
Re�nements of Data Compression Using
Weighted Finite Automata

Vom Fachbereich Elektrotechnik und Informatik

der Universit�at Siegen

zur Erlangung des akademischen Grades

Doktor der Ingenieurwissenschaften

(Dr.-Ing.)

genehmigte Dissertation

von

Frank Katritzke

1. Gutachter: Prof. Dr. Wolfgang Merzenich

2. Gutachter: Prof. Dr.-Ing. Bernhard Freisleben

Tag der m�undlichen Pr�ufung:

II

Contents

1 Preliminaries 7

1.1 Representation of an Image . 7

1.2 Statistical Prerequisites . 10

1.2.1 Continuous Probability Spaces 10

1.2.2 Discrete Probability Spaces 12

1.2.3 Arrays of Random Variables 12

1.2.4 Images Considered as Arrays of Random Variables 13

1.3 Foundations of Information and Coding Theory 13

1.3.1 Information Theory . 14

1.3.2 EÆciency and Redundancy of a Code 15

1.3.3 Pre�x Codes . 16

1.3.4 Coding of Alphabets with In�nite Cardinality 17

1.3.5 Adjusted Binary Codes 20

1.3.6 Golomb Codes . 20

1.4 Matching Pursuits . 20

1.4.1 The Standard Matching Pursuit Approximation 21

1.4.2 Improvements of the Greedy Method 22

2 Entropy Coding 25

2.1 The Arithmetic Encoder . 25

2.1.1 The Idealized Algorithm 25

2.2 Statistical Models . 29

2.2.1 Block Coding . 30

2.2.2 Predictive Encoding . 30

IV CONTENTS

2.3 Non-Context Models . 31

2.3.1 Static and Adaptive Models 31

2.3.2 Window Models . 32

2.4 Context Modeling . 32

2.4.1 Finite Context Modeling 32

2.4.2 Markov Modeling . 33

2.4.3 Model Blending . 33

2.4.4 Further Techniques . 34

3 Techniques for WFA Construction 35

3.1 Basic Techniques for Image Partitioning 35

3.1.1 Quadtrees . 35

3.1.2 Bintrees . 37

3.2 Weighted Finite Automata . 39

3.2.1 De�nition of a WFA . 39

3.3 The First WFA Coding Algorithm 41

3.3.1 Di�erent Representations of the WFA Tree 46

3.4 The Fast WFA Decoding Algorithm 46

3.5 Top Down Backtracking WFA Construction 48

3.6 Bottom Up DFS Construction of the WFA Tree 53

3.7 Breadth First Order Generation of WFA Trees 55

3.8 Conclusion . 57

4 Further Enhancements of the WFA Coder 59

4.1 Enhancements of the Image Partitioning Technique 59

4.1.1 Light HV Partitioning . 59

4.1.2 HV Partitioning . 60

4.1.3 Other Methods for Image Partitioning 64

4.2 The Statistical Model for WFA Coding 64

4.2.1 Finite Context Modeling and WFA Coding 65

4.3 Matching Pursuit and WFA Coding 68

4.4 Additional Re�nements . 68

CONTENTS V

4.4.1 Calculation of the Scalar Products 68

4.4.2 Choice of the Function Numbering 69

4.4.3 Calculation of Storage Cost 69

4.4.4 Domain Pool Administration 70

4.4.5 Modi�ed Orthogonal Matching Pursuit 72

4.4.6 Stopping Criteria of the Approximation Algorithms . . . 72

4.4.7 Limiting the Fractal Transform 72

4.4.8 Non-Fractal Coding . 73

4.4.9 Rate{Distortion Constrained Approximation 73

4.4.10 Storage of the Automaton 74

4.4.11 Quantization Strategy . 75

4.4.12 Coding of Color Images 77

4.4.13 WFA-based Zooming . 79

4.4.14 Edge Smoothing . 80

4.4.15 Coding with Varying Quality 82

4.4.16 Progressive Decoding of WFAs 84

4.5 Optimization of Coding Parameters 85

4.5.1 Utilization of Genetic Algorithms 85

4.6 Results . 87

4.6.1 Utilized Test Images . 87

4.6.2 Some Decoded Images . 88

4.6.3 Absolute Running Times of the Codec 89

4.7 Statistical Distributions of the Parameters 93

4.8 Further Research Topics . 93

4.8.1 Embedding GA to WFA 93

4.8.2 Calculation of the Color Space 98

4.8.3 WFAs in Use for Pattern Recognition 98

4.8.4 Postprocessing of WFAs 98

4.8.5 Near Lossless Coding . 98

4.8.6 Asymmetric Running Times of the Coding and Decoding

Algorithm . 99

4.8.7 Adaptation of Coding Parameters to the Image Content . 99

4.8.8 Combination of the WFA Coding Algorithm with the

Laplacian Pyramid . 99

4.8.9 Incorporation of Image Transforms to WFAs 100

VI CONTENTS

5 Combining WFAs with Wavelets 103

5.1 Introduction . 103

5.2 The Filter Bank Algorithm . 105

5.3 Orthogonal Wavelets . 106

5.4 Biorthogonal Wavelets . 106

5.5 The Wavelet Decomposition Tree 107

5.6 Generalization to Higher Dimensions 107

5.7 The Wavelet Packet Transform 108

5.8 The Lifting Scheme . 108

5.8.1 The Lazy Wavelet Transform 109

5.8.2 Primal and Dual Lifting 109

5.9 Combination of WFAs and Wavelets 110

6 Video Coding with WFAs 117

6.1 MPEG Video Compression . 118

6.2 Block-based Motion Compensation 118

6.3 Rate{Distortion Constrained Motion Compensation 120

6.4 Bi-Directional Motion Prediction 120

6.5 Image Types . 120

6.6 Subpixel Precise Motion Compensation 121

6.7 Storage of the Displacement Vectors 122

6.8 Motion Compensation of Colored Sequences 122

6.9 Further Research Topics . 122

7 Some Implementational Remarks 125

7.1 Instruction Manual for the Program AutoPic 125

7.2 Image Filters Available via the User Interface 130

7.3 Hidden Auxiliary Functions . 132

7.3.1 Optimization of the Encoding Parameters 132

7.3.2 Rate{Distortion Diagram 134

7.3.3 Auxiliary Files . 134

7.4 Other Experimental Data Formats 136

CONTENTS VII

7.4.1 An Experimental Lossless Image Format 136

7.4.2 An Experimental Text Compression Format 137

7.4.3 An Experimental IFS Codec 137

7.5 The Package Structure of AutoPic 137

7.6 Some Excerpts from the Class Hierarchy 142

7.7 Cutting of the Recursion Trees 142

7.7.1 The Top Down Backtracking DFS Algorithm 145

7.7.2 The Bottom Up Backtracking DFS Algorithm 146

7.8 General Optimizations . 147

7.8.1 Caching . 147

8 Conclusion 151

8.1 Acknowledgments . 152

A Direct Invocation of the Programs 153

A.1 Command Line Parameters . 153

A.1.1 The WFA Codec . 154

A.1.2 The Video Codec . 159

A.1.3 The Genetic Analyzer . 161

A.1.4 The Performance Analyzer 162

A.1.5 The Lossless Image Codec 162

A.1.6 The Text Codec . 163

B Color Spaces 165

C Measures for Image Fidelity 169

C.1 The Tile E�ect . 170

C.1.1 Hosaka Diagrams . 171

D Digital Image Filters 175

D.1 A Neighborhood-Based Filter in AutoPic 175

D.2 Digital Smoothing . 176

D.3 Edge Detection . 177

VIII CONTENTS

E Image Bases 179

E.1 Transform Codecs . 179

E.2 Orthogonal Function Systems . 180

E.2.1 Sum Representation with Orthonormal Functions 180

E.2.2 Representation for a Finite Number of Sampling Points . 181

E.2.3 Representation with Transform Matrices 182

E.2.4 Image Energy . 183

E.3 A Statistical Experiment . 183

E.4 Some Linear Transforms . 184

E.4.1 The Hotelling Transform 184

E.4.2 The Discrete Cosine Transform 186

E.4.3 The Hadamard Transform 187

E.4.4 The Slant Transform . 187

E.4.5 The Haar Transform . 188

E.5 Quantization of the CoeÆcients 188

F Elementary Coding Techniques 191

F.1 Suppression of Zeroes . 191

F.2 Run Length Encoding . 192

F.3 Some Pre�x Encoders . 192

F.3.1 The Shannon Fano Coder 192

F.3.2 The Hu�man Coder . 193

G Bounds for Coding EÆciency 197

G.1 Bounds for Lossless Encoding . 197

G.2 Bounds for Lossy Encoding . 199

H Image Compression with IFS Codes 201

H.1 Iterated Function Systems . 202

H.2 Construction of an IFS Code . 202

H.3 A Decoding Algorithm for IFS Codes 203

H.4 The Collage Theorem . 204

H.5 Encoding of Gray Scale Images with IFS Systems 204

CONTENTS IX

I Scalar Quantization 207

J Other Mathematical Preliminaries 209

J.1 Common Statistical Distributions 209

J.2 The Orthonormalization Procedure by Gram and Schmidt 210

J.3 Inversion of Matrices . 211

Curriculum Vitae 212

Lebenslauf 213

Commonly Used Formula Symbols 215

Commonly Used Abbreviations 217

List of Figures 218

List of Tables 225

List of Listings 227

Bibliography 229

X CONTENTS

Vorwort 1

Vorwort

Der eÆzienten Speicherung und �Ubertragung von Bildern kommt in den letzten

Jahren verst�arkte Bedeutung zu, etwa bei Multimedia- oder WWW-Anwen-

dungen. In den letzten Jahren haben sich Anwendungen wie Internet-Browser

oder Multimedia-Lexika bedeutend ausgebreitet. Die dabei �ubertragenen und

gespeicherten Bilder nehmen selbst in komprimierter Form mit g�angigen Bild-

kompressionsverfahren wie GIF oder JPEG einen gro�en Teil des ben�otigten

Speicherplatzes ein. Aus diesem Grund besch�aftigt man sich weiterhin intensiv

mit der Kompression von digitalisierten Bildern.

Die Entwicklung solcher Kompressionsverfahren verlief dabei sowohl �uber ver-

lustlose Verfahren wie Lempel-Ziv- und Hu�man-Kodierung, als auch verlust-

behaftete Verfahren wie Vektorquantisierung und Transformationskodierung.

Eine allgemeine �Ubersicht solcher Kompressionsverfahren be�ndet sich bei-

spielsweise in [Kat94, NH88]. Zu den verlustbehafteten Kodierungsverfahren

geh�oren auch die sogenannten fraktalen Kodierer, bei denen sich insbesondere

Kodierer f�ur iterierte Funktionensysteme (iterated function system, IFS) als

auch die gewichteten endlichen Automaten (weighted �nite automaton, WFA)

hervorgetan haben. Die meiste Aufmerksamkeit gilt dabei den IFS-Kodierern,

soweit man das an der Anzahl der dedizierten Literatur ablesen kann. Um dieses

Ungleichgewicht zumindest geringf�ugig zurechtzur�ucken, wird in dieser Arbeit

das Gewicht auf die Erforschung der Methode der WFA-Kodierung gelegt. Dazu

wurde ein moderner WFA-Kodierer namens AutoPic entwickelt und implemen-

tiert, der unter anderem folgende Eigenschaften besitzt:

� bottom-up Erzeugung des Automaten,

� Benutzung von Bintrees,

� lineare und Matching-Pursuit-Approximation, die das Verh�altnis von Feh-

ler und Kosten abwiegt. Diese Abw�agung wird f�ur alle Entscheidungen

benutzt, die die Approximation betre�en,

� Matching Pursuit Approximation mit Second Chance Heuristik,

� Entropie-Kodierung mit einem arithmetischen Kodierer,

� Modellbildung mit endlichem Kontext und Kontextmischung,

� Optimierung der KodierereÆzienz durch genetische Algorithmen,

� Speicherung der Baumstruktur und vereinfachten HV-Partitionierung

mittels einer Mischung aus Laufl�angenkodierung und statistischer Ko-

dierung,

� Kombination mit Wavelet-Transformationen,

� Nachbearbeitung des dekodierten Bildes durch Kantengl�attung.

2 Vorwort

Diese Arbeit f�uhrt au�erdem neue Techniken in die WFA-Kodierung ein, wie

� eine abgeschw�achte Version der HV-Partitionierung, die Light-HV Parti-

tionierung genannt wird,

� die Einf�uhrung einer (exakten) Kosinus-Basis als Menge von Initialzu-

st�anden,

� die Einf�uhrung eines statistischen Modells, das die exakte Berechnung

der Kosten f�ur die Speicherung von WFA-Parametern unter bestimmten

Umst�anden erlaubt,

� eine neue Approximations-Alternative, die Bad Approximation genannt

wird,

� unabh�angige Zuweisung von Domainvektoren in verschiedenen Ebenen

des WFA-Baumes,

� eine Mischung zwischen BFS- und DFS-Aufbau des WFA-Baumes,

� Aufteilung der Matching-Pursuit-Vektoren in folgende Teile:

{ DC-Teil,

{ AC-Teil sowie

{ MP-Teil.

Obwohl der Hauptaspekt dieser Arbeit auf der Implementierung eines eÆzien-

ten Bildkodierungsalgorithmus liegt, wurde ein einfacher Video-Kodierer mit

bi-direktionaler Bewegungskompensation implementiert. Dessen Kompensa-

tionsentscheidungen beruhen ebenfalls auf einer Abw�agung von Approxima-

tionsfehler und erzeugten Speicherungskosten. Auf diese Weise wird gezeigt,

da� sich die Technik der WFA-Kodierung ebenfalls f�ur Bildsequenzen eignet.

Preface 3

Preface

The eÆcient storage and transmission of digital images is gaining increasing

interest, for example in multimedia and WWW applications. Pictures require

a huge amount of storage capacity even in compressed form (as GIF or JPEG).

For this reason, many researchers study the area of digital image compression

extensively.

The development of compression algorithms evolved from lossless techniques

such as Lempel-Ziv and Hu�man coding to lossy techniques such as vector

quantization and transform coding. An overview of such methods can be found

in [Kat94, NH88]. One of the major techniques for state of the art image

compression is the fractal-based technique. One version of these are based on

iterated function systems (IFS) which have drawn by far the most attention

as far as one can tell from the amount of dedicated literature. Other fractal-

based techniques are the codecs based on weighted finite automata (WFA)

which have been neglected by most researchers. In order to slightly correct this

bias, this thesis concentrates on the topic of image coding with WFAs. We

have implemented a state of the art WFA coder called AutoPic, which has the

following features:

� bottom-up generation of the automaton,

� usage of bintrees,

� rate{distortion constrained linear and matching pursuit approximation.

The rate{distortion feature is exploited for all decisions which concern

approximation,

� matching pursuit approximation with the second chance heuristic,

� entropy coding by an arithmetic coder,

� �nite context modeling with blending,

� optimization of encoder eÆciency with genetic algorithms,

� storage of the tree structure and light HV partitioning with a mixture of

run length and statistical coding,

� combination with wavelet transforms,

� post-processing of the decoded image by edge smoothing.

This thesis also introduces several new techniques to WFA coding as

� a restricted version of HV partitioning, called light HV partitioning,

� the utilization of an (exact) cosine basis as WFA initial states,

4 Preface

� a statistical model allowing the computation of the exact cost for the

storage of WFA parameters under certain circumstances,

� a new approximation alternative called \bad approximation",

� independent assignment of domain pool vectors in the levels of the WFA

tree,

� a mixture of BFS and DFS generation of the WFA tree,

� splitting the matching pursuit vectors into:

{ DC part,

{ AC part and

{ MP part.

Although the main aspect of this thesis is the implementation of an eÆcient

image encoder, a simple video codec was also implemented. It o�ers rate{

distortion constrained bidirectional motion compensation to show that the WFA

technique is also suited for video coding.

Outline of the Thesis 5

Outline of the Thesis

This thesis is designed to present several new aspects of image and video coding

using weighted �nite automata. In order to rate the enhancements, we have

implemented an experimental image and video codec named AutoPic, which

implements most of the techniques described in this thesis. In order to reach

a wide audience, we have added the basics of most aspects surrounding the

topic of digital image and video compression. As we will see, a wide variety of

enhancements to WFA coding is examined.

In chapter 1 we present fundamentals of digital image compression, e.g. some

statistical prerequesites, foundations of information, coding and approximation

theory.

In chapter 2 deals with some basics of entropy coding. We brie
y describe

the best known statistical encoder, the arithmetic codec. This chapter also

describes some kinds of statistical models from which we have to choose the

best for use in WFA image compression.

Chapter 3 presents image partitioning techniques and the de�nition of WFAs.

This chapter also provides encoding and decoding algorithms for weighted �-

nite automata. The main aspect of this chapter is to choose the best suited

construction algorithm to apply.

In chapter 4 we will examine several ways to enhance the compression eÆciency

of our WFA encoder. Some of the topics considered are the image partioning

techniques, the approximation technique, statistical models, domain pool ad-

ministration and optimization of coding parameters. The chapter is concluded

by some results of the WFA encoder and several further research topics.

Chapter 5 is devoted to the reduction of tiling e�ects by combining the WFA

technique with wavelet transforms. Therefore we will �rst describe some fun-

damentals of wavelet transforms and some postulations the utilized transform

should ful�ll. The chapter is concluded by some results of the combined enco-

der.

The next chapter is intended to show that the WFA technique may be combined

with video coding methods. We will present some techniques which may be

combined with WFA coding and will choose the most suitable.

Chapter 7 deals with some implementational issues. We will present the user

interface and package structure of AutoPic. This chapter also presents several

optimizations of the WFA codec.

The last chapter concludes the thesis and gives some suggestions for further

research.

The last part of this thesis is �lled by the appendix. Here we will add some

themes required for further reading. Some of the topics are color spaces, mea-

sures of image �delity, image bases and scalar quantization.

6 Outline of the Thesis

Chapter 1

Preliminaries

This chapter introduces some mathematical preliminaries and notations re-

quired for reading this thesis. The importance of some topics will become

clear in the next chapters.

1.1 Representation of an Image

Mathematically, an image is interpreted as a function p : R � R ! R. The

main di�erence to �les examined in classical data compression is the two-

dimensionality. In analogy to existing optical systems, the range of p(:; :) is

considered to be limited. Because the sight angle of optical systems is limited,

we also assume the domain of p(:; :) to be limited. Without loss of generality

we can expect the domain to be rectangular. We call the value p(x; y) the gray

value of the image p at the position (x; y) where we assume Cartesian coordi-

nates as usual in image de�nitions. The more general case of color images will

be examined later.

In order to operate on the image function with a digital computer, we have to

take a �nite set of samples into account. This operation is called sampling in

image processing. A commonly used sampling technique is to take the samples

at lattice points. This means that the sampling points are equidistant1 in x

and y direction. To summarize these assumptions, we use integer coordinates

in the range 0 � x < m and 0 � y < n.

As samples are real values, we include another processing step called quan-

tization. In this step, the sample values are replaced by numbers which are

members of a �nite set. The assigned values are called quantization steps and

the resulting error is called quantization noise due to its origin in audio coding.

For methods to reduce quantization noise see for example [Kat94]. The result

1The assumption that the sampling points are equidistant is not mandatory but common

because of technical reasons. This also simpli�es many mathematical models.

8 Preliminaries

of sampling and quantization is commonly called a digital image and its compo-

nents are called pixels2. If no confusion may occur, we will often write the x and

y coordinates as indices. This representation is commonly called PCM 3. For

an illustration of sampling and quantization see Figures 1.1 and 1.2 (because

of illustrational reasons we drew the PCM coding of a one-dimensional signal).

Note that a discrete image may be interpreted as a matrix.

6

-

amplitude

time

��+
����� SSw

input signal

PCM signal
zation
steps

quanti-

Figure 1.1: PCM coding.

sampler
input

quantizer
time discrete time and value

signal signal discrete signal

Figure 1.2: Discretization of a signal.

In practice, the sampling of a real valued function is typically performed at

a frequency called the Nyquist rate4. The quality of PCM coding is mainly

determined by the following two parameters [Llo82]:

1. the number of quantization steps and

2. the sampling frequency.

Early lossy image compression schemes used the fact that the human visual

system is insensitive to sampling errors. This method is called sub-sampling

[Kat94]. A frequently used variant is DPCM (di�erential pulse code modula-

tion) described in [Jai81, Kat94, NL80].

For some image processing techniques, an ordering of the pixels or image blocks

is required. Therefore, we assume that the origin of the coordinate system is

the upper left corner of the image (see Figure 1.3) and that we traverse the

rows from left to right and operate the columns top down (raster scan order).

For this and some other orderings see Figure 1.4. More information about

image representations can be found in [NH88].

Treatment of Boundaries Many image processing applications such as �l-

tering or wavelet transforms assume in�nite signal lengths. In order to use

2Also called pel as an abbreviation for picture element.
3PCM is an abbreviation for pulse code modulation.
4The Nyquist rate is equal to twice the highest occurring frequency in the Fourier transform

of the input signal. By sampling at at least this frequency the input signal can be reconstructed

exactly [NH88].

1.1 Representation of an Image 9

?

-0
0

n� 1

m� 1
x

y

aaaaaaaaaaa
pixelsHHY

Figure 1.3: Coordinate system of a digital image.

e e e e

e

e

e

e

e

e

e

e

e

e

e

e

e ee ee ee e

e e

e e

e e

e e

e e

e e

e e

e e

e e

e e

e e

e e������ ������ ������

Figure 1.4: Some orders of image blocks. They are called (from left to right):

raster scan order, spiral order and Hilbert order.

such applications, one has to extend the image over the boundaries. There are

several possibilities to extend images, including

� The missing pixels are �lled with constant values, for example 0 or the

value of the nearest pixel in the boundary.

� The values are extended periodically. This method is often used in Fourier

analysis.

� The values are extended symmetrically. This type of boundary treatment

is often used in wavelet analysis.

Note that there are also at least four subtypes of periodic and symmetric ex-

tension, as the �rst or the last sample may be repeated. Since such di�erences

may lead to unwanted side e�ects, the type of boundary treatment has to be

chosen carefully for the speci�c application to utilize.

Distortion Measures Used in this Thesis In this thesis we adapted the

distortion measures to the work of Hafner [Haf99], who measures the distor-

tion between two gray valued images e; ~e : f0; : : : ;m � 1g � f0; : : : ; n � 1g !
f0; : : : ; 255g as

PSNR=20 log10
255

RMSE
(1.1)

(peak signal to noise ratio) with

RMSE=

vuut 1

mn

m�1X
i=0

n�1X
j=0

(ei;j � ~ei;j)
2 (1.2)

10 Preliminaries

(root mean squared error). The bit rate is calculated in the common bpp

notation (bits per pixel)

bpp=
size of output stream in bits

number of pixels in the image
: (1.3)

All rate{distortion diagrams are made of tuples (rate, distortion) where the

rate is measured in bpp and the distortion is the PSNR measured in dB. For

a more detailed discussion on distortion measures of images see appendix C on

page 169.

1.2 Statistical Prerequisites

This section is provided to de�ne the notation used. We only introduce sta-

tistical properties necessary for understanding the fundamentals of data com-

pression. First we introduce some de�nitions of continuous probability spaces

and continue with discrete probability spaces.

1.2.1 Continuous Probability Spaces

In the following, we consider a statistical experiment. The set of the possible

outcomes is called
 and its elements are written as !.

A �-algebra S is a subset of the power set of
 with the following properties:

 2 S; (1.4)

A 2 S)
 n A 2 S; (1.5)

Ai 2 S) [i2IAi 2 S for I � N: (1.6)

The elements of S are called events. Two events have a special meaning: the

impossible event A = ? and the sure event A =
.

Let T � P(
) be a system of sets. The smallest �-algebra �(T) containing T
is given by

�(T)=
\

T � C � P(
), C �-algebra

C: (1.7)

In general, the probabilities are de�ned by a probability measure

P : S ! [0; 1] (1.8)

with the following properties:

P (
) = 1; (1.9)

P ([i2IAi) =
X
i2I

P (Ai) for I � N; Ai 2 S pairwise disjoint. (1.10)

The term pairwise disjoint means that Ai \ Aj = ? for i 6= j. Note that

P (?) = 0. A probability space is a triplet (
;S; P). A measurable space (S;B)

1.2 Statistical Prerequisites 11

is a set S with �-algebra B. A mapping X :
 ! S is called measurable with

respect to �-algebras S and B i�5

X
�1(B) 2 S (B 2 B): (1.11)

A measurable mapping from one probability space to a measurable space is

called random variable. The random variable X induces a probability measure

(XP)(B)=P (X�1(B)) on B, called distribution of X. From now on, we will set

S = R and introduce the notations

fX = xg = f! : X(!) = xg; (1.12)

fX � xg = f! : X(!) � xg; (1.13)

fx0 � X � x1g = f! : x0 � X(!) � x1g: (1.14)

These notations can be similarly de�ned for other comparison operators.

Let X : (
;S; P) ! (R; B) be a real valued random variable. Here B indicates

the Borelean �-algebra generated by the semi in�nite intervals (�1; t], i.e.

B=�(f(�1; t] : t 2 Rg). The distribution of X applied to the half rays (�1; t]

with t 2 R de�nes the distribution function

F (t) = XP ((�1; t]) (1.15)

= P (X�1((�1; t])) (1.16)

= P (fX � tg) (1.17)

with the following properties

1. limt!1 F (t) = 1;

2. limt!�1 F (t) = 0;

3. F is monotonically increasing.

If F is di�erentiable, we call f(t) = F
0(t) the (Lebesgue-)density of F with

respect to the probability measure XP with distribution function F .

The expectation value (or shorter expectation) of the random variable X is

de�ned as

E(X)=

1Z
�1

tf(t) dt; (1.18)

if this integral exists. The value

Var(X)=

1Z
�1

(t�E(X))2f(t) dt (1.19)

is called variance of the random variable X and its square root is called the

standard deviation of the random variableX, where the existence of the integral

is assumed.

5In keeping with mathematical literature, i� means \if and only if".

12 Preliminaries

1.2.2 Discrete Probability Spaces

From now on, we assume that
 = f!i : i 2 I; I � Ng and S = P(
). The

probability measure P is uniquely de�ned by the values on the singletons (one-

elemental subsets) by

pi=P (f!ig): (1.20)

Then we have X
i2I

pi = 1: (1.21)

In this case we de�ne the expectation of the random variable X as

E(X)=
X
i2I

X(!i)pi (1.22)

(if this sum exists) and the variance of X as

Var(X)=
X
i2I

(X(!i)�E(X))2pi: (1.23)

Conditional Distributions

Let

X : (
;P(
); P) ! (S;B) (1.24)

and

Y : (
;P(
); P)! (T; C) (1.25)

be discrete random variables and B;C �
. Then the term

P (Y 2 CjX 2 B)=

8<
:
P (fX 2 B; Y 2 Cg)
P (fX 2 Bg) if P (fX 2 Bg) > 0

P (fY 2 Cg) if P (fX 2 Bg) = 0

(1.26)

is called conditional probability of Y 2 C given X 2 B. The function

F (t) = P (Y � tjX 2 B)=

8<
:
P (fX 2 B; Y � tg)
P (fX 2 Bg) if P (fX 2 Bg) > 0

P (fY � tg) if P (fX 2 Bg) = 0
(1.27)

is correspondingly called conditional distribution function of Y given X 2 B.

1.2.3 Arrays of Random Variables

We now generalize the concept of random variables and therefore consider the

family of functions

Xs(!i) with s 2 I (1.28)

where I is an interval of the Euclidean space. If I is one dimensional, we call

Xs(!i) a stochastic process; if I is higher dimensional, then we callXs(!i) a ran-

dom variable array. In the following, we focus on the discrete two dimensional

case.

1.3 Foundations of Information and Coding Theory 13

1.2.4 Images Considered as Arrays of Random Variables

Since we do not know in advance which image will be operated on, we may

interpret the gray values of an image as random variables. In order to make

the following formulas more readable, we assume that the mean value of the

random variables is zero:

E(Xi;j) = 0 for all i; j 2 I: (1.29)

In the following considerations, we introduce a measure for dependency of the

gray values of adjacent pixels. In the following sections we assume that the

variance of the random variables is �nite, i.e. Var(Xi;j) <1. Empirical inves-

tigations on digital images have shown that the autocorrelation function

R(i0; j0; i1; j1)=E(Xi0 ;j0Xi1;j1) (1.30)

can be approximated by the function

�
2
e
�(�ji0�i1j+�jj0�j1j) (1.31)

with �; �; � 2 R chosen properly [WH71]. The autocorrelation function there-

fore depends only on the relative positions of the considered pixels and not on

their position in the image. In this case the autocorrelation function is called

homogeneous. In the following, we will assume the autocorrelation function to

be homogeneous and write

R(i; j) = R(a; b; a + i; b+ j); (1.32)

for arbitrary values of a and b. The matrix R(i; j) is called correlation matrix.

Little is known about the distributions of gray values of digitized images. Re-

searchers often use mixtures of Gaussian and Laplacian distributions (see ap-

pendix J.1 on page 209) as an approximation. The lack of precise models for

images is surely one of the main reasons for the many heuristics in image com-

pression [Jai81].

1.3 Some Foundations of Information and Coding

Theory

Let E and F be countable sets of symbols with at least two elements each which

we call the input alphabet and output alphabet, respectively. With the word code

we specify a non-empty set C � F
+. The elements of C are called code words.

The number jF j denotes the order of the code (jF j-ary code). For the rest of

this thesis we assume F = f0; 1g if nothing else is stated. With the word coding

one denotes an (injective) mapping from E
+ to F+. Note that for many codes,

one has to restrict the input alphabet to �nite cardinality. In accordance with

14 Preliminaries

many articles about data compression, we use the less precise word code instead

of coding.

A block code is a code whose code words have a �xed length in contrast to a

code of variable length. In this thesis, we will only examine uniquely decodable

codes meaning that each sequence of code words can only be decoded in one

way. For example f1; 10; 01g is not uniquely decodable, because the sequence

101 can be decoded as 1 01 and as 10 1. An example for uniquely decodable

codes are the pre�x codes which we will introduce later.

1.3.1 Information Theory

In the following, we de�ne the mathematical term information content. In

this de�nition, we do not assign any semantic meaning to the symbols but

de�ne the information gain of the receiver of a given message based only on the

probabilities of the received symbols.

Our \surprise" about receiving the symbol e 2 E is anti-proportional to its

probability. Therefore, we assign to symbols with smaller probability a higher

information content than symbols with higher probability. Symbols with zero

probability6 are not allowed. We now assign the information content7 Ie to a

symbol e 2 E with probability pe > 0 as

Ie=� logm(pe) with m 2 R;m > 1: (1.33)

In this context, we choose m = 2 and call the unit of information bit8, the base

m is omitted if no confusions can occur. There are alternative de�nitions for

information, but here we examine the information theory of C. E. Shannon,

which perfectly �ts our applications.

Note: There is a confusing ambiguity between the measure unit bit de�ned

above and the storage unit bit. The two measure units have the strong rela-

tionship that an (electrical) device which can distinguish two states can at most

store one bit of information. In German literature the former measure unit is

therefore commonly called bit and the latter one is called Bit (as proposed in

[HQ89]). In this thesis we call both measure units bit, in accordance with En-

glish literature. �

Entropy

The term entropy was introduced in 1948 by C. E. Shannon in connection with

the analysis of the information content of the English language. The expectation

6One could assign the symbols with probability 0 an information content of 1, but that

is not necessary in this thesis.
7Note that I is also a random variable.
8For m = e one calls the unit of information nat.

1.3 Foundations of Information and Coding Theory 15

H of the random variable I : E ! R is called entropy (of �rst order) and is

thus de�ned by

H=E(I) =
X
e2E

peIe = �
X
e2E

pe log pe: (1.34)

The entropy function is therefore a function which maps probability measures

to real numbers. It would be more precise to write H(P) but following the

usual notation we also write H. In [HQ89] it is shown that H is continuous and

takes its maximum (for �nite alphabets) at the uniform distribution pe = 1=jEj
for all e 2 E. In this case, the entropy is given by H = log jEj.

The entropy can be interpreted as a measure for the \randomness" and it serves

as a lower bound for the number of bits required on the average to encode a

single symbol (see section G.1 on page 197). With the entropy we have a

criterion for the eÆciency of (lossless) codes. For a graphical representation

of the entropy function see Figure 1.5. There, the entropy of an information

source with three symbols is plotted. The domain is two dimensional in this

case, since the third probability is given by p0 + p1 + p2 = 1. See [HQ89] for

further details.

6

pe2

H

pe1���:HHY

Figure 1.5: Entropy function.

1.3.2 EÆciency and Redundancy of a Code

Let E = fe0; : : : ; en�1g be an input alphabet with probability distribution P =

(p0; : : : ; pn�1) with pi = P (ei) and C : E ! F
+ a coding to an alphabet, with

code words of lengths li = jC(ei)j with i 2 f0; : : : ; n � 1g. We denote the

expectation of the code word length of the code C as

LC=

n�1X
i=0

pili: (1.35)

We call

E�C=
H

LC
(1.36)

the eÆciency of the code C and

RedC=LC �H =

n�1X
i=0

pili �
n�1X
i=0

�pi log pi (1.37)

16 Preliminaries

the (statistical) redundancy of the code C. Let us remark that it is not precise

to speak of an average code word length of a code, but this notion is commonly

used and will not be changed here.

1.3.3 Pre�x Codes

Pre�x codes are codes of variable length in which no code word is the pre�x of

another code word. Therefore, a more precise notion for these codes would be

pre�x free codes. This condition ensures the decodability without lookahead,

which is also called instant decodability or Fano property. In the following

statements about pre�x codes, we assume that the input alphabet is �nite

(jEj <1).

In order to illustrate the concept of pre�x codes, we introduce the concept of

the code tree, a tree with input symbols associated to the nodes (at most one

symbol per node). We explain this without loss of generality for binary output

alphabets. A code tree is a special interpretation of a trie (retrieval tree),

which is a (binary) tree where the symbols of the input alphabet are stored in

the leaves. One interprets the code word of a given symbol as the path from the

root to the associated node. Therefore, we encode a 0 if we branch to the left

subtree and otherwise encode a 1. An illustration of the trie concept is shown

in Figure 1.6.

root
e1 7! 00

e2 7! 1100

0

1

1

0
e1

e2

h

h

h

h

""

bb

bb""

""

Figure 1.6: Code tree.

It can be shown that the optimal compression rate regarding symbol codes9 can

be achieved using a pre�x code [HQ89]. This is the reason, why research about

symbol coding may be limited to pre�x codes.

Pre�x codes are desirable because they allow relatively simple coders and de-

coders. At the coding stage, one can concatenate the code words without the

need to insert extra symbols to separate the code words. The �rst code word is

determined uniquely because of the pre�x property (without lookahead). This

code word is cut from the data stream and the next code words are successively

obtained by the same procedure.

A minimal pre�x code is a pre�x code such that the following condition holds:

if ~p is a pre�x of a code word, ~pf with f 2 F is either a pre�x of a code word

or is itself a code word. This property prohibits that code words are longer

9A symbol code is a code assigning each input symbol a code word.

1.3 Foundations of Information and Coding Theory 17

than necessary to ensure that the code is uniquely decodable. For this reason,

we will only examine minimal pre�x codes in the following. A minimal pre�x

code is always represented by a complete trie, meaning that each inner node

always has two children. The trie in Figure 1.6 is not a complete trie, but

can be transformed into a complete trie by cutting inner nodes. Because we

restrict ourselves to complete tries, we can state that the coding tree possesses

exactly jEj leaves and jE � 1j inner nodes. If a coding tree T for a pre�x code

is given, one can easily calculate how many bits are required to encode a given

message. For the generation of such codes see appendix F.3 on page 192. More

details about information theory, entropy and pre�x codes may be found in

[MZ97, HQ89].

1.3.4 Coding of Alphabets with In�nite Cardinality

In some cases, one does not know the size of the input alphabet prior to coding.

For this application there exists a huge amount of coding methods. Many of

the coding methods described in this section have the additional advantage that

the set of code words is �xed, simplifying both coding and decoding. In the

following de�nitions we denote the concatenation operator of codewords by the

symbol �. If no confusion may occur, the concatenation operator is omitted.

Universal Codes A code C is called universal i� its average code word length

LC has the upper bound k0H + k1 with k0; k1 2 R for each statistical distribu-

tion, provided that the input symbols are arranged in descending order of their

probabilities. Such a code is called asymptotic optimal i� k0 = 1 holds.

Unary Coding Unary codes � : N n f0g ! f0; 1g+ are de�ned recursively in

the following manner:

�(1) = 1;

�(n+ 1) = 0 � �(n): (1.38)

This code shows bad performance regarding data compression since j�(n)j = n

but is introduced to build more complex codes.

Binary Coding The binary coding � : N n f0g ! f0; 1g+ is de�ned as

�(1) = 1;

�(2n) = �(n) � 0;
�(2n+ 1) = �(n) � 1: (1.39)

Note that sequences of binary codes are not decodable unless the lengths of the

codewords are known. Since j�(n)j = blog nc+ 1 the code10 is very eÆcient.

10
b:c denotes the
oor function bxc = maxfz 2 Zjz� xg.

18 Preliminaries

The coding �̂ is the coding � with the most signi�cant bit removed (which is

always 1). Because of this truncation of one symbol it follows that j�̂(n)j =
blog nc.

The First Code of Elias The �rst code of Elias
 : N n f0g ! f0; 1g+
consists of blog nc zeroes followed by the binary representation of n:

(n) = �

�����̂(n)���� � �̂(n): (1.40)

It follows that j
(n)j = 2blog nc+ 1.

The Second Code of Elias The second code of Elias Æ : N n f0g ! f0; 1g+
maps a natural number n to a code word, consisting of
(blog nc+1), followed

by the binary representation of n without the leading 1. The resulting code

word has the length 2blog(1 + blog nc)c+ 1 + blog nc:

Æ(n) =
(j�(n)j) � �̂(n): (1.41)

The Third Code of Elias The procedure as used to build the code Æ can

be applied recursively to build the third code of Elias ! : N n f0g ! f0; 1g+.
According to [HL87], this is worthwhile only for \astronomically high" numbers.

The recursion can be performed in the following way: �rst the code �(n) is

written. The codeword �(j�(n)j � 1) is written to the left of this codeword.

This procedure is called recursively with each earlier code to the left being the

� representation of the following codeword subtracted by 1. The recursion is

stopped if the last codeword has the length 2. In order to uniquely mark the

end of the code, a single 0 is appended since the code � always starts with a 1.

The codes Æ and ! are asymptotical optimal [HL87, BCW90] as opposed to
.

For Elias codes of some numbers see table 1.1. For more information on Elias

codes see [Eli75].

Fibonacci Codes Another universal code is based on the Fibonacci numbers.

Although the Fibonacci codes are not asymptotically optimal [HL87], they are

an alternative for \small numbers".

The Fibonacci numbers (of order 2) are de�ned for this purpose as follows:

F�1 = F0 = 1; (1.42)

Fi = Fi�2 + Fi�1 for i � 1: (1.43)

Each natural number n has exactly one binary representation of the form

n =
P

k

i=0 diFi (with di 2 f0; 1g and k � n) without adjacent ones in the

representation. A Fibonacci code word is generated by writing the di without

leading zeroes one after the other, mirroring them and appending a 1. Because

in the above representation there are no adjacent ones, the end of the code word

1.3 Foundations of Information and Coding Theory 19

decimal � � �̂
 Æ !

1 1 1 1: 1: 0

2 01 10 0 01:0 010:0 10.0

3 001 11 1 01:1 010:1 11.0

4 0001 100 00 001:00 011:00 10.100.0

5 00001 101 01 001:01 011:01 10.101.0

6 000001 110 10 001:10 011:10 10.110.0

7 0000001 111 11 001:11 011:11 10.111.0

8 00000001 1000 000 0001:000 00100:000 11.1000.0

9 000000001 1001 001 0001:001 00100:001 11.1001.0

10 0000000001 1010 010 0001:010 00100:010 11.1010.0

Table 1.1: Some codewords of the integers 1{10. For clarity the parts of the

codes
, Æ and ! are separated by a dot, which is not part of the code.

decimal F

1 11

2 011

3 0011

4 1011

5 00011

6 10011

7 01011

8 000011

9 100011

10 010011

Table 1.2: Some Fibonacci codewords.

20 Preliminaries

is determined uniquely. The �rst ten Fibonacci codewords of order 2 are shown

in table 1.2.

One can show that the Fibonacci codes are universal, but not asymptotical

optimal. Despite that fact these code words are short for small11 numbers. For

further information about universal codes, see also [BCW90, HL87].

1.3.5 Adjusted Binary Codes

We now consider how to encode integers more eÆciently if an upper limit is

known. Henceforth we call this upper limit m 2 N. We can code an integer

n 2 N with k = dlogme bits by using normal binary coding. If the upper limit

m is not a power of two, some code words remain unused. For that case we can

use adjusted binary codes, which use binary codes with k� 1 bits if i < 2k �m.

If the coded integer is greater than or equal to this limit, the number i+2k�m

is coded using k bits. Note that this coding increases coding and decoding time.

For an example of such a coding see table 1.3. At the decoder side, one has

to read k � 1 bits �rst and afterwards eventually the last bit. These codes are

also commonly called phased binary codes. In order to construct more elaborate

codes with adjusted binary codes we denote this coding by �m.

1.3.6 Golomb Codes

Golomb codes are parameterized by a natural number m. The code is con-

structed in the following way

gm(n) = �(n=m) � �m(n mod m) for n 2 N: (1.44)

The special case when m is a power of two has been examined by Rice. Note

that in this case no phasing is required for the binary coding. It has been

shown that Golomb codes can be adjusted to yield optimal pre�x codes for

given exponential distributions [GV75]. For some examples of a Golomb code

see table 1.3.

1.4 Approximation with the Matching Pursuit Al-

gorithm

A problem we will encounter in the next chapters (especially section 3.2.1 on

page 39), is that we have to approximate a given vector by linear combinations

of vectors taken from a set of vectors. Since our goal is data compression, we

have to approximate a vector with as few vectors as possible and as accurately

as possible. Obviously these two requirements have to be balanced.

11The Fibonacci codes are shorter up to n = 514:228 [HL87] than the codeword lengths of

the code Æ.

1.4 Matching Pursuits 21

decimal �5 g5

0 00 0:00

1 01 0:01

2 10 0:10

3 110 0:110

4 111 0:111

5 � 10:00

6 � 10:01

7 � 10:10

Table 1.3: Some adjusted binary and Golomb codewords.

The approximation with matching pursuits (MP) was introduced by Mallat and

Zhang in [MZ93]. In this technique, an approximation is constructed step by

step using a greedy strategy. Let us �rst explain the idea of this technique in

an informal manner.

The �rst approximation of a vector v is constructed by selecting the best match-

ing vector from a given codebook. The component of this best matching vector

is then subtracted from v. The remaining residue is now encoded in the same

way as v and the process is continued until a given abortion criterion is ful-

�lled. Note that the codebook vectors do not need to be orthogonal. This

approximation technique is also called projection pursuit in statistics.

1.4.1 The Standard Matching Pursuit Approximation

Let p; n 2 N and D = fg0; :::; gp�1g with gi 2 R
n(i 2 f0; :::; p � 1g) be a set

of p � n non-zero vectors. The set D is often called dictionary, codebook or

domain pool. With span(D) we denote the set of all linear combinations of

vectors in D. In order to make the following calculations a bit easier we assume

that, without loss of generality, each vector in the dictionary has unit Euclidean

norm. If span(D) = R
n then D contains a set of n linear independent vectors.

The matching pursuit algorithm begins by projecting v on a dictionary vector

gi0 and computing the residue Rv by

v = hv; gi0igi0 +Rv: (1.45)

Since Rv is orthogonal to gi0 , the following equation holds:

jjvjj2 = jhv; gi0 ij2 + jjRvjj2: (1.46)

From that equation one can see that we have to choose gi0 such that jhv; gi0ij
is maximal, since jjRvjj has to be minimized.

The next iteration of the procedure continues with Rv instead of v, such that

the following iteration is computed:

22 Preliminaries

1. R0
v = v.

2. The next residues are computed by

R
m
v = hRm

v; gimigim +R
m+1

v;

jjRm
vjj2 = jhRm

v; gimij2 + jjRm+1
vjj2 (1.47)

and choosing gim in the way that hRm
v; gimi is maximized.

Summing up the last equation in m from 0 to a stopping index M � 1 yields

v =

M�1X
m=0

hRm
vgimigim| {z }

approximation for v

+ R
M
v| {z }

remaining approximation error

: (1.48)

1.4.2 Improvements of the Greedy Method

In the last section, we have introduced the standard matching pursuit algo-

rithm with the greedy strategy. But as in many areas in computer science,

this strategy is not optimal12. In the case of the matching pursuit algorithm,

the suboptimal case can be observed when the vectors in the codebook are not

orthogonal. If we take m elements in the linear combination, the best strategy

is to evaluate all �
jDj
m

�
(1.49)

combination of indices. Since in practice the evaluation of such an approxi-

mation is infeasible, many researchers have tried to get suboptimal solutions,

which are better than the standard greedy method. Despite all problems, it

could be interesting to limit the size of the MP vectors and test all possible

combinations of indices.

Second Chance Matching Pursuit

A well-known variant of the standard matching pursuit method is the second

chance variant. In this variant the approximation algorithm is run twice: the

�rst run is the normal matching pursuit algorithm as described in the last sec-

tion. After that the best matching vector of the �rst run is removed from the

dictionary and the matching pursuit algorithm is run with that modi�ed dic-

tionary. Afterwards the best of the two alternative approximations is selected.

[Haf99] reports that this variant improves the image quality up to 0.3 dB PSNR

at the same compression factor. Our implementation also achieved a signi�cant

improvement. Note that the �rst run of the second chance can be computed in

the �rst run of the �rst chance.

12Note that the determination of the optimal solution is an NP hard problem.

1.4 Matching Pursuits 23

Orthogonal Matching Pursuit

In this variant the dictionary vectors are orthogonalized in the same man-

ner as in the Gram Schmidt orthogonalization procedure (see appendix J.2

on page 210). This method is reported to achieve a signi�cant gain over the

standard algorithm.

Remaining Problems

Matching pursuit approximation is often utilized in data compression. Since

it has proved to be a powerful tool for constructing linear combinations, we

decided to use this technique. As we will see in the next chapters, the following

additional problems have to be solved:

� the vector v may be not contained in span(D),

� the achieved coeÆcients have to be quantized,

� the storage cost of the coeÆcients may di�er.

One of the most severe drawbacks is that a huge number of scalar products has

to be calculated. In section 4.3 on page 68 we show how these techniques can

be further re�ned to satisfy the requirements for state of the art WFA coding.

24 Preliminaries

Chapter 2

Entropy Coding

The eÆcient lossless coding of data is the basis of a high performance image and

video coding system. Since the speed, memory consumption and compression

eÆciency of the entropy coder in
uences all parts of our implementation of

the WFA encoder, we pay special attention to this type of coding. In this

chapter, we introduce a highly eÆcient statistical encoder and present some

types of models from which we have to choose the best suited for our project.

In chapter 3 on page 35 we argue how the statistical model has to be built to

support WFA coding in a highly eÆcient way.

2.1 The Arithmetic Encoder

The arithmetic coder eliminates the drawback of pre�x coders that each symbol

has to be encoded by an integer number of bits. This enhancement is obtained

by using a totally di�erent way of coding. Another bene�t of this coder is the

clear separation of statistical model and coder. This bene�t allows the design

of more
exible models and an easy adaptation of the coder to those models.

However, these enhancements are achieved by a higher implementation expense

and a running time generally slower by a constant factor.

2.1.1 The Idealized Algorithm

In order to introduce the arithmetic encoder, we assume that the input alpha-

bet is �nite. The codec1 describes the encoded message by an element of a

half open interval which is a subinterval of the interval [0; 1). When the mes-

sage gets longer during the coding process, the output interval narrows at each

encoded symbol by a factor dependent on the probability of this symbol. For

this reason, the number of bits which have to be used to encode that interval

increases. Symbols having a higher probability narrow the output interval less

than symbols with lower probability and thus append less bits to the output.

1The word codec is the merging of the words encoder and decoder.

26 Entropy Coding

Each symbol e of the input alphabet will be assigned a half-open interval

I(e) with a length equal to the probability of the occurrence of that symbol:

jI(e)j = pe. These intervals form a disjoint covering of the interval [0; 1). Af-

ter each coded symbol, the output interval is narrowed by a factor equal to the

probability of the occurrence of that symbol. The initial interval where no sym-

bols are encoded is the interval [0; 1). In order to mark the end of the message,

a special EOF2 symbol could be encoded. Another alternative is to transmit

the length of the message at the beginning. Note that not both limits have to

be transmitted but only one arbitrary number in the �nal coding interval (for

example the lower bound). In listings 2.1 and 2.2, pseudo implementations of

the arithmetic encoder and decoder in its pure form are given.

/��
� encodes a s t r i n g o f symbols .
�

�@return a number r ep r e s en t i n g the input message .
��/
f loat encode ()

//high and low denote upper and lower l im i t o f the cur r en t
// encoding i n t e r v a l .
//high (e) and low (e) denote upper and lower l im i t o f the
// encoding i n t e r v a l o f the symbol e .
f

f loat low=0;

f loat high=1;

while (not EOF)

f

e=next input symbol ;

range=high�low ;

high=low+range �high (e) ;

low=low+range � low (e) ;

g//end whi l e
return low ;

g//end encode

Listing 2.1: Arithmetic encoder.

/��
� decodes a r e a l number .
�

�@param z i s the number to be decoded .
��/
void decode (f loat z)

//high (e) and low (e) denote upper and lower l im i t o f the
// encoding i n t e r v a l o f the symbol e .
f

while (not EOF)

f

�nd the symbol e such that z 2 I(e) ;

output e ;

range=high (e)�low (e) ;

2EOF ' end of file.

2.1 The Arithmetic Encoder 27

z�=low (e) ;

z /=range ;

g//end whi l e
g//end decode

Listing 2.2: Arithmetic decoder.

Example: Assume that the input alphabet is fa; b; cg. The assigned proba-

bilities are pa = 1
2
and pb = pc = 1

4
. The assigned intervals could then be

determined as shown in table 2.1.

symbol probability interval

a 1
2

�
0; 1

2

�
b 1

4

�
1
2
;
3
4

�
c 1

4

�
3
4
; 1
�

Table 2.1: Assigning intervals to probabilities.

For the following encoding procedure we refer to Figure 2.1, in which the mes-

sage aac shall be transmitted. After reading the symbol a, the initial interval

[0; 1) is narrowed to
�
0; 1

2

�
. The encoding of the second a narrows the message

interval further to
�
0; 1

4

�
and the input of the symbol c �nally creates the output

interval
�
3
16
;
1
4

�
.

The decoder receives an arbitrary number lying in the interval
�
3
16
;
1
4

�
(for

example 3
16
) and can thus reconstruct that the �rst symbol of the received

message is the symbol a, as the received number lies in the interval
�
0; 1

2

�
.

After that the reverse of the �rst coding step is applied to that number and the

next symbol is decoded until the end of the message is reached.

a

b

c

0

1

1
2

3
4

a

b

c

a

b

c

;

a
;

a

0

1
2

1
4

0

a

b

c
;

c

1
4

3
16

#
#
#
##

#
#
#
##

e
e
e
e
ee

Figure 2.1: Coding of aac with arithmetic coding. The left interval is the initial

interval, the next intervals are obtained by successively coding the message.

�

28 Entropy Coding

Implementation of the Arithmetic Codec

At �rst glance, the technique of arithmetic coding seems to be impracticable

for an implementation as
oating point operations seem to be needed. But as

we will see, the required operations can be performed using integer arithmetic.

Another problem is that we seemingly have to operate on a number with all its

digits which in practice can be some millions. In the following implementation

proposal, equal digits3 is pushed out to the left of the window and will not be

calculated on in the following operations. This can be done because the next

interval is always contained in the current interval and so the digits pushed out

will not be changed.

The required operations are explained without loss of generality for the case

of decimal numbers. At the beginning of the coding operation the two limits

are set to 0 and 0:999 : : : respectively. In order to operate on these limits with

integer arithmetic, we only store the digits after the decimal point. Since we

can only handle a �nite number of digits, we interpret the numbers as a �nite

window to an in�nite precision number. In case that the windows are displaced

to the right, one has to append 0s to the lower bound and 9s to the upper

bound. If the left (highest) digits of the windows are equal, the windows have

to be displaced to the right and the next digits have to be �lled in as mentioned

before. The process of window displacement is illustrated in Figure 2.2.

. . . 3 1 4 1 5 9 2 6

. . . 2 7 1 8 2 8 1 8 0 0 0 . . .

9 9 9 . . .
-

upper bound

lower bound

6 6 9

6 6 9

Figure 2.2: Windows to numbers with in�nite precision.

Handling of Under
ow

A problem with this implementation occurs if the limits approach and the

highest digits of these limits di�er. In this case, when the highest digits di�er

only by 1, the encoder has to test if the second highest digit of the lower bound

is a 9 and the second highest digit of the upper bound is a 0 (see Figure 2.3). In

order to solve this problem, the second highest digits of the two registers have to

be eliminated by pushing the following digits to the left but retaining the highest

digit. The execution of this operation has to be transmitted separately to the

receiver. For more information about arithmetic coding see [Nel92, WNC87].

Results of this coder are given in [Pin90] and in this thesis.

The implementation of the arithmetic codec used in AutoPic is based on the

codec presented in [WNC87]. Changings were made especially concerning the

statistical model. In order to achieve the highest
exibility, AutoPic uses a

3The numbers are assumed to be in Motorola notation meaning that the most signi�cant

digits are to the left.

2.2 Statistical Models 29

. . . 7 0 0 0 1 9 2 6

. . . 6 9 9 7 2 8 1 8 0 0 0 . . .

9 9 9 . . .
-

upper bound

lower bound

6 6 9

6 6 9

Figure 2.3: The under
ow problem of the arithmetic codec.

windowing technique which can be adapted to non-stationary distributions and

can also roll back symbols to support the required backtracking operations.

Furthermore, the end-of-�le symbol was removed from the codec.

Note: Let us remark that a quasi arithmetic codec which needs only integer

shifts instead of multiplications is also found in the literature [RM89]. However,

this coder has the drawback of needing the probabilities in the form 2j=2k with

j; k 2 N nf0g. Because the arithmetic encoder has only a minor in
uence on the
running time of the WFA algorithm, we decided not to use the quasi arithmetic

encoder and thus obtain optimal compression results with small running time

punishment. �

2.2 Statistical Models

A data compression scheme can normally (roughly) be divided into two parts:

the model4 and the encoder. The model describes the (more or less well) esti-

mated5 probabilities of the input symbols which the encoder uses to write to

the output stream (see Figure 2.4). The problem of encoding is already solved,

while the statistical models are still under research.

model

- encoder

empirical

-input

data stream

probabilities

output

data stream

-

6

Figure 2.4: Structure of a data compression scheme.

The necessity of predicting the probability of a symbol is of enormous impor-

tance for a statistically-based compression scheme. One form of redundancy

in a text is the dependency of a symbol from one or more of its predecessors.

For example, we consider texts using the German language. In this language,

the probability is very high that after the symbol q the symbol u will occur.

For this reason, we introduce higher models, which estimate the probability of

4Note that in the topic of data compression, the term model is used for an implementation

of the statistical term probability distribution. In this context, we adapt it to data compression

literature.
5It is assumed that the exact probabilities are not known.

30 Entropy Coding

a symbol's occurrence dependent on a �nite number of predecessors. The order

of these models denotes the number of considered predecessors.

Models of higher order have the bene�t that the probability of the occurrence

of a symbol can be estimated more precisely in many cases, but this bene�t is

obtained by higher storage cost. This cost grows exponentially depending on

the order of the model.

2.2.1 Block Coding

Another commonly used type of model does not encode single symbols but

combines several symbols to a block and thus creates a new alphabet. Such a

process is called alphabet augmentation. We write the combined components as

e0; : : : ; en�1 and the resulting n-tuple as

e = (e0; : : : ; en�1): (2.1)

The entropy of order n (which is also called block entropy) is de�ned on these

tuples as

Hn=�
X
e 2En

pe log pe : (2.2)

It can be shown that the inequality

Hn � nH with n � 2 (2.3)

holds where equality is reached i� the components are statistically independent

[NH88]. With this method especially pre�x encoders can be improved (respec-

tively compression performance). A problem with this type of encoding is the

exponential growth of the alphabet sizes.

2.2.2 Predictive Encoding

In the following paragraph, we assume that the usual binary arithmetic opera-

tors + and � are de�ned on the input alphabet, which is for example the case

if E = Z.

The method of predictive encoding is closely related to conditional encoding.

Using conditional encoding, the symbol e is assigned a probability depending

on the n � 1 symbols that were encoded previously. In predictive encoding,

the next symbol e is predicted with information extracted from the last n� 1

symbols. Then the di�erence e� ~e is encoded instead of e, where ~e denotes the

prediction of e. The decoder uses the same predictor and adds the prediction to

the received symbol. The performance of a predictive encoder depends strongly

on the e�ectiveness of the predictor. In practice, the encoder needs to transmit

less bits since the entropy of the di�erences is smaller than the entropy of

the original sequence if we assume a \good" predictor and certain statistical

properties of the sequences. This bene�t is exploited for example in DPCM6

which is explained in [Jai89, Kat94].

6DPCM ' di�erential pulse code modulation.

2.3 Non-Context Models 31

2.3 Non-Context Models

In this and the next section, we present some ways to implement models. We

�rst examine non-context models followed by context models which often use

non-context models as a basis.

2.3.1 Static and Adaptive Models

A static model is a model which does not change the assigned probabilities of

the input symbols during the encoding process, in contrast to adaptive models.

A static model either obtains its probabilities from a �xed table or from

a spot test of the encoded data stream. In the latter case, the transmission

of the statistics is mandatory, thus worsening the compression performance.

Adaptive models start with a prede�ned probability distribution. We also have

to assign a non-vanishing probability to symbols not yet transmitted. Because

the relative frequencies of such symbols are 0, we are confronted with a problem

known as the zero frequency problem. When operating with adaptive models,

we have to make sure that �rst the codeword of a given symbol is transmitted

and after that we can update the model, because the decoder otherwise has

no way to keep its model up to date in order to work with the same model.

A commonly used technique for implementing an adaptive model is to use an

array F (frequency) with jEj components, which are all set to the initial value

1. After encoding the symbol ei, the i
th component of the array is incremented.

In order to estimate the probability of the symbol ei, the relative frequency

pi =
FiPjEj�1

j=0 Fj

for i = 0; : : : ; jEj � 1 (2.4)

is used.

For the case of non-stationary statistics, the estimated probabilities eventually

cannot adapt quickly if a great number of symbols have been encoded. A so-

lution to this problem is the recalculation of the probabilities after a speci�ed

number of encoding steps. As a criterion for recalculating the frequency array,

the codec could test if the highest frequency exceeds a given limit. The recalcu-

lation can be performed by the algorithm in listing 2.3 [Pin90]. Note that the

zero frequency problem is avoided by initializing the array F with the values

Fi = 1. A faster adaptation of the model is obtained by adding a value greater

than one to an array component when updating the model. This parameter is

called AdaptationSpeed in AutoPic.

/��
� r e c a l c u l a t e s the array o f r e l a t i v e f r e q u e n c i e s ,
� thus omitt ing over f low and ensur ing f a s t adaptat ion o f
� t h i s model .
��/
void r e c a l c u l a t e ()

f

32 Entropy Coding

f ina l c=: : : ;//c � 1

for (i=0; i < jEj ; i++)

Fi =
Fi+c
2

;

g//end r e c a l c u l a t e

Listing 2.3: Recalculation of an adaptive source model.

2.3.2 Window Models

In order to exploit non-stationary data statistics, a well-known technique is

to use a windowed model. This kind of model utilizes a window of the last k

symbols de�ning a sample of the data to be encoded. The statistics of this spot

check may be used to estimate probabilities for the entropy encoder. For an

illustration of this model see Figure 2.5. More information about this coding

technique can be found in [FG89].

a c a b d b a c b d d a c a b a a d c a c

window

window length
data stream

next character to encode

-�

Figure 2.5: A windowed model.

In our implementation of the WFA encoder (AutoPic) we use an even more

exible windowing technique explained in section 4.2.1 on page 67.

2.4 Context Modeling

In this section we examine some kinds of higher order models.

2.4.1 Finite Context Modeling

The technique of conditional coding assumes that the components e0; : : : ; en�2
of the n-tuple e are already known. The component en�1 can then be coded

more eÆciently by using this information under the assumption that statistical

dependency exists between these symbols. Therefore, the technique uses the

conditional probability distribution

P (en�1 j e0 : : : en�2): (2.5)

The implementation of conditional models is called �nite context modeling. This

type of model switches to a suitable non-context model, according to a �nite

tuple of predecessors. We implemented this model in AutoPic since it is re-

ported to achieve best results [BCW90]. Section 4.2.1 on page 65 shows how

we re�ned this technique in AutoPic.

2.4 Context Modeling 33

2.4.2 Markov Modeling

Another method of utilizing the context of a symbol is to use state-based models.

This method works by processing the input sequence with a �nite state automa-

ton. The states of this automaton are associated with non-context models. If a

given symbol is encoded, the current non-context model is used to predict prob-

abilities and switch to the next state after coding of the symbol. Therefore, an

important question is which structure the underlying automaton should have.

There are only a few applications where the automaton can be prede�ned. For

this reason, dynamic Markov coding has been established in this area. In this

kind of modeling, an initial automaton is created which may be as simple as in

Figure 2.6. This initial automaton can be adapted to current probabilities by

duplication of states. A state is duplicated if it has more than one incoming

transitions and one transition is visited frequently. In this case, the associated

model is copied and assigned to a new state. This state's outgoing transitions

are also copied from the original state. For an example of the splitting of a

state see Figure 2.7.

e�-
0j1

Figure 2.6: A simple Markov model.

e

e

e

��*

HHj

e

e

e -
HHj

��*

Transition with high frequency-count

e

ee

e

e
;

e

e

s

s

s0

-
HHj

- -
@
@R�
��
--

��3

-

-

-

��3

-

--

-
HHj

-

-
HHj

��

Figure 2.7: Splitting of a state.

Markov models have the bene�t of low memory consumption and fast switching

of contexts. The main reason not to implement these models in AutoPic is that

they are a special case of �nite context modeling [How93]. These models could

be interesting for further research in WFA coding. For more information about

Markov models see [BCW90].

2.4.3 Model Blending

Another well-known technique is the blending of di�erent models. For example,

di�erent �nite context models could be maintained. As coding starts, the codec

assigns the highest weight to the model of order 0, and as coding proceeds

assigns higher weight to models of higher order [BCW90].

34 Entropy Coding

2.4.4 Further Techniques

The topic of statistical modeling is an area under current research. There are

further techniques we do not mention here like grammar models which are used

for the compression of data as program source code [BCW90].

Chapter 3

Techniques for WFA

Construction

In this chapter, we introduce fractal image coding with weighted �nite automata

and several methods for WFA construction. We only examine the coding of gray

valued and color images. The coding of binary images is described in [CV97].

Most of the algorithms described can easily be adapted to lower dimensional

data (for example sound �les) or higher dimensional data (for example digital

movie �les). But these extensions do not necessarily achieve optimal results,

which is the reason why techniques like motion compensation are used in video

coding. Details about the Hausdor� dimension of WFA-generated images can

be found in [MS94].

3.1 Basic Techniques for Image Partitioning

The technique of WFA coding is based on partitioning an image into sub-images.

Such an image partitioning was introduced in a scheme named quadtree image

compression. It can be re�ned using bintrees and HV bintrees. In the following

sections, we assume that the input image is a square matrix with a side length of

2k, k 2 N. Note that this assumption does not restrict the coding to this subset
of images, since images of arbitrary size can be embedded into the next larger

square image having side lengths with powers of two. This square image may be

encoded by the WFA encoder. The WFA decoder can decode the surrounding

square image and afterwards cut the embedded image o� this decoded image.

3.1.1 Quadtrees

The original image partitioning in the WFA technique uses quadtrees [CK93].

The quadtree is a hierarchical data structure based on the well known principle

of recursive partitioning (divide and conquer principle). Such hierarchical data

structures are particularly useful because of their ability to cut o� certain parts

36 Techniques for WFA Construction

of the original data. We examine the region quadtree, which divides the input

image recursively into four quadrants of equal size. The quadtree is therefore

a tree of degree four, with each inner node having four children. The division

process1 continues until a given criterion of simplicity is ful�lled. In the original

quadtree image compression algorithm, the input image is divided until all

pixels in a given quadrant have equal gray values.

For an illustration of this procedure see Figure 3.1. In this drawing, the nodes

are traversed in the order represented by the tree on the right. The leaves store

the gray values \B" (black) and \W" (white). The inner nodes are labeled with

\G" (gray) to indicate that they have to be partitioned further.

;

h

h h

B W B B

W B

WW B W

G

G

G

h

B ' Black
W ' White
G ' \Gray"

��ZZAA��

!!!!
aaaaee%%

ZZ�� AA��

ZZ�� AA��

Legend:

Figure 3.1: Region quadtree. The ordering of the quadrants and the node labels

are indicated in the legend on the right.

A quadtree is suited for image compression because large areas can often be

stored in a single node. The quadtree can also be used for lossy image coding if

the recursive division is stopped if a special \homogeneity property" is ful�lled

by the addressed quadrant. The associated node of the quadtree could store a

gray value which minimizes a given distortion function. The average value is

often used for this task.

EÆcient Storage of the Quadtree Structure

The eÆcient storage of the quadtree is an important task in WFA coding since

for eÆcient image coding, each part has to be stored with the minimum number

of bits.

If there is an ordering of the nodes in the tree (as for example introduced by

an ordering of the quadrants), only niveaus of the leaves in this ordering have

to be stored. For the quadtree in Figure 3.1, this would be the sequence \2 2

2 2 1 1 2 2 2 2". For a more eÆcient encoding, we could also store these levels

in a di�erential way. The coding of the quadtree referenced above would be \2

0 0 0 �1 0 +1 0 0 0", where the �rst value was left unchanged.

Another possibility for storing the quadtree is the coding of the division and

merging operations. The quadtree in Figure 3.1 could be coded as \# # B W

1Some authors distinguish between the terms quadtree and region quadtree. The former

partitions the image up to the pixel level whereas the latter stops the division process if

the image segments assigned to the children ful�ll the homogeneity property, thus collecting

image segments in a single node. Since in data compression we are only interested in region

quadtrees, we drop the pre�x and consider only region quadtrees without mentioning this fact

explicitly.

3.1 Basic Techniques for Image Partitioning 37

B B W B # W W B W", where the sign # signals the descent in the tree and

the quadrants are arranged in the ordering de�ned in the legend of Figure 3.1.

This storage is similar to a DFS traversal where the sign # indicates that a

further recursive call has to be performed. Besides the partitioning information

of the quadtree, there is also additional information to store, such as the average

brightness of the image quadrants associated with the leaves. The storage of

such information can be done in any traversal order.

Finally, we can draw the conclusion that the quadtree structure can be stored

using four bits per node if in each node each of the four branches is marked with

a bit determining whether that quadrant is to split any further or not. This

value can be improved with appropriate entropy coding since the probability

for dividing an image segment is much higher at the top of the tree than at the

bottom.

Note that under the assumption that the receiver of the message knows the

minimal and maximal division depth of the tree, the number of bits required

for transmitting quadtrees can be further reduced. For further details about

the storage of quadtrees see [Far90].

3.1.2 Bintrees

An important variant of quadtrees are the bintrees, where at each node the

image is subdivided only in two parts instead of four. Horizontal and vertical

subdivisions are applied alternately in the niveau of the tree. If only even

numbered leaf niveaus were permitted, the bintree division would be the same as

that of quadtrees. Using bintrees the division process can be stopped earlier, so

the associated parts of the image contain more pixels and can therefore be coded

more eÆciently. For this reason, we utilized bintrees in our implementation of

the WFA image coder. We observe that the bintree structure can be stored

using two bits per node without entropy coding in the same way as explained

for quadtrees. For an illustration of a bintree see Figures 3.2 and 3.3. Let

us remark that the decision, whether the �rst split is made horizontally or

vertically, is arbitrary.

;

���
HHH

���
HHH
G

G

G

G

W B

W

B

G

W G

B

W B

G

JJ

JJ

JJ

JJ

JJ

JJ

JJ

JJ

h

h

h

h

h

h

h

Legend:

Figure 3.2: Region bintree. The ordering of the segments and the node labels

are indicated in the legend on the right.

38 Techniques for WFA Construction

Figure 3.3: Bintree partitioning of the image Lenna.

3.2 Weighted Finite Automata 39

3.2 Weighted Finite Automata

This section introduces the main topic of the thesis: the weighted �nite au-

tomaton (WFA). Before we examine image coding with WFAs in detail, we

�rst explain the idea of this coding method. The basic WFA coding method

has a close relationship to image compression with quadtrees. Instead of stor-

ing gray values in the leaves, coeÆcients2 are stored if a further subdivision is

not pro�table. These coeÆcients may contain both linear combinations of a

hard-wired initial basis but also linear combinations of other nodes in the WFA

tree, which yields the fractal character of that coding method.

There is also a strong relationship to IFS coding, which is discussed in appendix

H on page 201. Because of the relationship between these coding methods, many

ideas can be exchanged. We have also noticed that some extensions of the IFS

method are a special case of the WFA algorithm. The main drawback of the

IFS method compared to the WFA method is the need to encode contractions.

3.2.1 De�nition of a WFA

Image coding with WFAs was introduced by K. Culik and J. Kari [CK93].

In order to simplify the approach, we introduce this kind of structure with

quadtrees. In a similar manner, WFAs may be de�ned using bintrees and even

HV bintrees.

WFA coding can be seen as an enhancement of quadtree or bintree coding.

Instead of storing a gray value in the nodes, the coder stores coeÆcients of linear

combinations in the tree nodes. In order to examine images with methods of

formal languages, we interpret an image as a function over the set [0; 1]� [0; 1]

and associate words over the alphabet � = f0; 1; 2; 3g with 2-dimensional image
segments. Let us �rst introduce basic notations of formal languages: let �

be an alphabet, then the set �n denotes all words (strings) of length n and

�� :=
S
n�0 �

n
: An image quadrant with size 2�n�2�n is associated with a word

in the set �n by interpreting the quadtree as a trie. Each symbol of � matches

a quadrant of a square image and paths are constructed by concatenating the

matching symbols recursively (see Figure 3.4). The coding is done by using a

structure which can formally be interpreted as a weighted (nondeterministic)

�nite automaton.

We call a function f : �� ! R amulti-resolution image. To assign gray values to

the image segments, we consider only multi-resolution images with the following

property:

f(�) =
1

j�j
X
q2�

f(�q) (� 2 ��): (3.1)

2We denote by the term coeÆcients a representation of a given approximation to a vector.

In our implementation, we use matching pursuits (see section 1.4 on page 20) since this

representation of coeÆcients �ts excellently to our application.

40 Techniques for WFA Construction

One can interpret such a function as a quadtree for j�j = 4 (for bintree, j�j = 2)

with in�nite depth, where each node incorporates the average brightness of

its children. A function which satis�es equation 3.1 is called conservative (or

average preserving, [CK93]).

3 2

�

���

10

122
0

��� �

f

0 1 2 3

���

JJHHH

Figure 3.4: Assignment of paths to image segments.

Now we interpret the set of functions f : �� ! R as a real vector space V with

the following de�nitions of the required operations:

(f0 + f1)(�) = f0(�) + f1(�) (f0; f1 2 V; � 2 ��); (3.2)

(cf)(�) = cf(�) (f 2 V; c 2 R; � 2 ��): (3.3)

It is obvious that the set of conservative functions D is a linear subspace of the

vector space V .

De�nition 3.2.1 A weighted finite automaton (WFA) A = (S;�;W; I; F) is

speci�ed by

1. a �nite set of states S = fs0; : : : ; sjSj�1g,

2. a �nite alphabet � = fa0; :::; aj�j�1g,

3. a weight function W : S � �� S ! R,

4. an initial distribution I : S ! R,

5. a �nal distribution F : S ! R.

For our purposes, we either choose � = f0; 1; 2; 3g (quadtree) or � = f0; 1g
(bintree). If nothing else is stated, we will regard the quadtree case. We write

(Wa)i;j =W (si; a; sj) with a 2 �, si; sj 2 S and say that (si; a; sj) is an edge of

the weighted �nite automaton i� (Wa)i;j 6= 0. In order to perform calculations

with the WFA A, we will consider Wa as a real valued jSj � jSj-matrix, I and

F as jSj-dimensional (column) vectors.

We de�ne for each state si 2 S a multi-resolution image �i (state image) by

�i(a0 : : : ak�1)=e
t

i(Wa0 : : : Wak�1
F) (3.4)

where ei is the i
th canonical unit vector ((ei)j = Æi;j and Æi;j is the Kronecker

symbol3).

3Æi;j =
n
1 if i = j

0 else.

3.3 The First WFA Coding Algorithm 41

We de�ne the multi-resolution image given by the WFA A = (S;�;W; I; F) as

a linear combination of the state images �i

fA=

jSj�1X
j=0

Ij�j; (3.5)

or expressed in another way

fA(a0 : : : ak�1) = I
t(Wa0 : : :Wak�1

F) (3.6)

for k 2 N and a0 : : : ak�1 2 ��.

Note: Equation 3.6 de�nes a (slow) WFA decoding algorithm, since we can

calculate the associated brightness for each pixel in the target image with this

formula. Since there are better alternatives, we will not investigate this algo-

rithm any further. �

A WFA is called conservative i� the associated multi-resolution image is con-

servative. If F is an eigenvector with eigenvalue j�j of the matrix
P

q2�Wq, we

can conclude that 0
@X
q2�

Wq

1
AF = j�jF (3.7)

)

0
@X
q2�

WqF

1
A = j�jF (3.8)

)
X
q2�

I
t
Wa0 : : :Wan�1

WqF = j�jItWa0 : : :Wan�1
F (3.9)

)
X
q2�

fA(�q) = j�jfA(�) (3.10)

for arbitrary � = a0; : : : ; an�1 2 ��. Equation 3.10 expresses that the multi-

resolution image fA is conservative. Note that this is a rather theoretical result

since the conservativeness can be checked for the WFA construction algorithms

by induction (see section 3.6 on page 54).

From now on, we will only consider conservative WFAs and functions. There

are more general structures than WFAs such as generalized weighted �nite

automata which are explained in [CR96] or m-WFAs which are described in

[Haf95]. A lot of material can be found in [Kar].

3.3 The First WFA Coding Algorithm Introduced

by Culik and Kari

In order to construct a WFA for a given image, we have to construct the vectors

I, F and the matrices de�ned by Wa (a 2 �). Since the vector I depends on

42 Techniques for WFA Construction

the encoding algorithm, we specify this vector for each algorithm. From the

de�nition of the state images (equation 3.4) we can infer by setting k = 0

�i(�) = e
t

iF = Fi (3.11)

that Fi equals the average brightness of the state image �i. We examine equa-

tion 3.4 further to see how the matrices W are constructed,

�i(a0a1 : : : ak�1) = e
t

iWa0Wa1 : : :Wak�1
F (3.12)

=
�
e
t

iWa0

� �
Wa1 : : :Wak�1

F
�

(3.13)

=
�
e
t

iWa0

�
0
B@

e
t
0Wa1 : : :Wak�1

F

...

e
t

jSj�1Wa1 : : :Wak�1
F

1
CA (3.14)

=
�
(Wa0)i;0; : : : ; (Wa0)i;jSj�1

�0@ �0(a1 : : : ak�1)
...

�jSj�1(a1 : : : ak�1)

1
A

=

jSj�1X
j=0

(Wa0)i;j�j(a1 : : : ak�1): (3.15)

In this equation, we see that the quadrants of the state images are linear com-

binations of other state images. With these preliminaries, we can de�ne a WFA

construction algorithm designed for lossless image coding.

In order to ease the next explanations, we introduce the following notation for

conservative functions 	 2 D:

	�0(�1)=	(�0 �1) (�0; �1 2 ��) (3.16)

meaning that we zoom 	 into the quadrant �0 2 ��.

The method4 in listing 3.1 �rst creates a state representing the whole image and

afterwards tries to approximate the quadrants of a given state image by other

state images. If that does not work, a new state is generated for that quadrant.

For convenience we will call pointers created by the second alternative partition

pointers.

/��
� c on s t r u c t s a WFA which approximates a c on s e r va t i ve func t i on .
�

�@param � i s the func t i on to be repre s en ted .
�@return a WFA that r ep r e s en t s � .
��/
WFA operateImage (c on s e r va t i ve Function �) ;

4Note that listing 3.1 is in a strict sense no algorithm since a multi-resolution image is

generally not representable in a �nite way. Due to usual notation we will write algorithm

instead of mathematical method.

3.3 The First WFA Coding Algorithm 43

f

create a state which represents the whole input image ;

while (there are unprocessed states)

f

choose an unprocessed state ;

operate on all quadrants of the assigned state image:

f

i f (the current quadrant can be linearly combined by existing states)

store these coeÆcients ;

else

f

create a new state representing this quadrant ;

store a pointer to this state ;

g

g

g

I=(1; 0; : : : ; 0) ;

return the resulting WFA ;

g//end operateImage

Listing 3.1: The �rst WFA coding algorithm.

A multi-resolution image � can be represented exactly by a WFA i� the set

of functions de�ned by all quadrants spans a �nite dimensional subspace in

R
��

[CK93]. The WFA generated by the algorithm in listing 3.1 possesses the

minimal number of states of all WFAs that generate � [CK93]. One can see

that the WFA tree given by this algorithm is generated top down in BFS5 order,

meaning that �rst a node for the whole image is generated and afterwards the

nodes for image segments having longer addresses will be created. For this

reason, we will call that algorithm top down (TD) WFA coding algorithm. For

more details concerning this algorithm see [CK95].

Note: The coeÆcient vectors in the above algorithm may be interpreted as the

rows of the weight matrices Wa for a 2 �. So the coeÆcient vector belonging

to the quadrant a in the state si is the i
th row of the matrix Wa. �

Example: For an example of this coding process see Figure 3.5, where the

image on the top is approximated. Assume that the quadrants are processed6

in the order 1, 2, 0, 3. The generated automaton has four states and Figure 3.5

shows the state images of these states. The upper state image shows �� (the

original image), the three lower state images are (from left to right) �1, �2 and

�0.

The created WFA A = (S;�;W; I; F) has the following components:

� S = fs0; s1; s2; s3g, the state images of these states are shown in Figure

3.5 (top to bottom, left to right),

5BFS ' breadth first search [CLR91, Sed88].
6Note that the order in which the quadrants are processed is arbitrary. We have chosen

this processing order because of visualizing reasons.

44 Techniques for WFA Construction

Figure 3.5: Construction of a WFA. The edges are labeled with the corre-

sponding weights and the labels of the edges are de�ned by the quadrants of

the starting points.

� � = f0; 1; 2; 3g since in this example we apply quadtrees for image parti-

tioning,

� I
t = (1; 0; 0; 0) since the original image is the state image of the �rst state,

� F
t = (0:56; 0:7; 0:4; 0:6) (these are the average brightnesses of the state

images),

� and the following weight matrices:

W0 =

0
BB@
0 0 0 1

0 0 2 0

0 0 1 0

0 0 0 1

1
CCA ; W1 =

0
BB@
0 1 0 0

0 0 1 0

0 0 1 0

0 0 2 0

1
CCA ;

W2 =

0
BB@
0 0 1 0

0 0 2 0

0 0 1 0

0 0 1 0

1
CCA ; W3 =

0
BB@
1 0 0 0

0 0 2 0

0 0 1 0

0 0 0 1

1
CCA :

�

Initial States An important observation is that the WFA construction pro-

cess has not to start with an empty set of states. It is a natural idea to start

with a number of prede�ned states (initial states) whose state images may rep-

resent patterns which are expected to occur often in the target image. Since

these initial states can be hard-wired in the WFA codec, neither the structure

nor the average brightnesses of the initial states have to be transmitted. Due

to common nomenclature we will call this set of states also initial basis.

3.3 The First WFA Coding Algorithm 45

Optimization of the First Coding Algorithm Despite the fact that the

automaton generated by the algorithm above is minimal with respect to the

number of generated states [CK93], the automaton is not necessarily minimal

with respect to the number of edges. In [Rob95], a modi�cation of this algo-

rithm was implemented with the result that the storage space for automata

constructed for natural images were almost always bigger than the original

image size. A better approach to image coding is the algorithm described in

section 3.5 on page 48.

Note: Let us remark some words about the running time of the WFA con-

struction algorithm. We only determine the maximal number of multiplications

performed by linear approximation (calculation of the scalar products). If we

assume that we

� use bintree partitioning,

� zoom up all state images to full resolution with p pixels,

� create one state for each image segment de�ned by the bintree with two

pixels, that are (if we sum the number of states in the niveaus from bottom

to top)
p

2
+
p

4
+
p

8
+ : : :+ 1 = p� 1

states,

� approximate each state quadrant with all previously created states. This

task requires

2

p�1X
i=1

i = (p� 1)p

scalar products.

Since each scalar product requires p multiplications, we conclude that p3 � p
2

multiplications have to be performed. In case of a 512�512 image we have p =

262144 and thus have to perform approximately 1:8 �1016 scalar multiplications.

Although the assumption that the image has to be partitioned to such small

segments is not realistic, we had to optimize the WFA construction algorithm

carefully (see section 7.7 on page 142). �

Quadtree Coding as a Special Case of WFA Coding Now consider the

case that one prede�ned state (initial state) with constant gray value 1 is added7

to the WFA and only linear combinations which refer to that state are allowed.

In this case the image segments will be partitioned until the gray value in the

7A state with constant gray value may be easily constructed as a WFA. We omit the

construction of this state since in later sections we will show that this state not even has to

be constructed in this manner but can be pre-calculated.

46 Techniques for WFA Construction

segments are constant. The one (and only) linear coeÆcient referring to the

constant state image has thus the brightness of the constant brightness of the

image segment. This process is thus exactly the same as quadtree coding.

3.3.1 Di�erent Representations of the WFA Tree

Let us now take a look at two di�erent representations of the WFA tree. Assume

that we are encoding an image segment and have already generated a state for

that segment.

� The �rst way is to approximate the current segment and if that does not

work, mark the current state as divided and add pointers from the current

state to the new states.

� The second alternative is to approximate the subsegments of the current

image segment and if that does not work, store pointers to new states

which are to be generated. This representation also has been chosen by

Culik et al. [CK93].

Both methods have their bene�ts and drawbacks. Using the �rst method, we

can cut the WFA tree a level earlier than in the second and the smallest WFA

tree contains only one coeÆcient vector. However, one has to partition the

whole segment or has to approximate the whole segment.

With the second method, the choice of approximating or partitioning is in some

sense deferred. But here we can choose whether to partition or approximate for

each quadrant. We also have the bene�t of equal representation since the choice

of partitioning can also be represented by a coeÆcient vector which contains

only one element with the index of the newly generated state and 1 as the

coeÆcient. Because WFA trees in our application generally contain thousands

of states, we chose the second alternative.

3.4 The Fast WFA Decoding Algorithm

Before we discuss a WFA decoding algorithm, we note that a WFA is resolution

independent. In order to decode a WFA we �x the resolution of the output

image. In our experiments examining the compression performance of WFAs,

we decoded the images at the same resolution as the original images. However,

it is also of interest to decode an image at a higher resolution than the original

image (fractal interpolation, see section 4.4.13).

In order to decode a WFA at a resolution of 2n � 2n, we have to calculate the

weights of all paths of length n inA and add these weights to get the gray values

of the pixels. This decoding algorithm has a running time of O(jSj(j�jjSj)n),
which is unacceptable for practical purposes. For this reason, we will not con-

sider this decoding algorithm further. Fortunately, there is a more eÆcient

3.4 The Fast WFA Decoding Algorithm 47

decoding procedure which is given in listing 3.2 [CK95]. This procedure con-

structs state images consecutively from low resolutions up to the desired res-

olution. The algorithm is initialized with state images of resolution 1 � 1 by

setting the pixel brightnesses to the average brightnesses of these states. The

next step is the doubling of the resolutions. We construct a quadrant of a state

image of resolution 2k+1�2k+1 by adding the state images of resolution 2k�2k

according to the linear combinations. This technique is illustrated in Figure

3.6.
.
.
.

.

.

.
.
.
.

.

.

.

l = 1

l = 2

�0(�) �1(�) �2(�) �3(�)

����������9

������

����������9

������

HHHHHj

HHHHHj

Figure 3.6: Fast decoding of a WFA. To simplify the �gure, we have only drawn

the coeÆcient vectors of quadrant 2 and 3 of the state s2.

This algorithm has a running time of only O(jSj2j�jn), which is bought at

the cost of a higher memory consumption of O(jSjj�jn). Other techniques for
eÆcient WFA decoding can be found in [URP96].

/��
� decodes a WFA.
�

�@param A i s the WFA to be decoded .
�@param n i s the decoding r e s o l u t i o n .
�@return the decoded image with r e s o l u t i o n 2

n
� 2

n

i f quadtree p a r t i t i o n i n g i s used . For b i n t r e e
p a r t i t i o n i n g double the parameter n .

��/
void WFADecode (WFA A , int n)

f

for (i=0; i < jSj ; i++)

�i(�)=Fi ;

for (l = 1 ; l � n ; l ++) // cons t ruc t l e v e l s bottom up .
for (i = 0 ; i < jSj ; i++) // operate a l l s t a t e s .

for (q 2 �) // operate a l l quadrants .
for (� 2 �

l�1
) // operate a l l p i x e l s in quadrant .

�i(q�)=
P

jSj�1

j=0 Wq(i; j)�j(�) ;

for (� 2 �
n
)

fA(�)=
P

jSj�1

i=0 Ii�i(�) ;

return the image consisting of the pixels fA(�
n
) ;

g//end WFADecode

Listing 3.2: WFA decoding algorithm.

48 Techniques for WFA Construction

Note: In practice, we have to restrict the number of coeÆcients used to ap-

proximate a quadrant to a small number. With this restriction, the running

time is reduced to O(jSj j�jn). �

Memory Consumption of the Decoding Algorithm This process shows

high memory consumption. Since a WFA has in practice between two and

six thousand states and the state images are represented by
oating precision

numbers (four bytes), the decoding process would take approximately

2000 � 4 � 5122 = 2097152000 bytes � 2 GB (3.17)

where we assume that we have to generate 2000 state images at a moderate res-

olution of 512�512. Because of this high memory consumption, our implemen-

tation only computes the state images which are required for the construction8

of the output image.

Note: The fast WFA decoding algorithm constructs the state images bottom up

by combining the lower resolution state images corresponding to the coeÆcients.

Thus the initial states may not be de�ned in a WFA consistent manner but their

state images can be calculated in an arbitrary way (for example pre-calculated

or as a codebook as in vector quantization). In section 4.4.4 on page 70 we will

examine how we chose the initial states. �

3.5 Top Down Backtracking WFA Construction

In the following considerations we drop the vectors I and F . The vector F

holds average brightnesses of the states (see equation 3.11 on page 42) and

can be easily calculated. The vector I determines which state image should be

decoded. This is normally the unit vector e0.

Culik [CK94] has proposed a major improvement of the WFA compression algo-

rithm. This new algorithm is a kind of backtracking algorithm and is designed

from scratch for lossy coding. In each step, the algorithm chooses one of two

alternatives, namely whether the considered quadrant has to be approximated

by previously generated state images or that quadrant has to be partitioned.

Since we now address lossy image compression, we �rst choose a quality factor

q 2 R. The algorithm minimizes the value b (henceforth called badness) de�ned

by

b = c+ e � q (3.18)

where c is the storage cost9 for the generated automaton (for example in bit)

and e is the resulting approximation error (which is an arbitrary metric de�ned

8This process is similar to lazy evaluation of parameters in programming languages.
9The storage costs are the information gains of the transmitted symbols. This is one of

the reasons, why we have to investigate the design of the statistical models for WFA coding

in detail.

3.5 Top Down Backtracking WFA Construction 49

on multi-resolution images). In each approximation of a quadrant of the original

image there are two alternatives: approximation and partition. In the processing

of a quadrant, the badnesses for these two alternatives are calculated and the

alternative with the lower badness is chosen. In the pseudo implementation

in listing 3.3, these badnesses are called approxBadness and partitionBadness.

The quality factor q of equation 3.18 is called qualityFactor in the pseudo

implementation. Since this process is made recursively in each quadrant, the

algorithm is a backtracking algorithm.

The algorithm has to be started with constructWFA(�) to construct a WFA

approximating the whole input image 	.

/��
� c r e a t e s a WFA that approximates
� the mult i�r e s o l u t i o n image 	 .
�

�@param p i s the path o f the image segment to be
� approximated .
��/
constructWFA(Path p)

//Externa l v a r i a b l e s : n i s the number o f c r ea t ed s t a t e s ,
// i n i t i a l l y s e t to zero .
//� i s an array o f mult i�r e s o l u t i o n images r ep r e s en t i n g the
// s t a t e images .
//� r ep r e s en t s the concatenat ion operator de f ined on paths .
f

n++;

create a new state sn�1 ;

�n�1=	p// s e t the s t a t e image o f sn�1 to 	p ;
for (q 2 �)

f// operate the image segment p � q .
// c a l c u l a t e d i r e c t approximation .
�nd a coeÆcient vector r = (r0; r1; :::; rn�1) 2 R

n

such that 	p�q is \approximated well" by

r0�0 + r1�1 + :::+ rn�1�n�1 ;

let ca be the cost for storing r (in bit) ;

let ea be the approximation error caused by r ;

approxBadness=ca + ea� qua l i tyFac to r ; // c a l c u l a t e badness .

// c a l c u l a t e p a r t i t i o n r e c u r s i v e l y .
int oldn=n ;

constructWFA(p � q) ;

let cp be the cost (in bit) for the new \sub-WFA" constructed

in the recursion ;

let ep be the approximation error caused by the \sub-WFA"

constructed in the recursion ;

par t i t i onBadnes s=cp+ep� qua l i tyFac to r ; // c a l c u l a t e badness .

// choose best a l t e r n a t i v e .
i f (approxBadness<par t i t i onBadnes s)

f// d i r e c t approximation i s \be t t e r" .
n=oldn ;

delete the states with indices � n created in the recursion ;

50 Techniques for WFA Construction

for (each non�zero component ri)

f

add an edge with label q and weight ri from the

current state sn�1 to the state si ;

g

else

f// p a r t i t i o n i s \be t t e r" .
add an edge with label q and weight 1 from the

current state sn�1 to the �rst (top) state of the sub-WFA created

in the recursion ;

g

g//end constructWFA

Listing 3.3: Outline of the top down WFA creation algorithm.

Next we re�ne the �rst backtracking algorithm in some directions. The

�rst modi�cation is that we split the procedure constructWFA to the proce-

dures createState and operateStateQuadrant. The procedure createState

creates a state approximating a given image segment. The procedure

operateStateQuadrant constructs all state transitions (coeÆcient vectors)

pointing from the current state to other states. The reason for this splitting is

(besides that it is easier to comprehend), that the procedure createState will

be re�ned further in the next section. The second modi�cation of the pseudo

implementation is that the notation will be much more technically. This is due

to the fact that we will explain some technical details of the implementation.

For the explanation of the pseudo implementation the following classes and

objects have to be made clear:

� FloatPicture is a class modeling a mixture of image and vector. We can

apply both methods of image processing as the cutting of certain quad-

rants but also the methods of a vector like the calculation of inner products

on an instances of this class. The method used to calculate the approxi-

mation error is called distance, which is for example mean squared error

de�ned in appendix C on page 169). This class was introduced to treat

images as vectors.

� domainPool is an instance of the class DomainPool which approximates

vectors in the current resolution. Unlike a normal basis, states are inserted

instead of vectors. In order to tell the domain pool that a new state has

been created, the procedure notify is called after which the domain pool

can rearrange its dictionary (see section 4.4.4 on page 70). CoeÆcients

obtained by the domain pool are already quantized.

� encoderInterface is an instance of the class EncoderInterface pro-

viding a simple interface to the entropy encoder. This class incorporates

thus the arithmetic encoder and the adaptive source model10. This object

10Due to data compression literature we use the term model to denote an implementation

for estimation of the statistical distribution.

3.5 Top Down Backtracking WFA Construction 51

is required to estimate the cost for storing data which is needed for the

reconstruction of the automaton.

� wfaTree is a representation of the current WFA tree. The nodes of the

tree can be accessed randomly.

� Path is a class whose instances incorporate paths to image quadrants

(words of ��).

� State is a class whose instances incorporate states of the WFA (pre-

calculated and created states). The composition of this class is further

explained in section 7.5 on page 137.

A pseudo implementation of the algorithm is given in listings 3.4 and 3.5, where

we approximate the image originalImage and denote the concatenation of

paths by using the � operator. The algorithm is started with createState(�).

The desired approximation of the original image is the state image of the state

s0 after termination of the algorithm. Thus we set I = (1; 0; : : : ; 0).

/��
� c r e a t e s a s t a t e that approximates an image segment .
�

�@param path i s the path o f the image segment to be
� approximated .
�@return the badness o f the c r ea t ed s t a t e .
��/
f loat c r e a t eS t a t e (Path path)

f

State quadState= new State (path) ;

quadState . se tState Image (o r i g ina l Image . cutSegment (path)) ;

wfaTree . add (quadState) ;

domainPool . n o t i f y (quadState) ;

f loat s tateBadness=0;

for (q 2 �)

stateBadness+ =operateStateQuadrant (quadState , q) ;

return s tateBadness ;

g//end c r e a t eS t a t e

Listing 3.4: Top down state creation algorithm.

/��
� c r e a t e s a c o e f f i c i e n t vec to r o f a g iven quadrant
� o f a s t a t e .
�

�@param s ta t e i s the s t a t e to operate on .
�@param q i s the number o f the c o e f f i c i e n t vec to r
� to be c r ea t ed .
�@return the acqui red badness .
��/
f loat operateStateQuadrant (State s t a t e , � q)

f

// � r ep r e s en t s concatenat ion o f paths .

52 Techniques for WFA Construction

Path quadPath=s t a t e . getPath () � q ;

F loa tP i c tu re quadVector=

o r i g i n a lP i c t u r e . cutSegment (quadPath) ;

// c a l c u l a t e approximation .
MPVector c o e f f s=domainPool . approximate (quadVector) ;

approxError=

quadVector . d i s tance (domainPool . getVector (c o e f f s)) ;

approxCost=encode r I n t e r f a c e . co s t (c o e f f s) ;

approxBadness=approxCost+qua l i tyFac to r �approxError ;

// c a l c u l a t e p a r t i t i o n i n g .
int o l dEx i s t i n gS t a t e s=wfaTree . s i z e () ; //memorize s i z e .
par t i t i onBadnes s=c r e a t eS t a t e (quadPath) ;

i f (approxBadness<par t i t i onBadnes s)

f// de l e t e the s t a t e s c r ea t ed in the r e cu r s i on .
int newExis t ingStates=wfaTree . s i z e () ;

for (l=o l dEx i s t i n gS t a t e s ; l<newExis t ingStates ; l++)

wfaTree . removeElementAt(o l dEx i s t i n gS t a t e s) ;

domainPool . reduceTo (o l dEx i s t i n gS t a t e s) ;

s t a t e . setQuadrantWeights (c o e f f s , q) ;

// r e s t o r e the adapt ive source model to the s t a t e be fo r e
// the r e cu r s i on .
en code r I n t e r f a c e . ro l lBack () ;

//update the adapt ive source model
//with the new c o e f f i c i e n t s .
en code r I n t e r f a c e . updateModel (c o e f f s) ;

return approxBadness ;

g

else

f// i n s e r t po in t e r to the new t r e e .
MPVector po in t e r = new MPVector(quadState . index () , 1 . 0) ;

s t a t e . setQuadrantWeights (po in t e r , q) ;

return par t i t i onBadnes s ;

g

g//end operateStateQuadrant

Listing 3.5: The state operation algorithm.

Note that if the tree is drawn with the root at the top, the algorithm constructs

the tree top down in DFS11 order. The main drawback of this technique is

that the encoder uses other state images at encoding time than at decoding

time. A variant of this algorithm avoiding this drawback is described in the

next section.

Let us make an important observation: the best known statistical models are

adaptive source models [BCW90], which adapt the statistical model after each

transmitted symbol. Note that the cutting of the subtrees causes the model used

for the construction of the WFA to di�er from the model used for the storage

of the WFA. Since storage costs are estimated with the help of the statistical

model, the costs are no longer exact if the data stored in cut subtrees (which are

11DFS ' depth first search [CLR91, Sed88].

3.6 Bottom Up DFS Construction of the WFA Tree 53

not transmitted) a�ect the statistical model. Thus the statistical model has to

be restored to the state before the construction of the subtree if such a subtree

has to be cut. Due to database terminology we call this restoration step a

rollback operation. See section 4.2 on page 64 for details of our implementation

of the rollback operation.

3.6 Bottom Up DFS Construction of the WFA Tree

In this variant of the WFA inference algorithm, the WFA tree is constructed

bottom up in DFS order. In the same way as in top downWFA construction, we

try to approximate the current quadrant by a linear combination of previously

created state images. In this WFA construction algorithm, we use only states

which are processed completely, i.e. all quadrants are already approximated.

On the other hand, the alternative is tested to create a better approximation

by splitting the quadrant. We then choose the better of these two alternatives.

The desired approximation of the original image is|after termination of the

algorithm|the state image of the most recently created state. With these

explanations, the pseudo implementation in listing 3.6 can be given.

/��
� c r e a t e s a s t a t e that approximates an image segment .
�

�@param path i s the path o f the image segment to be
� approximated .
�@return the badness o f the c r ea t ed s t a t e .
��/
f loat c r e a t eS t a t e (Path path)

f//bottom up c r e a t i on o f a WFA.
State quadState= new State (path) ;

f loat s tateBadness=0;//badness o f the s t a t e .
for (q 2 �) // operate a l l c o e f f i c i e n t v e c t o r s .

s tateBadness+=operateStateQuadrant (quadState , q) ;

quadState . se tState Image (quadState . decode ()) ;

domainPool . n o t i f y (quadState) ;

wfaTree . addElement (quadState) ;

return s tateBadness ;

g//end c r e a t eS t a t e

Listing 3.6: Bottom up state creation algorithm.

The images which are used in the method operateStateQuadrant are not ex-

tracted from the original image but rather the state images from generated and

initial states. The principle is that the WFA decoding procedure can be applied

to the subtrees which are created during the recursive call. For a practical im-

plementation, a caching procedure is used such that a given state image has to

be computed only once. This cache implies high memory usage, which seems

acceptable according to our experience. An important observation is that this

method of creation of the automaton diminishes the necessity for transmitting

the average brightnesses of the states. This fact also improves the compression

54 Techniques for WFA Construction

ratio. Another bene�t of this algorithm is that both errors introduced by the

approximation of the vectors or by the quantization of the coeÆcients can be

compensated by a feedback loop, shown in Figure 3.7. Note that this �gure

is simpli�ed since some aspects like the quantizer and other classes have been

omitted. In this �gure, we can see that an input image is passed to the WFA

encoder which cuts the image to image segments and passes them to the do-

main pool. The domain pool approximates an image segment by state images

generated by the WFA decoder. The cost of this approximation is estimated by

an encoder interface. With this cost and the approximation error, the badness

can be calculated and passed back to the WFA encoder.

WFAEncoder DomainPool EncoderInterface

WFADecoder

- -� -�

?

6

image
image segment

badness

state

cost

state approximation

approximation error

?

Figure 3.7: The feedback loop used in the WFA encoder.

The algorithm is relatively well natured to a change in parameters (as for ex-

ample the accuracy of coeÆcient's quantization) because of the feedback loop.

This behavior is due to the fact that with large approximation or quantization

errors, the current badness increases and the addressed image segment is fur-

ther divided into parts by the procedure operateStateQuadrant. We will see

in section 4.6 on page 87 that this technique of WFA construction shows the

best compression eÆciency.

A drawback of this method is that a state cannot reference itself, but only

states that have already been processed. In empirical tests we have observed

that such self similarity rarely occurs in \natural" images.

Another side e�ect of this bottom up (BU) method is that an initial basis with

at least one state is required. However, this fact is no drawback, since Culik

already remarked in [CK93] that such an initial basis could also be helpful for

the top down WFA construction algorithm.

Note that since the states are put to the WFA tree as late as they have been

fully processed, the state approximating the whole input image is inserted lastly.

Thus the initial distribution vector has the form I = (0; :::; 0; 1).

Conservativeness Revisited By examining the BU-DFS WFA construction

algorithm we can argue why the WFA constructed using this technique is con-

servative. If we assume that the initial states show conservative state images

(which has to be guaranteed by construction), the composed states are likewise

conservative, since they are constructed by other states via linear combinations.

Since we have seen that the conservative functions span a linear subspace, all

3.7 Breadth First Order Generation of WFA Trees 55

state images are conservative, and thus also the multi-resolution image de�ned

by the whole WFA. For a sketch of the induction step see Figure 3.8.

�

�

	

m m mma b c d

a+b+c+d

4

�
��QQQ

�
�
�
��

B
B
B
BB

�
�
��

C
C
C
C

�
�
�
��

D
D
DD

�
�
�
�
�

D
D
DD

conservative
by
induction

and
subspace
argument

the root satis�es the
conservativeness condition
by construction

hypothesis

XXX
XXXX

���
����

Figure 3.8: Induction step of the proof that all WFA state images are conser-

vative.

3.7 Breadth First Order Generation of WFA Trees

In the last sections we presented the generation of WFA trees top down and

bottom up in DFS order. During the optimization of the entropy coding pro-

cess, we observed that the BFS order is the best order to store the WFA tree

components. The drawback of this method is that the encoding cost of the

stored parameters is no longer exact, since the order of storage in
uences the

adaptive source model. For this reason, the generation of the WFA tree in BFS

order has to be investigated. Again, we study the generation of the WFA tree

in two directions: top down and bottom up.

As in the DFS WFA generation, the top down direction does not permit the

exact calculation of the encoding error and is therefore not investigated any

further.

The bottom up BFS generation of the WFA tree is the next alternative we will

check. We explain the algorithm using quadtree partitioning. The proposed

algorithm is similar to the generation of Hu�man codes (see appendix F.3.2 on

page 193) and works as follows: �rst we generate a WFA tree for each pixel of

the original image. These trees consist of an initial basis (containing at least

a state with a constant non-vanishing multi-resolution image) and one state

representing the associated pixel. Each pixel has to be approximated with the

initial basis, which could be easily performed by using one coeÆcient. By doing

so, the associated badness can be stored in this node. In this way we obtain a

set of WFAs (automaton pool).

After this initialization, we start the next stage by merging these one pixel

automata to four pixel automata. This procedure is performed successively

for each level of the paths in a prede�ned order. The merging process ends

when only one tree remains in the automaton pool representing the desired

approximation. Since each merging process reduces the number of trees, the

process terminates.

56 Techniques for WFA Construction

When operating successively the quadrants of a given state image, the algo-

rithm �rst tries to approximate the quadrant of the state image and compares

the calculated approximation badness with the badness of the state that has

the path of that image segment. Now, as in the DFS version of WFA tree

construction, the two badnesses are compared. If the approximation badness is

smaller, the coeÆcient vector is inserted and the automaton for that quadrant

of the state image is deleted. If the partition badness is smaller, the state inserts

a pointer to the state approximating the current quadrant. Since the merging

process is steered by the badness concept, the WFA is built in a rate{distortion

constrained manner.

A pseudo implementation is given in listings 3.7 and 3.8, the process is illus-

trated in Figures 3.9{3.11.

/��
� gene ra t e s a WFA.
��/
void bfsWFA()

f

for (each p i x e l) // i n i t i a l i z a t i o n .
pool . addAutomaton (p i x e l) ;

//n s h a l l be the path length o f the p i x e l s .
for (pathLength=n� 1 ; pathLength>=0 ; pathLength��)

f//merging s tage .
for (each Path p with jpj==pathLength)

f

State s t a t e= new State (p) ;

f loat badness =0.0;

for (q 2 �)

badness+=operateStateQuadrant (s t a t e , q) ;

s t a t e . setBadness (badness) ;

s t a t e . se tState Image (s t a t e . decode ()) ;

pool . add (s t a t e) ;

domainPool . n o t i f y (s t a t e) ;

g

g

g//end bfsWFA

Listing 3.7: Bottom up BFS WFA creation algorithm.

/��
� opera t e s a quadrant o f a s t a t e .
�

�@param s ta t e i s the s t a t e to be proce s s ed .
�@param q index o f the c o e f f i c i e n t vec to r to be operated on .
�@return the badness o f the approximation o f the operated
� quadrant .
��/
f loat operateStateQuadrant (State s t a t e , int q)

f

Path quadPath=s t a t e . getPath () �q ; //augment the path .
Floa tP i c tu re quadVector=

3.8 Conclusion 57

o r i g i n a lP i c t u r e . cutSegment (quadPath) ;

// c a l c u l a t e the approximation .
MPVector c o e f f s=domainPool . approximate (quadVector) ;

approxError=

quadVector . d i s tance (domainPool . getVector (c o e f f s)) ;

approxCost=encode r I n t e r f a c e . co s t (c o e f f s) ;

approxBadness=approxCost+qua l i tyFac to r�approxError ;

// get the p a r t i t i o n i n g .
quadState=pool . g e tS ta t e (quadPath) ;

i f (approxBadness<quadState . badness ())

f// i n s e r t approximation and de l e t e quadState .
pool . remove (quadState) ;

s t a t e . setQuadrantWeights (c o e f f s , q) ;

return approxBadness ;

g

else

f// r e t a i n the s t a t e quadState .
MPVector po in t e r = new MPVector(quadState . index () , 1 . 0) ;

s t a t e . setQuadrantWeights (po in t e r , q) ;

return quadAutomaton . badness () ;

g

g//end operateStateQuadrant

Listing 3.8: The state operation algorithm for BFS WFA construction.

This variant of WFA tree generation has the following drawbacks:

� The method poses high computational cost because we cannot apply a

cutting of the recursion tree. A solution to this problem is the creation of

WFA trees up to a given level via the BU-DFS algorithm and merge the

trees with the BU-BFS algorithm to one tree.

� The rollback of the statistical models is impossible because the data is

not cut at the \end" as in the DFS algorithm but can be cut at any place.

We think that this is the most serious problem with the BFS generation

of WFAs.

We have implemented the BFS WFA construction algorithm. But the achieved

results were worse than the DFS WFA construction algorithm, and so we de-

cided not to develop this technique any further and concentrated on DFS WFA

construction.

3.8 Conclusion

We have experienced that the BU-DFS method for WFA construction yields

the best results of all considered techniques. In the next chapters we focus our

attention to this generation method. For a rate{distortion diagram comparing

the BU-DFS and BU-BFS method for WFA construction see Figure 3.12.

58 Techniques for WFA Construction

e e e

pixel states

e ee ee e ee e e e
initial states

e eeeee

�
�=

Figure 3.9: Initialization of BFS WFA. The �gure shows only partitioning

edges.

j j j j jj jj j j

j j j j

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

C
C
C
CC

S
S
S
SS

C
C
C
CC

S
S
S
SS

�
�
�
��

�
�
�
��

Figure 3.10: Merging operations of BFS WFA obtained using the nodes shown

in Figure 3.9. The �gure shows only partitioning edges.

j j j j jj jj

j j j

jmain state

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

C
C
C
CC

S
S
S
SS

C
C
C
CC

S
S
S
SS

�
�

�
��

S
S
S
SS

��������������

Figure 3.11: Final BFS WFA obtained by merging the trees in Figure 3.10.

The �gure shows only partitioning edges.

-
0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

6

20.0

22.5

25.0

27.5

30.0

32.5

35.0

37.5

Legend:

Æ ' BUDFSWFA

bpp

PSNR (dB)

� ' BUBFSWFA

ÆÆ
ÆÆ

Æ Æ Æ
ÆÆÆ

ÆÆÆÆ
ÆÆ Æ Æ

Æ Æ Æ Æ
ÆÆÆ Æ Æ ÆÆÆÆ

��
� � �

� ��
���

� �����
� � �� �

� � �

Figure 3.12: Rate{distortion diagram of the image Lenna.

Chapter 4

Further Enhancements of the

WFA Coder

In this chapter we examine several further re�nements of the WFA coder. We

list a huge amount of techniques. Since we almost always have no theoretical

basis for deciding which enhancement is worth considering, we had to implement

most of them. The decision of which enhancements to choose is �nally made

by the optimization of the coder using genetic algorithms.

4.1 Enhancements of the Image Partitioning Tech-

nique

In section 3.1 we have introduced some basic techniques for image partitioning.

Now we examine, how we can improve the WFA compressor using enhanced

partitioning methods.

4.1.1 Light HV Partitioning

We can observe an important property of bintrees: if the �rst bintree partition-

ing is made horizontally, the image parts belonging to the leaves of the bintree

are always either squares or twice as wide as high. Therefore, to give the bin-

tree more
exibility, we have added an option for partitioning the square image

segments either horizontally or vertically. We call this method for partitioning

light HV partitioning since it is a special case of the HV partitioning method

introduced in the next section. Note that this method requires the eÆcient

storage of additional data and the improvement in image quality must be high

enough to exceed the extra cost.

To explain some diÆculties with the light HV partitioning, we express an image

from now on as a n �m matrix with n;m 2 N and not as a multi-resolution

image as in chapter 3. Such an image can be interpreted as a nm vector by

60 Further Enhancements of the WFA Coder

using the techniques de�ned in section 1.1 on page 8. If nothing else is stated,

the raster scan order is utilized.

A problem of the light HV partitioning scheme is that di�erent shapes of the

image segments occur. We explain this diÆculty by using an example. Consider

that an image segment of size 16 � 16 is to be partitioned. When the image

segment is partitioned vertically, we would have to approximate two image

segments of size 8� 16. From the mathematical point of view, we could utilize

all image segments of the sizes 8 � 16 and 16 � 8 and approximate the given

image segment with these vectors. But in WFA coding this obvious technique

yields bad results because of the following reason: if some image segments had

the resolution 16�8 and are now interpreted as 8�16 image segments we would
obtain such scattered images as can be seen in Figure 4.1 (right side). Such

high frequencies arise because neighboring relations (and thus correlations) are

destroyed.

-interpreted as

Figure 4.1: Interpretation of a vector as an image of wrong resolution.

Another solution to this approximation problem would be to scale the images

of resolution 16� 8 up by the factor two in y-direction and afterwards scale the

image down by the factor two in x-direction. This procedure wastes details in

the image segment and can in the worst case lead to pixelization of the image

segment and therefore to bad results. Another possibility would be to scale

such image segments up to the next square image and approximate on that

resolution. This procedure would both require more memory and twice the

time to calculate the required scalar products. Our solution for this problem

is the transposition of the image matrix. This technique avoids all drawbacks

mentioned above and leads to good results.

For the determination of the partitioning line, we use the heuristic of Fisher

which is described in the next section. For an illustration of this partioning

scheme see Figure 4.2. As you can see in Figures 4.3{4.6, the image quality is

enhanced by approximately 0.25 dB PSNR at the same data rate by using the

light HV partitioning scheme.

4.1.2 HV Partitioning

A more
exible approach for partitioning an image was introduced by Y. Fisher

and S. Menlove in [Fis95b] with good experimental results using an IFS encoder

(see appendix H on page 201). In this partitioning method, the codec is able to

4.1 Enhancements of the Image Partitioning Technique 61

Figure 4.2: Light HV partitioning of the image Lenna.

-
0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

6

20.0

22.5

25.0

27.5

30.0

32.5

35.0

37.5

Legend:

bpp

PSNR (dB)

ÆÆ
ÆÆ

Æ Æ Æ
ÆÆÆ

ÆÆÆÆ
ÆÆ Æ Æ

Æ Æ Æ Æ
ÆÆÆ ÆÆÆ

Æ ÆÆÆ

��
� �

���
��

�� �
�� � �

� � ��
�� � � � � ��

� �
Æ ' AutoPic with LightHV

� ' AutoPic with bintree

Figure 4.3: Rate{distortion diagram of the image Lenna comparing the di�erent

techniques.

62 Further Enhancements of the WFA Coder

-
0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

6

20.0

22.5

25.0

27.5

30.0

32.5

35.0

37.5

Legend:

Æ ' AutoPic with LightHV

� ' AutoPic with bintree

bpp

PSNR (dB)

ÆÆ
Æ Æ

Æ ÆÆ
ÆÆ Æ

Æ Æ
Æ ÆÆ

Æ ÆÆ Æ
Æ Æ Æ

Æ Æ ÆÆ ÆÆ Æ

� �
���

�� �
� �

� � �
� ��

� �
� ���

� �� �
���� �

Figure 4.4: Rate{distortion diagram of the image Boat comparing the di�erent

techniques.

-
0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

6

20.0

22.5

25.0

27.5

30.0

32.5

35.0

37.5

Legend:

Æ ' AutoPic with LightHV

� ' AutoPic with bintree

bpp

PSNR (dB)

ÆÆ
Æ Æ

ÆÆ
Æ ÆÆ Æ

Æ Æ Æ
Æ Æ Æ

Æ ÆÆ
ÆÆÆ

ÆÆÆ Æ
Æ Æ

� �
���

���
���

� ��
� � �

�� ��
� � �

� � �
� � ��

� �

Figure 4.5: Rate{distortion diagram of the image Barb comparing the di�erent

techniques.

4.1 Enhancements of the Image Partitioning Technique 63

-
0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

6

20.0

22.5

25.0

27.5

30.0

32.5

35.0

37.5

Legend:

Æ ' AutoPic with LightHV

� ' AutoPic with bintree

bpp

PSNR (dB)

Æ Æ Æ Æ
ÆÆ Æ Æ

Æ Æ Æ ÆÆ
Æ Æ ÆÆ ÆÆ Æ ÆÆ Æ ÆÆ Æ

Æ Æ Æ

� �� ����
� � ��

� � �� � � �
� ��� � ��

�� ����

Figure 4.6: Rate{distortion diagram of the image Mandrill comparing the dif-

ferent techniques.

move the partitioning line from the middle towards outer regions of the image

segment.

This approach was also tested in our implementation of the WFA codec. How-

ever, we observed that the gain in image quality did not compensate the extra

cost for storing the information added to the bintree structure. For this reason,

the light HV partitioning mentioned above was introduced, where extra storage

cost is small. Another reason why this scheme does not yield good results in

our implementation could be the problem of scaling. As mentioned in the last

paragraph, image details are lost by scaling down. On the other hand, scaling

up is not feasible.

We implemented the heuristic used in [Fis95b] to determine the partitioning

line. For an m � n image segment with gray values ri;j (i 2 f0; : : : ; n � 1g,
j 2 f0; : : : ;m� 1g), Fisher computes the biased di�erences

hj =
min(j;m� j � 1)

m� 1

�����
n�1X
i=0

(ri;j � ri;j+1)

����� (4.1)

and

vi =
min(i; n� i� 1)

n� 1

������
m�1X
j=0

(ri;j � ri+1;j)

������ ; (4.2)

chooses the biggest value of the set fh0; : : : ; hm�2; v0; : : : ; vn�2g and splits the

image segment at the corresponding index (horizontally if the biggest value is

one of the hi and vertically otherwise). The partitioning obtained is said to

cut the image segments at strong horizontal and vertical edges while avoiding

narrow image segments.

A better solution would be backtracking to determine the best partitioning line

by checking which choice leads to the best results. That alternative has not

64 Further Enhancements of the WFA Coder

been implemented because the running time would be too high for a practical

solution.

However, we currently can not rule out the possibility that HV partitioning can

be re�ned in another way to cooperate with WFA encoding. This point could

be an interesting research topic for the future of WFA encoding.

4.1.3 Other Methods for Image Partitioning

There are several other image partioning schemes. For some examples see Fig-

ure 4.7. A drawback of the hexagonal image partitioning is the problematic

treatment of image boundaries. The drawback of a triangular image parti-

tioning is the treatment of approximation where neighborhood relations may

be destroyed as in HV coding. Other segmentation schemes may be found in

[RD79].

@@��

@@��

@@��

@@��

@@��

@@��

@@��

@@��

@@��

@@��

@@��

@@��

@@��@@����

@@��

@@��

@@��

@@��

@@��

@@��

@@��

@@��

@@��

@@��

@@��

@@��

@@��

@@��

@@��

@@��

@@��

@@��

@@��@@����

@@��

@@��

@@��

@@��

@@��

@@��
�
�
�
�
�
�
�
��

@
@

@@

S
S
S
S

S
SS

J
J
J

e
e

Figure 4.7: Hexagonal and triangular image partitioning.

4.2 The Statistical Model for WFA Coding

As stated earlier, the statistical models are of outstanding importance for data

compression. In the next sections, we describe a sophisticated model supporting

all operations required for WFA coding.

We do not know in advance the exact statistics of the stored parts (for exam-

ple coeÆcients or indexes) of the WFA. Thus we need a model exhibiting the

following features:

� it should be adaptive since the statistics di�er from image to image,

� it should adapt to non-stationary statistics, since image statistics di�er

in di�erent image regions,

� it should support �nite context modeling and delta coding to bene�t from

prior coded symbols,

� it should support rollback to accurately trace statistics even if subtrees

are cut from the WFA,

4.2 The Statistical Model for WFA Coding 65

� it should ease the calculation of storage cost of single symbols even with

\fractions of bits",

� the initial distribution of the model should be tuned to arbitrary distri-

butions,

� it should work properly for \short sequences" despite high order of context

modeling,

� the WFA coder should be able to switch fast between di�erent models, as

the coeÆcients model and the index model,

� the calculation of densities and distributions should be as fast as possible,

� the memory requirements should be as low as possible since many models

of the di�erent constituents of a WFA have to be accessed,

� the output of the models should be given in a way able to work with the

best known statistical encoder, the arithmetic encoder,

� all properties should be independently adjustable to tune them to the

current application.

4.2.1 Finite Context Modeling and WFA Coding

In order to incorporate a �nite context model to our coder, we have to solve

the problem of supporting backtracking. For that purpose, we implemented

a data structure called lazy stack, a stack that also allows access to elements

lying below the top element. Therefore, we overloaded the top method with

an integer parameter telling the lazy stack which layer of the stack is to be

accessed. The behavior of the extended top method is shown in Figure 4.8.

The �nite context model with rollback works in the same way as the standard

�nite context modeling with the following di�erences:

� Update operation: we �rst update the current model, afterwards push the

obtained symbol onto the stack and change to the next context, which is

accessed via the extended top method.

� The rollback operation is performed in reverse order: �rst the stack is

popped. Afterwards the context is switched using the obtained stack and

�nally the current non-context model is rolled back.

An example for such a model is shown in Figure 4.9 and the described ma-

nipulation is illustrated in Figure 4.10. In these �gures we write the relative

frequencies to the right of the associated symbols.

Note that these models have the following drawbacks:

66 Further Enhancements of the WFA Coder

c
a
a
b
a
c
b
b
.
.
.

� top(0)=top()
top(1)
top(2)

XXy
XXy

Figure 4.8: Extended stack.

a
b
c a b c3 9 2

a
a

b
b

c
c

0
2

2
5

3
4 a

c
a
lazy stack

top

current model

-

non-context modelscontext

�

-
-
-

Figure 4.9: A model with context size 1 and alphabet size 3.

a
b
c a b c3 9 2

a
a

b
b

c
c

0
2

2
5

3
5 a

c
a
lazy stack

top
current model

-
non-context models

c

context

�

-
-
-

Figure 4.10: The model of Figure 4.9 after updating a \c".

4.2 The Statistical Model for WFA Coding 67

� The memory consumption of the model grows exponentially with the con-

text size. However, in practice there is no need to instantiate all non-

context models.

� Since often only short sequences have to be encoded, the non-context

models cannot adapt fast enough because the input symbols are spread

to many non-context models. A solution to this problem are blended

(mixed) models which are described in section 2.4.3 on page 33.

These drawbacks have led many image compression researchers to neglect this

coding method. Despite that, we have observed considerable improvements in

compression performance for some automaton parameters.

For the storage of all parameters of a WFA, an adaptive statistical model (wfa.

coder.Model) is used. As entropy coder, an arithmetic coder (wfa.coder.

ArithmeticEncoder and wfa.coder.ArithmeticDecoder) was used. This co-

der was selected because it also works for small input alphabets near the entropy

limit and can easily be adjusted to adaptive source models. In our implementa-

tion, we have exploited the fact that the storage cost for automaton parameters

can be estimated very precisely. For this estimation, the adaptive source model

was used. Because a backtracking algorithm is used for the creation of the au-

tomaton, the model has to be rolled back in case that a subtree is cut from the

automaton. For this reason, a window was used that holds a �xed1 number of

input symbols. The symbols in this window are the last k symbols the model

was last updated with. In order to support unlimited rollback operations, a

deque (double ended queue) is used. This data structure is an enhanced FIFO-

queue, able to insert and delete data elements at both ends [HN86]. If a symbol

is inserted into the model, it is inserted at the front of the deque. But now the

deque is one symbol too long. So the last symbol is removed from the deque and

pushed onto a stack. If an element is rolled back, the element at the front of the

deque is removed and the element on top of the stack is popped and inserted at

the end of the deque. In this manner, a
exible model is obtained, supporting

all operations required for the creation of the WFA. For an illustration of this

model see Figure 4.11.

QQkQQs
window

stack
last character in window

�rst character in window

6

roll-inroll-out- �top

6

Figure 4.11: Window-based model with rollback.

1It is also possible to vary the window length during coding time, which was not applied

here because of running time problems.

68 Further Enhancements of the WFA Coder

4.3 Matching Pursuit and WFA Coding

In this section we treat some special features of the matching pursuit approxi-

mation due to WFA coding.

Rate{Distortion Constrained Matching Pursuit In our implementa-

tion, we employed the concept of badness in di�erent ways. Two of them

concern the matching pursuit algorithm. The �rst usage is for the selection of

the best matching MP element where we choose the element with the smallest

badness in the standard matching pursuit algorithm (see section 1.4 on page 20).

The second usage is for abortion of the approximation algorithm where we stop

when the lowest badness of all elements lies above a given threshold. Note that

this technique can be combined with the orthogonalization procedure of Gram

and Schmidt.

4.4 Additional Re�nements

In this section we represent some minor re�nements of the WFA coding tech-

nique implemented in AutoPic. Note that all enhancements of the algorithm

should be \compatible", meaning that they can be independently switched on

and o�. This is important because the algorithm parameters are optimized via

a genetic algorithm. Many problems arise at the combination with the rollback

support, as for example at the incorporation of run length encoding. More

re�nements of WFA coding can be found in [Kra95].

4.4.1 Calculation of the Scalar Products

Hafner [Haf94] and also Zimmermann [Zim97] use a recursive function to com-

pute scalar products of state images. Zimmermann [Zim97] argues that the

direct computation of the required scalar products is not feasible. However,

this argument is not correct as the state images need not be zoomed to the

resolution of the original image. The image segments can be approximated in

the resolution of that segment. Another fact is that computers are now much

faster than at the time the WFA technique was invented.

A drawback of the recursive calculation is that the initial states also have to be

represented by a WFA structure. This disadvantage is avoided by our technique.

On the other hand, this manner of calculating the scalar products leads to a

gain in
exibility. As we will see, many of the optimizations of WFA coding

considered here would not be possible without the ability of applying arbitrary

image manipulations to the state images.

4.4 Additional Re�nements 69

4.4.2 Choice of the Function Numbering

Since the function systems we use are (potentially) of in�nite dimension, we

have to choose a �nite subset of these functions. We therefore have to decide

which subset to choose and the numbering of the functions in our domain pool.

In our implementation, we have in an early stage experimented with the usual

zigzag order of the functions (see Figure E.2 on page 189) commonly used

in transform coding. But this scheme did not yield the required compression

performance. This is the case because of numerical instabilities occurring when

approximating vectors in di�erent resolutions.

For this reason, we have experimented with other numberings. We made the

best experience with the numbering in Figure 4.12 where the numbers in the

boxes de�ne the numbering of the basis functions in the matching pursuit vec-

tors (the sequency number of a function denotes the number of sign changes in

the de�nition range).

-

?

Sx

Sy

0 2 5 10 17 26 37 50

1 3 7 12 19 28 39 52

4 6 8 14 21 30 41 54

9 11 13 15 23 32 43 56

16 18 20 22 24 34 45 58

25 27 29 31 33 35 47 60

36 38 40 42 44 46 48 62

49 51 53 55 57 59 61 63

� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.
. . .

Figure 4.12: Order of the basis functions. Sx and Sy denote the sequency

number in x and y direction, respectively.

4.4.3 Calculation of Storage Cost

An interesting implementation problem is the question how to obtain the re-

quired storage cost. There are two alternatives:

� The encoder could simulate the storage process and return how many bits

would be stored by the entropy encoder. This method has the bene�t of

re
ecting the real situation of the entropy coder.

� The second method is to calculate the information content (see section 1.3

on page 13) of the symbol to encode with respect to the statistical models.

This method has the bene�t of giving a slightly more precise calculation

since the (in our case arithmetic) encoder is able to store \fractions of

bits".

The second method achieves slightly better results and is also faster in our

implementation.

70 Further Enhancements of the WFA Coder

4.4.4 Domain Pool Administration

In order to limit the required computational resources, we have decided to use

a domain pool of �xed size instead of using all states for approximation. At the

beginning of the encoding process, the pool is �lled with initial states. The ini-

tial states can be replaced successively by states created during the generation of

the automaton. Because rollback operations have to be supported without the

need to store extra information about the update process of the domain pool,

the choice of update strategies is limited. The possible strategies are taken from

the theory of operating systems, where the most interesting strategies are the

first in first out (FIFO) strategy and the least recently used (LRU) strategy. In

our implementation, we employed the LRU strategy because it is reported in

[Haf99] to be the best strategy for limited domain pool administration. Slightly

better results were reported for an unlimited domain pool using all states (ini-

tial and generated states) for the approximation. We did not implement this

strategy as we expect exorbitant running times.

Independent Administration of the Domain Pool for the Levels in

the WFA Tree

An important observation is that often many objects of the same size and shape

are present in natural images. An example for this phenomenon is an image of a

juggler operating with many balls of the same size. In order to exploit this kind

of redundancy, we enhanced Hafner's approach to independent domain pool

administration in several levels in the WFA tree. We did this in the following

way: if a domain vector is used, it is marked as used only in the current level.

In this way it is appreciated that some state images are more adequate for

approximation in one level than in others. In order to ensure that state images

can be evaluated at all levels, a new state is inserted in all levels of the domain

pool.

Choosing the Initial Basis

As mentioned above, the domain pool of the WFA coder has to be �lled initially

with base vectors. We made tests with di�erent initial bases. An important ob-

servation, as remarked in [CK93], is the fact that the vectors of the initial basis

do not have to be computed by a WFA but can be calculated directly. Since

we are interested in approximating image segments with linear combinations of

base vectors, we utilized function systems that are popular in image coding. In

our WFA codec, currently the basis vectors of the sine, cosine, Slant, Walsh,

Haar and Hadamard transform are implemented. We obtained the best results

with the cosine transform also used in the popular image compression standard

JPEG. For some images of the initial bases see Figures 4.13{4.18 (the function

order is the order de�ned in section 4.4.2). For a more thorough treatment of

these bases, see appendix E on page 179.

4.4 Additional Re�nements 71

Figure 4.13: Some cosine images.

Figure 4.14: Some sine images.

Figure 4.15: Some Walsh images.

Figure 4.16: Some Hadamard images (sequency ordered).

Figure 4.17: Some Slant images (sequency ordered).

Figure 4.18: Some Haar images.

72 Further Enhancements of the WFA Coder

Another way to construct the initial basis is similar to the codebook construc-

tion process in vector quantization. We did not implement this alternative

since the codebook construction process (for example using the k-means algo-

rithm) is very time consuming. For further details on vector quantization see

[Kat94, NH88].

4.4.5 Modi�ed Orthogonal Matching Pursuit

Since we use a dynamically changing domain pool, we are confronted with a

severe problem when implementing orthogonal matching pursuit. Since the new

vectors of the domain pool are inserted at an arbitrary position in the domain

pool, the basis change matrices have to be recalculated each time a new state

is created. In order to reduce the computational complexity, we decided to

loosen the property of orthogonality. We split the domain pool into a �xed and

a dynamic part (see Figure 4.19). The �xed part is �lled with domain vectors

concentrating the greatest part of image energy (see appendix E on page 179).

These vectors are �xed during adaptation of the domain pool. The dynamic

part of the domain pool is administered as described in section 4.4.4.

�xed part dynamic part

domain pool

Figure 4.19: Splitting the domain pool in a �xed and dynamic part.

4.4.6 Stopping Criteria of the Approximation Algorithms

We stopped the linear approximation and matching pursuit algorithm if the

badness of the next element exceeds a given threshold. An important obser-

vation is that this greedy strategy is not optimal. Hafner made studies in

which he let the matching pursuit algorithm run some steps further and cut the

sequence afterwards at the \global" maximum. Because Hafner observed only

little improvement in compression performance while the encoding time was ap-

proximately doubled, we did not pursue this optimization. However, we think

that this strategy is worth a trial for the linear approximation. But we have to

defer this step to a moment when it is clear if this manner of approximation is

worthwhile at all.

4.4.7 Limiting the Fractal Transform

We noticed that states near the top and near the bottom of the WFA tree are

not used frequently by the approximation algorithm. For this fact, we limited

the insertion to the domain pool to states belonging to niveaus between the

limits 5 and 10.

4.4 Additional Re�nements 73

4.4.8 Non-Fractal Coding

At WFA coding in its original form, the currently operated image segment can

be approximated by using state images of all created states. Because of the

exact2 cosine basis, one can see that the coding has the following advantages if

the approximation is performed using only initial states:

� A gain in compression speed because less state images have to be decoded.

� Less memory usage since less state images have to reside in memory.

� For rather small domain pools there was also a slight gain in compression

eÆciency.

4.4.9 Rate{Distortion Constrained Approximation

In standard rate{distortion constrained matching pursuit approximation, the

required coeÆcients are computed by scalar products and afterwards have to be

quantized. But the generated coeÆcient (the coeÆcient with least quantization

error) does not necessarily achieve the most favorable badness, since not only

the approximation error is implied but also the produced storage cost. The

optimal solution would be to compute the badness for all coeÆcients, but this

solution has the drawback of computational infeasibility. In order to �nd a

compromise between these two extremes, we decided to additionally examine

the second best matching coeÆcient, which probably has lower storage cost.

This procedure is especially powerful in linear approximation since the cost of

the coeÆcients is dominant. Since we did not �nd this simple heuristic in the

literature, we called it bad approximation alternative. For an illustration of this

concept, see Figure 4.20.

6
unquantized coeÆcient

?
second best approximation

?
best approximation

t t t t t t

Figure 4.20: Heuristic for rate{distortion constrained approximation. The �lled

circles represent quantization values and the vertical line represents the unquan-

tized value.

2Note that the cosine function is not precisely representable in a digital computer. We

use the term exact to express that the basis vectors are calculated directly using the library

function Math.cos. This technique is contrasted by the WFA coder of Hafner [Kra95], where

the cosine basis is approximated with WFA states.

74 Further Enhancements of the WFA Coder

4.4.10 Storage of the Automaton

In this section we give a coarse description of how the WFA parameters and

image partitioning have to be stored. More details will be given in section 7.3.1

on page 132.

Storage of the Tree Structure

Now let us take a look at the storage of the WFA tree structure without such

specialties as HV partitioning. As mentioned earlier, the tree structure may be

stored without entropy coding in two bits per node. For that case, we need to

store only one bit for each half of a node. This bit de�nes whether the segment

was approximated by matching pursuits or whether it points to a new node. In

the former case, we have to subsequently encode the matching pursuit vector,

while in the latter case, we can restore the index of the node to which the node

points by the order in which the points are stored (either BFS or DFS order).

Since it is clear that the probability to split a node is high at the root of the

WFA tree while it is low at the bottom of the tree, the information whether to

approximate or partition a quadrant is stored in BFS order. The DFS order for

storing the tree structure was also tested, but had a slightly poorer compression

performance. In order to mark the end of the tree structure, we �rst store the

number of nodes. Another strategy is the storage of an end-of-tree-sign. One

can read in many articles about signal compression that it is not clear how to

assign the probability for such a symbol. Since we do not know the exact range

of this number in advance, we employ Fibonacci codes for that task.

Another modi�cation would be to make a run length encoding of that true

false sequence. Since we observed that long runs only appear at the beginning

and the end of the sequence, we have chosen to store the length of the true

respectively the false sequence at the beginning of the sequence and to store

the middle of that sequence by an adaptive source model. Since we know in

advance the range of these numbers, we decided to store the two numbers in

binary integer representation. We agree with the work of Hafner [Haf99] that

the average cost of storing the tree structure is about 1:5 bits per node.

Storage of the Light HV Partitioning

The storage of the light HV partitioning (a binary sequence) is done in the same

way as the storage of the tree structure. For any node belonging to a square

state image having a niveau greater than zero, the decision whether this state

image is partitioned horizontally or vertically has to be stored. This true false

sequence is stored nearly in the same way as the tree structure using run length

encoding at beginning and end and an adaptive source model for the remaining

booleans. The storage rate of this part is typically less than 1.5 percent of the

whole space.

4.4 Additional Re�nements 75

Storage of the Matching Pursuit Vectors

As mentioned in [Haf99], the indices of the matching pursuit vectors take ap-

proximately 60 percent of the storage space of the encoded automaton. In order

to reduce the overall storage cost, we have developed a coding scheme in three

parts where the �rst two parts can be encoded without the storage of indices.

These three parts are addressed in the following paragraphs. The naming con-

ventions are partially leaned on the notation of JPEG. These parts are

1. DC part which is the coeÆcient belonging to the constant gray value state

image. Since the DC part is almost always addressed, this part is always

stored. For this reason, there is no need to store an index or the size of

that part, only the coeÆcient.

2. AC part is a part where the next coeÆcients after the DC part (lower

frequency coeÆcients) are enqueued successively. Since the size of the AC

part is held variable, we have to store the size of the AC part and the

assigned coeÆcients. We also made experiments with a �xed number of

AC coeÆcients, but with slightly worse results.

3. MP part is the part holding the matching pursuit components of the

approximation. Since this part holds coeÆcients to arbitrary state images,

we additionally have to store the indices (see section 4.4.4 on page 70) of

the states which are used.

Note that the utilization of DC and AC coeÆcients also signi�cantly speed up

the implementation since such coeÆcients can be calculated in a single sweep

over the domain pool. More details about the storage of WFAs can be found

in [KF94].

4.4.11 Quantization Strategy

AutoPic only uses uniform quantization of the coeÆcients. This method is

justi�ed by results of coding theory stating that this method is optimal if the

presence of an entropy coder is assumed. Nevertheless, Hafner has made exper-

iments with non-uniform quantization leading to essentially the same results on

the average as uniform quantization [Haf99].

There are also methods to perform adaptive quantizations. This family of tech-

niques adapts the quantization bins during coding to a spot check distribution

of coeÆcients seen so far. Note that for these methods to work, the codec has

to memorize the unquantized coeÆcients of the spot check and requires sig-

ni�cant amount of computations to recalculate the quantization bins. Up to

date, we have not utilized this method because of the drawbacks stated above.

For further details about adaptive quantization see appendix I on page 207 and

[Ohm95].

76 Further Enhancements of the WFA Coder

Accuracy of the CoeÆcients We specify the precisions of the coeÆcients

by using three parameters. The �rst parameter is a boolean parameter stating

whether to encode a sign or not. The second part is an integer parameter

specifying the binary precision before the dual point. It is important to know

that digits to the left of the number is �lled with zeroes. This parameter may

also take on negative values meaning that we �ll in zeroes right after the dual

point. Finally, the third part is the binary accuracy of the number after the

dual point. With these conventions, we can conclude that the number of bits

used to represent a binary number is (without entropy coding)

hbeforePointPrecisioni+ hafterPointPrecisioni (4.3)

where a 1 has to be added in case a signed number model is used. An example

for this bit allocation is given in Figure 4.21.

0 0 0 1 0 1 0 0 1 1 0 0 0 0 0

dual point

before point precision: 1
after point precision: 6

0 0 0 0 0 1 0 1 0 0 0 0 0 0 0

dual point

before point precision: -1
after point precision: 4

stored partstored part
always zeroalways zero

??

always zero always zero

-� -� -� -�

Figure 4.21: Description for the precision of the coeÆcients.

Storage Orders As we have seen, in the standard mode of AutoPic the nodes

(states) of the WFA tree are built bottom up in DFS order. In order to make

the storage more
exible, we implemented some iterators to access the WFA

states in BFS and DFS order. The storage orders may also be reversed. In this

way, four orders can be speci�ed for each part of the WFA speci�cation which

can be independently switched.

Coding the Lengths of the Lists The question of how to encode the lengths

of the AC and MP parts is similar to the question of how to encode the length

of a string in a programming language. In PASCAL, the data of a string is

preceded by the length of the string. In C, a string is backed up by a special

end-of-string symbol. As we have seen, it is essential in data compression to

know in advance (at least approximately) the probability of all symbols. We

propose that the calculation of PASCAL-like length coding is easier to handle

by statistical models.

Storage of the DC Parts We have observed that the preferred storage order

of the DC coeÆcients is the BFS order. The genetic algorithm determined that

a non-signed representation using 1 bit precision before the dual point and 6

bits after the dual point should be used. The DC part takes approximately ten

percent of the whole compressed �le size. The utilized window length is about

eighty symbols.

4.4 Additional Re�nements 77

Storage of the AC Parts The AC part consists of the storage of the length

of that part and the corresponding AC coeÆcients. Here we use a signed num-

ber model with typically zero bit before the dual point and �ve bit after the

dual point. The percentage to the whole storage consumption is approximately

�fteen percent.

Storage of the Matching Pursuit Parts The storage of MP parts consists

of the lengths of that parts, the indices and the corresponding weights. We

have observed that the MP parts take approximately �fty percent of the entire

storage size.

Up to now, the three pieces of this part are stored in the same order. We have

observed that the best storage order for this part is also the BFS order. Once

more computing power is available, we will examine whether it is preferable to

store the three pieces in di�erent orders.

The length of that parts is stored by using an adaptive source model. Since we

expect that in the upper part of the WFA tree the MP lists will be longer while

descending towards the lower part of the WFA tree, the encoding is performed

in BFS order.

As mentioned in [Haf99], the coding of the matching pursuit indices is the most

space consuming and therefore the most important part for image compression.

We observed that it is slightly better not to encode the indices directly, but

instead the di�erences to the last stored index (delta coding). Indices are stored

with 7 bits accuracy. Note that each added bit nearly doubles the running time

of the WFA encoding algorithm.

The last section for the storage of the MP part is the storage of the MP co-

eÆcients. We have observed that the quantization to �1 bit precision before

and 5 bit precision after the dualpoint is most eÆcient with a window length

of approximately sixty symbols.

4.4.12 Coding of Color Images

For the representation on computer monitors, color images are usually stored

in the RGB color model, where the color of a pixel is given by its red, green

and blue intensities. These values are typically stored using eight bits per value

(true color representation). The three color channels may be interpreted as

separate gray valued images. These images may be approximated by three

automata. Since the color channels in the RGB space are highly correlated,

it is a well-known technique to use a decorrelating color transform. The three

color channels are encoded successively and the created states of the last two

channels are enqueued after the �rst channel. For an illustration of the analysis

and synthesis of a color image see Figures 4.22 and 4.23.

Since the color transform does not decorrelate the color channels completely, we

can bene�t from similar state images and distributions. By this type of WFA

78 Further Enhancements of the WFA Coder

color transform

red channel

green channel

blue channel

lumin.

channel 0

chrominance

WFA encoder -WFA0

WFA encoder -WFA1

estimation

WFA encoder -WFA2
estimation ?

6
t

-

-

-

-
-

-

chrominance

channel

channel 1

Figure 4.22: Encoding of color images with the WFA technique.

-WFA0

-WFA1

-WFA2

t WFA decoder

WFA decoder

estimation

WFA decoder

estimation?

6
inverse color

transform
-
-

-
-

-

-

red channel

green channel

blue channel

lumin.

chrominance channel 0

chrominance channel 1

channel

Figure 4.23: Decoding of color images with the WFA technique.

4.4 Additional Re�nements 79

Figure 4.24: Partitioning of the color image Monarch in YCbCr color space,

ordered Y, Cb, Cr from left to right. See also appendix B on page 167.

coding, the remaining correlations can be eÆciently employed. There is also a

storage overhead required to tell the decoder which states have to be decoded.

We made tests with RGB, YUV, YIQ and YCbCr color systems. The best

results were obtained in YCbCr color space. A valuable observation is that

these color channels are still correlated. This correlation can be exploited by

fractal coding segments using segments of previously encoded color channels at

the same spatial positions. For an illustration of this process see Figure 4.24.

Another method to exploit the remaining correlations between the color chan-

nels is to use the statistical model of the luminance channel as a starting point

for the statistical models for the chrominance channels.

We observed that the data rate of the luminance component takes up about 75

percent of the whole data rate of a colored image. The quality reduction of the

chrominance components are steered by a reduction of the quality factor q in

the WFA construction algorithm.

There are other techniques to reduce the quality of the chroma channels:

� In the JPEG and MPEG data compression standards, the chrominance

components are down-sampled by a factor of two prior to compression.

We did not implement this kind of quality reduction since image details

are diminished by this kind of transform.

� An interesting technique to reduce chroma band quality is the reduction

of quantization precision of the resulting coeÆcients. We did not choose

this alternative, since the use of the statistical models of the luminance

channel for estimation of the models of the chrominance channels would

be made less e�ective.

4.4.13 WFA-based Zooming

Since a WFA provides image information in a resolution independent manner,

it can be decoded to a digital image at any resolution. When the image is

80 Further Enhancements of the WFA Coder

decoded at a larger size than the original image, details beyond this resolution

are created by the WFA decoding algorithm. This kind of zooming was investi-

gated with IFS and wavelet representations of images, called fractal and wavelet

zoom respectively. In classical zooming, pixels are repeated several times. This

method shows blocking artifacts (commonly called pixelization) which is the

reason why other methods were invented, such as interpolation and the meth-

ods considered above. We present only two WFA-zoomed images (see Figures

4.25 and 4.26) for completeness since our WFA coder was mainly designed for

image compression (the original is shown in Figure 4.34 on page 88).

Figure 4.25: WFA zoom of 128�128 image Lenna to resolution 512�512
(RMSE=9.86, PSNR=28.25 dB).

4.4.14 Edge Smoothing

The blocking artifacts at low �delity coding are one of the most annoying draw-

backs of the WFA codec when used without wavelet transform (see chapter 5

on page 103). In order to suppress the edge e�ect, we have implemented a

smoothing procedure applied at the edges of the resulting tiles. To adjust the

e�ect of the smoothing operator, we use a smoothing parameter s > 1. See

Figure 4.27 for details. Note that the lower the parameter s the higher the

smoothing e�ect is.

4.4 Additional Re�nements 81

Figure 4.26: WFA zoom of 256�256 image Lenna to resolution 512�512
(RMSE=5.3526, PSNR=33.55 dB).

b1 b2 ;
sb1+b2
s+1

b1+sb2
s+1

boundary of state images
XXXXXXz

������9

Figure 4.27: Edge smoothing with smoothing parameter s.

82 Further Enhancements of the WFA Coder

Despite the fact that this technique is often applied in fractal image compression

[Fis95b, Haf99], an edge smoothing algorithm does not enhance the compression

performance of the WFA codec. One reason for this behavior could be the

exact cosine basis of our implementation. The smoothing operator could easily

be extended to use a wider neighborhood of the edge, but due to disappointing

results, we did not pursue this technique but moved on to the wavelet technique

which should yield better results.

4.4.15 Coding with Varying Quality

It is a well-known fact that the content of an image is partitioned to regions of

interest (for example the face of a portrait) and the background. It is an obvious

idea that objects in the regions of interest should be coded more accurately than

objects in the background. Since such regions often are part of the middle of

the image, we implemented a scheme that adjusts the quality factor of the WFA

encoder to a higher value than in other regions. See Figure 4.28 for a sketch of

the regions with higher quality factor.

region of

high quality

lower quality

lowest quality

interest

Figure 4.28: Image regions with di�erent quality factors.

Note that this technique only a�ects the subjectively perceived quality. In

PSNR sense, the quality is worsened. For this reason, we give no rate{distortion

diagram of this modi�cation but only a decoded image to visualize the result

(see Figure 4.29).

The information whether or not a given path is contained in the inner region

is determined by adding the �rst two symbols of the quadtree path. The path

then lies in the inner region of the square i� that sum equals to 3 (see Figure

4.30). For a path shorter than 2, it is assumed for consistency to be in the

region of interest. The next outer range (marked in Figure 4.28 with \lower

quality") is determined in the same way by examining all combinations of 2-

tuples of the �rst three symbols in the path. For the calculation in bintrees

(bintree path b = b0b1b2b3 : : : 2 f0; 1g�), two symbols have to be merged to

become a quadtree address (quadtree path q = q0q1q2q3 : : : 2 f0; 1; 2; 3g�) by
the formula

qi = 2 � b2i + b2i+1 (4.4)

4.4 Additional Re�nements 83

Figure 4.29: WFA decoded image with varying quality factor. Note that we

have chosen an extremely low quality factor for the outer region to make the

e�ect clearly visible.

84 Further Enhancements of the WFA Coder

and thereafter calculating the scheme considered above. Note that this scheme

is not a total function, as it is not de�ned for odd length bintree paths, but

needs to be calculated only for the �rst four and six symbols respectively. The

corresponding segment is assumed to lie in the region of interest if the path is

shorter.

11

10

01

00 02 20 22

23

32

3313 31

03

3012

21

sum 6= 3
sum = 3

�
�

�+

���

Figure 4.30: Determination of the inner square by using the path.

We did not develop this technique any further since the automatic determi-

nation of the region of interest is impossible due to the same reasons as the

measurement of image quality (see appendix C on page 169). However, we

think that this technique is valuable for special image types, for example por-

trait images.

4.4.16 Progressive Decoding of WFAs

In case of a slow data channel, the user may have to wait a long time until

the decoded image can be seen. For that case, the progressive decoding mode

of AutoPic is useful. In this mode, a coarse representation of the decoded

image is shown �rst, which is re�ned successively. In order to quickly get a

�rst approximation, we �rst transmit the DC, afterwards AC and �nally MP

coeÆcients. For an illustration of this concept see Figure 4.31. The WFA is

fully decoded after receiving all DC, AC and MP coeÆcients. This feature

has not yet been implemented to the user interface of AutoPic but is available

only via the command line parameter -progressiveNumberOfParts in the class

WFADecoder.

Figure 4.31: Progressive decoding of a WFA.

4.5 Optimization of Coding Parameters 85

4.5 Optimization of Coding Parameters

The compression eÆciency depends on a vast set of parameters. In the following

enumeration we mention some of them, an example of the protocol �le is given

in section 7.3.1 on page 132.

� Choice of the initial basis: we have implemented the bases of cosine trans-

form (also used in JPEG), sine, Hadamard, Slant and Walsh transform.

We observed the best results with the cosine basis. Note that the ba-

sis functions have to be selected carefully since the images have to be

\compatible", meaning that the conservativeness has to be ensured.

� Quantization parameters: signed or unsigned, precision before and after

the dualpoint. These parameters have to be chosen for all three parts and

sub-parts of the matching pursuit vectors.

� The maximal sizes of the AC and MP parts.

� Adaptation speed, window lengths and context sizes of the source models.

These parameters have to be chosen carefully for each model since they

are of main importance for compression eÆciency. There are currently

more than ten models a�ecting the compression performance.

� It has to be stored if the light HV-partitioning, bad approximation, second

chance matching pursuit etc. has to be chosen.

� Precision of the matching pursuit indices. This parameter is crucial for

the running time of the encoder. The parameter also has a great impact

on time and space complexity.

� In the context of color coding, the type of color model and the qualities

of the three color channels have to be encoded. Since the chrominance

channels obey completely di�erent statistical distributions, all parameters

of the models have to be multiplied by 3.

4.5.1 Utilization of Genetic Algorithms

In order to manage such a huge number of parameters of the codec, the brute

force approach for the optimization is infeasible. Therefore, we have utilized

the method of genetic algorithms.

The genetic analyzer is adjusted so that at �rst a generation is created by using

random genes. Afterwards the half with the worst genes are replaced by new

genes obtained by crossing and mutating the best genes of that generation.

For this task, two genes of the better half are selected randomly. The crossing

operator selects a random cutting point and copies the bits from position zero to

the cutting point from the �rst gene to the newly created gene. The remaining

bits from the cutting point to the end are taken from the secondly selected gene.

86 Further Enhancements of the WFA Coder

For an illustration of the cross operator see Figure 4.32. After the creation

of new genes by crossing, a given percentage of the gene pool are mutated,

meaning that at random positions in the DNA code bits are inverted (see Figure

4.33). The obtained new generation is treated in the same way as the former

generation. For an overview about these techniques see [SP94].

0 1 0 1 0 1 0 1 0 0

1 0 0 0 1 0 0 1 1 1

original genes new genes

-

-
PPPPq��

��1

0 1 0 1 0 1

1 0 0 0 1 0

0 1 1 1

0 1 0 0

random cutting point

Figure 4.32: Cross operator.

0 1 0 1 0 1 0 1 0 0 0 0 0 1 0 1 1 1 0 0;

o o

original gene new gene

Figure 4.33: Mutate operator.

At the calculation of the �tness function arises the question what constitutes a

good compression algorithm. We have drawn the conclusion that it is adequate

to optimize the coding parameters with a given image at a predetermined qual-

ity. Therefore, a binary search is used which adjusts a quality factor so that the

given quality is reached with little deviation. A problem of this search for the

right quality factor is that the mapping from quality factor to image quality is

of course not continuous, but surprisingly not even monotonic. These problems

lead to heuristics in the binary search algorithm which searches a quality fac-

tor with which the WFA encoder achieves an image �delity at least as high as

desired, but has to be as close as possible to that limit.

A problem for the GA is the huge amount of parameters considered above. By

encoding these parameters directly, we would require hundreds of bits for the

representation of the DNA codes. For this reason, we encoded these parameters

in a di�erential way. The informations in the DNA code are therefore added to

certain o�sets. Afterwards the GA is run and after \convergence" of the GA3,

the parameter o�sets are adapted and the GA is started again.

Speeding up the Genetic Algorithm We have observed that the GA con-

verges fastest if a cross rate of 60 percent is used and the best gene is retained

in the gene pool. The mutation rate has to be raised from a low value at the

beginning (two percent) to a high value (about eighty percent) if the process

stagnates.

3In order to speed up the convergence, we �rst started the GA with an image size of only

256 � 256 and afterwards we started the GA using the normal test images with resolution of

512� 512.

4.6 Results 87

For a faster calculation of the genetic algorithm, we have developed a simple

but eÆcient method to solve the problem in parallel on a cluster of computers.

Because of the fact that the (by far) highest computing resources are required

to calculate the �tnesses of the genes and only a small amount of resources are

needed for the genetic algorithm, we store the function genes to �tnesses in a

�le and let the computers read this �le periodically and write it back with the

newly calculated genes. Under the assumption that the genes are calculated

independently, we therefore have a speedup almost linear to the number of

computers operating on the same image.

Another method for speeding up the gene calculation would be a master process

and many slave processes on di�erent computers. We have decided to use the

heuristic considered above since it minimizes the communication overhead and

is almost immune against breakdown of some processes.

The Utilization of Gray Codes In an early stage of optimization with

GA, we used binary encoding for the di�erences. A signi�cant speedup was

achieved by using Gray codes instead. A possible explanation for this speedup

is the property of Gray codes that adjacent codewords of a given codeword can

be obtained by switching only a single bit.

4.6 Results

As there are no satisfying statistical models for images, the algorithm was tested

with a number of well-known test images at a resolution of 512 � 512. The

compression results depend on the image type. We target to compress \natural"

images using a quadratic �delity measure. Thus we have the same target as

the well-known compression schemes JPEG and SPIHT which are utilized for

comparison.

4.6.1 Utilized Test Images

In order to estimate the compression performance of the AutoPic WFA codec,

we utilized several test images with a diverse set of characteristics. The char-

acteristics vary from Lenna, a smooth image yielding high compression ratios,

to Mandrill with an extensive high frequency domain. You can see the images4

in Figure 4.34.

We have decided to test and optimize our image compressor using gray valued

images because of the following reasons:

� We want to focus our attention on an image compression algorithm and

not on color coding.

4The images can be downloaded at [Wat]. Another site for well-known test images is [USC].

88 Further Enhancements of the WFA Coder

� Most researchers give results in this form. Thus we can compare our

results more easily with other compressors.

� Color spaces are often tuned to the human visual system. Thus state-

ments in PSNR-sense are not visually meaningful. For problems with

such distortion measures see appendix C on page 169.

� There is a wide variety of color spaces and the usage of such would make

a comparison infeasible.

� One of the most frequently used color models today is the YCbCr model

which is a relative modern model. Using such a model would make it

impossible to compare an algorithm with older compressors.

One of the most popular test images is Lenna shown in Figure 4.34. Several

variants of this image are in usage, thus making it hard to compare our results

with others. In order to make the choice of images clear, we have used the

widespread images of the Waterloo Fractal Image Coding Project [Wat].

Figure 4.34: Gray scale images of the Waterloo image site. The images are

called (from left to right, top to bottom): Barb, Boat, Goldhill, Lenna, Mandrill,

Peppers, Washsat, Zelda. In accordance with most publications concerning

image compression, we left out the images Washsat and Zelda.

4.6.2 Some Decoded Images

We observed a tiling e�ect at high compression ratios, which commonly occurs

at block-based algorithms. Alternatives for reducing this e�ect are smoothing

of the edges or using a wavelet basis.

Already in an early stage of the implementation with a crude parameter setting,

a relatively high compression performance was observed due to the feedback

loop considered in section 3.7 on page 54. Some decompressed images are

4.6 Results 89

shown in the Figures 4.35{4.36. For the interested reader, we added H-plots

describing the encoding �delity in a multi-resolution dependent manner (see

section C.1.1 on page 171).

For comparison issues, we used the reference image compressors

� the JPEG implementation of the independent JPEG group as an example

for an established codec5 and

� SPIHT, a zerotree wavelet coder from W. A. Pearlman and A. Said rep-

resenting one of the best image codecs available. This codec is described

in [PS96] and is available at [PS].

Æ

Æ
Æ
Æ

Æ
������

112 2
4 4

8 8
16 163232

dS dM

Figure 4.35: Decoded image Lenna and the corresponding H-plot (PSNR 32.89

dB, 0.2246 bpp, 880 states).

4.6.3 Absolute Running Times of the Codec

In order to present absolute running times of the WFA codec, we have made

tests on a 500 MHz Pentium III computer with 128 MB RAM. We utilized the

just in time compiler of IBM JDK 1.1.8. The probes for di�erent data rates

can be found in table 4.1.

5The current JPEG implementation is available at [IJG].

90 Further Enhancements of the WFA Coder

Æ

Æ
Æ
Æ Æ

������

112 2
4 4

8 8
16 163232

dS dM

Figure 4.36: Decoded image Boat and the corresponding H-plot (PSNR 31.85

dB, 0.3344 bpp, 1276 states).

-
0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

6

20.0

22.5

25.0

27.5

30.0

32.5

35.0

37.5

Legend:

Æ ' AutoPic (WFA)

bpp

PSNR (dB)

� ' IJPEG (Trans.)

�
�
� �

� �
��

���
����

�����
������

���� ���
��� � � ' SPIHT (Wavelet)

�
�
�
� � � � � � � � � � � � � � �

Æ Æ
ÆÆ

Æ Æ Æ
ÆÆÆ

ÆÆÆÆ
ÆÆÆ Æ

Æ Æ Æ ÆÆ
Æ Æ Æ Æ ÆÆÆ ÆÆ

Figure 4.37: Rate{distortion diagram of the image Lenna.

4.6 Results 91

-
0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

6

20.0

22.5

25.0

27.5

30.0

32.5

35.0

37.5

Legend:

Æ ' AutoPic (WFA)

bpp

PSNR (dB)

� ' SPIHT (Wavelet)

�
�
� � � � � � � � � � � � � � � � �

� ' IJPEG (Trans.)

�
�
�
� � �

� �
� � �

� � �
��� �

� ��� �
������

Æ Æ
ÆÆÆ

ÆÆ
ÆÆÆ

Æ Æ Æ
Æ ÆÆ

Æ ÆÆ Æ
Æ Æ Æ Æ Æ ÆÆ

ÆÆÆÆ

Figure 4.38: Rate{distortion diagram of the image Boat.

-
0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

6

20.0

22.5

25.0

27.5

30.0

32.5

35.0

37.5

Legend:

Æ ' AutoPic (WFA)

bpp

PSNR (dB)

� ' SPIHT (Wavelet)

�
�
� � � � �

� � � � � � � � � � � �

� ' IJPEG (Trans.)

� � � � � � � � � � � � � � � �
� � �

� �

Æ Æ
ÆÆÆ

Æ ÆÆ
ÆÆ Æ

Æ Æ
Æ Æ Æ

Æ ÆÆ Æ
Æ Æ Æ Æ Æ Æ Æ

Figure 4.39: Rate{distortion diagram of the image Barb.

-
0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

6

20.0

22.5

25.0

27.5

30.0

32.5

35.0

37.5

Legend:

Æ ' AutoPic (WFA)

bpp

PSNR (dB)

� ' SPIHT (Wavelet)

� � � � � � � � � � � � � � � � � � �

� ' IJPEG (Trans.)

�
� � � � �

� � � � � � �
� � � �

� � � � � �
��

ÆÆ Æ
ÆÆÆ

Æ ÆÆ
ÆÆ Æ

Æ Æ Æ Æ
Æ Æ Æ Æ

Æ ÆÆ ÆÆ ÆÆ
ÆÆÆÆ

Figure 4.40: Rate{distortion diagram of the image Goldhill.

92 Further Enhancements of the WFA Coder

-
0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

6

20.0

22.5

25.0

27.5

30.0

32.5

35.0

37.5

Legend:

Æ ' AutoPic (WFA)

bpp

PSNR (dB)

� ' SPIHT (Wavelet)

� � � � � � � � � � � � � � � � � � �

� ' IJPEG (Trans.)

�
� � � � � � � � � �

ÆÆ Æ Æ
Æ Æ ÆÆÆ Æ

Æ ÆÆ ÆÆ
ÆÆ Æ Æ Æ ÆÆÆÆ Æ

ÆÆÆ Æ Æ Æ

Figure 4.41: Rate{distortion diagram of the image Mandrill.

-
0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

6

20.0

22.5

25.0

27.5

30.0

32.5

35.0

37.5

Legend:

Æ ' AutoPic (WFA)

bpp

PSNR (dB)

� ' SPIHT (Wavelet)

�
�
�
� � � � � � � � � � � � � � � � � ' IJPEG (Trans.)

�
�
�
�
� �

� �
� ��

����
�����

�������
���� �����

�

Æ
ÆÆ
Æ Æ

Æ Æ ÆÆ
ÆÆ Æ

Æ ÆÆ Æ Æ Æ
Æ Æ Æ ÆÆÆ

Æ Æ ÆÆÆ

Figure 4.42: Rate{distortion diagram of the image Peppers.

data rate (bpp) enc. time (sec.) dec. time (sec.)

0.1396 50.6 0.64

0.1700 55.7 0.76

0.2057 60.1 0.84

0.2468 65.5 0.97

0.2750 66.0 1.05

0.3685 73.0 1.25

0.4626 78.1 1.57

0.5881 80.3 1.97

Table 4.1: Absolute running times of the WFA coder and decoder. The codec

was tested with the test image Lenna.

4.7 Statistical Distributions of the Parameters 93

4.7 Statistical Distributions of the Stored Parame-

ters

The biggest part of the storage consumption of the encoded automaton have

the indices of the matching pursuit vectors. For the coeÆcients, we detected

distributions lying between Laplace distribution and normal distribution. For

the lengths of the parts we detected a normal distribution. The program X

TREMES [RT97] was used for the statistical analysis. On the following pages

some diagrams for statistical analysis of the images Lenna and Boat are given,

two well-known test images with fairly di�erent statistics. The statistical data

can be evaluated for designing quantizers and approximation algorithms. The

diagrams show statistical parameters for DC, AC and MP coeÆcients. Figure

4.43 shows the distribution all DC coeÆcients at storage time for the image

Lenna. Figure 4.44 shows deviations of the AC coeÆcients of the MP vectors

in the �rst positions and Figure 4.45 shows the means of the individual AC

coeÆcients. Afterwards statistical data of the MP coeÆcients are given. Note

that several other statistical data could be interesting, for example the coeÆ-

cients that are rolled out of the WFA or the distributions of the MP indices and

data for tree construction. We have printed only the most important diagrams.

More diagrams may be requested directly from the author of this thesis.

4.8 Further Research Topics

The research of WFAs is not completed by far. In this section, we list some of

the outstanding problems to be investigated.

4.8.1 Embedding GA to WFA

An interesting but at the moment infeasible modi�cation of the WFA coding

algorithm is the inclusion of the GA. The procedure works in the way that the

WFA encoder is �rst adjusted to the input image using the GA, and afterwards

transmitting the WFA using the optimized parameters. For this task, a suitable

abortion criterion has to be stated. This could be that the best �tting gene

has not changed in the last x generations. The DNA code thus obtained could

then also be transmitted with the image. The acquired storage overhead may be

compensated by a better coding �delity since the DNA code consists in practice

only of a few bytes. The decoder would also have to adjust to those parameters

and afterwards decode the automaton. The main problem with that method

are the extreme running times since the WFA construction process has to be

performed several times.

94 Further Enhancements of the WFA Coder

-
-2.0 -1.6 -1.2 -0.8 -0.4 0.0 0.4 0.8 1.2

6

0.0

0.1

0.2

0.3

0.4

domain

probability
Statistical properties:

number of probes: 880

mean: 0.8824

deviation: 0.121

median: 0.8281

mean of abs. values: 0.8824

deviation of abs. values: 0.121

median of abs. values: 0.8281

minimum: 0.3281

maximum: 1.7031

minimum of abs. values: 0.3281

maximum of abs. values: 1.7031

ÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆ

ÆÆÆÆÆ
Æ
ÆÆÆÆÆÆ

ÆÆÆ

Figure 4.43: Distribution of DC coeÆcients at storage time (Lenna).

-
0 4 8 12

6

0.00

0.05

0.10

0.15

0.20
Legend:

Æ ' deviations of vector components

� ' deviations of abs. values of vector c.

coe�.-no.

deviation

Æ
�Æ�
Æ
�Æ�Æ�Æ�Æ�Æ�Æ�Æ�Æ�Æ�Æ�Æ�Æ�Æ�

Figure 4.44: Deviations of AC coeÆcients at storage time (Lenna).

-

0 4 8 12

6

-0.1

0.1

0.3

0.5

0.7

Legend:

Æ ' means of vector components

� ' medians of vector components

/ ' means of abs. values of vector c.

+ ' medians of abs. values of vector c.

coe�.-no.

value

Æ�

/
+

Æ�
/+

Æ�

/
+

Æ�/+Æ�/+Æ�/+Æ�/+Æ�/+Æ�/+Æ�/+Æ�/+Æ�/+Æ�/+Æ�/+Æ�/+Æ�/+

Figure 4.45: Means and medians of AC coeÆcients at storage time (Lenna).

-
-2.0 -1.6 -1.2 -0.8 -0.4 0.0 0.4 0.8 1.2

6

0.0

0.1

0.2

0.3

0.4

domain

probability
Statistical properties:

number of probes: 1711

mean: 0.0018

deviation: 0.0296

median: -0.0312

mean of abs. values: 0.1298

deviation of abs. values: 0.0127

median of abs. values: 0.0938

minimum: -0.625

maximum: 0.7188

minimum of abs. values: -0.1875

maximum of abs. values: 0.7188

ÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆ
ÆÆ

Æ
Æ

Æ

Æ
Æ
ÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆ

Figure 4.46: Distributions of AC coeÆcients at storage time (Lenna).

4.8 Further Research Topics 95

-
0 4 8 12

6

0.00

0.05

0.10

0.15

0.20
Legend:

Æ ' deviations of vector components

� ' deviations of abs. values of vector c.

coe�.-no.

deviation

Æ

�

Æ�Æ�Æ�Æ�Æ�Æ�Æ�Æ�Æ�Æ�Æ�Æ�Æ�Æ�Æ�

Figure 4.47: Deviations of MP coeÆcients at storage time (Lenna).

-

0 4 8 12

6

-0.1

0.1

0.3

0.5

0.7

Legend:

Æ ' means of vector components

� ' medians of vector components

/ ' means of abs. values of vector c.

+ ' medians of abs. values of vector c.

coe�.-no.

value

Æ
�

/

+

Æ�
/+
Æ�
/+
Æ�
/+

Æ�
/+
Æ�
/+
Æ�
/+
Æ�
/+
Æ�
/+
Æ�
/+
Æ�
/+

Æ�
/+
Æ�
/+
Æ�
/+
Æ�
/+
Æ�
/+

Figure 4.48: Means and medians of MP coeÆcients at storage time (Lenna).

-
-2.0 -1.6 -1.2 -0.8 -0.4 0.0 0.4 0.8 1.2

6

0.0

0.1

0.2

0.3

0.4

domain

probability
Statistical properties:

number of probes: 6586

mean: 0.0168

deviation: 0.0267

median: 0.0313

mean of abs. values: 0.0914

deviation of abs. values: 0.0186

median of abs. values: 0.0625

minimum: -0.6562

maximum: 1.7031

minimum of abs. values: -0.1875

maximum of abs. values: 1.7031

ÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆ
Æ

Æ

Æ

Æ

Æ
ÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆ

Figure 4.49: Distributions of MP coeÆcients at storage time (Lenna).

-
-2.0 -1.6 -1.2 -0.8 -0.4 0.0 0.4 0.8 1.2

6

0.0

0.1

0.2

0.3

0.4

domain

probability
Statistical properties:

number of probes: 1282

mean: 1.0236

deviation: 0.1233

median: 1.125

mean of abs. values: 1.0236

deviation of abs. values: 0.1233

median of abs. values: 1.125

minimum: 0.1406

maximum: 1.6875

minimum of abs. values: 0.1406

maximum of abs. values: 1.6875

ÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆ
ÆÆÆÆÆÆÆÆÆÆ

Æ
ÆÆ
ÆÆ

Æ
Æ

Figure 4.50: Distribution of DC coeÆcients at storage time (Boat).

96 Further Enhancements of the WFA Coder

-
0 4 8 12

6

0.00

0.05

0.10

0.15

0.20
Legend:

Æ ' deviations of vector components

� ' deviations of abs. values of vector c.

coe�.-no.

deviation

Æ
�
Æ
�Æ�Æ�Æ�Æ�Æ�Æ�Æ�Æ�Æ�Æ�Æ�Æ�Æ�Æ�

Figure 4.51: Deviations of AC coeÆcients at storage time (Boat).

-

0 4 8 12

6

-0.1

0.1

0.3

0.5

0.7

Legend:

Æ ' means of vector components

� ' medians of vector components

/ ' means of abs. values of vector c.

+ ' medians of abs. values of vector c.

coe�.-no.

value

Æ�
/+

Æ�
/
+

Æ�
/+

Æ�/+Æ�/+Æ�/+Æ�/+Æ�/+Æ�/+Æ�/+Æ�/+Æ�/+Æ�/+Æ�/+Æ�/+Æ�/+

Figure 4.52: Means and medians of AC coeÆcients at storage time (Boat).

-
-2.0 -1.6 -1.2 -0.8 -0.4 0.0 0.4 0.8 1.2

6

0.0

0.1

0.2

0.3

0.4

domain

probability
Statistical properties:

number of probes: 2032

mean: 0.0095

deviation: 0.0273

median: 0.0313

mean of abs. values: 0.1266

deviation of abs. values: 0.0114

median of abs. values: 0.0938

minimum: -0.625

maximum: 0.625

minimum of abs. values: -0.0312

maximum of abs. values: 0.625

ÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆ
ÆÆ

Æ
Æ

Æ
Æ
Æ

ÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆ

Figure 4.53: Distributions of AC coeÆcients at storage time (Boat).

-
0 4 8 12

6

0.00

0.05

0.10

0.15

0.20
Legend:

Æ ' deviations of vector components

� ' deviations of abs. values of vector c.

coe�.-no.

deviation

Æ�Æ�Æ�Æ�Æ�Æ�Æ�Æ�Æ�Æ�Æ�Æ�Æ�Æ�Æ�

Figure 4.54: Deviations of MP coeÆcients at storage time (Boat).

4.8 Further Research Topics 97

-

0 4 8 12

6

-0.1

0.1

0.3

0.5

0.7

Legend:

Æ ' means of vector components

� ' medians of vector components

/ ' means of abs. values of vector c.

+ ' medians of abs. values of vector c.

coe�.-no.

value

Æ

�

/

+

Æ�

/
+
Æ�
/+
Æ�
/+
Æ�
/+
Æ�
/+
Æ�
/+
Æ�
/+
Æ�
/+
Æ�
/+
Æ�
/+
Æ�
/+
Æ�
/+

Æ�
/+
Æ�
/+Æ�/
+

Figure 4.55: Means and medians of MP coeÆcients at storage time (Boat).

-
-2.0 -1.6 -1.2 -0.8 -0.4 0.0 0.4 0.8 1.2

6

0.0

0.1

0.2

0.3

0.4

domain

probability
Statistical properties:

number of probes: 10060

mean: 0.039

deviation: 0.0521

median: 0.0313

mean of abs. values: 0.1122

deviation of abs. values: 0.041

median of abs. values: 0.0625

minimum: -0.625

maximum: 1.6875

minimum of abs. values: -0.375

maximum of abs. values: 1.6875

ÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆ
Æ

Æ

Æ

Æ

Æ
ÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆ

Figure 4.56: Distributions of MP coeÆcients at storage time (Boat).

98 Further Enhancements of the WFA Coder

4.8.2 Calculation of the Color Space

An interesting optimization could be made to color coding. In a similar way to

the Hotelling transform (see section E.4.1 on page 184), a preprocessing step to

the WFA encoder could be the calculation of an own color space decorrelating

the color channels better than a hard-wired color transform like the YCbCr

transform.

The drawback of this method is the computational overhead. This is a small

time punishment since the main calculation is the determination of the eigen-

vectors of a 3 � 3 matrix. Another drawback is that the matrix coeÆcients and

the means would have to be transmitted to the decoder. We think that this

transmission overhead of the twelve values is only some bytes if the di�erence

to a hard-wired transform is transmitted.

We think that these drawbacks could easily be compensated by an improved

decorrelation of the color transform. However, this method has not been im-

plemented up to date.

4.8.3 WFAs in Use for Pattern Recognition

The WFA construction algorithm may be utilized for image pattern recogni-

tion. Since the WFA construction procedure collects huge image segments, the

automaton structure could give resolution independent clues about the image

content. For this task a neural network may be used. This network is fed with

automaton parameters and trained by supervised learning to distinguish, for

example, indoor images from outdoor images.

4.8.4 Postprocessing of WFAs

An interesting option is the postprocessing of WFAs. Since all state images can

be accessed after construction of a WFA, the reorganization of the edges can be

performed to approximate state quadrants using state images constructed after

the processed state. This technique seems to be complicated since the skeleton

of the WFA is no longer a tree but a general directed graph. Special techniques

will have to be applied if circles (loops) occur. The postprocessing of WFAs

has not been implemented yet.

4.8.5 Near Lossless Coding

An interesting variant of lossy image coding is near lossless coding which applies

maximum norm instead of the squared norm. This kind of coding is especially

interesting in medical image processing where the image encoder has to guar-

antee that the reconstructed pixel values do not deviate more than a given

threshold. In [BW95] such a scheme has been successfully implemented using

WFAs.

4.8 Further Research Topics 99

4.8.6 Asymmetric Running Times of the Coding and Decoding

Algorithm

It is clear that due to the backtracking algorithm and calculation of scalar

products (which are only needed to be performed for the encoding process),

there is a strong asymmetry respective the running times of coding and decoding

an image. With the inclusion of GA this asymmetry would be much more

biased, since the DNA code would only have to be decoded at the decoding

side. This property of the WFA codec can be used in WORM applications6.

Image Compression as a Client Server Application

Because of the high resource requirements of the WFA encoding algorithm, we

considered the client server implementation of the application. It is conceivable

that a (typically slow) client uses the hardware resources of a (typically fast)

server. The client would therefore send an image in a typical image format as

the Targa format via a data conduction to the server computer. The server

computer would convert the image to the WFA format and send it back to the

client computer.

The usage of the decoding algorithm in the client server application is also

conceivable, but this algorithm can usually be computed by a computer with

low resources. The AutoPic manual on page 125 describes how it can be used

as a simple client server application.

4.8.7 Adaptation of Coding Parameters to the Image Content

It is conceivable to examine the image content before the coding process. This

information could be used for the adaptation of some coding parameters. This

approach has not yet been investigated.

4.8.8 Combination of the WFA Coding Algorithm with the

Laplacian Pyramid

An early version of multi-resolution analysis is the famous image coder of Burt

and Adelson [BA83]. This technique utilizes special low and high pass �l-

ters combined to provide an estimation for the current image. The low pass

�lter produces an image of half resolution of the original image. Using the

corresponding high pass �lter, the original image can be approximately recon-

structed. This technique of resolution decimation is applied recursively to build

a pyramid as shown in Figure 4.57.

Now we sketch the reconstruction7 algorithm. A step in the reconstruction

process is performed as follows:

6WORM ' write once read many.
7We describe the reconstruction algorithm instead of the construction algorithm since the

e�ect of error propagation is more clearly visible in this process.

100 Further Enhancements of the WFA Coder

Figure 4.57: Construction of the Laplacian pyramid.

Figure 4.58: Reconstruction of the original image.

� First the current image is scaled up by using the expand operator.

� The remaining error is transmitted using a WFA. The decoded image is

added to the up-scaled image.

This procedure is repeated until the entire resolution is accomplished. For an

illustration of this process see Figure 4.58. Note that the expanded image is

not exactly the same as obtained by down-sampling the image of the pyramid

level above because of losses in former pyramid stages. This e�ect has to be

diminished by a feedback loop in the construction algorithm to obtain optimal

results.

We have experimented with this kind of coding but observed that this method

does not erase the tiling e�ect entirely. Another drawback of this method is

that the amount of data to encode by the WFA encoder is blown up. For these

reasons we decided to use wavelet techniques instead. These techniques are

explained more thoroughly in chapter 5 on page 103. See [BA83, Ohm95] for

further details concerning Laplacian pyramids.

4.8.9 Incorporation of Image Transforms to WFAs

A promising add-on to WFAs is the incorporation of allowing the state images

to be transformed in various manners. In [CR96] all rotations by 90 degrees,

4.8 Further Research Topics 101

Figure 4.59: Image transforms used in [CR96].

mirroring and negation were allowed. These transforms may be combined to

yield the 16 image transforms visualized in Figure 4.59. This generalization

is called GWFA (generalized weighted �nite automaton). We have not imple-

mented this technique yet.

102 Further Enhancements of the WFA Coder

Chapter 5

Combining WFAs with

Wavelets

Since the blocking artifacts are probably the most severe problem in WFA

coding, we have to think about the reduction of this phenomenon. A frequently

used technique is the coding with wavelets. In this chapter, we shortly introduce

some of the main ideas concerning wavelet analysis and show that this technique

may be embedded eÆciently in the WFA encoder of AutoPic.

5.1 Introduction

Wavelets are function systems f	ig used to decompose a function f similar to

linear transforms:

f =
X
i

ai	i: (5.1)

The \smoothness" of wavelets is often characterized by the number of vanishing

moments. A function f de�ned over an interval [a; b] is said to have n vanishing

moments i�
bZ

a

f(x)xi dx (5.2)

vanishes for i 2 f0; 1; : : : ; n � 1g. Wavelets with a high number of vanishing

moments can approximate polynomials of a high degree and thus are well suited

for approximating smooth signals that occur often in image processing.

Multi-Resolution Analysis Consider the vector space of square Lebesgue-

integrable functions in R:

L2(R)=

8<
:f :

+1Z
�1

f
2(x) dx <1

9=
; : (5.3)

104 Combining WFAs with Wavelets

From now on, we will consider functions di�ering only on a set of (Lebesgue-)

measure zero as equivalent. We may introduce a sequence of closed subspaces

of the space L2(R) such that the subspaces Vj with j 2 Z are nested

: : : � V�2 � V�1 � V0 � V1 � V2 � : : : ; (5.4)

(Vj�1 6= Vj 8j 2 Z) their union
+1[

j=�1

Vj (5.5)

is dense in L2(R) and their intersection contains only the constant function

zero, i.e.
+1\

j=�1

Vj = f0g: (5.6)

A decomposition with the properties 5.4, 5.5 and 5.6 is henceforth called MRA

(multi-resolution analysis).

We consider only dyadic wavelets meaning that they ful�ll the following equa-

tions:

v(x) 2 Vj () v(2x) 2 Vj+1 (dilation); (5.7)

v(x) 2 V0 () v(x+ 1) 2 V0 (translation): (5.8)

De�nition 5.1.1 A function � 2 V0 with the property that

f�(x� k) : k 2 Zg (5.9)

forms a basis for V0 is called father function or scaling function. For Vj with

j 6= 0 we de�ne

�j;k(x)=2
j=2�(2jx� k): (5.10)

Since the subspaces Vj are nested, we may decompose a subspace Vj+1 into Vj
and the orthogonal complement of Vj in Vj+1, denoted by Wj :

Vj �Wj = Vj+1; (5.11)

Vj ?Wj: (5.12)

Thus a signal's representation in the space Vj can be considered as a \low

resolution" or \low pass" representation of a signal in Vj+1. Analogously Wj

can be interpreted as the remaining \high resolution" or \high pass" part lost

by transition from Vj+1 to Vj .

Since the union of the Vj is dense in L2(R) we can see that

+1M
j=�1

Wj =

+1[
j=�1

Vj = L2(R): (5.13)

Analogously to de�nition 5.1.1 we now de�ne the wavelet function:

5.2 The Filter Bank Algorithm 105

De�nition 5.1.2 A function 	 2W0 with the property that

f	(x� k) : k 2 Zg (5.14)

forms a basis for W0 is called mother function or wavelet function. For Vj with

j 6= 0 we de�ne the basis functions

	j;k(x)=2
j=2	(2jx� k): (5.15)

5.2 The Filter Bank Algorithm

Since both V0 and W0 are contained in V1, we can express � and 	 with basis

functions of V1 as

� = 2
X
k

hk�1;k; (5.16)

	 = 2
X
k

gk�1;k: (5.17)

Due to the MRA property, we conclude that Vj and Wj are contained in Vj+1

and so these equations hold for arbitrary j.

The coeÆcients gk and hk are called �lter coeÆcients and uniquely de�ne the

functions � and 	. We examine only transforms where the number of coeÆ-

cients of the �lters g and h is �nite, called FIR (�nite impulse response) �lters.

For wavelets de�ned in this way a fast transform algorithm, the �lter bank

algorithm, can be applied.

Now assume that f is a function represented by coeÆcients for the basis func-

tions of Vj+1. Since Vj+1 = Vj �Wj, we may write uniquely

f =
X
k

�j+1;k�j+1;k (5.18)

=
X
l

�j;l�j;l +
X
l

j;l	j;l: (5.19)

with [SS98]

�j;l =
p
2
X
k

hk�2l�j+1;k; (5.20)

j;l =
p
2
X
k

gk�2l�j+1;k: (5.21)

Since the number of �lter coeÆcients is �xed and the amount of data is halved

at each step, the number of operations performed is linear to the length of the

input.

106 Combining WFAs with Wavelets

5.3 Orthogonal Wavelets

Early wavelet transforms used orthogonal wavelets satisfying the conditions

Vj ? Wj; (5.22)

h�j;l;�j;l0i = Æl;l0 ; (5.23)

h	j;l;	j0;l0i = Æj;j0Æl;l0 : (5.24)

We can calculate the required coeÆcients of the analysis

f =
X
l

�j;l�j;l +
X
l

j;l	j;l (5.25)

with inner products

�j;l = hf;�j;li and
j;l = hf;	j;li: (5.26)

5.4 Biorthogonal Wavelets

In order to gain more
exibility, the constraint of orthogonality may be relaxed.

With biorthogonal wavelets we have two multi-resolution analyses, primal and

dual analysis. We mark the dual counterpart by using a tilde:

� primal analysis: Vj, Wj, �j;k, 	j;k,

� dual analysis: ~Vj, ~Wj, ~�j;k, ~	j;k.

The following conditions have to be satis�ed:

~Vj ? Wj; (5.27)

Vj ? ~Wj; (5.28)

h~�j;l;�j;l0i = Æl;l0 ; (5.29)

h~	j;l;	j0;l0i = Æj;j0Æl;l0 : (5.30)

We can calculate the required coeÆcients using scalar products using the dual

basis functions

�j;l = hf; ~�j;li and
j;l = hf; ~	j;li: (5.31)

Because of this construction, we may use the �lter bank algorithm using the

dual �lter pair (~h; ~g) for the wavelet transform and the primal �lter pair (h; g)

for the reconstruction.

5.5 The Wavelet Decomposition Tree 107

5.5 The Wavelet Decomposition Tree

Since each subspace Vj can be split in two subspaces Vj�1 and Wj�1, we may

decompose the highest resolution subspace V0 recursively as

V0 = V�1 �W�1
= V�2 �W�2 �W�1
= V�3 �W�3 �W�2 �W�1
... (5.32)

thus yielding a decomposition tree as illustrated in Figure 5.1.

V�3 W�3

V�2 W�2

V�1 W�1

V0

JĴ

�

��= ZZ~

���� HHHj

Figure 5.1: A wavelet decomposition tree.

Since the amount of data operated on is halved at each level, the complexity of

the full wavelet transform is still O(n).

5.6 Generalization to Higher Dimensions

Since we aim at utilizing wavelets for image coding, we have to perform the

wavelet transform in two dimensions. Similarly to the DCT in the JPEG image

compression standard, we perform the transform independently for each dimen-

sion. Analogously, we write the wavelet transform as a transform matrix and

due to associativity of the matrix multiplication, the order of the two transforms

is not important. This procedure is equivalent to a two dimensional wavelet

transform where the basis functions are tensor products of the according one

dimensional basis functions. After one transformation step we use the basis

functions

�
 �; �
	;

	
 �; 	
	:
(5.33)

There are also techniques for constructing multidimensional wavelets directly,

which we do not consider here (see [SJ99]).

108 Combining WFAs with Wavelets

5.7 The Wavelet Packet Transform

In contrast to the ordinary wavelet transform, the wavelet packet transform

splits not only the low frequency part of the data but also the high frequency

part to two components. This procedure produces a decomposition tree as

shown in Figure 5.2. Note that the time complexity of the wavelet packet

transform is raised to O(n logn) compared to the ordinary wavelet transform.

original data

JĴ

�

��= ZZ~

���� HHHj

JĴ

� JĴ

�

��= ZZ~

JĴ

�

Figure 5.2: A full wavelet packet decomposition tree.

Since the wavelet packet decomposition tree can be cut, the e�ect of the wavelet

packet transform is a search for the \best basis", a set of basis functions decor-

relating the input data the most. For an illustration of a cut wavelet package

tree see Figure 5.3.

In WFA coding, the decision whether to split the data could also be performed

in a rate{distortion constrained manner. This may be achieved by comparing

the resulting badnesses of the decisions. This technique seems to be highly

promising for the future of research concerning WFA coding.

original data

JĴ

�

��= ZZ~

���� HHHj

��= ZZ~

Figure 5.3: A cut wavelet packet decomposition tree.

5.8 The Lifting Scheme

In this section we introduce the lifting scheme, an eÆcient technique for cal-

culating the wavelet transform. In contrast to ordinary wavelet techniques,

the lifting scheme does not rely on Fourier transform and is thus easier to im-

plement. We introduce the lifting scheme only for the one dimensional case.

The generalization to the multidimensional case and wavelet packets may be

performed using the same techniques as described in sections 5.6 and 5.7.

5.8 The Lifting Scheme 109

5.8.1 The Lazy Wavelet Transform

As we have already seen, at each level of the wavelet transform the data is split

into two parts, the low and the high pass part. These parts are obtained by

applying the corresponding wavelet �lters.

Let us denote the low resolution part of the level j + 1 by �j+1. This part

is split into the low and high pass parts of the next level, called �j and
j ,

respectively. This division is performed by splitting the data set �j+1 to even

and odd samples. This step is commonly called the lazy wavelet transform.

Note that this transformation step does not decorrelate the input data.

5.8.2 Primal and Dual Lifting

The decorrelation of the input data is performed by the application of a sequence

of lifting steps. A dual lifting step does the same as predictor coding: the data

elements of
j are predicted by data elements in �j. Thus
j is replaced by

j �P(�j), where P is a prediction function depending on the data of �j.

It is clear that the dual lifting step alters some properties of the data (for

example the mean value) which eventually should be conserved. In order to

restore such properties, a second step named primal lifting step is performed

where the set �j is updated with the new set
j. We write this step by replacing

�j with �j + U(
j), where U is called an update function.

In general, a sequence of dual and primal lifting steps may be performed in

order to get from level j + 1 to level j. The whole procedure of a wavelet

transformation step using lifting is shown in listing 5.1.

/��
� performs a step in a wavelet c on s t r u c t i on .
�

�@param �j+1 i s the data s e t to be transformed .
�@return the next l e v e l in the transform .
��/
dataSetTuple trans formLeve l (dataSet �j+1)

f

(�j ;
j)= s p l i t (�j+1) ; //perform lazy wavelet transform .
for (i=0; i <numberOfLi ft ingSteps ; i++)

f

j� = Pi(�j) ; //perform dual l i f t i n g .
�j+ = Ui(
j) ; //perform primal l i f t i n g .
g//end f o r

return (�j ;
j) ; // return the next l e v e l .
g//end trans formLeve l

Listing 5.1: Wavelet lifting step.

An inverse transformation step is done by simply reverting the steps considered

above: revert the order of the lift operations, invert the signs in the lifting steps

and perform merging instead of splitting.

110 Combining WFAs with Wavelets

The lifting scheme may be interpreted as a generalization of the ordinary1

wavelet transform, since these kinds of transforms can be rewritten to lifting

steps by \factoring out" the FIR �lters with the Euclidean algorithm (see [DS97]

for details). More details about the lifting scheme may be found in [SJ99].

5.9 Combination of WFAs and Wavelets

The procedure uses the WFA coder as a quantization scheme for wavelet coef-

�cients as follows:

� First the original image (Figure 5.6) is transformed using a wavelet trans-

form (Figure 5.7).

� The transformed image is coded as described above with the WFA coding

algorithm and this WFA is transmitted.

The decoder �rst decodes the WFA and afterwards applies the inverse wavelet

transform. The composition of this new codec is illustrated in Figure 5.4. A

reconstructed image using the combined codec is shown in Figure 5.8.

wavelet

transform

input
image

WFA encoder

transformed
image

transmission

channel

WFA

inv. wavelet

transform

output
image

WFA decoder

transformed
image WFA�

wavelet WFA encoder

wavelet WFA decoder

- -

?

��

Figure 5.4: Combination of wavelet and WFA coding.

For the use of wavelet transforms in conjunction with WFA coding, we have to

pose some constraints to the wavelets we use:

� The �rst requirement is the perfect reconstruction property: since the com-

bined WFA coder should operate at arbitrary high �delity, it is necessary

that the wavelet transform should not introduce errors, besides quantiza-

tion errors produced by rounding errors in
oating point arithmetic.

� The boundaries of the high and low pass parts of the transformed data

should coincide with the edges of the tiles produced by the WFA algo-

rithm. Since our implementation uses light HV partitioning (and not HV

partitioning), this property is obtained by using dyadic wavelets.

1With \ordinary wavelet transforms" we denote transforms de�ned by FIR �lters.

5.9 Combination of WFAs and Wavelets 111

� Since one of the most important aspects of the wavelet decomposition is

reducing tiling e�ects, the wavelets should be as smooth as possible. This

smoothness is characterized by the number of vanishing moments, which

should be as high as possible. Such smooth wavelets are well suited to

approximate smooth areas in \natural" images.

� The wavelet transform should only produce a small computational over-

head. This is the main reason why we implemented the wavelet transform

using the lifting scheme instead of �nite impulse response �lters. Surpris-

ingly, the computational overhead produced by the wavelet transform is

more than compensated by the fact that the WFA encoder is sped up,

since the image detail is concentrated to a small portion of the trans-

formed image. However, the computational overhead does slow down the

WFA decoder.

� The wavelet transform should be calculated in-place, meaning that no

auxiliary memory is allocated. This property is supported by the lifting

scheme considered above and is crucial since image data often requires a

huge amount of internal computer memory.

� The decomposition in the wavelet basis should be stable: if the function

f is changed slightly, the resulting wavelet coeÆcients should also vary

only slightly. This constraint is ful�lled by biorthogonal wavelets since

they form a Riesz basis meaning that there exist constants A;B 2 R+

such that

Ajjf jj �
X
l

�
2
j;l +

X
l

2
j;l � Bjjf jj: (5.34)

Note that equation 5.34 reduces to Parseval's identity (see section E.2.4

on page 183) for the case A = B = 1. This special case is ful�lled for

orthogonal wavelets.

In cause of these requirements, we decided to use wavelets obtained by the well-

known \(9-7)" �lter pair named by the fact that the associated analysis �lter
~h uses nine coeÆcients while the synthesis �lter h is built by seven coeÆcients.

A graph of the (9-7) wavelet function is shown in Figure 5.5. See [DS97] for

an eÆcient implementation using the lifting scheme. The implementation is

approximately 64 percent faster2 than the ordinary computation with the �lter

bank algorithm.

Nevertheless, it is not yet clear which wavelet transform is \best" suited for

WFA coding. This topic seems to be an interesting area for further research

in WFA coding. For more details about wavelet transforms see [Cod92, Mal98,

PS93].

2The elementary operations counted in this analysis are the sum of additions and multi-

plications.

112 Combining WFAs with Wavelets

-

0 10 20 30 40 50 60

6

-1.00

-0.75

-0.50

-0.25

0.00

0.25

0.50

0.75

Figure 5.5: (9-7) wavelet function.

Figure 5.6: Image Callisto.

5.9 Combination of WFAs and Wavelets 113

Figure 5.7: Wavelet transformed image Callisto. The values of the outer regions

were added to a constant 128 to also visualize negative values.

Figure 5.8: Reconstructed image Callisto.

114 Combining WFAs with Wavelets

Progressive Mode In the same way as shown in section 4.4.16 on page 84,

progressive decoding of wavelet enhanced WFAs is possible. See Figure 5.9

where the progressive mode is shown in the wavelet enhanced mode.

Figure 5.9: Progressive decoding of a WFA in wavelet mode.

Results In most cases the compression results using the combined WFA enco-

der are worse than the standard mode. We think that this mode is an interesting

area for further research since blocking artifacts are diminished and the encod-

ing speed is enhanced. For some rate{distortion diagrams comparing the WFA

encoder with and without wavelet mode see Figures 5.10{5.13.

-
0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

6

20.0

22.5

25.0

27.5

30.0

32.5

35.0

37.5

Legend:

Æ ' AutoPic (WFA)

bpp

PSNR (dB)

� ' AutoPic (WFA+Wavelet)

ÆÆ
ÆÆ

Æ Æ
ÆÆÆ

Æ ÆÆ
ÆÆÆ Æ

ÆÆ ÆÆ
Æ Æ ÆÆ Æ

Æ ÆÆÆ Æ

��
� �

� �
� � ���

�����
� � ��

� � � ����
��

Figure 5.10: Rate{distortion diagram of the image Lenna.

5.9 Combination of WFAs and Wavelets 115

-
0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

6

20.0

22.5

25.0

27.5

30.0

32.5

35.0

37.5

Legend:

Æ ' AutoPic (WFA)

bpp

PSNR (dB)

� ' AutoPic (WFA+Wavelet)

Æ Æ
Æ Æ

ÆÆ
Æ Æ

ÆÆ Æ ÆÆ
Æ Æ Æ

Æ ÆÆ
ÆÆÆ Æ

ÆÆ ÆÆÆÆ
ÆÆ

� �
��
���

���
� �

� � �
� � �

�� � �
� ���

� � �

Figure 5.11: Rate{distortion diagram of the image Boat.

-
0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

6

20.0

22.5

25.0

27.5

30.0

32.5

35.0

37.5

Legend:

Æ ' AutoPic (WFA)

bpp

PSNR (dB)

� ' AutoPic (WFA+Wavelet)

Æ Æ
ÆÆÆ

Æ Æ Æ
ÆÆ Æ

ÆÆ Æ ÆÆ
Æ Æ Æ

ÆÆ Æ
ÆÆÆ Æ

ÆÆ Æ Æ

�� �
���

� � �
� ��

� �
� � ���

� � �
� � ��

� ���
�

Figure 5.12: Rate{distortion diagram of the image Barb.

-
0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

6

20.0

22.5

25.0

27.5

30.0

32.5

35.0

37.5

Legend:

Æ ' AutoPic (WFA)

bpp

PSNR (dB)

� ' AutoPic (WFA+Wavelet)

ÆÆÆ Æ
Æ Æ ÆÆÆ

ÆÆ ÆÆ Æ
Æ Æ Æ Æ Æ

ÆÆ Æ ÆÆ ÆÆ Æ ÆÆ ÆÆ
Æ

� ����
� ����

���� �
� � �� � ��� � �

� � � � � ��

Figure 5.13: Rate{distortion diagram of the image Mandrill.

116 Combining WFAs with Wavelets

Chapter 6

Video Coding with WFAs

The coding of image sequences is becoming one of the most important topics of

data compression. As we have already seen, the storage of images takes a huge

amount of data to be stored. In the application of video coding, this amount

of data is multiplied by the number of frames in the video sequence. A true

color image with a resolution of 512 � 512 takes 768 K-Bytes to be stored in

PCM coding. Thus we could only store approximately a 30 seconds long video

sequence at a rate of 25 frames per second on a CD-ROM. We have seen that

the WFA technique may be utilized to reduce spatial redundancy of the image

frames. However, we will see that this technique can be re�ned to also reduce

temporal redundancy in image sequences.

In this chapter, we examine how to encode image sequences eÆciently by the

use of the WFA technique. For this task we have some alternatives to choose

from.

� A �rst approach to encode image sequences is the application of the WFA

technique in three dimensions instead of two. Since the time and memory

requirements of the WFA technique in two dimensions are already very

high, we decided not to use this approach.

� The coding of individual frames and reusage of states of previously created

WFAs seems to have a good chance of high compression performance. A

drawback of this approach is that the WFA image partition does not

re
ect natural alterations of the frames as motion. This technique has

been implemented by M. Unger with no satisfying results [Ung95].

� Another way for reducing temporal redundancy is to use motion compen-

sated prediction.

We decided to base our implementation on existing techniques for reducing

temporal redundancy by motion compensation and adapt them in a natural

way to WFA coding.

118 Video Coding with WFAs

6.1 MPEG Video Compression

The well-known MPEG1 4 technique reduces the data volume of image se-

quences essentially by two techniques:

� motion compensation for reducing redundancy caused by the similarity of

successive images.

� discrete cosine transform (DCT) for reducing the redundancy of individual

images (see appendix E.4.2 on page 186).

More details about MPEG can be found in [Kou95].

Instead of the DCT, we use WFA coding to reduce spatial redundancy. We

adapt to MPEG nomenclature and thus call the individual pictures of an image

sequence frames.

6.2 Block-based Motion Compensation

The high similarity of successive frames makes it possible to use a previously

coded image (called reference image R) for the estimation of the gray values

of the current image B. Typically, the images di�er in single objects having

moved by a small distance. Therefore, the image is partitioned into blocks of

equal size which will be assigned a motion vector describing the translation of

blocks of B with respect to R. The translated block in R will thus be used as

an estimation for the current image block. For an illustration of this process

see Figure 6.1.

reference frame current frame

v

pv

@@I

translation vector

block at current position

translated
object

object

currently operated block

search window

block

Figure 6.1: Block-based motion compensation.

1MPEG ' Motion Picture Experts Group.

6.2 Block-based Motion Compensation 119

The encoder searches a neighborhood of the current block in the reference frame

and subtracts this new block from the current block, where we regard the blocks

as vectors. The image obtained by processing all blocks in the form described

above is called MCPE (motion compensated prediction error) and is transmitted

by a frame encoder, which is in our case the WFA encoder. If the prediction is

functioning \well", most values of the MCPE are small and can be compressed

eÆciently by a WFA encoder. For an example of a MCPE, see Figure 6.2.

Note that we have intensi�ed the contrast of this image to make the e�ect more

clearly visible.

Figure 6.2: MCPE of frame 1 of the image sequence Susie (see Figure 6.5 on

page 124). Reference frame is frame 0.

For the video decoder, the situation is reversed. The frame decoder yields

an approximation of the MCPE to which the same estimation as used in the

encoder is added. Thus a reconstruction of the next frame is obtained.

Note that for an exact reconstruction of the estimation, an eÆcient encoder

should use reconstructed frames instead of original frames to suppress error

propagation. This concept leads to the design of our video encoder as shown in

Figure 6.3.

Motion comp. WFA encoder

WFA decoderinverse MC

-

-

Original frame MCPE WFA

motion vectorframe
approximation transmission channel

transmission channel

video decoder

-- -

��

6
�

Figure 6.3: Structure of the WFA video encoder. The dashed box is the struc-

ture of the WFA video decoder.

120 Video Coding with WFAs

6.3 Rate{Distortion Constrained Motion Compen-

sation

An important question of this simple block-based motion compensation is which

translation is the most suitable for the current block. In MPEG, this problem

is solved by taking the translation causing the lowest mean absolute di�erence.

In our implementation, we use the resulting badnesses of the translations as

used in the WFA coder (see equation 3.18 on page 48) for this decision. In this

way, we add the motion compensation in a coherent way to the ongoing WFA

coding step.

6.4 Bi-Directional Motion Prediction

Since objects may be covered by other objects in image sequences, motion com-

pensation may be performed in two directions: the forward prediction described

in the last section and backward prediction which is performed using a reference

frame in the future.

In MPEG, bi-directional motion compensation is performed by estimation in

two directions and averaging the two estimations. The disadvantage of this

method is that for bi-directional motion compensation, two motion vectors have

to be transmitted. In our implementation, we decided to transmit only the best

prediction and thus only one motion vector. The decision whether forward or

backward prediction is used is transmitted separately to the decoder by an

arithmetic encoder. In this way we store an average overhead of at most 1 bit

per frame. Note that in order to suppress error propagation, the order of the

frames has to be permuted (see next section).

6.5 Image Types

In accordance with MPEG nomenclature, we distinguish the following three

image types di�ering by the type of motion compensation applied:

� intra coded frame or I-frame: no motion compensation is performed,

� predicted frame or P-frame: only forward prediction is used,

� bi-directional predicted frame or B-frame: a frame of this type can be

predicted by forward or backward prediction.

In MPEG 4, P- and B-frames may also contain intra coded blocks.

In our video coder, we cut an image sequence to small image sequences of

variable length called GOP (group of pictures). These image sequences may

contain all three types of frames. For an illustration of a GOP see Figure 6.4.

6.6 Subpixel Precise Motion Compensation 121

Note that too many B-frames cause a high distance between the processed image

and the associated reference image, thus decreasing the eÆciency of motion

compensation.

��

��

�� �� �� �� �� �� �� �� �� ��

�� �� �� �� �� �� �� �� �� ��
I P P P

��

��
P

w w w w w Rw w ww w

oo o oo o o

B B B B B B B
��

��

�� �� ��

�� �� ��
I P

R w w

Io

B B

GOP next GOP

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 12 3 45 6 78 9 1011 12 1314 15

frame no.

coding no. . . .

. . .

. . .

� -�

Figure 6.4: Partitioning of an image sequence. The arrows mark the direction

of the prediction.

6.6 Subpixel Precise Motion Compensation

An important observation is that motion detection does not have to be restricted

to discrete pixel values. MPEG o�ers a mode for motion compensation with

half pixel precision. The gray values at the intermediate positions are calculated

by piecewise linear interpolation of the surrounding pixels. If the pixel values

are given by pi;j, the intermediate values are given by

pi+1=2;j = 1=2(pi;j + pi+1;j);

pi;j+1=2 = 1=2(pi;j + pi;j+1);

pi+1=2;j+1=2 = 1=4(pi;j + pi;j+1 + pi+1;j + pi+1;j+1): (6.1)

A disadvantage of this method is the far more expensive calculation and the

possibly more expensive storage cost of the motion vectors. However, these dis-

advantages are in general compensated by a signi�cantly better approximation.

This technique is so successful that it is mandatory in the MPEG2 standard.

Our video coder also obtains approximately ten percent higher compression

factors at the same coding quality.

A well-known speed improvement to half pixel accurate motion compensation

is the two level search technique: �rst the MC tests exhaustively all integer

coordinates of the displacement vector and memorizes the \best" coordinate.

After this �rst stage, the eight adjacent half pixel coordinates are searched for

the best displacement vector.

We also made experiments with even higher precision which yielded no sig-

ni�cant improvement. Note that the interpolation could also be improved by

higher order interpolations. This technique has not been investigated yet.

122 Video Coding with WFAs

6.7 Storage of the Displacement Vectors

In MPEG and H.263 video coding standards, a static table of variable length

codes for the storage of the displacement vectors is used. In order to achieve the

highest possible compression performance, we used an arithmetic codec with an

adaptive source model for this task.

Delta Coding of Motion Vectors An often stated improvement is the

di�erential coding of the motion vectors since motion vectors of adjacent blocks

are highly correlated. Nevertheless, we observed no signi�cant improvement if

we encode just di�erences of motion vectors. This fact is substantiated by the

observation that we use context models in the entropy coder instead of a static

Hu�man code like MPEG.

6.8 Motion Compensation of Colored Sequences

As we have seen in section 4.4.12 on page 77, the coding of the luminance chan-

nel takes approximately 80 percent of the whole storage requirement. Because

the motion vectors for the chrominance channels are highly correlated with the

motion vectors belonging to the luminance channel, it seems unreasonable to

encode motion vectors for the chrominance channels. Similarly to MPEG, we

transmit only one motion vector which is calculated using the luminance chan-

nel. We apply the inverse motion compensation at the video decoder with this

motion vector in all three channels.

6.9 Further Research Topics

The topic of video coding with WFAs is not treated exhaustively within this

thesis. We mention some further points (see [Ung95] for details).

� Since the displacement vectors are highly correlated, the collection of

equal displacement vectors could be managed by a quadtree or bintree,

or even by using light HV partitioning. This method is called hierarchical

motion compensation.

� The reuse of previously generated states could be combined with motion

compensation. Such a method has not been investigated yet.

� The motion compensation could be integrated in the WFA generation as

a third alternative besides approximation and partition. Such a scheme

has been successfully implemented in [HFUA97, Ung95].

6.9 Further Research Topics 123

� The displacement vectors could be stored relative to a frame in the neigh-

borhood of the current frame. This method also o�ers a signi�cant en-

hancement since regions of activity often stay the same for a large number

of frames.

� For multimedia applications, the image sequences have to be combined

with audio data. The audio data could eventually be stored by a WFA.

This technique seems to be an interesting topic of further research.

� The technique considered above only considers translatory motion in im-

age sequences. In a similar way, one could easily capture for example

dilation and rotation of image blocks. There are also other techniques as

object oriented motion compensation and split-merge motion compensa-

tion, described in [Ohm95].

� The image tiling for motion compensation could be accomplished with

other techniques than with block tiling. One could imagine techniques

using triangular or hexagonal image partitionings. We have decided to use

rectangular tilings since most of the tile boundaries will coincide with the

tiles produced by the WFA algorithm and thus do not introduce further

tiling e�ects.

� The implemented method aims to achieve maximal compression at a given

video quality. Often the video stream has to be transmitted via a data

channel with �xed data rate. The WFA video codec can be easily modi�ed

to match such applications by using input or output bu�ers with �xed

length. We sketch the adaptation process at the encoder side (the input

bu�er at the decoder side will have the same �ll rate with a short delay):

{ The output bu�er will be empty at the beginning of the coding pro-

cess and the WFA encoder will encode at a high quality.

{ If the bu�er is �lled above a given threshold, the quality factor of

the WFA encoder is reduced by a given amount. In this way, the

temporal bit rate is also reduced and the bu�er is emptied.

{ If the bu�er �ll rate falls below another given threshold, the quality

factor can be raised again and thus the bu�er �ll rate will also be

raised.

A more sophisticated scheme could adapt the quality factor proportional

to the deviation of the bu�er �ll rate to a given optimal rate.

124 Video Coding with WFAs

Figure 6.5: The frames 0, 10, 20 and 30 of the image sequence Susie. This

sequence is available at [CU].

Chapter 7

Some Implementational

Remarks

In this chapter we give a short description of the program package AutoPic. This

is an experimental image processing application with support for WFA image

compression. The user interface may also be used to examine interactively

the coding artifacts produced by the WFA coder. We discuss some important

running time optimization techniques and parts of the class structure of the

project. The current implementation is available at [Kat].

7.1 Instruction Manual for the Program AutoPic

The program AutoPic1 is constructed as a normal image processing tool. The

main di�erence is that some extra image formats were added, for example the

WFA format. Strictly speaking, AutoPic is a program package designed for

lossy and lossless image compression, image manipulation and text compression.

The command line programs are discussed in appendix A on page 153. Most of

the functionality of AutoPic may be accessed via the user interface described

in this section. Because of the uncomplicated usage, we recommend that the

the user shall �rst use this mode of AutoPic to gather experience.

We now make a small tour through the user interface of AutoPic. The screen

shots were made under the operating system Microsoft2 Windows 95. Note

that the user interface may have a di�erent look and feel with other operating

systems or Java versions. After the start of the program two windows displaying

the start image (start.tga in the working directory) and an additional control

window, containing some buttons and menus (see Figure 7.1) are shown. The

control interface is magni�ed in Figure 7.2. If the image start.tga is not in the

working directory, the image windows remain black.

1The name AutoPic is derived from the Java notation for automaton coded picture.
2Microsoft is a registered trademark.

126 Some Implementational Remarks

Figure 7.1: The four windows of AutoPic.

Figure 7.2: User interface of AutoPic.

7.1 Instruction Manual for the Program AutoPic 127

After pressing the Load Image button, a �le chooser is opened. The user can

select the �le location on Internet or local network. If the �le is to be loaded

locally, the path has to start with the pre�x file:. If the image is to be loaded

via a network, the �le descriptor begins with http: or ftp:, depending on the

transfer protocol the user wants to apply. Another possibility is to select the

�le descriptor interactively using a �le selection dialogue, started after pressing

the Search File button. Afterwards a �le selection window is shown. The

usual operations for directory selection are supported. After con�rming the

dialogue, the desired image is loaded and displayed in the main image window

of AutoPic, marked with \original".

The image format is determined by the suÆx of the �le descriptor. The current

implementation supports the following image formats:

� .tga is the Targa format, a lossless true color format. This format is also

used for auxiliary images (see section 7.3) since it can be read and written

very fast.

� .gif is the GIF format3, a lossless format with 256 colors or gray values.

Because of copyright reasons, only loading of GIF images is possible.

� .jpg is the JPEG format4, a lossy true color format.

� .pgm is a format for lossless gray value image coding.

� .bmp is a lossless true color image format.

� .wfa is the main experimental format, a lossy true color format. The

.wfa format is aimed at nearly the same set of applications as JPEG with

the di�erence that a more modern technique is used.

� .zfc is an experimental image format, a lossy true color format. The

format is created by our implementation of an IFS encoder, see appendix

H on page 201.

� .lli is an experimental format for lossless true color image coding (loss-

less image format). For further details about this format, see section 7.4.1

on page 136.

� .tc is an experimental format for text compression. For further details

about this format, see section 7.4.2 on page 137.

Since all image formats are handled similar to any commercial image processing

tools, the handling of the program is shown with the WFA format.

When the button Save Image is pressed, a �le descriptor with the suÆx .wfa

will be given, for example: file:start.wfa. Afterwards a dialogue asking

for the quality of the stored image is displayed. This dialogue will of course

3GIF ' Graphics Interchange Format, a registered trademark of Compuserve.
4JPEG ' Joint Photographic Experts Group.

128 Some Implementational Remarks

not appear for lossless image formats. The quality factor is preset to the arbi-

trary value 100 yielding a moderate image quality. After con�rming the quality

factor, the image compressor starts its work. With the Abort button, the cod-

ing process can be stopped. The terminal window belonging to AutoPic will

afterwards display a number of dots and percent statements indicating the con-

tinuation of the coding operation (see Figure 7.3). Once the coding operation

is �nished, the obtained image quality is displayed as RMSE5 and PSNR6 in

dB and the obtained compression factor (see Figure 7.4). After this process,

the image approximation7 is displayed in the second window (marked with \ap-

proximation"). If the subjective image quality does not match the requirements

of the viewer, the coding can be repeated after alteration of the quality factor.

The reading of WFA coded images can be obtained by using a �le descriptor

also ending with .wfa. Since the WFA coder works internally with squares

having side length of dual powers, the image may be �lled with a gray border

to get the desired size.

Figure 7.3: Continuation of the WFA coding operation.

Fine Tuning of AutoPic If AutoPic is in developer's mode, you can edit

some extra parameters before coding the image. See Figure 7.5 for details.

Note that only a small fraction of parameters can be edited. The meaning of

the parameters are explained in section A.1.1 on page 154.

5RMSE ' root mean squared error.
6PSNR ' peak signal to noise ratio.
7The approximation constructed by the WFA encoder is stored in the �le approx.tga.

7.1 Instruction Manual for the Program AutoPic 129

Figure 7.4: Output of AutoPic after WFA coding.

Figure 7.5: Additional parameters of WFA encoder.

130 Some Implementational Remarks

7.2 Image Filters Available via the User Interface of

AutoPic

A great variety of image manipulation �lters is implemented in AutoPic. Some

of these �lters were embedded to the user interface for interactive examination

of coding distortions. In this section we only describe �lters required for the

task of this thesis. The �lter functions always refer to the main window of

AutoPic. It often makes sense to apply a given �lter repeatedly to an image.

In case of color images the image operations are independently applied to all

channels in the RGB representation. Because of space problems, we do not

describe all �lters available, more details can be found in [Jai89, RK82] and

appendix D on page 175.

� Edge Detect highlights edges of the input image.

� Blur smoothes the input image. Here the gray value of a given pixel is

replaced by the average brightness of his neighbors. This procedure is

carried out for all pixels.

� Rotate rotates an image by 45 degrees.

� Invert inverts all pixel values. More precisely, a pixel gets the brightness

255�hold brightnessi.

� Gray Scale converts color images to gray scale images with 256 gray

values by extracting the luminance component of the color space YIQ of

the image.

� Scale Down scales the image to half size by taking the average of four

neighboring pixels.

� Scale Up scales the image to double size by repeating the pixels.

� Flip-X mirrors the image at the middle horizontal line.

� Flip-Y mirrors the image at the middle vertical line.

� Contrast changes the contrast of the image by multiplication of the pixel

brightnesses by a constant factor.

� Convolve 3�3 lets the program compute all pixel brightnesses by a

weighted sum of the neighboring pixels. With this function it is possi-

ble to specify a user de�ned image �lter.

� Gaussian blurs the input image.

� East Gradient applies a gradient �lter to the input image.

� Laplace4 applies a Laplace �lter with neighborhood size four.

7.2 Image Filters Available via the User Interface 131

Figure 7.6: Original image for �lter operations.

Figure 7.7: Outputs of some image �lters. The �lters are (left to right, top to

bottom): Blur, Contrast, EastGradient, Edge Detect, Emboss, Flip-x, Flip-y,

Gaussian, Invert, Laplace4.

132 Some Implementational Remarks

For the results of some image �lters applied to image 7.6 see Figure 7.7.

Note that while coding an image with the WFA algorithm a �le is created,

which can be read by statistical software such as XTREMES8. The �le is named

xtremes.dat and contains the coeÆcients obtained at the storage of the WFA.

The numbers are written in ASCII code and separated by a newline symbol.

The coeÆcient lists are separated by an empty line. With this option we could

�nd out many statistical properties of the stored values.

Errors or warnings during encoding are protocolled in the �les AutoPic.err and

AutoPic.war. The messages contained in these �les are bene�cial, especially

in case that parameters are analyzed over a long time period.

7.3 Hidden Auxiliary Functions

Here we describe some functions which are not useful for the average user, but

only for developers of the program.

7.3.1 Optimization of the Encoding Parameters

This function is called if an image is stored using the suÆx .gen. A genetic algo-

rithm is called, setting encoding parameters in an in�nite loop and determining

the obtained compression factor. The image quality at which the parameters

are tested and the parameters for the genetic algorithm can be adjusted in

the class GenePool, which the WFA coder calls in this case. The results of

the genetic algorithm will then be put in in ASCII code in the �le mentioned

above, for example test.gen. The resulting DNA code can be inserted into the

WFA encoder via the method setParameters. The WFA encoder stores the

resulting parameters after one coding of a WFA image into the �le para.dat

(ASCII format), which can afterwards be hard-wired in the classes WFAEncoder,

WFACodecGcd and PrecisionDescriber. For a \good" set of parameters, the

GA has to run several weeks. An example of a genetic analysis �le is given

below:

Genetic analysis of lenna.tga.

Image size is 512x512.

crossPercent is 60.0, initial mutatePercent is 5.0.

Generation size is 16, DNA code length is 24 bit.

Writing to disk all 120(1) minutes, Image fidelity is 32.0 dB,

Started at Sun Dec 05 05:27:48 GMT+03:30 1999. goodDNA is 5080183.

System properties:

java.vendor: IBM Corporation

java.version: 1.1.8

java.class.version: 45.3

java.compiler: jitc

os.name: Linux

8XTREMES is a statistical software tool designed by the Statistical Group of Siegen under

pilotage of Prof. Dr. R.-D. Reiss.

7.3 Hidden Auxiliary Functions 133

os.version: #10 Tue Nov 16 19:15:09 MET 1999.2.2.13

os.arch: i686

user.name: frankka

Genes per day: 101.67 (Overall:101.67, multiprocessor speedup:1.0).

Generation no. 0: Maximal fitness is 43.7846

DNA code: 010011011000010001110111 = 5080183

[6] [15] [34] [45] [55] [74]

Genes per day: 94.18 (Overall:319.84, multiprocessor speedup:3.4).

Generation no. 24: Maximal fitness is 43.813

DNA code: 000011010010010011110111 = 861431

[84] [90] [97] [100] [108] [115] [132]

Genes per day: 90.53 (Overall:394.46, multiprocessor speedup:4.36).

Generation no. 74: Maximal fitness is 43.8139

DNA code: 100011010001010011111111 = 9245951

[141] [156] [165] [187] [198] [222]

An example of a �le para.dat is given next. The parameters with the pre�x

pd. are data elements of the class PrecisionDescriber. As you can read in the

class hierarchy, the objects of this class are designed for carrying huge amounts

of coding parameters and making them accessible for many classes. This class

will be eliminated after the optimization phase of the program since it violates

the information hiding principle. The other parameters belong to WFACodecGcd

and WFAEncoder.

Encoding parameters of AutoPic at Tue Oct 05 23:16:18 CEST 1999

pd.coeffBeforePointPrecision[0]=1 //Precision of DC coefficients before the dualpoint.

pd.coeffAfterPointPrecision[0] =6 //Precision of DC coefficients after the dualpoint.

pd.coeffBeforePointPrecision[1]=0 //Precision of AC coefficients before the dualpoint.

pd.coeffAfterPointPrecision[1] =5 //Precision of AC coefficients after the dualpoint.

pd.coeffBeforePointPrecision[2]=0 //Precision of MP coefficients before the dualpoint.

pd.coeffAfterPointPrecision[2] =5 //Precision of MP coefficients after the dualpoint.

pd.mpIndexPrecision =6 //Precision of MP indices.

pd.coeffWindowLength[0]=1100 //model window length for DC coefficients.

pd.coeffWindowLength[1]=420 //model window length for AC coefficients.

pd.coeffWindowLength[2]=220 //model window length for MP coefficients.

pd.mpIndexWindowLength =290 //model window length for MP indices.

pd.acSizeWindowLength =530 //model window length for sizes of AC parts.

pd.mpSizeWindowLength =110 //model window length for sizes of MP parts.

pd.approximatedWindowLength =20 //model window length for tree structure.

pd.lightHVWindowLength =380 //model window length for HV partition.

pd.cuttingPoint[1] =4 //maximal size of AC parts(including DC part).

pd.cuttingPoint[2] =35 //maximal size of MP parts(including DC and AC part).

pd.acSizeAdaptivitySpeed=2 //adaptation speed of the m. of the sizes of the AC parts.

pd.mpSizeAdaptivitySpeed=2 //adaptation speed of the m. of the sizes of the MP parts.

pd.mpIndexAdaptivitySpeed=5 //adaptation sp. of the m. of the indices of the MP parts.

pd.coeffAdaptivitySpeed[0]=2 //adaptation speed of the model of the DC coefficients.

pd.coeffAdaptivitySpeed[1]=18 //adaptation speed of the model of the AC coefficients.

pd.coeffAdaptivitySpeed[2]=5 //adaptation speed of the model of the MP coefficients.

pd.deltaCodingEnabled =true //delta coding of MP indices.

stateCostOffset =55.0 //badness offset for states.

rollBackEnabled =true //rollback of statistical models.

realInformationEnabled =true //information instead of written bits for badness calc.

acBound =2.0 //bound for the badness in linear approximation.

mpBound =0.0 //bound for the badness in MP approximation.

smoothingWeight =3.0 //smoothing weight for reducing tile effect.

lowerHVBound =64 //lower bound for HV partition.

upperHVBound =4096 //upper bound for HV partition.

hvBias =0.05 //bias of HV partition.

minCut =6 //minimal partition depth of bintree.

134 Some Implementational Remarks

fractalAddressingEnabled =false //fractal addressing of domain pool.

hvSwitch=true //light HV partitioning.

lightHVSaveOrder =true //save order of light HV partitioning (BFS or DFS).

dcSaveOrder =true //save order DC parts (BFS or DFS).

acSaveOrder =false //save order AC parts (BFS or DFS).

mpSaveOrder =true //save order MP parts (BFS or DFS).

dcRevertIterator =false //save order inversion of DC parts (forward or backward).

acRevertIterator =false //save order inversion of AC parts (forward or backward).

mpRevertIterator =false //save order invention of MP parts (forward or backward).

acSizeContextSize =0 //context size of the model for the sizes of AC parts.

mpSizeContextSize =0 //context size of the model for the sizes of MP parts.

mpIndexContextSize=0 //context size of the model for MP indices.

coeffModelContextSize[0]=0 //context size of the model for DC coefficients.

coeffModelContextSize[1]=0 //context size of the model for AC coefficients.

coeffModelContextSize[2]=0 //context size of the model for MP coefficients.

lightHVContextSize=2 //context size of the model for light HV partitioning.

approximatedContextSize=0 //context size of the model for the tree structure.

lightHVDeltaCodingEnabled =false //delta coding of light HV partitioning.

approximatedDeltaCodingEnabled=false //delta coding of tree structure.

acSizeDeltaCodingEnabled =false //delta coding of sizes of AC parts.

mpSizeDeltaCodingEnabled =false //delta coding of sizes of MP parts.

mpIndexDeltaCodingEnabled =false //delta coding of MP indices.

coeffDeltaCodingEnabled[0] =false //delta coding DC coefficients.

coeffDeltaCodingEnabled[1] =false //delta coding AC coefficients.

coeffDeltaCodingEnabled[2] =false //delta coding MP coefficients.

DomainPool.badApproxEnabled =false //bad-approximation of DomainPool.

As you can see in the method WFAEncoder.setParameters, we encode only

di�erences in the parameters in order to use less bits for the DNA codes. The

genetic algorithm therefore has to be engaged several times with updating the

o�sets to achieve a global minimum. We recommend that this mode is run in

Unix-like environments using the nohup9 and nice10 commands.

7.3.2 Rate{Distortion Diagram

If an image is stored using the suÆx .pic, the compression performance will

be analyzed. The so called rate{distortion diagram is written to the .pic �le

in ASCII code, which can then be inserted into the text processing system

LATEX. For an example of such a diagram, see Figure 4.37 on page 90. It is

recommended that this mode is run in Unix-like environments using the nohup

and nice commands.

7.3.3 Auxiliary Files

An overview of the �les created by AutoPic is given in the following list:

� At �rst there are several image formats described above.

� The image that is loaded by the user interface of AutoPic during the

startup process is the image contained in the �le start.tga.

9
nohup ' no hangup is used to execute processes although the user is already logged o�

the system.
10
nice is used to assign a given process a low execution priority.

7.3 Hidden Auxiliary Functions 135

� The approximation produced by the WFA encoder is stored in the �le

approx.tga. This image is exactly that produced by the WFA decoder

when called using the prede�ned settings. This image is automatically

loaded by the user interface of AutoPic when WFA coding has been per-

formed.

� xtremes.dat is a �le containing statistical data. The format of this �le

is tuned for the statistical software package XTREMES .

� AutoPic.err is a �le containing a protocol of the last occurred serious

error in ASCII format.

� AutoPic.war is a �le containing a protocol of the last occurred warning

in ASCII format.

� hnamei.pic is a rate{distortion diagram for the analyzed image in LATEX

format. There are also several other types of diagrams which will be

created as means and medians of generated coeÆcients which can be seen

in this thesis.

� hnamei.gen is a protocol of the genetic analysis in ASCII format.

� hnamei.dna contains genetic information (function genes to �tnesses) of

an analyzed image in Java internal format. This �le type is created during

genetic analysis and is used for interchange of information when many

computers operate on the same image. It is also helpful in case of system

crashes.

� hnamei.out contains output of the program which is normally sent to the

standard output channel. These �les are created during batch processing.

� hnamei.ids are �les containing initial distributions for the statistical

models. If these �les do not reside in the current directory, the uniform

distribution is used.

In order to ensure platform independency11, the program was written in Java.

This language also supports several kinds of data structures as dictionaries,

vectors and enumerations which shortened the implementation time and also

the source code. For the direct invocation and command line parameters of

AutoPic see appendix A on page 153.

Batch Mode For batch mode, the program can be run without the graphical

user interface of the program. This mode has two bene�ts:

� The program works in almost all Java environments because most incom-

patibilities of Java environments are due to GUI problems.

11The feature of platform independency was in our case of eminent importance since we used

this feature to engage computers of several computer pools using di�erent operating systems

for the optimization of the program.

136 Some Implementational Remarks

� The second advantage is that in this mode the program can be started in

Unix-like environments using the nohup command12.

In order to start the program in this mode, one has to type the command

java wfa.main.AutoPic h�rstFileDescriptori hsecondFileDescriptori

where an image is loaded described by h�rstFileDescriptori and saved as hse-
condFileDescriptori. In this way the normal WFA compressor, genetic algo-

rithm, draw rate{distortion diagrams and other functionality may be accessed.

This mode is also interesting for the creation of runtime pro�les since no running

time is needed for the user interface.

7.4 Other Experimental Data Formats

In this section, we present other experimental formats implemented as side

products of the work on the WFA codec. We have implemented

� a lossless image format,

� a lossless text compression format,

� and a lossy true color image format using IFS codes

described in the next paragraphs.

7.4.1 An Experimental Lossless Image Format

In our experiments with the WFA encoder, we often worried about the fact that

there is no e�ective and widespread format for lossless true color image coding.

So we decided to build our own format for this use. The format is called lli for

lossless image format.

We built a simple forward estimation scheme for pixel brightnesses and com-

bined it with the entropy coder also used for coding of WFA parameters. The

most important step is the estimation by already coded pixels in the neighbor-

hood of the current pixel. Since we store the pixel brightnesses in raster scan

order, we use the neighborhood as shown in Figure 7.8.

The average brightness of the predicted pixel is subtracted from the brightness

of the current pixel and the resulting estimation residue is transmitted by an

arithmetic encoder as described in section 2 on page 25.

Since lossless image coding is not the topic of this thesis, we did not optimize

this encoder and do not present compression results. However, we think that it

is a valuable tool and so we embedded this technique to AutoPic. An image can

be stored in this mode using the suÆx .lli. For further details and command

line parameters of this coder see appendix A.1.5 on page 162.

12In this manner the program was optimized for several months.

7.5 The Package Structure of AutoPic 137

current pixel

pixels used for prediction

?
�
�
�
�

�

J
JĴ

6

next pixel to be encoded

6

Figure 7.8: Neighborhood of a pixel used for brightness estimation.

7.4.2 An Experimental Text Compression Format

The task of lossless compression of arbitrary data �les is called text compression.

These �les may contain a wide variety of data as binary data, program source

code and text �les. Since lossless compression is the fundamental of WFA cod-

ing, we implemented a text compressor using the models described in section 4.2

on page 64. The text compressor was built to compare the lossless compression

performance with well known compressors as FELICS [How93]. However, since

this type of compression is not the main topic of this thesis we do not present

compression results. For further details and command line parameters of this

coder see appendix A.1.6 on page 163.

7.4.3 An Experimental IFS Codec

In our image coding application we also integrated an IFS codec (see appendix

H on page 201). This codec works with an adaptive image partition with

rectangles. The image is �rst partitioned by an initial tiling. This tiling will

be re�ned if the approximation error on a given square supersedes a given

threshold. In this manner the coding quality can be easily adjusted to a given

level. In order to store an image in the experimental IFS format, the �le suÆx

.zfc is used. Since this coder is not the main topic of this thesis, we do not

present results here. For further reading about IFS codes we refer to [Jaq93].

7.5 The Package Structure of AutoPic

Before describing the package and class structure of AutoPic, we have to pay

attention to a software engineering problem which became clear during the

design stage of the project. Note that classes for the WFA tree, the WFA

coder and the states (this is an oversimpli�cation, actually there are �ve classes

modeling the WFA states) have to be speci�ed. The remaining problem is the

question: which class implements the WFA encoding algorithm? There are

several alternatives in designing the class structure:

138 Some Implementational Remarks

� On the one hand, one could argue that this routine belongs to the class

State because a state has to operate itself to hold all data elements

private.

� On the other hand, a state does not stand alone and has to request the

state images of other states. We think that the WFA tree and the entropy

encoder should be data elements of the WFA encoder.

� Another possibility is that these elements are made static elements of the

class modeling the states. This alternative is also not natural.

We have implemented the second alternative and put the function createState

into the class WFAEncoder and implemented routines for the insertion of match-

ing pursuit vectors in the class State (setMatchingPursuitVector).

Another problem in the sense of software engineering is the implementation

of the feedback loops of the WFA algorithm. As already shown in Figure 3.7

on page 54, the class DomainPool has to work in a close relation to the classes

WFAEncoder, WFATree and EncoderInterface. We have solved this problem by

utilizing the package structure of Java. The variables are declared in a way that

they are only visible in the package containing the classes mentioned above.

Another big problem was the adjustment of the parameters. For this task we

have to control the parameters from a single class. As this control class we have

to choose a class inhabiting the greatest number of parameters. In our case this

is the class WFAEncoder. For the \transport" of the remaining parameters we

have to choose one of the following alternatives:

� The parameters may be altered via adjustment procedures. This

method has the drawback of complicating the class interfaces because

the WFAEncoder object does not have direct access to all objects.

� A new class inhabiting the remaining parameters may be created and lets

the classes access the parameters as needed.

We decided on the second way and therefore implemented a class called

PrecisionDescriber holding the parameters as public elements. This class

incorporates a violation of software engineering rules. But this violation is only

temporary since after optimization the class could be deleted and the parame-

ters could be made hidden constants in the classes where they are needed.

The project is split into the following packages:

� wfa contains utilities used in this project.

� wfa.automata is a package inhabitingWFA related classes, such as classes

for the various kinds of states, WFATree, WFAEncoder and WFADecoder.

� wfa.entropy contains classes related to entropy coding.

7.5 The Package Structure of AutoPic 139

� wfa.genetic contains classes for the genetic algorithm.

� wfa.graphics is a graphics package used for the screen representation of

images.

� wfa.lli contains classes concerning the LLI encoder.

� wfa.main is a package incorporating the user interface of the program.

� wfa.math is a package for providing mathematical classes and routines.

� wfa.net contains classes for �le and network usage.

� wfa.statistics is a package for statistical evaluation, for analyzing the

matching pursuit vectors and other parts of the WFA.

� wfa.text contains a text compressor and decompressor.

� wfa.video is a package containing the video encoder and decoder and

related classes for video coding.

� wfa.zfc contains classes required for our experimental IFS codec.

These packages contain the following classes:

� wfa:

{ BitModifier contains functions to modify single bits of numbers.

{ Counter implements a counter.

{ DeQue implements a double ended queue.

{ Diagram is used for drawing diagrams.

{ FifoQueue is an implementation of a first in first out queue.

{ LazyStack contains an implementation of a stack, at which some

elements next to the top element can also be accessed.

{ ListElement implements the structure of an element of a linear list.

{ MathUtil contains mathematical utilities required for AutoPic.

{ RateDist is used for drawing rate{distortion diagrams as used in

this thesis.

{ SmallStack contains a stack with limited size.

{ Stack represents a stack (LIFO queue).

{ StopWatch is used for measuring the required time for speci�c oper-

ations.

{ TimeObject is used to create objects memorizing their creation time

and which can dump their lifetime.

{ Util contains many utilities for AutoPic.

� wfa.automata:

140 Some Implementational Remarks

{ ComposedState implements states composed by other states.

{ DecoderState implements states used by the WFA decoder.

{ EncoderState implements states used by the WFA encoder.

{ InitialState implements states put initially to the WFA. Their

state images are computed by prede�ned function systems.

{ IntDouble implements a tuple of an integer and a double precision

value. This class is designed for use in MP vectors.

{ Path is an implementation of a path, a description of size and posi-

tion of an (image-) segment.

{ PrecisionDescriber is used to \transport" parameters in a com-

fortable way.

{ State is the super class of all kinds of states. This class therefore

contains the basic interface of WFA states. Also most caching is

implemented in this class.

{ WFACodecGcd is the super class of WFAEncoder and WFADecoder and

thus contains fundamental properties contained in both subclasses.

{ WFADecoder implements the WFA decoder.

{ WFAEncoder implements the WFA encoder.

{ WFALoadDialog implements the dialogue for �ne tuning of the WFA

decoder.

{ WFASaveDialog implements the dialogue for �ne tuning of the WFA

encoder.

{ WFATree implements the behavior of the WFA tree. This class thus

holds WFA states and returns them by the use of iterators.

� wfa.entropy:

{ BitInputBuffer is used to bu�er and read single bits.

{ BitOutputBuffer is used to bu�er and store single bits.

{ BlendedModel represents a blended model.

{ ContextModel implements a context model.

{ CodecInterfaceGcd is the super class for EncoderInterface and

DecoderInterface and thus implements the common behavior and

data elements of these classes.

{ DecoderInterface contains a comfortable interface to the entropy

decoder.

{ EncoderInterface contains a comfortable interface to the entropy

encoder.

{ EntropyCodecGcd is the super class of EntropyEncoder and

EntropyDecoder and thus implements the common behavior of these

classes.

7.5 The Package Structure of AutoPic 141

{ EntropyDecoder is an implementation of an entropy decoder, in this

case an arithmetic decoder.

{ EntropyEncoder is an implementation of an entropy encoder, in this

case an arithmetic encoder.

{ Model is the most advanced kind of statistical model and implements

delta coding.

{ WindowModel implements a windowed model.

� wfa.genetic:

{ Gene implements a gene for GA.

{ GenePool contains the genes used for GA.

� wfa.lli:

{ LLICodecGcd is the super class of LLIEncoder and LLIDecoder.

{ LLIDecoder implements the LLI decoder.

{ LLIEncoder implements the LLI encoder.

� wfa.main:

{ AutoPic is the graphical user interface and thus is the main class of

this project.

{ ViewerApplet represents the client application used for the client

server model.

{ and some minor classes concerning the GUI.

� wfa.math:

{ DomainPool is used for domain pool administration and approxima-

tion of image segments.

{ ColorPicture is used for the representation of color images. This

class is built from three instances of the class FloatPicture.

{ FloatPicture is an implementation of a monochrome image with

oating point numbers as pixels.

{ MPVector implements the matching pursuit vectors.

{ MathVector implements mathematical vectors. This is the super-

class of FloatPicture.

{ MathVectorHeap is a heap structure for the class MathVector. This

class was built to save time by avoiding initialization of MathVectors

and garbage collector runs.

{ MotionVector implements displacement vectors for motion compen-

sation in video coding.

{ QMatrix is an implementation of quadratic matrices.

� wfa.net:

142 Some Implementational Remarks

{ Connection represents an Internet connection.

{ Daemon implements the client application of the client server model.

{ and some minor classes for net usage.

� wfa.statistics:

{ MPAnalyzer analyzes MP vectors.

{ ScalarAnalyzer analyzes scalar values.

� wfa.text:

{ TextCodecGcd implements the common behavior of TextEncoder

and TextDecoder.

{ TextEncoder implements the text compressor.

{ TextDecoder implements the text decompressor.

� wfa.video:

{ VideoCodecGcd implements the common behavior of VideoEncoder

and VideoDecoder.

{ VideoDecoder implements the video decoder.

{ VideoEncoder implements the video encoder.

7.6 Some Excerpts from the Class Hierarchy

In this section we describe parts of the class hierarchy of AutoPic. There are

more than hundred classes in the project AutoPic. For this reason, the diagrams

are not complete in order not to complicate the view. For a more comprehensive

description look at the JavaDoc documentation available at [Kat].

The Notation for Class Diagrams We utilize the notation of [GHJV95].

For a short description see Figure 7.9.

7.7 Cutting of the Recursion Trees

In chapter 3, we simpli�ed the backtracking WFA construction algorithms by

omitting the cutting of the recursion trees. We show these algorithms now. This

kind of running time optimization is one of the most important of our project.

The recursion trees are cut when it is impossible to improve the current result.

The procedures have to be called with createState(�, 1).

7.7 Cutting of the Recursion Trees 143

Class B

Subclass of Class B Subclass of Class B

}

4

Class A
u

manyone

aggregationobject

reference

6
6

Figure 7.9: Notation for class diagrams used in this thesis.

State

InitialState ComposedState

4

EncoderState DecoderState

4

Figure 7.10: The various kinds of states and their interrelation.

PrecisionDescriber DomainPool

WFACodecGcd

WFAEncoder

4
}} }

WFATree

State
u

}
6

666

-

Figure 7.11: The composition of WFAEncoder. The class WFADecoder is built in

a similar way.

144 Some Implementational Remarks

EntropyEncoder Model

EntropyCodecGcd

EncoderInterface

4

}

CodecInterfaceGcd
u

}

4
}

BitOutputBu�er

BlendedModel

ContextModel

WindowModel

u

u

}

}

}

6

-

6

6

6

6

6

Figure 7.12:

The composition of EncoderInterface. The class DecoderInterface is built

in a similar way.

ColorPicture

FloatPicture

}

MathVector

4

6

Figure 7.13: The composition of ColorPicture.

7.7 Cutting of the Recursion Trees 145

7.7.1 The Top Down Backtracking DFS Algorithm

/��
� c r e a t e s a s t a t e .
�

�@param path i s the path o f the image segment to be
� approximated .
�@param maxBadness i s the maximal badness o f the
� cons t ruc t ed approximation .
�@return the badness o f the c r ea t ed s t a t e .
��/
f loat c r e a t eS t a t e (Path path , f loat maxBadness)

f

i f (maxBadness< 0)

return 1 ; // cut t ing o f the r e cu r s i on t r e e .
State quadState= new State (path) ;

quadState . se tState Image (o r i g i n a lP i c t u r e . cutSegment (path)) ;

wfaTree . add (quadState) ;

domainPool . n o t i f y (quadState) ;

f loat s tateBadness=0;

for (q 2 �)

stateBadness+ =operateStateQuadrant (quadState , q ,

maxBadness� s tateBadness) ;

return s tateBadness ;

g//end c r e a t eS t a t e

Listing 7.1: Top down WFA creation algorithm with recursion cutting.

/��
� c r e a t e s a c o e f f i c i e n t vec to r f o r a quadrant
� o f a g iven s t a t e .
�

�@param s ta t e i s the s t a t e to be proce s s ed .
�@param q i s the number o f the c o e f f i c i e n t vec to r that
� i s to be proce s s ed .
�@param maxBadness i s the maximal badness that may
� be obtained .
�@return the obtained badness .
��/
f loat operateStateQuadrant (State s t a t e , int q ,

f loat maxBadness)

f

Path quadPath=s t a t e . getPath () � q ;

F loa tP i c tu re quadVector=

o r i g i n a lP i c t u r e . cutSegment (quadPath) ;

// c a l c u l a t e approximation .
MPVector c o e f f s=domainPool . approximate (quadVector) ;

approxError=

quadVector . d i s tance (domainPool . getVector (c o e f f s)) ;

approxCost=encode r I n t e r f a c e . co s t (c o e f f s) ;

approxBadness=approxCost+qua l i tyFac to r�approxError ;

// c a l c u l a t e p a r t i t i o n .
int o l dEx i s t i n gS t a t e s=wfaTree . s i z e () ; //memorize s i z e .

146 Some Implementational Remarks

par t i t i onBadnes s=

c r e a t eS t a t e (quadPath , min (maxBadness , approxBadness)) ;

i f (approxBadness<par t i t i onBadnes s)

f// de l e t e s t a t e s c r ea t ed in the r e cu r s i on .
int newExis t ingStates=wfaTree . s i z e () ;

for (l=o l dEx i s t i n gS t a t e s ; l<newExis t ingStates ; l++)

wfaTree . removeElementAt(o l dEx i s t i n gS t a t e s) ;

domainPool . reduceTo (o l dEx i s t i n gS t a t e s) ;

s t a t e . setQuadrantWeights (c o e f f s , q) ;

e n code r I n t e r f a c e . ro l lBack () ;

e n code r I n t e r f a c e . updateModel (c o e f f s) ;

return approxBadness ;

g

else

f// i n s e r t po in t e r to the new s t a t e .
MPVector po in t e r = new MPVector(quadState . index () , 1 . 0) ;

s t a t e . setQuadrantWeights (po in t e r , q) ;

return par t i t i onBadnes s ;

g

g//end operateStateQuadrant

Listing 7.2: WFA state operation algorithm with recursion cutting.

7.7.2 The Bottom Up Backtracking DFS Algorithm

/��
� c r e a t e s a s t a t e f o r a g iven image segment .
�

�@param path i s the path o f the image segment to
� be approximated .
�@param maxBadness i s the maximal badness
� f o r that approximation .
�@return the badness o f the c r ea t ed s t a t e .
��/
f loat c r e a t eS t a t e (Path path , f loat maxBadness)

f//Bottom up DFS c r e a t i on o f a WFA.
i f (maxBadness<0)

return 1 ; // cut r e cu r s i on t r e e .
State quadState= new State (path) ;

f loat s tateBadness=0; //badness o f the c r ea t ed s t a t e .
for (q 2 �) // operate a l l quadrants o f the image segment .

s tateBadness+=operateStateQuadrant (quadState , q ,

maxBadness� s tateBadness) ;

quadState . se tState Image (quadState . decode ()) ;

domainPool . n o t i f y (quadState) ;

wfaTree . addElement (quadState) ;

return s tateBadness ;

g//end c r e a t eS t a t e

Listing 7.3: Bottom up WFA creation algorithm with recursion cutting.

7.8 General Optimizations 147

7.8 General Optimizations

Although in the literature it is often suggested not to optimize programs in

early coding stages, we were frequently forced to violate this rule. The reason

for this behavior is mainly the handling of large data structures like images.

Without optimization, the considered algorithms could not be tested because

of the high time and memory consumption.

In this section we do not describe well-known optimizations, which can be

applied to virtually all programs, such as code motion, loop unrolling, strength

reduction, common subexpression elimination and the like [Rin92]. Instead, we

describe the most important optimizations concerning especially WFA codecs.

7.8.1 Caching

The most important optimizations are the caching procedures at di�erent levels.

The �rst level is the memorization of the produced state13 and quadrant images

of the generated states. This level of caching is the most important and we think

that the running time of our algorithm is intractable without this caching. Note

that the caching of large vectors as state images ensures a threefold speedup by

reducing

� the time required to compute the state image,

� the time consumed by the garbage collection for freeing the unhooked

memory and

� the time required for the internal initialization of the arrays with the value

0.

Because of our good experiences with this caching, we employed caching at all

conceivable places.

An important observation is that the initial state images are the same for all

WFAs. Since the computing of these images (we mainly use DCT basis vectors)

is a very time consuming process, we decided to cache these images separately.

Thus we implemented a cache that is statically linked to the class InitialState

(not to the objects). This cache is especially useful in video coding since the

DCT basis vectors need to be computed only once.

One of the most important caches for the parameter optimization procedure is

the caching of the function genes to �tnesses to ensure that the �tness of a gene

is almost never calculated twice. Another cache is used for the generation of

the rate{distortion diagrams because we use a bisection procedure to produce

the (rate, distortion) tuples and the same tuples are accessed many times by

the diagram routine.

13Note that due to the light HV partitioning we have two independent caches: one for
at

and one for high image segments.

148 Some Implementational Remarks

An important and time consuming part of the WFA construction algorithm

is the calculation of storage cost. Since we observed that the best method is

to compute the statistical information gain produced by the symbol to encode,

the algorithm needs to compute millions of logarithms to encode a single image.

Since we observed that often the same logarithms are required many times, we

implemented a special caching procedure for the logarithms. This procedure

caused a signi�cant speedup of the WFA construction algorithm.

There are many values cached by the WFA algorithm which we cannot mention

all, for example quadratic norms of images etc.

Scalar Products The most time consuming process in the WFA inference al-

gorithm is the calculation of scalar products for the matching pursuit algorithm.

One optimization of the matching pursuit algorithm is of eminent importance.

Because the matching pursuit vectors are in general very small (we observed

average lengths of approximately 2.9) we can achieve large gains in compression

speed by stopping the matching pursuit algorithm in an early stage. Because

we stop this algorithm using the value of the lowest achieved badness, we had to

employ this property for the cutting of the matching pursuit process. We there-

fore check before each iteration if the lowest achievable badness is low enough

to obtain a worthwhile enhancement in the approximation. With this cutting

procedure we achieved approximately twice the compression speed without af-

fecting the result. Another important optimization already described earlier

is that we do not zoom the images up but instead approximate in the current

resolution.

We also examined the usage of Java threads to evaluate scalar products to

achieve higher compression speed on multi processor computers. We intended

to generate many thread objects each evaluating one scalar product and collect

the results of the computations after all objects have reported the completion

of its operation. The computation could in this manner be spread over many

processors of a single machine. But at the time of this writing, the Java envi-

ronment does not really spread the computational resources over all processors

but concentrates the work on only one processor. Because of the administration

cost for the threads we observed even a slow down of the compression process.

The utilization of other parallelization techniques as jada (java linda) has still

to be investigated. For an overview of Objective Linda see [FK99]. A parallel

implementation of a WFA coder is presented in [Haf94].

Other Methods In order to achieve maximum performance of other parts,

we made extensive use of Java built-in optimizations. An important feature

of the Java compiler is the usage of the -O switch. With that optimization

the compiler generates inline code of certain routines. In order to help the

compiler in this optimization process we declared time critical routines as final.

The running time of the program is also strongly dependent on the just in

time compiler. Another important optimization is the exploitation of built in

7.8 General Optimizations 149

methods of the Java virtual machine running in native code such as System.

arraycopy.

Especially in early implementation phases, we made linear approximations by

using an object called multiBasis providing bases in di�erent resolutions. A

running time problem with this method occurred especially with the required

matrix multiplications. We employed especially in this phase the property that

the used matrices are triangular. For vector{matrix multiplication, we could

thus achieve the double speed and for matrix{matrix multiplication we achieved

a four-fold speedup. The inversion of the basis exchange matrices also posed

problems with numerical stability which have been diminished by using the

post iteration algorithm of Newton (see appendix J.3 on page 211). We will not

consider these methods any further because we have observed that this method

of approximation is inferior to matching pursuit approximation. But we still

think that this method of approximation is interesting because it is much faster

than matching pursuit.

An important optimization method is to use the Java Native Interface (JNI) to

embed platform dependent implementations to the software project. A problem

with this method is the question what to program in native code. We have the

following alternatives:

� The �rst approach is to compute only the scalar products in native code.

This would mean that we have to transfer the vectors which are multiplied

to the native class. A drawback of this method is that the transfer of the

array pointers is a signi�cant overhead especially at small arrays.

� The second approach is to implement the whole DomainPool in native

code. Because of the feedback loop this would mean that the native class

would access many Java classes making it more attractive to write the

whole program in native code (which is infeasible).

Because of these reasons we have implemented the �rst approach. In this way,

we have achieved approximately twofold speedup of the encoder. By the use

of fallback routines we are able to run the project on each platform even when

the JNI routines do not exist.

Read and write bu�er sizes are specially tuned for the Linux system since

the optimization of the WFA parameters was mainly performed on a Linux

computer pool. As we have seen, the process requires a highly eÆcient data

transfer.

Despite the bene�ts there are some features of the language Java slowing down

\number crunching" applications like WFA coding.

� Floating point arrays are initialized with the value 0.0. This is extremely

annoying since at the decoding process large arrays are handled where the

values need only to be copied from other arrays. In order to solve this

problem, we implemented our own memory heap. But this also did not

lead to satisfying results.

150 Some Implementational Remarks

� The array length is a part of the array structure. This feature makes it

diÆcult to calculate state images in place of another state image.

� There is no way to apply pointer arithmetic. In AutoPic, large arrays

are handled element by element frequently. For example, vector norms

are calculated by scanning the vector elements successively while summing

the squares of the elements. The drawback of Java is that at each step the

position of the element in the array has to be calculated without using the

position of the former element. A language like C++ supports consecutive

addressing of array elements without the need for multiplications. Since

this operation calculates with pointers, Java does not allow this for reasons

of security.

Compatibility Problems of AutoPic It shall also be mentioned that the

project has been developed using Borland JBuilder 2.0. We have seen many

problems on di�erent platforms especially with methods concerning the user

interface of the program. Although the Java implementations improved signi�-

cantly during the coding stage of this project, we can never assure that problems

due to incompatible platforms will not arise again. This is also the reason why

we implemented only a simple user interface without using special features as

for example the Swing library.

Chapter 8

Conclusion

We have implemented a state of the art WFA image coder. It even outperforms

in some cases the well-known SPIHT codec of W. A. Pearlman and A. Said

[PS, PS96]. The enhancement was achieved by the examination of nearly all

aspects of the WFA coding algorithm: the image partition, statistical models,

error propagation, approximation, storage of auxiliary data, cost estimation,

parameter optimization, domain pool administration, initial states, coding with

varying quality, post processing of the decoded image, di�erent initial bases and

di�erent methods to generate the WFA tree.

Although the main aspect of this thesis concerns lossy gray scale image cod-

ing, we considered also the following aspects: color coding, embedding wavelet

coding in WFA coding, video coding, progressive coding, IFS coding, pyramid

coding and lossless image coding. For the examination of coding artifacts we

have implemented a thorough image processing system with a graphical user

interface including various image �lters.

We did not spend much e�ort on the analysis of running time and space com-

plexities of the algorithms. This decision is justi�ed by the fact that these

features only play a subordinate role in image coding. The major decision

criterion1 to choose among given algorithms is their compression performance.

Another reason for the neglection of running time analyses is the dependence on

the number of states. The time and space consumption of the WFA encoding

algorithms depend on the number of states to be created. Since we do not

know any algorithm to calculate the number of WFA states that will be created

for this image, we lack the most important parameter for the desired time and

space analysis. Because of these reasons we have presented only analyses for

WFA decoding procedures.

We think that the future of WFA coding lies in WORM applications as the

storage of images on CD ROM and not on symmetric applications as video

telephony since the encoding process is very time consuming.

1If compression performance would be not the major decision criterion, each researcher

would choose PCM as the coding algorithm.

152 Conclusion

We hope that we have added a small contribution for the development of com-

pression schemes and especially those using weighted �nite automata.

8.1 Acknowledgments

I want to thank the following people for their helpful comments and their never

ending assistance at the carrying out of this project:

� Prof. Dr. W. Merzenich, who made me aware of this interesting area of

research and many valuable stimuli in the topics of genetic algorithms and

WFAs.

� Prof. Dr. F. Freisleben for his e�orts in making this thesis possible.

� Prof. Dr. D. Spreen for valuable stimuli around the topic of WFA coding.

� Dr. M. Thomas, who gave me thorough assistance and help in the topics

of statistics, software engineering and approximation.

� Dr. U. Hafner for the interesting collaboration, experience exchange and

comparison to his WFA codec.

I also want to express my thanks to the following persons: M. Hammel, who

programmed parts of the early implementation and had good ideas for speeding

up the coder, Dipl.-Inform. G. R�o�ling helped at di�erent topics around Java

and corrected thousands of mistakes in this thesis, J. Sch�ow played an important

role in keeping the optimization process running, Dipl.-Math. H. Schulz had

some good ideas for enhancing the WFA codec, M. Fick for the work on the

ZFC codec and Dipl.-Ing. T. Gutting gave several hints concerning the Unix

system.

I apologize to the people who are not mentioned in the above enumeration, as

for example some students of the University of Siegen who helped implementing

this project.

Appendix A

Direct Invocation of the

Programs

Most of the functionality of AutoPic can be accessed directly by invocation

of the appropriate program. The direct invocation of the programs has the

following bene�ts:

� Less amount of storage space is required for the execution,

� the programs may be controlled by batch processing and

� the programs may be executed without a graphical monitor (for example

by using a VT100 terminal connection).

A.1 Command Line Parameters

In order to understand which command line options are accessible for the pro-

grams, we now look at a small portion of the class structure (see Figure A.1).

The notation for class diagrams is based on [GHJV95] and is explained shortly in

section 7.6 on page 142. The classes WFAEncoder, WFADecoder, VideoEncoder,

VideoDecoder, Daemon, RateDist, GenePool, TextEncoder and TextDecoder

contain a main procedure and can thus be executed directly. All classes in the

diagram contain variables which may be altered by the user. Since a class may

alter the parameters of its superclass and all its aggregates, the parameter con-

trol
ow takes place transitively along the arrows. As an example, an instance

of the class VideoEncoder may alter parameters of the classes VideoCodecGcd,

WFAEncoder, WFACodecGcd, DomainPool and PrecisionDescriber. In order

to avoid repeating command line parameters, we describe only command line

parameters local to the classes. If the respective classes display their command

line help, the whole set of parameters is displayed. For the sake of shortness,

we also omit messages which are common to all classes, for example the way of

how parameters are coded.

154 Direct Invocation of the Programs

PrecisionDescriber DomainPool

WFACodecGcd

WFAEncoder WFADecoder

VideoCodecGcd

VideoEncoder VideoDecoder

}
4

}

4

}}

6 6

6 6

Figure A.1: A portion of the class hierarchy of AutoPic.

A.1.1 The WFA Codec

In this section we describe the invocation and command line parameters of

programs concerning the WFA codec.

The DomainPool Class The class DomainPool is used for approximation

of vectors with state images. The recognized parameters are the following:

Options of DomainPool:

Parameter name, type, min, max, default

-badApproxEnabled, bool, false, true, false

switches on "bad approximation".

-maxFractalLevel, int, 0, 100, 6

sets the maximum tree level for fractal addressing.

-minFractalLevel, int, 0, 100, 10

sets the minimum tree level for fractal addressing.

-orthogonalNumber, int, 0, 1000, 10

sets the number of states to which a new state is

orthogonalized to.

The PrecisionDescriber Class As we have seen, this class is used to \trans-

port" parameter settings to other classes. The recognized parameters are the

following:

Options of PrecisionDescriber:

Parameter name, type, min, max, default

-acSizeAdaptationSpeed, int, 0, 20, 2

sets the adaptation speed for the stat. model for

the sizes of the AC part.

-acSizeWindowLength, int, 1, 1000, 510

A.1 Command Line Parameters 155

sets the window length for the stat. model for the sizes

of the AC part.

-approximatedWindowLength, int, 1, 200, 20

sets the window length for the stat. model for the WFA

tree structure.

-coeffAdaptivitySpeed[0], int, 0, 20, 2

sets the adaptation speed for the stat. model for the DC

coefficients.

-coeffAdaptivitySpeed[1], int, 0, 20, 15

sets the adaptation speed for the stat. model for the AC

coefficients.

-coeffAdaptivitySpeed[2], int, 0, 20, 15

sets the adaptation speed for the stat. model for the MP

coefficients.

-coeffAfterPointPrecision[0], int, 0, 10, 6

sets the binary precision of the stat. model for the DC

coefficients.

-coeffAfterPointPrecision[1], int, 0, 10, 5

sets the binary precision of the stat. model for the AC

coefficients.

-coeffAfterPointPrecision[2], int, 0, 10, 5

sets the binary precision of the stat. model for the MP

coefficients.

-coeffBeforePointPrecision[0], int, -10, 10, 1

sets the binary precision of the stat. model for the DC

coefficients.

-coeffBeforePointPrecision[1], int, -10, 10, 0

sets the binary precision of the stat. model for the AC

coefficients.

-coeffBeforePointPrecision[2], int, -10, 10, 0

sets the binary precision of the stat. model for the MP

coefficients.

-coeffSign[0] bool, false, true, false

sets the sign of the stat. model for the DC coefficients.

-coeffSign[1] int, false, true, true

sets the sign of the stat. model for the AC coefficients.

-coeffSign[2] int, false, true, true

sets the sign of the stat. model for the MP coefficients.

-coeffWindowLength[0] int, 1, 2000, 1080

sets the window length for the stat. model for the DC

coefficients.

-coeffWindowLength[1] int, 1, 2000, 400

sets the window length for the stat. model for the AC

coefficients.

-coeffWindowLength[2] int, 1, 2000, 200

sets the window length for the stat. model for the MP

coefficients.

-cuttingPoint[1] int, 1, 200, 4

sets the maximal number of AC coefficients -1 (should be a

power of 2).

-cuttingPoint[2] int, 1, 200, 35

sets the maximal number of MP coefficients

-cuttingPoint[1]-1 (difference should be a power of 2).

-deltaCodingEnabled bool, false, true, true

switches on delta coding of MP indices.

-lightHVWindowLength int, 1, 1000, 380

sets the window length for the stat. model for the light

HV partition.

-mpIndexAdaptivitySpeed int, 0, 20, 5

sets the adaptation speed for the stat. model for the MP

indices.

-mpIndexPrecision int, 1, 20, 7

sets the binary precision of the stat. model for the MP

indices.

-mpIndexWindowLength int, 1, 1000, 310

sets the window length for the stat. model for the MP

156 Direct Invocation of the Programs

indices.

-mpSizeAdaptivitySpeed int, 0, 20, 2

sets the adaptation speed for the stat. model for the

sizes of the MP part.

-mpSizeWindowLength int, 1, 1000, 110

sets the window length for the stat. model for the sizes

of the MP part.

The WFACodecGcd Class The class WFACodecGcd is the common super-

class of WFAEncoder and WFADecoder (in some sense the \greatest common

divisor"). The class is used to implement common methods of the two sub-

classes and|of more interest here|common data elements. The recognized

parameters are the following:

Options of WFACodecGcd:

Parameter name, type, min, max, default

-acRevertIterator, bool, false, true, false

enables the reversion of the storage of the AC parts.

-acSaveOrder, bool, false, true, false

switches the order of the storage of the AC parts

(false=DFS, true=BFS).

-acSizeContextSize, int, 0, 10, 0

sets the context size for the stat. model for the sizes of

the AC parts.

-approximatedContextSize, int, 0, 10, 0

sets the context size for the stat. model of the WFA tree.

-approximatedStateBits, int, 0, 15, 11

sets the number of bits used for the RLE coding of the

lower part of the WFA tree.

-coeffModelContextSize[0], int, 0, 10, 0

sets the context size for the stat. model for DC

coefficients.

-coeffModelContextSize[1], int, 0, 10, 0

sets the context size for the stat. model for AC

coefficients.

-coeffModelContextSize[2], int, 0, 10, 0

sets the context size for the stat. model for MP

coefficients.

-dcRevertIterator, bool, false, true, false

enables the reversion of the storage of the DC parts.

-dcSaveOrder, bool, false, true, false

switches the order of the storage of the DC parts

(false=DFS, true=BFS).

-dialogEnabled, bool, false, true, false

enables a display for fine tuning the WFA coder

respectively decoder.

-fractalAddressingEnabled, bool, false, true, false

enables fractal addressing of MP indices.

-horizontalStateBits, int, 0, 15, 11

sets the number of bits used for the RLE coding of the

upper part of the light HV partition.

-hvSwitch, bool, false, true, false

enables the light HV partition.

-initialBasisFunction, int, 0, 7, 0

sets the initial basis function the WFA codec works with

(0=cosine, 1=sine, 2=Walsh, 3=Hadamard, 4=seq. ordered

Hadamard, 5=Slant, 6=ordered Slant, 7= Haar).

-internalColorSpace, int, 0, 10, 2

sets the internal color space the WFA codec works with

(1=RGB, 2=YCbCr, 3=YUV, 4=corrected YUV, 5=YIQ,

6=corrected YIQ).

A.1 Command Line Parameters 157

-lightHVContextSize, int, 0, 10, 1

sets the context size for the stat. model for the light HV

partition.

-lightHVSaveOrder, bool, false, true, true

switches the order of the storage of the light HV

coefficients (false=DFS, true=BFS).

-mpIndexContextSize, int, 0, 10, 0

sets the context size for the stat. model for MP indices.

-mpRevertIterator, bool, false, true, false

enables the reversion of the storage of the MP parts.

-mpSaveOrder, bool, false, true, false

switches the order of the storage of the MP parts

(false=DFS, true=BFS).

-mpSizeContextSize, int, 0, 10, 0

sets the context size for the stat. model for the sizes of

the MP parts.

-partitionedStateBits, int, 0, 15, 9

sets the number of bits used for the RLE coding of the

upper part of the WFA tree.

-pyramidHeight, int, 0, 15, 3

sets the pyramid height of the wavelet transform.

-silent, bool, false, true, false

switches the WFA codec to silent mode (less output on the

the console, no beeping).

-standardFileSuffix, string, -, -, '.tga'

sets the standard file suffix (image format) for output

and auxiliary image coding.

-waveletEnabled, bool, false, true, false

enables wavelet transform.

-lightHVDeltaCodingEnabled bool, false, true, false

switches on delta coding of light HV partition.

-approximatedDeltaCodingEnabled, bool, false, true, false

switches on delta coding of tree structure.

-acSizeDeltaCodingEnabled bool, false, true, false

switches on delta coding of sizes of AC parts.

-mpSizeDeltaCodingEnabled bool, false, true, false

switches on delta coding of sizes of MP parts.

-mpIndexDeltaCodingEnabled bool, false, true, false

switches on delta coding of MP indices.

-coeffDeltaCodingEnabled[0] bool, false, true, false

switches on delta coding of DC coefficients.

-coeffDeltaCodingEnabled[1] bool, false, true, false

switches on delta coding of AC coefficients.

-coeffDeltaCodingEnabled[2] bool, false, true, false

switches on delta coding of MP coefficients.

The WFAEncoder Class The class WFAEncoder incorporates the WFA en-

coder. The following command line help gives instructions for using the class

directly:

usage of WFAEncoder:

java wfa.automata.WFAEncoder baseFileName [options]

In the simplest case, the (image) file '[baseFilename].tga'

is loaded and stored as '[baseFileName].wfa'.

Parameters are preceded by a '-' and followed by the new

value. The new values have to be printed in Java notation.

Example: '-silent true -qualityFactor123.4 -minCut 7'

Warning: most of the parameters are so called "wizard

switches", meaning that you should know exactly what you

do. Most of the parameters need to be switched to exactly

the same value for encoding and decoding. This is

especially the case for parameters contained in the Gcd

classes, the PrecisionDescriber and DomainPool. The

158 Direct Invocation of the Programs

following parameters are available (for a thorough

documentation see the AutoPic manual). The order is

alphabetic.

Options of WFAEncoder:

Parameter name, type, min, max, default

-acBound, float, -10.0, 10.0, 2.0

sets the badness threshold below which AC coefficients

shall be inserted.

-analyzersEnabled, bool, false, true, false

switches all statistical and Hosaka analyzers on. The

output are latex image files "imXXXXXX.pic".

-bfsParsingEnabled, bool, false, true, false

switches to BFS generation of the WFA tree.

-chrominanceQualityFactor, float, 0.0, 1.0, 0.05

sets an additional multiplicator to qualityFactor for the

chrominance channels.

-drawStatesEnabled, bool, false, true, false

forces the encoder to mark the boundaries of the tiling.

-forceGrayEnabled, bool, false, true, false

switches off automatic color switching.

-hvBias, float, 0.0, 2.0, 0.1

switches the bias of the HV partition.

-lowerHVBound, int, 0, 100000, 64

sets the tree level, above which HV partitioning shall be

performed.

-lowerRotQualityFactor, float, 0.0, 2.0, 0.5

sets an additional multiplicator to qualityFactor for the

next outside region of interest.

-lowestRotQualityFactor, float, 0.0, 2.0, 0.3

sets an additional multiplicator to qualityFactor for the

far outside region of interest.

-minApproxSize, int, 0, 1000, 4

sets the minimum number of pixels of a tile to perform

approximation.

-minCut, int, 0, 10, 6

sets the minimum tree height.

-mpBound, float, -10.0, 10.0, 0.0

sets the badness threshold below which MP coefficients

shall be inserted.

-qualityFactor, float, 0.0, 1000.0, 100

sets the quality factor.

-realInformationEnabled, bool, false, true, true

switches to cost estimation by statistical models instead

of simulated writing.

-rollBackEnabled, bool, false, true, true

switches on the rollback of stat. models when cutting WFA

subtrees.

-rotAdjustEnabled, bool, false, true, false

switches on quality variation for region of interest.

-smoothingEnabled, bool, false, true, false

switches on edge smoothing for reducing the tile effect.

-smoothingWeight, float, 0.0, 100.0, 3.0

sets the smoothing strength for reducing the tile effect

(higher number means less smoothing).

-stateCostOffset, float, 0.0, 200.0, 55.0

sets the cost offset for states to compensate the cost for

tree storage etc.

-upperHVBound, int, 0, 100000, 4096

sets the tree level below which HV partitioning shall be

performed.

-writeInitialDistributionsEnabled, bool, false, false

forces the encoder to write initial distributions (".ids"

file).

A.1 Command Line Parameters 159

Other available options are the ones described by the class diagram.

The WFADecoder Class This class incorporates the WFA decoder. The

following command line help gives instructions for using the class directly:

usage of WFADecoder:

java wfa.automata.WFADecoder baseFileName [options]

In the simplest case, the (image) file '[baseFilename].tga'

is loaded and stored as '[baseFileName].wfa'.

Options of WFADecoder:

Parameter name, type, min, max, default

-logSize, , int, -1, 20, -1

sets the logarithm of the image resolution to decode to.

If a negative value is used, the original image size is

restored.

-progressiveNumberOfParts, int, 1, 3, 3

sets number of parts for progressive decoding. 1 decodes

the DC, 2 decodes additionally the AC part and 3 the MP

part.

A.1.2 The Video Codec

In this section we describe the invocation and command line parameters of

programs concerning the video codec.

The VideoCodecGcd Class This class contains common features of the

classes VideoEncoder and VideoDecoder. The accepted command line param-

eters are the following:

Options of VideoCodecGcd:

Parameter name, type, min, max, default

-framesPerSecond, int, 1, 1000, 25

sets the number of frames displayed per second.

-gopLength, int, 1, 1000, 1

sets the number of frames contained in a group of

pictures.

-mcBlockHeight, int, 1, 64, 32

sets the block height of the motion compensation.

-mcBlockWidth, int, 1, 64, 32

sets the block width of the motion compensation.

-mcDeltaSwitch, bool, false, true, false

enables delta coding of motion compensation vectors.

-mcXDeltaCoding, bool, false, true, false

enables delta coding of x coordinates motion compensation

vectors.

-mcYDeltaCoding, bool, false, true, false

enables delta coding of y coordinates motion compensation

vectors.

-mcXAdaptationSpeed, int, 0, 20, 5

sets the adaptation speed for the stat. model for the

x coordinates of the displacement vectors.

-mcXAfterPointPrecision, int, 0, 3, 1

sets the binary precision after the dual point for the

x coordinates of the displacement vectors.

160 Direct Invocation of the Programs

-mcXContextSize, int, 0, 10, 1

sets the context size for the stat. model for the

x coordinates of the displacement vectors.

-mcXWindowLength, int, 1, 64, 8

sets the window length for the stat. model for the

x coordinates of the displacement vectors.

-mcYAdaptationSpeed, int, 0, 20, 5

sets the adaptation speed for the stat. model for the

y coordinates of the displacement vectors.

-mcYAfterPointPrecision, int, 0, 3, 1

sets the binary precision after the dual point for the

y coordinates of the displacement vectors.

-mcYContextSize, int, 0, 10, 1

sets the context size for the stat. model for the

y coordinates of the displacement vectors.

-mcYWindowLength, int, 1, 64, 8

sets the window length for the stat. model for the

y coordinates of the displacement vectors.

-rangeX, int, 0, 64, 3

sets the range of the x coordinates of the displacement

vectors.

-rangeY, int, 0, 64, 3

sets the range of the y coordinates of the displacement

vectors.

The VideoEncoder Class This class incorporates the video encoder. Usage

and parameters are as follows:

usage of VideoEncoder:

java wfa.video.VideoEncoder baseFileName [options]

In the simplest case, the (image) files

'[baseFileName]000.tga', '[baseFileName]001.tga', ... are

successively loaded and stored as '[baseFileName].wfa'.

Options of VideoEncoder:

Parameter name, type, min, max, default

-estimationPics, bool, false, true, false

enables the displaying of estimations for the MC.

-firstFrameNumber, int, 0, 10000, 0

sets the first frame number to be coded.

-frameStepSize, int, 1, 10000, 1

sets the step size of the frames to be coded.

-lastFrameNumber, int, 0, 10000, 0

sets the last frame number to be coded.

-mcpePics, bool, false, true, false

enables the displaying of MCPEs.

-mcpeSave, bool, false, true, false

enables the saving of MCPEs (filenames are "mcpe000.tga",

"mcpe001.tga", ...).

-qualityFactor, float, 0.0, 1000.0, 100.0

sets the quality factor used for WFA coding and RD

constrained MC.

The VideoDecoder Class This class incorporates the video decoder. Usage

and parameters are as follows:

usage of VideoDecoder:

java wfa.video.VideoDecoder baseFileName [options]

In the simplest case, the (video) file '[baseFilename].wfa'

A.1 Command Line Parameters 161

is stored as '[baseFileName]000.wfa',

'[baseFileName]000.wfa',....

Options of VideoDecoder:

Parameter name, type, min, max, default

-animate, bool, false, true, true

enable image animation after decoding.

-estimationPics, bool, false, true, false

enabled displaying of estimation images.

-framePics, bool, false, true, false

enable displaying of single frames (still images).

-saveFrames, bool, false, true, false

enable storage of single frames. The file names are

"frame000.tga", "frame001.tga", ...

A.1.3 The Genetic Analyzer

In this section we describe the invocation and command line parameters of

programs concerning the genetic analyzer.

The GenePool Class This class incorporates the genetic analyzer. Usage

and parameters are as follows:

usage of GenePool:

java wfa.genetic.GenePool baseFileName [options]

In the simplest case, the image file [baseFilename].tga is

loaded and genetic analysis is performed. The result is

stored in the file baseFileName.gen, intermediate results

are stored in the file baseFileName.dna. Note that the

procedure lasts many weeks in general and needs to be

aborted if the result stagnates.

Options of GenePool:

Parameter name, type, min, max, default

-approxQuality, float, 10.0, 60.0, 32.0

sets the PSNR quality in dB to which the coder is

adjusted.

-crossPercent, int, 0.0, 100.0, 60.0

adjusts how many genes of this pool are crossed at each

generation.

-distanceProtocolTime, int, 0, infty,21600000

sets the minimal time between two protocols.

-distanceWriteTime, int, 0, infty, 600000

sets the minimal time between two writes of the gene

cache.

-goodDNA, int, 0, infty, 45345

sets a starting point for genetic analysis.

-mutatePercent, int, 0.0, 100.0, 5.0

adjusts how many genes of this pool are mutated at each

generation. This value automatically adjusts to higher

values if many genes are cached.

-picName, string, -, -, baseFileName

sets the picture name to be stored.

162 Direct Invocation of the Programs

A.1.4 The Performance Analyzer

In this section we describe the invocation and command line parameters of

programs concerning the performance analyzer.

The RateDist Class This class incorporates the implementation for drawing

rate{distortion diagrams. Usage and parameters are as follows:

usage of RateDist:

java wfa.RateDist baseFileName [options]

In the simplest case, the image file [baseFilename].tga

is loaded and a rate--distortion diagram is drawn. The

result is stored in the file baseFileName.pic.

Options of RateDist:

Parameter name, type, min, max, default

-lowerBound, float, 10.0, 60.0, 37.0

sets the PSNR quality in dB above which the RD diagram is

to be drawn.

-maxBPP, float, 0.01, 8.0, 0.5

sets the maximum bpp rate for the diagram to be drawn.

-numberOfProbes, int, 0, infty, 128

sets the maximal number of probes to be filled in the

diagram.

-upperBound, float, 10.0, 60.0, 21.0

sets the PSNR quality in dB up to which the RD diagram is

to be drawn.

A.1.5 The Lossless Image Codec

In this section we describe the invocation and command line parameters of

programs concerning the LLI codec.

The LLICodecGcd Class The class LLICodecGcd is the common superclass

of LLIEncoder and LLIDecoder. The class is used to implement common meth-

ods of the two subclasses and|of more interest here|common data elements.

The recognized parameters are the following:

Options of LLICodecGcd:

Parameter name, type, min, max, default

-adaptationSpeed, int, 0, 20, 5

sets the adaptation speed of the stat. model.

-contextSize, int, 0, 10, 1

sets the context size of the stat. model.

-deltaCoding, bool, false, true, false

enables delta coding.

-windowLength, int, 1, 64, 8

sets the window length of the stat. model.

A.1 Command Line Parameters 163

The LLIEncoder Class This class incorporates the LLI encoder. Usage and

parameters are as follows:

usage of LLIEncoder:

java wfa.lli.LLIEncoder fileName [options]

In the simplest case, the (image) file

'[baseFileName].tga' is loaded and stored as

'[baseFileName].lli'.

Options of LLIEncoder:

Parameter name, type, min, max, default

-analyzersEnabled, bool, false, true, false

enables the stat. analyzers.

-reallyWrite, bool, false, true, true

enables writing of the output.

-silent, bool, false, true, false

disables most console output.

The LLIDecoder Class This class incorporates the LLI decoder. Usage and

parameters are as follows:

usage of LLIDecoder:

java wfa.lli.LLIDecoder fileName [options]

In the simplest case, the (image) file

'[baseFileName].lli' is loaded and stored as

'[baseFileName].tga'.

A.1.6 The Text Codec

In this section we describe the invocation and command line parameters of

programs concerning the text codec. The usage of this codec is similar to the

well-known compressor gzip.

The TextCodecGcd Class The class TextCodecGcd is the common super-

class of TextEncoder and TextDecoder. The class is used to implement com-

mon methods of the two subclasses and|of more interest here|common data

elements. The recognized parameters are the following:

Options of TextCodecGcd:

Parameter name, type, min, max, default

-adaptationSpeed, int, 0, 20, 5

sets the adaptation speed of the stat. model.

-contextSize, int, 0, 10, 1

sets the context size of the stat. model.

-deltaCoding, bool, false, true, false

enables delta coding.

-windowLength, int, 1, 64, 8

sets the window length of the stat. model.

164 Direct Invocation of the Programs

The TextEncoder Class This class incorporates the text encoder. Usage

and parameters are as follows:

usage of TextEncoder:

java wfa.text.TextEncoder fileName [options]

In the simplest case, the (text) file

'[filename]' is loaded and stored as

'[fileName].tc'.

Options of TextEncoder:

Parameter name, type, min, max, default

-analyzersEnabled, bool, false, true, false

enables the stat. analyzers.

-reallyWrite, bool, false, true, true

enables writing of the output.

-silent, bool, false, true, false

disables most console output.

The TextDecoder Class This class incorporates the text decoder. Usage

and parameters are as follows:

usage of TextDecoder:

java wfa.text.TextDecoder fileName [options]

In the simplest case, the file

'[filename].tc' is loaded and stored as

'[fileName]'.

Appendix B

Color Spaces

In this appendix we present some well-known facts about color spaces. Com-

puter monitors utilize the three components1 red, green and blue (RGB coding),

where without loss of generality the values are restricted to the interval [0; 1].

A color may be described as a point in the unit cube (see Figure B.1). Color

images can be encoded by applying the compression algorithm independently

to the three color components, thus reducing the problem of color compression

to the coding of gray scale images. A more eÆcient technique is to transform

the RGB values to another color system. Well suited for this task are the color

systems used in the TV norms NTSC2, PAL3 and SECAM4 which are called

(Y; I;Q) and (Y;U; V) color spaces. Here the luminance- (Y) and chrominance

information ((I;Q) or (U; V), respectively) are coded independently. Since the

human visual system is more sensitive for distortions in the luminance infor-

mation, the chrominance information can be encoded using less precision.

�
�

�
��

�

J
JJ]

(0; 0; 0) ' black

(1; 1; 1) ' white�

@@I (0; 0; 1) ' blue

� (1; 0; 0) ' red

(0; 1; 0) ' green

-

6

red

green

blue�� ��	

��	

Figure B.1: Color cube of the RGB system.

The transform of a RGB signal to the color space Y UV used in the color TV

1The gray values of the components are typically uniformly quantized using eight bits per

component, respectively.
2NTSC is a short form for National Television System Commitee.
3PAL is a short form for phase alternation line.
4SECAM is an abbreviation for Sequentiel Couleur avec Memoire.

166 Color Spaces

Figure B.2: Decomposition to RGB components.

167

norms PAL and SECAM is done by usage of the following equations:

Y = 0:299R + 0:587G + 0:114B; (B.1)

U = �0:147R � 0:289G + 0:436B; (B.2)

V = 0:615R � 0:515G � 0:1B: (B.3)

The inverse transform is done by the following equations obtained by inverting

the above matrix:

R = Y + 1:14V; (B.4)

G = Y � 0:394U � 0:581V; (B.5)

B = Y + 2:03U: (B.6)

JPEG uses the YCbCr color space. This transform yields slightly better results

than the color spaces described above:

Y = 0:299R + 0:587G + 0:114B; (B.7)

Cb = �0:1687R � 0:3313G + 0:5B + 128; (B.8)

Cr = 0:5R � 0:4187G � 0:0813B + 128: (B.9)

The inverse transform is done by the following equation:

R = Y + 1:402(Cr � 128); (B.10)

G = Y � 0:34414(Cb � 128) � 0:71414(Cr � 128); (B.11)

B = Y + 1:772(Cb � 128): (B.12)

A YCbCr decomposed color image is shown in Figure B.3.

Corrected YUV and YIQ Note that the means of the chrominance chan-

nels of the YUV and YIQ color spaces vanish. In contrast, the mean of the

chrominance channels of the YCbCr color space is 128. For convenience reasons

we adapted the chrominance channels of YUV and YIQ to give a mean of 128.

These new color spaces are called corrected YUV and corrected YIQ, they can

be accessed by the command line parameters of WFACodecGcd. For more details

about color spaces see [RK82, Sch98].

168 Color Spaces

Figure B.3: Decomposition to YCbCr components.

Appendix C

Measures for Image Fidelity

In the following section, we discuss measures for the �delity of image manipu-

lations as lossy coding schemes. This section can give only a short introduction

to image �delity. A more detailed description is beyond the scope of this thesis.

The de�nition of such �delity measures poses problems, especially because it has

to mirror the subjective perception of the human observer. Coding algorithms

are therefore commonly tested with a great number of observers. Because such

tests are both very time consuming and mathematically unemployable, we in-

troduce other methods for measuring image �delity.

Another important observation is that the distortion measure also depends on

the application in which the images are used. One important application is the

recognition of objects where the contours of image objects have to be reproduced

exactly.

Depending on the distortion measure used, image coding is often dissipated to

the following applications:

� lossless image coding: no coding error is acceptable at all. This type of

coding is commonly used in technical applications.

� near lossless image coding: the coding error is measured by the maximum

metric. This type of coding is used in applications where it is important

that the brightnesses in the images do not di�er by more than a given

threshold. A common application to such coding schemes is the use of

images for medical purposes.

� lossy image coding: the coding error is measured by a quadratic error

measure. This measure is frequently used to approximate human error

perception despite the fact that this measure is controversial.

In the next paragraphs we will discuss some measures of major importance in

image coding.

170 Measures for Image Fidelity

An often used measure for the distortion of an m�n image is the mean squared

error (MSE)

MSE =
1

mn

m�1X
i=0

n�1X
j=0

(pi;j � ~pi;j)
2 (C.1)

where pi;j and ~pi;j are original and reproduced pixel brightnesses, respectively.

The square root of the mean squared error is called the root mean squared error

(RMSE).

In many articles on image compression, the two following �delity measures are

used (SNR is an abbreviation for signal to noise ratio):

1. SNR0 = log10
(highest � lowest representable value of the original image)2

MSE
: In the case

of byte-oriented calculators, one usually employs 256 gray values. For this

special case we can de�ne SNR0 = log10
(255)2

MSE
.

2. SNR1 = log10
(highest � lowest occurring value of the original image)2

MSE
;

3. SNR2 = log10
�2e

MSE
where �2e is the spot check variance of the original

image.

Both measures have no unit of measure, but to indicate that the utilized loga-

rithm has the base 10, the pseudo measure unit Bel is used. Note that SNR2 is

better adapted to human perception than SNR0 and SNR1. Due to usual nota-

tion we employ SNR0 and write henceforth PSNR (peak signal to noise ratio).

However, as we see below, this measure is also not very well adapted to human

perception because the spatial structure of the distortions is not included in the

calculation.

An ambiguity not addressed in the above de�nition is caused by the \real val-

ued" reconstruction of a WFA. For the �nal representation on graphic cards,

the reconstructed pixel brightnesses (respectively colors) have to be quantized.

The above error measure does not address whether to use the reconstructed

values or the quantized values. In our rate{distortion diagrams, we decided to

use the quantized values to give a honest measure and note that the distortions

of the original reconstructed values are slightly lower.

C.1 The Tile E�ect

Many lossy image encoding algorithms, including our implementation of the

WFA coder, split the input image into small blocks. The size of such blocks

can be varying as in AutoPic or �xed as in older techniques like JPEG where

8� 8 blocks are chosen. For an example of such a tiling see Figure C.1.

A problem with such codecs is the tile e�ect1: at high losses in image �delity

the image segments used in the coding algorithm will become visible (see Figure

1The tile e�ect is also called block e�ect.

C.1 The Tile E�ect 171

� -

6

?

M

N

HHY

�

m

n

� -

6

?

bbbb bb

�
�	

pixels

rrr

Figure C.1: Splitting an image into blocks.

Figure C.2: Tile e�ect (left: original, right: heavily compressed image).

C.2). The source for such e�ects is that the blocks were processed independently

without taking care of the neighboring blocks. The human eye is very sensitive

to such e�ects, especially in image segments with smooth transitions. Many

techniques were introduced to suppress these e�ects, because especially these

e�ects are responsible for the restrictions of block-based coders. We list some

of them:

� Overlapping of the blocks. At the reconstruction stage of the image,

gray values of regions of overlapping blocks are reconstructed as the aver-

age value of the pixels of the blocks containing these pixels. This method

increases computational resources and may diminish the compression per-

formance.

� The edges of the blocks are smoothened after decoding by special image

processing methods. This method is reported to achieve good results

because no extra storage cost occurs and sometimes also enhances the

�delity in the PSNR measure.

� Transforms allowing less distortion at the edges of the blocks than in the

inner regions (for example Legendre transform) may be introduced.

� Instead of blocks, one could use image segments representing the shapes

of image objects.

C.1.1 Hosaka Diagrams

The tile e�ect considered above is more disturbing than noise distributed uni-

formly over the image. This is the reason why sometimes a striking di�erence

172 Measures for Image Fidelity

of the distortion in mean square sense and and the subjective distortion is ob-

served. The most striking di�erence is observed for a chess board whose blocks

contain only one pixel. If this board is reversed, the error is maximal in the

SNR sense but is almost not observable by the human eye. Another interest-

ing e�ect is dithering, introducing distortions in the SNR sense but letting the

image appear more pleasant to the human observer.

Hosaka diagrams are a means to give a more detailed description of the image

distortion than the mean squared error. The �rst step for the generation of

these diagrams (also called H-plots) is the splitting of the original image into

quadratic blocks whose variance does not exceed a given limit2. For a pseudo

implementation see listing C.1. These blocks are then classi�ed by their size

and two properties are calculated for each class.

/��
� c l a s s i f i e s b l ocks f o r Hosaka diagrams .
�

�@param S i s the var i ance l im i t o f the b locks .
�@param n i s the i n i t i a l b lock edge s i z e (power o f 2) .
��/
void c l a s s i f y (f loat S , int n)

f

divide the image into n� n-blocks ;

for (each block)

f

�
2
=variance of the block ;

i f ((�
2
> S) and (n > 1))

f

split this block into its four quadrants ;

split these quadrants, until they do not satisfy the

condition of this if-statement ;

g

g

g//end c l a s s i f y

Listing C.1: Classi�cation of the blocks for Hosaka diagram.

Let nk be the number of blocks in the class k of blocks having edge size k. Now

each class is processed separately. The mean value of the nth block in the class

k is calculated by

�k(n)=
1

k2

k�1X
i=0

k�1X
j=0

ei;j for n = 0; 1; : : : ; nk � 1 (C.2)

and the spot check variance of this block is calculated by

�
2
k(n)=

1

k2 � 1

k�1X
i=0

k�1X
k=0

(ei;j � �k(n))
2 for n = 0; 1; : : : ; nk � 1: (C.3)

2In Hosaka's original paper, an initial block size of 16 and a limit of 10 were used.

C.1 The Tile E�ect 173

The average of the mean values of the classes is then calculated for each class

by

�k=
1

nk

nk�1X
n=0

�k(n): (C.4)

and m is calculated as the arithmetic mean of the �i. Now the properties of

the image can be de�ned: the �rst property is

dmk=�k �m (C.5)

and the second property of the blocks is the average spot check variance

�k=
1

nk

nk�1X
n=0

�k(n): (C.6)

We measure these two properties both in the original image (dmk; �k) and in

the reconstructed image (dm0
k
; �

0
k
), where the blocks in the reconstructed image

are the same blocks created by the block classi�cation in the original image.

The Hosaka diagram is now de�ned by the values

dSk=j�k � �
0
k
j (C.7)

and

dMk=jdmk � dm
0
kj: (C.8)

The values are inserted in polar coordinates into the diagram, where the radius

is the assigned error value and the angles are chosen equidistant. For an example

of a H-plot see Figure C.3.

ÆÆ

Æ Æ Æ

�� ��
��

11
2 2

4 4

8 8

16 16
3232

dS dM

Figure C.3: A typical Hosaka diagram. The length of the rays de�ne the value

1.

In order to determine the properties of Hosaka diagrams, let us see what hap-

pens if we manipulate the images in a controlled way:

� If a constant value is added to each gray value (brightness shift), the

values of the Hosaka plot are all zero and the diagram consists only of the

origin. This feature re
ects that the image quality is not changed if we

alter the brightness of the image.

� If noise with zero mean is added to the gray values, the dMi will have

small values and the dSi get mean values proportional to the noise power.

174 Measures for Image Fidelity

For the detection of distortions caused by the tile e�ect, one has to assure that

the Hosaka blocks do not match the image segments used by the encoder. In

[Far90] the edges were cut and the Hosaka diagram has been applied to the

remaining image. For further details about Hosaka diagrams see [Far90] (pages

104{108) or [Hos86].

For all H-plots in this thesis we have used the value S = 10 and an initial block

size of 32.

Measuring Distortions in Color Images In color images, distances are

usually measured in the RGB color space using Euclidean metrics. So the

distance between two points e = (r; g; b) and ~e = (~r; ~g;~b) is de�ned as

d(e; ~e) =

q
(r � ~r)2 + (g � ~g)2 + (b� ~b)2: (C.9)

Note: Let us remark that this measure is not adapted to human color sensi-

tivity since the error is measured equally on all channels.

� It is a well-known fact that the human visual system is able to distinguish

much more green than blue graduations. This phenomenon is explained

by the fact that primeval humans had to distinguish many plants by the

color grade while the color blue occurs rarely in this area.

� Another well-known fact is that females are able to distinguish more grad-

uations in the red area than males. This phenomenon is commonly ex-

plained by the fact that primeval females were engaged by the breeding

of the children. In this often emotional work the precise determination of

the color grade of the human skin is useful.

� It is known that at low luminances no color sensitivity is possible at

all. This fact could be re
ected by a chrominance weighting function

diminishing for low luminances.

� The spatial resolution of human color sensitivity is much lower than the

resolution for luminance sensitivity. This fact is commonly utilized by

down-sampling the chrominance channels.

� The color sensitivity curves vary individually from human to human.

There are proposals for color systems using more than three color chan-

nels.

Nevertheless, such criteria for human color vision are controversial. This is the

main reason why we do not examine this interesting area any further. For more

details about human color sensitivity see [Ohm95]. �

Appendix D

Digital Image Filters

Digital image �lters are used in image processing for many kinds of image ma-

nipulations like enhancement of image quality and highlighting of certain image

properties for pattern recognition. In this thesis, we are mainly interested in

oppressing the artifacts generated by lossy WFA coding. We still have to in-

vestigate whether digital �lters can be used as a preprocessing step to encoding

an image to enhance compression performance. Such a step could for example

smooth image patterns which are hard to encode.

Most of the �lters considered here operate locally on a limited neighborhood

of a pixel, which could for example be one of the set shown in Figure D.1.

Because we can give only a short introduction to digital �lters, we refer for

further reading to [Jai89, RK82].

eijnn n n

n

n

n

n

eijn

n n n

n

n

nn

Figure D.1: Neighborhoods for digital �lters.

D.1 A Neighborhood-Based Filter in AutoPic

AutoPic allows the application of neighborhood-based �lters to the main image

window. If the button convolve 3�3 is pressed, a dialog (see Figure D.2) is

shown allowing the input of arbitrary �lter coeÆcients based on a neighborhood

as shown in Figure D.1 (left side).

If the �lter matrix C contains the values

C =

0
@ c�1;�1 c0;�1 c1;�1

c�1;0 c0;0 c1;0

c�1;+1 c0;+1 c1;+1

1
A ; (D.1)

176 Digital Image Filters

Figure D.2: The general neighborhood �lter of AutoPic.

the Add �eld contains the value a and the Div �eld contains the value d, then

each pixel brightness pi;j (in case of color images the �lters are applied inde-

pendently to the channels R, G, and B) is replaced by the value

pi�1;j�1c�1;�1 + pi;j�1c0;�1 + pi+1;j�1c1;�1
+pi�1;jc�1;0 + pi;jc0;0 + pi+1;jc1;0

+pi�1;j+1c�1;+1 + pi;j+1c0;+1 + pi+1;j+1c1;+1 + a

d
(D.2)

This process is applied for each pixel, where the brightness values of the original

image are used, not the new values computed by the �lter. At the image

boundaries we use the brightness of the next pixel in the image for the �lter.

With this general �lter, a huge amount of image �lters can be constructed

for applications like edge detection and digital smoothing. For convenience,

some �lters are prede�ned and other �lters are implemented which can not be

constructed by this simple scheme.

Below we will give only some hints how to construct image �lters for some

speci�c tasks and give examples of how to combine �lters.

D.2 Digital Smoothing

In digital smoothing the gray value of a given pixel is replaced1 by a specially

weighted combination of its neighboring values. One can use for example the

following formula:

~ei;j =
4ei;j + ei�1;j + ei+1;j + ei;j�1 + ei;j+1

8
: (D.3)

After processing an image by using this operator, edges appear slightly smoo-

ther. The �lter can be applied several times to enhance the desired e�ect.

1This technique is reported in [Pin90] to enhance compression performance up to 25 percent

with only slight visual degradation by the image �lter.

D.3 Edge Detection 177

Another way to implement a smoothing �lter is by the use of image transforms.

If an image is transformed by methods described in appendix E on page 179

and coeÆcients belonging to high sequency basis vectors are set to zero prior to

reconstruction, sharp edges will often be removed from the image. The e�ect

depends on the utilized transform and the number of retained coeÆcients. We

also implemented more complex versions of low pass �lters, like the Butterworth

low pass �lter [RK82] attenuating the high sequency coeÆcients by multiplying

it by a factor which is the lower, the higher the sequency number is. Note that

these �lters can also be combined with wavelet techniques.

Nevertheless, the drawback of these �lters is that it smoothes all edges contained

in the given image. See section 4.4.14 on page 80 on how to implement an edge

smoothing algorithm only altering artifacts produced by the WFA algorithm.

The Median Filter This �lter replaces the gray value of the processed pixel

with the median of the gray values of the neighboring pixels. The median of a

set of numbers is the value m such that one half of the numbers is smaller or

equal to the value m, and the other half is greater than m. This �lter could

be used for preprocessing to enhance compression performance and for post

processing to eliminate distortions generated by lossy WFA coding.

D.3 Edge Detection

An important application of image �lters in AutoPic is the detection of edges

(produced by the tiling e�ect of WFA coding). For this task often image �lters

based on neighborhoods are applied.

Operators of First Order A simple way to detect edges is obtained by

applying one of the �lter matrices

�x =

0
@ 0 0 0

�1 +1 0

0 0 0

1
A or �y =

0
@ 0 �1 0

0 +1 0

0 0 0

1
A : (D.4)

This operator can also be designed in a similar way to detect edges in other

directions. Other variants of this �lter are

�P

x =

0
@�1 0 1

�1 0 1

�1 0 1

1
A (Prewitt operator),

�P

x =

0
@�1 0 1

�2 0 2

�1 0 1

1
A (Sobel operator),

�K

x =

0
@�3 �3 5

�3 0 5

�3 �3 5

1
A (Kirsch operator). (D.5)

178 Digital Image Filters

Operators of Second Order A common technique is to build �lters similar

to the second order derivative. In this way the following �lters may be built:

�2
x =

0
@ 0 0 0

1 �2 1

0 0 0

1
A (second derivation operator),

�L =

0
@ 0 1 0

1 �4 1

0 1 0

1
A (Laplace operator),

�BL =
1

4

0
@ 1 2 1

2 �12 2

1 2 1

1
A (binomial Laplace operator). (D.6)

The Laplace �lter is named by the well-known Laplace operator in di�erential

analysis and is often used to detect edges in x- and y-direction. The binomial

Laplace �lter is obtained by applying �rst a binomial smoothing of the image

and afterwards applying the Laplace edge �lter. This �lter is therefore often

used to detect only very strong edges.

Another way to implement an edge detecting �lter is by the use of a high

pass �lter. These �lters are de�ned analogously to low pass �lters, but instead

of retaining the low sequency coeÆcients, we now retain the high sequency

coeÆcients. We also implemented more complex versions of low pass �lters, as

the Butterworth high pass �lter which is de�ned analogously to the Butterworth

low pass �lter.

Appendix E

Image Bases

As we stated earlier, the WFA codec requires an initial basis to start the en-

coding process with at least one state image. As already stated in [Haf99], the

compression results are better if an initial basis with more than one state is

used. Here the question arises which basis vectors have to be chosen in order to

achieve best compression results. Hafner uses initial states obtained by storing

an image containing several images of the discrete cosine transform. The re-

constructed state images thus do not represent the images exactly, but on the

other hand Hafner's implementation is faster1 than ours.

In this chapter, we �rst introduce the topic of transform coders and present

some image transforms whose basis vectors can also be used as initial state

images in WFA coding.

E.1 Transform Codecs

Image transforms as cosine or Walsh transform have the goal to give an almost

uncorrelated representation of a given image. The transform itself does not

achieve compression, but the obtained coeÆcients can often be coarsely quan-

tized. Transform codecs were for a long time the state of the art codecs and are

up to now the most widespread image coders, especially the JPEG compression

standard which is thoroughly described in [Wal91].

1Hafner computes the scalar products of state images by a recursion scheme exploiting the

WFA structure. Thus the direct calculation of scalar products is omitted. The drawback of

this scheme is that also initial states have to be provided by a WFA structure. We will not

explain this scheme and refer to [Haf99].

180 Image Bases

E.2 Orthogonal Function Systems

A function system ffi(x)g with i 2 I and I � N is called orthogonal with

respect to the integration interval [x0; x1] with x0; x1 2 R i�

x1Z
x0

fi(x)fj(x) dx = ciÆi;j (i; j 2 I); (E.1)

where Æi;j is the Kronecker symbol. If ci = 1 (i 2 I), the function system is

called orthonormal. In the following sections we want to restrict to real valued

orthonormal function systems.

E.2.1 Sum Representation with Orthonormal Functions

Let f(x) be a real valued function, quadratically integrable in the interval

[x0; x1]:
x1Z

x0

(f(x))2 dx <1: (E.2)

Now we want to approximate f(x) in [x0; x1] with orthonormal functions, mean-

ing that we want to obtain a representation

n�1X
i=0

�ifi(x) (E.3)

minimizing a given distortion measure for a given n 2 N n f0g. As distortion

measure we use the quadratic error

1

x1 � x0

x1Z
x0

f(x)�

n�1X
i=0

�ifi(x)

!2

dx: (E.4)

Theorem E.2.1 The coeÆcients minimizing the quadratic error are given by

�i =

x1Z
x0

f(x)fi(x) dx: (E.5)

Proof: We assume that we have another approximation for the function withP
i
�ifi(x). Then we can calculate the quadratic error2 as

MSE =

x1Z
x0

f(x)�

n�1X
i=0

�ifi(x)

!2

dx (E.6)

=

x1Z
x0

f
2(x) dx� 2

n�1X
i=0

�i

x1Z
x0

f(x)fi(x) dx

| {z }
�i

2We leave out the constant factor 1=(x1 � x0) > 0.

E.2 Orthogonal Function Systems 181

+

x1Z
x0

n�1X
i=0

�ifi(x)

!2

dx (E.7)

=

x1Z
x0

f
2(x) dx� 2

n�1X
i=0

�i�i +

n�1X
i=0

�
2
i (E.8)

=

x1Z
x0

f
2(x) dx�

n�1X
i=0

�
2
i +

n�1X
i=0

(�i � �i)
2
: (E.9)

The last term vanishes if �i = �i for all i 2 f0; : : : ; n� 1g. �

Because MSE � 0 we can conclude the inequality of Bessel:

nX
i=0

�
2
i �

x1Z
x0

f
2(x) dx: (E.10)

The orthonormal system ffi(x)g is called complete i� the following equation

holds for each quadratically integrable function f :

lim
n!1

x1Z
x0

f(x)�

nX
i=0

�ifi(x)

!2

dx = 0: (E.11)

In this case the inequality of Bessel turns to the equality of Parseval:

1X
i=0

�
2
i =

x1Z
x0

f
2(x) dx: (E.12)

E.2.2 Representation of a Function for a Finite Number of Sam-

pling Points

In this thesis we need the approximation of a �nite number of sampling points.

Thus we turn the back to the above representation where an in�nite number of

samples were approximated. Therefore, we assume that we have n (n 2 N nf0g)
sample points xk and n functions for that task.

Analogously to equation E.1 on the preceding page we de�ne the orthogonality

of the function system ffi(x)g as
n�1X
k=0

fi(xk)fj(xk) = Æi;j : (E.13)

The sum generation is done using the formula

ek =

n�1X
i=0

�ifi(xk) (E.14)

182 Image Bases

where the coeÆcient �i is calculated by

�i =

n�1X
k=0

ekfi(xk): (E.15)

The reason for this kind of representation is given in the next section where we

examine these representations using methods of linear algebra.

E.2.3 Representation with Transform Matrices

The above sum can be represented by the multiplication of the sample vector3

e = (e0; : : : ; en�1) with a transform matrix T whose column vectors are the

function values of orthonormal functions4 (if e is an n-ary vector then T is a

n� n matrix). The transform can thus be written as

f = eT (E.16)

and the inverse transform can be written as

e = fT
� (E.17)

where T � is the conjugated transposed matrix of T . The coeÆcients of the basis

vectors can then be found in the vector f = (f0; : : : ; fn�1).

Now we may write the orthonormality condition more conveniently as

T
�
T = I; (E.18)

where I denotes the n-dimensional unity matrix. The equation E.18 means that

T is a unitary matrix. The multiplication of a vector with such a matrix can

be interpreted as a basis changing from one orthonormal basis to another or-

thonormal basis. Equation E.15 can be interpreted as scalar product with basis

vectors and equation E.14 as linear combination of basis vectors. Furthermore,

in this representation equation E.18 corresponds to equation E.13. If we refer

in the following calculations to the matrix components of T , we write

T =

0
B@

t0;0 : : : t0;n�1
...

...

tn�1;0 : : : tn�1;n�1

1
CA : (E.19)

3In order to emphasize that we transform a vector, we write in this paragraph e. In the

next paragraph, we transform an image block, written as e. This convention is leaned on

books on physics and will only be used in this section.
4Besides that we augment our representation at this point to complex valued function

systems.

E.3 A Statistical Experiment 183

Two Dimensional Transform

Since for the application of image compression one not only wants to bene�t of

correlation in one dimension but in two dimensions, a two dimensional transform

has to be performed. We assume that the image or the image segment is

represented as a n � n-matrix e. This is done by multiplying the transposed

matrix from the other side. So the transform can now be written as

f = T
t
eT; (E.20)

and the inverse transform is written as

e = TfT
�
: (E.21)

The term T denotes the matrix
�
ti;j

�
.

E.2.4 Image Energy

Unitary transforms conserve the image energy

jjejj2 =
n�1X
i=0

e
2
i = e e

t
; (E.22)

as can be seen at the following identities:

jjejj2 = e e
t (E.23)

= (fT �)(fT �)t (E.24)

= f(T �T)f t (E.25)

= f f
t (E.26)

= jjf jj: (E.27)

Note that this equation is also called equality of Parseval. Because of the

linearity of the transform, the quantization error is also the same, independent

of whether the error is measured in the original or in the transformed image.

This fact can be used for the quantization of the transform coeÆcients. Because

of the conservation of image energy we can also explain the frequently used

term compaction of image energy: unitary transforms put the image energy of

\normal images" in only a few coeÆcients and have many coeÆcients at values

near zero.

E.3 A Statistical Experiment

As another motivation for image transforms we consider a (�ctive) statistical

experiment: we assume that we had some digitized images and cut these image

184 Image Bases

Figure E.1: A statistical experiment.

into blocks of size 1 � 2. Now we choose randomly a great number of blocks

from the generated domain. Because the two pixels in the blocks are adjacent,

it is likely that both pixels in the block have a similar gray value. If we now

drew a scatter plot of these gray values, meaning that we draw a point for each

block, which coordinates are both gray values of the block, so we would obtain

a scatter plot similar to that in Figure E.1 (left side). At this drawing one

makes the observation that most points lie around the line y = x, because of

the correlated gray values considered above.

Now we assume that we rotate the coordinate system around the angle �=4 in

mathematical positive direction respective the origin and obtain so the coordi-

nate axis ~x and ~y (see Figure E.1 (right side)). We observe that the values are

almost decorrelated.

At both scatter plots we can also make another observation: if we assume we

had to cut a coordinate (set to 0), we would have big distortions in the �rst set

of data in both cases. In the right set of data we could set the ~y coordinates

to zero without obtaining big distortions. This e�ect is utilized by transform

codecs with the only di�erence that bigger image blocks are used. More details

about image energy can be found in [Jai89, GW92, Win72].

E.4 Some Linear Transforms

In the next sections we present some well-known linear transforms which are

frequently utilized in transform coding. In order to test the performance of these

transforms with WFA coding, we have implemented most of the transforms

listed below.

E.4.1 The Hotelling Transform

The Hotelling transform5 is de�ned as the transform annulling the pairwise

correlation of each pair of transform coeÆcients. It can therefore be seen as the

statistical optimal transform for data compression.

5The Hotelling transform is often called the discrete Karhunen-Lo�eve transform.

E.4 Some Linear Transforms 185

Theorem E.4.1 The basis vectors ti of the Hotelling transform are the real

valued, orthonormalized eigenvectors6 of the correlation matrix R with

ri;j = Ef(ei �Efeig)(ej �Efejg)g; (E.28)

where we assume that R is non-singular. Therefore, the equation

Rtk = �ktk; (E.29)

holds where the �k are the eigenvalues of R for k 2 f0; : : : ; n� 1g.

Proof: Without loss of generality we assume Efeig = 0 (i 2 f0; : : : ; n � 1g).
We observe that

ri;j = E feiejg (E.30)

= E

(
n�1X
k=0

fktk;i

!
n�1X
l=0

fltl;j

!)
(E.31)

=

n�1X
k=0

n�1X
l=0

tk;itl;jE ffkflg (E.32)

=

n�1X
k=0

n�1X
l=0

tk;itl;j�lÆk;l (E.33)

=

n�1X
l=0

tl;itl;j�l (E.34)

where in step E.33 the correlation matrix of fi was assumed as a diagonal matrix

corresponding to uncorrelatedness. The multiplication of both sides with tk;j

and summation using index j leads to

n�1X
j=0

ri;jtk;j =

n�1X
j=0

n�1X
l=0

tl;itl;jtk;j�l (E.35)

=

n�1X
l=0

tl;i�l

n�1X
j=0

tl;jtk;j

| {z }
Æk;l

(E.36)

=

n�1X
l=0

tl;i�lÆk;l (E.37)

= �ktk;i: (E.38)

In vector notation this can be written as

Rtk = �ktk: (E.39)

6Because the correlation matrix is real valued and symmetric, the existence of the orthonor-

malized basis consisting of eigenvectors is ensured.

186 Image Bases

�

If the eigenvectors are sorted in descending order with respect to the associated

eigenvalues, the image energy is compacted7 in the lower coeÆcients. [NH88]

gives a proof that the Hotelling transform produces the smallest distortion

among all linear transforms due to the cutting of coeÆcients. Despite the

bene�ts of this transform, it is almost never used in image coding because of

the following disadvantages:

� The covariance matrix is often non-stationary. For this reason, this matrix

would have to be recalculated for each image block to achieve optimal

results.

� Fast transform algorithms only exist for special cases [Jai89].

� Because image statistics di�er from image to image, one would have to

transmit extra information. In the application of data compression this

would produce an overhead which is not diminished by the bene�ts of this

transform.

Because of these drawbacks, researchers are looking for transforms achieving

similar results as the Hotelling transform without its drawbacks. A frequently

used approximation to this transform is the cosine transform which is addressed

in the next section.

E.4.2 The Discrete Cosine Transform

The discrete cosine transform is related to the discrete Fourier transform and is

commonly assumed to be the best8 suited transform for image compression due

to its very good compaction of energy [NH88]. For this reason, this transform

is often used in practice, as for example in the JPEG and MPEG standards.

If the set �
1p
n

�
[
(r

2

n
cos

�
2j � 1

2n
(i� 1)�

�
: i = 2; : : : ; n

)
(E.40)

or stated otherwise(r
1 + �i

n
cos

�
2j � 1

2n
(i� 1)�

�
: i = 1; : : : ; n

)
with �i =

n
0 if i = 1

1 else

(E.41)

7The term \compaction of the image energy" refers to the fact that the coeÆcients men-

tioned above have the greatest in
uence on the reconstructed image. Or stated di�erently,

the cutting of these coeÆcients produces high distortions in the sense of the mean squared

error. See also section E.2.4 on page 183.
8This statement is based on empirical tests.

E.4 Some Linear Transforms 187

is chosen as orthogonal basis vectors (discrete) for j = 1; : : : ; n, the resulting

transform is called cosine transform. The transform matrix is therefore built

as

ti;j =

r
1 + �j

n
cos

�
2i� 1

2n
(j � 1)�

�
: (E.42)

For more details on the DCT see [AN83].

E.4.3 The Hadamard Transform

The Hadamard transform takes on values in the set f�1;+1g . Since this

transform is de�ned only for signal lengths having powers of 2, we write N = 2n

for n 2 N n f0g. We de�ne this transform by the use of transform matrices in

the following way:

H1 =
1p
2

�
1 1

1 �1

�
;

Hn+1 =
1p
2

�
Hn Hn

Hn �Hn

�
for n 2 N n f0g: (E.43)

Since the basis vectors of the Hadamard transform can also be de�ned by uni-

formly sampling the so-called Walsh functions, this transform is also called

the Walsh-Hadamard transform. The basis vectors are not sequency ordered,

and thus the ordered version is called the ordered Hadamard transform. The

Hadamard transform can be implemented so that it is performed in O(N logN)

time without multiplications. The (ordered) Hadamard transform was used fre-

quently in transform codecs, but is now rarely used since the cosine transform

has proven superior.

E.4.4 The Slant Transform

Since the Slant transform is only de�ned for powers of 2, we write N = 2n for

n 2 N n f0g. The transform is de�ned by matrix multiplication in the following

way:

S1 =
1p
2

�
1 1

1 �1

�
(E.44)

and

Sn =
1p
2

0
BBBBBBBBB@

1 0

an bn
0

1 0

�an bn
0

0 IN=2 � 2 0 IN=2 � 2

0 1

�bn an
0

0 �1
bn an

0

0 IN=2 � 2 0 �IN=2 � 2

1
CCCCCCCCCA

�
Sn�1 0

0 Sn�1

�

(E.45)

188 Image Bases

for n � 2 where 0 denotes the zero matrix of the appropriate size and the

parameters an and bn are de�ned by the following equations

an+1 =

r
3N2

4N2 � 1
and bn+1 =

r
N2 � 1

4N2 � 1
: (E.46)

Let us remark that the basis vectors of the Slant transform are not sequency

ordered. See [Jai89] for how to order the basis vectors eÆciently by construction.

Extensive information about the Slant transform can be found in [PCW74].

E.4.5 The Haar Transform

This transform is also only de�ned for powers of two (N = 2n). The discrete

Haar transform is obtained by �rst constructing continuous Haar functions

hk(x) with k 2 f0; : : : ; N � 1g over the interval [0; 1) and afterwards sampling

these functions equidistantly. The index k can be uniquely written as

k = 2p + q � 1 with p 2 f0; : : : ; n� 1g and
�
q 2 f0; 1g for p = 0

q 2 f1; : : : ; 2pg for p 6= 0
:

(E.47)

Now we can de�ne the Haar functions by

h0(x) = h0;0(x) =
1p
N

for x 2 [0; 1) (E.48)

hk(x) = kp;q(x) =

8>><
>>:

2p=2p
N

for x 2
h
q�1
2p
;
q�1=2
2p

�
,

�2p=2p
N

for x 2
h
q�1=2
2p

;
q

2p

�
,

0 for other values x 2 [0; 1).

(E.49)

The basis vectors of the Haar transform are obtained by sampling the Haar

functions at the values m=N with m 2 f0; : : : ; N � 1g. The Haar functions are
sequency ordered. This transform is not very interesting for energy compaction

reasons, but it is acknowledged as the \grandfather" of wavelet transforms. It

is interesting to see that this transform can be done extremely fast in O(N)

time using only additions and subtractions. For further details concerning this

transform see [SS98].

E.5 Quantization of the CoeÆcients

The following statements are made for \usual" image models. Using only trans-

forms achieves no compression, but the transforms may achieve a representation

suited better for compression than the original representation. In case that one

changes a value in the transformed data, the distortion is no longer local, but

spreads over the whole transform block (for the transforms considered in this

thesis). The Hotelling transform decorrelates the input data completely, which

is only approximated by the other transforms. Most information of the image

E.5 Quantization of the CoeÆcients 189

segment is put in the coeÆcients belonging to the lower-sequent9 functions. If

the basis functions are ordered by sequency and placed in the transform ma-

trix, most image energy is found after transform in the upper left corner of the

coeÆcient matrix. In order to evaluate this energy compaction, the coeÆcients

are stored in \zigzag order", as shown in Figure E.2 (this order simpli�es the

cutting of the zero coeÆcients). In this �gure, the number of sign changes is

hinted by fx and fy in x- or y-direction respectively.) The upper left coeÆ-

cient has special meaning: since it belongs to the constant basis function10 in

x- and y-direction, this coeÆcient is therefore called DC coeÆcient. The other

coeÆcients are usually called AC coeÆcients.

-

?

-
��	
?���
���
-
��	

��	
��	
?���
���
���
���
-
��	

��	
��	

��	
��	
?���
���
���
���
���
���
-
��	

��	
��	

��	
��	

��	
��	-���

���
���
���
���
���?
��	

��	
��	

��	
��	-���

���
���
���?
��	

��	
��	-���

���?
��	-

fx

fy
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
. . .

� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �

Figure E.2: Zigzag order of the coeÆcients.

A convenient method to achieve data compression is to encode a �xed or vari-

able number of coeÆcients, but this method does not achieve high compression

performance. Better compression performance is achieved by individual quan-

tization where more bits are assigned to the lower-sequential coeÆcients. The

bit assignment can be done by a quantization matrix, for which you can see an

example in Figure E.3. In practice, prede�ned quantization matrices are often

used instead.

0
BBBBBBBBB@

6 4 3 3 2 1 0 0

4 3 2 2 1 1 0 0

3 2 2 1 0 0 0 0

3 1 1 0 0 0 0 0

1 1 0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

1
CCCCCCCCCA

Figure E.3: Typical bit assignment matrix for transform codecs (0.75 bit/pixel).

Transform coding achieves high compression ratios if one can tolerate moderate

distortions. In the literature one can �nd other transforms, such as the Hartley

9The sequency number is the number of sign changes of that function in a given interval

[Har68].
10Some orthogonal function systems do not contain a constant function, but they have no

widespread use in image coding and will thus not be examined here.

190 Image Bases

transform, but these transforms have proven to be inferior to the transforms

described in this thesis (see [Far90] for a comparison). For further reading we

refer to [Jai89].

Appendix F

Elementary Coding

Techniques

F.1 Suppression of Zeroes

The suppression of zeroes is a data compression technique searching a data

stream for sequences of zeroes1 and storing them more eÆciently. If such a

sequence is found, it is replaced by a special (usually shorter) sequence. As the

�rst symbol of this new sequence, a special symbol (also called escape sequence)

is used indicating that at this point zero suppression has been applied. The

second symbol is the number of zeroes which have been replaced. The coding

process is illustrated in Figure F.1 where 0 is the suppressed symbol and the

sign Z indicates the zero suppression.

A B C Z 3 D E

A B C 0 0 0 D E F

F

original sequence

transformed sequence

Figure F.1: Zero suppression.

The technique of zero suppression should only be utilized if the escape sequence

and the counter require less bits to store than the sequence in plain text. Note

that the extra symbol can be generated in an easy way by an arithmetic codec.

A variant of this technique is that a �xed number of zeroes can be encoded by

one escape symbol (an example for this is the tabulator key on each computer

keyboard).

1In this context, zero refers to a special symbol in the data stream which is repeated

frequently. For text coding, this could be the space symbol. The term zero is due to its

historical use and will not be changed here.

192 Elementary Coding Techniques

F.2 Run Length Encoding

The method of run length encoding (RLE) is a special form of zero suppression

and is commonly used in coding of facsimile coding. Because long sequences of

equal gray values occur often in digital images, this property may be applied to

data compression. Instead of repeating the gray values, the gray value followed

by the length of the current sequence is encoded.

Example: We assume that we wish to encode the following sequence of num-

bers: \3, 3, 3, 1, 1, 5, 5, 5, 5". With run length encoding we would obtain the

following sequence of 2-tuples: \(3, 3), (1, 2), (5, 4)". �

High compression performance may be achieved especially for binary images2,

since often long sequences of equal gray value can be found in such images. The

storage of the gray values may be avoided since the gray values are alternating.

The eÆciency of run length encoding depends especially on the average length

of the encoded sequences. In this case escape sequences may also be applied.

Such sequences can be encoded with runs of zero length. RLE is frequently

used in image coding applications such as facsimile, but is inferior for example

on images with text because there one rarely �nds long runs. In facsimile

compression, RLE is often combined with an end-of-line-symbol to restrict the

results of transmission errors to small image areas.

Note that RLE has also been extended to two dimensions where the lengths of

the runs are encoded di�erentially. More information about run length encoding

can be found in [NH88, Pin90].

F.3 Some Pre�x Encoders

This kind of coding tries to lower the average code word length by assigning

symbols with higher probability shorter code words and assign the longer code

words to symbols with lower probability. This kind of coding, as the arithmetic

coding mentioned above, is called entropy coding since the goal is to assign an

input symbol a code word length resembling its information gain. The problem

of pre�x encoders is that they approach the entropy limit not as closely as the

arithmetic coder. We are mentioning these coders only to show an analogy

between the WFA encoder and these coders.

F.3.1 The Shannon Fano Coder

The Shannon Fano coder is an initial stage to the Hu�man encoder presented

in the next section. Its codes are not necessary optimal, but the encoder is

popular because of its simplicity.

2A binary image has at most two gray values.

F.3 Some Pre�x Encoders 193

At the �rst stage for the construction of the code, the data has to be analyzed

to calculate the probabilities of the input symbols. Afterwards, one has to sort

the input symbols descendingly regarding their probabilities.

The next step is to partition the set of input symbols to two subsets with

approximately the same overall probability. The symbols of the �rst group are

assigned a 0 as the �rst bit in their code word and the symbols of the second

group are assigned a 1 as the �rst bit in their code word. After that the process

is repeated independently on both groups until no further division is possible.

Now it is clear that the Shannon Fano coding provides a minimal pre�x code

and has a time complexity of O(jEj log jEj) for the construction of the coding

tree. The construction of the coding tree is illustrated in Figure F.2 (left side),

where the division is illustrated by lines of di�ering lengths. The resulting

coding tree is shown in Figure F.2, having an average code word length of 2:2

bit per symbol. This value is close to the lower bound of approximately 2:16

bit per symbol.

0:05

0:07

0:08

0:10

0:30

0:40e0

e1

e2

e3

e4

e5

0

1 0

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

:

:

:

:

:

:

ei pi C(ei)

1.00

e0 0.60

e1 0.30

0.18 0.12

e2 e3 e4 e5

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

Figure F.2: Construction of the Shannon Fano code tree.

The Shannon Fano code is useful when the splitting to subsets is done to groups

with exactly the same probabilities. But due to the optimality of the Hu�man

code, the Shannon Fano code is in general inferior. But the Shannon Fano

code approximates an optimal code if the order of the input alphabet tends to

in�nity [NH88].

F.3.2 The Hu�man Coder

The Shannon Fano coder was nearly completely displaced already a few years

after its invention. The Hu�man encoder yields with slightly higher implemen-

tation e�ort an optimal pre�x code meaning that there exists no pre�x code

achieving a lower average code word length. This improvement is obtained by

the creation of the coding tree bottom up instead of top down as in the case of

Shannon Fano coding.

194 Elementary Coding Techniques

Construction of the Hu�man Code Tree

A prerequisite for the construction of the Hu�man coding tree is, as is the case

for all statistically-based coders, that the probabilities of the input symbols are

known. At the generation of the code tree we interpret the trees as binary

trees. The assigned probabilities are stored in the nodes after completion of the

generation process as code tree.

In the �rst step, we generate a single node for each input symbol e 2 E with

pe > 0. Afterwards we search the two nodes with lowest probabilities and create

a new node to which the two nodes with lowest probability are appended. This

new tree is assigned the sum of the two probabilities of its children. We continue

in this manner and merge trees with lowest probabilities until only one binary

tree remains. The merging of n trees (n � jEj) requires exactly n� 1 merging

steps. Note that the symbols with the lowest probability will be in the lower

part of the resulting code tree and the symbols with higher probability are

near the root of that tree. This process is illustrated in Figure F.3 where the

steps are shown from top to bottom and the assigned probabilities are stored in

the nodes of the tree. The tree obtained in this example does not surpass the

average code word length of the Shannon Fano code tree of 2:2 bit per symbol

(see Figure F.2), as the two obtained coding trees can be transformed to each

other by the swapping of subtrees at the same niveau.

The construction of a Hu�man code tree is performed by using a heap and has

a time complexity of O(jEj log jEj), where E is the input alphabet. A pseudo

implementation is given in listing F.1.

/��
� c on s t r u c t s a Huffman code .
�

�@return a code with minimal average code word length
� in code t r e e form .
��/
CodeTree Huffman ()

//assumes that pe > 0 8e 2 E holds .
f

while (there is more than one tree)

f

determine the two trees with the lowest probabilities ;

merge these trees to a new tree with the sum of the two

probabilities in the root and the two trees as children ;

g//end whi l e
return the resulting tree ;

g//end Huffman

Listing F.1: Creation of the Hu�man code tree.

For a proof that the so obtained code tree is optimal and adaptive versions of

Hu�man coding we refer to [Kat94].

F.3 Some Pre�x Encoders 195

0.40 0.30 0.10 0.08 0.07 0.05

0.40 0.30 0.12 0.10 0.08

0.07 0.05

�
�
�
�

0.40 0.30 0.18 0.12

0.10 0.08 0.07 0.05

�
�
�
�

�
�
�
�

0.40 0.30 0.30

0.18 0.12

0.10 0.08 0.07 0.05

�
�
�
�

�
�
�
�

�
�
�
�

0.40 0.60

0.30 0.30

0.18 0.12

0.10 0.08 0.07 0.05

�
�
�
�
�
�
�
�

�
�
�
�

�
�
�
�

1.00

0.40 0.60

0.30 0.30

0.18 0.12

0.10 0.08 0.07 0.05

�
�
�
�
�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

Figure F.3: Construction of the Hu�man code tree.

196 Elementary Coding Techniques

Appendix G

Bounds for Coding EÆciency

In this section we discuss bounds for the compression eÆciency of codecs. C.

E. Shannon has proved that these bounds can be approached arbitrarily close.

For this reason, we will have an eÆciency test for encoders in case that the

required bound can be calculated. Unfortunately these bounds give no hint for

constructing eÆcient encoders approaching these bounds.

G.1 Bounds for Lossless Encoding

An important result of Shannon states that the average code word length cannot

be smaller than the entropy H of the encoded source. However, the result we

need here is that the empirical entropy is a lower bound for the average code

word length:

LC � H = �
X

pi log pi (G.1)

where E = feig is an input alphabet with relative frequencies ni=N , ni is the

frequency of the symbol ei and N =
P

ei2E ni.

Proof: The proof is done by induction on the number of transmitted symbols.

The induction hypothesis is written as

L
(N)
C

� �
X ni

N
log

ni

N
; (G.2)

where L
(N)

C
is the average code word length of N transmitted symbols.

The induction base, here the statement for N = 1, is ful�lled, since the entropy

is in this case 0 and the average code word length is non-negative. Induction

step: now we assume that the statement is ful�lled for an N 2 N n f0g. At �rst
we split the set of input symbols into two classes: the class E0 contains the

symbols having as �rst code bit a 0 and E1 contains the input symbols having

as �rst code bit a 1. The number of transmitted symbols in these classes are

called N0 or N1 respectively. We write this as

N0=
X

i:ei2E0

ni and N1=
X

i:ei2E1

ni: (G.3)

198 Bounds for Coding EÆciency

We can also see that N0; N1 � 1 since otherwise the code would not be optimal

because we would waste bits. With N0 + N1 = N + 1 we can conclude that

1 � N0 � N and 1 � N1 � N and we can apply the induction hypothesis to

E0 and E1:

L
(N+1)
C

� 1� N0

N + 1

X
fi:ei2E0g

ni

N0
log

ni

N0

� N1

N + 1

X
fi:ei2E1g

ni

N1

log
ni

N1

(G.4)

= 1�
X

fi:ei2E0g

ni

N + 1
log

ni

N0

�
X

fi:ei2E1g

ni

N + 1
log

ni

N1

(G.5)

= 1�
X

fi:ei2E0g

ni

N + 1
logni �

X
fi:ei2E1g

ni

N + 1
logni

� N0

N + 1
log

1

N0

� N1

N + 1
log

1

N1

(G.6)

= �
X

fi:ei2Eg

ni

N + 1
log ni

+1� N0

N + 1
log

1

N0
� N1

N + 1
log

1

N1
(G.7)

= �
X

fi:ei2Eg

ni

N + 1

�
log

ni

N + 1
� log

1

N + 1

�

+1� N0

N + 1
log

1

N0
� N1

N + 1
log

1

N1
(G.8)

= �
X

fi:ei2Eg

ni

N + 1
log

ni

N + 1
+ 1 + log

1

N + 1

� N0

N + 1
log

1

N0

� N1

N + 1
log

1

N1

(G.9)

The �rst term of the right side is the entropy of the new class. Because of

that we have now to show that the rest is non-negative. So we consider the

expression

1 + log
1

N + 1
� N0

N + 1
log

1

N0

� N1

N + 1
log

1

N1

(G.10)

= 1 +
N0

N + 1
log

1

N + 1
+

N1

N + 1
log

1

N + 1

+
N0

N + 1
logN0 +

N1

N + 1
logN1 (G.11)

= 1 +
N0

N + 1
log

N0

N + 1
+

N1

N + 1
log

N1

N + 1
(G.12)

= 1 + x log x+ (1� x) log(1� x) =: f(x) (G.13)

G.2 Bounds for Lossy Encoding 199

with x = N0

N+1
2 (0; 1). This function has

a local minimum at the point 1
2
, whose

image is f(1
2
) = 1 + log 1

2
= 0 and has no

other minima. For the graph of this func-

tion see the Figure to the right. There-

fore, the entropy is proven to be the stated

bound. For further details see [BCW90]. -

6

0.25 0.50 0.75 1.00

0.50

1.00 f(x)

x

�

G.2 Bounds for Lossy Encoding

As we have seen in the last section, the entropy is a lower bound for lossless

coding techniques. For lossy methods, the search for such bounds is much

harder. We consider the coding algorithm as a noisy transmission channel. The

distortions caused by the compression coder are therefore seen as noise in this

channel.

For a given random variable e a strategy to encode the obtained values with a

given average distortion

d=E fd(e; f)g (G.14)

has to be found. This technique shall also minimize the number of bits used for

the transmission. Here d(:; :) is a measure for the distortion (metric) between

the input e 2 E and the output f 2 F .

Let p(e) be the probability of the occurrence of e, p(f) the probability of f ,

p(f je) the conditional probability of f under the assumption that e is known

(the probability that the symbol f is read out of the channel while e was put

into the channel) and p(e; f) the probability of the occurrence of e and f .

The rate{distortion function is de�ned as

R(d)=minfI(E;F)g (G.15)

where the minimum is taken above all codes, possessing an average distortion

less or equal to the bound d. The average trans-information I(E;F) is de�ned

by

I(E;F) = E fI(e; f)g (G.16)

= E fI(p(f))� I(p(f je))g (G.17)

=
X

e2E;f2F

p(e; f) (I(p(f))� I(p(f je))) (G.18)

= �
X

e2E;f2F

p(e; f) (log p(f)� log p(f je)) (G.19)

= �
X

e2E;f2F

p(e)p(f je) log p(f)

p(f je) (G.20)

200 Bounds for Coding EÆciency

=
X

e2E;f2F

p(e)p(f je) log p(f je)
p(f)

: (G.21)

The function R(d) is therefore only de�ned for non-negative values and is non-

negative. Besides that it can be shown that R(d) is monotonically decreasing,

continuous and convex [RK82]. In the above calculation, the de�nition of trans-

information1 I(e; f) is implicitly given in line G.17. For an example of such a

rate{distortion function look for example at Figure G.1. Note that for most

rate{distortion diagrams in this thesis we employed the �delity measure PSNR

instead of RMSE. We did this as an adaptation to most literature in image

compression to ease comparisons with other compressors.

-

6
distortion

rate

Figure G.1: Typical rate{distortion diagram.

The rate{distortion function due to Shannon gives us a lower bound for the

number of required bits to transmit below a given distortion. However, this

bound is only theoretical and no encoder may be constructed using this theory

operating close to this bound. This theory also brings other problems to our

consciousness:

� The rate{distortion function is hard to calculate for many statistical dis-

tributions.

� The de�nition of an optimal distortion measure matching the human vi-

sual system is an open problem (see also section C on page 169).

� The required statistics are often unknown.

� The required probabilities are often non-stationary, meaning that they

take di�erent values in di�erent regions.

� It is hard to construct an encoder approaching the calculated limit.

1Because I(e; f) = I(f ; e) the trans-information is also called mutual information.

Appendix H

Image Compression with IFS

Codes

The method of coding with IFS codes was kept secret for a long time. M. F.

Barnsley published many articles about IFS systems for binary images. The

automatic encoding algorithm for gray level images was published a few years

later by A. E. Jaquin in [Jaq92].

The IFS method can be seen, as the WFA technique, as a fractal compression

scheme. In literature concerning image compression the term fractal is used

for applications using self similarity of the original image in any form for the

coding process. Such self similarities can be found in many images. Take for

example the image boat displayed in Figure 4.34 on page 88. This image shows

a boat on a dry dock. The pylons of that boat di�er clearly from the bright

sky. These pylons are in general hard to code by a transform or wavelet coder

because of the high frequency parts occurring at the edges of the pylons. But

fractal techniques use the fact that these edges are nearly parallel and can thus

copy parts of pylon edges to other parts of pylon edges. This is the main reason

why fractal coders are good for encoding sharp edges while wavelet or transform

coders are best for encoding rather smooth transitions. However, on the other

hand, fractal encoders are well-known for their blocking artifacts.

For fractal coding, a suitable representation of a fractal has to be found approx-

imating the given image objects. One method we have seen is WFA coding.

Another representation are the so-called IFS codes, which is described in this

chapter. This technique achieves high compression ratios, but the search for

these codes may be very time consuming. We �rst explain the foundations of

IFS coding in its original form: for binary images. Afterwards the automatic

coding algorithm of A. E. Jaquin is presented.

202 Image Compression with IFS Codes

H.1 Iterated Function Systems

A (two dimensional) IFS code (iterated function system) consists of a set of

2-tuples

f(!0; p0); : : : ; (!n�1; pn�1)g; (H.1)

whose �rst components consist of aÆne functions !i : R
2 ! R

2 and whose

second components are real numbers pi with pi > 0 and
P

n�1
i=0 pi = 1. These

numbers pi shall from now on be called application probabilities of the functions

!i. For the Lipschitz constants, the following contraction condition has to be

ensured: Li < 1. The Lipschitz constant Li is de�ned as the smallest non-

negative real number satisfying

jj!i(a)� !i(b)jj � Lijja� bjj (H.2)

for all vectors a; b from the de�nition domain of !i. With jj:jj we denote an

arbitrary vector space norm. Now let I be an IFS code. The number

L=
n�1
max
i=0

Li (H.3)

is called the contraction factor of the IFS code I. Now consider the metric

h(A;B) = max

�
max
a2A

min
b2B

jja� bjj;max
b2B

min
a2A

jja� bjj
�
; (H.4)

where A and B are compact subsets of R2 . This metric is called Hausdor� met-

ric. The metric space of the compact subsets of R2 together with the Hausdor�

metric we notate by H(R2).

Theorem H.1.1 Let I an IFS code with contraction factor L. Then the map-

ping

W (B)=

n�1[
i=0

!i(B) (H.5)

is a contraction in the space (H(R2); h(�; �)) with contraction factor L.

The �xed point A of the mapping W (:), whose existence and uniqueness is

guaranteed by the �xed point theorem of Banach, is in accordance to literature

called the attractor of the IFS code I. For further details about attractors see
[Bar88].

H.2 Construction of an IFS Code

Let f(!i; pi) : i = 0; : : : ; n � 1g be an IFS code. The attractor is the object

which should be drawn by an IFS decoder. The structure of A is determined by

the aÆne mappings !i. Such an attractor can be constructed by overlapping

H.3 A Decoding Algorithm for IFS Codes 203

itself with aÆne mappings !i, but the determination of the mappings is in

general a hard problem. As an example, consider a square. This square may be

covered by itself if four squares of the half edge size are used. The probability

vector can therefore be for example a vector having 1=4 in each component.

This example is illustrated in Figure H.1. In general, such a perfect covering

cannot be accomplished by using only a few mappings. This is the reason why

an approximation commonly has to be taken.

As a measure for the goodness of such an approximation, the Hausdor� metric

mentioned above can be evaluated. For a \good" approximation of the object we

want to reproduce, one often has to transmit a lot of mappings, thus worsening

the compression factor.

-

-

SSw

��7

Figure H.1: Construction of an IFS code.

H.3 A Decoding Algorithm for IFS Codes

In the following, we assume that we have an IFS code and now want to deter-

mine the attractor of that code. As a starting point for the drawing algorithm

a point in the attractor is required. That point can be obtained by determin-

ing a �xed point of one contraction. Now the number of iterations has to be

determined. This number has to be much larger than the number of pixels of

the current resolution in which the desired approximation of the attractor is to

be drawn. A mapping according to the probability vector is then selected and

applied to the current point. Afterwards the counter of the pixel the current

point lies is incremented. Another mapping is then applied to the current point

and so on until the predetermined number of iterations is reached. The pixels

are afterwards painted corresponding to their counter where the reconstructed

brightness is proportional to the value of the pixels' counters. A pseudo imple-

mentation of this drawing algorithm is given in listing H.1.

/��
� decodes an IFS code .
��/
void decodeIFS ()

f//A i s the a t t r a c t o r o f the IFS code .
Select a starting point (x; y) 2 A ;

do

f

choose a k 2 f0; : : : ; n� 1g ;

(x; y) = !k(x; y) ;

204 Image Compression with IFS Codes

Select the rectangle R[l;m] : (x; y) 2 R[l;m] ;

R[l ,m] . counter++;

gwhile (A is not \approximated good") ;

Draw the rectangles corresponding to their counters ;

g//end drawIFS

Listing H.1: IFS decoding algorithm.

H.4 The Collage Theorem

The mathematical foundation for the compression with IFS codes is the collage

theorem presented here without proof [Bar89].

Theorem H.4.1 (Collage Theorem) Let f(!i; pi) : i = 0; : : : ; n � 1g be an

IFS code, L < 1 the biggest Lipschitz constant of the aÆne mappings !i and

� > 0 a positive real number. Let T be a compact subset of R2 and the mappings

!i be selected so that

h

T;

n�1[
i=0

!i(T)

!
< �: (H.6)

Then the inequality

h(T;A) < �

1� L
(H.7)

holds.

M. F. Barnsley [Bar88] uses as norm jj:jj the Euclidean norm. IFS coding works
in the way that an IFS code approximating a given image is constructed and

only the mappings are stored for reconstruction of the original image.

H.5 Encoding of Gray Scale Images with IFS Sys-

tems

The algorithm described above does not work automatically and is designed for

binary images. The most important step for enhancing the IFS compression

scheme to an acknowledged compression scheme was the publication of A. E.

Jaquin (a co-worker of Barnsley), which describes an automatical encoding

algorithm for gray scale images. The technique works as follows:

At �rst we state image segments called domain blocks and range blocks. The

range blocks have to be a covering of the original image. As transforms we can

use all mappings from the set of domain blocks to the set of range blocks. For

the aÆne functions to be contractive, the domain blocks have to be chosen in

a way that they are larger than the range blocks in both dimensions. In the

original implementation of Jaquin, the range blocks were chosen to partition

H.5 Encoding of Gray Scale Images with IFS Systems 205

B
BBM

A
AK
�
��Æ

image

range blocks

domain blocks

Figure H.2: IFS coding with Jaquin's method.

the image to equal sized quadratic image segments. As domain blocks, Jaquin

chose blocks in the image having twice the edge lengths than the range blocks.

For an illustration of this algorithm see Figure H.2.

As a re�nement of these transforms, Jaquin chooses brightness and contrast

scalings. This means that the brightnesses of the pixels are multiplied by a

constant factor and added by a constant.

Barnsley has stated that the IFS method is capable of achieving very high

compression factors. But Jaquin reports a compression eÆciency comparable

to compression techniques favored at the time of that writing1. The IFS method

was developed further than the algorithm described above. On the one hand,

IFS researchers have invented some interesting variants, some of them could

be embedded to our WFA implementation. On the other hand, one can see

some directions in IFS coding stepping toward WFA coding such as the use of

matching pursuits [Gha97].

1Jaquin compared his scheme with vector quantization and transform coding.

206 Image Compression with IFS Codes

Appendix I

Scalar Quantization

As we have seen in section 3.6 on page 54, the coeÆcients to build MP vectors

have to be quantized. The problem of quantization can only be sketched shortly,

for a more comprehensive description see [Max60].

Let e be a real valued random variable with density function P (e). A quan-

tization function maps e to a discrete valued random variable _e drawn from

the �nite domain fr0; : : : ; rQ�1g. This mapping is often a stair function. Let

fd0; : : : ; dQg be a set of (pairwise di�erent) decision values or transition val-

ues. The values ri and di are assumed as ordered ascendingly, meaning that

d0 < d1 < : : : < dQ holds. If e lies in the half open interval (dj ; dj+1], then e is

mapped to _e = rj 2 (dj ; dj+1] for j 2 f0; : : : ; Q� 1g. For an illustration of this

fact see Figure I.1. The quantization problem is to �nd optimal decision and

reconstruction values minimizing the quantization error

D=

Q�1X
i=0

di+1Z
di

f(e� ri)P (e) de (I.1)

where P (e) is the density function of the random variable e and f is a non-

negative, di�erentiable error function. For the following statements we choose

f(x) = x
2 and assume that d0 and dQ are given.

...

...
d0 d1 d2 dQ�1 dQ

rQ�1r1r0

Figure I.1: Typical constellation of decision and reconstruction values.

In order to minimize the quantization error, we partially di�erentiate with re-

spect to the di and the ri and set the derivatives to zero to obtain necessary

conditions1 for the desired values:

1In order to check whether the conditions are suÆcient, we have to check if the Hesse

matrix of the error function is positive de�nite.

208 Scalar Quantization

@D

@di
= (di � ri�1)

2
P (di)� (di � ri)

2
P (di)

!
=0

for i 2 f1; : : : ; Q� 1g (I.2)

and
@D

@ri
= �2

di+1Z
di

(e� ri)P (e) de
!
=0 for i 2 f0; : : : ; Q� 1g: (I.3)

From the equation system I.2 we obtain with the additional condition P (di) > 0

di =
ri�1 + ri

2
for i 2 f1; : : : ; Q� 1g; (I.4)

meaning that the decision values lie on half length between the reconstruction

values. The equation system I.3 yields the equations

di+1Z
di

(e� ri)P (e) de = 0: (I.5)

If e is uniformly distributed,

di = d0 + (i� 1)q (I.6)

ri = di +
q

2
(I.7)

is obtained with q =
dQ�d0
Q

[Jai89]. This quantizer is called linear quantizer. For

more complicated density functions, the quantization problem is often hardly

possible with this scheme. This is the reason why the quantization problem

frequently has to be solved using numerical techniques: if we assume that r0
is known, then d1 can be calculated by using equation I.3. With this new

information, the value r1 can be calculated by equation I.4. After this the

value d3 can be calculated in the same way and so on until all required values

are calculated. Since r0 is often not known, one has to estimate this value and

calculates all values inclusive dQ. If this value is too high or too low, the values

can be adjusted by varying r0 (for example using binary search). For more

details concerning quantization see for example [Max60, NH88, RK82, Llo82].

Appendix J

Other Mathematical

Preliminaries

In this appendix we collect some mathematical principles which have to be

added for the sake of completeness.

J.1 Common Statistical Distributions

The normal distribution or Gaussian distribution is one of the most important

distributions in image processing and many other applications. The density of

this distribution is given by the equation

p(x) =
1

�
p
2�

e
� 1

2 (
x��

�
)
2

(J.1)

where � denotes the mean value and � the variance of this distribution (see

Figure J.1).

-

6

1.0 2.0 3.0-1.0-2.0-3.0

0.5

Figure J.1: Normal distribution with mean 0 and variance 1.

For AC coeÆcients, the Laplacian distribution is commonly used and is often

employed for the construction of quantizers [NH88]. This distribution could

210 Other Mathematical Preliminaries

also be observed in our implementation for AC and MP coeÆcients. Its density

function (see Figure J.2) with mean value � and variance
p
2
�

is given by

p(x) =
�

2
e
��jx��j

: (J.2)

-

6

1.0 2.0 3.0-1.0-2.0-3.0

0.5

Figure J.2: Laplacian distribution with mean 0 and variance 1.

J.2 The Orthonormalization Procedure by Gram and

Schmidt

The orthonormalization procedure by Gram and Schmidt is used to construct

an orthonormal basis of a subspace of a vector space. Such a basis is often

required for linear approximation.

Let E be a vector space with scalar product � above the �eld R and u0; : : : ; um�1
a set of linearly independent vectors in E. The described procedure successively

builds a basis fw0; : : : ; wm�1g. The �rst vector w0 is constructed by normal-

ization of u0:

v0 = u0; (J.3)

w0 = v0=jjv0jj: (J.4)

Afterwards the vectors are \bent" successively in the following way:

vj = uj �
j�1X
k=0

(uj ; wk)wk; (J.5)

wj = vj=jjvj jj: (J.6)

After this procedure, the vectors fuig, fvig and fwig span the same subspace,

fvig is an orthogonal system and fwig even an orthonormal system. For an

illustration of this process see Figure J.3.

J.3 Inversion of Matrices 211

-�
�
�
�
�
�36

w0

u1

v1

Figure J.3: Orthogonalization procedure.

J.3 Inversion of Matrices

In the early stages of the WFA encoder we had serious problems at the calcula-

tion of the inverse matrices for the basis transform. The complete construction

of the matrices at the basis extension was prohibited by running time problems.

Thus we extended existing transform matrices row by row using the feature of

triangularity. In this extension process, we observed numerical instabilities

propagated successively from step to step, despite the usage of double precision

arithmetic. We solved this problem with the post iteration algorithm of Newton

described in the following. This technique glares with the following simplicity:

Xi+1 = Xi(E �Ri) with Ri = E �AXi (J.7)

whereX0 is an approximation for the inverse matrix of A and E is the unity ma-

trix in the current resolution. We observed that in our application the approx-

imation X1 suÆces. For this reason, additional optimizations for computation

speed can be made. We think that the reader does not want us to philosophize

about the convergence speed of this technique. For this reason, we refer to

[HLP94, MZ97, SH82] for a signi�cantly deeper discussion of this method.

Commonly Used Formula

Symbols

Symbol Meaning

b badness of an approximation

c storage costs (in bits)

e approximation error

pe = p(e) probability of the symbol e 2 E

p(e1je2) conditional probability of e1 given e2

E(X) expected value of the random variable X

H entropy

Ie = I(pe) information content of the symbol e with probability

pe

LC average codeword length of the code C

j:j number of elements of a set

jj:jj norm of a vector

N set of natural numbers f0; 1; 2; :::g
R set of real numbers

Z set of integer numbers f:::;�1; 0; 1; :::g

216 Commonly Used Formula Symbols

Commonly Used

Abbreviations

Symbol Meaning

AC alternating current, synonym for approximation with

a non constant function

BFS breadth first search

bpp bits per pixel

BU bottom up

codec is a synonym for encoder and deccoder

CR compression ratio

CCIR Comit�e Consultatif International du Radiodiffusion

CCITT Comit�e Consultatif International T�el�egraf et T�el�epho-

nique

DC direct current, synonym for approximation with a con-

stant function

DCT discrete cosine transform

dens. density

distrib. distribution

DFS depth first search

DPCM di�erential pulse code modulation

GA genetic algorithm

GUI graphical user interface

HV horizontal vertical

inv. inverse

ISO International Standardization Organization

ITU International Telecommunication Union

JPEG Joint Photographic Experts Group

218 Commonly Used Abbreviations

Symbol Meaning

MC motion compensation

MCPE motion compensated prediction error

MP matching pursuit

MPEG Motion Picture Experts Group

MSE mean squared error

MRA multi resolution analysis

NTSC National Television Standards Committee

PAL Phase Alternating Lines

PCM pulse code modulation

pixel picture element

PSNR peak signal to noise ratio

RD rate distortion

RGB (red, green, blue) color space

RLE run length encoding

RMSE root mean squared error

stat. statistical

SNR signal to noise ratio

TD top down

VLC variable length coding

WFA weighted finite automaton

WORM write once read many

List of Figures

1.1 PCM coding. 8

1.2 Discretization of a signal. 8

1.3 Coordinate system of a digital image. 9

1.4 Some orders of image blocks. 9

1.5 Entropy function. 15

1.6 Code tree. 16

2.1 Coding example for arithmetic encoding. 27

2.2 Windows to numbers with in�nite precision. 28

2.3 The under
ow problem of the arithmetic codec. 29

2.4 Structure of a data compression scheme. 29

2.5 A windowed model. 32

2.6 A simple Markov model. 33

2.7 Splitting of a state. 33

3.1 Region quadtree. The ordering of the quadrants and the node

labels are indicated in the legend on the right. 36

3.2 Region bintree. The ordering of the segments and the node labels

are indicated in the legend on the right. 37

3.3 Bintree partitioning of the image Lenna. 38

3.4 Assignment of paths to image segments. 40

3.5 Construction of a WFA. 44

3.6 Fast decoding of a WFA. To simplify the �gure, we have only

drawn the coeÆcient vectors of quadrant 2 and 3 of the state s2. 47

3.7 The feedback loop used in the WFA encoder. 54

3.8 Induction step of the proof that all WFA state images are con-

servative. 55

220 LIST OF FIGURES

3.9 Initialization of BFS WFA. The �gure shows only partitioning

edges. 58

3.10 Merging operations of BFS WFA obtained using the nodes shown

in Figure 3.9. The �gure shows only partitioning edges. 58

3.11 Final BFS WFA obtained by merging the trees in Figure 3.10.

The �gure shows only partitioning edges. 58

3.12 Rate{distortion diagram of the image Lenna. 58

4.1 Interpretation of a vector as an image of wrong resolution. . . . 60

4.2 Light HV partitioning of the image Lenna. 61

4.3 Rate{distortion diagram for light HV partitioning. 61

4.4 Rate{distortion diagram for light HV partitioning. 62

4.5 Rate{distortion diagram for light HV partitioning. 62

4.6 Rate{distortion diagram for light HV partitioning. 63

4.7 Hexagonal and triangular image partitioning. 64

4.8 Extended stack. 66

4.9 A model with context size 1 and alphabet size 3. 66

4.10 The model of Figure 4.9 after updating a \c". 66

4.11 Window-based model with rollback. 67

4.12 Order of the basis functions. 69

4.13 Some cosine images. 71

4.14 Some sine images. 71

4.15 Some Walsh images. 71

4.16 Some Hadamard images (sequency ordered). 71

4.17 Some Slant images (sequency ordered). 71

4.18 Some Haar images. 71

4.19 Splitting the domain pool in a �xed and dynamic part. 72

4.20 Heuristic for rate{distortion constrained approximation. The

�lled circles represent quantization values and the vertical line

represents the unquantized value. 73

4.21 Description for the precision of the coeÆcients. 76

4.22 Encoding of color images with the WFA technique. 78

4.23 Decoding of color images with the WFA technique. 78

4.24 Partitioning of the color image Monarch in YCbCr color space. . 79

LIST OF FIGURES 221

4.25 WFA zoom 1287!512. 80

4.26 WFA zoom 2567!512. 81

4.27 Edge smoothing with smoothing parameter s. 81

4.28 Image regions with di�erent quality factors. 82

4.29 WFA decoded image with varying quality factor. 83

4.30 Determination of the inner square by using the path. 84

4.31 Progressive decoding of a WFA. 84

4.32 Cross operator. 86

4.33 Mutate operator. 86

4.34 Gray scale images of Waterloo site. 88

4.35 Decoded Lenna. 89

4.36 Decoded Boat. 90

4.37 Rate{distortion diagram of the image Lenna. 90

4.38 Rate{distortion diagram of the image Boat. 91

4.39 Rate{distortion diagram of the image Barb. 91

4.40 Rate{distortion diagram of the image Goldhill. 91

4.41 Rate{distortion diagram of the image Mandrill. 92

4.42 Rate{distortion diagram of the image Peppers. 92

4.43 Distribution of DC coeÆcients at storage time (Lenna). 94

4.44 Deviations of AC coeÆcients at storage time (Lenna). 94

4.45 Means and medians of AC coeÆcients at storage time (Lenna). 94

4.46 Distributions of AC coeÆcients at storage time (Lenna). 94

4.47 Deviations of MP coeÆcients at storage time (Lenna). 95

4.48 Means and medians of MP coeÆcients at storage time (Lenna). . 95

4.49 Distributions of MP coeÆcients at storage time (Lenna). 95

4.50 Distribution of DC coeÆcients at storage time (Boat). 95

4.51 Deviations of AC coeÆcients at storage time (Boat). 96

4.52 Means and medians of AC coeÆcients at storage time (Boat). . . 96

4.53 Distributions of AC coeÆcients at storage time (Boat). 96

4.54 Deviations of MP coeÆcients at storage time (Boat). 96

4.55 Means and medians of MP coeÆcients at storage time (Boat). . . 97

222 LIST OF FIGURES

4.56 Distributions of MP coeÆcients at storage time (Boat). 97

4.57 Construction of the Laplacian pyramid. 100

4.58 Reconstruction of the original image. 100

4.59 Image transforms used in [CR96]. 101

5.1 A wavelet decomposition tree. 107

5.2 A full wavelet packet decomposition tree. 108

5.3 A cut wavelet packet decomposition tree. 108

5.4 Combination of wavelet and WFA coding. 110

5.5 (9-7) wavelet function. 112

5.6 Image Callisto. 112

5.7 Wavelet transformed image Callisto. 113

5.8 Reconstructed image Callisto. 113

5.9 Progressive decoding of a WFA in wavelet mode. 114

5.10 Rate{distortion diagram of the image Lenna. 114

5.11 Rate{distortion diagram of the image Boat. 115

5.12 Rate{distortion diagram of the image Barb. 115

5.13 Rate{distortion diagram of the image Mandrill. 115

6.1 Block-based motion compensation. 118

6.2 Motion compensated prediction error. 119

6.3 Structure of the WFA video encoder. 119

6.4 Partitioning of an image sequence. 121

6.5 Image Sequence Susie . 124

7.1 The four windows of AutoPic. 126

7.2 User interface of AutoPic. 126

7.3 Continuation of the WFA coding operation. 128

7.4 Output of AutoPic after WFA coding. 129

7.5 Additional parameters of WFA encoder. 129

7.6 Original image for �lter operations. 131

7.7 Outputs of some image �lters. 131

7.8 Neighborhood of a pixel used for brightness estimation. 137

LIST OF FIGURES 223

7.9 Notation for class diagrams used in this thesis. 143

7.10 The various kinds of states and their interrelation. 143

7.11 The composition of WFAEncoder. 143

7.12 The composition of EncoderInterface. 144

7.13 The composition of ColorPicture. 144

A.1 A portion of the class hierarchy of AutoPic. 154

B.1 Color cube of the RGB system. 165

B.2 Decomposition to RGB components. 166

B.3 Decomposition to YCbCr components. 168

C.1 Splitting an image into blocks. 171

C.2 Tile e�ect. 171

C.3 A typical Hosaka diagram. 173

D.1 Neighborhoods for digital �lters. 175

D.2 The general neighborhood �lter of AutoPic. 176

E.1 A statistical experiment. 184

E.2 Zigzag order of the coeÆcients. 189

E.3 Typical bit assignment matrix. 189

F.1 Zero suppression. 191

F.2 Construction of the Shannon Fano code tree. 193

F.3 Construction of the Hu�man code tree. 195

G.1 Typical rate{distortion diagram. 200

H.1 Construction of an IFS code. 203

H.2 IFS coding with Jaquin's method. 205

I.1 Typical constellation of decision and reconstruction values. . . . 207

J.1 Normal distribution. 209

J.2 Laplacian distribution. 210

J.3 Orthogonalization procedure. 211

224 LIST OF FIGURES

List of Tables

1.1 Some Elias codewords of the integers 1{10. 19

1.2 Some Fibonacci codewords. 19

1.3 Some adjusted binary and Golomb codewords. 21

2.1 Assigning intervals to probabilities. 27

4.1 Absolute running times of the WFA codec. 92

226 LIST OF TABLES

Listings

2.1 Arithmetic encoder. 26

2.2 Arithmetic decoder. 26

2.3 Recalculation of an adaptive source model. 31

3.1 The �rst WFA coding algorithm. 42

3.2 WFA decoding algorithm. 47

3.3 Outline of the top down WFA creation algorithm. 49

3.4 Top down state creation algorithm. 51

3.5 The state operation algorithm. 51

3.6 Bottom up state creation algorithm. 53

3.7 Bottom up BFS WFA creation algorithm. 56

3.8 The state operation algorithm for BFS WFA construction. 56

5.1 Wavelet lifting step. 109

7.1 Top down WFA creation algorithm with recursion cutting. 145

7.2 WFA state operation algorithm with recursion cutting. 145

7.3 Bottom up WFA creation algorithm with recursion cutting. . . . 146

C.1 Classi�cation of the blocks for Hosaka diagram. 172

F.1 Creation of the Hu�man code tree. 194

H.1 IFS decoding algorithm. 203

228 LISTINGS

Bibliography

[AN83] N. Ahmed and T. Natarajan, Discrete Cosine Transform. IEEE Trans-

actions on Computers, pp. 90{93, January 1974.

[BW95] P. Bao and X. Wu, Near Lossless Image Compression Schemes Based

on Weighed Finite Automata Encoding and Adaptive Context Modeling.

Department of Computing, The Hong Kong Polytechnic University, Hung

Hom, Kowloon, Hong Kong. In Proceedings of the IEEE, vol. 83, no. 2,

pp. 930{947, February 1995.

[Bar88] M. F. Barnsley, Fractals everywhere. Academic Press, 1988.

[Bar88] M. F. Barnsley, Fractal Modeling of Real World Images. Chapter of

[PS88], 1988.

[Bar89] M. F. Barnsley, Lecture Notes on Iterated Function Systems., pp. 127{

144 in [DK95], 1989.

[BCW90] T. C. Bell, J. G. Cleary and I. H. Witten, Text Compression. Prentice

Hall, 1990.

[BA83] P. J. Burt and E. H. Adelson, The Laplacian Pyramid as a Compact

Image Code. IEEE Transactions on Communications, vol. COM-31, no. 4,

pp. 532{540, April 1983.

[CU] CityU Image Processing Lab, Department of Electronic Engineering, City

University, Hong Kong, Image Database. http://www.image.cityu.edu.

hk/imagedb/.

[Cod92] M. A. Cody, The Fast Wavelet Transform, Beyond Fourier Transforms.

Dr. Dobb's Journal, April 1992.

[Cul] K. Culik II, Homepage of Karel Culik. http://www.cs.sc.edu/~culik.

[CK93] K. Culik II and J. Kari, Image Compression Using Weighted Finite

Automata. Computers and Graphics, vol. 17, no. 3, pp. 305{313, May/June

1993.

[CK94] K. Culik II and J. Kari, Image-data Compression Using Edge-optimi-

zing Algorithm for WFA Inference. Journal of Information Processing and

Management, vol. 30, pp. 829{838, 1994.

230 BIBLIOGRAPHY

[CK95] K. Culik II and J. Kari, Inference Algorithms for WFA and Image

Compression. Chapter of [Fis95], pp. 243{258, 1995.

[CR96] K. Culik II and P. C. von Rosenberg, Generalized Weighted Finite

Automata Based Image Compression. Available at [Cul], 1999.

[CV97] K. Culik II and V. Valenta, Compression of Silhouette-like Images based

on WFA. Available at [Cul], 1997.

[CLR91] T. H. Cormen, C. E. Leiserson and R. L. Rivest, Introductions to

Algorithms. MIT Press, 1991.

[DS97] I. Daubechies andW. Sweldens, Factoring Wavelet Transforms into Lift-

ing Steps. September 1996, revised November 1997, available at [Swe].

[DK95] R. L. Devaney and L. Keen, Chaos and Fractals: The Mathematics be-

hind the Computer Graphics. Proceedings of Symposia in Applied Math-

ematics, vol. 39, American Mathematical Society, 1995.

[Eli75] P. Elias, Universal Codeword Sets and Representations of the Integers.

IEEE Transactions on Information Theory, vol. IT-21, pp. 194{203, March

1975.

[Far90] M. F. Farelle, Recursive Block Coding for Image Data Compression.

Springer-Verlag New York, 1990.

[Fis95] Y. Fisher (ed.), Fractal Image Compression. Springer-Verlag Berlin,

Heidelberg, New York, 1995.

[Fis95b] Y. Fisher, Fractal Encoding with HV Partitions. Chapter of [Fis95],

pp. 119{136, 1995.

[FG89] E. R. Fiala and D. H. Greene, Data Compression with Finite Windows.

Communications of the ACM, vol. 32, no. 4, pp. 490{505, April 1989.

[FK99] B. Freisleben and T. Kielmann, Object-Oriented Parallel Programming

with Objective Linda. Available at [Kie], 1999.

[GV75] R. G. Gallager and D. C. Voorhis, Optimal Source Codes for Geomet-

rically Distributed Integer Alphabets. IEEE Transactions on Information

Theory, vol. IT-21, pp. 228{230, March 1975.

[GHJV95] E. Gamma, R. Helm, R. Johnson and J. Vlissides, Design Patterns|

Elements of Reusable Object-Oriented Software. Addison Wesley, 1995.

[Gha97] M. Gharavi-Alkhansari, Fractal-Based Image and Video Coding Using

Matching Pursuit. PhD Thesis, University of Illinois at Urbana Cham-

paign, 1997.

[GW92] R. C. Gonzalez and R. E. Woods, Digital Image Processing. Addison-

Wesley Publishing Company, 1992.

BIBLIOGRAPHY 231

[Haf] U. Hafner, Homepage of Ullrich Hafner. http://penguinpowered.com/

~ulli.

[Haf94] U. Hafner, Parallelisierung der WFA Bilddatenkompression unter

PVM. Diplomarbeit, Julius-Maximilians Universit�at W�urzburg, may be

downloaded at [Haf], 1994.

[Haf95] U. Hafner, Asymmetric Coding in (m)-WFA Image Compression. re-

port no. 132, December 1995.

[HFUA97] U. Hafner, S. Frank, M. Unger and J. Albert, Hybrid Weighted Fi-

nite Automata for Image and Video Compression. report no. 160 (revised),

March 1997.

[Haf99] U. Hafner, Image and Video Coding with Weighted Finite Automata.

Dissertation, Julius-Maximilians Universit�at W�urzburg, 1999.

[Har68] H. F. Harmuth, A generalized Concept of Frequency and Some Appli-

cations. IEEE Transactions on Information Theory, vol. IT-14, no. 5, pp.

375{382, May 1968.

[HQ89] W. Heise and P. Quattrocchi, Informations- und Codierungstheorie.

Springer, 1989.

[HN86] K. Hinrichs and J. Nievergelt, Programmierung und Datenstrukturen.

Springer Verlag Berlin, Heidelberg, 1986.

[HL87] D. S. Hirschberg and D. A. Lelewer, Data Compression. ACM Comput-

ing Surveys, vol. 19, no. 3, pp. 261{296, September 1987.

[How93] P. G. Howard, The Design and Analysis of EÆcient Lossless Data

Compression Systems. PhD Thesis, Brown University, Department of Com-

puter Science, Providence, Rhode Island 1993.

[Hos86] K. Hosaka, A new Picture Quality Evaluation Method. Proc. Interna-

tional Picture Coding Symposium, Tokyo, Japan, April 1986.

[HLP94] M. H�uttenhofer, M. Lesch and N. Peyerimho�, Mathematik in An-

wendung mit C++. Quelle & Meyer, 1994.

[IJG] The Independent JPEG Group, JPEG software release 6b. ftp://ftp.

uu.net/graphics/jpeg/jpegsrc.v6b.tar.gz, 1998.

[Jai81] A. K. Jain, Image Data Compression: A Review. Proceedings of the

IEEE, vol. 69, no. 3, pp. 349{389, March 1981.

[Jai81] A. K. Jain, Advances in Mathematical Models for Image Processing.

Proceedings of the IEEE, vol. 69, no. 5, pp. 502{528, May 1981.

[Jai89] A. K. Jain, Fundamentals of Digital Image Processing. Prentice Hall,

1989.

232 BIBLIOGRAPHY

[Jaq92] A. E. Jaquin, Image Coding Based on a Fractal Theory of Iterated Con-

tractive Image Transformations. IEEE Transactions on Image Processing,

vol. 1, no. 1, pp. 18{30, January 1992.

[Jaq93] A. E. Jaquin, Fractal Image Coding: A Review. Proceedings of the

IEEE, vol. 81, no. 10, pp. 1451{1465, October 1993.

[Kar] J. Kari, Homepage of Jarkko Kari. http://www.cs.uiowa.edu/~jjkari.

[KF94] J. Kari and P. Fr�anti, Arithmetic Coding of Weighted Finite Automata.

Theoretical Informatics and Applications, vol. 28, no. 3{4, pp. 343{360,

1994.

[Kat] F. Katritzke, Homepage of Frank Katritzke: Research Interests. http:

//www.informatik.uni-siegen.de/~frankka.

[Kat94] F. Katritzke, �Uber die redundanzvermindernde Codierung digitaler

Bilddaten. Diplomarbeit Universit�at-Gesamthochschule Siegen, 1994.

[Kie] T. Kielmann, Homepage of Thilo Kielmann. http://www.informatik.

uni-siegen.de/~kielmann.

[Kou95] W. Kou, Digital Image Compression|Algorithms and Standards.

Kluwer Academic Publishers, 1995.

[Kra95] R. Kramp
, Optimierungsans�atze der WFA-Bilddatenkompression.

Diplomarbeit, Julius-Maximilians Universit�at W�urzburg, October 1995.

[Llo82] S. P. Lloyd, Least Squares Quantization in PCM. IEEE Transactions

on Information Theory, vol. IT-28, no. 2, pp. 129{136, March 1982.

[MZ93] S. Mallat and Z. Zhang, Matching Pursuits with Time-Frequency Dic-

tionaries. IEEE Transactions on Signal Processing, vol. 41, no. 12, pp.

3397{3415, December 1993.

[Mal98] S. Mallat, A Wavelet Tour of Signal Processing. Academic Press, 1998.

[Max60] J. Max, Quantizing for Minimum Distortion. IRE Transactions on

Information Theory, vol. 6, pp. 7{12, March 1960.

[MS94] W. Merzenich and L. Steiger, Fractals, Dimension, and Formal Lan-

guages. Theoretical Informatics and Applications, vol. 28, no. 3{4, pp.

361{386, 1994.

[MZ97] W. Merzenich and H. C. Zeidler, Informatik f�ur Ingenieure. Teubner

Verlag, 1997.

[Nel92] M. Nelson, The Data Compression Book. M&T Books, 1992.

[NL80] A. N. Netravali and J. O. Limb, Picture Coding: A Review. Proceedings

of the IEEE, vol. 68, no. 3, pp. 366{406, March 1980.

BIBLIOGRAPHY 233

[NH88] A. N. Netravali and B. G. Haskell, Digital Pictures, Representation and

Compression. Plenum Press, 1988.

[Ohm95] J.-R. Ohm, Digitale Bildcodierung. Springer-Verlag Berlin Heidelberg

1995.

[PS93] W. A. Pearlman and A. Said, An Image Multiresolution Representation

for Lossless and Lossy Compression. SPIE Symposium on Visual Commu-

nications and Image Processing, Cambridge, MA, November 1993.

[PS] W. A. Pearlman and A. Said, Set Partitioning in Hierarchical Trees. http:

//ipl.rpi.edu/SPIHT.

[PS96] W. A. Pearlman and A. Said, A New Fast and EÆcient Image Codec

Based on Set Partitioning in Hierarchical Trees. IEEE Transactions on

Circuits and Systems for Video Technology, vol. 6, June 1996, also available

at [PS].

[PS88] H.-O. Peitgen and D. Saupe, The Science of Fractal Images. Springer-

Verlag New York, 1988.

[Pin90] M. Pins, Analyse und Auswahl von Algorithmen zur Datenkompression

unter besonderer Ber�ucksichtigung von Bildern und Bildfolgen. Disserta-

tion, TU Karlsruhe, 1990.

[PCW74] W. K. Pratt, W.-H. Chen and L. R. Welch, Slant Transform Image

Coding. IEEE Transactions on Communications, vol. COM-22, no. 8, pp.

1075{1093, August 1974.

[URP96] A. Rao, V. D. Pandit and R. U. Udupa, EÆcient Decoding Algo-

rithms for Weighed Finite Automata. Department of Computer Science,

S.J. College of Engineering, Myosore, 1996.

[RT97] R.-D. Reiss and M. Thomas, Statistical Analysis of Extreme Values.

Birkh�auser, 1997.

[Rin92] H. Ring, Programmieren in C++. McGraw-Hill Book Company Eu-

rope, 1992.

[RM89] J. Rissanen and K. M. Mohiuddin, A Multiplication-Free Multialpha-

bet Arithmetic Code. IEEE Transactions on Communications, vol. 37, no.

2, pp. 93{98, February 1989.

[Rob95] B. F. Robinson, Image Encoding Using Weighed Finite Automata.

Dissertation, Department of Computer Science at James Cook University

of North Queensland, 1995.

[RD79] A. Rosenfeld and L. S. Davis, Image Segmentation and Image Models.

Proceedings of the IEEE, vol. 67, no. 5, pp. 764{772, May 1979.

[RK82] A. Rosenfeld and A. C. Kak, Digital Picture Processing. Vol. 1, Aca-

demic Press, 1982.

234 BIBLIOGRAPHY

[Sch98] A. Schrader, Evolution�are Algorithmen zur Farbquantisierung und

asymmetrischen Codierung digitaler Farbbilder. Dissertation, Universit�at-

Gesamthochschule Siegen, 1998.

[Sed88] R. Sedgewick, Algorithms. Second edition, Addison Wesley, 1988.

[SP94] M. Srinivas and L. M. Patnaik, Genetic Algorithms: A Survey. Com-

puter, vol. 6, pp. 17{26, 1994.

[SH82] F. Stummel and K. Hainer, Praktische Mathematik. Teubner Studi-

enb�ucher, 1982.

[Swe] W. Sweldens, Homepage of Wim Sweldens. http://cm.bell-labs.com/

who/wim.

[SS98] W. Sweldens and P. Schr�oder, Building your Own Wavelets at Home.

Available at [Swe], 1998.

[SJ99] W. Sweldens and B. Jawerth, An Overview of Wavelet Based Multires-

olution Analyses. Available at [Swe], 1999.

[Ung95] M. Unger, Adaption der WFA-Kompression auf Videosequenzen.

Diplomarbeit, Julius-Maximilians Universit�at W�urzburg, September 1995.

[USC] University of Southern California, The USC-SIPI Image Database.

http://sipi.usc.edu/services/database/Database.html.

[Wal91] G. K. Wallace, The JPEG Still Picture Compression Standard. Com-

munications of the ACM, vol. 34, no. 4, pp. 31{44, April 1991.

[Wat] University of Waterloo, Ontario, Canada, Waterloo BragZone: Com-

parison of Image Compression Systems. http://www.uwaterloo.ca/

bragzone.base.html.

[WH71] A. Habibi and P. A. Wintz, Image Coding by Linear Transformation

and Block Quantization. IEEE Transactions Commun. Tech., vol. COM-

19, no. 1, pp. 50{62, February 1971.

[Win72] P. A. Wintz, Transform Picture Coding. Proceedings of the IEEE, vol.

60, no. 7, July 1972.

[WNC87] I. H. Witten, R. M. Neal and J. G. Cleary, Arithmetic Coding for

Data Compression. Communications of the ACM, vol. 30, no. 6, pp. 520{

540, June 1987.

[Zim97] J. Zimmermann, Gewichtete endliche Automaten mit Anwendung in

der Bildcodierung. Diplomarbeit, Institut f�ur Informatik, Albert-Ludwigs-

Universit�at Freiburg in Breisgau, 1997.

Index

AC coeÆcient, 189, 209

AC part, 75, 133

adaptive model, 31, 64

Adelson, E. H., 99

adjusted binary codes, 20

alphabet, 40

alphabet augmentation, 30

arithmetic coder, 25, 69

asymptotic optimal code, 17

attractor, 202

autocorrelation function, 13

automaton

weighted �nite, 39

average code word length, 15

average preserving, 40

B-frame, 120

backward prediction, 120

bad approximation alternative, 73

badness, 48, 54, 56, 68, 72, 73, 108,

120, 145

Barnsley, M. F., 201

Bel, 170

Bessel

inequality of, 181

bi-directional predicted frame, 120

biased di�erences, 63

binary image, 192

binomial Laplace operator, 178

bintree, 37, 40

biorthogonal wavelet, 106

Bit, 14

bit, 14

blended model, 67

block, 30

block code, 14

block e�ect, 79, 103, 170, 171

block entropy, 30

Borelean �-algebra, 11

Burt, P. J., 99

Butterworth high pass �lter, 178

Butterworth low pass �lter, 177

chrominance information, 165

code, 13, 14

asymptotic optimal, 17

average code word length of, 15

block-, 14

eÆciency of, 15

Elias, 18

Fibonacci, 18

Golomb, 20

Gray, 87

minimal pre�x-, 16

of variable length, 14

optimal pre�x, 193

order of, 13

pre�x, 14

redundancy of, 15

Rice, 20

uniquely decodable, 14

universal, 17

code tree, 16

code word length

average, 197

code words, 13

codebook, 21

codec, 25

coder

arithmetic, 25, 65, 69

DPCM, 175

Hu�man, 25

IFS, 60, 202

pre�x, 192

pyramid, 99

RLE, 192

Shannon Fano, 192

transform, 179

236 INDEX

WFA, 37, 65, 84, 103, 110, 142

coding, 13

color, 165

conditional, 32

delta, 77

dynamic Markov, 33

coding theory, 13

coeÆcient

AC, 189

DC, 189

MP, 65

collage theorem, 204

color coding, 165

color space

corrected YIQ, 167

corrected YUV, 167

RGB, 165

YCbCr, 79, 167

YIQ, 165

YUV, 165

compaction of image energy, 183

completeness, 181

conditional coding, 32

conservative, 40, 41

context model, 32

contraction condition, 202

contraction factor, 202

corrected YIQ, 167

corrected YUV, 167

correlation matrix, 13

cosine transform, 70, 186

Culik, K., 39

DC coeÆcient, 189

DC part, 75

DCT, 118, 186

decision value, 207

delta coding, 77

density, 11

deque, 67

diagram

Hosaka, 171

dictionary, 21

digital image, 8

dilation, 104

distribution, 11

�nal, 40

Gau�, 209

initial, 40

Laplace, 209

distribution function, 11

dithering, 171

divide and conquer principle, 35

domain blocks, 204

domain pool, 21

DPCM, 8, 175

dual lifting step, 109

dyadic wavelets, 104

dynamic Markov coding, 33

edge, 40

e�ect

tile, 79, 103, 170, 171

eÆciency of a code, 15

eigen

-value, 41, 186

-vector, 41, 184

Elias code, 18

Elias, P., 25

encoder, 29

entropy, 14, 197

of order n, 30

entropy coding, 192

equality of Parseval, 183

error

mean square, 169, 171

escape sequence, 191

event, 10

empty, 10

sure, 10

expectation, 11, 12

expectation value, 11

experiment, 10

Fano property, 16

Fano, R. M., 192

father function, 104

Fibonacci code, 18

Fibonacci numbers, 18

�lter, 175

median, 177

�lter bank algorithm, 105

�lter coeÆcients, 105

�nal distribution, 40

INDEX 237

�rst code of Elias, 18

forward prediction, 120

fractal, 35, 201

frame, 118

frequency

relative, 31

function

rate{distortion, 199

function system

orthonormal, 180

Gaussian distribution, 209

generalized WFA, 101

Golomb code, 20

Gray code, 87

gray value, 7

GWFA, 101

H-plot, 171

Haar transform, 70, 189

Hadamard transform, 70, 187

Hartley transform, 189

Hausdor� metric, 202

hierarchical MC, 122

high pass �lter, 178

Hilbert order, 9

homogeneous, 13

Hosaka diagrams, 171

Hotelling transform, 98, 184

Hotelling, H., 184

Hu�man code tree, 194

Hu�man coder, 193

Hu�man, D. A., 193

I-frame, 120

i�, 11

IFS code, 202

image

digital, 8

image energy, 183

image sequences, 35

inequality of Bessel, 181

information

chrominance, 165

luminance, 165

mutual, 200

trans-, 199

information content, 14

initial basis, 44

initial distribution, 40

initial states, 44

input alphabet, 13

instant decodability, 16

intra coded frame, 120

iterated function system, 201

Kak, A. C., 175

Karhunen, H., 184

Karhunen-Lo�eve transform, 184

Kirsch operator, 177

KLT, 184

Laplace operator, 178

Laplacian distribution, 209

lazy stack, 65

lazy wavelet transform, 109

Lebesgue density, 11

Legendre transform, 171

lifting scheme, 108

light HV partitioning, 59

linear quantizer, 208

Lloyd-Max quantizer, 207

Lo�eve, M., 184

luminance information, 165

matching pursuit, 20, 68

matching pursuit algorithm, 21

matrix

correlation, 13

Max quantizer, 207

Max, J., 207

mean squared error, 170

mean value, 209

measurable, 11

measurable space, 10

median, 177

median �lter, 177

metric

Hausdor�, 202

minimal pre�x code, 16

model, 50

adaptive, 29, 31, 64

blended, 67

context, 32

higher, 29

static, 31

238 INDEX

window, 32

model, 29

mother function, 105

motion compensation, 35

motion vector, 118

MP, 20, 68

MP coeÆent, 65

MP part, 75

MPEG, 118

MRA, 104

MSE, 170

multi-resolution

analysis, 104

image, 39

mutual information, 200

nat, 14

near lossless coding, 98

neighbor, 175

normal distribution, 209

NTSC, 165

Nyquist rate, 8

order of a code, 13

ordered Hadamard transform, 187

orthogonal, 180

orthogonal wavelet, 106

orthonormal function system, 180

orthonormalization procedure, 210

output alphabet, 13

P-frame, 120

pairwise disjoint, 10

PAL, 165

Parseval

equality of, 183

partition pointers, 42

partitioning, 35

bintree, 37

HV, 60

light HV, 59

quadtree, 35

PCM, 8

pel, 8

perfect reconstruction property, 110

phased binary codes, 20

pixel, 8

pixelization, 80

post iteration algorithm of Newton,

211

predicted frame, 120

prediction, 30

prediction function, 109

predictive encoding, 30

pre�x code, 14

minimal, 16

optimal, 193

pre�x encoder, 192

pre�x free code, 16

Prewitt operator, 177

primal lifting step, 109

probability, 10

probability measure, 10

probability space, 10

problem

quantization, 207

zero frequency, 31

process

stochastic, 12

progressive mode, 84, 114

projection pursuit, 21

PSNR, 170

pulse code modulation, 8

pursuit

matching, 21

pyramid encoder, 99

quadtree, 35, 36, 40

quantization, 7, 207

quantization error, 207

quantization noise, 7

quantization problem, 207

quantization steps, 7

quasi arithmetic codec, 29

random variable, 11

random variable array, 12

range blocks, 204

raster scan order, 8, 9

rate{distortion function, 199

region quadtree, 35, 36

regions of interest, 82

relative frequency, 31

RGB coding, 165

Rice code, 20

INDEX 239

Riesz basis, 111

RLE coder, 192

RMSE, 170

rollback operation, 53

root mean squared error, 170

Rosenfeld, A., 175

run length encoding, 192

sampling, 7

scaling function, 104

SECAM, 165

second chance variant, 22

second code of Elias, 18

second derivation operator, 178

sequence

zigzag, 69, 188

Shannon Fano coder, 192

Shannon, C. E., 192, 197, 199

�-algebra, 10

signal to noise ratio, 170

sine transform, 70

Slant transform, 70, 189

smoothing

digital, 176

SNR, 170

Sobel operator, 177

source, 197

spiral order, 9

spot check variance, 172

standard deviation, 11

state, 40

state image, 40

static model, 31

statistics, 10

stochastic, 10

stochastic process, 12

sub-sampling, 8

sum representation, 180

symbol code, 16

symbols, 13

text compression, 137

tiling e�ect, 79, 103, 170, 171

trans-information, 199, 200

transform

cosine, 70, 186

Haar, 70, 189

Hadamard, 70

Hartley, 189

Hotelling, 98

Karhunen-Lo�eve, 184

Legendre, 171

sine, 70

Slant, 70, 189

Walsh, 70

transform coding, 179

transition value, 207

translation, 104

tree

bin, 37

quad-, 35

trie, 16

true color representation, 77

two level search technique, 121

uniform distribution, 15

uniquely decodable code, 14

universal, 17

universal code, 17

update function, 109

vanishing moments, 103

variance, 11, 12, 209

spot check, 173

video coding, 35

video sequence, 118

Walsh functions, 187

Walsh transform, 70

Walsh-Hadamard transform, 187

wavelet function, 105

wavelet packet transform, 108

weight function, 40

weighted automaton, 39

WFA, 39, 170

WFA encoder, 37, 65, 84, 103, 110,

142

windowed model, 32

YCbCr color space, 79, 165

YIQ color space, 165

YUV color space, 165

zero frequency problem, 31

zero suppression, 191

zigzag sequence, 69, 188

