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Abbreviations and notations

TDSE - Time-Dependent Schrodinger Equation

PES - Potential Energy Surface

WP - WavePacket

SF - Space-Fixed (coordinate system)

BF - Body-Fixed (coordinate system)

DVR - Discrete Variable Representation

FBR - Finite Basis Representation

FFT - Fast Fourier Transform

DIM - Diatomics In Molecules

R, 1,0 - Jacobi coordinates

P! - associated Legendre functions

®,, - Chebyshev polynomials

J - the total angular momentum operator for the A-BC system

J - the total angular momentum quantum number of an A-BC system
j - the diatomic angular momentum quantum number of the diatomic (BC) molecule
v - vibrational quantum number of the BC molecule

[ - the relative angular momentum quantum number for A - BC system
Q) - the projection of J onto the BF axis quantum number

M - the projection of J onto the SF axis quantum number

Atomic units

The most important atomic units are summarised in the table below !:

Observable Atomic unit
Energy 27.21183 eV (1 hartree - Ej)
Length  0.529177 x 107! m (1 bohr - ag)
Time 2.418884 x 1077 s
Mass 9.109381 x 1073! kg

IThe latest set of constants °1998 CODATA recomended values’ is available at
http://physics.nist.gov/cuu/Constants/.
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1 INTRODUCTION

1 Introduction

Molecular dynamics involves the study of the molecular mechanism of elementary physical
and chemical processes [1]. It is concerned with both intramolecular and intermolecular
collisions and with the means of promoting such collisions like using the molecule-photon
interaction. Chemical dynamics is one major discipline of this field since chemical change
is brought by the motion of electrons and nuclei within reacting molecules.

In order to investigate chemical processes, ”observables” such as ”size” and ”shape” of
molecules may be of great interest. A quantitative measure for the ”size” of molecules can
be introduced, namely the collision cross section, an observable which is energy dependent.
In the same way the differential collision cross section can be considered as a parameter
describing the ”shape” of molecules.

Investigations of collision cross sections can be done experimentally or theoretically as
well. With the crossed-beam approach a direct study of bimolecular reactions is possible
[2, 3, 4]. Ultrafast laser pulses in the femtosecond regime allow the study of elementary
processes of the fast, direct type, before the surrounding molecules can interfere [5, 6, 7].

Theoretical methods fall in two large categories [1]: modelling and simulating a molec-
ular system. The purpose of modelling is to gain insight into the mechanism of molecular
phenomena. A simple calculation pointing to a possible theoretical interpretation is usu-
ally adequate. The aim of simulation is to give a quantitative correspondence of theory
to experiment. Once the potential surface is known, several theoretical methods can be
used in order to perform the simulation of the collision experiment.

The classical trajectory approaches [8] consist in solving Newton’s equations of motion
for the molecular system. A deficiency of classical methods is that basic quantum effects
like tunneling or the zero-point motion cannot be described. These effects are extremely
important for chemical reactions.

The aim of semiclassical methods is to correct this by including the most important
quantum effects within the classical description of the dynamics (maintaining the simple
implementation of classical mechanics) [9, 10, 11, 12]. For example, the wavepacket can
be constrained to be of Gaussian form during the propagation [13, 14, 15].

Exact quantum mechanical calculations can provide good simulations of scattering
experiments. Because of the non-local character of quantum wavepackets, a global simul-
taneous description of whole phase space is required. This leads to storage problems in
the implementation. In the frame of exact quantum mechanical calculations, there are
two basic approaches: the time-dependent and the time-independent ones.

The stationary coupled channel (CC) [16, 17] approach is based on the solution of



1 INTRODUCTION

stationary scattering equations [18]. The computational effort within this method scales
with the number of channels cubed. This is a serious computational bottleneck for systems
with many channels.

Time-dependent quantum mechanical methods are based on the Schrodinger equation

(TDSE)

Loy
h— = H
¢ at ,QD?

where H is the Hamilton operator of the system and 1) is the nuclear wavefunction 2.

The central quantity to obtain in quantum dynamical treatments of chemical reactions
is usually the quantum mechanical probability amplitude, represented by the scattering S-
matrix (which will be discussed in the next section). Time-dependent methods are efficient
for computing initial state-selected reaction probabilities. In this case, one column of the
S-matrix can be obtained for a range of collision energies. Time-independent methods
have the advantage that, at a given scattering energy, the whole S-matrix can be obtained
directly (all state-to-state reaction probabilities are obtained in a single calculation). The
extension to higher system (tetra atomic collisions) can be easily done within the time-
dependent frame [19].

The purpose of the present work is to investigate chemical reactions by performing
time-dependent quantum mechanical calculations for systems involving three atoms (7 A-
BC systems”). Reaction probabilities have to be computed in a given energy range, then
cross sections and reaction rates can be calculated.

The time-dependent quantum mechanical approach to scattering processes has received
considerable attention in recent years, although initial efforts were made several decades
ago. Mazur and Rubin [20] solved the time-dependent Schrédinger equation for a collinear

exchange reaction of type:
A+BC — AB +C,

as early as in 1959. There was not much activity in this direction for the following decade,
till the work of McCullough and Wyatt [21] in 1969 for collinear (H + Hs) collisions. In
addition to computing averaged reaction probabilities, they mapped quantal flux patterns
for the (H + Hy) reaction and explained the dynamics in terms of quantal whirlpools. They
used an implicit propagation scheme for solving the TDSE. Unfortunately, the method
involved tedious matrix inversion procedures and was computationally very expansive.
Subsequently, a number of efficient numerical algorithms have been introduced for solving
the TDSE resulting in a resurgence of activity in this area.

The introduction of the fast Fourier transform (FFT) method by Kosloff and Kosloff

[22] for computing the action of the kinetic energy part of the Hamiltonian on the wave

2A detailed presentation of these methods follows in Section 4.
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function was a significant development in the area of time-dependent quantum mechanics
(TDQM).

The discrete variable representation (DVR) was introduced in the area of molecular
dynamics by Light et al. [23, 24] for solving the time-independent Schrédinger equation
(1982). The idea of DVR representation for the potential matrix elements originates
from works of Dickinson and Certain [25]. In 1984 Tal-Ezer and Kosloff [26] introduced a
global propagation scheme based on the Chebyshev polynomial expansion of the evolution
operator. This propagation scheme was improved by Mandelshtam and Taylor in 1995
[27, 28]. In 1998 Gray and Balint-Kurti introduced a new algorithm for propagating only
the real part of the wave function [29].

Converged six-dimensional (6D) reactive scattering calculations of four-atom systems
have been reported using the TDQM method [30, 31].

The outline of the present work is the following: a set of basic definitions forms the
second section. The third section is devoted to a more detailed insight into the mathemat-
ical aspects of scattering theory (time-dependent and time-independent formulations). In
the fourth section a presentation of the A-BC system in terms of quantum mechanics
is given (Hamiltonian operator, basis functions which are well suited for describing the
system, etc.). The implementation of time-dependent methods for A-BC systems is de-
scribed in the fifth section. Finally, in the sixth section, the results obtained with the

implementation, described in section 5, are presented.



2 GENERAL DEFINITIONS

2 General definitions

When an atom A approaches a molecule BC, there are several possibilities for the evolution

of the system. The first situation can be represented as:
A+BC(v,j) =A +BC (v,j),

where v and j are the vibrational and rotational quantum numbers of the diatomic
molecule BC. This is the situation of elastic scattering when the internal state of the
molecule BC does not change.

The second situation is called inelastic scattering:
A+BC(v,j) =A + BC (v/,5),

when the reactants and the products are the same but the internal quantum states (v, j)

of the products have been changed. Finally, we can have the following situation:
A+BC(v1,71) =AB(vg, j2)+C,

or
A+BC(v1,71) = AC(vs, j3) +B.

The index ”1” means "ro-vibrational states of the reactants” and index ”2” (or 73”)
means ”ro-vibrational states of products”. The atom ”A” and the molecule ”BC” are the
reactants while the molecule ”AB” and the atom ”C” (respectively the molecule ” AC and
the atom”B”) are the products. The two possible final arrangements are the two reaction
channels of the reaction.

At small energies the collisions are mostly of purely elastic nature. By increasing the
energy, first the rotational levels of the BC molecule are excited. If the collision energy
still increases, the activated chemical reaction might occur with different reaction channels
according to the topology of the potential energy surface. At even higher energies (e.g.

comparable with the well of the PES) the complete dissociation happens:
A+BC - A + B +C.

By using the time-dependent techniques, we want to investigate the cross sections for
the (A+BC) type reaction in a energy range AFE =~ 1 eV (e.g. between 0.5 eV and 1.6 eV
in the case of D+Hy; — DH +H reaction) where ro-vibrational excitations and chemical

reactions take place.



2 GENERAL DEFINITIONS 2.1 The cross section

2.1 The cross section

The differential cross section [33] is defined for elastic, inelastic or reactive scattering

according to the rule

do .. number of particles scattered into dS2 per unit time (1)
dQ " number of incident particles crossing unit area per unit time’
This leads to p -
_O'dQ _ r |.jscatt|dQ, (2)
dS2 | Jincid|

where r is the distance between the physical system and the measurement apparatus,
Jscatt 18 the scattered flux of particles in the df2 solid angle, and j;,eq is the incident flux
of particles.

To give a clear picture of the theoretical formulation for the cross section, a model is

helpful. This model must be able to describe the following:
e The projectile-target interaction (model potential)

e The interaction between internal degrees of freedom for projectile or target (for

system which are not point-like)
e The asymptotic ’'in’ (entrance) and ’out’ (exit) states

We can start classically with the simple model of a point which collides with a sphere.
Then the cross section o will be the surface of a cut through the center of the sphere,
o = mR?, where R is the radius of the sphere. A model with two spheres will improve
this formulation to the new cross section o = m(R + r)?, where R and r are the radii
of the target and projectile. For the angular dependence # this can be expressed in the
differential form

do(0) = 2wbdb. (3)

b is the impact parameter and db is the width of the annulus which scatters particles at
the angle 6.

We can improve this model by imaging that the spheres are not hard, but they allow
some ”tunnelling effects”. According to Levine and Bernstein [34], by using this model,

the differential cross section can be written as
do = 27 P(b)bdb, (4)

where P(b) is the opacity of the target (it is defined as the fraction of particles at impact
parameter b that leads to a scattering process).
A hard sphere model leads to a step function for P(b) which is 1 from 0 to R (target

radius) and 0 from R to infinity. More realistic classical and quantum models consider

5



2 GENERAL DEFINITIONS 2.1 The cross section

Figure 1: Different parameters for the collision of two hard spheres are given. b is the
impact parameter, r and R are the radii of projectile and target; j;,eiq is the incident flux
of particles, jscq 1S the scattered flux of particles;  is the scattering angle and df? is the
solid angle in which the particles with impact parameters between b — db/2 and b+ db/2

are scattered.

smooth expressions for P(b). In the realistic case, P(b) is a smooth function which decrease
from P(b) = Py, Py < 1 (close to the target) to P(b) = 0 (far away form the target) - see
Figure 2.

The total cross section is defined as

oot — / 27bP (b)db. (5)
0
The expression above can be rewritten in the momentum space as
oot — / orbPldl, (6)

where [ is the relative angular momentum and P! is the reaction probability corresponding
to a given [. By taking into account the physical meaning of the angular momentum and
its classical definition (f = 7 X p, T is the distance vector and ' is the momentum vector)

and comparing with the quantum definition of the angular momentum [35] we can write

1 1

1
bk~l+ - or bx (l—|—§), (7)

2 k

with & the wave number of the projectile (p = hE) By switching from continuum to
discrete representation we get for Eq. (6) the following expression [34]:

o0

oot = % S (20 +1)P. (8)

=0

6
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P(b)

10 . ‘

Figure 2: The shape of the opacity function P(b) for a hard sphere model (dashed line)
and for a realistic model (continuous line). b, = R + r is the largest impact parameter
allowed by the hard spheres model.

In this formulation the relative angular momentum has only discrete values. P! are now
the reaction probabilities at a given angular momentum [, and the total cross section o

is described entirely in a quantum mechanical formulation.

2.2 The S-matrix

In order to compute the reaction probabilities P! in Eq. (8) we introduce the S-matrix
[36]:
Soutin = (Vour|Vin)- (9)

|t;,) is the quantum state of the system at an initial time in the entrance channel and
(¢},] is the quantum state of the system at a final time in the exit channel.

In order to compute the total cross section, using Eq. (8), we need to know the
reaction probabilities P'. This time-dependency of the S-matrix can be made explicit by
formulating it in the operator style [37]

S = t_m()l,it;r_l)_oo Ul(t,t), (10)
where U(t,t') is the evolution operator [1, 33].

Until now we did not discuss the internal structures of the target, respectively of the
projectile. Formally this can be introduced straightforwardly into the formulation above.
The S-matrix and the reaction probabilities will be indexed by those quantum numbers
corresponding to the internal degrees of freedom, of the target and projectile, respectively.
For the case of a diatomic molecule we have to take into account the rotational and the

vibrational quantum numbers (v, j).
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The total angular momentum J of the atom-molecule system is
J=1+7, (11)
where j is the rotational angular momentum of the target and [ is the relative angular

momentum for the target-projectile system.

In terms of the S-matrix the state-to-state reaction probability can be written as

P’l;]j wj 2.] + ]- Z |S ’Q’,'UjQ|2 (12)
Q,Q
or:
PUJ] i (2] + 1)_1 Z |Sz!1]’j’l’,vjl|2‘ (13)

Ll
27 + 1 is the degeneracy of the initial rotational level. [ and [’ are the relative angular
momentum quantum numbers of the two components of the system before and after the
reaction, 2 and Q' are the projections of J onto the Z axis of the coordinate system before
and after the collision.
The general expression for the reaction probability can be considered as a sum over

reaction probabilities at different ”impact parameters” [38]
Z (2J +1)P’(E), (14)

where J is the total angular momentum quantum number, and E is the collision energy.
J plays the role of the ”impact parameter” in the quantum mechanical formulation. The

partial wave reaction probability P/(E) can be written as

= Z Z Pv{j’Q’,va(E); J=0,1,.. (15)

U’j7Q U’ 7j’7Q’

where P oy is the detailed state-to-state reaction probability between initial and final

wjQ
ro-vibrational states.

For the Hamiltonian we use in the case of A-BC system, .J is a good quantum number.
This property allow us to do separate calculations for each P/, J =0,1,2,... in order to
compute the total cross section given in Eq. 8 [34, 36].

On the other hand, different €2 channels in the wavefunction do couple together. As a
result, more functions or grid points are needed to store the complete information about
the wavefunction. By increasing the number of grid points in the angular part we need
more core memory. Therefore several approximate methods are proposed for computing

the reaction probabilities for .J > 0.



2 GENERAL DEFINITIONS 2.3 The reaction rate

The J-shift approach is a very useful approximation for the .J dependence of P/ (E)
[38]. The reaction probability P7>? is written as a function of the reaction probability for
J=0

P’(E) ~ P'=°(E - E%), (16)
where E% = B*J(J + 1) is the rotational energy at the transition state. The physical
meaning of this approach is related to the presence in the Hamiltonian of the effective
potential term V. ;r = Vo J(J + 1), where 1} is a constant, depending on the total moment
of inertia of the system. It is assumed that the reaction probability for a given .J is roughly
the reaction probability for J = 0 shifted in energy by a quantity which is equal with the
centrifugal barrier for the given .J.

According to Bowmann [38], the .J-shift is a good approach as long as the coupling
between the different €2 channels in the wavefunction is small.

Several cross sections are defined as follows: the integral cross section given in Eq. (8)

became
Y T
Ot = 73 2 (2T + )Py i (E). (17)

vy T v'j
kvj J

The differential cross section:

1
uyorasol0) = | ST+ Doy OV e ol (18)
vJ J

dfoy are the Wigner functions [35], 6 € [0, 7] is the scattering angle, and the T operator
is given as [33]

J _ J
Tv’j’Q’,UjQ =1- S,UI]‘IQl,,U]‘Q- (]_9)

2.3 The reaction rate

Once the cross sections for a given reaction and a given energy range are known, we can
compute the reaction rate constant [34, 39]. It is defined as the speed of formation of the
products. The rate constant k(7T") can be computed by using the model of kinetic theory

for gases. Maxwell’s distribution of the velocities f(v) in an ideal gas is [40]
f(w)dv = 4mv? ()20 kT)® P exp(—pv? /2kpT)dv. (20)

T is the temperature, u - the reduced mass, v is the velocity and kg is the Boltzmann
constant (kg = 1.380658 x 1072 J/K).

Thermal motion leads to collisions between molecules, hence to chemical reactions,
depending on the energy of collision. A simple model leads to the Arrhenius-type reaction

rate, [34] in which the cross section o, is considered to be of the form

O_tot — 7Tb2 o { 07 Ecol S EO

maxr ~ (21)
7Td2(1 - EO/ECOl)7 Ecol 2 EO

9



2 GENERAL DEFINITIONS 2.3 The reaction rate

where d is the "radius” of a molecule, F,, is the collision energy and Fj is the threshold
energy for the reaction. By integrating with respect to collision energy the product of

this with the Maxwell distribution of the velocities in a gas we get
E
K(T) = Ae ™57, A= ANT). (22)

If we take into account that the cross section is energy dependent, this simple model
cannot be used any more. The integral over f(v) given by Eq. 20 in the gas will lead to

a new formulation of the reaction rate in the gas phase

8 00
FalT) = \| = [ Beaoa(Beale "7 dE . 2
(T) T Gen ) s 10a(Ecor)e ! (23)

col
«

if we know the values of the cross sections in an energy range of the order of eV. To reach

« is the electronic state, and 0% is the cross section. The rate constant can be evaluated

a convenient accuracy in the integration, we need information about the cross sections

at relatively many energies. These requirements can be fulfilled by the time-dependent

formulation of scattering theory.

10



3 SCATTERING THEORY

3 Scattering theory

This section is devoted to the mathematical aspects of the scattering theory. The two
paradigms - time-dependent and time-independent formulation of scattering theory are
presented.

First we remark that the equations describing the scattering processes can be splitted,
from the mathematical point of view, into two categories: boundary condition problems
and initial value problems. Time-independent solutions fall in the first category [41, 42].
Substitution of different expansions of the wavefunction (like plane or spherical waves)
into the time-independent Schrédinger equation lead to coupled channels equations which
are typically ordinary differential equations. These equations can be solved by various
finite difference methods [43].

Time-dependent methods are initial value problems. When the time-dependent meth-
ods are used to calculate time-independent observables the role of time lies mainly in
the fact that the problem becomes an initial value one, and a single calculation pro-
vides information over a wide range of energies. One can prepare the initial wavefunction
for a specified set of initial conditions. Next, the initial wavepacket is propagated for-
ward in time. During the propagation the reaction attributes are extracted out of the
wavepacket. This can be done for example by projecting the final wavefunction onto indi-
vidual ro-vibrational states or by computing the flux through a dividing line or a surface

far away from the interaction region.

3.1 Time-independent formalism
3.1.1 The Lippman - Schwinger equation

For a simple model (structureless particle) we assume that the Hamiltonian can be written
as [33]
H=Hy+V, (24)

with

24
being the kinetic energy operator.

In absence of a scatterer (potential V= 0) an energy eigenstate would be a free-particle
state. The presence of a potential causes the energy eigenstate to be different from a free-
particle state. If the scattering process is elastic we are interested in obtaining a solution
of the full Hamiltonian Schriodinger equation with the same energy eigenvalue. If |¢) is

the solution of the free-particle Hamiltonian
Holg) = E|o) (25)

11



3 SCATTERING THEORY 3.1 Time-independent formalism

and [¢) is the solution for the full Hamiltonian
(Hy+V)[w) = B[¥), (26)

then we look for a solution of Eq. (26) satisfying the condition: 1)) — |#), when V — 0.

The desired solution is

1 N
) = g V) +16) 27)

Asymptotic states in the scattering process will be of the form

1

+ St
= +—V , 28
¥5) = 16) + 5V v) (28)
where
At 1
G =
E — Hy+ie

is the Green function of the system.
Several strategies can be used to solve Eq. (28) (the Lippman-Schwinger equation).

We define the transition operator, T as follows:
Vip*) = T); (29)
where T' can be derived from Eq. (28)
T =V VG =T S (G (30)
n=0

The spatial representation for the solution of the Lippman - Schwinger equation is

given as
(FY*) = (#l6) + [ T (@G E V) (31)
with
B TR
(Z|g) = PSR

Using the complex integration one finds that the matrix element of the Green’s operator

in the spatial representation has the form

_2m b
4m2R* |7 — 7|

(7 G = (32)
It is possible to give an iterative solution for Eq. (31). The idea is to start from an

initial guess for [¢)* > then to refine by a self-consistent procedure. If we take

< ZYt >—< Zlp > and we keep the first term in the expansion we get the Born

approzimation described in the textbook of Sakurai [33].

12



3 SCATTERING THEORY 3.1 Time-independent formalism

For the simplest case we considered (a structureless particle), the asymptotic form of

the Lippman-Schwinger equation can be written as

V) = Gaple™ + S B (33)
with z = |7 and
2 o i 2_m o a o
FE Ry = = @n)* S (RITR)

given as the scattering amplitude. IZ, k' are the momenta before and after scattering.
According to Eq. (33) the solution of the Lippman-Schwinger equation is the overlap
between a plane wave and a spherical (scattered) wave at infinity [33, 36].

According to Eq. (33) the differential cross section can be expressed in terms of a

scattering amplitude as
do o o
— = |f(K,k)|*. 34
=SR] (34)
In the case of a central field, Eq. (33) can be rewritten using the expansion of the

plane wave in Bessel functions j;(kr)

= "2 + 1)y (kr) By(k7). (35)
l

P,(k#) are the Legendre polynomials, k = |k| and r = |7]. By comparing Egs. (33) and

(35) the scattering amplitude is given as

FE k) =" (21 + 1) fulk) Pi(cost). (36)
!

All the relations above concern the simple model of an elastic scattering for a struc-
tureless particle. In the case of molecules, the equations have in principle the same
structure, but additional indices are required for the internal degrees of freedom. The
overlap between a plane wave and a scattering wave (see Eq. (33)), becomes in case of an
atom-diatom scattering for R — oo [34, 44]:

G(R) — 5] ]6”50 v[ i(kjuR=Im/2) _ S]{l’ ei(kj/v/R—llw/Q)]. (37)

]I,Ul

v’ jlv

G(R) is the radial part of the wavefunction for the A-BC system, expressed in Jacobi
coordinates (see page 26), with R the distance between the single atom and the center of
mass of the BC molecule, £ is the atom-diatom relative momentum, j is the label for the
rotational quantum number, [ is the relative angular momentum quantum number, v is
the label for the vibrational quantum number. S is the S-matrix for the total angular

momentum .J. Primed indices mean ” after reaction”.
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3 SCATTERING THEORY 3.1 Time-independent formalism

3.1.2 Time-independent wavepackets

There is another possibility to formulate scattering theory, with time-independent wavepack-

ets [45, 46]. It is based on the time to energy Fourier transform of the equation
U(t) = exp(—iHt/h)T(0) (38)

where U(0) is the wavepacket at time ¢t = 0, leading to

1

/0 " dteap(iBt/E)eap(—iFTt/h)B(0) (39)

where H = Hy + V is the total hamiltonian, H, is the kinetic energy, V is the potential
energy.

The scattering equations describe the scattering at a well defined energy E as in the
section before, but they involve an initial £? wavepacket which contains a whole range of
energies (time independent wavepacket Schrodinger equation) [45, 46]

(B — H)YU(E, T — o0) = i\l}(o). (40)

The inhomogeneous Schrodinger equation for the scattered wave can be written

(E — Hy) V" (E) = Vo(E) (41)

with
1

E — Hy +ie
and Hy the unperturbed Hamiltonian. The unperturbed initial state ®(E) satisfies

UH(E) = ®(E) + Vo(E), (42)
(E — Hy)®(E) = 0. (43)

The time-independent wavepacket Lippman-Schwinger equation is
(B) = ———w(0)
2m(E — H + ie)

(44)

In solving this equation, the following method is used: according to [45, 46], ¥(E) can be
computed by using a Chebyshev expansion (see next section). We note:
i o 1
E—-H+ic AHE—H,,.,+in

(45)

I:Inorm = (]:I - I:I)/AH y FI = %(Hmam + Hmm) and AH = %(Hmax - Hmzn)
E = (E—H)/AH and nis ¢/AH. The Green’s function is expanded in a set of Chebyshev

polynomials
1

(E — Hporm + i€)

= iﬂ an(ai)(bn(ﬁnorm), (46)

14



3 SCATTERING THEORY 3.2 'Time-dependent formalism

ar = FE+in=apy + i, (47)

=1 1 s n(s)
an(og) = /_1d (x — 5)V/1 — 52

and the final solution for W(FE) can be computed by applying this expansion (which

(48)

includes only linear operators, so there are no problems in doing it directly) on the initial

asymptotic state ¥(0).

3.2 Time-dependent formalism

For many physical situations the use of time-dependent methods is more convenient
compared to the time-independent ones. Because time-dependent methods are initial
value problems they are easier to implement. The time-dependent picture enables a sim-
pler treatment of rearrangement problems in reactive scattering, compared to the time-
independent methods. Besides these technical advantages, time-dependent methods lead
to a better interpretation of the physical mechanism under discussion. The time variable
also enables a description of externally driven systems (like molecules subject to strong
laser fields) by introducing time-dependent Hamiltonians. The time-dependent approach
is analogous to the classical mechanical description in that one obtains a physical picture
of the underlying dynamics, but within the quantal framework.

Starting point in developing these methods is the time-dependent Schrodinger equation
[1, 47]
oV (t)
ot

where H is the Hamiltonian operator of the system. This is a first-order differential

ih — HU(t), (49)

equation in time, hence it has the following formal solution for time-independent H

W(t) = () T(0) = eap (-%) (0), (50)

where U (t) is the time evolution operator for the Schrédinger equation. Since this operator
is not a linear one it cannot act directly on the initial state. We need a linear expansion
of this operator, namely a polynomial one. According to Kosloff [48] this expansion can

be optimally done by using a Chebyshev polynomial expansion
Ht al Ht
exp (—Z—> ~ > a,Sy, (—Z—> . (51)
h o h

S, are complex Chebyshev polynomials * of order n.

3See the Appendix for the definition of the real Chebyshev polynomials.
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3 SCATTERING THEORY 3.2 'Time-dependent formalism

To ensure the convergence of the expansion we have to renormalise the Hamiltonian

operator to:

q 2(H — AE/2 — Vinin)
norm — AE

where AF is the energy range of the "real” Hamiltonian H and V,,;, is the lowest potential

(52)

value.
Using this form for the evolution operator the time development of the wavefunction
will be

S an (5527 ) S (Filyom) W, (53)

n=0

U(t+ At) = exp <_i(AE/2 47; me)At>

AE = Ema:z: - Emm = Tma:z: + Vma:r - Vmin-

The coefficients a,, are Bessel functions *

ap(a) = Jo(a), ap(a) =2J,(a), n=1,...,N.

The argument of the Bessel functions (AEAt/2h) is related to the volume of the time-
energy phase space that is contained in the problem. The number of terms N needed to
converge the expansion is determined by this volume. This is related to the asymptotic
properties of Bessel functions: when the order n becomes larger than the argument o of
the Bessel function J,(«) decreases exponentially fast [48].

The energy domain AFE is defined by imposing a cutoff for the kinetic (Tpufr) and
potential (Veuoss) energy. The conditions are

Tinetic < Teutos s (54)
and
IR T T YO (55)

The energy domain has the expression
AE = Teutorr + Veutor — cZngff' (56)

Computation of different complex Chebyshev polynomials is done by using the recur-

rence formula

Pni1(T) = 22¢,(2) + Pn1(T) (57)
with ¢, = Sn(—if[norm)\If(O), 2 = —iHxorm. The initial values are ¢y = U (0) and ¢y =
z0(0).

4Property: the Fourier transform of the (1 —x2)~/2®,,(z) is (—1)"i"J, (k). ®,(z) are the real Cheby-
shev polynomials, J,, (k) are the Bessel functions [49].
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3 SCATTERING THEORY 3.2 'Time-dependent formalism

An improved version of Chebyshev expansion was developed by Mandelshtam and
Taylor [27, 28]. Tt includes in the propagation a damping factor, which cancels the wave-

function at the end of the grid. The evolution operator is expanded as

U(t) =3 an(t)Qn(Huorm: 7)- (58)

n=0
with a,(t) = (2 = du0)e H/(—i)* J,(AEt/h), H = Y(Hypaw + Hpin), and where the
operators Qn(]f[ orm,’y) can be viewed as an analytical continuation of real Chebyshev

polynomials @, ( norm) Qn( norm, ) satisfies the recurrence relation

_in 1( norms Y )+6 Qn—l—l( norm’f}/) 2Hnoern( norm’f}/) = 07 (59)

QO( norm; 7) - [ Ql( norm; ’Y) eifyf{norm; (60)

where e~7 is a damping factor with typically v = (z — )%, where z; is the point where
the absorption starts: x > xy. By using these equations we can do the absorption of the
wavepacket at the grid edge during the propagation. When the absorbing potentials of
the type presented in Eq. (76) are used, the time step has not to be too large (typically,
around 250 a.u.). When the Eqs. (58) and (59) are used, the complete propagation time
can be At = 6000 a.u. (for D + Hy collision) or larger.

Once the evolution operator is linearly expanded we can compute the action of the

Hamiltonian operator on the wavepacket in order to propagate it.

3.2.1 The discrete variable representation

In the finite basis representation (FBR) the wavefunction is expanded using a set of basis

functions
N

U(r) = U(2) = Y andn(). (61)

n=0

The spectral coefficients a,, (orthonormalized basis set) are given as

- / (1) (2, 1) (62)

im 1 minimiz rest-function T ag, Ay, ...Q
The aim is to e the "rest-function” R(x;ag, ay,...a,

R(z;a9,a1,...a,) = HU(z) — HU(z). (63)

This idea leads to the Rayleigh-Ritz method for finding the coefficients of the finite

basis representation.
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3 SCATTERING THEORY 3.2 'Time-dependent formalism

In the discrete variable representation (DVR) method [23, 24] the basic idea is to expand
the wavefunction in an orthonormal basis set {¢,(x);n =1, N}, and to use a quadrature
rule (usually Gaussian) consisting of a set of quadrature points {z,;n = 1, N} and weights
{wyp; n =1, N} to define the inner product of the basis vectors.

The DVR method is based on the Gaussian quadrature [43, 51] formula

[ #@dz = > wnp(e) (649

The wavefunction is expanded as
U (z) ~ U(z;) Z Un®n(25). (65)

At the grid points an ezact solution is requested: R(z;;aq,...a,) =0.

The spectral coefficients a,, are

=Y Wy (2m) ¥ (T, t). (66)

In terms of an N-points quadrature, Eq. (61) can be rewritten as

=3 wadp () (@, 1) Z U, 1, (x (67)

where
= Vwn Y by (0) () (68)

form a set of orthogonal basis functions in the discrete representation. The expansion

coefficient is given as
U, = Vw, Y (z,,1t). (69)
The n — th order derivative of the wavefunction is obtained as

o™ ()
ox™

pr a”g;n ). (70)

The transformation between DVR and its associated FBR [23] is
= \Jw; bn(x;)- (71)
U is an unitary operator if the DVR points are the zeroes of the FBR basis set

Ut =00t =1. (72)



3 SCATTERING THEORY 3.2 'Time-dependent formalism

A local operator (e.g. the potential V) is diagonal in a DVR representation. For the kinetic
energy part, it is convenient to use the FBR representation. The complete expression of

the Hamiltonian can be putted in the form
APVE _ {JTFBR{yt | yOVR, (73)

The connection of these initial value problems with the boundary condition problems
is performed by using optical potentials [1, 52|. If the wavefunction is propagated on
a finite grid of "n” points, at the "n+1” position it will be suddenly set to zero. This is
equivalent to the presence of an infinite potential at the grid edge and will cause a reflection
of the wavepacket back into the interaction region. To ensure that the wavefunction is zero
at the grid edge (hence, it satisfies the appropriate boundary conditions) we must include
an absorbing potential in the region before the end of the grid. The optical potential is
a negative imaginary potential, and has the property to absorb the wavefunction. The

propagation of the wavepacket is done using a perturbed Hamiltonian H of type
H=H-iV. (74)

Several forms can be chosen for the absorbing potential. The simplest is a triangular form

which in one dimension is given as

X — (Xpae — AX)
AX '

Xonae 1s the maximum value of a grid in the ”X” direction, AX is the width of the

Vi(X) = Vi (75)

absorbing region and Vjg is a prefactor. According to Balint-Kurti [53], an optimized

version of the optical potential is
Vi(X) = A%, (76)
with

X — (Xinae — AX)

AX
The absorption during the propagation itself was already mentioned in the previous section

(see Egs. (58 - 59)). Mandelshtam and Taylor’s version, presented in Eqs. (58 - 59) has

the advantage that it is stable for very long propagation time steps.

X = (77)

3.2.2 Time evolution using only the real part of the wavepacket

An optimized version of the Chebyshev propagation scheme was proposed by Gray and
Balint-Kurti [29]. It consists in propagating and extracting information only from the

real part of the wavepacket. For a given wavepacket v (z,t) we can write

~

Wt +7) = —(m,t— 1)+ zcos(%)w(x, . (78)
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3 SCATTERING THEORY 3.2 'Time-dependent formalism

H is the Hamilton operator and 7 is a time-step. We make the notations

q(z,1) = Re[y(x,1)], p(e,t) = Im[y(z,1)] (79)

and similar to Eq. (78) we get

~

g(ot+7) = —qla,t—7) + 2005(%)q(x, P, (80)

with the initial conditions ¢ (t = 0) = ¢(0) + ip(0) .
The evolution of only the real part of the wavepacket is governed by
H H
q(z,7) = cos(%)q(x,t =0)+ sm(%)p(x, t=0). (81)

The absorption is realized by using a damping factor Ain the style of the Mandelshtam
and Taylor propagation [27, 28]

~

ala Hr
q(z,t +71) = Al-Aq(z,t — T) + 2003(7)q(x, t)]. (82)
Because time does not enter in any fundamental way into the observables which are
to be calculated, it is allowed to substitute a modified time evolution equation for the
time-dependent, Schrodinger equation. Replacing H with f(H) we obtain

L OY(x,t) s
n 20D piry o), (53)

f is a continuous smooth function. Note: 1 satisfying Eq. (83) is not the same ¢ that
satisfies the usual time-dependent Schrodinger equation. However, similar information
can be extracted form it. As long as the function f(FE) is a one-to-one mapping, each
eigenvalue of H will be mapped into one unique value f (E). A particular function of

interest is

~ 1 ~
f(H) = —=cos™"(H,), (84)
T
with
H, = a,H +b,. (85)

5

H, is a scaled Hamiltonian operator ® such that its eigenvalues lie between -1 and 1. If

E,.in and E,,,, are the lower and upper bounds of the spectrum of H , then
as =2/AE, b;=—1— asFp.
The analog of Eq. (78) for Egs. (83 -85 )may be written in the simplified form

W(x,t+7) = —(x,t — 1) + 2H ) (x, t). (86)

iHt

5The same scaled operator is used in the Chebyshev expansion of the evolution operator e~
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3 SCATTERING THEORY 3.2 'Time-dependent formalism

Repeated application of this three-term recursion propagates the real part of the
wavepacket forward in time steps 7. The dynamics is independent of the value of T,
which allow us to take a single long time-step in the propagation. In addition, absorbing
conditions must be set at the grid edges. The damped recursion for the wavepacket will
be of the form

q(z, t+7) = A(—Aq(x,t — 7) + 2H,q(z,1)). (87)

By making use of this formulation, we need just half of the storage space in the core
memory, compared with what we need in the case of the full complex representation.
The execution of the program can be speeded up because all the mathematical operations

involve real numbers.
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4 THE A-BC SYSTEM

4 The A-BC system

4.1 Coordinate systems

Quantum mechanical reactive scattering provides the fundamental, rigorous and the most
complete description of a chemical reaction allowed by the basic laws of nature. Unfortu-
nately it is also the most complicated to deal with because of the lack of one physically
appropriate set of coordinates for ”translation” and internal degrees of freedom. Figure
3 shows the possible choices of coordinates for a collinear A + BC — AB +C reaction.

As long as only an inelastic scattering process (e.g. vibrational excitation) is investi-
gated

A+BC(v) -A+BC(v'),

the Jacobi coordinates (r,, R,) are the natural choice (see the next section). For elastic
scattering the wavefunction for relative motion behaves, at large separation, as an incident
plus a scattered wave (see Eq. (37)). The scattered part is a sum over many final states,
each term being a product of a scattered wave for the relative motion and an internal
state wavefunction. If we use the Jacobi coordinates the expansion of the function has

the form

wv’ = Z ¢v ('ra)fv(—v’ (Ra)a (88)

where ¢, are the vibrational eigenfunctions for diatom BC and v denotes the vibrational
states. fy.(R,) is the translational part of the wavefunction.

Although the Jacobi coordinates (R,, 7,) are natural for describing the reactants
(A+BCQC) they are not so well suited for describing the products (AB+C). One way of
dealing with this problem is to use a curvilinear coordinate system (”natural collision
coordinates”) in which we have a smooth path from reactants to products (Figure 3
-B). The reaction coordinate s is the path along the indicated curve (i.e. the reaction
path) and u is the coordinate orthogonal to s. In this case the wavefunction is expanded

as

wv’ - Z 7/)1) (U; S)fvev’ (S) (89)

A third choice of coordinates are the various types of hyperspherical coordinates,
which in the collinear case reduce to the usual polar coordinates (the distance from the
origin to the given point p, and the angle between the p vector direction and X axis - 6).

The wavefunction is then expanded as
o =D 0(0;p) foe (p). (90)
The translational functions (f,. ) satisfy coupled ordinary differential equations.
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4 THE A-BC SYSTEM 4.1 Coordinate systems

AB+C
R Cc
rC
(A)
ra
(B)
AB+C
(©)
s Y
. A+BC

Figure 3: Schematic depiction of a collinear A+BC — AB +C PES and different ways
of choosing the coordinates: (A) - Jacobi coordinates for arrangement a(A+BC) and
c(C+AB); (B) - reaction path coordinates ("natural coordinates”); (C') - hyperspherical

coordinates (here simply polar coordinates).
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4 THE A-BC SYSTEM 4.1 Coordinate systems

B. o (

Figure 4: Jacobi coordinates

4.1.1 Jacobi coordinates

This set of internal coordinates is defined for a 3-atom system as the distance r between
the two atoms that forms the diatomic molecule B-C, the distance R between the center
of mass of diatomic BC and the free atom A and the angle between these two directions
(0) [44] (see Figure 4). As pointed out above, these coordinates are ideal for describing
inelastic scattering.

The reactive problems are solved using Jacobi coordinates for various arrangements
a(A+BC), b(B4+AC), ¢(C+ AB). These coordinate sets can be used simultaneously, during
the propagation, or one transforms the wavepacket from one set of coordinates to another.
According to Miller [54] a general expansion of the wavefunction can include all the various

arrangements. For the collinear case (see Figure 3) we have

Yyims = D O (Ta) faneyim (Ra) + D 80 (7) foneyim, (Be) (91)

7 is a symbol for the different possible arrangements ( a(A+BC), ¢(C+AB)). ¢% and ¢
are the vibrational eigenstates of diatoms BC and AB, respectively.

The idea of this approach is similar to that in electronic structure calculations by using
multicenter expansions for molecular orbitals (LCAO - method). In case of a diatomic
molecule the molecular orbital x(r) for an electron is expanded in basis functions using

the coordinates (r,, rp) of the electron with respect to both nuclear centers a and b

x(r) = X bt (ra) + 3 bidl(r). (92)
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4 THE A-BC SYSTEM 4.1 Coordinate systems

This means an expansion of the wavepacket in the entrance channel (A4+BC) according
to the coordinates defined by the exit channel (for example (C+AB)). This initial expan-
sion is not as simple as in the case of inelastic scattering, on the other hand the final form

of the wavepacket is easier to handle.

4.1.2 Space-fixed and body-fixed Jacobi coordinates

A 3-atom system has 9 degrees of freedom. Jacobi coordinates are responsible only for
internal degrees of freedom of the system and in addition we have the rotation and trans-
lation motion (3+3 degrees of freedom). The molecule defined by three Jacobi coordinates
must be ”inserted” into a 3-D Cartesian coordinate system. According to Pack [44] there
are two choices: a) a laboratory-fixed system axes (the so called ”space-fixed coordinates”
- SF) the wavefunction is defined within, b) one defines a ”Z” axis along the R Jacobi
coordinate (atom-diatom distance) and shifts the origin of the coordinate system to the
center of mass of the complete A-BC system (the ”body-fixed coordinate system” - BF)
(Figure 5).

Zsf

Zbf

B Ysf

Xsf

Figure 5: Space-fixed and body-fixed coordinates systems

The wavefunction of the system, including the rotational motion, (Figure 5) can be
written by defining the angular momentum [ of A relative to BC, the rotational angular
momentum j of BC and the total angular momentum J = [+ of the system . If Y, (R')
is the spherical harmonic describing the relative angular momentum, and Y, (7') is
describing the rotational motion, the common set of eigenfunctions Y5 (i, R') for J2,
J., 12 and j2 [55, 44] is defined by coupling Vi, (R') and Y, (#') via Clebsch-Gordan
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4 THE A-BC SYSTEM 4.2 The Hamiltonian of the A-BC system

coefficients
(#',R') = Z Z C(j1T; mjy my, M)Yjn, (') Vi, (R). (93)
mj=—jmy=—I

The complete wavefunction is given as

OL =SS5 RGN (R) Xy (D) VI (P, RY), (94)

II l// II

where Gﬁllf,’v,,(R) are the radial channel wavefunctions and x;»,~(r) are the diatomic
wavefunctions. This expression is given in space-fixed formulation. To get a formulation
for the body-fixed system a rotation with Euler angles (¢,, 6,, 0) is needed

oLy = Z Dy (61, 0, 0)B727" (95)

Q=—J

¢, and 6, are the polar angular coordinates of atom-diatom direction in the space-fixed

system.

4.2 The Hamiltonian of the A-BC system

According to Judson et al. [37] the Hamiltonian operator in Jacobi coordinates (R, r, 0)

for the body-fixed frame representation is

~ hZ 82 hZ 82 h2
H’ {_ - — ——[J(J+1) =20+ +1
s po R 2upcdrt oy porel T T2 AT

2

+ i(7+1)+ U(T)}5jj'5nﬂf + VR, T,0)d00

2uper 2
hZ

 2pua_poR?

The notations used above are: pa_pe is the reduced mass of A-BC system, upc is the

A (L Q)AL (5, ¥)der1,08,50 + A= (S, QYA (G, ¥)der -1, 065,51]- (96)

reduced mass of the diatomic molecule (BC), .J is the total angular momentum quantum
number j is the rotational angular momentum quantum number for the B-C molecule.
A+ are the ladder operators for angular momentum, as defined in [35]. V¢(R,r,6) is the
A-BC potential energy and v(r) is the diatomic potential energy.

According to Leforestier [56] another expression of the Hamiltonian operator, equivalent
to the one given above is

H = — o n’ a_Z_h_Q 1 g'gg_ 2 )
214_pc OR? 2,uBC or? 21 “sinf 00 00  sinb?
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4 THE A-BC SYSTEM 4.2 The Hamiltonian of the A-BC system

K2 A PR PN PN
(2= 20— J = Jj) + V(R 1,0). (97)
2pa-pcR
with
L L + L (98)
I pa—pcRR? HBCT2,
and
V(R,r,0) = VQ(R, r,6) +v(r). (99)

To derive the expression in Eq. (96) we can use the general formulation from [57].
Acording to Nyman [19] the Hamiltonian of the system can be expressed as a sum of the

kinetic energy operator T and the potential energy operator 1%

H=T+V. (100)
The kinetic energy in terms of classical velocities can be written as

T = %pTG(q)p (101)

where p; are the momenta conjugate to the chosen coordinates ¢; and G(g) is the G—matrix

1 9g; 9qy

Gir=1>

i

(102)

where x; denotes the Cartesian coordinates of atom ¢ with mass m;.

The quantum mechanical kinetic energy operator is

0

z]aqj ( 03)

LR 0
=2 2 eg
where g is the determinant g = det|G!|.
This method is very general and works for all kinds of coordinates.
Another choice is to start with the Hamiltonian for a 2-particle system [33]
1o ,0 12 .

— — —=|+ Vg, (104)

Hpo=———
Bo Q/LBC[T28TT or 1?2

where the first term is the Laplacian in spherical coordinates [51] and [ is the relative

angular momentum of the two particles (in units of 7)

P L0 g0, 1O

L A S |
090" "5 T S g7 (105)

The idea is to write the three-particle Hamiltonian in a two-particle style: atom A and
the ”virtual particle” which is the center of mass of the BC molecule using the following

notations: j is the rotational angular momentum of the BC molecule; [ is the relative
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4 THE A-BC SYSTEM 4.2 The Hamiltonian of the A-BC system

angular momentum, (between A and center of mass of BC) and .J = [ + J is the total
angular momentum of the system. The 3-particle Hamiltonian (Jacobi coordinates) of a
body-fixed system can be written as

- oot P

Hamey = ——— 12— 1 Ve, |
A(BC) QMA—BC[aR2 RZ] Vasey (106)

The Hamiltonian of the BC molecule is given by Eq. (104), with j instead of [. By noting
that [ = J — j we can write the complete Hamiltonian in Jacobi coordinates as
h? 9 h? 92 hA(J—j)* KPP

Hy po=— — —
A-pe 2ua-pc OR?  2upc 0r?  2pa_pcR?  2upcr?

+V. (107)

The potential energy V includes the contribution of the diatomic potential and the relative
interaction atom-diatom.

For the operator expression (j — )% we get

(J=))2=T2=Jj—7]+7% (108)
By using the definition of the ladder operators [35]
Jy = J, +il,, (109)

the commutation relations between the components of angular momentum, and the prop-
erty that in the body-fixed coordinate system the projections of J and j onto the Z axis
are equal [56]

JUpp = QU gy, (110)
and
Jz¥pr = MOV pp, (111)
we can write
JP—Jj =3I+ =T =2J = J g — J g+ 5% (112)

The final result is
- 9 h? 92 K ., RA(J?—207)

H = — _ _ - R AN
ABO) = T T AR upe 02 T ol T 2us gl
K2 A A PN A
—(Jyj_+J_g )+ V(R,1,0), 113
QMAchRZ( +J J+) ( ) (113)

The matrix expression of this operator in the DVR-FFT basis set described in previous
section is given in Eq. (96). The expression given in Eq. (105) for the angular momentum

can be used to express the Hamiltonian in the form [56]

i h? 02 9> R 1 9 0 72

T 214_pc OR? B 2upc Or? 21 " sinf 00 s 00  sinb?

)
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4 THE A-BC SYSTEM 4.2 The Hamiltonian of the A-BC system

h? . S -
+m(,]2 —20% —Jj_ —J_j )+ V(R,1,0) (114)

4.2.1 Non-adiabatic PES

For many systems, particularly when one is studying photo-excitation processes, one has
to take into account several electronic states that participate in the dynamics. In order to
describe the coupling between different electronic states, we have to go beyond the Born-
Oppenheimer approximation. This can be achieved by using the adiabatic (noncrossing)
or the diabatic (crossing) representation [47]. In the first case the nuclear kinetic energy
operator TN(R) has a non diagonal representation and the potential energy operator,
V(R), has a diagonal representation. In contrast, in the latter TN(R) is represented by a
diagonal matrix and the V(R) representation is nondiagonal.

For an A-BC system described by two coupled PES, we can write the time-dependent

Schrodinger equation in the adiabatic representation as

ng () = (T G ) ()
Ot \ a(t) 20 Ty Vi + Ty 0 vy o(t)
where TH(QQ) and Tlg(gl) are defined as follows: T}, =< AEA Ty =< P3|V 4| D% >
Tio =< ¢|VH|¢8 > +2 < ¢8| Valgs > Vi, Ton =< 04| VE|6 > +2 < ¢4 Vr|df > Vi
it = jia_pc is the reduced mass of the A-BC system.

Y1(2) and ¢y(z) are the nuclear and the adiabatic electronic eigenfunctions for the state
1(2) respectively. ‘71“ and ‘72“ are the adiabatic potential energy operators for states 1 and
2.

The perturbations arising from the off-diagonal matrix elements are referred to as non
adiabatic perturbations. It is worth emphasizing that the off-diagonal matrix elements in
this case are exclusively due to the nuclear kinetic operator.

In this representation the exact molecular wavefunction for a bound system is expanded
as (Whetten et al. [58])

\Il(qa Q) = Z ¢m(Qa Q)wm(Q)a (116)

where ¢,,(q, Q) are the solutions of the electronic Schrodinger equation

He(Q)dm(d, Q) = En(Q)¢m(a, Q) (117)

depending parametrically on the nuclear coordinates Q. ,,(Q) are the nuclear wavefunc-
tions. The electronic eigenvalues E,,,(Q) define the usual adiabatic potential surfaces. Q

and q are collective indices for nuclear and electronic coordinates.
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4 THE A-BC SYSTEM 4.2 The Hamiltonian of the A-BC system

For the same two-state system we can write the TDSE in the diabatic representation

L0 [ Ui(t) | TI(R) 0 Vit Vi W (t)
%(%m)‘{( 0 @(m)*(vm %2)}(%@))’ )

where T} (R) and Ty(R) are the kinetic energy operators for nuclear motion on surfaces

as

1 and 2 respectively (T1(2) = —h2/2uV%1(2)). ‘711(22) and ‘712(21) are the potential en-
ergy operators acting on the first, second potential energy surface and the coupling op-
erator between them. Their matrix elements are: < ¢‘f(2)|ﬁel|¢‘f(2) > for Vii(22) and
< ¢f(2)|ff.fel|d>g(1) > for the coupling operator. ¢f,) and t() are the diabatic electronic
and the nuclear wave functions. In this representation the off-diagonal matrix elements
are due to the nuclear potential energy term (i.e. ﬁel). Perturbations arising from these
off-diagonal matrix elements are termed as electrostatic perturbations.

In the diabatic representation the exact molecular wavefunction for a bound system is
expanded as (Whetten et al. [58])

U(q, Q) =D dm(a, Qo)vm(Q), (119)

where ¢,,(q, Qo) are the solutions of the electronic Schrodinger equation at a chosen

reference configuration Qg

ﬁe(Q0)¢m(q, Qo) = E&(Qowm(q, Qo)- (120)

m(Q) are the nuclear eigenfunctions.

In the adiabatic representation the potential energy surfaces may approach each other
closely but they will not cross (avoided crossing). In the diabatic representation the PE
curves do cross whenever degeneracies occur.

The two representations are related to each other via the following transformations

¢t \ [ cosB(R) —sind(R) o (121)
¢s |\ sinB(R) cosH(R) ot |’
where the R-dependent angle 6 is obtained from

The adiabatic PE curves are related to the diabatic PE curves through

1
Vio = 5l(Vii + Vae) £ V(Vir = Vao)? + 4V2)] (123)

(Wlth ‘/12 = ‘61)
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4 THE A-BC SYSTEM 4.2 The Hamiltonian of the A-BC system

4.2.2 Basis functions

According to Judson et al. [37] the wavepacket for the A+BC arrangement in the body-

fixed frame ®zr can be expanded as

. 1 . L

®pr(ko, vo, jo, mo| R, 7,1) = R Z (2J+1)[ngzm0(aaﬁa7)] Yjsz(ea 0)\I[£F(]Q|UUJUmU|R7 r,t).
J,5,Q

(124)

Q is the projection of J (and j) in the BF Z axis (defined to be R), vy and j, are the
initial diatom vibrational and rotational states, mq is the initial projection of j in the SF
Z axis. At the initial time t=0 the relative momentum £ is parallel to both SF and BF 7

axes. DY, (a,3,7) are the Wigner functions, with the Euler angles «, 3,7. Yjq are the

Qmyg
spherical harmonics. W%, are the channel wavepackets for each total J.

The total wavefunction obeys the Schrodinger equation
L, 0 -
Zh—(I)BF = H(I)BF (125)
ot
where H is the total Hamiltonian of the system.

By projecting out the rotation matrices and spherical harmonics in Eq. (125) we can

arrive at the following set of coupled equations for channel wavepackets [37]

0 N
ih=U}p=> H'U], (126)
ot =
7
where H” is given by Eq. (96).

Instead of propagating the full set of functions Wi, (jQvejome|R, 7, t), given in Eq.
(126) we form linear combinations of these with definite parity. Since parity is conserved,
functions with definite parity can be propagated separately. The symmetrised functions
are

. . 1 . . . .
UL (Qvejomo| R, 7, t) = ﬁ(‘l!éF(jQwO]OmﬂR, r,t) £ (UL (5 — Quojome|R, 7, t). (127)
We need to propagate only the functions W% (jQ|vgjome|R,7,t) for © > 0. The corre-

sponding functions for €2 < 0 are given by
UL (5 — Qluogomo| R, r,t) = £ (jQvogomo| R, 7, t). (128)

According to Leforestier [56], the body-fixed function U7, can then be expanded in a
FBR basis set (e&mf x ¢ " x P2(#)) or in DVR, [23, 24]. The FBR version is

VL= Y cmnyoe™m e T P(). (129)

m,n,l,2
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4 THE A-BC SYSTEM 4.2 The Hamiltonian of the A-BC system

with K,, and k, - momentum quantum numbers along R and r, P (f) are associated
Legendre functions.
The second version is the expansion using a DVR. [23, 24] grid (R,, X r, x 65) [56]:

UL = 3 ConioVh(Ra)U] (r,) Ty (07). (130)

m,n,l,Q2
In order to act with the Hamiltonian given by Eq. (96) on the wavepacket given by Eq.
(130), we will separate the Hamiltonian into a sum of several operators; each operator
will be treated independently in the most convenient representation.

4.2.3 The kinetic energy operator

The kinetic energy operator has the generic form

A n? o?
= 2 131

ki 2p 0x? (131)
The most convenient basis set to describe this operator is formed from a set of Fourier
functions

N N
on(r) = exp(2minz /L), n= —(5 —1),...,0,..., 5 (132)

We need an equidistant grid to represent the wavefunction: z,, = (n—1)Az,n=1,..., N.
The kinetic energy in FBR representation can be written immediately as

FBR __ h_24_7r2 2 (133)

s _2uL2n'

The energy of a plane wave state is computed in the most easiest way using the momentum
representation. We use the following practical algorithm to act with the kinetic part of

the Hamiltonian on W:

1. The wavefunction is transformed from the coordinate representation to the momen-

tum representation using an FFT ¢ algorithm.

2. From the momentum representation of the wavefunction the energy of each plane

wave is computed according to the formula
E, = h*k?/2p,
where £ is the wavenumber corresponding to the given grid point.

3. The wavepacket is transformed back to the coordinate representation by an inverse

FFT~! transformation.

6Fast Fourier Transform [50]
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4 THE A-BC SYSTEM 4.2 The Hamiltonian of the A-BC system

4.2.4 The rotational operator

According to Judson et al. [37], Leforestier [56], the rotational operator for the diatomic

molecule can be expressed as

Trot = I (134)
rot — QMBCTZJ
or equivalently
. K2 1 0 o 2
Tro:_ —_0__Z y 135
' 2upcr? [smﬁ 00 i 00  sin 02] (135)
e is the reduced mass of the diatomic molecule.
T, has a diagonal form in a representation of associated Legendre functions ”
Q 2\0/2 d”
Pi(r) = (1—-2°)""——=Pj(x) Q=0...j (136)

dx2?

j stands for the rotational quantum number and Q for the projection of j (and j) on the

Z-axis of the body-fixed system. The rotational energy in FBR representation is

2

h
FBR __ (g
I = S—sili+ ). (137)

For a grid representation we take the interval x € [—1...1](x stands for cos(f)). The
location of the grid points are defined by the GauB3-type quadrature rule for the associated
Legendre functions (according to the DVR method [23, 24]).

The grid points are

{riq} i=12.n9, Q=01,..j (138)

where nq is the number of the grid points in the channel €2. The location of these points

is given by the relation
P} zig) =0 i=1,2.nq, (139)

where P{*(z) are the associated Legendre functions.
The weights for the associated Legendre quadrature can be computed using the Christoffel-

Darboux formula [25]

1 e Q Q
Wi q i=Q

In the equation above, P’(x) are renormalized to 1.

The associated Legendre quadrature formula for the channel € is

[ f@)s = 1= S wiof (i) (141)

-1

"See the Appendix 2.

33



4 THE A-BC SYSTEM 4.2 The Hamiltonian of the A-BC system

with

Finally the transformation between DVR and the associated Legendre FBR represen-
tations is given by the following matrix (see Eq. (71))

U = ywiaP(zi0), ji=1,..,nq. (143)

This means that in practice a set of matrices indexed by €2 has to be stored for a

complete DVR - FBR transformation (one matrix for each Q channel).

4.2.5 The coupling operator

The operator which couples different €2 channels is given by

T hZ B\ AR\ Y

Teoup = m)\i(Ja Q)AL ([, ) dars1,0- (144)
The same basis sets are used as given above (DVR and FBR type). The action of the
ladder operators Ay on the states follow the usual rules defined by the angular momentum

theory [35]

AL(L L)) = (£ Q' + 1)(J F LG £ 1)) (145)

(same for the Ay (7, ) operator).
5\+(J, V) couples the channel Q' with the channel Q = Q' + 1, while 5\_(J, V') couples
the channel Q' with the channel Q = Q' —1 (see Eq. 96).

4.2.6 The potential energy

This operator is computed immediately in the DVR representation as the value of the

function at the given point times the value of potential energy

VDVRW) >= Vpvr(®i)wivpve(z;). (146)

Vpvr is the complete contribution of the potential energy to the Hamiltonian and Vpy g(z;)
is the local value of the potential at the given grid point z;. w; is the corresponding DVR
weight.

The action of the Hamiltonian given in Eq. (96) on the wavepacket (Eq. (130))
can be summarized as follows: four independent modules are needed to compute the
complete Hamiltonian. Module one computes the contribution of the kinetic energy.
Module two computes the contribution of the rotational motion of the diatomic to the total
energy. Module three computes the potential energy and finally module four computes

the coupling between different channels describing the rotational motion of the diatomic.
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4 THE A-BC SYSTEM 4.3 Initial conditions for the wavepacket

4.3 Initial conditions for the wavepacket

According to Kosloff [1], Balakrishnan et al. [47] the initial wavepacket consists of a Gaus-
sian function along the R coordinate multiplied with the wavefunction of ro-vibrational

initial state of the diatomic molecule

W(R,q,t=0) = ﬁemp (ikoR) exp (-%) (@), (147)

R is the distance between the atom A and the BC system, q are the internal degrees of
freedom for the BC molecule and x(q) is the initial state of the diatomic.

For a wavepacket we have the Heisenberg relation
h
AzAp > —.
2
The Gaussian wavepackets have the property that they minimize this relation [33]
h
AxAp = 3

This property ensures that the wavepacket spreads as little as possible both in momentum
and space representations. When it spreads very fast, large grids are needed to store the
complete wavepacket. On the other hand the distance between two successive points of
the grid must be small enough in order to give a correct description of the components
of the wavepacket with a very large energy. In this case for the implementation we need

a large amount of core memory.

4.4 Analysis of the propagated wavepacket

Several method were proposed in the literature for computing the S-matrix or the reaction
probabilities from the wavepackets. The basic idea is to separate the representation grid
into two pieces: one where the derivatives of the potential energy with respect to the
distance atom-diatom are not negligible (”the interaction region”) and the second where
the potential energy is nearly constant (”the asymptotic region”) - see Figure 6. In the

asymptotic region the analysis is performed.

4.4.1 The split-function method

According to Heather and Metiu [59] at each time step of the propagation the wavepacket

is written as a sum of two components
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4 THE A-BC SYSTEM 4.4 Analysis of the propagated wavepacket

Contour linesrepresentation
of the PES

r i

Absorbing potential

——F\__

/
Initial wavepacket Ro

Interaction region Asymptotic region

Ro - the position of the analysislinein the reactant channel

r 0 the position of the analysislinein the product channel

Figure 6: Analysis of the propagated wavepacket in Jacobi coordinates (R,r,#) for a
fixed value of the angle #. The interaction region and the asymptotic region are shown.

Analysis lines in both reactants and products coordinates are shown.
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4 THE A-BC SYSTEM 4.4 Analysis of the propagated wavepacket

where i’ denotes the interaction region and 'f’ the asymptotic region. Since the time-
dependent Schrédinger equation is linear we can propagate independently each term in
Eq. (148). At each time step ¥, (=piece of the wavepacket located in the asymptotic
region) is analyzed and WU; (=piece of the wavepacket located in the interaction region)
is propagated further by using the Chebyshev algorithm. W, is propagated as a free

wavepacket just by multiplying it with the phase-factor e~*#7/%

, where d7 is the time
step of the propagation.
The splitting is done using a function f,(R) which goes smoothly from 0 in the inter-

action region to 1 in the asymptotic region

VU(R,q,t) = (1 - fp(R)¥(R, q,t) + fr(R)¥(R, q,1). (149)

The S-matriz components Sy, for entrance state i (configuration a= AB + C), final
state f (configuration o/= A + BC) and the total energy E are [37, 52]

zE'tl

Sri(E K S

kfﬂz ap i(R, Q)| fY(R,q, 1)), (150)

5L

Bi(R,q) = et vi(q). (151)
k; and k; are initial and final relative momenta atom-diatom, j; and gy are effective
masses of the system in the entrance, respectively exit channels. q is a collective index
for the internal degrees of freedom of the diatomic molecule. x;(q) is the initial diatomic
state and fU(R,q,t;) is the component of the wavepacket which is splitted at the time
step t;. Ur(R,q,t) = fY(R,q,t;) is located in the asymptotic region of the grid.

The ap factor is [52]
ap = / elkﬁRnf R,t =0)dR

where n¢(R,t = 0) is the part which depends on R of the initial wavepacket (see Eq.
(147)).

4.4.2 The half Fourier transform method

This idea for analysis of the propagated wavepacket is presented in the work of Balint-
Kurti et al. [63, 64]. Tts starting point is to compute at each time step the autocorrelation

function, along a given analysis line - see Figure 6, lying in the asymptotic region
- /dr/sin 80y (r) ¥ (R = Ry, 7, 0,1). (152)
r 0

Ry defines the position of the ’analysis line’. ¢(r) are the diatomic eigenfunctions. The

half-Fourier transform of ¢(t) becomes an energy dependent function
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4 THE A-BC SYSTEM 4.4 Analysis of the propagated wavepacket

AE) = — [7 atee(t). (153)

" 21 Jimo
The S-matrix can be expressed as a function of A(E)

5(m) = (et g (154)
iy’ g(=k) '

k; and k; are initial and final relative momenta atom-diatom, p; and py are effective
masses of the system in the entrance, respectively exit channels and ¢(k) is the Fourier

transform of the initial wavepacket.

4.4.3 The flux analysis method

The idea of the flux analysis method is to compute the flux of probability for the wavepacket
in the outgoing channel along an analysis line (Balakrishnan et al. [47], Neuhauser et al.
[52], Meijer et al. [66]). From the flux of probability of the scattered wavepacket we can
extract directly the reaction probability

Pal(E) = Il (W( R, ) 2T By (155)

In the expression above we define

\II(R, TO,E) = lb(R, TO,E)/AB, (]_56)
where . |
w(Ra TOJE) = \/—Q_W/oow(R’ Ty t)e h dt|7":7‘07 (157)

is the Fourier transform of the time-dependent wavefunction ¢ (R, r,t) at a given analysis
line r = rp, located in the products region. The potential energy in the analysis region is

assumed to be a constant. The A, factor is
Ag = (/o) A (o), (158)

it is the reduced mass in the exit channel and k,y is the average wavenumber of the

plane waves in the entrance channel (k,o = \/2u(E — €)/h, E is the total energy of the
wavepacket and ¢, is the energy of the initial state of the diatomic). The expression of

lan(kTLO) iS
" " V 2w Jo 0 T

The final expression for the reaction probabilities in term of flux becomes

7 kno OV (R, 1o, F)

Pr(E) = m[m[(\l’(& o, )| > ) (160)
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4 THE A-BC SYSTEM 4.4 Analysis of the propagated wavepacket

For J > 0 the relation becomes

2 J \If E
PUE) = — T E S~ (R, ) PY2 70 )

= AP By ), (161)

where U (R, ro, E) and 0¥q(R, 1o, E)/Or are computed, as explained above, for the given

) channel.

39



5 IMPLEMENTATION

5 Implementation

5.1 Scalar implementation

For 1D systems several test-programs were implemented. This concerns both the simple
propagation of wavepackets described in the two sections before, and advanced features
like non-adiabatic coupling of two potential energy curves and the filter diagonalisation
method for computing resonance states in the scattering processes.

After a description of these tests the full 3-D, J > 0 implementation program is de-
scribed. There exists two versions of the program: a) scalar ("usual implementation”)

and b) parallel implementation.

5.2 1D propagation

The implementation follows the usual features of the wavepacket propagation:

e Chebyshev expansion of the evolution operator

e DVR representation for the wavefunction in order to compute the contributions of

the kinetic (rotational part) and potential energy to the Hamiltonian

e For the kinetic energy (translational part), FFT back and forth transformation of

the wavefunction (kinetic energies are computed in momentum representation )

Several tests were made concerning the stability of the propagation when the wavepacket
includes very large, respectively very small energies. The mean value of the wavenumbers

included in the wavepacket is printed at each run

kmean = 2,U/E1mean; (162)

where F,,.q, is the mean energy of the wavepacket and p is the mass.

The extreme values of momentum allowed by the grid are printed

T T

kma:z: PN kmin = oA "

2dx 2Ax

dz is the distance between two grid points and Ax is the length of the complete grid.

(163)

When the mean value of the wavenumbers included in the wavepacket kp,ean 1S kmean =
(kmin + kmaz)/2, the propagation is correct. When this value is close to the maximum
allowed by the grid, kpean & Kmaz, Some components of the wavepacket are propagated
backward with respect to the interaction region. For k,eqn & kma: there is practically

no propagation (the wavepacket decomposes itself in forward and backward components).
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5 IMPLEMENTATION 5.2 1D propagation

When £,e0n > kmar the whole wavepacket is ”correctly” propagated backward with re-
spect to the interaction region.

The same scenario occurs when ky,eqn, is close to the minimum allowed by the grid
(Emean & kmin)-

This information is useful for calculation of "heavy systems” (e.g. molecules heavier

than the Hy molecule ) or "light systems” (like scattering of electrons).

5.2.1 Two potential energy surfaces propagation

The Born Oppenheimer approach is the basic assumption for the most of the dynamical
calculations. Because the nuclei are heavier than the electrons, their velocities can be
considered small compared to those of electrons. The complete wavefunction can be

separated as a product
Y(Q1,q5) = ¥1(Qi)v2(q;)

where 9;(Q;) is the nuclear wavefunction of nuclear coordinates {Q;} and v»(q;) is the
electronic wavefunction of electronic coordinates {q;}. For a given nuclear configuration
{ Qi }, different electronic wavefunctions lead to different total energies of the molecular
system, hence to different potential energy curves (for diatomics) or surfaces (for molecules
with more than 3 atoms). In the Born-Oppenheimer approach, there is no coupling
between different potential energy surfaces, and the total wavefunction is the product
between nuclear and electronic wavefunctions.

More realistic models consider that a coupling between different potential surfaces is
possible. The way how the couplings between potential energy surfaces can be computed
in the adiabatic or diabatic representation was discussed in Eqs. (115) - (123).

In this section we discuss a simple 1D implementation model for the propagation of a
wavepacket using two potential energy curves in the diabatical representation.

Technical details. The 2-PES propagation is performed using an appropriate storage
of the wave function and the potential. In order to apply the Hamiltonian on the array

vector optimally, all the vectors have to be stored in the following manner

W(nx, npot),

where nz is the number of grid points and npot the number of PES. All the usual 'do
loop’ according to number of points in a vector are given twice: one for the nx variable
and one for the npot variable.

We use a Gaussian-type coupling,

Hcoupl = Zoe(:p—xo)Q, (164)
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5 IMPLEMENTATION 5.2 1D propagation

where zj is the amplitude of the coupling (we set zy = 0.1 E,, for present tests). Alterna-

tively, we have implemented an electric dipole type coupling

I_:rcoupl = ZO(I‘ - 'TO)' (165)
For our tests we defined a coupling that acts between xq and xg + 2 ay. xy defines where

the coupling is located in space. The complete Hamiltonian matrix for a 2 level coupling

]:I _ ( AHI Hc:)upl) :
Hcoupl H2

where H; is the Hamiltonian which describes the dynamics for the first potential surface
(H, = p*/2u+V1) and H, is the Hamiltonian which describes the dynamics for the second
potential surface (Hy = p®/2p + V5).

The implementation of the coupling in the Hamiltonian is shown in the Appendix 3.

has the following form:

Results. Test calculations were made for the first two levels of the Cly molecule. The

first two potential curves are simulated by a Morse potential
VMorse — dO(1 - eia(IimOV)a (166)

where dy is the potential well, a = (ﬁ)lﬂw, with ;o the mass of oscillator and w its
frequency. 1z, is the position of the minimum of the potential energy.

The realistic equilibrium distances and dissociation energy (0.091 E;, and 3.78 aq - for
the first potential curve, and 0.013 E;, and 4.42 a, - for the second curve) were taken from
ab initio calculation [67]. The gaussian coupling was centered at zy = 4.0 ay close to the
minima of both potential curves.

For the first potential curve 98 bound states exists, for the second 34. Initially the
wavepacket was located only on the first curve. The mathematical expression of the

wavepacket is

V2 o @eeg)?
e—zkome :

P(x,t=0) = p Vie | (167)

with o - the initial width of the wavepacket and kg its mean wavenumber.

During the propagation, the population of the second component of the wavefunction
increases progressively. It reaches a maximum when the wavepacket is located entirely in
the interaction region (e.g. after 50 time steps At (At=200 a.u.)).

The dynamics of the wavepacket for two coupled potential energy curves is plotted in
Figures 8 and 9. In the first case, (see Figure 8), the initial position of the wavepacket
was ro = 8.5 ag. This scenario corresponds to a collision between the two Cly atoms,
at the mean energy of E,,.., = 1 eV. The two potential energy curves couple and the
wavepacket has a different dynamics on each of them. A small part of the wavepacket is

"trapped” as a stable bound state (see the Figure 8, last row).
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Figure 7: The first 2 potential energy curves for the Cly molecule, simulated by a Morse

potential. The parameters are extracted from ab initio calculations.

In the second case, the evolution of the two atoms starts near the equilibrium distance
(see Figure 9). In the beginning the wavepacket rests for a longer time in the interaction
region. In this case the values of the wavefunction which populates the second potential
energy curve are larger than those in the first case (see Figures 8 and 9, second column).
This happens because the wavefunction spend a longer time in the region where the
coupling is located. The coupling was

‘/;oupling = 2067(17‘%0)27 (168)

where zo = 0.1E,,, zo = 8.5 ay (Figure 8), respectively, zo = 4.0 ay (Figure 9). One can see
that the second potential energy curve which is not so deep, is used as an ”escape channel”
by the wavepacket: for time ¢ >2000 a.u. and x > 6 ay the norm of the wavepacket on

the upper surface is larger than the norm of the wavepacket for the lower surface.

5.2.2 Bound states from wavepackets

In case of a sparse matrix Hamiltonian, it is inefficient to calculate bound states by using
direct full matrix diagonalisation techniques. Several methods were proposed to solve the
problem of sparse matrices eigenvectors [68] (e.g. the relaxation method of Tal-Ezer and
Kosloff [69], the Lanczos algorithm [70] etc.). A general characteristic of these methods
is that they are iterative methods, which allow the study of eigenvalues within a given
energy range.

Filter diagonalisation [71, 72, 73] is an iterative method which we tested by using the 1D
implementation of the wavepacket propagation. The present implementation follows the

paper of Neuhauser [71] and is based on the time-energy resolution of the wavepacket. It
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Figure 8: Propagation of a wavepacket on two coupled potential energy curves. A collision
between two CI atoms is simulated: the initial wavepacket is located at the 8.5 ag. In this
region the potential between the Cl atoms is a constant. From top to bottom snapshots at
several time-steps are presented (¢ =70, 2450, 3500, 4900 and 8400 a.u.) The parameters
of the initial wavepacket were: mean energy Fy = 0.33 eV, center at xo(t = 0) = 8.5 ay.
Left: lower potential curve. Right: upper potential curve. After a long propagation time

the wavepacket is absorbed by the imaginary potential (see Eq. (76)).
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Figure 9: Propagation of a wavepacket on two coupled potential energy curves of Cl,

molecule. The initial wavepacket is located at 4.0 ag, close to the bottom of both potential

curves. From top to bottom snapshots at several time-steps are presented (¢ =70, 2450,
3500, 4900 and 8400 a.u.) The parameters of the initial wavepacket were: Fy = 0.33 eV,
xo(t = 0) = 4.0 ag. Left: lower potential curve. Right: upper potential curve. After a

long propagation time the wavepacket is absorbed by the imaginary potential (see Eq.

(76)).
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can be also used to avoid long propagation times in the case of scattering with resonances
[74, 75].

The conceptual problem in applying real-time propagation methods to obtain bound-
states is that the initial wavefunction remains indefinitely trapped in these states and
its norm does not decay. Different states, however, loose their phase coherence rapidly.

Therefore, for any chosen energy E the long-time Fourier transform (i = 1)

T )
W)~ [ e, T — o0 (169)
-T
will converge to the bound state closest in energy to E.
The evolution of the wavepacket is described through the evolution operator e *#* as
(1) = e iz, t = 0). (170)

We can expand 1(z, t) in terms of eigenfunctions ¢(z, €,) of H. For a discrete spectrum

the expansion is

P(z,t) = Zangﬁ(x, €n)e et (171)
where ¢, are the eigenvalues of H. The expansion coefficients are
an = ((z, 1 = 0)|¢(, ). (172)
For a continuum spectrum, Eq. (171) becomes
Y(z,t) = /aeqﬁ(x,e)e_“tde, (173)

with a. = (¢(z,t = 0)|d(z, €)).
Using the relations above, we can compute the quantity a.¢(z, €) as back Fourier trans-

form of the propagated wavefunction ¢ (x,t)

e °] .
orach(z, E) = / o (x, )P, (174)
— 00
In practice, the propagation time goes from ¢t = 0 up to t; = tp42. tmaz 1S the

propagation time needed till the norm of the propagated wavepacket decreased to zero
(e.g. the order of magnitude which is needed for a required accuracy). The integral in Eq.
(174) usually needs a long propagation time to converge. To get a better convergence the
wavefunction is multiplied by an artificial damping factor ¢(¢). The filtered wavepacket

at energy E will be

+0o0o .
v B)= [ ettt (175)
By using the convolution theorem [51], which has the general form
| f@pla)e*de = [~ Flq)P(k - q)dg (176)
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5 IMPLEMENTATION 5.2 1D propagation

with F'(¢) and G(q) being the Fourier transforms of f(z) and p(z), respectively, we get

w@JD:/ a.d(z, ) G(E — )de. (177)

—00

If we write this in a discretised basis set we get the relation between ¢ (x, E') and the
eigenfunctions of H (Neuhauser [71])

U(@,B) =) and(z, 6.)G(E — €), (178)

with
mm:/w%@m, (179)

the Fourier transform of ¢(¢). By comparing the results of Eqs. (175) - (178) it is possible
to find the eigenvalues €,. If G(w) is a narrow band function, each term in Eq. (178)
contributes to the sum with a narrow peak. The graphical representation of i(z, F) in
Eq. (178) looks like an approximate spectrum of eigenvalues.

For a good energy separation the wavepacket must be propagated for a time

1
t~ — 180
(SE, ( )

where 0 F is the energy separation between the analyzed state and its nearest neighbour
(0F = €, — €41). This simple method will require very long propagation times for closely
spaced eigenvalues. A qualitative summary of this discussion is presented in Figure 10,
where the shape of ¢)(z, E) and ¢(x = 4 ag, E) are given for a Morse type potential (see
Eq. (166)) with a well depth dy = 0.091 E; and a equilibrium distance z, = 3.78 a,.
The mass of the Morse oscillator was set to 1840 a.u.. This set of parameters leads to 14
bound states.

Initially the wavepacket is defined as a narrow band function centered at x = x,. For
the usual Hamiltonian H = P?/2p + V() the location of the initial wavepacket should
be chosen such that V' (zy) < E; (where E; is the lowest eigenvalue of the spectrum).

The implementation includes the following:

e 1D propagation of the wavepacket: the propagation time is set up by using Eq.
(180).

e At each time step two values are stored: 1(z,t) - the propagated wavepacket and
X(x,t) = g(t)(x,t) - the filtered wavepacket.

e After finishing the propagation ¢ (z, F) and x(z, F) are computed from the stored
components ( (z,t) and x(z,t)) by using FFT.
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Figure 10: Top: the 3D picture of the Fourier transform of the absolute value of the
filtered function y(x, F) = [* g(t)v(z,t)e'"!dt. Bottom: a cut through the 3D picture
(top) at the 14-th grid point (approx. = = 4 a.u.). Bottom left: propagation time step
was t = 200 a.u., number of steps=256. Bottom right: the same time step, but with 1024

steps in the propagation leading to a better resolution for the first 14 energy eigenvalues.
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5 IMPLEMENTATION 5.3 3D propagation of the wavepackets

e X(xy, F) is plotted at a value xy. The plot shows the approximate location of the
eigenvalues in energy (according to Eq. (178)) if G(E —¢,) is a narrow band function

in energy space (e.g. Gaussian).

e At the given approximate locations found above a more refined calculation is per-

formed afterwards by using the functions produced by FFT

B, =< (B, 2)|H|Y(E,z) > . (181)

If the propagation time is shorter than the time indicated by Eq. (180), then each
energy peak contains information about several eigenvalues. In this case we have a small
Hilbert space associated with the given peak, and the eigenvalues can be recovered by
diagonalisation of a n x n matrix type, where ”n” must be larger than the number of
eigenvalues contributing to the given peak. The matrix is produced by choosing several
positions in the energy grid (" E,” points of the grid) and computing then the matrix
elements < ¢(E,, z;)|H|¢(E,,z;) >, where E, is a position inside of the peak and z; a
arbitrary space point. The number of energies in the peak must be guessed reasonably
before all calculations start.

The code is still in the test phase.

5.3 3D propagation of the wavepackets

The full code can propagate the 3D wavepackets for J > 0, using the fully-coupled
Hamiltonian given in Eq. (96) and the Chebychev expansion of the evolution operator.
The code was developed from an existing version previously tested by Prof. Jaquet’s group
for J = 0 problems. Both short-time and long-time propagation schemes were tested for
different absorbing potentials showing good results. The long-time propagation scheme
requires the Mandelshtam and Taylor formulation of the Chebychev recursion formula
[27, 28].

The next scheme was used in order to include the J > 0 quantum numbers in the

propagated wavepacket:

e The angular part of the wavepacket was assigned by two indices. The first index
labels the projection of the total angular momentum J onto the Z body-fixed axis

(). The second index describes the Jacobi angle 6 (for a given ).

e A DVR representation was set up for the wavepacket, using a set of points as
described in Eq. (138).
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5 IMPLEMENTATION 5.4 Analysis

e The complete Hamiltonian has the general matrix form
HJ = HQ + Hcouplinga (182)

in the DVR-FF'T basis set described in section 3. Hg is the part of the Hamiltonian

which is diagonal with respect to the 2 quantum number.
Ho = Ho—o® Ho=1 @ ...Ho=y (183)

and the coupling term Hyypiing connects Ho—p, with Ho—y,41 and Ho—p,—1 blocks
(see the last term in Eq. (96)).

The propagation of the wavepacket follows then the steps described in the 1D implemen-
tation part (see Section 3).
The output of the propagation part of the program includes information about the

wavepacket at each time step during the propagation.

5.4 Analysis

The analysis part of the program uses the files stored during the propagation to produce
the reaction probabilities. Three methods have been tested. The grid parameters used in

the different calculations are summarized in Table 1.

Calculation N; Atfau] Nrp ARJ[ag] N, Arfag] Np ofag] Eo[eV] Type

Figure 11 230 25 128 14.0 64 7.0 32 0.5 0.8 R
Figure 12 1 6000 128 11.0 64 7.0 32 0.5 0.6 R
Figure 13 1 6000 128 11.0 128 10.0 40  0.25 1 R
Figure 14 1 6000 128 11.0 64 7.0 32 0.5 0.6 P

Table 1: Grid parameters used to compute reaction probabilities given in Figures 11 - 14

The notations are :

N, - the number of time steps.

At - the length of one time step (in atomic units [a.u.]).

Ng - the number of grid points in R direction.

AR - the length of the grid in R [ag).

N, - the number of points in r direction.

Ar - the length of the grid in r [ay].

Ny - the number of points for the # coordinate.

o - the initial width of the wavepacket with respect to R [ag].
Ey - the initial mean energy [eV] of the wavepacket.

Type - is the type of analysis - in the reactant zone (R) or in the product zone (P).

We compared our results with Zhang and Miller’s time-independent results [76].
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5 IMPLEMENTATION 5.4 Analysis

5.4.1 The split-function method

The split-function method is implemented for the short-time propagation scheme. Within
this scheme, the complete propagation (propagation time t & 5-10000 a.u.) is simulated
by a set of several short time-steps (A7 = 25-100 a.u.). After each short propagation the
wavepacket is splitted into two pieces - the one lying in the interaction region and the
one located in the asymptotic region. The second piece is stored (binary) at each time
step. When the propagation is finished, the analysis part of the program reads this file
and produces the S-matrix according to the Eq. (150).

During the tests this method was found to be not accurate enough. For the D+H, —

DH +H reaction the following behavior occurs:

e For a propagation time smaller than ¢ = 4000 a.u. the reaction probability is

underestimated
e For a propagation time ¢ ~ 5000 a.u. the reaction probability is correctly described

e If the propagation time is still increased (more than ¢ = 6000 a.u.) the reaction
probability acquires an artificial oscillatory structure. According to Heather and

Metiu [59], the final momentum distribution Py (k,) of the scattered wavepacket

Pr(ku) = [kl ()] (184)

( k, are the momenta included in the scattered wavepacket and ¢, is the complete
time needed for propagation) is not well described when the grid is too short. We
can write the expression for the final momentum distribution as a sum over time

steps
s

Pr(ky) = | Z(ku|W(taatf)|¢(ta)>|2- (185)

a=1
W(ta,tf) is the evolution operator, and ¢, is the moment when the split of the
wavepacket is done. The insufficient accuracy in describing Py(k,) can lead to an
interference between the terms of Eq. (185) at late times (large « values). The
interference is responsible for the oscillatory structure of the reaction probability in

the split method.

5.4.2 The analysis line method

Another possibility to investigate the wavepacket in the ”free-force region” is to analyze

the wavefunction at the so-called ”analysis line” (see Figure 6).
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Figure 11: Inelastic transition probabilities, P(E), for the D + Hy (v =0, j =0)— DH
+ H reaction. Analysis method: split function. The symbols ¢ are the time-independent
reactive calculations of Zhang and Miller [76]. The symbols + present the sum of the

present, inelastic reaction probabilities and Zhang and Miller’s reactive results.

The method was tested for long-time propagation schemes. At each iteration in the
Chebychev expansion the autocorrelation function is computed for the last term in the
recursion scheme and stored until the propagation is finished.

The analysis part of the program reads these data and computes the S-matrix using
Eq. (154). Compared to the split-function method the advantage of this method is that
during the propagation not so many data have to be stored and that the algorithm for

the analysis of these data is fast.
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Figure 12: Inelastic transition probabilities for the D-+H, (v=0, j=0) — DH +H reaction
using the analysis line method for J = 0 (left) and for J = 1 (right). The symbols ¢
are the time-independent reactive calculations of Zhang and Miller [76]. The symbols +
give the sum of present inelastic reaction probabilities and Zhang and Miller’s reactive

calculations.
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5 IMPLEMENTATION 5.4 Analysis

The effect of different grid parameters can be seen by comparing Figure 12 with Figure
13. The accuracy in the range of small energies is improved because the new grid can

offer more information about the small frequencies included in the wavepacket.
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Figure 13: The same method as in Figure 12, but with a different set of numerical

parameters (larger grid, more grid points), J = 0.

5.4.3 The flux analysis method

The flux analysis method needs information of the wavepacket at the analysis line. The
storage requirements are higher since at each iteration a copy of the wavefunction and of
its derivative are needed. This method was found to be in our implementation the most
stable and accurate one. The analysis line can be placed into the product region, and by
that the reaction probability is computed directly without the change of coordinates.

The total reaction probabilities for total angular momentum J = 0 and J = 1 are given
in the Figure 14, together with Zhang and Millers’s results [76].

We obtained a good accuracy in small energy regime (E = 0.4 - 1.0 eV). At energies
E; > 1 eV the reaction probabilities are not correctly described. For the energies E; < 1
eV the absolute values |Piime—dependent (Ei) — Prime—independent(Ei)| are less than 0.01 for
J = 0, respectively less than 0.015 for J = 1. For the energies E; > 1 eV these values
have a maximum of 0.05 for J = 0, respectively, 0.053 for J = 1.

The reasons for that are the initial energy and width of the wavepacket. An improved

set, of parameters is discussed in Section 6 - ”Results”.
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Figure 14: The reaction probability for D+Hy(v=0, j=0)—DH +H reaction using the
flux analysis method for J = 0 (left) and for J = 1 (right). For comparison the Zhang

and Miller results are given [76].

5.5 Parallel implementation

The parallel implementation exploits the matrix representation of the Hamiltonian

Ho—y Ho—o+ 0 0 0
o Hoy— Hoy Hoo 0 0 ... | (186)
0 Hop o Hoo Hgo: 0 ...
0 0
where, according to Eq. (96), each block is the matrix representation of the operator
- 1 9 1 9 1,1 0 0 72
Ho =— — — — —(——=sinf— — ]Z )+
24 o OR?  2ugc or? 21 " sinf 00 00 sinf?
1 . .
+— (2 =209+ V(R,1,0), 187
s = 200+ V(R.r) (187)
and
Ho:=———(Jij3). 188
Q.+ QMAiBCRQ( +J7) (188)

Since the action of Hq and ﬁgi on the wavefunction is computed independently, and
the action of _HQ,:t on 1 takes ~ 20 times less CPU than the action of Hgq on 1, the
parallelisation concerns just the "€ diagonal Hamiltonian” which can be represented as

follows:
HQ:O 0 0 0 0
0 Hqo— 0 0 0
Hjino = 189
diag 0 0 Hgpy 0 0 (189)
0 0

The action of each Hq block on the wavefunction can be computed independently on

different processors.
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5 IMPLEMENTATION 5.5 Parallel implementation

5.5.1 General presentation of the parallel scheme

We used the MPMD (Multiple Program Multiple Data) paradigm [77] to parallelise the
WAVE program. A graphical representation of this paradigm is given in Figure 15 (one

arrow is a sequence of data processing).

Node 0 Node 1 Node 3 Node 4

Figure 15: Without communication, a program is running on several nodes of a parallel

system.

Each node of the parallel context ® receives a copy of the program and a set of input
data. The data are processed then independently on each node. The benefit of paralleli-
sation comes by splitting a given task of the program (for instance a ”do-loop”) between
different nodes, so that each node does just a part of the complete job. In order to do
that a communication between processes is needed: first at the level "A” (see the Figure
16) the pieces of the vector which must be processed in the parallel context are sent to
different nodes, then at the level ”B” the results of several independent calculations are
collected, and a new complete vector has to be formed.

Because this communication process takes time, the complete information about (¢)
is recovered only in node 0 (”the main node”), while the other nodes keep just pieces of
it. The structure of the complete program can be represented as in Figure 17.

"N” programs run on ”N” nodes of the parallel context, but only the node 0 produces
the complete output. The other nodes are available for those pieces of the program where
a parallel calculation is needed (see Figure 17).

It was found by experience that a synchronization between processes which are very
different (e.g. when only node 0 does the input-output operations and the other nodes

have to wait till the processing starts) is quite difficult to do. There are some subroutines

8A collection of processes (group) which may communicate to each other is labeled parallel context.
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Parallelisation

Figure 16: A program runs on several nodes of a parallel system. Between the situation

"A” and ”B” different nodes communicate.

<______
<______
<______

<____
<____
<____

T T T

| | |

| | |
v vV

Figure 17: A parallel program runs on several nodes. There are two main steps: the

computations done independently on each node and the communication between nodes.
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5 IMPLEMENTATION 5.5 Parallel implementation

available which helps for synchronization [80]. On the other hand, processes which have
almost the same speed can be synchronized easier.

Within the BLACS library (Basic Linear Algebra Communication Subprograms)
software all the parallelisation tasks are supported. An exact description of all the
BLACS features can be found in www.netlib.org/blacs. BLACS software is designed
to make different parallel applications more portables and can manage several message-
passing parallel libraries (like MPI, MPL or PVM). The most important calls within
BLACS are:

blacssetup(icontext, iam) - creates the parallel context (using MPI, in this case)
where "icontext” is the parallel communicator ® process and ”iam” is the index of the
current node in the parallel context.

blacsgridinit() - initialization of the processor grid required by the actual calculation
(number of processors and the way they are ordered by MPT).

blacsbarrier(icontext, iam) - wait until all the processes are reaching this point. It
helps in synchronization of the jobs between different processors.

blacsexit() - close the parallel context.

For the communication part we wrote a subroutine which splits the array where the
wavefunctions is stored among the nodes of the parallel context. We used the zgesd2d
BLACS subroutine to send a two-dimensional complex array from node 0 to the other
nodes of the parallel context, and the zgerv2d subroutine to collect on node 0 the arrays
from different nodes. The FORTRAN implementation of the communication subroutines

is given in the Appendix 4.

5.5.2 Parallelisation with respect to {2 channels

The basic idea of parallelizing the action of the Hamiltonian on the wavefunction is to

transform the ’do loop’ over the different 2 values:

do i=1, omega

9The communicator is a special feature introduced by MPL It consist in labeling a set of processes by
the same index and creating a group of processes acting synchronic in a parallel context.
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5 IMPLEMENTATION 5.5 Parallel implementation

All the processors receive successive values of nl and n2 ( processor 1: nl=1, n2=2,
processor 2: n1=2, n2=3 etc - for a run on a grid of 'omega’ processors).

On the SP2 machines of the University of Karlsruhe, one step of the ’do loop” above
takes about 1.0 s. This is much larger than the communication time. In the calculations
made for the D+Hy — DH +H reaction, the ”scatter” and ”gatter” subroutines described
above, need around 0.07 s to distribute the whole wavefunction over the nodes. Therefore,
because the computing time is small compared to the communication time, the strategy
described above can significantly decrease the computing time.

An improved version of the program includes a parallel computation of the DVR to
FBR transformation of the wavepacket. The wavefunction, indexed by €2, can be split
into Q pieces, when the transformation given by Eq. (143), is performed.

For J =1 the program uses 2 processors. We used a grid of 128 x 64 x 32 points in R, 7,
and # Jacobi coordinates. In this case the scalar version needs ~ 0.1 s to compute the
action of the potential to the wavefunction, &~ 0.03 s for the rotational part and =~ 1.25
s for the kinetic energy part (two times FFT in R and r) of the Hamiltonian. About
1.8 s are needed for the back and forth transformations DVR - FBR. Both kinetic and
transformation parts include a ”do loop” over the two possible €2 values in the J = 1
case. The parallel version needs only =~ 0.9 s for the transformation and 0.9 —1.0 s for the
kinetic energy part. In addition, a call of the ”scatter/gatter” subroutines takes ~ 0.05
s, each time when one of them is called. In order to synchronize all the processes in the

parallel context, we use
call blacs_barrier()

before the call of the ”gatter” subroutine. The effect of this call is that the fast processes
wait until the slowest one calls also the ”"barrier” subroutine. This waiting time is ~
0.1 — 0.2 s for our test run on 2 processors.

Finally, the parallel version needs about 2.15 — 2.4 s to compute the action of the
Hamiltonian on ¢ (J = 1, 128 x 64 x 32 x 2 points, IBM-SP2 machine). The same
program needs in a scalar version about 4.6 — 4.8 s to do the same operations.

For the scalar case the time needed to compute the action of the Hamiltonian on the

wavefunction is

Tscalar(J) ~ T[](J + 1) (190)

T} is the time needed to compute the action of the Hamiltonian on the wavefunction for

J = 0. In the parallel case the scaling relation becomes

Tparallel(J) ~ TO (CYJ + 1)7 (191)
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where « is a constant which is close to 0 in the ideal case (no scaling) and to 1 in the
scalar implementation.
In Figure 18 the scaling up to J = 5 is shown for the IBM-SP2 machine.
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Figure 18: D +Hy; — DH +H: time needed to compute I:I@/} for different values of the total
angular momentum J (IBM SP-2). Serial (upper line ) and parallel (lower line) scalings

are plotted.

Using this implementation strategy a scaling factor up to a = 0.15 can be reached.
a = 0 value corresponds to the ideal case, when no scaling with respect to the value of .J
is present.

Details about how the parallel jobs are submitted using the batch jobs can be found
at the web page:

http:\www.uni-karlsruhe.de/~SP/Handbuch/

5.5.3 Parallel 2D-FFT implementation

A second version of the parallel program includes the usage of a standard parallel library.
We tested the 2D-complex FFT parallel subroutine PDCFT2 from the PESSL library
of IBM.

As pointed out in the Section 4, the energy is computed for operators as given by Eq.
(131) using Eq. (132). If we use a 2D-FFT subroutine we can compute the kinetic energy
for both R and r Jacobi coordinates in the same time. Tests were done using the parallel
PDCFT?2 routine.

Our tests are not finished. It was found that after 8140 calls of the PDCFT2 subrou-

tine a warning message is given. It is repeated for each transformations at each point of
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the grid where the wavepacket is represented (typical wavepackets are described by using
128 x 128 x 50 grid points). This leads to a tremendous amount of output which makes
the subroutine unproper for our purpose. (The existence of this warning message was
reported to IBM from Mr. N. Geers of the Rechenzentrum Karlsruhe.)

A summary of all the programs developed to compute the reaction cross sections

using time-dependent wavepacket methods is given in the Figure 19.
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RELAX
(diatomic calculation) ¢
{ Diatomic states }
SCATT
(propagation of the WP) ¢
[ Information extracted frong  at each time %ep
ANA.LINE
(analysis of the propagated WR) $

[ Reaction probability}

CROSS, RRATE
(cross section and reaction rate) $

{Cross section and reaction rate constaat

Figure 19: Global scheme of our WAVE program package showing the different mod-
ules, the order of execution and the type of output produced by each of them (WP -

wavepacket).
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6 RESULTS

6 Results

6.1 The D+H> — DH +H reaction
6.1.1 The scenario of the reaction

An elementary bimolecular reaction like D+Hy; — DH +H proceeds not in sequential

7

steps by breaking the ”"old” bond and subsequent formation of the "new” molecule, but
via the concerted motion of the nuclei in a continuous transformation from the reactant
valley to the product valley. The potential energy surface serves to mediate between the
reactant and the product configuration. According to Zewail et al. [5] a transition state
(TS) is fundamental in defining the region of internuclear separation at which the reagent
molecules ”pass on” to the products. Closely related to the TS concept can be defined
the reaction path as the line of minimal energy from reactant to product valley [34].
Properties of the TS and the reaction path are determined by the potential energy surface
characterizing the system.

The PES topology gives us information about the preferential orientation of the molecu-
les during the reaction. This defines a ”cone of acceptance”, as a solid angle surrounding
the projectile-target axis where the reaction is highly probable (Levine and Bernstein
[34]). A steric factor can de defined as the number of molecules which reacts relative to
the number of colliding molecules, for a given relative orientation of reactants [81]. The
different efficiency of the collision at different angles is caused by the topology of the PES.

The most convenient relative orientation of the reactants defines the reaction path.

6.1.2 Effect of vibrational energy of the reagents upon the reaction

D+H; — DH + H is a reaction with a symmetric barrier between the entrance and
the exit channel. For all exoergic reactions with a barrier along the reaction path and
for all endoergic reactions we seek to obtain information on the energy requirements for
reaction. Obviously we require a collision energy E, larger than the threshold ( the
difference between largest and smallest values along the reaction path) of the PES. Even
if the products are oriented according to the angle which defines the reaction path, there
is still to discuss the problem of distribution of energy among the degrees of freedom.
Usually the energy inside of a molecular complex is distributed over 3n — 6 vibrational
degrees of freedom and 3 rotational degrees of freedom ("n” is the number of atoms in
the molecule). When a reaction occurs only the energy of those degrees of freedom which
are along the reaction path can be used to overcome the barrier. According to Figure
20 and to the discussion of Polanyi et al. [82, 83] translational energy is most effective

for passage across an early barrier (e.g. the saddle point in the entrance valley), whereas
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vibrational energy of the reactants is more efficient in surmounting a late barrier (in the
7exit” valley).

Figure 20 summarizes the classically possible trajectories on a general type of PES.

Early barrier Late barrier

Figure 20: Qualitative discussion of the influence of the topology on the reaction flow,
using internal coordinates (rap, 7pc). The trajectories starts in all the cases in the low
- right corner of the pictures. Left: early barrier. Right: late barrier. Up: the reactants
have mostly translational energy (E;). Down: the reactants have mostly vibrational
energy (E,).

6.1.3 Effect of rotational energy of the reagents upon the reaction

The effect of the diatomic rotation in the reaction D4+Hy; — DH +H was discussed by
Sathyamurthy and Toennies [84]. According to their work, the rotational excitation of the
reactants plays a significant, often non-monotonic role in bimolecular exchange reactions.

For many reactions of the type

A + BC — AB +C,
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6 RESULTS 6.1 The D+H, — DH +H reaction

the reaction cross section initially decreases with increase in the rotational quantum num-
ber j of the diatom and then increases with further increase of j (Sathyamurthy and
Toennies [84]). To a large extent the decrease has been identified as an orientation effect
and the increase as an energy effect.

When a reaction has a preferred reaction path (for example a collinear reaction in
the case of D+Hy — DH +H ), rotational motion disrupts the preferred orientation and
the reactivity decreases. This is reflected in the lowering of the cross section when the
rotational quantum number j of the diatomic BC has small values (the orientation effect).
Beyond a critical value j; (i is the index of the critical value) the favored orientation is
accessible with equal probability, independent of j. The orientation effect plays a non-
significant role when j > 7;. In such case the increase of j for a given vibrational state v
of the diatom and relative translational energy Fy..,s of the reactants provides a larger
amount of energy to cross the barrier. This is the energy effect, which is reflected in the
increase of the cross section with respect to the values of j.

The D+H, — DH +H specifics.

As benchmark system for our implementation we used the D+Hy — DH +H reaction.
All the results presented in the following section were obtained by using the LSTH PES
of Truhlar et al. [85]. New improvements of the PES like those of Bauschlicher et al. [86],
does not lead to sensible modifications in the theoretical results [91]. With the present
implementation investigations for the nonadiabatic PES for the H; system of Varandas
et al. [87] are also possible. Within the Born-Oppenheimer approach the same PES can
be used for all isotopic substitutions.

D+Hy; — DH +H is a direct reaction in which the H-H bond is continually extended as
the D atom approaches. The switch between bonds occurs in a very short time interval,
corresponding roughly to one vibrational period. The barrier of the reaction is about
Ey =~ 10 kcal/mol, representing ~ 10% of the dissociation energy of the Hy molecule. The
LSTH value for the barrier is Ej, = 9.802 kcal/mol.

The most convenient orientation for the reaction is the collinear one. The explanation of
this is the following (Levine and Bernstein [34]): molecular orbitals (MO) are constructed
as a linear combination of atomic orbitals (AO). For Hy we use a 1s AO on each H atom,
so we have two independent linear combinations: o,(1s) and 0,(1s). In the o, orbital
the two 1s functions have the same phase. The MO has no node, hence it is a low-energy
bonding orbital. In the o, MO (anti-bonding orbital) the two atomic functions have
opposite phases, the node between the two nuclei increases the energy of this orbital. So,
the ground state of Hy is o(1s)%.

When the D atom collinearly approaches the Hy molecule, the following situations can

occur (see Figure (21)): three electrons have to be assigned: two go to the lowest bonding
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6 RESULTS 6.1 The D+H, — DH +H reaction

orbital the third is assigned to the orbital of next higher energy. Thus, it is expected to
have a small barrier, due to the presence of this electron in the ”anti bonding” orbital,
which has a larger energy than the energy of the separate system. The ”anti bonding”

character is given by the node occurring between the o,(1s) and o, (1s) orbitals.

O @O0 oK Xo
® 0O
Oe @

o O O -
O OO OO0

. E
o O o®
. ;
o =@

@) QQ
O O O

Figure 21: H - Hs collision. The dark circles are the 1s orbitals, the white ones are of 1s*
type. Top: collinear reaction. Bottom: collision at an angle o € (0,7/2). In the left side
the atom and the molecule are separated (”free-force region”). In the right side the atom
and the molecule are colliding (”interaction region”). The distances between the 1s and

1s* orbitals in the interaction region are changing when the collision angle is changed.

Now let the D atom approach the Hy at an angle a € (0,7) with respect to the H,
bond. This situation is described in the Figure (21) - bottom. The energy of the bonding
orbital and the strongly anti-bonding are nearly unaffected by the change of angle. The
second orbital which is "nearly anti bonding” has a node between the nuclei which are
now closer to each another (d; < ds in the figure (21)). The third electron assigned to
the ”anti-bonding” bent orbital, will have a higher energy than in the collinear case and
the barrier will increase (see also the Walsh diagram for the AH, systems [88]).

By plotting the opacity for the D + Hy(vg,jo) — DH + H reaction, for different

initial ro-vibrational states (vg, jo) of the Hy molecule, Neuhauser et al. [92] found that
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6 RESULTS 6.1 The D+H, — DH +H reaction

for collision energies E =~ 2 eV, the largest opacities are those for jo = 1 and jy, = 1
(where jo, = 1 is the projection of the jy onto the Z space-fixed axis). By discussing the
significance of different quantum numbers that characterize the reaction, they prove that
quantum states with j;, = 1 cannot have any contribution from collinear geometries, so at
collision energies larger than 2.0 eV the collinear configuration is not the most preferred

one for the reaction.
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Figure 22: Left: 3-D picture of the LSTH potential energy surface [85] for the linear
configuration of the three H atoms. The cutoff for the potential (see Eq. (55)) was set to
0.25 Ep. Right: the same picture, as a contour plot. Energies and distances are given in

atomic units.

6.1.4 Investigations with wavepackets

The time-dependent methods have already described in Sections 2 and 3. The program
described in Section 4 was used to simulate the dynamics of the D+H, — DH +H
reaction. Previous theoretical [76, 84, 92, 93, 94, 95, 97, 99, 100] and experimental [89,

90, 91, 101] investigations were compared with present results, as described below.

Initial bound states of the diatomic

50 eigenvalues of Hy were taken into account during the propagation. The energies
together with their vibrational and rotational quantum numbers (v, j) are presented in
Table 2.

The initial state for Hy was v =0, j =0 .

Choice of the grid
First, one wants to set up the most convenient grid for the calculation. Jacobi coordi-

nates have been used: R, r and € (see Figure 4). We used 128 points in the R coordinate,
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6 RESULTS 6.1 The D+H, — DH +H reaction

Nr. Energy [eV] Energy [cm™!] v j
1 0.270 2179.83 0 0
2 0.285 2298.32 0 1
3 0.314 2534.23 0 2
4 0.358 2885.39 0 3
5 0.415 3348.70 0 4
6 0.486 3920.13 0 b5
7 0.570 4594.89 0 6

48 1.945 15689.82 2 10

49 1.987 16022.48 3 6
o0 2.056 16581.03 1 14

Table 2: H, eigenstates for given quantum numbers

64 points in the r coordinate and 32 points for the angle §. We choose for R = [0.001, 11.0]
ag, and for r = [0.001, 7.0] ag. The analysis line was put at r = 4.9 a;. For comparison,
tests with 128 x 128 x 40 points were also performed. The results are summarized in Table
3.

Although the domain r = [0.001,7.0] ag is not so large and the analysis line is not
far in the asymptotic region, there are not large differences between the probabilities
computed using the 128 x 64 x 32 grid and those computed within a grid of 128 x 128
points distributed over the 11.0 agx 10.0 ag x 27 (R, r, §) domain, with an analysis line
at r = 7.5 ag.

The next step was to set up correctly the parameters for the initial wavepacket.
We wanted to investigate the reaction probabilities between 0.45 eV and 1.65 eV. For
comparison we used the time-independent calculations of Zhang and Miller [76]. A first
set, of calculations was done, by using a gaussian wavepacket with a mean kinetic energy
of 0.6 eV and a width of 0 = 0.5 ay for J = 1. The J = 1 value gives us the opportunity to
check the behavior of the wavepacket in the simplest case when a coupling between the (2
channels is present. The first set of reaction probabilities was found to be underestimated
in the region of energies £ > 1 eV - see Figure 23 - right.

New calculations were performed with Fy =1 eV, 0 = 0.5 ay. In this case the results
were overestimated in the low energy region [0.6, 0.8] eV - see Figure 23 - right.

For J =1 and Ey = 1 eV several vales for the initial width o of the wavepacket where
tested. The set of initial parameters £y = 1 eV, 0 = 0.5 ay leads to good results in

the high energy area (E > 0.8 eV) (see Table 5). However, the reaction probabilities in
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6 RESULTS 6.1 The D+H, — DH +H reaction

E [eV] Py P, Py
0.503 0.812E-03 0.824E-03 0.822E-03
0.600  0.115 0.116 0.114
0.707  0.407 0.407 0.407
0.804  0.441 0.443 0.442
0.901  0.530 0.528 0.530
1.000  0.565 0.565 0.564
1.106  0.593 0.590 0.591
1.203  0.624 0.622 0.625
1.300  0.646 0.647 0.648

Table 3: Reactions probabilities P(F) for different energies E' and grid parameters (see
Table 4) for the D+Hy(v = 0,5 = 0) — DH +H reaction (J = 0).

Index Nr N, Ny AR J[ag] Ar[ag] rana [a0]

P 128 128 40 11.0 10.0 7.5
P, 128 128 40 11.0 10.0 6.5
P; 128 64 32 11.0 7.0 4.9

Table 4: Grid parameters used to compute the reaction probabilities in Table 3. The
notations are the same as those in Section 4 page 50 for the grid parameters used in D

+ H, reaction.

E; [eV] 0.600 0.708 0.840 0.977 1.085 1.247 1.354

R, 0.022 0.001 0.009 0.003 0.003 0.001 0.020
Ry 0.048 0.031 0.011 0.009 0.003 0.003 0.027

Table 5: For the results presented in Figure 23 the absolute values |Pime—dependent (Ei) —
Phime—independent (E;)| are given at several energies F;. Two time-dependent calculations are
compared with the time-independent results of Zhang and Miller. The initial parameters
of the wavepackets were: Ey=1 eV, 0=0.25 (first row R;) and Ey=1 eV, 0=0.5 (second

row Ry).
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6 RESULTS 6.1 The D+H, — DH +H reaction

the energy domain E = [0.45, 0.8] eV are overestimated in this case. The set of initial

parameters Ey =1 eV and o = 0.25 ay was found to be the best (see Figure 23 - left).

0.7 0.7

0.6 0.6

05 05
2 04 2 04
Qo Q
[ © i
g e
& 0.3 & 0.3 /

0.2 0.2 ]

0.1 / 01

0 0.6 0.8 0

£l 12 14 0.6 L 12 14
Figure 23: Total reaction probabilities P(E) for the D+ Hy(v=0, j=0) — DH +H reaction
(J =1). Left: reaction probabilities for different initial widths o of the wavepacket (the
value for o is given in the top-right corner of the picture). The initial energy was Ey = 1
eV. Right: reaction probabilities for initial energies Fy = 0.6,1.0 eV at ¢ = 0.5 ay. For
comparison, time-independent results of Zhang and Miller [76] are plotted with squares ¢
(Z-M).

For the collinear configuration several snapshots of the propagation are plotted
in Figure 24. We can briefly resume the dynamics of the reaction as follows: initially,
the wavepacket is located in the reactants region of the grid (R is large, r ~ 1.42 ag
(equilibrium distance for Hy)). At later times (¢ > 1100 a.u.), the wavepacket moves
into the product region (r is increasing). During this process, there are no significant

resonances in the interaction region (where R and r have both values of &~ 1 — 2 ay).

6.1.5 Reaction probabilities for J =0, ...,33

Total reaction probabilities for the D-+Hy(v=0, j=0) — DH +H reaction were computed
for J = 0 up to 33 for total energies in the range (0.45 - 1.65) eV. Up to J = 5, the fully
coupled Hamiltonian was used. For larger values a restricted number of €2 channels was
used (8 channels for J > 9, 5 channels for J = [6,9] ), because the computational cost
(CPU-time and memory requirements) become demanding. By using just one channel
(e.q. for J = 0) the complete propagation takes around 2 hours on an IBM-SP2 machine.

The scaling of the calculations with respect to .J is linear, with a prefactor close to 1,
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6 RESULTS 6.1 The D+H, — DH +H reaction

TIME :100 A.U. TIME :800 A.U.

0.0025
0.002
0.0015
0.001
0.0003

TIME :1100 A.U. TIME:1200 A.U.

TIME :1400 A.U. TIME :2000 A.U.

0.00025 -

R[a.u]

7 10

Figure 24: |¢)| during the D+Hy(v=0, j=0)— DH +H reaction is given (linear configu-
ration D-H-H). Pictures are given at times ¢t = 100, 800, 1100, 1200, 1400 and 2000 a.u..

The initial wavepacket was located at R = 7.0 a,.
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6 RESULTS 6.1 The D+H, — DH +H reaction

which leads for an 8-channel calculation to more than 16 hours real computing time,
keeping the same level of accuracy (e.g. the number of grid points per channel).
The cutoff conditions for the angular kinetic energy operator (see page 16) must be

imposed to the effective potential in Eq. (96). This term has the form

1

:m[J(J+1)+j(j+1)—2QQ]- (192)

Verr(5,9)

The calculation for J = 5 shows the behavior of the reaction probabilities at large energies

(about 1.8 eV) when the cutoff is not correctly implemented - see Figure 25.

25

J=5—

i
(4] N
E——

Probability

=

jAU .

0.5 e

e

00.4 0.6 0.8 1 EJ[é%/] 14 1.6 18 2

Figure 25: Consequence of the wrong implementation for the cutoff for the effective
potential in Eq. (96) onto the reaction probabilities P(E) for the D+Hy(v=0, j=0) —
DH +H reaction, .J = 5. The artificial peaks are located at F; =~ 1.69 eV and Ey ~ 1.76
eV. Their width is =~ 0.03 eV.

According to [104] the cutoff must be imposed to the pairs of quantum numbers (7, 2).

The cutoff condition is
Verr(7, ) < Vinaa- (193)

For the pairs (j,€2) that do not satisfy the relation given in Eq. (193) we take
Vers(3,92) = Vinaa- (194)

The complete set of reaction probabilities is given in Figure 26, as a 3D-function, and
as a contour plot in Figure 27. Details for several reaction probabilities are given in Figure
28.

A detailed comparison of reaction probabilities for several .J values with time-indepen-
dent calculations of Zhang [106] is given in Table 6. The agreement is better in the region

around 1 eV, where the center of the wavepacket was located energetically.
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6 RESULTS 6.1 The D+H, — DH +H reaction

Present calculations Time-independent calculations [106]
EleV] J=0 J=1 J=4 E [eV] J=0 J=1 J=4
0.500 0.380E-5 0.347E-5 0.139E-5 503 0.822E-05  0.660E-05  0.288E-05
0.600 0.832E-3 0.770E-3 0.370E-3 .600  0.114E-02 0.9934E-03  0.509E-03
0.700 0.397 0.394 0.358 0.708 0.407 0.398 0.368
0.850 0.489 0.486 0.459 0.848 0.497 0.488 0.446
0.980 0.554 0.554 0.548 0.977 0.559 0.551 0.523
1.086 0.582 0.581 0.572 1.085 0.584 0.578 0.549
1.250 0.638 0.637 0.635 1.247 0.637 0.633 0.599
1.350 0.686 0.685 0.650 1.354 0.668 0.662 0.624

Table 6: The D + Hy(v =0, = 0) — DH + H reaction probabilities for J =0, 1, and 4
are given (left column). For comparison the time-independent total reaction probabilities

of Zhang [106] are given in the right column.

0.8

0.7

0.6

0.5

0.4 /
0.3
0.2 /

0.1

Probability

TS Y R— 12 14 16
JE [eV]

Figure 28: Total reaction probabilities P/ (FE) (J=0, 5, 10, 15, 20) for the D+H,(v=0,
j=0) — DH + H reaction. The J-shift effect can be observed: reaction probabilities are
shifted to the right.
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6 RESULTS 6.1 The D+H, — DH +H reaction

6.1.6 Total cross sections and reaction rate constants

The total reaction cross section was computed using the reaction probabilities pre-
sented in Figures 26 and 27 using Eq. (17). The energy domain was E; = [0.45, 1.85] eV.
The results are compared with Zhang and Miller’s time-independent calculations [76] as

it can be seen in Figure 29.

8

ulations, J=0-33

., Present calF 3
Time-independent calculations, J=0-31
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Figure 29: Total reaction cross sections for D+Hy(v=0, j=0) — DH +H reaction. The

squares (¢) represent the time-independent calculations of Zhang and Miller [76].

A list of few values of cross sections compared with the time-independent results is
given in Table 7.

To compute the reaction rate for the given cross sections, we need an estimation for
the temperature range where Eq. (23) can be applied. To determine this temperature
range, we used a simple ideal gas model. The correlation between temperature and energy
[40] is given by .

E= %kBT, (195)

E' is the kinetic energy of the molecules, 7 are the number of degrees of freedom for the
molecule (7 = 3 for a monoatomic gas, i = 5 for diatomic gas), kg is the Boltzmann
constant and 7' is the temperature of the gas. By comparing the energy domain which
is available for our calculations ( where we know the values of the cross section) with
the energy given by Eq. (195) we can set the temperature range where Eq. (23) can be
applied.

The reaction rate k(7") that results from these cross sections is plotted in Figure 30.

For a given reaction barrier Fjy,.i o0 the potential energy surface the collision energy
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6 RESULTS 6.1 The D+H, — DH +H reaction

Present calculations Zhang & Miller

calculations [76]

E [eV] 04 [ad] E [eV] 040 [ad]
0.503 0.11E-01 0.500 0.77E-04
0.600 0.94E-01 0.600 0.14E-02
0.707 1.41 0.700 1.57
0.847 2.85 0.850 3.16
0.977 3.97 0.980 4.27
1.080 4.70 1.086 5.01
1.246 5.63 1.250 5.92
1.354 6.20 1.354 6.26
1.451 6.68 - -
1.602 7.33 - -

Table 7: Initial state selected total cross sections: D+Hy(v = 0,7 = 0) — DH +H. Time-
independent calculations of Zang and Miller [76] - left - compared with our time-dependent

calculations - right.
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Figure 30: Reaction rate k(7) for the D+Hy(v=0, j=0) — DH +H reaction: log(k) versus

inverse temperature T.
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6 RESULTS 6.1 The D+H, — DH +H reaction

at the transition point is E.,; = Ey — Epgrrier- Fo is the total energy of the reactants. In
the case of the LSTH potential energy surface this barrier is 0.015 a.u. (0.41 eV).

We plot logk expressed in units of cubic centimeters per mole*second (see Eq. (23))
versus 1000/7.

We fitted the data, plotted in Figure 30, with an ” Arrhenius” type ansatz (see Eq.

(22) )
K(T) = AVTe T, (196)

with A and E,, as parameters. For A = 0.0003 cm®/mole*s*K'/? and E,,; = 0.29 eV we

get nearly a linear form as seen in Figure 31.

-10.5

. Arrhené'us Modell—
N omputed ----

-11.5
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-12.5

-13
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-135

-14

-14.5
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2. )
10004 k) 28 8 35

Figure 31: Reaction rate k(T for D+Hy(v=0, j=0) — DH +H reaction, in comparison
to the Arrhenius-type reaction rate (see Eq. (196)).

A comparison with experimental results (Truhlar, Wyatt [96]) for both D+H, and
H+H, systems is shown in Table 8. It can be seen that the J-shift calculations for the

H+H, system (see the next section) are less accurate then those for D+Hs,.

6.1.7 Approximations to reaction probabilities for total angular momentum
J >0

The complete wavefunction has the form

The angular part includes the degeneracy with respect to 2. 'We have to represent the
angular part 2.J + 1 times for a given .J (or J 4 1 times if we use the symmetry relation
given in Eq. (128)). In principle, each orientation of the total angular momentum .J with
respect to the BF Z axis (labeled in the following discussion as € channel), requires the

same number of points in the representation. The storage requirements for a complete
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6 RESULTS 6.1 The D+H, — DH +H reaction

Reaction Temperature [K] k(7T [em?/mole s K/2] k(T) [em?/mole s K'/2]

Present calculations Experimental results
A 300.00 4.8 x 10716 3.0 x 10716
A 425.00 - 1.1 x 107
A 424.66 0.8 x 1014 -
B 300.00 3.1x 101 2.0 x 10716
B 425.00 - 3.9x 1071
B 424.66 0.8 x 1014 -

Table 8: Reaction rate for the reactions D + Hy(v = 0,7 =0) - DH 4+ H (A) and H +
Hy(v = 0,7 = 0) — Hy + H (B).

description of the angular part of the wavepacket increase linearly with J > 0; this can
lead to major computational problems. Therefore present calculations include in the
wavepacket only few 2 channels (corresponding to Q = 0,1,2,...,8). A special case of
this approach is when we take into account only one €2 channel (see the work of Gray et
al. [102]). In this approach the coupling between different 2 channels is neglected.
The question we want to answer is: how accurate is the total reaction probability, when
a restricted number of €2 channels has been taken into account? It is known from angular
momentum theory [35] that the projections of the angular momentum j onto a given axis
Z are given as
jz=—-J,—j+1,..,—-1,0,1,..5— 1,7 (198)

(see Figure 33).

For the A-BC system we have in addition the following property (Leforestier [56]): in a
body-fixed system, the projection of total angular momentum .J onto the Z axis (Jz) and
the projection of the diatomic angular momentum j onto the Z axis (jz) are the same.
This common value is labeled 2. Hence, for a given reaction, €2 can take the values:
0 < Q< min(J,j).

According to the experimental work of Kliner et al. [89, 90, 91], the rotational exci-
tation of the products in the reaction D+H, (v =0, j=0) — DH(v' =1, j') +H, at the
collision energy E., =~ 1.05 eV is important for the first 10 rotational states of the new
DH molecule - see Figure 32.

Each rotational state of the DH molecule is (25’ 4+ 1) times degenerate, corresponding
to the 25" + 1 possible orientations of the rotation angular momentum 7. If no external
field is present, all these orientation have the same probability, p = 1/(2j'+1). Hence, we
can expect that n;, = n;/(25' + 1) molecules will have the rotational angular momentum

oriented parallel with the BF axis (nj is the number of molecules with the rotational
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Figure 32: Distribution of rotational level j' in D +H, (v =0, j=0)— DH(v' =1, ') +H.
Reaction at a center-of-mass collision energy of about 1.05 eV: experiment (solid curve),
where the error bars represent one standard deviation; QM calculation (dotted curve [76]
and dash-dotted curve [103]), without error estimacies; QCT calculation (dashed curve
[105]), where the error bars represent one standard deviation in the statistics. All four
distributions have been normalized to the sum of the common populations. Reproduced
from Chem. Phys. Lett., 166 108 (1990).

78



6 RESULTS 6.1 The D+H, — DH +H reaction

i,=-2,-1,0,1,2

Figure 33: Possible orientations of the angular momentum for j = 2.

quantum number j').

In the case of D+Hy (v =0, j=0) — DH(v' =1, j') +H a truncated number of of
channels is a good approximation. For larger collision energies the relative population of
the highly excited rotational channels increases. The number of rotationally excited levels
of the new DH molecule has a maximum around j' = 10 for v = 0 and E.,; = 1.5 eV
(Adelman et al. [91]). By dividing these populations with the degeneracy factor 2j" + 1
we can find the relative population of the corresponding {2 channel.

What accuracy can we achieve with an {2 - truncated wavefunction? We can write the

total reaction probability as a sum of separate reaction probabilities for each {2 channel,
Piotar = Po—o + Po=1 + ...Po=q,,.., (199)

where Po_q, is the reaction probability that is obtained if we analyze only the given €2
channel of the wavefunction

T/J(R, T, HQ:QO) = w(R, r, GQ)(SQ’QO. (200)

We have to analyze the contribution of each channel to the total reaction probability and
how the contribution is changing when the number of {2 channels changes. Different (2
channels change their populations because of the presence of the coupling term in the
Hamiltonian (see Eq. (96)). Outside of the interaction region the coupling Hamiltonian
[37] is rather small

1

mp\i(l Q)AL (7, )00 11,005,57]- (201)

H coupl =

Higher €2 channels acquire just a small population during the propagation when the pref-
actor 1/2p4_pcR? is small [107]. This is true for the population of each channel. On
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Figure 34: The D+H,(v=0, j=0) — DH +H reaction, J = 5. The contribution of Po—((FE)
to the total reaction probability is given. From top to bottom the number of €2 channels
in the wavepacket was: 1 (Qmaz = 0), 2 (Qnaz = 1), 4 (Qnaz = 3) and 6 (Qppae = 5), for

different calculations including more €2 channels.

the other hand, the dynamics of the different 2 channels is governed by different effective

potentials
1

2pa—pcRR?
Different effective potentials in each {2 channels, lead to different ”velocities” of the

Vers = [J(J+1)+45(+1)—207. (202)

wavepacket within each €2 channel. The increased ”velocity” of the wavepacket can com-
pensate the small population of the channel, when the flux of the wavepacket is computed.

In the Figures 34 and 35 we plot the contribution of the 2 = 0 channel to the total
reaction probability. The total number of channels included in the wavepacket was N =
1, 2, 4 and 6 for J = 5 respectively Ng = 1, 2, 4, 6 and 8 for J = 20. Initially the
wavepacket populates only the €2 = 0 channel.

From the Figures 34 and 35 it can be seen that there is no convergence for the contribu-
tion of the channel {2 = 0 to the total reaction probability. By taking more channels into
account the contribution of the {2 = 0 channel decreases. We can conclude that by ne-
glecting the presence of the large €2 channels it is possible to overestimate the contribution
of the €2 = 0 channel.

The total reaction probability was computed using the same wavepackets as those we
use to plot Figures 34 and 35. We can see that the total reaction probability converges
when the number of channels varies (see Figures 36 and 37).

Finally, we can say that a restricted number of channels is a good approximation as
long as we want to compute total reaction probabilities and cross sections. If we want to

compute the angular dependence of the cross section (see Eq. (18)), a correct evaluation
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Figure 35: The D+Hy(v=0, j=0) — DH +H reaction, J = 20. The contribution of
Pa—o(E) to the total reaction probability is given. From top to bottom the number of
channels in the wavepacket was: 1 (Qnaz = 0), 2 (Qnaz = 1), 4 (Qnaz = 3), 6 (Lnaz = 5)

and 8 (40 = 7), for different calculations including more €2 channels.
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Figure 36: For the reaction D+ Hy (v=0, j=0) — DH + H, J=5, the comparison between
different levels of accuracy calculations is given. The number of channels included in the
representation of the wavepacket was set successively to: 1, 2, 4 and 6. The value of €2,,,.

is noted Jz.
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Figure 37: For the reaction D+ Hy (v=0, j=0) — DH + H, J=20, the comparison between
different levels of accuracy calculations is given. The number of channels included in the
representation of the wavepacket was set successively to: 1,2,4,6 and 8. The value of €24,

is noted Jz.

of all contributions in Eq. (199) is needed. This cannot be done within the approach of
a restricted number of channels (as proved with Figures 34 and 35).
On a scalar machine the computation time for J > 0 can be demanding. Within our

parallel algorithm (see Section 5 ) the calculations are performed more efficiently.

6.1.8 J-shift calculations

This approach allows us to compute the cross section for a given reaction by using only the
reaction probability P/=°. The way how the P’-s for .J > 0 are produced was described
in Section 2, Eq. (16).

To compute the centrifugal barrier at the transition state, a classical rigid rotor model
was used. First we define the center of mass of the triatomic at the transition state
configuration. The moment of inertia of each atom with respect to the center of mass is

computed as
Ji =myr?, i=1..3, (203)

where r; is the distance between the atom ¢ with mass m; and the center of mass of the
system, and J is the moment of inertia with respect to that point. According to [108],

the clasical energy for a rotating point is
Bt = Jw?/2 =1%/27, (204)

where w is the rotation frequency and L is the angular momentum. For a triatomic
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Figure 38: Reaction probabilities P/(F) for the D+Hy(v=0, j=0) — DH +H reaction:
J =4 (left) and J = 20 (right). For comparison the .J-shift values Py, are given in both

cases

molecule the complete moment of inertia is given as

J="h+T+Ts (205)

We used this approach to compute the reaction probabilities for J > 0, from the
reaction probabilities for J = 0. At the transition state the distance between the two
hydrogen atoms is 1.75 ag. The D atom is at 3.55 ag distance from the first H atom and
at 1.8 ag from the second.

The total reaction cross section within the .J-shift model was computed and the results
are presented in Figure 39.

For J =4 and J = 20 a comparison between the calculated reaction probabilities and
the J-shift values is given in Figure 38. The shift in energy is estimated correctly but the
values are overestimated in the high energy regime. In the energy domain FE = [0.85, 1.6]
eV the same overestimation occurs for the cross section (see Figure 39).

The J-shift reaction rate was computed using Eq. (23). The result is presented in
Figure 40.

6.1.9 Summary on the D4+H, - DH+H reaction

Accurate calculations of the reaction probabilities using the wavepacket method were
performed up to J = 5. For higher values a restricted number of €2 channels was used to
describe the wavepacket. Together with the reaction rates, total reaction cross sections
were computed using the total reaction probabilities. For comparison also the .J-shift
cross sections and reaction rates were computed. For high J the computing time is ca.
30 hours/P’(E) computation on the IBM-SP2 machines.
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Figure 39: The total reaction cross section for the D+Hy(v=0, j=0) — DH +H reaction
computed within a J-shift approximation frame. For comparison the time-independent
values of Zhang and Miller [76] are given.
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Figure 40: The D+Hy(v=0, j=0) — DH +H reaction. The reaction rate computed within
a J-shift approach. We plot the logy(k) versus 1000/ T, T is the temperature in K.
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6.2 The H+H, — Hy; +H reaction

The LSTH potential energy surface [85] was used to describe the reaction H+Hy(v = 0,5 =
0) —Hs +H. Compared with the reaction probability for D+ Hy(v = 0,7 =0) —HD +H
reaction, the curve in Figure 41 displays more structure (small resonances about 0.9 eV
and 1.2 eV).

6.2.1 .J-shift calculations

The total reaction cross section for the H+ Hy(v = 0,5 = 0) — Hy +H reaction was
estimated by using the J-shift approach. As discussed above we expect these results to
be overestimated in the high energy regime E = [1.0, 1.65] eV. The results are plotted in
Figure 42.
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Figure 41: The total reaction probability for the H4+Hy(v=0, j=0) — Hy +H (J = 0)

reaction is given.

The reaction rate can be computed by making use of the values plotted in Figure 42
(see Eq. (23)). Figure 43 shows a comparison between the reaction rates of H +Hy(v=0,
j=0) — H +H, and D+Hy(v=0, j=0) — DH + H. The comparison with the experimental
values is given in Table 8. The agreement between the .J-shift calculations for H + H,

and the experimental values is not as good as in the case of the D + H, calculations.

6.2.2 Summary on H+H, — H, +H reaction

H+H, — H, +H is a direct-type reaction for which total cross sections and reaction rates
were computed. Although the cross sections are computed within a .J-shift approach,
they give a good qualitative picture of the reaction processes. For the reaction probability
P’=%(E) the computing time is rather modest (3 hours for an IBM 43P machine).
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Figure 42: Total cross section for the H+Hy (v=0, j=0) — Hy +H reaction computed
using the J-shift approach.
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Figure 43: The reaction rate computed using the J-shift approach for the H + Hy (v=0,
j=0) — Hy + H reaction. The squares (¢) are the values computed for the D+Hy(v=0,
j=0) — DH +H reaction (see Figure 30).
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6.3 The H" + H, wHf — H* 4+H, reaction
6.3.1 Charge transfer and nonadiabatic processes

The foundation of modern quantum chemistry is the Born-Oppenheimer approximation
according to which nuclei move on a single adiabatic potential energy surface. However
nonadiabatic events are not so rare. Nonadiabatic events occur, for example, in the
mechanism of vision and of photosynthesis, and more generally, in photodissociation,
predissociation, charge transfer, and spin-changing reactions [65].

Charge transfer belongs to the broader class of collision processes involving transitions
between two or more potential hypersurfaces. These transitions usually occur in well
defined regions of configuration space where the diabatic potential energy surfaces cross
and where the Born-Oppenheimer approximation breaks down. Such crossing processes
occur in reactive or nonreactice collisions of open shell systems and in most ion-molecule
collisions [109]. For a theoretical study of such systems, a knowledge of the different PES’s
is required. The dynamics accounts for the transition from one surface to the next.

For the H* + H, system differential cross sections have been determined in a broad
energy range [110] . The possible channels are

H* + Hy(v; =0) —Hf — HT + Hy(vy), AE =0,

H* + Hy(v; =0) -Hy — H + Hj (vf), AE =1.83¢V.

According to Niedner et al. [110], a simplified dynamical model for charge transfer on

the collinear Hi can be resumed in two steps:

e Step 1: the reactants (H* + Hay(v; = 0)) come close to each other; this leads to

vibrationally excited Hs.

e Step 2: vibrational excitation on the lower Ht + H, surface is followed by charge
transfer for only those H, molecules which are excited vibrationally high enough
(vf > 4) to overcome the reaction barrier (AE = 1.83 eV).

6.3.2 The Hj ion

At equilibrium, the Hf molecule is an equilateral triangle. The energy of formation, H*
+ H,, is Ey ~ 4.8 eV. The Hj molecule is with 0.3 eV more tightly bound than Ho.

The infrared spectral line of Hi was measured for the first time by Oka in 1980 [115].
Until 1987 only the fundamental bands of Hi and its isotopomers ( Di, HoD* and D,H™)
had been characterized [116] resulting from experimental difficulties. H3 ions are produced
in a discharge cell [115]. Because Hj is a fairly floppy molecule, it undergoes large-
amplitude vibrational motions to such an extent that the rovibrational spectrum does not

conform to many of the standard rules of spectroscopy. Using the traditional spectroscopic
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approach (the harmonic oscillator model) it is difficult to predict rovibrational transitions.
Therefore, theoretical studies are needed.

Many people have investigated the ro-vibrational spectrum of H3: Tennyson and Sut-
cliff [117, 118], Jaquet et al. [79], Jaquet [119], Polyansky et al. [120] and others.

Hj in the Interstellar Medium

Between visible, hot stars are vast clouds of generally cold, dark gas. Collectively,
these clouds are referred to as the interstellar medium ( ISM) [116]. The ISM is mainly
composed of hydrogen with small amounts of heavier elements. The temperatures are
typically between 10 and 100 K. In diffuse clouds the density vary from 100 particles per
cubic centimeter, to 10000 particles per cubic centimeter in "dense” clouds [116]. The
ISM is continuously subject to ionizing radiation in the form of cosmic rays and photons.

These interact initially to ionize molecular hydrogen:
Hy — HY +e,
which then reacts rapidly with more hydrogen:
Ho+ Hy — Hi +H.

All this justifies the attempts of detecting the Hi in the interstellar space. In addition,
Hi was detected in the atmosphere of Jupiter in 1988-1989 [116].

6.3.3 Investigations with wavepackets

The dynamics has been investigated using the Diatomics In Molecules (DIM) potential of
Florescu et al. [114].

To compute the PES using the DIM method we have to write the Hamiltonian operator
as a sum of operators including only atoms, diatomic molecules, and the interaction terms
between them [121]. The Hamiltonian Hpe for a diatomic molecule BC is written in its

atoms-in-molecules form as
Hpe = Hp + Ho + Vpe. (206)

Hp and He contain all kinetic energy operators and all intraatomic potential energy terms
for atoms B and C. V¢ is the term responsible for all the interactions between B and C.

In the same manner, we can write the diatomics in molecules Hamiltonian as

H=YY H;~(N-2)Y H, (207)

1 1<y

where the indices i and j label the ” N” atoms in the molecule ( A, B and C in the case of
a triatomic molecule). H;; are the Hamiltonians for different diatomics in the system and

H; are the Hamiltonians for the atoms in the system. This expression of the Hamiltonian
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contains explicitly no ”interaction” operators, but only hamiltonians for the constituent
diatomic molecules and atoms.

For an ABC system the DIM method consists in considering the possible products of
electronic states of AB with electronic states of C (and similarly of BC with those of A,
and of AC with those of B). The resulting set of states is used as a basis set in which the
electronic Hamiltonian, given in Eq. (207), is diagonalized.

The ”input” in the DIM method are the potential energy curves for all ”relevant” AB,
BC and AC states. For each nuclear configuration the matrix representation of the DIM
Hamiltonian in this basis set is diagonalized. With the resulting set of energies the PES
of the ABC system is then build up.

Initial states of the diatomics

In order to do the analysis we have to take into account the diatomic states of the H, and
H3 molecules. The propagation is performed using the diabatic representation of the two
PES. The autocorrelation function of the propagated wavepacket with the diatomic states
of the Hy molecule (Eq. (152)) can be used to compute the charge transfer probability
(see Eq. (154)). The analysis is done in the reactant channel - see Figure 6.

To test the implementation a set of rather modest grid parameters were chosen in the
beginning (see Table 10). By following the mechanism of the reaction described by Niedner
et al. [110] (see the introduction of this subsection) we included in the initial wavepacket
60 eigenfunctions of the Hy molecule to describe the v = 4, j = 0 ro-vibrational state. 50
eigenfunctions of H were taken into account. The value of the zero point energy level
and those for the first 4 ro-vibrational excited levels for Hy and for Hy are given in Table
9. For comparison, the same 5 levels of the LSTH potential are given. For the DIM -
PES the difference between the zero points energy levels of (Hy + H') and (Hy + H) in
the asymptotic region (e.g. R large) is about 0.067074 a.u. = 1.825 eV.

If we plot the potential energies corresponding to Hy (for distant H*) and to Hy (for
distant H) we have the situation presented in Figure 44. These curves cross at r ~ 2.5
ap in the diabatic representation. In the adiabatic representation we have an avoided
crossing at this point. Due to strong coupling in the interaction region (see Figure 45 D)
a charge transfer reaction H™ + Hy — H3 + H (Tully and Preston [113]) can happen.

The grid parameters used in the calculations are given in Table 10. The values R,,;, =
0.5 a.u. and r,,;, = 0.5 a.u. are the smallest values where the fit is accurate. The values
R0 and 7,4, given in Table 10 were set to values which allows us to obtain a qualitative
description of the wavepacket dynamics, when the number of grid points is not to large.
The notations are the same as those in Section 4 - for the grid parameters used in D +
Hy reaction. In addition, AR,,s and Arg, define the width of the absorbing area at the
end of the grid.
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LSTH DIM + DIM
H2 H2 H2

El[eV] E! [em™!] E? [eV] E? [em™!] E3 [eV] E? [em™!]

0.270 2179.83 0.286 2309.40 2.111 17030.28
0.285 2298.32 0.301 2427.59 2.119 17088.23
0.314 2534.23 0.330 2662.97 2.133 17203.27
0.358 2885.39 0.374 3013.52 2.154 17375.17
0.415 3348.70 0.431 3476.63 2.182 17602.02

Table 9: The zero point energy and the first 4 excited levels for the Hy and H3 molecules
are given. The results are presented as follows: first and second columns - the energies
E]} for the Hy molecule using the LSTH potential; third and fourth columns - the energies
E? for the Hy molecule using the DIM potential; fifth and sixth columns - the energies
E3 for the HF molecule using the DIM potential.
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Figure 44: Potential curves of the ground states of Hy and Hj showing the crossing at

ra 2.5 ag.
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R = 0.5 -10.5 ag

r = 0.5-6 ag

Ngr = 64

N, = 64

Ny = 32
ARy = 2.0 ag
Argps = 2.0 ag

o= 0.25 ag

Table 10: Grid parameters used for the test calculations on the Ht + H, charge transfer

reaction.

The 3D representations for the (H* +Hs) and the (H + H3 ) PES and for the coupling
Vi are given in Figure 45. The 3D representations of the potential surfaces in the adiabatic

representation are given in Figure 46. The adiabatic results are calculated by diagonalising

diabati
Vvl tabatic ‘/'12
‘/12 V'Zdiabatic

at each grid point R;, rj, 0. Vdabatic j diabatic are the values of the two diabatic potentials
at the given grid point and V)5 is the coupling term. The lower eigenvalue was assigned
to Vadishatic and the upper one to Vgdiabetic

At time t = 0 a.u. the wavepacket was located on the (HT + Hy) PES (diabatic
representation). The collision energy was set to E.,; = 2 eV, to allow energetically the
transfer of the wavepacket from the (H* + H,) surface to the (H + Hj) surface.

For the collinear configuration of the three atoms several pictures showing the dynamics

the matrix

of the wavepacket are given in Figures 48 and 50. For the collision angle 6., = 7/2 the
pictures showing the dynamics of the wavepacket are given in Figures 49 and 51. Figures
48 and 49 depict the evolution of the wavepacket on the lower surface (corresponding to
H* + H,). For both configurations we see no significant components of the wavepacket
in the reactive channel. After the collision the wavepacket loses his coherency. At later
time (¢ > 1500 a.u.) small resonances are present in the interaction region.

Figures 50 and 51 depicts the evolution of the wavepacket on the upper surface ( H
+ Hj). Reactive and inelastic components of the wavepacket exist. Some resonances are
present after time ¢ = 1500 a.u.. After time ¢t ~400 a.u. the wavepacket is located in the
interaction region and the norm of the upper component of the wavepacket ((H + Hj)
potential) reaches a maximum of &~ 0.35 (see Figure 47). After time ¢ = 1000 a.u. the

norm decreases, caused by absorption (see Figure 47). The norm of the wavefunction on
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Figure 45: For collinear geometry the potential energy surfaces for the H" + H, (A) and
H + Hy (B) systems are plotted. The negative values of Vigypiing are given in picture D.

Picture C shows the crossing of the first two PES. The cutoff for the potential (see Eq.
(55)) was 0.5 Ej,.
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Figure 46: For collinear configuration the potential energy surfaces for adiabatic repre-

sentation of the HY + H, (left) and H + Hj (right) reactions are shown. Virr (HT +
Hy) = 0.25 Ep; Vitops (H + Hy) = 0.45 E,.
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the upper surface is always smaller than on the lower surface.

1—
~ o —
09 M
0.8
0.7
0.6
£
5 05
z
0.4
0.3
0.2
0.1 >
ol 0 T F . SRS SO ot
0 5 10 15 . 20 25 30 35 40
Time step

Figure 47: The evolution of the norm for the wavepacket is given, describing the Ht +
H, (v=0, j=0) — H + Hj charge transfer reaction. The norm for the two components of
the wavefunction ((H" + Hy) PES and (H + HJ) PES, respectively) and the total norm

of the wavepacket are given. The time step of the propagation was ¢t =50 a.u..

By comparing the Figures 48 and 50 or 50 and 51, respectively, we can see that the
shape of the wavepacket at different moments during the propagation is roughly indepen-
dent of the collision angle. This is in agreement with the fact that (Levine, Bernstein
[34]) there is no preferential orientation for the H* + Hy, — Hf — H + HJ reaction.

6.3.4 Summary on Hj

Wavepacket investigations were performed for the charge transfer reaction (H*+ Hy) (see
page 87).

For the simulation of the wavepacket dynamics the DIM PES of Florescu, Sidis and
Sizun [114] was used. The simulation of the dynamics was done at E.,; = 2 eV. The
CPU-time for the complete simulation (J = 0) is & 10 hours on an IBM 43P work
station.
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6 RESULTS 6.3 The H* + H, —HJ — H* +H, reaction
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Figure 48: |¢| during the HT + Hy (v=0, j=0) — H* + H, scattering is given for the
collision angle 6., = 0. Pictures are taken at time ¢t = 50, 250, 400, 550, 700, 800, 1100,
1500 a.u. (E.; = 2 eV, DIM potential energy surface [114]). The initial position of the

wavepacket was at Ry =8 ag.
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Figure 49: The same information as in Figure 48 is presented (6., = 7/2, DIM potential
energy surface [114]).
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6 RESULTS 6.3 The H* + H, —HJ — H* +H, reaction
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Figure 50: |¢| during the HT + Hy(v=0, j=0)— H + HJ scattering is given (f.,, = 0).
Pictures are taken at time ¢ =50, 250, 400, 550, 700, 800, 1100, 1500 a.u. (E.y; = 2 eV,
DIM potential energy surface [114]).
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6 RESULTS 6.3 The H* + H, —HJ — H* +H, reaction
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Figure 51: The same information as in Figure 50 is presented (6., = 7/2, DIM potential
energy surface [114]).
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7 Summary

The chemical dynamics of A-BC type reactions has been investigated using time-dependent
methods. The purpose was to compute reaction cross sections and reaction rates starting
from ab initio potential energy surfaces.

According to Section 2, these calculations involve computations of the reaction prob-
abilities for different total angular momenta J of the system. Since J is a good quantum
number in this case, the problem can be devided into separate ”.J” independent calcula-
tions of reaction probabilities.

The formalism for time-dependent methods for the investigation of scattering processes
was presented in Section 3. The particular form of these methods for A-BC systems is
exposed in Section 4 together with a discussion of several possible implementations.

Section 5 describes the implementation of the code. Optimization includes a parallel
version of the program. The computer system used for the implementation was an IBM-
Power-PC. The parallel version was used on the IBM-SP2 cluster of the Computer Center
of Karlsruhe University. The test reaction was D+Hy(v = 0,7 = 0) =DH +H using the
LSTH potential [85].

Accurate and approximate calculations of cross sections are presented in Section 6.
Comparison of calculations with different levels of accuracy lead to the following conclu-
sions:

(a) - the time-dependent methods are well suited for systems which do not involve a
strong, attractive interaction.

(b) - for ionic systems [79] a special treatment of the propagation may be required
(filter diagonalisation).

(c) - a parallel implementation may be required in the J > 0 calculations when the
propagation time can be very long.

The dynamics of systems - with a small well or barrier - can be relatively easy described
up to J = 5 resulting in a good accuracy (no approximations). The limitation to J =5
comes mainly from the restrictions imposed by the amount of core memory needed for
high J calculation. Approximations like truncating the number of 2 channels can be
accepted as long as only the total cross section is computed. If one wants to compute
the total differential cross section, the coupling between low and high 2 channels cannot
be neglected. Also the .J-shift approach of Bowman [38] can be used successfully to
compute reasonable accurate cross sections and reaction rates starting only with the
reaction probabilities for the J = 0 case.

Total reaction cross sections for D+Hy(v = 0,7 = 0) — DH +H were computed at
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7 SUMMARY

a level of accuracy comparable with previous time-independent calculations [76] ( see
Section 6 for details). From these cross sections reaction rates were computed for the
temperature range T = 300 - 2000 K. Together with the animation of the wavepackets
plotted at different time steps during the propagation, cross sections and reaction rates
can mediate a simulation of scattering experiments.

A new computer program was set up; it performs the simulation of chemical dynamics
for A-BC systems. The only ”input” data needed for these simulations are the basic
physical constants (the masses of atoms, the collision energy) and its potential energy
surface. The results of the simulation include information about the flow of the reaction,

reaction probabilities, cross sections and reaction rate constants.
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8 Appendix

1. Chebyshev polynomials [51]
The real Chebyshev polynomials 1© @, (z) can be defined through the generating func-

tion
1—t2

0
——— = Py(x) +2 Z Q,(x)t", |z| <1, |t| < 1.
1 — 2zt + 2 =

The @, () satisfy the recurrence relation
D, 1(z) — 22D, (z) + Pp_y(z) =0

with initial conditions

(I)O = ]_, (I)l =x.
The orthogonality is given by
) 0, m#n
/ B, (1) D, (x)(1 —2?) VAo ={ 7/2, m=n#0
-1
m, m=n=20
The first five polynomials are
(I)g(l‘) = ]_,
Qi (z) ==,
Oy () = 227 — 1,

®3(z) = 42® — 3,
®4(z) = 82" — 827 + 5z,

2. Associated Legendre functions [51]
The associated Legendre functions P"(z) can de defined through the generating func-

tion

2m)!(1 — z2)™/? > 5
B~ Pl ()1
=0

2mml(1 — 2tz + t2)m+1/2 -
The recurrence relation for the associated Legendre functions is

1 1
(1 —a?)2(Pmy = 53’;"“ — 5(n +m)(n —m+1)P" L,

The orthogonality is given by

/11 B ) By (w)de = 2q2+ 1 EZ j—LZ;: &

0These are the definitions for the Chebyshev polynomials of first kind.
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(n+m)!

[ Pr@)Pi@) (1~ ) da = ol = o

First few associated Legendre functions are
P} (z) = (1 - 2%)"/? = sin(6),
Pi(z) = 3z(1 — 22)'/? = 3cos(0)sin(h),
P}(z) = 3(1 — 2*) = 3sin*(9),
3 3
Pj(x) = 5(5:62 —1)(1—aH)? = 5(50032(0) — 1)sin(0),
P} (x) = 152(1 — 2%) = 15c0s(0)sin*(0),
P} = 152(1 — 2%)*? = 15sin3(h).
The relation with Legendre polynomials ( Pj(z) (z = cos(f))) is given by
P(z) = P(z),
(1 —a%)% (Fi(2)™ = P"(x), m>0.
3. The 1D Hamiltonian FORTRAN code for the 2-PES coupling

subroutine haml (psi,w3,v,akx2,iham,npoinx,npprd,idim3,rwl,rw2,

+ idim4,icount,work, npot)

c

implicit double precision (a-h,o0-z)

include ’common.h’

common/asbs/as,bs,emaxg,dele,eming
c
¢ This subroutine computes the action of hamiltonian on psi.
c psi — initial wavefunction
c w3 - the hamiltonian of psi (H|psi>) for a given PES
¢ work - work field with the same dimension as psi
¢ npot - number of PES
¢ npoinx - nr. of grid points in x
c npprd - total nr of grid points (if 2d or 3d problems are computed)
c-————67--1--————-——- 2-—————- 3——————- 4-——————— 5-———m———- 6-——-—————- 7-2--c¢
c

integer npoinx,npoiny,npprd,npnz,iham,icount

integer idim3,idim4,bigj, i,ind,idl,itime
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double precision v(npprd, npot), vi(npprd), wnorm(omega)

complex*16 psi(npprd,npot), psil(npprd),w31(npprd)
complex*16 work (npprd, npot), akx2(npoinx)
c
data idl/1/
save idl
c
¢ Main loop on all the PES:
c
do 1234 J=1, npot
c
C ’Diagonal’ terms: hampsi on each independent PES
¢ (hamil3 subroutine= 1D FFT + potential action on the w.f.)
c
do i=1, npprd
vi(i)=v(i,j)
psil(i)=psi(i,j)
enddo
call hamil3(psil,w31, v1,akx2,npoinx,
+ npprd,
+ work, as,bs)
c
¢ The coupling subroutine between psi and w3:
c
call coupl(psi,w3,as,npoinx, npot,j)
c
¢ Scaling for the Chebychev recursion:
c
do 350 i=1, npprd
w31 (i)=as*w31(i)
350 continue
c

do i=1, npprd
w3(i,j)=w3(i,j)+w31(i)
enddo

1234 continue
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1d1=0
9090 format (1x,A)

return

end
c

subroutine coupl(psi,w3,as,npoinx,npot, j)

include ’common.h’

implicit double precision(a-h, o-z)

complex*16 psi(npoinx, npot), w3(npoinx, npot)
c
¢ psi - wavefunction, with two components
¢ w3 - collect the action of the coupling on the psi
¢ npoinx -nr. of points in ’x’ grid
¢ npot - nr. of PES
c j - index of the PES which is coupled (1 or 2)
c
c Test 1: gaussian coupling between psi and w3
c

if(j.eq.1) k=2
if(j.eq.2) k=1

c

¢ To choose gausian coupl. comment this line, else, dipol coupling

goto 500
x0=4.d0

x=xanf-dx

do i=1, npoinx
x=x+dx
dtx=x-x0
hcp=zcemax*exp (-dtx*dtx)
Cc write(17, *) i, hcp, x
w3(1i,j)=hcp*psi(i,k)
enddo
goto 1000

500 continue
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¢ TEST 2: electric field coupling E=zmax*x between psi and w3
c
x0=4.d0
x=xanf-dx
x1=6.d0
do i=1, npoinx
x=x+dx
if(x.gt.x0.and.x.1t.x1) then
hcp=zcemax* (x-x0)
else
hcp=0.40
endif
w3 (i, j)=hcp*psi(i,k)
enddo
1000 continue
c
return

end

4. The subroutines used for communication between nodes in the parallel
version of WAVE program

subroutine gatter(xfeld, nx,ny,ipoint, icontext, nnodes, iam)
implicit double precision (a-h, o0-z)

complex*16 xfeld(nx,ny)

c
¢ This subroutin collects the array from processor having the ID larger than
c 1, to the processor 0 in the parallel context
c xfeld - 2d array, dimensions are nx and ny
C icontext, nnodes, iam - define the paralle context: index of context
o total number of nodes and the node of this processor
c ipoint - is the pointer were the array must be collected
c
do ii=1, nnodes-1
if (iam.eq.ii) then
iii=ipoint*ii+l
c

¢ This line sends the vectors from node 0 to all nodes. xfeld(1,1)
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is the starting point of sending from node zero

nx is the length of the transmitted vector

first zero - is the index of array in the processor grid - in this case
we have a linear processor grid with just a single line

last zero is the index of precessor who send the vectors to other

processors

call zgesd2d(icontext,nx,ipoint,xfeld(1,1),nx,0,0)
endif
enddo

if(iam.eq.0) then
do ii=1, nnodes-1

iii=ipoint*ii+1l

This line receives the vectors from the node zero, on all other nodes
(index 1,2, up nnodes). The array is stored at the pointer ’iii’

and it is received on the processor index ’ii’ -last parameter in the call

call zgerv2d(icontext,nx,ipoint,xfeld(1,iii),nx,0,ii)
enddo

endif

return

end

subroutine scatter(xfeld, nx,ny,ipoint, icontext, nnodes, iam)
implicit double precision (a-h, o0-z)

complex*16 xfeld(nx,ny)

This subroutin scatter the arrays from processor having the ID=0 to those
having the ID.gt.1 in the parallel context
xfeld - 2d array, dimensions are nx and ny
icontext, nnodes, iam - define the paralle context: index of context
total number of nodes and the node of this processor

ipoint - is the pointer were the array must be collected

105



8

APPENDIX

o o o o o o o o O

o o o o O

if(iam.eq.0) then
do ii=1, nnodes-1

iii=ipoint*ii+1l

This line send the vectors from node 0 to all nodes. xfeld(1,1)

- is the starting point of sending from node zero

nx - is the length of the transmitted vector

zero - is the index of array in the processor grid - in this case
we have a linear processor grid with just a single line

ii -is the index of processor who send the vectors to other

processors

call zgesd2d(icontext,nx,ipoint,xfeld(1,iii),nx,0,ii)
enddo

endif

do ii=1, nnodes-1
if(iam.eq.ii) then

iii=ipoint*ii+1l

This line receives the vectors on the node zero, form all other nodes
(index 1,2, up nnodes). The array is stored at the pointer ’iii’

and it is received on the processor index ’0’ -last parameter in the call

call zgerv2d(icontext,nx,ipoint,xfeld(1,1),nx,0,0)
endif

enddo

return

end
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