61]. Finally, the competitive transfer function produces a "1" 

corresponding to the largest element of the input vector, and a "0" elsewhere. Thus, the 

network classifies the input vector into a specific i class because that class has the 

maximum probability of being correct. 

The detailed description of the ANN algorithm is given in Appendix A. 

Support Vector Machine 

SVM is a binary classifier that derived from statistical learning theory and kernel based 

methods. An SVM model is a representation of the examples as points mapped in space 

so that the examples of the separate categories are divided by a clear gap that is as wide 

as possible. In the center of the gap lies the boundary of different categories: hyperplane 

[63]. New examples are then mapped into that same space and predicted to belong to a 

category based on which side of the hyperplane they fall on [62].   
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The SVM method finds the optimum separating hyperplane so that the samples with 

different labels are located on each of the planes. The distance of the closest samples to 

the hyperplane in each side is maximized. These samples are called support vectors. The 

optimal hyperplane is located where the margin between two classes of interest is 

maximized so that the error is minimized. 

For a multiclass classification, multiple binary classifiers are required. Each classifier is 

trained to discriminate one class from the remaining classes. During the testing or 

application phase, data are classified by computing the margin from the linear separating 

hyperplane. Data are assigned to the class labels of the SVM classifiers that produce the 

maximal output. In this work, the SVM with the Gaussian kernel is employed. 

In Appendix B, the detailed introduction and derivation of the SVM classifier are 

presented. 

4.2.3 Placement mode classification results 

In this section, classification results obtained respectively using KNN, PNN and SVM are 

shown and compared. The example of training data and test data sets collected from the 

same user are shown in Figure 4.9 and the one from different users are shown in Figure 

4.10. 

 
Figure 4.12: Classification accuracy (same user case) 
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Figure 4.13: Classification accuracy (different user case) 

Figure 4.12 and Figure 4.13 show the classification results using the three classifiers in 

same user case and different user case respectively. It can be found that KNN fits the 

patterns best (99.2%) in same user case. But if it is tested by a different user, KNN 

becomes the one who produces the worst result (96.23%), shown in Figure 4.13. 

Reviewing the performance of SVM, though the result is not such good as KNN’s in the 

first case, SVM yields the best result in the second case. Considering the different user 

case is more important in practical applications and SVM also provides the slightly better 

overall performance in both cases, SVM is chosen as the classifier for user’s placement 

mode recognition. 

Table 4.1: Confusion matrix of SVM (same user case) 

 Dangling Reading Pocket 

Dangling 94.4% 0% 5.6% 
Reading 0% 100% 0% 
Pocket 0.8% 0% 99.2% 

 

Table 4.2: Confusion matrix of SVM (different user case) 

 Dangling Reading Pocket 

Dangling 95.5% 0% 4.5% 
Reading 0% 100% 0% 
Pocket 2.15% 0% 97.85% 
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The misclassification of SVM can be better observed from the confusion matrix shown in 

Table 4.1 and Table 4.2. The overall performance degrades a little bit from same user 

case to different user case (overall accuracy is dropped from 98.2% to 97.8%), in which 

the demotion of performance for pocket mode is dominant (1.35% lower). More 

especially: reading mode is 100% correctly classified for both situations while dangling 

mode and pocket mode are misclassified occasionally as each other. Nevertheless, the 

three modes can be distinguished with a high accuracy (all above 90%) whether it is 

tested by the same user or not. 

4.2.4 Adapted PDR based on classified placement mode 

Same as food-mounted systems introduced in Section 4.1, the adapted PDR with the 

portable device consists of stride detection, stride length estimation and heading 

determination. 

For stride detection, the employed sensor data and detection method depend on the 

classified placement mode, which is shown in Table 4.3. Based on the detected stride 

frequency, the stride length estimation in different placement modes uses the same 

algorithm afore-introduced in Section 4.1.2.  

Table 4.3: Sensor data and detection method for different placement modes 

 Dangling mode Reading mode Pocket mode 

Sensor data Gyroscope z-axis Accelerometer z-axis Gyroscope y-axis 

Detection method Zero crossing 
detection Peak detection Peak detection 

The heading determination method applied for the adapted PDR is the one described in 

Section 4.1.3. The IMU needs to be re-aligned with the user’s body when the placement 

mode changes. Unlike the foot mounted system, ZUPT and ZARU are not available with 

the portable device when the user is walking, which means that the gyro bias errors 

cannot be estimated and compensated during the pedestrian movement. To obtain a 

heading determination without high drift errors, the gyro bias vector is pre-estimated by 

averaging the gyro triad measurements when the IMU is stationary. 
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4.2.5 Integration of adapted PDR and Wi-Fi based positioning 

Considering the complementary nature of dead reckoning and Wi-Fi positioning, the 

combination of both systems is expected to yield a synergetic effect resulting in higher 

performance. The integration structure is shown in Figure 4.14. 

 
Figure 4.14: Integration of adapted PDR and Wi-Fi position 

After placement mode classification, the PDR provides system propagation mode for 

state prediction. The system state is the user’s position vector 
T

x yr r . The propagation 

mode is shown as following equation: 
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where strdL̂  and ˆ  denote the estimated stride length and user’s heading respectively; 

rw  is the system process noise term. 

The system measurement update input is provided by Wi-Fi positioning. The positioning 

algorithm employed here is Kernel based fingerprinting, which is presented in Section 

2.3.2. The Kalman filter is applied for the integration, which is described with the 

following procedures [32]. 

A discrete system model with additional Gaussian noises is formulated as: 
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The time update equations for the state x and the covariance of the estimation error P are: 
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The measurement update process can be described by the following equations: 
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where K is the Kalman filter gain matrix. 

4.3 Field experiment and results 

 
Figure 4.15: Pedestrian trajectory in different placement modes 
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Walking in dangling mode
Walking in pocket mode

Start

End
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To show the performance of the adapted PDR and PDR/Wi-Fi integrated system, one 

field experiment has been carried out at the same test site as the one introduced in Section 

2.4.1 and 3.3.1. Sensors used in the experiment include the TP-LINK TL-WN722N Wi-Fi 

receiver and Xsens MTi MEMS IMU. The fingerprinting database is built of 182 

fingerprinting points with a separation distance of 1 meter. As shown in Figure 4.15, the 

user with the sensors is walking along the trajectory firstly in reading mode then in 

dangling mode and finally in pocket mode. The pedestrian trajectory consists of 42 stride 

cycles. 

 
Figure 4.16: Positioning errors comparison 

 
Figure 4.17: Error CDFs 

Table 4.4: Means and standard deviations of positioning errors  

Method 

Error [m] 
Wi-Fi APDR APDR/Wi-Fi 

Mean 2.49 1.75 1.01 

Standard deviation 1.78 1.11 0.75 
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The experimental results are shown in Figure 4.16 as position errors using three tracking 

algorithms. It is noticeable that the positioning result using the standalone adapted PDR is 

fine at the beginning, but the deviations are accumulated which leads to a drift error at the 

end (although the gyro outputs are pre-calibrated by subtracting the pre-estimated gyro 

biases). In contrast, the result using the APDR/Wi-Fi integration shows relatively stable 

performance. To show a better numerical comparison, the error cumulative distribution 

functions (CDFs) and the error properties are presented in Figure 4.17 and Table 4.4 

respectively. It can be found that the integrated algorithm can provide an improved 

tracking performance from the standalone systems. 

4.4 Summary 

In this chapter, the IMU based PDR is discussed. In the stance phase of the gait cycle, 

zero velocity update and zero angular rate update with EKF are applied to estimate the 

IMU biases, and hence reduce the drift error of the dead reckoning system.  

To design a PDR algorithm for portal devices which can be arbitrarily placed on the 

user’s body, the step detection method needs to be chosen adaptively according to 

different sensor placement modes. Typical placement modes were defined and classified 

based on measurement outputs of accelerometers and gyroscopes. Three classifiers, 

namely nearest neighbor, artificial neural networks and support vector machine have been 

discussed, and the corresponding classification results have been compared and analyzed. 

The adapted PDR is further combined with Wi-Fi based positioning with a Kalman filter. 

The result of the experiment shows that the PDR/Wi-Fi integration outperforms the 

standalone systems 
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Chapter 5 
Indoor Attitude Estimation Using INS/Visual-Gyroscope 

Integration 

Precise attitude estimation is a challenging topic for indoor navigation. As mentioned in 

the previous chapter, the attitude determination using standalone IMU suffers from drift 

error propagation because of gyro biases. The magnetometer is affected by magnetic 

disturbances, which limit the use of magnetometer for attitude determination in indoor 

applications. In this case, the camera-based direction assistance was proposed to improve 

the heading estimation. 

Many researchers focus on the systems with a priori formed database containing images 

of recognizable features in the surroundings attached with position and attitude 

information. However, the database based procedure is restricted to predefined and hence 

known areas [65][66]. Moreover, the limited storage space of low-cost devices can be a 

challenge to the navigation system with a large image database. In contrast, the methods 

directly calculating the motion of the camera from consecutive images yield a more 

suitable solution for this work. As one of these methods, the visual gyroscope (visual-

gyro) technique has been introduced in [67] and [68]. In [69] and [70], the visual-gyro is 

integrated with the inertial navigation system (INS) in a multi-sensor fused navigation 

system using Euler angle based models. However, there are still challenges to the existing 

INS/visual-gyro integrations: 1) how to deal with singularity problems when using the 

conventional Euler angle based model; 2) how to improve estimation performance and 

reduce the computational effort when using the nonlinear models based on Euler angle or 

quaternion. 

In response to the challenges, in this work, an INS/visual-gyro integration using direction 

cosine matrix (DCM) based models is presented. The INS/visual-gyro integration using 

the DCM attitude representation avoids the singularity problem that occurs with Euler 

angle representations. Furthermore, a linear (or pseudo-linear if augmenting the gyro bias) 

process model for the DCM update with respect to its parameters is formulated. Moreover, 

a linear observation model is derived for the visual-gyro triad with respect to the DCM 

elements. 
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In this chapter, visual gyroscope using vanishing points is introduced in Section 5.1. The 

vanishing point finding approach and the camera attitude determination method are given. 

Section 5.2 presents DCM based INS/visual-gyro integration. The derivations of system 

process and observation models are provided. In Section 5.3, field experiments are 

described and the numerical results are presented. 

5.1 Projective geometry and vanishing point detection 

The visual gyroscope technique makes use of computer vision algorithms to transform 

information found from images into the camera rotation. Unlike rate gyroscope in a 

MEMS based IMU, the visual gyroscope does not suffer from drift errors. Therefore, in 

this work, it is used to calibrate the IMU gyro output by estimating the gyro bias through 

INS/visual-gyro integration. The visual gyroscope employed here is based on tracking 

vanishing points in consecutive images. 

 

Figure 5.1: Vanishing points in 2D images 

The vanishing points are the points in an image where the lines parallel in the real world 

seem to intersect, which are shown with red cycles in Figure 5.1. The detected motion of 

the vanishing points can be converted into camera rotation. There are normally three 

useful vanishing points in an image which are central, vertical and horizontal vanishing 

points. They are intersects of the parallel lines along 3 orthogonal axes. This algorithm is 

suitable for indoor environments since the human-made constructions are mainly 
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composed of orthogonal structures and the parallel lines, as well as the vanishing points, 

can be detected. 

5.1.1 Projective geometry 

The vanishing point can be described mathematically in di erent ways, on the one hand, 

with 2D image entities, on the other hand, corresponding to 3D space directions. For this 

reason, the key issue is how to transform the coordinates of a point expressed in the 3D 

camera frame into the 2D image frame. 

The image plane information is mapped into the sphere by means of the projective 

transformation given by the calibration matrix of the camera. The image plane 

information is to be calibrated and normalized, i.e. the information is mapped into a 

sphere located at the optical center of the image, with a radius of one, and the z-axis of 

the sphere is aligned with the optical axis. The following concepts of projective geometry 

are based on [73], as this provides important tools for the extraction of attitude 

information from camera images. Projective geometry is an elementary non-metrical form 

of geometry, meaning that it is not based on a concept of distance. In two dimensions it 

begins with the study of configurations of points and lines. In this work, projective 

geometry describes the properties of projective transformations which take place e.g. in 

cameras. The projective action of a camera on points in 3D-space can be expressed as 

2D cam 3Dr = C r  (5.1) 

where camC  is camera transformation matrix, 2Dr and 3Dr  denote respectively the 

homogenous coordinates of points in real 3D space and on the 2D image plane [74], as 

shown in Figure 5.2. 

 

Figure 5.2: Projection of a point in 3D-space onto the camera image plane

3Dr
2Dr
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A line in 3D-space is represented by 

3Dr A D  (5.2) 

A is a finite point on the line and 0
TTD = d  denotes the line direction in 

homogeneous coordinates. This line is visualized in Figure 5.3 in blue, and the direction 

vector is shown in red. The camera projects the 3D-line onto a line on the 2D image 

plane, with 2D cam 3Dr = C r , which is shown in green color. The intersection of 

3Dr  with the plane at infinity 4 1π = 0  is the infinite point 3D, 0
TTr = d , which 

is equal to the direction D of the line and is independent from the finite point A. The 

projection of 3D,r  onto the image plane is the vanishing point 2D,vpr , and 

2D,vp cam 3D,r = C r . The projection of all 3D-lines parallel to 3Dr  ends in the same VP 

on the image plane [74].  

 

Figure 5.3: Projection of a line in 3D-space onto the camera image plane 

The benefit of extracting and tracking VPs for indoor navigation applications is that they 

contain information about attitude changes, which is used for navigation aiding. The 

relative attitude between two camera poses in 3D-space is expressed using three unknown 

angles. The location of vanishing points in the image plane conveys a great deal of 

information describing the position of the camera relative to the scene so that the attitude 

change can be calculated. Details will be given in Section 5.2.1. 

2D ( )r
3D ( )r
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5.1.2 Vanishing point detection 

Vanishing point detection in this work consists of three main steps, namely edge 

detection, line detection and vanishing point localization. First of all, an edge detection 

algorithm can significantly reduce the amount of data to be processed and may therefore 

filter out information that may be regarded as less relevant, while preserving the 

important structural properties of an image. Secondly, making the use of the line 

detection algorithm, straight lines are separated from other edges. Lastly, the random 

sample consensus (RANSAC) is applied to localize the vanishing point. 

Edge detection 

One common preprocessing step in analyzing digital images is to find the edges, i.e., 

points where the magnitude of the gradient is high in one direction as compared with the 

rest of the image. Pixels where this gradient magnitude is above a particular threshold are 

identified as edges or edge pixels. The following basic concept and theories of edge 

detection are based on [75], [76] and [77]. 

There are many methods for edge detection, but most of them can be classified into two 

categories, search-based methods and zero-crossing based methods [76]. The search-

based methods detect edges by first computing a measure of edge strength, usually a first-

order derivative expression such as the gradient magnitude, and then searching for local 

directional maxima of the gradient magnitude using a computed estimate of the local 

orientation of the edge, usually the gradient direction. The zero-crossing based methods 

search for zero crossings in a second-order derivative expression computed from the 

image in order to find edges, usually the zero-crossings of the Laplacian or the zero-

crossings of a non-linear differential expression. As a pre-processing step to edge 

detection, a smoothing stage, typically Gaussian smoothing, is applied. 

The edge detection methods that have been published mainly differ in the types of 

smoothing filters that are applied and the way the measures of edge strength are 

computed. As many edge detection methods rely on the computation of image gradients, 

they also differ in the types of filters used for computing gradient estimates in the x- and 

y-directions [76]. 

Rather than actually computing a derivative of the image, the gradient is usually 

approximated by evaluating the convolution of the image with a small kernel or mask. 

Common convolution kernels used for this task include those proposed by Roberts [78], 

Prewitt [79] and Sobel [80]. Convolution of the digital image with the first mask of each 
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pair produces the gradient in the vertical direction VG  and convolution with the second 

mask produces the gradient in the horizontal direction HG . 

Convolution kernels such as these are commonly used to approximate the derivative of a 

digital image. The Sobel kernels provide a smoothing effect which is helpful in 

suppressing noise. As Gonzalez and Woods [81] observed, 2 2  masks are simple 

computationally, but the symmetry about a center point offered by odd-dimensioned 

masks is more useful for determining edge directions. Larger masks provide more 

accurate approximations of the derivative, since they incorporate more information into 

each calculation. However, larger masks also require more computations. 

The true gradient magnitude is determined by evaluating the Euclidean norm of the 

vertical and horizontal gradients for each pixel, but the less computationally expensive 

method of simply adding their absolute values as shown in Equation (5.3) is commonly 

used when constrained by data processing capacity [81]. 

V H, , ,i j i j i jG G G  (5.3) 

The Canny edge detector is an edge detection operator that uses a multi-stage algorithm 

to detect a wide range of edges in images. It has been developed by John F. Canny in 

1986 [77]. The main steps of Canny edge algorithm are noise reduction, finding the 

intensity gradient of the image and tracing edges through the image and hysteresis 

thresholding. Noise reduction is not only the first stage of the Canny edge algorithm, but 

also a very important step. Because the Canny edge algorithm is susceptible to the noise 

from raw unprocessed image data, it uses a filter based on a Gaussian (bell curve). The 

raw image is convolved with the Gaussian filter. The result is a slightly blurred version of 

the original which is not affected by a single noisy pixel to any significant degree. 

The second stage is finding the intensity gradient of the image. An edge in an image may 

point in a variety of directions, so the Canny algorithm uses four masks to detect 

horizontal, vertical and diagonal edges in the blurred image. The edge detection operator 

returns a value for the first derivative in the horizontal direction ( HG ) and the vertical 

direction ( VG ). From the following equation, the edge gradient and direction can be 

determined. 
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The edge direction angle is rounded to one of four angles representing vertical, horizontal 

and the two diagonals (0, 45, 90 and 135 degrees).  

The last stage is tracing edges through the image and hysteresis thresholding. Large 

intensity gradients are more likely to correspond to edges than small intensity gradients. 

Making the assumption that important edges should be along continuous curves in the 

image allows us to follow a faint section of a given line and to discard a few noisy pixels 

that do not constitute a line but have produced large gradients. Therefore a high threshold 

should be applied at the beginning. It can fairly mark out the genuine edges. Starting from 

these, using the directional information derived earlier, edges can be traced in the image. 

The lower threshold is applied to trace faint sections of edges until it finds the starting 

point.  

Canny presented that strong and weak edges are determined by establishing both high and 

low gradient thresholds. Strong edges occur where the magnitude of the image gradient is 

above the upper threshold. Weak edges occur where the gradient is between the upper and 

lower thresholds. Only weak edges which are adjacent to strong edges are declared as 

edge pixels in the final edge image. Once this process is complete a binary image will be 

obtained, where each pixel is marked as either an edge pixel or a non-edge pixel. From 

complementary output from the edge tracing step, the binary edge map obtained in this 

way can also be treated as a set of edge curves, which after further processing can be 

represented as polygons in the image domain [77]. No matter which method is used, the 

final result of edge detection is a binary image, where ones represent pixels that are 

declared as edges and zeros represent all other pixels. Figure 5.4 shows the result of 

performing the Canny edge detection operation on an image of a hallway in the 

Hölderlin-Building-F of the University of Siegen. Canny edge detection can be used with 

the built-in function edge in Matlab. This function contains a number of adjustable 

parameters, which can affect the computation time and effectiveness of the algorithm. 

The usage of two thresholds with hysteresis allows more flexibility than in a single-

threshold approach, but general problems of thresholding approaches still apply. A 

threshold set too high can miss important information, as shown in Figure 5.4 (d). A 
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number of important structure lines on the ceiling have failed to be detected. On the other 

hand, a threshold set too low will falsely identify irrelevant information (such as noise) as 

important, as shown in Figure 5.4 (b), which requires more computational effort and 

processing time. 

 
                  (a) Original image                             (b) Edge detection with low threshold 

 
(c) Edge detection with large Gaussian filter   (d) Edge detection with high threshold 

Figure 5.4: The results of Canny edge detection 

The size of the Gaussian filter: the smoothing filter used in the first stage directly affects 

the results of the Canny algorithm. Smaller filters cause less blurring, and allow detection 

of smaller and sharper lines. A larger filter causes more blurring, smearing out the value 

of a given pixel over a larger area of the image, which is more helpful for detecting larger 

and smoother edges, as shown in Figure 5.4 (c). 
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The Canny algorithm is adaptable to various environments. Its parameters allow it to be 

tailored to the recognition of edges of differing characteristics depending on the particular 

requirements of a given implementation. But it is difficult to give a generic threshold that 

works well for all images and conditions, the parameters need to be adjusted according to 

the actual situation. [77] 

Line detection 

After detecting the edges, the next step is to extract straight lines. The problem of 

identifying straight lines in digital images has been investigated by many researchers and 

lots of methods have been developed. However, most methods are at least loosely based 

on either the Hough transform or Burns line extractor. According to the result of [75], 

though the processing times of Hough transform is not always faster than the other 

method, it is still chosen as the line detection method for this work because both the 

Matlab and OpenCV software packages contain functions for implementing it within their 

respective libraries. The following brief introduction and theoretical basis of Hough 

transform are based on [82] and [83]. 

The Hough transform (HT), which is presented by Paul Hough in 1962, is a technique 

used to find shapes in a binary digital image. The classical Hough transform is concerned 

with the identification of lines in the image, but later the Hough transform has been 

extended to identifying positions of arbitrary shapes, most commonly circles or ellipses. 

The Hough transform as it is universally used today is invented by Richard Duda and 

Peter Hart in 1972. It is also called generalized Hough transform.[83] 

In order to use the Hough transform to find lines in digital images, an appropriate 

parameterization of a line must be selected. Often, lines in the Cartesian space are 

represented by a slope a  and iy -intercept b , as shown in Equation (2.6). [75] 

i iy a x b  (5.5) 

These parameters a  and b  can be used to represent a straight line in the Cartesian space 

as a single point ,a b  in the parameter-space. 

And if the variables and parameters are reversed, Equation (2.6) can be rewritten as 

follows: 

i ib x a y  (5.6) 
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Likewise, a straight line in (a,b) space can also represent a single point in (x,y) space. The 

relationship between x-y space and parameter-space is shown in Figure 5.5. 

 
Figure 5.5: Illustration of the basic idea of Hough transform for lines 

However, this parameterization presents difficulties when the Hough transform is applied. 

Because the slope parameter is unbounded, as manifested by the infinite slope of vertical 

lines. Thus, for computational reasons, Duda and Hart have proposed the use of a 

different pair of parameters, denoted  and , for the lines in the Hough transform 

[83]. These two values, taken in conjunction, define a polar coordinate. According to 

[83], the equation of a line corresponding to this geometry is 

cos sini ix y  (5.7) 

The parameter  represents the distance between the line and the origin, while  is the 

angle of the vector from the origin to this closest point. It is therefore possible to associate 

with each line of the image a pair ,  which is unique if 0, ,  or if 

0,2 , 0 . For the image plane  can vary between 90  degree and  can vary 

between d , where d  is the diagonal of the image frame in pixels. In this case, a straight 

line can then be transformed into a single point in the parameter space , ; this is also 

called the Hough space. 

Similarly, for an arbitrary point on the image plane with coordinates, e.g., 0 0,x y  the 

lines that go through it are the pairs ,  with 
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0 0cos sinx y  (5.8) 

Where  denotes the distance between the line and the origin;  is determined by . 

This corresponds to a sinusoidal curve in the ,  plane, which is unique to that point. 

If the curves corresponding to two points are superimposed, the location (in the Hough 

space) where they cross corresponds to a line (in the original image space) that passes 

through both points. More generally, a set of points that form a straight line will produce 

sinusoids which cross at the parameters for that line. Thus, the problem of detecting 

collinear points can be converted to the problem of finding concurrent curves. 

In this work, the Hough function implements the standard Hough transform (SHT). The 

SHT is a parameter space matrix whose rows and columns correspond to  and  

values respectively. The elements in the SHT represent accumulator cells. Initially, the 

value in each cell is zero. Then, for every non-background point in the image,  is 

calculated for every .  is rounded off to the nearest allowed row in SHT. That 

accumulator cell is incremented. At the end of this procedure, a value of Q in SHT ,  

means that Q points lie on the line specified  and  in the x-y plane. The peak values 

in the SHT represent potential lines in the input image. 

 

Figure 5.6: The results of line detection in the indoor environment 
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The performance of the line detection is shown in Figure 5.6. The blue lines and the red 

lines are respectively the totally vertical and totally horizontal structure lines in the indoor 

environment. In contrast, the green lines represent the general lines in the original image 

that is neither vertical nor horizontal, and one part of them is classified to go along the 

forward direction, which plays an important role in detecting the central vanishing point. 

Vanishing point localization 

The projection loses valuable information like the depth of the scene. According to 

introduce of Section 5.1.1, though straight lines stay straight in projections, the parallel 

ones don't stay parallel but seem to intersect at a point. In other words, parallel lines in 

the image must be retrieved for calculation of their intersection point, the vanishing point. 

This is done by first looking for the edges of objects in the image and then identifying the 

straight lines among them [69]. 

However, when real-world images are processed, due to image noise the extracted line 

segments do not perfectly intersect a single VP. For this reason, a robust estimation 

method is necessary which extracts VP in the presence of noise. As the mostly used VP 

detecting algorithm in recent years, the random sample consensus (RANSAC) method is 

applied in this work. 

The algorithm has been introduced by Fischler and Bolles at SRI International in 1981, as 

an iterative method to estimate parameters of a mathematical model from a set of 

observed data which contains outliers [84]. It is a non-deterministic (stochastic) algorithm 

in the sense that it produces a reasonable result only with a certain probability, with this 

probability increasing as more iteration are allowed [84]. The RANSAC procedure is 

opposite to that of conventional smoothing techniques: rather than using as much of the 

data as possible to obtain an initial solution and then attempting to eliminate the invalid 

data points, RANSAC uses as small an initial data set as feasible and enlarges this set 

with consistent data when possible. 

According to [85] and [86], the RANSAC method has a basic assumption that the data 

consists of "inliers", i.e., data whose distribution can be explained by some set of model 

parameters and "outliers" which are data that do not fit the model. For instance, the 

outliers can come from extreme values of the noise or from erroneous measurements or 

incorrect hypotheses about the interpretation of data. RANSAC also assumes that, given a 

(usually small) set of inliers, there exists a procedure which can estimate the parameters 
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of a model that optimally explains or fits this data. In order to better illustrate this method 

a simple example is cited that find the best fit line in two dimensions according to a set of 

observations. 

Assuming that this set contains both inliers, i.e., points which approximately can be fitted 

to a line, and outliers, points which cannot be fitted to this line, classical techniques for 

parameter estimation, such as least squares, generally produces a line with a bad fit to the 

inliers for line fitting. The reason is that it is optimally fitted to all points, including the 

outliers. But RANSAC can produce a model which is only computed from the inliers. 

The probability of choosing only inliers in the selection of data is sufficiently high. There 

is no guarantee for this situation, however, and there are a number of algorithm 

parameters which must be carefully chosen to keep the level of probability reasonably 

high. The result of this simple example based on [84] is shown in the following figure. 

 
Figure 5.7: The result of the best fit line based on point coordinates [84] 

According to [84] and [75], the RANSAC paradigm is stated as follows. 

The procedure for establishing a model from a set S of datum points that is known to 

contain a proportion  of outliers is outlined below. 

1. Randomly select a minimum subset s from S and instantiate the model with s. 

2. Determine the set of points iS  that is within a threshold t  of the model established by 

s . The set iS is the consensus set of S. 

3. If the size of iS is greater than a threshold T , re-estimate the model based on all the 

points in iS and terminate. 
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4. If the size of iS is less than T and fewer than N trials have been performed, select a 

new random minimum subset s  and repeat steps 2 through 4. 

5. After N trials, re-estimate the model with the largest consensus set iS and terminate. 

The RANSAC paradigm contains three unspecified parameters: specifically the threshold 

t is the error tolerance used to determine whether or not a point is compatible with a 

model; the threshold T which determines how many data should fit the model before 

terminating; and the maximum number N of random minimum subsets to examine before 

terminating the process. 

The threshold value t used for declaring data as either inliers or outliers is often 

determined empirically. By assuming measurement errors are zero-mean with a known 

standard deviation, t can be computed from a 2  distribution. The size threshold T

for determining what is an adequately large consensus set is determined from the 

expected number of outliers as in the following equation. 

1T S  (5.9) 

Lastly, the minimum number of iterations N required to be assured with probability p  

that at least one minimum subset s is free from outliers is determined by  

log 1

log 1 1 s

p
N  (5.10) 

where is the proportion of outliers expected to be found in S . Naturally, p is 

preferred to be very nearly equal to 1, with 0.99 frequently used in practice.

In many practical applications, may not be known. Under these circumstances, the 

threshold T of inliers needed to end the loop cannot be determined. Instead, only the 

minimum number of iterations is used for deciding when to terminate the process. In 

order to calculate the minimum number of iterations to perform, a worst case value can be 

used initially, and both and N can be recomputed in subsequent iterations. If one 

random minimum subset s produces a proportion of outliers smaller than the current 

value of , N is recomputed from Equation (5.10) using the new, smaller . In the 

case where N is found to be smaller than the number of iterations that have already been 

performed, the algorithm terminates and the largest consensus set is used to estimate the 

model [75].  
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The method described herein calculates the VP locations using a voting scheme. An 

intersection of two randomly selected line segments is selected as a VP candidate, at the 

same time an assisted measure is introduced. This process is repeated several times and 

the largest set of inliers is selected. Based on this so-called consensus set, the optimal 

central VP is selected as the intersection point with the most votes inside the image. 

Figure 5.8 shows the result of central VP localization, which is marked with the yellow 

cross. 

 

Figure 5.8: Localization of central vanishing point 

To determine the vertical and horizontal VPs, an additional decision condition with an 

assisted measure is applied for VP detection. The assisted measure is the orthogonal 

distance between this VP candidate and the selected auxiliary line. The auxiliary line in 

this work consists of two straight lines, one is the horizontal line through the central point 

of the input image, and the other is the vertical line through the central point of the input 

image. Thus the assisted measure xd  and yd  represent respectively the distances 

between the VP candidate and the horizontal auxiliary line, as well as the vertical 

auxiliary line. When the camera moves through the hallway of the building with the small 

roll and pitch angels, according to the perspective geometry except for the location of the 

central VP lie inside the image, the vertical and horizontal VPs are localized very far 

away outside the image. If the selected intersection is the vertical VP or horizontal, the 

assisted measure xd  or yd  should be over the pre-set threshold. Therefore, the 

determination of vertical or horizontal VPs is that the point obtains the most parts of the 

votes and meets the requirement of the assisted measure. 
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5.2 DCM based INS/visual-gyro integration 

5.2.1 Attitude estimation with detected vanishing points 

After the vanishing points have been successfully found, the remaining task is to extract 

information of the attitude changes from the locations of the vanishing points. The 

rotation matrix of the camera may be resolved by using VPs and the calibration matrix of 

the camera [69], which is shown with Equation (5.11) 

vp cam RV = K C  (5.11) 

where vpV  is the vanishing point location matrix, camK  is the calibration matrix and RC  

is the camera rotation matrix. vpV  includes the locations of the three vanishing points 

(horizontal, vertical and central): vp vp,1 vp,2 vp,3V V V V . Each vanishing point is 

represented respectively in the image coordinate frame using homogeneous pixel 

coordinates vp, , , , , cam,
T

i vp i x vp i y ir r lV , where , ,vp i xr  and , ,vp i yr  denote the coordinates of 

the vanishing point; caml  represents a camera constant that can be pre-estimated. The 

calibration matrix camK  is expressed by the following equation: 

cam, cam

cam cam, cam

0
0
0 0 1

x

y

f u
f vK  (5.12) 

which contains information about the intrinsic camera parameters: focal length 

cam, cam, ,x yf f  and principal point cam cam,u v . They can be approximated using the 

values in the image file headers, yet their exact values are obtained by calibrating the 

camera. The matrix RC  for the three-dimensional rotation of the camera is shown in the 

following equation. 

R

c c c s s s c c s c s s
s c s s s c c s s c c s

s c s c c
C  (5.13) 

where c =cos , s =sin  and , ,  represent the roll, pitch and yaw 

respectively. 
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However, there are limitations of the visual-gyro application. Though the visual-gyro 

does not suffer from drift errors, its availability highly depends on the indoor 

environment. For instance, the visual-gyro does not work when the vanishing point 

finding is not available, which happens when no vanishing point can be found or too 

many disturbing lines are detected in the image. Moreover, since the high computational 

requirement, the frequency of the visual-gyro output is relatively low and the 

performance for fast rotation estimation is limited. 

Making use of the complementary nature of INS and visual gyroscope, the INS/visual-

gyro integration is expected to yield a synergetic effect, which can overcome the 

limitations of both systems. 

5.2.2 System modelling 

In this work, DCM based system models are used for INS/visual-gyro integration to 

estimate the attitude and gyro-bias. 

The advantage of using a DCM based model can provide a linear process model for the 

DCM update with respect to its parameters. However, augmenting the gyro bias vector 

makes the process model non-linear because it introduces state multiplication which can 

be handled using a pseudo-linear process model as shown in [88]. Another important 

benefit of using the DCM attitude representation is avoiding the singularity problem that 

occurs with Euler angle representation when the pitch angle reaches plus/minus 90 

degrees. 

The elements of the DCM are trigonometric functions of the Euler angles defined as 

n
b

c c c s s s c c s c s s
s c s s s c c s s c c s

s c s c c
C  (5.14) 

where n
bC  is the DCM rotation matrix that transforms the inertial measurements from the 

body frame to the local navigation frame. It can be found from Equation (5.27) that the 

DCM matrix is equal to the camera rotation matrix: n
b RC C . The DCM can be written in 

terms of the nine elements as: 
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11 12 13
n
b 21 22 23

31 32 33

c c c
c c c
c c c

C  (5.15) 

The element in the ith row and the jth column represents the cosine of the angle between 

the i-axis of the reference frame and the j-axis of the body frame [89]. 

For the integration system, the state vector to be estimated is composed of the nine 

elements of the DCM and gyro triad bias vector, which is described as the following form: 

1 2 3

1 11 12 13 2 21 22 23 3 31 32 33

, , ,

where

, , 

=

TT T T T
gyro

T T T

TT
gyro gyro x gyro y gyro z

c c c c c c c c c

b b b

x c c c b

c c c

b

 (5.16) 

The system process update can be divided into two parts, which are update of the DCM 

elements and update of the gyro bias. The rotation angle vector which is the turn angle of 

the body frame with respect to a fixed inertial frame is used to update the attitude DCM. 

The attitude update with respect to a local navigation frame is composed of two updates: 

one due to the body frame rotation with respect to the inertial frame and the other due to 

the rotation of the navigation frame with respect to the fixed inertial frame [90]. For low 

cost gyros, the craft rate can be ignored and the update will be mainly due to the turn rate 

of the body frame with respect to the inertial frame. The discrete-time solution is given as 

n n
b, b, 1 1k k kC C A  (5.17) 

The matrix A is computed as [91] 

b
ib

-1

 

1

tk

tk

dt

k e
ω

A =  (5.18) 

where b
ibω  is rotation rate of the body frame. Assuming that the angular velocity vector 

has little change during the update interval, we can approximate the angle rotation vector 

as 

-1

b b
ib ib,  

k

k

t

t

dt tσ ω σ ω  (5.19) 
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The vector σ  consists of x  y  and z  with the magnitude 2 2 2= + +x y zσ . And  

0 -
0 -

- 0

z y

z x

y x

σ  (5.20) 

Equation (5.18) can be expanded as 

2 3

1 exp
2! 3!k

σ σ
A = σ I σ  (5.21) 

Based on Equation (5.24), it can be shown that: 

2 2

2 2 2

2 2

3 2 2 2

4 22 2 2

-( + )
-( + )

-( + )

-( + + )

-( + + )
   

y z x y x z

x y x z y z

x z y z x y

x y z

x y z

σ

σ σ

σ σ

 (5.22) 

From Equation (5.21) and Equation (5.22), we can get:  

2 4 2 4
2

1
11

3! 5! 2! 4! 6!k

σ σ σ σ
A = I σ σ 2111

2! 4! 6!2! 4! 6!
σ  (5.23) 

which can be written as 

2
1 2

sin 1-cos
k

σ σ
A I σ σ

σ σ
 (5.24) 

Equation (5.24) yields an exact representation of the attitude matrix. In this work, in order 

to reduce the computational effort, the matrix 1kA  is reformulated with a second order 

approximation. Based on Equation (5.21) and Equation (5.22), we may write: 

2 2

2 2

1

2 2

( + )
1-

2 2 2
( + )1-

2 2 2
( + )

1-
2 2 2

y z x y x z
z y

x y y zx z
k z x

y z x yx z
y x

A  (5.25) 
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Considering the gyro bias gyrob  , the error model with gyro measurement b
ibωb
ibω  is given as: 

b b
ib ib gyroω ω bb

ib gyroibω b  (5.26) 

By ignoring the quadratic terms of the gyro errors of bias and noise, the matrix A can be 

approximated and written in terms of the exact matrix AA  as 

1 1k k gyro tA A bk 1 gygygy1k 1  (5.27) 

The DCM update can be formulated as 

 
1:3, 1 1:3, 1 1:3, 1 10:12, 1

4:6, 1 4:6, 1 4:6, 1 10:12, 1

7:9, 1 7:9, 1 7:9, 1 10:12, 1

T
k k k k k

T
k k k k k

T
k k k k k

t

t

t

x A x x x

x A x x x

x A x x x

:3,1 1:3, 11 1:3,1 1:3 11 1:3
TT

1 1:3 11 1:31
T
k kk 1 1:3 11 1:31

:6,1 4:6, 11 4:6,1 4:6 11 4:6

,

TT
1 4:6 11 4:6

T
k kk 1 4:6 11 4:61

7:9,1 7:9, 11 7:9,1 7:9 1

,

TTT
k kk 1 7:9 11 7:91

 (5.28) 

The gyro bias vector can be modelled as a random walk plus constant. The system 

process model is given as  

 

1 1 1

1 3 3 3 3 1:3

3 3 1 3 3 4:6
1

3 3 3 3 1 7:9

3 3 3 3 3 3 3 3

-  
-  =
-  

k k k k

T
k

T
k

k T
k

t
t
t

x F x w

A 0 0 x
0 A 0 xF
0 0 A x
0 0 0 I

1k 1 3 3
T

1 3 3
T
kk 1 3 31 3 3k 1 3 3

1 31 3

3 3 3
T

3
T

1 3 31
T
k 1 3
T
3 33 3

1
T -T t11 -k

3 33
 (5.29) 

which yields a pseudo-linear form [92]. 

With system alignment between INS and visual-gyro, the DCM elements are linear 

related to the camera rotation matrix RC . The linear system observation model can be 

derived from the visual-gyro model shown in Equation (5.11). The system measurement 

vector includes the positions of the detected vanishing points in the image frame: 

,1, ,1, ,2, ,2, ,3, ,3,
T

vp x vp y vp x vp y vp x vp yr r r r r ry . 

The system observation model is given by Equation (5.30). η  denotes the system 

measurement noise. The camera parameters included in matrix H  are introduced in the 

previous section. 



Chapter 5  Indoor Attitude Estimation Using INS/Visual-Gyroscope Integration  

77 

cam, cam 1 3

cam, cam 1 3

cam, cam 1 3

cam, cam 1 3

cam, cam 1 3
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0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

=
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

k k k k

x

y

x
k

y

x

y

f u
f v

f u
f v

f u
f v

y H x η
0
0
0

H 0
0
0

 (5.30) 

Then Kalman filtering algorithm is employed in this work for estimating the state vector. 

If the gyro-bias is augmented in the system state, the process model is pseudo-linear and 

the extended Kalman filter (EKF) is applied for system integration. The EKF algorithm 

has been introduced in Section 4.1.4. 

5.3 Field experiments 

To verify the presented INS/visual-gyro integration, indoor field experiments have been 

performed. The hardware of the integrated system is shown in Figure 5.9. 

 

Figure 5.9: Experiment hardware  

The inertial sensor is a MEMS IMU (Xsens MTi). The specifications of the IMU based 

on manufacturer datasheet are given in Table 3.1. The three axes of the body frame 

coordinate are marked in Figure 5.9. And raw, pitch and yaw represent the rotation angles 

of the body frame from the local navigation frame around x, y and z axes respectively. 

The camera employed here is the Kinect (Microsoft) sensor. Kinect is a 2D/3D sensor. 

Only the 2D camera function is used in this experiment. The main parameters are shown 

in Table 5.1.

x
y

z
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Table 5.1: Kinect parameters 

Depth sensor range (m) From 1.2 to 3.5 

Horizontal field of view (deg) 57 

Vertical field of view (deg) 43 

Frame rate (FPS) 30  

Resolution of depth stream (pixel) QVGA 320 240 

Resolution of color stream (pixel) VGA 640 480  

5.3.1 Turntable test 

The first experiment is a 2D test. As shown in Figure 5.10. The sensors are mounted on a 

single axis turntable (Acutronic 1-axis rate table series AC1120S). The attitude accuracy 

of the turntable is less than 0.005 degree, and rate resolution achieves to 0.001 deg/s.  

 

Figure 5.10: Experiment with a turntable 

The turntable was set to rotate with a slow rate of 0.5 deg/s lasting 24 s. The frame rate of 

the gyroscope is 30 FPS and output rate of the IMU is 100 Hz. The estimation results are 

shown in Figure 5.11 and Table 5.2 and Figure 5.12. Figure 5.11 shows the attitude 

estimation errors using standalone INS, visual-gyro and DCM based INS/visual-gyro 

integration respectively. The mean and stand covariance values of the errors are presented 

in Table 5.2. Figure 5.12 shows the gyro-bias (yaw) estimation error using the integrated 

system. 
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Figure 5.11: Attitude estimation errors 

Table 5.2: Error parameters 

Method 
Error (o) INS Visual-gyro INS/visual-gyro 

Mean 1.66 0.55 0.44 

Standard deviation 1.38 0.43 0.34 
 

 

Figure 5.12: Gyro bias estimation error using INS/visual-gyro integration 

It can be found that the standalone INS suffers from the drift error while the two other 

systems do not; the integration can slightly improve the attitude estimation performance 

from visual-gyro; the gyro bias can be also estimated using the INS/visual-gyro 

integration. 
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5.3.2 Pedestrian experiment 

 

Figure 5.13: Pedestrian experiment 

 
Figure 5.14: Combination with pedestrian dead reckoning system 

The second experiment is conducted in the H-F building at the University of Siegen. The 

test-bed has been described in the previous chapters. The experiment scenario is 

described in Figure 5.13: one person is holding the system and taking a continuous walk 

along the trajectory shown with blue curve in the figure. The length of the trajectory is 

about 35 meters lasting approximately 32 seconds. 
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To estimate the pedestrian trajectory besides the system attitude, the INS/visual-gyro 

integrated system is further combined with the pedestrian dead reckoning algorithm 

presented in Chapter 4. The block diagram is shown in Figure 5.14. 

 

Figure 5.15: Attitude estimation result (roll)  

 

Figure 5.16: Attitude estimation result (pitch)  
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Figure 5.17: Attitude estimation result (yaw) 

 

Figure 5.18: Trajectory estimation result 

Figure 5.15, Figure 5.16 and Figure 5.17 show the estimation results of the roll, pitch and 

yaw respectively using standalone INS and the proposed INS/visual-gyro integration. It 

can be found that there are differences between the attitude estimations using the two 

methods. INS/visual-gyro integration is likely to provide more stable estimations of roll 
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and pitch because the user is holding the hardware steadily in front of the body without 

significant tilts during the walking movement. 

The test result is shown in Figure 5.18. The figure shows the estimated trajectories based 

on the attitude determination using the INS and INS/visual-gyro integration. From the 

figure, it can be found that the heading estimation using INS only suffers from the drift 

error. The integrated system can provide much better heading (yaw) estimation 

performance than the standalone INS. There are VP finding failures when the person is 

approaching the corner. In this case, the visual-gyro gaps are bridged with the INS. 

5.4 Summary 

In this chapter, indoor attitude estimation with integration of INS and visual gyroscope is 

discussed. The vanishing point (VP) based visual gyroscope and the VP detection are 

described. Unlike rate gyroscopes in IMUs, the visual gyroscope does not suffer from 

drift error propagations. But its availability highly depends on the indoor environment 

and its performance for fast rotation is limited. To overcome the limitations of INS and 

visual gyroscope, a DCM based integration of both systems is presented. One turn-table 

test and one pedestrian experiment have been carried out. Numerical results show that the 

INS/visual-gyro integration can estimate gyro bias and yields a better attitude estimation 

performance compared to the standalone systems. 
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Chapter 6 
Summary and Conclusions 

6.1 Summary 

In this work, solutions for low-cost indoor vehicle and pedestrian navigation have been 

presented. The absolute localization solution is provided by the Wi-Fi received signal 

strength (RSS) based positioning and the dead reckoning solution is given by the inertial 

navigation system. Making use of the complementary nature of both systems, the 

integration of them is expected to yield a better navigation performance than the 

standalone systems. This work has explored the Wi-Fi based positioning, IMU based 

dead reckoning (DR) and DR/Wi-Fi integration. The corresponding enhancements and 

adapted solutions for vehicle and pedestrian applications have been described. For indoor 

attitude estimation, the integration of INS and camera based visual gyroscope using DCM 

modelling has been presented. 

The Wi-Fi localization methods discussed in this work include the one directly using 

radio propagation model and the ones employing RSS fingerprinting. The fingerprinting 

approach consists of two steps: database building phase and localization phase. The 

database can be built either by collecting real in-situ measurements or by using the radio 

propagation model. The former is called empirical method while the latter is called 

propagation model based method. The fingerprinting localization phase can be done with 

nearest neighbor method or kernel based method. In this work, these Wi-Fi based 

localization approaches have been explored. One experiment was performed, and the 

results showed: 1) the approach directly using the propagation model yields higher 

positioning errors than the fingerprinting approaches; 2) the empirical fingerprinting 

provides a better positioning performance than the model based fingerprinting; 3) kernel 

based localization method yields lower positioning errors comparing to the nearest 

neighbor method. 

The indoor vehicle navigation in this work employs integration of INS and Wi-Fi based 

positioning. The system process model is provided by strap-down INS mechanization and 

the observation model is from Wi-Fi positioning. Depending on the different Wi-Fi 

positioning approaches used in the system, the structure of the integration can be either 

tightly coupled or loosely coupled. Due to the nonlinearities of the system models, the 

UKF is employed for the integration. To further improve the INS/Wi-Fi integration 
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without hardware change, the enhancements using vehicle constraints and AKF algorithm 

have been presented. One field experiment was carried out and the results showed that the 

INS/Wi-Fi integration provides a better tracking performance compared to the standalone 

Wi-Fi positioning and the enhanced integration outperforms the one without the 

enhancements. 

IMU based pedestrian dead reckoning (PDR) is used for personal navigation in this work. 

The PDR algorithm with a foot-mounted IMU has been studied. The zero speed of the 

IMU can be detected in the stance phase of the gait cycle during the user’s walking. In 

this case, ZUPT and ZARU with EKF are applied to re-estimate the IMU biases and 

hence reduce the drift error of the dead reckoning system. The improvement was shown 

with real test results. To design a PDR algorithm for portal devices which can be 

arbitrarily placed on the user’s body, the step detection method needs to be chosen 

adaptively for different sensor placement modes. Typical placement modes were 

introduced and classified based on measurement outputs of accelerometers and 

gyroscopes. Three classifiers, namely nearest neighbor, ANN and SVM, have been 

discussed and the corresponding classification results have been compared and analyzed. 

The adapted PDR was further combined with Wi-Fi based positioning with a KF and the 

experimental results showed the advantage of the PDR/Wi-Fi integration with respect to 

the standalone systems. 

For indoor attitude estimation, the camera based visual gyroscope is employed. Three 

steps of vanishing point detection from an image, namely edge detection, line detection 

and vanishing point localization, have been described. Attitude estimation with detected 

vanishing points has been provided. Unlike rate gyroscopes in IMUs, the visual-gyro does 

not suffer from drift error propagations. But its availability highly depends on the indoor 

environment and its performance for fast rotation is limited by the low update rate. To 

overcome the limitations of INS and visual-gyro, a DCM based integration of both 

systems has been presented. One turn-table test and one pedestrian experiment were 

carried out. Numerical results showed that the INS/visual-gyro integration yields a better 

attitude estimation performance compared to the standalone systems. 

6.2 Conclusions 

The main contributions of this work are listed as follows: 

1. Different Wi-Fi based indoor localization approaches have been explored. For 

continuous navigation and tracking applications, Wi-Fi based positioning methods 
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have been integrated with INS with either loosely-coupled structure or tightly-

coupled structure. This contribution has been published in [93] and [94]. 

2. To further improve the INS/Wi-Fi integration without hardware change for indoor 

vehicle navigation, the enhancements using vehicle constraints and adaptive Kalman 

filtering algorithm have been presented. The vehicle constraints include body velocity 

constraint, constant height constraint and body angular velocity constraint. The 

constraints have been converted to pseudo-measurements for the system observation 

model. This contribution has been published in [95] and [96]. 

3. IMU based pedestrian dead reckoning, including step detection, stride length 

estimation and heading determination has been explored. Zero velocity update and 

Zero angular rate update have been employed for foot-mounted systems to re-

estimate the IMU bias terms. To yield a better navigation performance, the pedestrian 

dead reckoning has been integrated with Wi-Fi based positioning. This contribution 

has been published in [97] and [98]. 

4. Camera based visual gyroscope using vanishing point has been studied for indoor 

attitude determination. A DCM based INS/visual-gyro integration has been proposed. 

DCM system modelling was derived, which can reduce the system nonlinearity and 

avoid singularity problems. This contribution has been published in [99]. Using the 

iterative closest point (ICP) algorithm and depth visual gyroscope, the depth data 

from an RGB-D camera can be converted into positioning and attitude updates 

respectively, which have been further employed as additional system measurements 

for object tracking. This contribution has been published in [100] and [101]. 
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Appendix A 
Artificial Neural Networks 

Neural networks, also named artificial neural networks (ANN), are mathematical model 

derived from biological neural networks. Commonly they consist of simple processing 

units, the neurons. Each of them receives one or more inputs (representing one or more 

dendrites) and sums them to produce an output (representing a biological neuron's axon), 

which works in a similar way to biological neurons [58]. In most cases a neural network 

is an adaptive system that adjusts its structure continually during the training phase, thus 

it is very efficient to use ANN model complex relationships between inputs and outputs 

or to find patterns in data. 

Except neurons, one more basic component of a neural network is the weighted 

connection between the neurons. Here, the strength of a connection (or the connecting 

weight) from input ix  is referred to ki . Data are transferred between neurons via 

connections with the connecting weight being either excitatory or inhibitory. The general 

structure of a neuron is displayed in Figure A.1. 

 
Figure A.1: Schematic drawing of kth neuron [58] 

The output ky  of kth neuron is: 

1

p

k ki i
i

y x  (A.1) 

Based on the model of nature, every neuron is, to a certain extent, at all times active, or 

excited. The reactions of the neurons to the input values depend on this activation state. 
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The activation state indicates the extent of a neuron’s activation and is often referred as 

k , which is ky  in Equation (A.1). 

At a certain moment, the activation k  of a neuron k depends on the previous activation 

state of the neuron and the external input. It is defined by the activation function: 

1

 

where

, 1 ,

  

k k k k

p

k ki i
i

t u t t

u t x t
 (A.2) 

It transforms the network input ku t , as well as the previous activation state 1k t  

into a new activation state k t , with the threshold value playing an important role, as 

mentioned before. Near the threshold value, the activation function of a neuron reacts 

particularly sensitive. From the biological point of view, the threshold value represents 

the threshold at which a neuron starts firing. Neurons get activated if the network input 

exceeds their threshold value. 

Unlike the other variables within the neural network, the activation function is often 

defined globally for all neurons or at least for a set of neurons and only the threshold 

values are different for each neuron. The activation function is also called transfer 

function. Common activation function includes Heaviside function, sigmoid function and 

hyperbolic tangent function. In case of Heaviside function, if the input is above a certain 

threshold (zero in the figure), the function changes from one value to another, but 

otherwise remains constant. In case of the sigmoid function, the function maps to the 

range of values of [0, 1] and the hyperbolic tangent function, maps to [-1, 1]. 

There are various sorts of artificial neural networks like back-propagation neural network 

and Hopfield network. The only one concerned in this work is the probabilistic neural 

network (PNN). A PNN is a feed-forward neural network, which was introduced by 

Donald F. Specht in 1990 [59]. It is predominantly a classifier that maps input patterns to 

a quantity of classifications [60]. Yet it can be also forced into a more general function 

approximator. A PNN is an implementation of a statistical algorithm called kernel 

discriminant analysis in which the operations are organized into a multilayered network 

with four layers: (a) input layer; (b) pattern layer; (c) summation layer; (d) output layer. 

When an input is presented, the pattern layer produces a vector whose elements indicate 

how close the input is to the vectors of the training set. These elements are multiplied, 
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element by element, by the bias and sent to the radial basis transfer function. An input 

vector close to a training vector is represented by a number close to one in the output 

vector. If an input is close to several training vectors of a single class, it is represented by 

several elements of the output vector that are close to "1". 

The summation layer calculates the average of the output of the probability density 

function (PDF) for all samples in each single population. Finally, the competitive transfer 

function produces a "1" corresponding to the largest element of the input vector and a "0" 

elsewhere. Thus, the network classifies the input vector into a specific i class because that 

class has the maximum probability of being correct. [61] 

Figure A.2: Theory and architecture of PNN [59] 

The PDF for a single population ig x  has the form (the weighting function is assumed 

Gaussian function): 
2

22

12

1

2
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i p
p k

i

g e
n

x x

x  (A.3) 
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where p implies the dimension of input vector, σ is the smoothing parameter, ni indicates 

the amount of the samples in the ith population, xik is the kth training sample in the ith 

population. The classification criteria of competitive transfer function: 

,  for all  i j j ig gx x  (A.4) 

PNN yields a good performance with short training time and high precision in 

classification if the training set is representative and the large memory requirement can be 

tolerated. 
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Appendix B 
Support vector machine 

A support vector machine is one of the famous supervised learning algorithms that 

analyze data and recognize patterns, used for both classification and regression analysis 

[62]. The theoretic foundation of SVM is structural risk minimization (SRM). 

Assuming that a model is derived from a set of samples (training data) using an arbitrary 

learning algorithm, a classification result is obtained based on the model tested by that 

training data set. Further assuming that the result is 96% correct, and then this incorrect 

partition 4% is called empirical risk. In many previous research works, it is always 

considered to minimize this value for an optimal solution, but it is later found completely 

wrong. 

In the training phase, the empirical risk can be easily minimized to zero, but the obtained 

model cannot deal with any new sample that is different to each one of the training 

samples, because it overfits the training data, or in other words, it is short of 

generalization ability. 

The precondition of successfully using empirical risk minimization (ERM) is: the training 

data set must be perfect, which includes almost all possible samples. However, the size of 

samples used for training is never large enough in reality. As a result, the definitions of 

the confidence interval (CI) and the confidence level are inducted. CI is a parameter that 

describes the reliability of an estimate. The probability that the result is contained in this 

interval is called confidence level. And the previously mentioned SRM is composed of 

ERM and CI. The true risk minimization is defined as 

empR R Φ n h  (B.1) 

where R(ω) is the true risk, Remp(ω) is the empirical risk and Φ(n/h) is the CI, where n 

implies the size of training data set and h indicates the Vapnik Chervonenkis (VC) 

dimension, which describes the capacity of the trained model. The capacity of a model 

can be simply interpreted as the complexity of the learning machine. The larger h is, the 

more complicated the model would be, and the lower confident the model is, to make a 

correct prediction. Φ(n/h) is a monotone decreasing function, thus it can be checked that 

the smaller h is, the closer the confidence interval to zero lies. Thus the new strategy 
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becomes to keep the Remp(ω) fixed and minimize the confidence interval. And the actual 

risk becomes closer to the empirical risk. 

An SVM model is a representation of the examples as points in space so that the 

examples of the separate categories are divided by a clear gap that is as wide as possible 

so that the error is minimized. In the center of the gap lies the boundary of different 

categories: hyperplane [63]. New examples are then mapped into that same space and 

predicted to belong to a category based on which side of the hyperplane they fall on [62]. 

A hyperplane is an n-dimensional plane. In case of 2-dimensional space, it is simply a 

line (see Figure B.1). The hyperplane can be characterized by a linear function: 

T bw x 0  (B.2) 

where w is the weight vector and x is the feature vector. 

 
Figure B.1: Linear classifier: optimal hyperplane in linearly separable case 

As in the case of KNN or ANN, the position of the hyperplane would be optimized with 

respect to all samples, which leads to a bad effort in some cases. Because it is possible 

that the distance between two categories are reduced when the hyperplane is calculated 

based on all samples, within it some samples are located very far to the hyperplane and 

minimizing their distances to the hyperplane makes no sense at all. In contrast to other 
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classifiers, SVM considers only the distances between the hyperplane and those samples, 

which are closest to the hyperplane. Those closest samples are called support vectors. 

Such kind of hyperplane is called optimal hyperplane (or the maximal margin hyperplane, 

because it separates the data with maximal margin). An example of interpretation is 

illustrated in Figure B.1. 

The circles and squares represent respectively two categories. H implies the 

aforementioned optimal hyperplane. H1 and H2 are two parallel hyperplanes which 

contain the closest samples to H. And those closest samples, denoted by filled circles and 

squares, are support vectors. 

To describe the separating hyperplane the definition of functional margin is given by 

i i iTy bw x  (B.3) 

where i  implies the functional margin (i.e., the functional distance to the separating 

hyper-plane wTx+b=0) of ith sample, iy denotes the label (i.e., "1" or "-1") of ith sample. 

The separating hyper-plane separates the data using the criteria: 

1,...,
1,..., min,       with    i i iT

i m
y b i mw x  (B.4) 

where  indicates the minimal functional margin among all training samples. 

For a certain sample ix  the functional margin can vary widely if the vector w and 

parameter b increase or decrease synchronously. To seek a unique specified pair of w and 

b, the functional margin is to be normalized. It is the so-called geometric margin, defined 

as: 

g g g1,...,
     with    min

T

i i i i

i m

b
y

w x
w w

 (B.5) 

The minimal geometric margin g  is shown in Equation (B.5) as the distance between H 

and Hi. 

As mentioned previously, the SVM algorithm concerns only the distance between the 

separating hyperplane and the support vectors. The larger this distance becomes, the more 

reliable the predictions given by the model are. Thus the problem becomes: 
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 , ,max

 s.t.  1,...,       , 
b g

i iTy b i m

w

w x
 (B.6) 

g  is given as 
w

. To simplify the problem the functional margin  is defined as one. 

And the object function is then transformed to 1
w

. It is equivalent to find the maximum 

of 1
w

 and the minimum of w . But in order to simplify the calculation the object 

function w  is replaced by 21
2

w , with which the position of the minimum is not 

moved. So the revised formulation of the problem is: 

2
, ,

1min
2

  s.t. 1 1,...,

 

       , 

b

i iTy i mb

w w

w x
 (B.7) 

This is a typical quadratic programming problem. It can be solved using the Lagrangian 

function. Here the calculation procedure is omitted due to the limitation of space. And w 

can be formulated as 

1

i i
i

m

i
yw x  (B.8) 

where i  is the so-called Lagrange multiplier. 

The discriminant can be reformulated as 

1

1

,

T

T
m

i i
i

i

m
i i

i
i

g

y b

y b

bx w x

x x

x x

 (B.9) 

where ,ix x  implies the inner product of x(i) and x. 

An example to show the usefulness of kernel function is given as follows. 
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Figure B.2: Case that the samples are not linearly separable 

The red dots and the blue dots denote class one and class two respectively. As it shows, in 

the 2-dimensional case it is impossible to completely divide these two sets of dots into 

two parts using a single line. But they can be easily separated by a parabola, which is not 

a linear function, described by: 

2
0 1 2g x c c x c x  (B.10) 

The new sample with g(x) > 0 will be categorized into class two (denoted by blue dots), 

and if not, it will be classified as class one (denoted by red dots). Here (2.26) can be 

rewritten in vectors form as the following expression: 

0 1 2
2

1

1
0

with

  
   

 

       

T

m i i
i

i

g x c c c x x b

x

y x

w

w

T x bT xT

1

m

i
i

i yw

 (B.11) 

The process of x→ϕ(x) is called feature mapping. The mapping function ϕ(x), which is 

ϕ(x) = [1 x x2]T in this example, maps the features from low dimensional space to high 

dimensional space. The adapted Equation (B.11) is obviously a linear function regarding 

ϕ(x). Thus via mapping function, those samples, which are formerly not linearly separable 

in low dimensional feature space, become now linearly separable in high dimensional 

feature space. Accordingly, the Equation (B.9) can be revised as 

x

φ(x)
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1

1

,

T

T
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i i
i
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m
i i

i
i

g b

y b

y b

x w x

x x

x x

T bTT

 (B.12) 

In some complicated cases, the mapping function ϕ(x) is very difficult to determine, and 

in addition, even it may be computationally intractable to calculate the inner product of 

two extra high dimensional feature vectors. Fortunately, the kernel trick can be used to 

calculate the inner product in high dimensional feature space without the need for explicit 

evaluation of the mapping function ϕ(x). That is to say, the kernel trick allows the 

replacement of inner products in high dimensional feature space by a kernel evaluation on 

the low dimensional input vectors [16]. 

And the discriminant is now updated to: 

1

,

T

m
i i

i
i

g b

y K b

x w x

x x

T bTT

 (B.13) 

Gaussian kernel Mercer’s Theorem guarantees the correspondence between a kernel 

function and an inner product in a feature space F, given that the kernel is a positive 

definite function. The Gaussian kernel is employed for the SVM classifier in this work. 

The kernel function has been introduced with Equation (2.13) in Section 2.3.2.  

Nevertheless, it is possible that the samples are still non-separable after the feature 

mapping. In this case the optimal hyperplane to perfectly divide these two categories 

doesn’t exist anymore. To solve this problem, V. Vapnik presented an altered maximum 

margin idea that allows the existence of mislabeled samples, which is the so-called soft 

margin [64]. 

The modified optimization problem becomes: 

2
, ,

1

1
2

s.t. 1 , 1,...,

 0,  1,...,

min  

          
             

m

b i
i

i iT
i

i

C

y b i m

i m

w w

w x  
(B.14) 

where ξ is called slack variable, C is the corresponding penalty factor. 
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The value of the slack variable indicates how far the mislabeled sample strays from the 

majority. The value of penalty factor determines how acceptable the occurrence of a 

mislabeled sample is. The larger C is, the lower tolerance of error is (i.e., the stronger 

influence the mislabeled samples have on finding the optimal hyperplane).  

To sum up, an SVM is a kernel-based soft-margin-supporting linear classifier, which is 

dominant in binary classification problems. For an M class classification, M binary SVM 

classifiers are created. Each classifier is trained to discriminate one class from the 

remaining M-1 classes. During the testing or application phase, data are classified by 

computing the margin from the linear separating hyperplane. Data are assigned to the 

class labels of the SVM classifiers that produce the maximal output. 
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Appendix C 
Unscented Kalman Filtering 

The extended Kalman filter (EKF) has been the standard approach for state estimation of 

nonlinear system models over the past decades. The principal feature of the EKF is a 

linearization of the system equation and the measurement equation around the previous 

estimate or the current prediction. The linearized system is then represented by the 

Jacobian transformations of the nonlinear process and measurement functions. The 

normal KF formulae are then applied to the linearized system. However, the procedure 

produces sub-optimal estimates of the state of the system [32]. In some applications, the 

first-order term may be insufficiently accurate to approximate the nonlinearities of the 

system, especially if the system has larger nonlinearities and the higher order terms are 

non-negligible. 

The unscented Kalman filter (UKF) was developed to overcome the limitations of the 

EKF. Distinguishing itself from the standard KF, the UKF calculates the filtering 

parameters by using a set of sigma points, which can be directly mapped into the 

nonlinear functions of the system, instead of linearization via the Jacobian matrices. The 

parameters derived from the sigma points include the UKF gain matrix, the state 

prediction and its covariance, the measurement prediction and its covariance, as well as 

the estimated covariance. The UKF is expected to give a better approximation to a 

nonlinear system because it is easier to approximate an arbitrary nonlinear function or 

transformation. In comparison with the EKF, the UKF usually has faster convergence, 

especially when the initial conditions of the filter states are too far from ‘truth’ [33].  

The underlying intuition of the UKF is that, with a fixed number of parameters, it should 

be easier to approximate a Gaussian distribution than it is to approximate an arbitrary 

nonlinear function or transformation. The state distribution is again represented by a 

Gaussian random variable, but is now specified using a minimal set of carefully chosen 

sample points, called the sigma points (SPs). SPs capture the true mean and covariance of 

the PDF and, when propagated through the true nonlinear system, capture the transformed 

mean and covariance accurately up to the third order for any nonlinearity [34].
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The derivation of the unscented transformation 

1. Beginning with an n-element vector x  with known mean x  and covariance P , a 

known nonlinear transformation y = h(x)  is given. The mean and covariance of y  is 

denoted as y  and yP . 

2. Suppose x is an 1n  vector, chose 2n SP vectors ( )ix  as follows:  

( ) ( )

( )

( )

     1,2,...,2

     1,2,...,

     1,2,...,

i i

T
i

i

T
n i

i

i n

n i n

n i n

x x x

x P

x P

( )     1( 1( )    (

( ) nx P( ) nn

( )x( )

 (C.1) 

where nP  is the matrix square root of nP  such that 
T

n n nP P P , and 
i

nP  

is the i th row of nP . 

3. Transform the sigma points as follows: 

( ) ( )     1,2,...,2i i i ny = h(x )  (C.2) 

4. Approximate the mean and covariance of y  as follows: 

2
( )

1
2

( ) ( )

1

1
2

1
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n
i

i

n Ti i

i

n

n
y

y = y

P y y y y
 (C.3) 

The derivation of the UKF 

Suppose the system model is  

1 1( )
( )

~

~

k k k

k k k

k k

k k

N

N

x f x w
y h x η

w 0,Q

η 0,R

 (C.4) 

1. To propagate system state from time step 1k  to k , sigma points ( )
1

i
kx  are firstly 

chosen, with appropriate changes since the current best guess for the mean and 

covariance of kx  are 1ˆ kx , and 1kP . 
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1 1
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 (C.5) 

2. Use the known nonlinear system equation ( )f  to transform the sigma points into ( )ˆ i
kx . 

( ) ( )
1ˆ ˆ( )i i

k kx f x  (C.6) 

3. Combine the ( )ˆ i
kx  vectors to obtain the priori state estimate at time k . 

2
( )

1

1ˆ ˆ
2

n
i

k k
in

x = x  (C.7) 

4. Estimate the priori error covariance as shown in Equation (C.3). However, we should 

add 1kQ  to the end of the equation to take the process noise into account. 

2
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n Ti i
k k k k k k

in
P x x x x Q  (C.8) 

5. Now the KF time update equations are done. To derive the measurement update 

equations, the sigma points ( )ˆ i
kx  are chosen as: 
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 (C.9) 

This step can be omitted if desired. That is, instead of generating new sigma points we 

can reuse the sigma points that are obtained from the time update. This will save 

computational effort if we are willing to sacrifice performance [32]. 

6. Use the known nonlinear system equation ( )h  to transform the sigma points into ( )ˆ i
ky  

(predicted measurements) as follows: 

( ) ( )ˆ ˆ( )i i
k ky h x  (C.10) 

7. Combine the ( )ˆ i
ky  to obtain the priori state estimate at time k . 



Appendix C  Unscented Kalman Filtering  

101 

2
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1ˆ ˆ
2

n
i

k k
in

y = y  (C.11) 

8. Estimation of covariance of the predicted measurement can be done. However, we 

should add kR  to the end of the equation to take the measurement noise into account. 

2
( ) ( )

1

1 ˆ ˆ ˆ ˆ
2

n Ti i
k k k k k k

in
yP y y y y R  (C.12) 

9. Estimate the cross covariance between ˆ kx  and ˆ ky  as: 

2
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n Ti i
k k k k k

in
xyP x x y y  (C.13) 

10. The measurement update of the state estimate can be performed using the normal 

Kalman filter equations as follows: 
1

ˆ ˆ ˆ
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