
Memetic Algorithms for
Combinatorial Optimization Problems:

Fitness Landscapes and Effective Search Strategies

Vom Fachbereich Elektrotechnik und Informatik

der Universität-Gesamthochschule Siegen

zur Erlangung des akademischen Grades

Doktor der Ingenieurwissenschaften

(Dr.-Ing.)

genehmigte Dissertation

von

Diplom-Ingenieur Peter Merz

aus Kreuztal

1. Gutachter: Prof. Dr.-Ing. Bernhard Freisleben

2. Gutachter: Prof. Dr. rer. nat. Wolfgang Merzenich

Tag der mündlichen Prüfung: 21. Dezember 2000

Acknowledgements

The material presented in this thesis is based on the research I have done during my time as
a research assistant in the Parallel Systems Research Group at the Department of Electrical
Engineering and Computer Science at the University of Siegen.

I would like to thank all those collaborators who made this research not only possible,
but also worthwhile and enjoyable. The following persons I thank individually.

First of all, I have to thank my academic mentor Bernd Freisleben who introduced me
to the secrets of academic work and who gave me the freedom to focus my research in the
direction I asked for. His financial support for attending several international conferences
allowed me to get in touch with other researchers in the field of evolutionary computation
and combinatorial optimization. I have learned so much by discussing with my international
colleagues – not only about our common research subjects.

Many thanks go to Wolfgang Merzenich, my second referee, who showed much interest
in my work. Furthermore, I wish to thank Udo Kelter for his part-time financial support in
the first year of my research.

Several other people at our department have supported my work through all these years.
I’d like to thank Frank Thilo who provided his Winner System as well as the necessary
support to get things running. Moreover, I’d like to thank André Treptow, Patrick Eu-
teneuer and Jörg Kühn for their extensions and refinements to COPS, the software package
containing the algorithms I developed during my work.

Several researchers around the globe also contributed to the production of my thesis. First
of all, I’d like to thank Martina Gorges-Schleuter for her excellent work which inspired me and
shifted my focus to hybrid evolutionary algorithms. Discussions with her were always fruitful.
Furthermore, I’d like to thank Pablo Moscato for his many comments and suggestions and
the opportunity to contribute a chapter to the book New Ideas in Optimization. Thomas
Stützle provided lots of suggestions and helpful criticism as well as the source code of his
algorithms. Thanks to him and to Kengo Katayama for his ideas and support; especially for
his refinements to the k-opt local search for the BQP. Many thanks also go to Tim Walters
for the fruitful discussions on evolutionary algorithms for the TSP, to Andy Reinholz for the
discussions and material support for vehicle routing, and to Volker Schnecke for ’giving me
shelter’ during the ICGA’97 conference. These people always believed in me and provided
a constant source of encouragement. Without them and without the support of my family I
would not have come this far.

Finally, I’d like to thank all my colleagues at the department of computer science in
Siegen. They provided a very friendly atmosphere and ensured that working at the depart-
ment was always fun.

i

ii

Zusammenfassung

Kombinatorische Optimierungsprobleme sind in vielen Bereichen der Forschung und Ent-
wicklung zu finden. Betriebswirtschaftlich ausgedrückt, handelt es sich um Entscheidungs-
situationen, in denen ein vorgegebener Nutzen in kostenminimaler Weise zu realisieren ist,
wobei aus mehreren Alternativen eine nach speziellen Kriterien optimale ausgewählt wird.
Voraussetzung ist, daß sich das Problem auf ein mathematisches Modell abbilden läßt, das
jeder Alternative – einer Lösung des Problems – eine Güte zuordnet. Die Ermittlung des
Fertigungssplans mit der höchsten Produktivität, die Entwicklung eines Telekommunikati-
onsnetzwerkes mit der höchst möglichen Zuverlässigkeit, oder die Vorhersage der räumlichen
Struktur eines Proteins nach seiner Faltung sind nur einige Beispiele kombinatorischer Opti-
mierungsprobleme. Viele ähnliche Probleme sind aus den Bereichen der Betriebswirtschaft,
dem Maschinenbau, der Elektrotechnik, der Informatik, der Biologie und der Physik bekannt.

Im Gegensatz zu anderen Optimierungsproblemen haben kombinatorische Optimierungs-
probleme eine endliche Zahl möglicher Lösungen. Daher können prinzipiell optimale Lösun-
gen durch das Betrachten aller möglichen Lösung gefunden werden. Dieses Vorgehen der
vollständigen Enumeration erweist sich aber nur selten als praktikabel, da bei den meisten
kombinatorischen Problemen die Anzahl der möglichen Lösungen einfach zu groß ist. Eini-
ge der in dieser Arbeit betrachteten Optimierungsprobleme haben mehr als 109259 mögliche
Lösungen, wogegen die geschätzte Anzahl der Atome in unserem Universum mit 1080 als
unbedeutend klein erscheint. Für einige kombinatorische Optimierungsprobleme sind Algo-
rithmen gefunden worden, die deutlich schneller als die vollständige Enumeration sind. Man
sagt, daß sie eine polynomiale Laufzeit in Abhängigkeit der Problemgröße besitzen, falls die
Laufzeit durch ein Polynom in n (der Problemgröße) ausgedrückt werden kann. Für viele
andere harte kombinatorische Optimierungsprobleme ist kein solch schneller Algorithmus be-
kannt. Es wird gemeinhin angenommen, daß kein Algorithmus mit polynomialer Laufzeit für
diese Probleme existiert, auch wenn ein Beweis für diese Annahme aussteht. Dennoch hat
man in den vergangenen Jahren enorme Fortschritte in der exakten Lösung dieser Proble-
me mittels hoch entwickelter Verfahren erzielt. Doch die Komplexität der Probleme bleibt.
Daher ist man in den meisten Fällen darauf angewiesen, Heuristiken einzusetzen, die zwar
die Ermittlung einer besten (optimalen) Lösung nicht garantieren, aber in der Praxis mit
hoher Wahrscheinlichkeit das Optimum oder ein Suboptimum mit geringfügig schlechterer
Lösungsgüte finden. Ein Teilbereich der Informatik hat sich zum Ziel gesetzt, neue Heuristi-
ken für kombinatorische Optimierungsprobleme zu finden, bereits bekannte zu verbessern,
und verschiedene Verfahren zu kombinieren.

Heuristiken für kombinatorische Optimierungsprobleme können in problemspezifische
und problemunabhängige Heuristiken eingeteilt werden. Beispiele für problemunabhängige
Techniken sind Nachbarschaftssuche, wie lokale Suche und Tabu-Suche, sowie biologisch in-
spirierte Methoden, wie evolutionäre Algorithmen, simulierte Ameisenkolonien, oder künst-
liche neuronale Netze. In den letzten Jahren hat man erkannt, daß die Kombination aus

iii

problemspezifischen und problemunabhängigen Heuristiken besonders vielversprechend ist:
Durch Einbringen von problemspezifischem Wissen in evolutionäre Algorithmen kann sich
in vielen Fällen die Effektivität des Ansatzes erheblich verbessern. Dabei werden Synergie-
effekte deutlich: Die Kombination zeigt eine deutliche Effektivitätssteigerung gegenüber den
Einzelkomponenten.

Die Forschung im Bereich der heuristischen Lösung kombinatorischer Optimierungspro-
bleme konzentriert sich überwiegend auf die Entwicklung von neuen, effektiveren Varianten
bestehender Heuristiken, welche häufig nur auf einigen, zumeist selbst generierten Instanzen
eines ausgesuchten Optimierungsproblems getestet werden. Ferner werden diese Heuristiken
mehr oder weniger adäquat mit anderen Ansätzen verglichen, um ihre Überlegenheit zu “be-
weisen”. Das Ziel der vorliegenden Arbeit ist nicht, an der Suche nach der “besten” Heuristik
zu partizipieren – es ist anzunehmen, daß keine solche existiert. Stattdessen beschäftigt sich
die Dissertation mit den folgenden Fragen: Warum ist eine gegebene Heuristik auf einer
gegebenen Menge von Testinstanzen effektiver als eine andere? Was sind die entscheidenden
Eigenschaften von Probleminstanzen, die sich auf die Effektivität von Heuristiken auswir-
ken? Wie kann man problemspezifisches Wissen einsetzen, um eine Heuristik für ein Problem
effektiver und effizienter zu machen? Läßt sich das zu lösende Problem in Instanzklassen
einteilen, und kann man das vorhandene Problemwissen dazu einsetzen, adäquatere Testfälle
für Heuristiken zu erzeugen?

Um Antworten auf die obigen Fragen zu finden, konzentriert sich diese Arbeit auf ei-
ne bestimmte Klasse von Heuristiken: die der memetischen Algorithmen. Es gibt mehrere
Gründe für diese Wahl. Zum einen erlauben memetische Algorithmen das Einsetzen von
problemspezifischem Wissen in einer kontrollierten Art und Weise, ohne daß dabei die zu
Grunde liegende Methodik verloren geht. Weiterhin profitieren memetische Algorithmen
von den Vorteilen eines hybriden Ansatzes. Sie nutzen die symbiotischen Effekte der unter-
schiedlichen Suchstrategien, die sie verwirklichen: Sie beinhalten Nachbarschaftssuche, die
sich sehr gut für die intensive Suche in einem ausgewählten Gebiet eignet, sowie die popu-
lationsbasierte evolutionäre Variation, wie sie in evolutionären Algorithmen zu finden ist,
die der Identifikation vielversprechender Gebiete im Suchraum dient. Ein weiterer Grund
für die getroffene Wahl ist, daß sich memetische Algorithmen als sehr effektive Algorithmen
erwiesen haben. Sie sind unter den effektivsten bis heute entwickelten Heuristiken für eine
Reihe von kombinatorischen Optimierungsproblemen.

Der Versuch, Einblicke in die Struktur von kombinatorischen Optimierungsproblemen
und in die Dynamik von heuristischen Suchprozessen zu erlangen, ist der erste Schritt, um
Antworten auf die oben gestellten Fragen zu finden. Das aus der Evolutionstheorie ent-
liehene Konzept der Fitness-Landschaften ist in diesem Zusammenhang äußerst hilfreich.
Die Idee ist dabei, die Menge aller Lösungen – den Suchraum – als eine räumliche Struk-
tur aufzufassen. Jeder Punkt in dieser räumlichen Struktur repräsentiert eine Lösung. Die
Fitness (Lösungsgüte) wird durch die Höhe des Punktes, der sie repräsentiert, dargestellt.
Somit ergibt sich ein Gebirge bzw. eine Landschaft, wenn man im Lösungsraum benach-
barte Punkte miteinander verbindet. Die Gebirgsspitzen stellen folglich lokale Optima und
die höchste Gebirgsspitze das globale Optimum dar. Einige Eigenschaften dieser Fitness-
Landschaften beeinflussen stark die Effektivität und die Effizienz der Nachbarschaftssuche
sowie der evolutionären (Meta-)Suche eines memetischen Algorithmus. Für die erstere ist
die lokale Struktur von entscheidender Bedeutung, die mit einer statistischen Autokorrela-
tionsanalyse untersucht werden kann. Die globale Struktur, die sich unter anderem in der
Verteilung der lokalen Optima, also der Gebirgsspitzen in der Fitness-Landschaft, ausdrückt,

iv

hat auf die evolutionäre Komponente des memetischen Algorithmus entscheidenden Einfluß.
Zur Analyse der globalen Struktur ist die statistische Fitness-Distanz-Korrelationsanalyse
ein hilfreiches Werkzeug.

Um die Verbindung zwischen Fitness-Landschaften von Optimierungsproblemen und der
Effektivität von memetischen Algorithmen systematisch zu untersuchen, werden fünf ver-
schiedene Probleme in dieser Arbeit betrachtet: NK-Fitness-Landschaften (NK-Landscapes),
das unbeschränkte binäre quadratische Optimierungsproblem (BQP), das Problem des Hand-
lungsreisenden (TSP), das Graphen-Bipartitionierungsproblem (GBP) und das quadratische
Zuweisungsproblem (QAP).

Die Arbeit ist wie folgt gegliedert. Nach einer kurzen Einführung wird in Kapitel 2
ein Überblick über kombinatorische Optimierungsprobleme gegeben. Es werden die be-
kanntesten Vertreter beschrieben, exakte Verfahren und Heuristiken diskutiert und eine
Klassifikation bezüglich der beinhalteten Nebenbedingungen getroffen, welche bei der Ent-
wicklung von Heuristiken eine große Rolle spielt. Im dritten Kapitel werden moderne
heuristische Techniken beschrieben. Hier liegt der Schwerpunkt auf evolutionären Algo-
rithmen und der Nachbarschaftssuche, sowie der Kombination aus beiden, den memeti-
schen Algorithmen. Eigenschaften von Fitness-Landschaften und deren statistische Ana-
lyse sind Gegenstand von Kapitel 4. Der Fokus liegt auf der Autokorrelationsanalyse und
der Fitness-Distanz-Korrelationsanalyse. Es wird diskutiert, wie diese Techniken genutzt
werden können, um die Effektivität eines Ansatzes vorherzusagen, bzw. wie die Ergebnisse
für die Entwicklung effektiver memetischer Algorithmen verwertet werden können. In den
Kapiteln 5 bis 9 werden nacheinander NK-Fitness-Landschaften, das unbeschränkte binäre
quadratische Optimierungsproblem, das Problem des Handlungsreisenden, das Graphen-
Bipartitionierungsproblem und das quadratische Zuweisungsproblem detailliert untersucht.
In jedem dieser Kapitel werden Heuristiken für die Probleme beschrieben mit Schwerpunkt
auf Greedy-Heuristiken und Nachbarschaftssuche, da diese gut für die Verwendung in einem
memetischen Algorithms geeignet sind. Zusätzlich wird eine Analyse mit den in Kapitel 4
eingeführten statistischen Werkzeugen durchgeführt. Hier kommen die Autokorrelationsana-
lyse und die Fitness-Distanz-Korrelationsanalyse zum Einsatz. Daran anschließend werden
unter Berücksichtigung der Analyseergebnisse memetische Algorithmen entwickelt, deren Ef-
fektivität in Computersimulationen gezeigt wird. Im abschließenden Kapitel wird die Arbeit
zusammengefaßt und es werden kapitelübergreifende Schlüsse gezogen. Das Kapitel und die
Dissertation enden mit einem Ausblick auf zukünftige Forschungsrichtungen.

In der vorliegenden Arbeit werden systematisch die fünf betrachteten kombinatorischen
Optimierungsprobleme analysiert. Für drei der fünf Probleme ist die Autokorrelation mathe-
matisch von anderen Forschern ermittelt worden. Für das binäre quadratische Optimierungs-
problem und für das quadratische Zuweisungsproblem wird in dieser Arbeit die Autokorrela-
tionsanalyse experimentell durchgeführt. Zusätzlich wird für alle fünf Probleme die Fitness-
Distanz-Korrelation experimentell bestimmt. Weiterhin werden für alle Probleme neue evo-
lutionäre Variationsoperatoren und/oder Greedy- und lokale Suchheuristiken vorgeschlagen:
Für NK-Landschaften werden eine neue Greedy-Heuristik, eine k-optimale lokale Suche und
ein heuristischer Rekombinationsoperator eingeführt. Eine neue Greedy-Heuristik und eine
k-optimale lokale Suche werden ebenfalls für das binäre quadratische Optimierungsproblem
entwickelt. Für das Problem des Handlungsreisenden werden zwei neue Rekombinationsope-
ratoren definiert, ein distanzerhaltender Rekombinationsoperator und ein generischer, heuri-
stischer Rekombinationsoperator. Im Falle des Graphen-Bipartitionierungsproblems wird ein
neuer heuristischer Rekombinationsoperator in Anlehnung an eine Greedy-Heuristik vorge-

v

schlagen. Für das quadratische Zuweisungsproblem werden ebenfalls zwei Rekombinations-
operatoren eingeführt, ein distanzerhaltender Rekombinationsoperator und eine zyklischer
Rekombinationsoperator in Anlehnung an den Cycle-Operator für das Problem des Hand-
lungsreisenden. In allen fünf Fällen wird gezeigt, daß memetische Algorithmen, die diese
neuen Operatoren und Heuristiken einsetzen, zu den besten bisher veröffentlichten Heuristi-
ken für das jeweilige Problem zählen.

Bezüglich der oben gestellten Fragen lassen sich sowohl aus den Analyseexperimenten als
auch aus den Experimenten mit den memetischen Algorithmen Schlüsse ziehen. Zusammen-
gefaßt ergeben sich aus der Analyse die folgenden Aussagen.

• Die Eigenschaften der Fitness-Landschaften sind keinesfalls für alle Probleme gleich.
Sie variieren stark von Problem zu Problem, und es gibt innerhalb eines Problems
sehr stark unterschiedliche Instanzen, die sogar komplementäre Eigenschaften besitzen
können.

• Instanzen mit regelmäßiger Struktur oder Instanzen deren Optima in polynomialer
Zeit berechnet werden können, haben nicht die charakteristischen Eigenschaften von
in Anwendungen auftretenden Instanzen. In den betrachteten Fällen haben sie sich
(für Heuristiken) als deutlich leichter lösbar erwiesen.

• Die Effektivität von Heuristiken bei zufällig generierten Instanzen unterscheident sich
deutlich von der Effektivität bei strukurierten Instanzen, die in Anwendungen auf-
treten. Insbesondere haben Instanzen, bei denen die Daten eine Gleichverteilung an-
nehmen, völlig andere Eigenschaften. Ein Algorithmus, der auf diesen Instanzen gute
Ergebnisse liefert, muss dies nicht notwendigerweise auch auf anderen Instanzen tun.

• Daraus ergibt sich die Forderung, daß Testinstanzen Vertreter aller Typen von Fitness-
Landschaften eines Problems beinhalten sollten.

• Der Größe der Region des Suchraums, in der die lokalen Optima liegen, kommt eine
große Bedeutung zu. Sie variiert stark von Problem zu Problem. Effektive Heuristiken
sollten dies berücksichtigen.

• Hohe Epistasis – ein Maß für die Interaktion zwischen den Komponenten eines Lösungs-
vektors und somit ein Maß für die Nichtlinearität des Problems – bedeutet nicht immer,
wie bisher angenommen, daß ein Problem (für Heuristiken) schwer lösbar ist.

Die Schlußfolgerungen aus den Experimenten mit den memetischen Algorithmen lassen
sich ebenfalls zusammenfassen:

• Memetische Algorithmen skalieren viel besser mit der Problemgröße als evolutionäre
Algorithmen oder wiederholte lokale Suche. Insbesondere lassen sich evolutionäre Al-
gorithmen ohne heuristische Elemente nur auf Probleme mit einer Problemgröße, die
in der Praxis uninteressant ist, effektiv anwenden.

• Greedy-Komponenten sind für Probleme mit geringer Epistasis in einem memetischen
Algorithmus vielversprechend. Sie können bei der Initialisierung der Population und
bei der Rekombination verwendet werden.

vi

• Memetische Algorithmen erweisen sich am effektivsten, wenn die Fitness-Landschaft
einer Instanz Korrelation aufweist, d.h. wenn eine globale Struktur erkennbar ist. In
diesem Fall kann Rekombination als Mittel der evolutionären Variation gewinnbringend
eingesetzt werden, da sie die Struktur ausnutzt und die Suche auf den Bereich des
Suchraums mit überdurchschnittlichen Lösungen konzentriert.

• Wenn die Fitness-Landschaft korreliert ist, die lokalen Optima im Suchraum aber zu
dicht beieinander liegen, wird evolutionäre Suche mittels Rekombination ineffektiv, da
die Diversifikationseigenschaft zu schnell mit der Konvergenz der Suche abnimmt.

• Es hat sich gezeigt, daß iterierte lokale Suche beim Problem des Handlungsreisenden
sehr effektiv ist. In den anderen untersuchten Problemen ist sie allerdings der popula-
tionbasierten Suche unterlegen.

Wie die vorliegende Dissertation zeigt, ist es möglich, die Effektivität von Rekombination
im Vergleich zu Mutation als Mittel der Variation in memetischen Algorithmen in gewissem
Maße vorherzusagen, wenn eine Analyse der Fitness-Landschaft als Grundlage dient.

Teile der Ergebnisse zu den NK-Fitness-Landschaften und der binären quadratischen
Optimierung in den Kapiteln 5 und 6 sind in den Konferenzbänden der IEEE Internatio-
nal Conference on Evolutionary Computation (1998) [212] und in den Tagungsbänden der
International Genetic and Evolutionary Computation Conference (GECCO) (1999) [215] er-
schienen. Einige der Heuristiken für das binäre quardratische Optimierungsproblem sind in
einem Arikel beschrieben, der in der Fachzeitschrift Journal of Heuristics erscheint [217].
Frühere Ergebnisse des memetischen Algorithmus für das Problem des Handlungsreisen-
den, wie in Kapitel 7 beschrieben, sind in den Konferenzbänden der IEEE Conference on
Evolutionary Computation (ICEC) (1996 und 1997) [105, 210] und in den Tagungsbänden
der Fourth International Conference on Parallel Problem Solving from Nature (1996) [106]
veröffentlicht. Teilergebnisse der Untersuchungen für das Graph-Bipartitionierungsproblem
in Kapitel 8 sind in den Tagungsbänden der Fifth International Conference on Parallel Pro-
blem Solving from Nature (PPSN) (1998) [211] erschienen. Ein ausführlicher Artikel ist in
der Zeitschrift Journal of Evolutionary Computation [217] publiziert. Erste Ergebnisse für
das quadratische Zuweisungsproblem sind in den Konferenzbänden Seventh International
Conference on Genetic Algorithms and their Applications (ICGA) (1997) [209] und Con-
gress on Evolutionary Computation (CEC) (1999) [213] zu finden. Ein ausführlicher Artikel
zu den Resultaten in Kapitel 9 ist in der Fachzeitschrift IEEE Transactions on Evolutio-
nary Computation veröffentlicht [216]. Schließlich ist zur Fitness-Landschaft-Analyse und
der Entwicklung effektiver memetischer Algorithmen ein Kapitel in dem Buch New Ideas in
Optimization [214] erschienen. Der Artikel enthält Grundlagen aus Kapitel 4 sowie frühe
Teilergebnisse zum Problem des Handlungsreisenden, Graph-Bipartitionierungsproblem und
zum quadratischen Zuweisungsproblem.

vii

viii

Contents

1 Introduction 1

2 Combinatorial Optimization Problems 5
2.1 Introduction . 5
2.2 Definitions . 5
2.3 Computational Complexity . 6
2.4 Examples of COPs . 7

2.4.1 The Traveling Salesman Problem . 7
2.4.2 Graph Partitioning . 8
2.4.3 The Quadratic Assignment Problem 9
2.4.4 Vehicle Routing . 11
2.4.5 Scheduling . 11
2.4.6 Unconstrained Binary Quadratic Programming 13
2.4.7 NK-Landscapes . 14
2.4.8 The Knapsack Problem . 15

2.5 Exact Methods for Solving COPs . 16
2.5.1 Branch & Bound . 16
2.5.2 Branch & Cut . 16
2.5.3 Heuristic Methods . 17

2.6 Classification of COPs . 18
2.7 Summary . 19

3 Memetic Algorithms 21
3.1 Introduction . 21
3.2 Evolutionary Algorithms . 21

3.2.1 Natural Evolution . 22
3.2.2 History of Evolutionary Computation 23
3.2.3 Outline of Evolutionary Algorithms 24
3.2.4 The Evolutionary Variation Operators 27
3.2.5 The Relation between Genotype and Phenotype 31
3.2.6 Application of EAs . 31

3.3 Other Biologically Motivated Optimization Techniques 32
3.3.1 The Ant Colony System . 32
3.3.2 Artificial Neural Networks . 33
3.3.3 Recent Developments . 34

3.4 Greedy and Local Search Heuristics . 34
3.4.1 Greedy Heuristics . 34
3.4.2 Local Search Heuristics . 35

ix

3.4.3 Simulated Annealing and Threshold Accepting 37
3.4.4 Tabu Search . 38

3.5 Towards Memetic Algorithms . 39
3.5.1 Combination of Evolutionary Algorithms and Neighborhood Search . 40
3.5.2 Cultural Evolution . 41
3.5.3 The Memetic Algorithm . 41
3.5.4 Special Cases of the Memetic Approach 43

3.6 Summary . 44

4 Performance Prediction and Fitness Landscape Analysis 47
4.1 Introduction . 47
4.2 Performance Evaluation of Heuristics . 48
4.3 The No Free Lunch Theorems . 49
4.4 Fitness Landscapes . 49

4.4.1 Properties of Fitness Landscapes . 50
4.4.2 Preliminaries . 51
4.4.3 Fitness Distance Correlation . 51
4.4.4 Autocorrelation . 52

4.5 Performance Prediction and Analysis for Evolutionary Algorithms 55
4.5.1 Problem Difficulty . 55
4.5.2 Variation Operator Analysis . 55

4.6 Landscape Analysis and Memetic Algorithms 56
4.6.1 The Role of Evolutionary Operators in Memetic Algorithms 56
4.6.2 Landscape Analysis and the Choice of Operators 59

4.7 Summary . 62

5 NK-Landscapes 65
5.1 Introduction . 65
5.2 Heuristics for the NK-Model . 66

5.2.1 Greedy Algorithms . 66
5.2.2 Local Search . 67

5.3 The Fitness Landscape of the NK-Model . 69
5.3.1 Autocorrelation Analysis . 70
5.3.2 Fitness Distance Correlation Analysis 71

5.4 A Memetic Algorithm for NK Landscapes 74
5.4.1 Population Initialization and Local Search 74
5.4.2 Evolutionary Variation Operators . 74
5.4.3 Performance Evaluation . 74

5.5 Summary . 80

6 The Binary Quadratic Programming Problem 81
6.1 Introduction . 81
6.2 Heuristics for the BQP . 82

6.2.1 Greedy Heuristics . 82
6.2.2 Local Search . 84

6.3 The Fitness Landscape of the BQP . 88
6.3.1 Epistasis in the BQP . 88
6.3.2 Autocorrelation Analysis . 89

x

6.3.3 Fitness Distance Correlation Analysis 89
6.4 A Memetic Algorithm for the BQP . 92

6.4.1 A Simple Genetic Algorithm for the BQP 92
6.4.2 The Memetic Algorithm . 94

6.5 Performance Evaluation . 95
6.5.1 Performance of the Greedy and Local Search Heuristics 95
6.5.2 Comparison of Genetic Algorithms and Memetic Algorithms 99
6.5.3 A Memetic Algorithm with k-opt Local Search 103

6.6 Summary . 105

7 The Traveling Salesman Problem 107
7.1 Introduction . 107
7.2 Heuristics for the TSP . 107

7.2.1 The Greedy Heuristic . 108
7.2.2 Local Search . 109
7.2.3 Evolutionary Algorithms . 111

7.3 The Fitness Landscape of the TSP . 115
7.3.1 Distances between TSP tours . 115
7.3.2 Autocorrelation Analysis . 116
7.3.3 Fitness Distance Correlation Analysis 117

7.4 A Memetic Algorithm for the TSP . 121
7.4.1 Initialization and Local Search . 121
7.4.2 Variation Operators . 122
7.4.3 Implementation Details . 125
7.4.4 Performance Evaluation . 126

7.5 Summary . 133

8 The Graph Bipartitioning Problem 135
8.1 Introduction . 135
8.2 Heuristics for the GBP . 136

8.2.1 Greedy Heuristics . 136
8.2.2 Local Search . 136
8.2.3 Hybrid Evolutionary Algorithms . 137

8.3 The Fitness Landscape of the GBP . 138
8.3.1 A Distance Measure . 138
8.3.2 Autocorrelation Analysis . 139
8.3.3 Fitness Distance Correlation Analysis 139

8.4 A Memetic Algorithm for the GBP . 147
8.4.1 Initialization and Local Search . 147
8.4.2 The Evolutionary Variation Operators 148

8.5 Memetic Algorithm Performance . 148
8.6 Summary . 153

9 The Quadratic Assignment Problem 157
9.1 Introduction . 157
9.2 Heuristics for the QAP . 157

9.2.1 Greedy Heuristics . 158
9.2.2 Local Search . 158

xi

9.2.3 Hybrid Evolutionary Algorithms . 159
9.3 The Fitness Landscape of the QAP . 160

9.3.1 A Distance Measure . 160
9.3.2 Types of QAP Instances . 161
9.3.3 Autocorrelation Analysis . 163
9.3.4 Fitness Distance Correlation Analysis 165

9.4 A Memetic Algorithm for the QAP . 167
9.4.1 Initialization and Local Search . 168
9.4.2 The Evolutionary Variation Operators 169

9.5 Memetic Algorithm Performance . 172
9.5.1 Comparison of Heuristic Algorithms for the QAP 172

9.6 Summary . 176

10 Conclusions 179

xii

Chapter 1

Introduction

Combinatorial optimization problems are found in many areas of research and development.
They arise when the task is to find the best out of many possible solutions to a given prob-
lem, provided that a clear notion of solution quality exists. Finding the factory production
schedule with the highest throughput, designing the most reliable telecommunications net-
work, or finding the structure of a protein molecule in the three dimensional space that
minimizes potential energy are just few examples of combinatorial optimization problems.
Many others have been reported in the fields of management science, industrial engineering,
computer science, biology, and physics.

In contrast to other optimization problems, combinatorial problems have a finite number
of candidate solutions. Therefore, an obvious way to solve these problems is to enumerate
all candidate solutions by comparing them against each other. Unfortunately, for most
interesting combinatorial optimization problems, this approach proves to be impractical since
the number of candidate solutions is simply too large. For example, some of the problems
considered in this thesis have more than 109259 candidate solutions which is an extraordinary
high number compared to the estimated number of 1080 atoms in the universe. For some
combinatorial problems, algorithms have been found which are much faster than exhaustive
search: they are said to run in polynomial time depending on the problem size. For many
other hard combinatorial optimization problems it is commonly believed that there is no such
fast algorithm. However, in recent years enormous progress has been made in solving these
problems with exact algorithms. But the computational complexity still remains: for the
vast majority of cases, the only way to tackle the problems is to apply heuristic search that
delivers no guarantee of finding the optimum solution. Consequently, an enormous effort has
been made in developing heuristics that are aimed at finding high quality solutions in short
time.

Heuristics for combinatorial optimization problems can be separated into problem-specific
algorithms and problem-independent methods. Examples of modern problem-independent
techniques are neighborhood search algorithms such as local search, tabu search, or simu-
lated annealing, and biologically inspired methods like evolutionary algorithms, ant colony
systems, and neural nets. Even hybrid methods exist that combine two or more search
strategies, e.g. memetic algorithms which are hybrids of neighborhood search methods and
evolutionary algorithms. In recent years, researchers focused on the development of new,
more effective variants of heuristics which are tested on some, often self-generated instances of
a selected problem. They are compared more or less adequately with alternative approaches
to ‘prove’ superior effectiveness.

The goal of this thesis is not to participate in the quest of finding the ‘best heuristic

1

2 1 Introduction

ever developed’ - in fact it is commonly believed that there is no such ‘best’ heuristic that
is superior to all other heuristics on all problems. Instead, the research is focused on the
following important questions: why does a given heuristic perform better on a given set of
problem instances than others? What are the key problem characteristics that make it hard
for a certain class of heuristics? Is there a way to predict the performance of a heuristic on a
particular problem? How can we use knowledge about the problem to design more effective
algorithms? Can we employ knowledge of the problem to determine better test cases?

In an attempt to find answers to the questions, this thesis is focused on a particular
class of heuristics: memetic algorithms. There are several reasons for this choice. Many
researchers experienced that it is very important to incorporate domain-specific knowledge
into problem-independent algorithms. Memetic algorithms allow to do this in a controlled
manner, keeping the basic ideas behind the memetic approach. Moreover, memetic algo-
rithms are hybrids. They exploit the symbiotic effects of the combination of two (sometimes
more) different search strategies: they incorporate neighborhood search algorithms that are
well-suited for intensifying search while the evolutionary framework enables effective diver-
sification. Finally, memetic algorithms have been shown to be among the most effective
heuristics for combinatorial optimization problems to date.

Gaining insight into the structure of combinatorial problems is the first step in finding
answers to the questions stated above. The concept of fitness landscapes borrowed from
biologists has proven to be very useful in the context of optimization. The basic idea is
to view the set of all candidate solutions – the search space – as a spatial structure in
which each point represents a candidate solution. Each point has a height that reflects
the quality (fitness) of the represented solution. The spatial arrangement based on a well-
defined neighborhood structure yields a fitness landscape since the heights vary from one
point to the other. Some characteristics of fitness landscapes are strongly related to the
performance of the neighborhood search as well as to the evolutionary meta-search of the
memetic algorithm. For the former, the local structure of the fitness landscape is of great
importance which can be investigated with an autocorrelation or random-walk correlation
analysis. The effectiveness of the latter is highly influenced by the distribution of the points
in the search space which are produced by the neighborhood search. A fitness distance
correlation analysis can be utilized to find characteristics in this distribution.

To investigate the relation between the fitness landscapes of combinatorial optimization
problems and the performance of memetic algorithms, five problems are studied in detail,
each of which covers different aspects of problem difficulty: NK-landscapes, unconstrained
binary quadratic programs, the traveling salesman problem, the graph bipartitioning prob-
lem, and the quadratic assignment problem. Therefore, a more general view of the landscape
characteristics and algorithm performance is provided than by other studies in the field. For
each of the problems, heuristics that can be incorporated into memetic algorithms are dis-
cussed, a fitness landscape analysis is performed to reveal important problem characteristics,
and the effectiveness of memetic algorithms is investigated in experiments.

The thesis is organized as follows. In chapter 2, a brief overview of combinatorial op-
timization problems is provided: well-known examples of these problems are described, ex-
act methods and heuristics are discussed, and a classification of combinatorial problems
is given. Chapter 3 describes modern heuristic techniques with emphasis on evolution-
ary algorithms and neighborhood search as well as their combination: memetic algorithms.
Techniques for analyzing fitness landscapes are described in chapter 4. The focus is put
on autocorrelation/random-walk analysis and fitness distance correlation analysis. It is dis-

3

cussed how these techniques can be utilized for the performance prediction or the design
of memetic algorithms. In the chapters 5 through 9, NK-landscapes, unconstrained binary
quadratic programs, the traveling salesman problem, the graph bipartitioning problem, and
the quadratic assignment problem are investigated, respectively. In each of these chapters,
heuristics for the problems are described with emphasis on greedy and local search heuristics,
since these two types of heuristics are well-suited for the incorporation into an evolutionary
framework. Additionally, a search space analysis of the problems is performed by employ-
ing the techniques discussed in chapter 4. The performance of memetic algorithms for the
particular problem is evaluated in computer experiments afterwards. In the final chapter,
the results obtained from the experiments described in the various chapters are compared,
and general conclusions are drawn. The thesis finishes with a discussion of important future
work.

Parts of the results on NK-landscapes and binary quadratic programming in the chap-
ters 5 and 6 have been published in the proceedings of the 1998 IEEE International Confer-
ence on Evolutionary Computation [212], and in the proceedings of the International Genetic
and Evolutionary Computation Conference (GECCO) [215], respectively. The heuristics de-
veloped for the binary quadratic programming problem are described in an article which
is accepted for publication in the Journal of Heuristics [218]. Early results of the memetic
algorithm for the traveling salesman problem described in chapter 7 have been published in
the proceedings of the IEEE Conference on Evolutionary Computation (ICEC) in the years
1996 and 1997 [105, 210], and in the proceedings of the Fourth International Conference
on Parallel Problem Solving from Nature [106]. Partial results of the studies on the graph
bipartitioning problem presented in chapter 8 have been published in the proceedings of the
Fifth International Conference on Parallel Problem Solving from Nature (PPSN) [211]. A
full-length paper appears in the Journal of Evolutionary Computation [217]. Preliminary
results on the quadratic assignment problem have been published in the proceedings of Sev-
enth International Conference on Genetic Algorithms and their Applications (ICGA) [209]
and in the proceedings of the 1999 Congress on Evolutionary Computation (CEC) [213]. A
self-contained version of chapter 9 has been published in the journal IEEE Transactions on
Evolutionary Computation [216]. Finally, a chapter on the fitness landscape analysis and
the design of memetic algorithms containing research results of an earlier stage of this work
have been published in the book New Ideas in Optimization [214].

4 1 Introduction

Chapter 2

Combinatorial Optimization Problems

2.1 Introduction

Combinatorial optimization problems (COPs) arise in many practical applications in the
fields of management science, biology, chemistry, physics, engineering, and computer science.
Project and resource management, transportation management, capital budgeting, network
routing, protein folding/molecular conformation, x-ray crystallography, spin glass models,
and VLSI design and fabrication are just a few examples of fields in which combinatorial
optimization problems occur.

Many of these problems are very complex and thus hard to solve; general mathematical
methods are not available. Often, the number of candidate solutions of an optimization
problem instance grows exponentially with the problem size so that simple enumeration
schemes are rendered impractical. Thus, combinatorial optimization problems constitute a
class of problems with high practical importance but extreme hardness with respect to the
solution of these problems.

In this chapter, a formal definition of COPs is given to distinguish them from other op-
timization problems. Several examples of well–known combinatorial problems in operations
research and their application areas are provided afterwards. Furthermore, exact methods for
solving COPs are described, and the importance of heuristics for these problems is discussed.
Finally, a classification of COPs based on the characteristics of the constraints present in a
problem is provided.

2.2 Definitions

According to [113], a combinatorial optimization problem P is either a minimization problem
or a maximization problem, and it consists of

(i) a set DP of instances,

(ii) a finite set SP (I) of candidate solutions for each instance I ∈ DP , and

(iii) a function mP that assigns a positive rational number mP (I, x) called the solution
value for x to each instance I ∈ DP and each candidate solution x ∈ SP (I).

Thus, an optimal solution for an instance I ∈ DP is a candidate solution x∗ ∈ SP (I)
such that, for all x ∈ SP (I), mP (I, x∗) ≤ mP (I, x) if P is a minimization problem, and
mP (I, x∗) ≥ mP (I, x) if P is a maximization problem.

5

6 2 Combinatorial Optimization Problems

Due to the fact that the set of candidate solutions is finite, an algorithm for finding
an optimum solution always exists. This algorithm, referred to as exhaustive search, sim-
ply evaluates and compares mP (I, x) for all x ∈ SP (I). Unfortunately, the search space of
many combinatorial problems grows exponentially with the problem size, i.e., the number
of components in a solution vector x. Thus, this complete enumeration scheme becomes im-
practical. For a large class of combinatorial optimization problems no alternative algorithms
running in polynomial time are known. This phenomenon has led to the development of
complexity theory [113], and in particular, to the theory of NP-completeness.

2.3 Computational Complexity

The theory of NP-completeness is focused on decision problems such as:

Is there a feasible solution x ∈ SP (I) such that mP (I, x) ≤ L (mP (I, x) ≥ L) ?

Two basic classes of decision problems are distinguished: the class P of decision problems
that can be solved by a polynomial-time algorithm, and the class NP of decision problems
that can be solved by a non-deterministic polynomial-time algorithm. The latter consists
of two stages. In the first stage, a solution to a given instance I is guessed. In the second
stage, this solution is checked by a deterministic polynomial verification algorithm [113].

Given these two classes, NP-complete problems can be defined [113, 159]:

Def. 2.1 A decision problem p is NP-complete, if (a) p ∈ NP, and (b) all problems in NP
can be reduced to p by a polynomial-time algorithm.

Probably the most important open question in computer science is whether P = NP . From
the above definition follows immediately that if for one problem in NP a polynomial time
algorithm can be found, all problems in NP can be solved in polynomial time and thus
P = NP . However, it is commonly believed that P 6= NP , but no proof has been found
yet.

So far, nothing has been said about combinatorial optimization problems. Optimization
problems cannot beNP-complete, since they are not decision problems, even though for each
optimization problem a decision problem can be defined which is equivalent in complexity.
However, the notion of NP-hard problems is less restricted than the definition of NP-
completeness [159]:

Def. 2.2 A problem (decision or otherwise) is NP-hard if all problems in NP are polyno-
mially reducible to it.

This definition includes decision problems that are not contained in NP as well as problems
which are not decision problems.

This work concentrates on NP-hard combinatorial optimization problems for which the
equivalent decision problems exist which are NP-complete. Due to their computational
complexity (assuming P 6= NP), powerful approximation algorithms are required that –
although they do not guarantee to find the optimum solution – are able to find optimum or
near–optimum solutions in short time.

2.4 Examples of COPs 7

2.4 Examples of COPs

Some combinatorial optimization problems that have been studied extensively are presented
in the following paragraphs. The problems are selected according to their importance to the
development of heuristics. They constitute only a small fraction of the family of COPs and
will be studied in detail in the following chapters. A virtually unlimited number of other
combinatorial optimization problems exists, which can not be considered in this work.

2.4.1 The Traveling Salesman Problem

The traveling salesman problem (TSP)1 is a well–known COP, and has attracted many re-
searchers from various fields, partly because it is hard to solve but can be easily stated: given
a set of n cities and the geographical distance between them, the traveling salesman has to
find the shortest tour in which he visits all the cities exactly once and returns to his starting
point. More formally, the tour length

l(π) =
n−1∑
i=1

dπ(i),π(i+1) + dπ(n),π(1) (2.1)

has to be minimized, where dij is the distance between city i and city j and π a permutation
of 〈1, 2, . . . , n〉. Thus, an instance I = 〈D〉 is defined by a distance matrix D = (d)ij, and a
solution (TSP tour) is a vector π with j = π(i) denoting city j to visit at the i-th step.

A special case of the TSP is the Euclidean TSP. Here, the distance matrix dij is sym-
metric, that is dij = dji ∀ i, j ∈ {1, 2, . . . , n}, and the triangle inequality holds: dij ≤
dik + dkj ∀ i, j, k ∈ {1, 2, . . . , n}. The distance between two cities is defined by the Eu-
clidean distance between two points in the plane. These two assumptions do not lead to a
reduction of the complexity, hence the problem remains NP-hard.

Although there is a TSP tour for every permutation π, there are many permutations
that represent the same tour. Alternatively to equation (2.1), the TSP can be defined as
finding a shortest Hamiltonian cycle in a complete weighted graph G = (V,E, d) where the
set V = {1, . . . , n} represents the cities and the edge set E the arcs between them. A weight
that corresponds to the distance dij between the incident cities is assigned to each edge.
Thus a solution T is a subset of E with |T | = |V | = n.

Let the matrix X = (xij) be a boolean matrix with xij = 1, if the arc from i to j is in
the tour, 0 otherwise. The TSP is then defined as:

minimize l(X) =
n∑
i=1

n∑
j=1

dij xij (2.2)

subject to
n∑

i=1,i6=j
xij = 1 ∀ j ∈ V (2.3)

n∑
j=1,j 6=i

xij = 1 ∀ i ∈ V (2.4)

∑
i∈Q

∑
j∈V−Q

xij ≥ 1 ∀Q ⊂ V (2.5)

1The TSP was formerly known under the name traveling salesperson problem. In 1976, researchers of the
field have agreed to use the term traveling salesman [186].

8 2 Combinatorial Optimization Problems

The above equations illustrate that the TSP can be formulated as a zero/one integer pro-
gramming problem. While the first two constraints ensure that the degree of each node is
two (one incoming and one outgoing edge), the last constraint ensures that solutions are not
consisting of disjoint sub-tours. In Figure 2.1(b), a graph is given that does not represent

0

1

2

3

4

5

6

7

8

9

(a)

0

1

2

3

4

5

6

7

8

9

(b)

0

1

2

3

4

5

6

7

8

9

(c)

Figure 2.1: A feasible and two infeasible traveling salesman tours

a TSP tour, since node 3 and node 6 do not have degree 2, hence the constraints (2.3,2.4)
are not obeyed. Figure 2.1(c) shows the violation of constraint equation (2.5): although all
nodes have degree two, there are two disjoint sub-tours and thus the solution becomes infea-
sible. The elimination of the constraint (2.5) leads to the well–known assignment problem,
which can be solved in polynomial time by the Hungarian method [267].

Applications of the TSP

The TSP has its applications in a wide range of domains, including drilling of printed circuit
boards (PCBs) of 17000 nodes (cities) and more [193, 261], X–ray crystallography with up
to 14000 nodes [33], VLSI–chip fabrication with as many as 1.2 million nodes [177], as well
as overhauling of gas turbine engines of aircrafts [251], mask plotting in PCB production
[128, 178], computer wiring and clustering of data arrays [187], scheduling, seriation in
archaeology, and the control of robots [261].

2.4.2 Graph Partitioning

The graph partitioning problem (GPP) is an NP-hard combinatorial optimization problem
[113]. Given an undirected graph G = (V,E), the GPP is to find a partition of the nodes
in k sets of equal size, denoted V1, V2, . . . Vk, so that the number of edges between nodes in
different sets is minimized. More formally, the problem is to minimize

c(V1, . . . , Vk) = |e(V1, . . . , Vk)|, with (2.6)

e(V1, . . . , Vk) = {(i, j) ∈ E|∃ l ∈ {1, . . . , k} : i ∈ Vl ∧ j /∈ Vl}, (2.7)

where c(·) is referred to as the cut size of the partition and e(·) ∈ E is referred to as the
(edge) cut. An instance I = 〈A〉 of the GPP consists of an adjacency matrix A of the graph
G.

2.4 Examples of COPs 9

A special case of the GPP is the graph bipartitioning problem (GBP) (also known as the
graph bi-section problem) which can be defined as minimizing

c(V1, V2) = |e(V1, V2)|, with e(V1, V2) = {(i, j) ∈ E|i ∈ V1 ∧ j ∈ V2}. (2.8)

Figure 2.2 displays a partition of a small geometric graph into two sets. The edges in the
cut are emphasized.

Figure 2.2: A solution to a graph bipartitioning problem

The GBP can be formulated as a 0/1 integer programming problem as follows.

minimize c(x) =
1

2

n∑
i=1

n∑
j=1

aij xi (1− xj) (2.9)

subject to
n∑
i=1

xi =
n

2
, (2.10)

where matrix A = (aij) is the adjacency matrix of the graph G. A value of 0 in the solution
vector x for component xk denotes that vertex k belongs to the first set V1, and to V2

otherwise.

If it is not required that both sets have the same size (equation (2.10)), the optimum can
be found in polynomial time by the algorithm of Ford and Fulkerson [102]. This problem is
known as the minimum cut problem.

Applications of the GPP

The graph partitioning problem arises in many applications such as parallel and distributed
computing, VLSI circuit design and simulation, transportation management, and data min-
ing [252, 276].

2.4.3 The Quadratic Assignment Problem

The quadratic assignment problem (QAP) has been introduced by Koopmans and Beckmann
[176] to describe a location problem where a set of facilities has to be assigned to given
locations at minimal cost. Mathematically, the QAP can be defined as follows.

10 2 Combinatorial Optimization Problems

Given two n×n matrices A = (aij) and B = (bij), the following cost function for assigning
n facilities to n locations has to be minimized:

C(π) =
n∑
i=1

n∑
j=1

aij bπ(i)π(j), (2.11)

where aij denotes the distance between location i and location j, and bkl denotes the flow
of materials from facility k to facility l. Thus, a QAP instance I = 〈A,B〉 consists of a flow
and distance matrix, and a solution π denotes a permutation of 〈1, 2, . . . , n〉 (π(i) denotes
the facility assigned to location i).

As an alternative to equation (2.11), the QAP can be formulated as a 0/1 integer pro-
gramming problem as follows:

minimize C(X) =
n∑
i=1

n∑
j=1

n∑
k=1

n∑
l=1

aik bjl xij xkl, (2.12)

subject to
n∑
i=1

xij = 1, ∀ j = 1, 2, . . . , n,

n∑
j=1

xij = 1, ∀ i = 1, 2, . . . , n,

xij ∈ {0, 1}, ∀ i, j = 1, 2, . . . , n.

This definition has some resemblance to the 0/1 integer programming definition of the TSP.
In fact, both TSP and GPP are special cases of the QAP, as shown below.

Applications of the QAP

The QAP has many practical applications, such as backboard wiring on electronic circuits
[285] or the design of typewriter keyboards and control panels [51, 207]. Furthermore, it
has been used in facility location problems, in particular hospital planning [182, 85] and in
finding locations for new buildings of a campus [73]. Besides other domains of engineering
and design [114], a new application of the QAP in biology has recently been discovered
in the context of indirect gradient analysis (reconstruction of the intensity of some latent
environmental factors from species’ responses) [52].

Two Special Cases of the QAP

The TSP can be formulated as a QAP by defining the matrix A = (aij) and B = (bij) as
follows. Let

aij =

{
1 if j = (i+ 1 mod n)
0 otherwise

and bij = dij, (2.13)

with dij denoting the distance between city i and city j. Then

C(π) =
n∑
i=1

n∑
j=1

aij bπ(i)π(j) =
n−1∑
i=1

dπ(i),π(i+1) + dπ(n),π(1), (2.14)

which is, in fact, the definition of the TSP. A permutation π provides a tour through n cities
where the city π(i) is the city to visit at the i-th step.

2.4 Examples of COPs 11

The graph bipartitioning problem, in which a partition of a graph G = (V,E) into two
equally sized sets with a minimum number of edges between the different sets is desired, can
be expressed as a QAP by defining

aij =

{
0 if i, j ≤ n

2
∨ i, j > n

2

1 otherwise
and bij =

{
1 if (i, j) ∈ E
0 otherwise

. (2.15)

A partition represented by a permutation π is defined as follows. A vertex j belongs to the
first set, if π(j) ≤ n

2
, and to the second set otherwise.

2.4.4 Vehicle Routing

The vehicle routing problem (VRP) arises in distribution management. The problem is
to determine the optimal delivery route for vehicles through a set of customer locations,
subject to some constraints. More formally, the VRP can be defined on a weighted graph
G = (V,E, d) with V = {0, 1, . . . , n} denoting the set of customer locations including the
depot (vertex 0), E the set of all arcs between the vertices, and a distance/travel time d
assigned to each arc in the graph. The total travel time of m vehicles starting from the
depot is to be minimized:

minimize l(π)
m∑
j=1

lj−1∑
i=1

dπj(i),πj(i+1) + dπj(lj),0 + d0,πj(1) (2.16)

subject to
lj∑
i=1

wπj(i) ≤ Cj ∀j = 1, . . .m, (2.17)

where lj denotes the number of customers for vehicle j to visit, wi denotes the weight of
customer i’s demand, and the permutation πj of a subset defines the route of vehicle j (πj(i)
denotes the i-th customer in the route of vehicle j). Each customer has to be served by
exactly one vehicle.

Several variants of the VRP exist, such as (a) the capacitated VRP in which the total
weight of any route may not exceed the vehicle capacity Cj as defined in equation (2.17);
(b) the time constrained VRP, in which each customer has a service time si and the total
duration of any route may not exceed a time limit L; (c) the VRP with time windows, in
which each customer must be visited in a given time interval and the vehicles are allowed to
wait if they arrive before the beginning of the time window. Alternatively, the number of
vehicles may be minimized instead of the total delivery time.

An instance of the capacitated VRP consists of a distance matrix D = dij, a weight
vector w, and the capacity vector C (I = 〈D,w,C〉). A solution to a VRP is displayed in
Figure 2.3. The TSP is a special case of the uncapacitated VRP: in the TSP only one vehicle
is used to visit the customers/cities.

2.4.5 Scheduling

Given n jobs and m machines, the job shop scheduling problem (JSSP) is defined as follows.
Each job consists of a sequence of operations (tasks), which must be executed in a given
order. Furthermore, each operation has to be executed on a given machine for a given period
of time. Assuming that a machine can perform at most one operation at a time, the problem

12 2 Combinatorial Optimization Problems

Figure 2.3: A solution of a vehicle routing problem

is to find a schedule, i.e. an assignment of operations to time intervals, such that the total
length of the schedule (called the makespan) is minimal. More formally, let J,M and O be
the sets of jobs, machines, and operations, respectively. For each operation o ∈ O, there is
a job j(o) ∈ J to which it belongs, a machine m(o) ∈ M on which it must be processed,
and a processing time tp(o). Furthermore, for each o ∈ O, its successor in the job is denoted
succ(o) ∈ O. The problem is to find a start time ts for each operation o ∈ O, and can be
defined as:

minimize max
o∈O

(ts(o) + tp(o)) (2.18)

subject to ts(succ(o)) ≥ ts(o)− tp(o) ∀o ∈ O, (2.19)

ts(o
′) ≥ ts(o) + tp(o) ∨ ts(o) ≥ ts(o

′) + tp(o
′) (2.20)

∀o, o′ ∈ O | o 6= o′ ∧ m(o) = m(o′). (2.21)

According to Roy and Sussmann [265], an instance I = 〈J,O,M, tp〉 of the job–shop schedul-
ing problem can be represented by a vertex weighted disjunctive graph G = (V,A,E), where
the vertex set V corresponds to the set of operations O, the arc set A consists of arc connect-
ing consecutive operations of the same job, and the edge set E consists of edges connecting
operations that must be executed on the same machine. An example of a solution to a 3× 3
instance is displayed in Figure 2.4.

time

3

2

1

Machine

Job 1 Job 2 Job 3

Figure 2.4: A solution to a 3-jobs/3-machines instance of the JSSP

2.4 Examples of COPs 13

Variants of the JSSP

In the flow shop scheduling problem (FSSP), there is a strict ordering in which the operations
have to be performed and this ordering is the same for each job, e.g. first do the machine
1 operation, then the machine 2 operation, and so on. In the general job shop scheduling
problem (GJSSP), the operations within a job must be partially ordered. If there is no order
required in the processing of the operations within a job, the problem is called open shop
scheduling problem (OSSP).

Applications of Scheduling Problems

Scheduling problems occur wherever a number of tasks has to be performed with limited
resources [58]. Thus, applications can be found in production planning, project resource
management, and distributed or parallel computing.

2.4.6 Unconstrained Binary Quadratic Programming

In the unconstrained binary quadratic programming problem (BQP), a symmetric rational
n × n matrix Q = (qij) is given, and a binary vector of length n is searched for, such that
the quantity

f(x) = xt Q x =
n∑
i=1

n∑
j=1

qij xi xj, xi ∈ {0, 1} ∀ i = 1, . . . , n (2.22)

is maximized. This problem is also known as the (unconstrained) quadratic bivalent program-
ming problem, (unconstrained) quadratic zero–one programming problem, or (unconstrained)
quadratic (pseudo-) boolean programming problem [26]. The general BQP is known to be
NP-hard but there are special cases that are solvable in polynomial time [26].

Applications of the BQP

The BQP has a large number of applications, for example in capital budgeting and financial
analysis problems [185, 205], CAD problems [182], traffic message management problems
[109], machine scheduling [4], and molecular conformation [250]. Furthermore, several other
combinatorial optimization problems can be formulated as a BQP, such as the maximum
cut problem, the maximum clique problem, the maximum vertex packing problem and the
maximum independent set problem [151, 245, 246].

Special Cases of the BQP

The BQP has been shown to be a generalization of other combinatorial optimization prob-
lems. For example, the maximum clique problem and the maximum independent set prob-
lem are known to be special cases of the BQP. Let G = (V,E) be an undirected graph and
G = (V,E) be the complement graph of G, where E = {(i, j) | i, j ∈ V, i 6= j, and(i, j) /∈ E}.
Furthermore, let AG = (aij) be the adjacency matrix of G, I denote the identity matrix, and
T (x) = {i | xi = 1, i ∈ V }. Then, the maximum clique problem is

minx∈X f(x) = xtQx, where Q = AG − I. (2.23)

14 2 Combinatorial Optimization Problems

If x∗ solves equation (2.23), the maximum clique of G is defined as C = T (x∗) with |C| =
f(x∗).

Similarly, the maximum independent set problem is

minx∈X f(x) = xtQx, where Q = A− I. (2.24)

If x∗ solves equation (2.24), the maximum independent set of G is defined as S = T (x∗) with
|S| = f(x∗).

In the maximum cut problem, the objective function

c(x) =
1

2

n∑
i=1

n∑
j=1

wij xi (1− xj) (2.25)

has to be maximized, where wij denotes the weight of the edge (i, j) ∈ E in the graph
G = (E, V) for which the maximum cut is desired. The maximum cut problem can be
formulated as a 0/1 quadratic programming problem by assigning:

qij = −1

2
wij, ∀i 6= j, and qii =

1

2

n∑
j=1

wij, ∀i. (2.26)

The maximum cut size c(x∗) is equal to the objective f(x∗) of the corresponding BQP, and
the cut itself is C = {(i, j) ∈ E | x∗i = 0 and x∗j = 1}.

Another application of the BQP arises in condensed matter physics. The calculation
of ground states in Ising Spin Glasses is a combinatorial optimization problem in which a
configuration of the spins with minimum energy is searched. The energy of an Ising spin
glass, in which the spins lie on a two dimensional grid, is given by the Hamiltonian

H(ω) = −
∑
i

∑
j

Jij sisj, si, sj = ±1, (2.27)

where Jij denotes the interaction between site i and j on the grid. By setting

qij = 4Jij, ∀i 6= j, and qii = −4
n∑
j=1

Jij, ∀i, (2.28)

the solution of the BQP yields a configuration with minimum energy, where si = 2xi − 1 ∀i
and H(ω) = −f(x)−∑i

∑
j Jij.

2.4.7 NK-Landscapes

To study rugged fitness landscapes, Kauffman [168, 169] developed a formal model for gene
interaction which is called the NK-model. In this model, N refers to the number of parts in
the system, i.e. genes in a genotype or amino acids in a protein. Each part makes a fitness
contribution which depends on the part itself and K other parts. Thus, K reflects how richly
cross-coupled the system is; it measures the richness of interactions among the components
of the system, called epistasis.

Each point in the NK-fitness landscape is represented by a bit string of length N and can
be viewed as a vertex in the N -dimensional hypercube. The fitness f of a point b = b1, . . . , bN
is defined as follows:

f(b) =
1

N

N∑
i=1

fi(bi, bi1 , . . . , biK), (2.29)

2.4 Examples of COPs 15

where the fitness contribution fi of the gene at locus i depends on the allele (value of
the gene) bi and K other alleles bi1 , . . . , biK . The function fi : {0, 1}K+1 → IR assigns a
uniformly distributed random number between 0 and 1 to each of its 2K+1 inputs. The
values for i1, . . . , iK are chosen randomly from {1, . . . , N} or from the left and right of locus
i.

With this model, the “ruggedness” of a fitness landscape can be tuned by changing the
value of K and thus the number of interacting genes per locus. Low values of K indicate
low epistasis and high values of K indicate high epistasis.

From the viewpoint of combinatorial optimization, the NK-model represents an uncon-
strained binary programming problem that can be seen as a generalization of the BQP.

2.4.8 The Knapsack Problem

The knapsack problem (KP) is another well-known combinatorial problem. Given a knapsack
which can be used to transport a number of items with a maximum total weight, the task is
to select a subset of all items available such that the value of the items is maximized. More
formally, the KP can be defined as follows:

maximize
∑
i∈K

ci (2.30)

subject to
n∑

i∈K
wi ≤ W, K ⊂ {1, . . . , n}, (2.31)

where ci denotes the value (or resulting profit) of item i, wi the weight of item i, and W the
total weight the knapsack can hold. An instance of the knapsack problem is hence defined
by the tuple I = 〈c, w,W 〉 with c = (c1, . . . , cn) ∈ IRn, w = (w1, . . . , wn) ∈ IRn and W ∈ IR.

An generalization of this problem is the multidimensional knapsack problem (MKP):

maximize
∑
i∈K

ci (2.32)

subject to
∑
i∈K

wij ≤ Wj, K ⊂ {1, . . . , n}, ∀j = 1, . . .m. (2.33)

Here, the “weight” of an item as well as the maximum capacity of the knapsack has m
dimensions. Formulated as 0/1 integer programming problem, the MKP is:

maximize
n∑
i=1

ci xi (2.34)

subject to
n∑
i=1

wij xi ≤ Wj, ∀j = 1, . . .m. (2.35)

The KP is one of the simplest constrained 0/1 integer programming (binary programming)
problems since without its constraints it is a linear problem that can be solved in O(n).

Applications of the MKP

The (multidimensional) knapsack problem has its application in capital budgeting, project
selection and capital investment, budget control, and numerous loading problems [267].

16 2 Combinatorial Optimization Problems

2.5 Exact Methods for Solving COPs

The simplest way to obtain optimum solutions to combinatorial optimization problems is to
evaluate all possible solutions. As mentioned above, this approach is impractical due to the
large number of candidate solutions that usually grows exponentially with the problem size.
However, there are other ways to find guaranteed optimum solutions.

2.5.1 Branch & Bound

An algorithm for finding optimal solutions consists of methods for finding lower and up-
per bounds for the optimal solution and an enumeration scheme. Assuming a minimization
problem, upper bounds are usually obtained by effective heuristics that produce near op-
timum solutions in short time. Lower bounds are obtained by relaxations of the problem
by removing one or more constraints. The enumeration scheme works as follows. In each
stage, the problem is split into subproblems such that the union of feasible solutions of the
subproblems gives the feasible solutions of the master problem. Subproblems are further
divided into subproblems until they are solved, i.e. their lower bounds are equal to their
upper bounds, or their lower bounds are above the best feasible solution found so far. Thus,
the approach produces a branching tree in which each node corresponds to a problem and the
sons of the node represent the subproblems into which it is split. To prevent an exponential
growth of the nodes in the tree, relaxations for producing strong lower bounds and good
heuristics for producing upper bounds are required.

In the branch & bound approach, discrete relaxation schemes are used for combinatorial
optimization problems to provide lower bounds.

The branch & bound approach has been applied successfully to the asymmetric TSP (with
asymmetric distance matrices) using the assignment relaxation (equation (2.5) is ignored)
[92, 222]. However, for most other problems there appear to be no discrete relaxations that
are strong enough for solving large problem instances.

2.5.2 Branch & Cut

An even more elaborate approach is based on linear programming [63, 315]. The basic idea
is to find a relaxation in form of a linear program with the same optimal solution as the
original problem. The linear programming problem (LP) is defined as follows:

min cT x (2.36)

subject to A x ≤ b, x ≤ 0 ∈ IRn.

For such a linear program, an efficient search algorithm called the simplex algorithm [62, 63]
exists that provides always the optimum solution. This algorithm works by systematically
searching the corners of the polytope (polyhedron) P defined by the inequalities of the LP:
P = {x ∈ IRn | A x ≤ b}.

Thus, to solve a COP with linear programming techniques, the search space is enlarged by
extending the solution vectors (usually of a 0/1 integer formulation) to vectors of continuous
variables. Since not all facets of the polytope PC (the inequalities at x < α) are known
for every combinatorial problem or the number of facets is simply too high, a cutting plane
approach has been developed. This approach works as follows. First, an initial polytope
P ⊇ PC is generated so that the LP can be solved in reasonable time. Then, an LP

2.5 Exact Methods for Solving COPs 17

solver is used to generate a solution x∗. If the solution x∗ represents a feasible solution to
the COP, then the algorithm terminates: the optimum solution is found. Otherwise, the
algorithm searches for a cut (facet) such that x∗ is cut off the polytope by ensuring that
the new polytope still contains the polytope of the COP. The inequality found is added to
the system of equations and the resulting LP is solved to obtain a new x∗. These steps are
repeated until the optimum is found or the algorithm fails to find a new feasible cut. Since
the latter case is more likely to occur, a branching rule can be used to split the problem into
subproblems and the cutting plane procedure can be applied recursively to the subproblems.
The resulting approach is called branch & cut [242].

Branch & cut has been successfully applied to various combinatorial problems such as
the traveling salesman problem [91], the Steiner problem on graphs [195], the spin glass
problem [272], the graph bipartitioning problem [42], and the maximum cut problem [161].
Especially for the TSP, enormous progress has been made in the last 30 years in solving large
instances to optimality. Table 2.1 gives an overview of the history of solving TSP instances
to optimality with branch & cut. The year of publication, the number of cities (N), the
total number of candidate solutions (|S| = (N −1)!/2), and the names of the researchers are
provided.

Year N |S| Researchers

1954 48 > 1059 Dantzig, Fulkerson & Johnson [64]
1980 120 > 10196 Grötschel [126]
1980 318 > 10656 Crowder & Padberg [60]
1987 532 > 101217 Padberg & Rinaldi [242]
1991 666 > 101589 Grötschel & Holland [127]
1991 2392 > 107041 Padberg & Rinaldi [243]
1992 3038 > 109259 Applegate, Bixby, Chvàtal & Cook [10]
1993 4461 > 1014341 Applegate, Bixby, Chvàtal & Cook [10]
1994 7397 > 1025405 Applegate, Bixby, Chvàtal & Cook [10]
1998 13509 > 1049931 Applegate, Bixby, Chvàtal & Cook [11]

Table 2.1: History of Records in solving the TSP with Branch & Cut

However, finding appropriate cuts is a problem dependent and highly complicated task.
For each COP, new theories are necessary for deriving useful classes of facets. In case of the
TSP, much effort has been made in developing polyhedral theories [129] in the last decades,
and it appears that the TSP is well suited for this kind of approach. For other COPs,
however, theories are needed to apply branch & cut to instances of practical interest.

2.5.3 Heuristic Methods

Heuristics are search methods that find (near) optimum solutions to optimization problems
in short time. In comparison to exact approaches, they do not guarantee to find optimum
solutions nor do they generally provide a guarantee to find solutions within a certain range
to the optimum.

Nevertheless, they are of great importance since they are the only way to arrive at high
quality solutions for large combinatorial problems of practical interest. Many heuristics have
the advantage to be applicable to a wide range of problems so that the time for developing

18 2 Combinatorial Optimization Problems

an optimization algorithm for a new problem is usually short. These heuristics can easily
be modified to account for changes in the objective function. If a previously not considered
constraint is added to the problem description, heuristics can be modified easily to deal with
the altered problem. Due to the complexity of combinatorial spaces, exact methods are only
in rare cases an alternative to heuristics. Even in those cases in which exact methods are
required, powerful heuristics are necessary to provide good upper bounds for a branching
approach to be effective.

2.6 Classification of COPs

According to [74], there are at least four classes of combinatorial optimization problems. For
each class, a few examples are provided:

Assignment Problems: The linear and the quadratic assignment problem are examples
of this type, as well as time tabling problems (the assignment of teachers to classes
and rooms).

Ordering Problems: The traveling salesman problem, the linear ordering problem, the
chinese postman problem, and scheduling problems constitute this class of problems.

Partitioning Problems: The graph partitioning problem and the number partitioning
problem are of this class.

Subset Selection Problems: The knapsack problem, the set partitioning problem, the set
covering problem, the graph bipartitioning problem, and the maximum cut problem
belong to this type.

Some COPs can hardly be classified according to these classes. Other problems belong
to more than one class such as the vehicle routing problem which is a combination of a
partitioning problem and an ordering problem.

Another form of classification can be derived if the constraints defined in the problems
are considered. This kind of classification is important for developing heuristics. There are
problems with

(i) no constraints, like the BQP (and its special cases) or the NK-model,

(ii) implicit constraints, like the TSP or the GBP,

(iii) explicit constraints like the MKP, and problems with

(iv) implicit and explicit constraints like the capacitated vehicle routing problem.

The difference between implicit and explicit constraints is that implicit constraints are prob-
lem instance independent. For example, the size constraints in the GBP defined in equation
(2.10) (both sets are required to have the same size) do not depend on the structure of
the graph and are thus instance independent, while the capacity constraints in the MKP do
depend on the instance to be solved: the total capacity Wj is part of the instance description.

2.7 Summary 19

2.7 Summary

In this chapter, a formal definition of combinatorial optimization problems (COPs) has been
provided and examples of this class of problems have been described. COPs can be dis-
tinguished from other optimization problems in that the decision variables constituting a
solution vector are discrete. For example, in selection problems, a solution is usually a bi-
nary zero-one vector. For ordering problems, a permutation of a vector with components
of different discrete values constitutes a solution. Some of the most famous problems in
operations research have been introduced: the traveling salesman problem (TSP), the graph
partitioning problem (GPP) and its special case, the graph bipartitioning problem (GBP),
the quadratic assignment problem (QAP), vehicle routing problems (VRP), scheduling prob-
lems like flow shop (FSSP) and job-shop scheduling problems (JSSP), unconstrained binary
programming (BQP), NK model of fitness landscapes stemming from biology, and the mul-
tidimensional knapsack problem (MKP). Some of the problems will be investigated in detail
in the following chapters.

Furthermore, exact methods for solving COPs – in particular branch & bound and branch
& cut methods – have been discussed and the importance of effective heuristics has been
stressed. Although it has been shown that branch & cut methods produce remarkable results
for the TSP, heuristics are still preferable to arrive at high quality solutions in short time for
large practical problems and are not limited to a particular problem domain. Furthermore,
they are required in exact methods to produce feasible solutions (upper or lower bounds).

A classification of COPs based on the characteristics of constraints present in a problem
has been provided: implicit constraints are problem inherent and are independent of the
problem instance to solve. Explicit constraints, on the other hand, depend on the prob-
lem instance description and thus vary from instance to instance. The distinction between
implicit and explicit constraints is important for developing heuristics.

In the following chapter a highly effective family of hybrid heuristics is introduced, called
memetic algorithms, which have been shown to be especially effective in combinatorial opti-
mization.

20 2 Combinatorial Optimization Problems

Chapter 3

Memetic Algorithms

3.1 Introduction

Evolutionary computation, a tremendously growing field of computer science, covers all
aspects of the simulation of evolutionary processes in computer systems. On the one hand,
simulations of natural evolution have been used by biologists to study adaptation in changing
environments to gain insight in the evolution of the complex organisms found on earth.
On the other hand, it has been shown that complex optimization problems can be solved
with simulated evolution. In the last decades, wide applicability has been demonstrated by
successfully applying evolutionary computation techniques to various optimization problems
in the fields of engineering, management science, biology, chemistry, physics and computer
science.

However, it has been shown that some kind of domain knowledge has to be incorporated
into evolutionary algorithms to be competitive with other domain specific optimization tech-
niques. There are many ways to achieve this. A promising approach is the hybridization with
other (domain-specific) heuristics for the optimization problem to be solved. The resulting
hybrid evolutionary algorithms often fall into the category of memetic algorithms. These
algorithms are similar to traditional evolutionary algorithms, although they have more in
common with principles found in the evolution of the human culture rather than in biological
evolution.

This chapter is devoted to the fundamentals of evolution as well as their simulation
in computer experiments with emphasis on solving optimization problems. First, genetic
evolution and its simulation in evolutionary algorithms is described. Afterwards, modern
alternative heuristics for solving combinatorial optimization problems are presented: some
that are also biologically inspired and others that are particularly useful for incorporation
into evolutionary algorithms. Finally, memetic algorithms are described in detail and the
analogy to cultural evolution is shown.

3.2 Evolutionary Algorithms

Inspired by the power of natural evolution, several computer scientists independently studied
evolutionary systems keeping in mind the idea that engineering problems could be solved by
simulating natural evolution processes. Several evolutionary algorithms (EAs) – for example
evolution strategies, evolutionary programming, and genetic algorithms – have been proposed
since the early 1960s in which a population of candidate solutions is evolved subject to

21

22 3 Memetic Algorithms

replication, variation, and selection.

Before evolutionary algorithms are described in detail, a short introduction to natural
evolution is presented and the necessary biological terminology is introduced.

3.2.1 Natural Evolution

In his book The Origin of Species [65], Darwin presented a theory for the existence and
evolution of life on earth. According to his theory, evolution is based on three fundamental
concepts: replication, variation, and natural selection. New organisms cannot evolve solely
with replication, since the produced offspring are identical copies. But due to errors in the
replication process, variation is introduced that gives rise to the gradual development of
new organisms. Sexual recombination is another form of variation and is itself a product
of evolution. Due to the limited resources on earth, replication can not go on infinitely;
individuals of the same or other species have to compete with each other and only the
fittest survive. Thus, natural evolution implicitly causes the adaptation of life forms to their
environment since only the fittest have a chance to reproduce (“survival of the fittest”).

Natural evolution can be thought as being a gigantic optimization process in which the
fitness of the species is maximized. However, it is an open-ended dynamic process in which
the fitness of an individual can only be defined in relation to the environment. For example,
a polar bear has a high fitness in its native environment, since it is well adapted to the cold
temperatures. Bringing the polar bear to the African savanna would certainly reduce its
fitness. Sometimes, species become extinct when they are not able to react to rapid changes
in their environment.

From the information science point of view, natural evolution can be regarded as a huge
information processing system. Each organism carries its genetic information referred to
as the genotype. The organism’s traits, which are developed while the organism grows up,
constitute the phenotype. The genetic information is eventually passed on to the next gener-
ation if the organism reproduces before it dies. Thus, the organisms can be regarded as the
mortal survival machines of the potentially immortal genetic information. While replication
combined with variation allows for improving the genetic information, natural selection im-
plicitly evaluates the fitness of each phenotype and thus indirectly of the genotype, which
can be thought of as the construction plan of an organism.

Genetics

All living organisms consist of cells, and each cell contains a copy of a set of one or more
chromosomes, which are strings of DNA (desoxyribonucleic acid). The chromosomes serve
as a “blueprint” (construction plan) for the organism, and can be conceptually divided into
genes. Genes are functional blocks of DNA and each encodes a particular protein. Each
gene is located at a particular locus on the chromosome. In a very simplified model, we can
think of a gene as encoding a trait such as eye color. The different possible settings of a trait
are called alleles. Many complex organisms have more than a single chromosome in each
cell. All chromosomes taken together and thus the complete collection of genetic material
is called genome. The genotype mentioned above refers to the set of genes in a particular
genome and gives rise to the phenotype of the organism under fetal or later development.

Two forms of reproduction can be found in nature. The first form is asexual repro-
duction in which an organism reproduces itself by cell division and the replication of its

3.2 Evolutionary Algorithms 23

chromosomes. Mutation eventually occurs during this process: one or more alleles of genes
are changed, genes are deleted, or they are reinserted at other loci on the chromosomes. In
sexual recombination, the second form of reproduction, genes are exchanged between the
chromosomes of the two parents to form a new set of chromosomes. This recombination of
genetic material can be thought of as crossing-over of the chromosomes.

The fitness of an organism is defined as the probability that the organism will live to
reproduce, called viability, or defined by the number of offspring the organism has, called
fertility.

The results of genetic variations occurring during mutation or recombination are hardly
predictable due to the universal effects of gene interaction called epistasis. Pleiotropy is the
effect that a single gene may simultaneously affect several phenotypic traits. On the other
hand, a single phenotypic characteristic may be determined by the simultaneous interac-
tion of many genes. This effect is called polygeny. In Figure 3.1, pleiotropy and polygeny
are illustrated. There are no one-gene, one-trait relationships in natural evolved systems.

1 a

2 b

3 c

4 d

5 e

6 f

7 g

Gene Gene product Character

Figure 3.1: Epistatic Gene Interaction: An Example of Pleiotropy and Polygeny

Epistatic interactions in form of pleiotropy and polygeny are almost always found in living
organisms so that the phenotype varies as a complex, nonlinear function of the interaction
between the underlying genetic structures and the environmental conditions.

3.2.2 History of Evolutionary Computation

In the 1960s at the Technical University of Berlin, Rechenberg and Schwefel [258, 257] intro-
duced evolution strategies (ES – Evolutionsstrategie in the German original), an approach
they developed to optimize the real-valued parameters for devices such as airfoils. Mainly
focusing on continuous parameter optimization, this idea was further developed by Schwefel
[269], and is still an active area of research. In the beginning, ES included mutation and

24 3 Memetic Algorithms

selection on a two-membered population. Later, it has been extended by allowing more
than two members and alternative selection strategies. The current ES include multi-parent
recombination and the self-adaptation of strategy parameters.

The technique called evolutionary programming (EP) was developed at the same time
by Fogel, Owens, and Walsh [97, 98]. Initially, they studied a system that shows intelligent
behavior by predicting its environment and producing suitable responses in the light of a
given goal. Therefore, they developed an evolutionary algorithm based on mutation and
selection on finite state machines. Later, EP has been applied successfully to various other
problems and is also still an area of active research. ES and EP have many similarities.

Genetic algorithms (GAs) were invented by Holland [142] at the University of Michigan
in the 1960s. Hollands original goal was to study the phenomenon of adaptation as it occurs
in nature and to develop ways in which the mechanisms might be imported into computer
systems. Thus, GAs served as an abstraction of biological evolution. Holland provided a the-
oretical framework for adaptation under the GA. In his model, the chromosomes or genomes
were strings of ones and zeros (bits) to which genetics-inspired operators of crossover, muta-
tion, and inversion where applied, followed by a kind of natural selection. Hence, the genes
in his model are bits with the alleles “0” and “1”. Compared to ES and EP, Holland’s GA
was the first algorithm incorporating a form of recombination (crossover).

In the last several years, there has been an enormous amount of research in evolutionary
computation with increasing interaction among the researchers of the various methods. The
boundaries between GAs, EP and ES have been broken down to some extent and evolutionary
algorithms have been developed that combine the advantages of the approaches. The fields
of applications of EAs have been drastically extended including the evolution of computer
programs known under the name genetic programming [179, 180], or the implementation of
machine learning in classifier systems [142, 37]. Other extensions to the basic concepts have
been made such as co-evolution [138, 247] or the hybridization of traditional problem-specific
methods with EAs [70, 221].

3.2.3 Outline of Evolutionary Algorithms

Without referring to a particular algorithm, a general template of an EA is shown in Fig-
ure 3.2. All proposed methods, GAs, EP and ES are special cases of this scheme. First, an
initial population is created randomly, usually with no fitness or structural bias. Then, in
the main loop, a temporary population is selected from the current population utilizing a
selection strategy. Afterwards, the evolutionary operators mutation and/or recombination
are applied to some or all members (individuals) of the temporary population. Usually, the
main loop is repeated until a termination criterion is fulfilled (a time limit is reached or the
number of generations evolved exceeds a predefined limit). The newly created individuals
are evaluated by calculating their fitness. Before a new generation is processed, the new
population is selected from the old and the temporary population. Now, the algorithm can
continue by building a new temporary population. Besides the way the methods encode the
candidate solutions of the problem to solve, they differ in the order and rate in which the
variation operators are applied and in the type of selection strategy they use.

Fitness Evaluation

The fitness evaluation is the central part of an evolutionary algorithm. The fitness function
is usually the objective function of the problem to be solved by the evolutionary algorithm.

3.2 Evolutionary Algorithms 25

procedure EA;

begin
t := 0;
initializePopulation(P (0));
evaluate(P (0));
repeat
P ′ := selectForVariation(P (t));
recombine(P ′);
mutate(P ′);
evaluate(P ′);
P (t+ 1) := selectForSurvival(P (t), P ′);
t := t+ 1;

until terminate = true;
end;

Figure 3.2: The EA pseudo code

Thus, for each problem, the fitness function has to defined individually.

Constrained optimization problems have to be treated differently from unconstrained
problems. For example, before the fitness of a solution is evaluated, a repair algorithm
has to be applied to transform infeasible to feasible solutions if the evolutionary variation
operators do not always produce feasible solutions. An alternative approach to repairing is
the use of penalty functions. In this approach, a penalty term is added to the fitness function
to penalize infeasible solutions in such a way that the EA is focused on the feasible region
of the search space.

For many problems, the fitness evaluation dominates the running time of the algorithm.
However, problem specific characteristics may be exploited to reduce the running time of
the fitness evaluation. Furthermore, fitness evaluations can be performed in parallel on
workstations with more than one processor or in workstation clusters.

Selection

Two forms of selection can be found in evolutionary algorithms, as shown in Figure 3.2. In
the first (selectForVariation), individuals are chosen for recombination and/or mutation. In
the second (selectForSurvival), the indivduals for the new generation are selected. The latter
is sometimes called replacement, since some or all parents are replaced by some or all of the
offspring.

Strategies for selection for variation can be divided as follows:

Fitness-proportionate selection:
In fitness-proportionate selection, the probability of selecting individual si is given by:

p(si) =
f(si)∑

sj∈P f(sj)
. (3.1)

26 3 Memetic Algorithms

Fitness-proportionate selection can be realized by roulette wheel sampling [120]. Roulette
wheel sampling works by spinning a roulette wheel, on which each individual has a
roulette wheel slot sized in proportion to its fitness.

Rank-based selection:
A drawback of the fitness-proportionate selection method is that with decreasing vari-
ance of the fitness values of the population, the sampling becomes purely random.
Therefore, rank-based selection [17] has been proposed to keep selection pressure con-
stant independent of the variance of the fitness values. In the linear ranking model,
the probability of selecting individual si is given by the formula

p(si) = pmax − (pmax − pmin)
i− 1

n− 1
, (3.2)

where n denotes the population size, and pmin and pmax denote the minimum and max-
imum selection probability. The latter are parameters of the method. Alternatively,
non-linear functions for p(si) can be defined.

Tournament selection:
A third method of selection for variation is tournament selection. In each step, k
individuals of the population are preselected randomly (independent on the fitness)
and the best out of the k is chosen. k is a parameter of the method.

Several strategies exist for the selection for survival:

Generational replacement:
The simplest form is generational replacement, in which all parents are replaced by their
offspring. This method has been used in traditional genetic algorithms in combination
with fitness-proportionate selection for variation to enforce the selection pressure.

Steady state selection :
In steady state selection [293], the number of children produced by variation is smaller
than the number of parents. Thus, a strategy is required to decide which parents are
replaced. Several variants exist, such as worst replacement, and oldest replacement
[132].

(µ, λ) selection:
In the (µ, λ)-ES, the µ parents are replaced by the best of the λ offspring (λ ≥ µ).
The selection pressure can be increased by increasing the number of offspring µ.

(µ+ λ) selection:
In the (µ + λ)-ES, the best µ individuals are chosen from a temporary population
containing the µ parents and the λ offspring.

Further methods exist that are used in combination with the selection strategies above,
such as elitism (the best individuals always survive) [72], and duplicate checking (children
identical to a parent are not included in the new generation) [86]. The latter is especially
important in evolutionary algorithms with small population sizes.

3.2 Evolutionary Algorithms 27

3.2.4 The Evolutionary Variation Operators

Mutation and recombination operators depend on the coding of the candidate solutions of
the optimization problem. In the following, operators for binary codings as used in GAs,
operators for real-valued codings as used in ES, operators on finite state machines in EP,
and operators on trees as used for example in genetic programming (GP) will be described
to show their dependence on the underlying representation.

Genetic Operators on Bit Strings

The following operators on binary vectors are typically used in genetic algorithms. Let
A,B ∈ {0, 1}n be a bit-string (genome) representing a candidate solution.

One-point crossover:
This operator [142] works by cutting the two bit strings at a randomly selected cutting
point p. The head of the first (second) is then connected to the tail of the second (first)
chromosome. Thus, one-point crossover produces two solutions A′ and B′ with

A′i =

{
Ai if i ≤ p
Bi if i > p

and B′i =

{
Bi if i ≤ p
Ai if i > p

.

The following example illustrates the operation:

A = 0110|100
B = 1011|001

→ A′ = 0110|001
B′ = 1011|100

Two-point crossover:
In comparison to the one-point crossover, the two chromosomes are cut by the two point
crossover [142] at two randomly chosen cutting points p1 and p2 (p1 ≤ p2) resulting in
three pieces. Thus, two solutions A′ and B′ are generated with

A′i =

{
Bi if p1 ≤ i ≤ p2

Ai otherwise
and B′i =

{
Ai if p1 ≤ i ≤ p2

Bi otherwise
.

The following example illustrates how the two-point crossover works:

A = 011|01|00
B = 101|10|01

→ A′ = 011|10|00
B′ = 101|01|01

A generalization if this crossover operator exists in which the bit strings are cut at k
randomly chosen points, called a k-point crossover.

Uniform crossover:
The uniform crossover [3, 292] utilizes a crossover mask, to allow alternative forms of
crossing-over. A crossover mask M is simply a bit string of the same length as the so-
lution vector. The value of each bit Mi in the mask determines, for each corresponding
gene in the child, from which parent it will receive the gene value:

A′i =

{
Bi if Mi = 1
Ai otherwise

and B′i =

{
Ai if Mi = 1
Bi otherwise

28 3 Memetic Algorithms

Thus, one-point and two-point crossover are special cases of the uniform crossover:
For the examples above, the corresponding masks are: M = 0000111 for one-point
crossover, and M = 0001100 for two-point crossover. With uniform crossover, the
1-bits are uniformly distributed over the mask, typically occurring at each locus with
a probability of 0.5. An example is provided in the following how uniform crossover
works.

A = 0110100
B = 1011001

→ (M = 1011010)→ A′ = 1111100
B′ = 0010001

Bit flip mutation:
Bit flip operators [142, 120] simply flip a small number of genes in the genome:

A = 011011001 → A′ = 011010001

Generally, there are two ways to implement such a mutation operator. The first way
is to predefine a rate in which each bit in the genome is flipped. The other way is to
predefine the number of bits to flip in the genome and to select the loci in the genome
randomly. Assuming a bit string of length n, a mutation with a rate of 1/n per bit has
almost the same effect as the mutation of a single randomly selected bit out of the n.

Inversion:
An alternative mutation operator is the inversion operator [142]: Two points are chosen
along the length of the chromosome, the chromosome is cut at these points, and the
substring is reversed.

A = 01|101100|1 → A′ = 01|001101|1

Mutation operators play only a secondary role in genetic algorithms. They are often
used as “background operators” to add a source of diversity aimed to prevent a premature
convergence. Mutation is typically applied to the offspring generated by crossover before the
evaluation of the fitness.

Evolutionary Operators on Continuous Variables

Since evolution strategies mainly concentrate on continuous parameter optimization, the
operators used in ES are described in the following as examples for operators on continuous
search spaces.

Mutation:
Mutation can be realized by adding a random normally distributed number (with mean
0) to each component of a vector x ∈ IRn. The resulting vector x′ becomes:

x′i = xi +N(0, σi), (3.3)

with N(0, σi) denoting an independent normally distributed random number with ex-
pectation 0 and standard deviation σi [257, 269].

3.2 Evolutionary Algorithms 29

Recombination:
Recombination operators for continuous variables can be divided into discrete/intermediate
and local/global operators [270, 139]. Let a, b, c1, . . . , cn, d1, . . . , dn ∈ IRn represent can-
didate solutions. The solution vector a′ = (a′1, . . . , a

′
n) is generated as follows:

a′i =


ai or bi (discrete)
1
2
(ai + bi) (intermediate)
ci,i or di,i (global, discrete)
1
2
(ci,i + di,i) (global, intermediate)

(3.4)

Self adaptation:
The self adaptation of the strategy parameter σ [269, 139] can be achieved by adding
σ to the solution vector. Thus, the tuple (x, σ) is subject to variation. The mutated
offspring (x′, σ′) is defined as:

σ′i = σi exp(τ ′ N(0, 1) + τ Ni(0, 1)), (3.5)

x′i = xi +N(0, σ′i). (3.6)

where i = 1, . . . , n and the notation Ni(·, ·) indicates that the random variable is
sampled anew for each value of i. τ and τ ′ are operator set parameters which define
global and individual step sizes [16]. Variants of this self adaptation scheme have been
proposed which are described, for example, in [140] in detail.

In contrast to GAs, in most applications of ES, mutation operators are used as the main
search operators.

Evolutionary Operators for Finite State Machines

To evolve a system that is capable of showing intelligent behavior by predicting its envi-
ronment and producing suitable responses, Fogel, Owens and Walsh [97] used finite state
machines in their original evolutionary programming approach. In their model, the environ-
ment was described as a sequence of symbols taken from a finite alphabet. The problem
was to find a finite state machine that would operate on the sequence of symbols thus far
observed as to produce an output symbol to predict the next symbol to appear in the en-
vironment. In their algorithm, a finite state machine (FSM) consists of a finite number of
states, for each of which there is an associated output symbol and next-state transition for
every possible input symbol. For each FSM an initial state is defined. Figure 3.3 shows an
FSM consisting of three states with an input alphabet of {0, 1} and an output alphabet of
{α, β, γ}. In the EP approach, selection is based on a payoff that is defined for each output
symbol dependent on the symbol to appear next in the environment.

Mutation:
Offspring machines are generated by five possible modes of random mutation based on
the description of the finite state machine:

• change of an output symbol,

• change of a state transition,

• addition of a state,

30 3 Memetic Algorithms

B

A C

0/β

1/α

0/β

1/γ1/β

0/γ

Figure 3.3: A Finite State Machine Consisting of three States

• deletion of a state, and

• change of the initial state.

No recombination has been used by Fogel et al. in the original EP approach.

Evolutionary Operators for Tree Data Structures

Koza [179] proposed the optimization of computer programs to solve problems. In his studies,
he used the functional programming language LISP [206]. LISP functions can be interpreted
as trees with arithmetical operators (functions) at the nodes and variables or constants
(terminals) at the leafs. The following operators have been proposed for such trees.

Recombination:
Koza [179] proposed the exchange of subtrees between two selected parents. This
preserves the correctness of the syntax and thus ensures that the offspring are feasible.

Mutation:
Due to the secondary role of mutation in GAs, mutation operators have not been used
by most GP researchers. However, some unary operators exist [18]:

• The switching of siblings (if order matters),

• cycle operations,

• the growing of new subtrees,

• shrinking of a subtree to a leaf, and

• numerical terminal mutation.

3.2 Evolutionary Algorithms 31

3.2.5 The Relation between Genotype and Phenotype

In real world applications, the search space is defined by a set of objects, such as processing
units, pumps or other technical devices, which have different parameters, e.g. energy con-
sumption or capacities. These parameters are subject to optimization and thus constitute
the phenotype space. In evolutionary algorithms, operators are often defined on abstract
mathematical objects like binary strings. In these cases, a mapping between the genotype
and the phenotype space is required to evaluate the fitness of a solution or to obtain the
actual parameters for the optimization problem. In Figure 3.4, the relation between the
genotype and the phenotype space is shown: While the genetic operators mutation and re-

genetic operators

selection

decoding
function

genotype space,
genetic
representation

phenotype space,
search space

Figure 3.4: Phenotype and Genotype Space

combination operate on the elements in the genotype space, selection is performed within
the phenotype space. A decoding function is required to map a genotype to its phenotype.
Often, a representation as close as possible to the characteristics of the phenotype space is
chosen, almost avoiding the need for a decoding function. This approach has the advantage
that the introduction of additional nonlinearities or a higher computational complexity by a
complex coding is avoided. On the other hand, organic evolution is based on the principle of
using a genetic code. However, the decoding mechanism in nature is a highly complex and
not well-understood process.

3.2.6 Application of EAs

Evolutionary algorithms are often referred to as black box optimization algorithms since
they do not use any kind of domain knowledge for a given problem. The operators are
defined independently of the problem: only the evaluation of the fitness function has to
be implemented as long as the problem can be encoded as an unconstrained problem on
bit vectors (GA) or as an unconstrained problem on continuous variables (ES). However,
in many applications either implicit or explicit constraints are involved, which requires the
definition of problem-dependent variation operators as in case of GP. Other examples are

32 3 Memetic Algorithms

evolutionary programming on finite state machines or EAs for mixed integer programming
problems.

In combinatorial optimization, the decision variables constituting a candidate solution
are often discrete. Some problems have a solution space of binary vectors such as subset
problems in which a solution is a subset of a larger set. These problems can be solved with
a traditional GA, while others can not. Often, additional constraints – implicit or explicit
– do not allow the application of a standard GA. For many problems, the solutions can
be encoded with k-ary strings with or without implicit constraints. A common implicit
constraint is that these k-ary strings must represent permutations of a set. EAs for these
problems must contain specialized operators to ensure that crossover or mutation always
produces feasible solutions. In the case of explicit constraints, other techniques are required
for an EA to work, such as the use of penalty functions to penalize the fitness of infeasible
solutions or repair algorithms that transform infeasible to feasible solutions.

Besides the presence of constraints, there are other characteristics that prevent the ap-
plication of a standard EA such as multi-objective problems [99, 100], in which more than
one fitness function has to be maximized, or dynamic problems [240] in which the fitness
of a solution changes over time. These problems are current research topics in the field of
evolutionary computation.

3.3 Other Biologically Motivated Optimization Tech-

niques

Other methods inspired by nature have been proposed for solving combinatorial optimization
problems besides evolutionary computation techniques. Ant Colony Systems (ACS) are
inspired by the efficient cooperation of ants in ant colonies [76, 77, 75]. Artificial Neural
Networks (ANN) [145, 174, 137, 208] are simple models of the central nervous system of
the human brain. These approaches have been shown to be applicable to a wide range
of combinatorial problems and can in some cases be extended to other domains of mixed
parameter optimization.

3.3.1 The Ant Colony System

Real ants have developed an efficient way of finding the shortest path from a food source
to their nest without using visual information. While searching for food, ants deposit
pheromone on the ground and follow, in high probability, pheromone previously deposited
by other ants. Assuming a single food source, more than one way to reach the source and
initially equal probability for an ant to chose a path, more ants will visit the shortest path
on average and therefore pheromone accumulates faster if they walk with approximately the
same speed. If new ants arrive at a point where they have to decide on one or another path
they prefer to choose the shorter path with higher probability. This in turn increases the
pheromone on the shortest path such that after a while all ants will choose the shortest path.

The ant colony system is inspired by the behavior of real ants. In the ACS algorithm,
a solution to a combinatorial optimization problem is constructed by agents (ants) which
choose the values for the decision variables constituting a feasible solution stepwise. Each
choice is – in analogy to real ants – a probabilistic choice proportionate to a global variable
representing the amount of pheromone. Thus, in the ACS, the agents communicate indirectly

3.3 Other Biologically Motivated Optimization Techniques 33

via global, distributed memory: the vector or matrix of pheromone variables. After assigning
a value to a component of a solution vector, a local pheromone update rule is applied.
Furthermore, if an agent has finished in building a feasible solution, a global pheromone
update rule is applied that takes the objective function value of the produced solution into
account. This kind of learning imposed by the agents has some resemblance to reinforcement
learning [162].

The Ant Colony System has been applied to various combinatorial optimization problems
including the TSP [78], the QAP [288], and Vehicle Routing [110]. Since the beginning, the
ACS has been developed further and its successor is called the Ant Colony Optimization
(ACO) meta-heuristic [75]. ACO allows the combination of the ant system and a local
search heuristic to improve its efficiency. This hybrid approach has lead to an improved
performance for the TSP [78, 289], and for the QAP [111, 290].

3.3.2 Artificial Neural Networks

Artificial neural networks were mainly developed for the purpose of feature recognition or
pattern classification and function approximation in, for example, time series prediction.
However, it has been shown that the model can be modified for combinatorial optimization
tasks. ANNs consist of neurons, the information processing units, and synapses, the links
between the units, with associated weights. Common to most ANNs is a local updating rule
that determines the state of a neuron dependent on the states of its other linked neurons
and the weights of the links.

Classical ANNs are feed-forward networks, i.e., neurons are organized in layers and signals
are processed from the input layer through one or more hidden layers to the output layer
by applying a local update rule. Links are usually unidirectional and connect units from
one layer with the next upper layer. ANNs for optimization based on the Hopfield model
[145], however, are feed-back networks: the synapses are bidirectional and there is no layer
structure.

The decision variables of a solution vector are derived from the states of the neurons.
After the network is set up by choosing appropriate weights to describe the problem instance,
an energy function depending on the states of the neurons and the weights is minimized. This
is achieved by iteratively updating the neuron states with a local update rule based on ap-
propriate mean field equations (MFT). The system then converges to a state that represents
a feasible solution or a greedy repair heuristic is applied to obtain a feasible solution. Many
variants of this scheme have been proposed for several combinatorial optimization problems,
including the TSP [145, 253] and graph bipartitioning [249]. They differ in the way solutions
are encoded and the types of MFT used. In some approaches, annealing schemes are used to
prevent the system from getting stuck in poor local optima [248, 253]. The results obtained
with these approaches are, however, of moderate quality. They are not comparable with
other state-of-the-art heuristics.

Some other ANN techniques have been proposed based on deformable templates [248] or
self-organizing maps [253]. These algorithms, such as elastic nets for the TSP [82], can be
applied to geometric problems with low dimensionality. Besides their limited applicability
they can not compete with other heuristics [158, 253].

34 3 Memetic Algorithms

3.3.3 Recent Developments

Recently, further approaches have been proposed for solving optimization problems. These
approaches include (a) immune system methods [66], which are based on the principles of the
information processing in the (human) immune system, (b) particle swarm optimization [170],
which draws from the metaphore of human sociality, and (c) cultural algorithms [262], which
model the evolution of cultural systems based upon principles of human social evolution.
In contrast to memetic algorithms or other evolutionary algorithms, a cultural algorithm is
a dual inheritance system with a population and a belief space. Thus, operators for both
components and a communication protocol between the two spaces are required.

3.4 Greedy and Local Search Heuristics

Heuristics can be divided into construction heuristics and improvement heuristics. The for-
mer construct feasible solutions for a given optimization problem from scratch, while the
latter take a feasible solution as input and try to find better solutions by stepwise transfor-
mations. Both types of heuristics can be implemented efficiently and are often capable of
producing near optimum solutions for combinatorial optimization problems. There is a huge
number of approaches for combinatorial optimization for both types. Construction heuris-
tics include various types of highly problem-dependent heuristics. For example, for the TSP,
construction heuristics are nearest neighbor heuristics, insertion and addition heuristics, the
greedy heuristic, the savings heuristic, and heuristics based on spanning trees. Examples
of improvement heuristics are neighborhood search based algorithms such as local search,
simulated annealing, threshold accepting and tabu search which can be applied to various
problems.

In the following, f(s ∈ S) is referred to as an objective function of a maximization
problem (f(s) = mP (I, s) if P is a maximization problem, and f(s) = −mP (I, s) otherwise).

3.4.1 Greedy Heuristics

Greedy algorithms are intuitive heuristics in which greedy choices are made to find solutions
to a combinatorial optimization problem. Greedy heuristics are constructive heuristics since
they construct feasible solutions for optimization problems from scratch by making the most
favorable choice for a decision variable in each step. An appropriate measure for greedy
choices is highly problem-dependent (sometimes even instance-dependent). Most important,
a choice in each step depends on the decisions already made – the effects of future choices are
unknown. Figure 3.5 shows the pseudo code for a problem that is encoded with a solution
vector s of length n with s = (s1, . . . , sn) ∈ S = {1, . . . , k}n C denotes the candidate set of
solution vector components for which no value as been chosen so far. The greedy choice of
the pair (x, y) is performed in a way that the expected objective value f(s) is maximized.
This can be achieved, for example, by defining a partial function fp(s) that is defined over
all si with i /∈ C that is maximized in each step. Greedy choices can be viewed as local
decision rules and usually lead to sub-optimum solutions since the resulting solution at the
end of construction is unknown and future decision may have a large impact on the resulting
objective value of the solution.

Greedy algorithms have been proposed for various COPs such as Kruskal’s polynomial-
time algorithm for minimum spanning trees [183], the nearest neighbor and greedy heuristics

3.4 Greedy and Local Search Heuristics 35

procedure Greedy(s ∈ S): S;
begin
C := {1, 2, . . . , n};
repeat

Greedy choose a pair (i, v) ∈ C × {1, . . . , k};
si := v;
C := C\{i};

until C = ∅;
return s;

end;

Figure 3.5: The Greedy Algorithm

for the TSP [261], the min-max and differential greedy heuristics for graph bipartitioning
[21], and and a greedy heuristic for binary quadratic programming [218].

3.4.2 Local Search Heuristics

Local search as well as simulated annealing, threshold accepting, and tabu search are neigh-
borhood search based algorithms. Therefore, in the following a definition of neighborhoods
for solutions of COPs is provided.

Neighborhoods

A neighborhood of a solution s to a combinatorial optimization problem is defined as a set
of solutions which can be reached by applying an elementary operator M : S → P(S) to the
solution s. This set is denoted N (s):

N (s) = M(s) ⊂ S (3.7)

Such an operator is, for example, the bit-flip operator for binary vectors (S = {0, 1}n). The
1-opt or bit-flip neighborhood of x is defined as the set of all solutions obtained by flipping
a single bit in x:

N1-opt(x)Nbit-flip(x) = Mbit-flip(x) = {x′ ∈ S | dH(x, x′) = 1}, (3.8)

with dH denoting the hamming distance of bit vectors. The elementary operator M defines
a move set since the application of the operator yields a move m from a solution to another
solution in its vicinity. The number of possible moves |M |, i.e., transformations of one
solution into another, usually defines the neighborhood size.

Local search and the other variants of neighborhood search are based on the definition
of a move set for a given COP and thus on a neighborhood defined by the move set.

Local Search

In the field of combinatorial optimization, local search algorithms (LSAs) have a long history
since they are intuitive and very efficient. For example, the first local search algorithm for

36 3 Memetic Algorithms

the traveling salesman problem was proposed in 1956/58 [59, 94], and a local search for
the facilities location problem was developed before 1962 [13]. Figure 3.6 shows the general
local search algorithm for a maximization problem: beginning with a feasible solution to the
problem, a new solution with a higher objective f is searched in its neighborhood. If such a
solution is found, the new solution is accepted and its neighborhood is searched for a better
solution, and so on. The algorithm terminates when a local optimum is reached, i.e. when
there is no solution in the neighborhood of the current best solution with a higher objective
value.

procedure Local-Search(s ∈ S): S;
begin

repeat
Generate neighboring solution s′ ∈ N (s);
if f(s′) > f(s) then s := s′;

until ∀ s′ ∈ N (s) : f(s′) ≤ f(s);
return s;

end;

Figure 3.6: Local Search

Local search (LS) is thus similar to simple hill–climbing with the difference that (a) the
neighborhood of the current solution is searched systematically instead of randomly, and (b)
the neighborhood search is repeated until a locally optimum solution is found. In some local
search algorithms, a solution with the highest objective value is selected (best improvement)
instead of the first improving solution found (first improvement).

The effectiveness of the heuristic depends highly on the choice of an appropriate neigh-
borhood N . The greater the neighborhood, the better the expected resulting objective may
be, but enlarging the neighborhood quickly becomes impractical. For many combinatorial
optimization problems, algorithms with neighborhoods of size greater than O(n2) with n
denoting the problem size become inefficient and are therefore not used in practice.

One advantage of LS over other heuristics is that the configuration space can be searched
very efficiently: instead of calculating the objective value of s′ ∈ N (s), it is sufficient to
calculate the difference ∆f = f(s)− f(s′) (by utilizing problem–specific properties to avoid
the explicit computation of f(s) and f(s′)) and to test whether ∆f is less than zero. There
are neighborhoods for almost every combinatorial optimization problem, where ∆f can be
computed much faster than f(s′). For example, in the traveling salesman problem, the
calculation of ∆f takes time O(1), while the calculation of f takes O(n). In other words, an
LS algorithm is able to visit n solutions of the search space in the same time a traditional
EA evaluates a single solution. LS shares this advantage with all other neighborhood–based
search algorithms including the algorithms described below.

A disadvantage of LS is that the obtained solutions are – by definition – only local optima.
Once a local optimum solution has been reached, the algorithm terminates. Therefore, to
allow longer running times for finding better solutions, simulated annealing, tabu search and
other neighborhood based search heuristics have been developed.

3.4 Greedy and Local Search Heuristics 37

3.4.3 Simulated Annealing and Threshold Accepting

Simulated annealing [173] and threshold accepting [80] are variants of the simple local search
introduced above. Both methods are neighborhood search methods, but they differ in the
acceptance criterion for neighboring solutions. While in local search only better solutions
are accepted in relation to their objective function value, simulated annealing and threshold
accepting allow accepting solutions worse than the current solution.

Simulated Annealing

The origin of simulated annealing (SA) lies in the analogy of optimization and a physical
annealing process [173]. In condensed matter physics, annealing is a thermal process for
obtaining low-energy states of a solid in a heat bath. Roughly, the process can be described
as follows. First, the temperature of the heat bath is increased to a maximum value at which
the solid melts. Thus, all particles of the solid arrange themselves randomly. Afterwards,
the temperature is carefully decreased until the particles of the melted solid reach in the
ground state of the solid in which the particles are arranged in a highly structured lattice
with minimum energy.

The physical annealing process can be simulated by computer programs using Monte
Carlo techniques proposed by Metropolis et al. [220]. Given a current state i of the solid
with energy Ei, a subsequent state j is generated by applying a perturbation mechanism,
which transforms the current state into the next state by a small distortion, for instance by
displacement of a single particle. If the energy difference ∆E = Ej − Ei is less or equal to
zero, the state j is accepted as the current state. If the energy difference is greater than zero,
the state j is accepted with probability exp(−∆E/(k T)), where T denotes the temperature
of the heat bath and k the Boltzmann constant. The acceptance rule described above is
known as the Metropolis criterion.

In simulated annealing, the Metropolis criterion is used to generate sequences of solutions
of combinatorial optimization problems. Thus, the solutions of a COP can be interpreted
as the states of the physical system, and the objective value of a solution can be regarded
as the energy of the state (for maximization problems: E = −f). The general outline
of SA is illustrated in Figure 3.7. To successfully apply SA to a COP, a cooling schedule
T : IN → IR must be determined, which provides an initial value for the temperature t as well
as an updating rule T (·) for the temperature. Various cooling schedules have been proposed
including static and dynamic schedules. An overview is presented in [2]. However, there
is no accepted methodology for choosing the schedule, since finding the optimal schedule is
itself an optimization problem.

Threshold Accepting

Threshold accepting (TA) has been proposed as an alternative to simulated annealing [80].
Here, the Metropolis criterion is replaced by a much simpler (computationally inexpensive)
acceptance criterion. A neighboring solution is accepted, if the difference of the objective
values of the current and the neighboring solution is below a threshold θ. Thus, in TA the
acceptance criterion is deterministic as opposed to the one used in SA. In Figure 3.8, the
pseudo code of TA is given. Similar to simulated annealing, initial value and update rule for
θ have to be provided in form of the function Θ [80].

38 3 Memetic Algorithms

procedure Simulated-Annealing(s ∈ S) : S;
begin
t := T (0), n := 1;
sbest := s;
repeat

Generate neighboring solution s′ ∈ N (s);
∆f := f(s)− f(s′);
if ∆f ≤ 0 or exp(−∆f/t) > random[0, 1) then s := s′ ;
if f(s) > f(sbest) then sbest := s;
t := T (n);
n := n+ 1;

until termination criterion fulfilled;
return sbest;

end;

Figure 3.7: Simulated Annealing

procedure Threshold-Accepting(s ∈ S) : S;
begin
θ := Θ(0), n := 1;
sbest := s;
repeat

Generate neighboring solution s′ ∈ N (s);
∆f := f(s)− f(s′);
if ∆f < θ then s := s′;
if f(s) > f(sbest) then sbest := s;
θ := Θ(n);
n := n+ 1;

until termination criterion fulfilled;
return sbest;

end;

Figure 3.8: Threshold Accepting

3.4.4 Tabu Search

An essential feature of tabu search (TS) [117] is the use of memory. As with SA and TA, the
acceptance criterion of neighboring solutions allows the selection of solutions with smaller
objective values. The acceptance criterion is deterministic since it always chooses the neigh-
bor with highest fitness. To prevent the search from getting stuck in endless loops, a memory
of the search process is utilized. A solution that has been recently visited is included in a
tabu list and therefore will not be considered as a candidate for the next solution to visit. An
outline of this method is provided in Figure 3.9. However, the maintenance of the tabu list

3.5 Towards Memetic Algorithms 39

procedure Tabu-Search(s ∈ S) : S;
begin
T := ∅;
sbest := s;
repeat

Find best solution s′ ∈ N (s) with s′ /∈ T ;
s := s′;
T := T ∪ s;
if f(s) > f(sbest) then sbest := s;

until termination criterion fulfilled;
return sbest;

end;

Figure 3.9: Tabu Search

and the searching within the list is often too time consuming to be practical. An alternative
is not to store solutions in the tabu list but the move that has lead to the solution. To
be more precise, for each possible move, a flag in a data structure indicates whether the
move is forbidden or not. Since this procedure is in some cases too restrictive, aspiration
level conditions have been incorporated. The aspiration level of a move indicates if it should
be considered in the search despite of its tabu status. For example, if the move leads to a
solution better than the previous best one, the move should be allowed regardless whether
it is tabu or not. The neighborhood selection in Figure 3.9 has thus to be modified to:

Find best move m for M(s) with (s′ = m(s) ∈ N (s) and (m /∈ Tm or a(m) ≥ A(m));

M(s) denotes the move set for s, Tm denotes the tabu list of moves, a(m) the aspiration
level of move m, and A(m) the aspiration threshold for m.

Alternatively, more than one tabu list and more than one aspiration function can be
used.

There are various extensions to this basic scheme: for example, tabu lists of variable size
can be used to improve the efficiency of the algorithm [294]. Furthermore, the intensification
of the search as described by the procedure above can be combined with a diversification
phase. If the TS was unable to find a new best solution for a predefined number of iterations,
the search may be concentrated on another region of the solution space. The job of the
diversification phase is to determine promising alternative regions based on the memory of
the search. An effective algorithm using diversification has been published under the name
reactive tabu search [23].

3.5 Towards Memetic Algorithms

It has been argued that it is essential to incorporate some form of domain knowledge into
evolutionary algorithms to arrive at highly effective search [125, 106, 15, 221]. There are
many ways to achieve this, for example by hybridization: by combining evolutionary algo-

40 3 Memetic Algorithms

rithms with other problem-dependent heuristics, the efficiency of EAs has been increased in
many cases. In the following, the combination of EAs with local search will be addressed
since this symbiosis has been shown to be very promising. The basic idea of neighborhood
search (NS) itself is problem independent. However, several local search algorithms have
been proposed that utilize some form of domain knowledge to be more efficient and effective.

Hybrid EAs combined with neighborhood search can be divided into algorithms exploiting
the Baldwin effect and algorithms based on Lamarckian evolution [310, 108]. The former use
neighborhood search to modify the landscape/structure of the problem: before the fitness
is evaluated, a neighborhood search is applied. The changes (improvements) made by the
neighborhood search are not saved in the individual, thus learned traits during lifetime of
the parents are not inherited by their offspring. This resembles natural evolution in which
an individual’s acquired traits during life-time have no impact on the genetic code that gives
rise to a new organism. Opposed to this form of evolution is Lamarckian evolution, in which
acquired traits of an organism influence the genetic code of the organism. This form of
evolution has its origin in the evolution theory of Lamarck (1809) which has been shown to
be wrong with the publication of Darwin’s work.

However, it has been shown that the Lamarckian approach has its advantages in opti-
mization: in most hybrid algorithms, the individuals are altered by the variation operators
and the neighborhood search.

3.5.1 Combination of Evolutionary Algorithms and Neighborhood
Search

Local search is a very efficient search technique in combinatorial optimization since prob-
lem characteristics can be utilized to speed up the neighborhood search process and thus
more solutions per time interval can be visited. This is, for example, realized by finding
an efficient way to calculate ∆f as mentioned above. The rigorous selection of solutions
by the acceptance criterion allows for a fast “convergence” towards high quality solutions.
This form of search is referred to as intensification, since many solutions are visited in a
relatively small region of the search space and the best solution found is returned. If the
local optimum solutions with respect to a straight-forward local search are not satisfying,
advanced techniques to escape from local optima can be used as in simulated annealing or
tabu search.

The disadvantages of local search are obvious. Neighborhood search based algorithms
are improvement heuristics and thus highly depend on the starting solution. The resulting
solution is only locally optimal even in SA and TS due to the chosen annealing schedule in
SA or the limited number of iterations in TS. The search is only guided by local information,
no other information is utilized (advanced tabu search techniques are an exception). The
choice of the starting solution in a neighborhood search is extremely critical: an inappropriate
choice may lead to a local optimum with low objective value and thus high distance to the
optimum with respect to the objective function. In population-based algorithms such as
EAs, the probability of choosing an unfavorable start configuration is minimized due to the
selection of a large number of starting solutions distributed over the whole search space. The
search is then focused on promising regions of the search space by successively narrowing
the region(s) until the search is said to have converged.

The consequent combination of neighborhood search and evolutionary algorithms requires
that the components of the EA are seen in a different light. Since in a Lamarckian approach,

3.5 Towards Memetic Algorithms 41

all individuals represent local optimum solutions, the role of the variation operators shifts:
The operators are no longer required to to find solutions with higher average fitness. They
just have to produce solutions in a region of the search space that lies in the basin of
attraction of a local optimum with higher fitness. Therefore, it is desired that the local
search applied after variation does not end in a previously discovered solution. Instead, a
variation operator should be innovative in the sense that it is capable of using knowledge
about the search state to find new promising attractor regions of local optima with higher
fitness. A hybrid evolutionary approach with variation operators fulfilling these requirements
has not much in common with the random process of the crossing-over of chromosomes or
the erroneous copying of genes as observed in nature.

3.5.2 Cultural Evolution

Genetic evolution is not the only form of evolution as pointed out by the biologist Richard
Dawkins [71]. Cultural evolution is orders of magnitude faster than genetic evolution. In
analogy to genetic transmission, cultural transmission is the flow of information in an evolu-
tionary process. Genes can be thought of as parts of a chromosome with sufficient copying-
fidelity to serve as a viable unit of natural selection. Their counterparts in cultural evolution
are called memes as an abbreviation of the Greek word mimeme [71]. A meme, as a unit
of cultural transmission, is replicated by imitation. Examples of memes are tunes, ideas,
catch-phrases, clothes fashions, ways of making pots or the building of arches. Like in genet-
ics, these replicating units are subject to selection, since ideas, for example, have opposites
they compete with and the human brain is only capable of holding a limited number of
ideas. During transmission, variation occurs - often to a high extent. For example, ideas for
building a scientific theory are often modified, replaced or put into another perspective.

There are some important differences between genetic and cultural evolution. First,
cultural evolution is a much faster and less resource intensive process. Second, in cultural
evolution, variation is seldom a product of copying errors or the random exchange of co-
adapted units of information. In science, the raw combination of ideas does not always lead
to an improved theory – in fact, this is rarely the case. A scientist usually passes on an idea
after blending it with his own and verifying its viability. The process of recombining ideas
allows for innovations, since knowledge or ideas from other fields and thus new memes can be
integrated. Biological evolution does not incorporate an innovative component that allows
experimenting with alleles not present in the parental chromosomes except by pure chance.
The probability of mutating the “right” genes of an organism with high fitness diminishes
rapidly with increasing fitness. Finally, natural evolution is an open-ended process, while
cultural evolution is a goal-oriented process in which the information transmitting agents
act consciously.

3.5.3 The Memetic Algorithm

Algorithms with closer analogy to cultural evolution than to biological evolution are called
memetic algorithms [226, 230]. The new terminology accounts for the fact that the search
strategy behind these algorithms differs significantly from other evolutionary algorithms.
There are several design goals important for effective evolutionary search, which are fulfilled
by MAs:

42 3 Memetic Algorithms

• Optimization algorithms should be efficient, i.e., they should be capable of producing
acceptable solutions in short time.

• Optimization algorithms are by definition goal oriented. Viewing the individuals rep-
resenting candidate solutions as agents, the individuals can be regarded as conscious
entities in the search process subject to cooperation and competition.

• Due to the fact that the massively parallel, blind genetic search is resource intensive,
only small populations can be evolved in short time. Thus, the inadequate sampling
of the search space leads to a loss of diversity/genetic information and thus to a fast
premature convergence. To overcome this drawback, a diversification mechanism for
introducing ‘innovative ideas’ (new solution components) is required. This can be
achieved to some degree by neighborhood search. However, alternative recombination
schemes are often required to introduce diversification and thus innovation for which
no biological analogy exists, e.g. operators that simulate behaviors of rebellious agents
(rebel/obsequent versus conciliator) [30].

The memetic algorithms introduced in this work are based on the template shown in
Figure 3.10. In this scheme, all individuals in the population represent local optima, which
is ensured by applying local search after generation and after application of the evolutionary
variation operators. Unlike in GAs, recombination and mutation are applied independently
of each other. Greedy construction heuristics can be used for the generation of the solu-
tions during initialization of the population and in the variation operators. Furthermore, a
diversification scheme is included, which is borrowed from the CHC algorithm [88]: if the
population is converged, all individuals in the population are mutated except the best one,
and a local search is applied afterwards to ensure that all individuals are local optima. Thus,
the diversification is a high level mutation operator acting on populations in comparison to
the evolutionary variation operators acting on individuals. Thus, this form of mutation can
be regarded as ‘meta mutation’. This mechanism is required, since only small populations
can be used due to the relatively long computation times of local search. This in turn causes
a rapid convergence to sub-optimum regions in the search space which can be overcome with
this restart technique.

Selection for reproduction is performed in a purely random fashion while selection for
survival is performed as in the (µ + λ)-Evolution Strategy: the locally optimized offspring
generated by recombination and mutation together with the current population form a tem-
porary population from which the best individuals are selected. However, each individual is
selected only once and identical copies are removed.

The MA can be described by the tuple (p, cr, cm) in which p denotes the number of
individuals in the population, cr the recombination application rate, and cm the mutation
application rate. The number of offspring generated by recombination is thus p · cr, and the
number of offspring generated through mutation is p · cm. In the ES notation, the algorithm
can be described by a (µ+ λ) strategy with µ = p, and λ = p · (cr + cm).

Other variants of memetic algorithms [227, 121] differ from the basic MA framework
above in that they are based on asynchronous models developed for transputers or message-
passing systems. The framework introduced here is sometimes referred to as genetic local
search [1, 301, 105, 175, 314]. Other researchers simply call their memetic approaches hy-
brid evolutionary algorithms without explicitly distinguishing them from other methods of
hybridization [121, 93, 41, 44, 184]. Some of the published memetic approaches employ tabu
search [93] or simulated annealing [41, 227] instead of local search.

3.5 Towards Memetic Algorithms 43

procedure MA;

begin
for j := 1 to popsize do
i := generateSolution();
i := Local-Search(i);
add individual i to P ;

endfor;
repeat

for i := 1 to #recombinations do
select two parents ia, ib ∈ P randomly;
ic := Recombine(ia, ib);
ic := Local-Search(ic);
add individual ic to P ;

endfor;
for i := 1 to #mutations do

select an individual i ∈ P randomly;
im := Mutate(i);
im := Local-Search(im);
add individual im to P ;

endfor;
P := select(P);
if P converged then P := mutateAndLS(P);

until terminate=true;
end;

Figure 3.10: The Memetic Algorithm

3.5.4 Special Cases of the Memetic Approach

The simplest method of improving a single LS is to start it multiple times with different
starting solutions and record the best solution found. This approach, called multi–start local
search, can be realized by using randomly generated solutions as starting points, or using
special randomized heuristics for producing the starting solutions.

Another, more advanced technique is called iterated local search (ILS): here, a starting
solution is generated (randomly) and a LS algorithm is applied to turn the solution into a
local optimum. Then, a new starting solution is generated by mutating the current solution
(best local optimum found). A local optimum is then computed from this solution by LS. If
the new local optimum has a higher fitness, it is accepted as the new current solution from
which new starting solutions are generated. These steps are repeated until a user–defined
termination criterion is fulfilled. The pseudo code is given in Figure 3.11. The ILS algorithm
has first been proposed by Baum [24] under the name iterated descent. Johnson also used
this technique for solving the TSP: the iterated Lin-Kernighan algorithm (ILK)[156, 158] is
based on the Lin-Kernighan LS heuristic [192] and is known to be one of the best heuristics
for the TSP today.

44 3 Memetic Algorithms

procedure Iterated-Local-Search : S;
begin

Create starting solution s;
s := Local-Search(I, s);
repeat
s′ := Mutate(I, s);
s′ := Local-Search(I, s′);
if f(I, s′) > f(I, s) then s := s′;

until terminate = true;
return s;

end;

Figure 3.11: Iterated Local Search

The meta–heuristic used in ILS is a simple hill–climbing algorithm operating on local
optima: the current solution is modified randomly and only better local optima are accepted.
To allow the algorithm to accept local optima with worse fitness, the hill–climber in ILS
can be replaced by simulated annealing. In this algorithm, called large step markov chain
algorithm (LSMC) [202], a newly generated local optimum is accepted according to the
Metropolis criterion depending on the current temperature [203]. Again, the algorithm
operates only on a single solution.

Although these meta-heuristics are not refered to as memetic algorithms since they are
no population-based approaches, a memetic algorithm can act as a iterated local search or a
LSMC when the population size is set to one and the recombination application rate is set
to zero. The population-based memetic algorithm has been proven to be more flexible and
more robust than single-agent ramdomized local search. The exploration of the search space
is ensured in an algorithm starting its searches from multiple points in the search space,
while single-solution approach suffers from a high dependence on the starting configuration.

3.6 Summary

In this chapter, an introduction to evolutionary computation has been given. Evolutionary
algorithms have been introduced which are inspired by the process of natural evolution. It
has been shown how these evolutionary algorithms such as genetic algorithms, evolution
strategies, and evolutionary programming work and how they can be applied to new prob-
lems: the choice of an adequate problem representation, the definition of the fitness function,
and the realization of one or more variation operators (recombination and mutation) in case
of a non standard representation are necessary for the new evolutionary algorithm. In respect
to most practical applications including combinatorial optimization problems, it has been
argued that the incorporation of domain knowledge into evolutionary algorithms is crucial
for achieving a performance comparable to other domain-specific optimization approaches.

Two other naturally inspired optimization techniques for solving combinatorial problems
have been briefly described: ant colonies and artificial neural networks. For these algorithms
the incorporation of domain knowledge is also required to enhance their performance.

3.6 Summary 45

Greedy and local search algorithms have been described as examples of highly efficient
search algorithms which can exploit problem characteristics by incorporation of knowledge
about the problem. However, these algorithms have some limitations. Greedy choices within
a greedy construction algorithm are only locally optimal in a sense that decisions are made
about the objective value of a solution without actually knowing the feasible solution result-
ing at the end of construction. Thus, choices in the beginning of the construction may turn
out to be wrong in later steps. Local search heuristics, on the other hand, have the disad-
vantage that the solutions are per definition only locally optimum solutions. The resulting
solution may highly depend on the starting configuration, and usually only local information
is used during the search. However, these heuristics are very well suited for incorporation
into evolutionary algorithms. The resulting algorithms, called memetic algorithms, have
been shown to have strong resemblance with cultural evolution. Moreover, they are highly
effective: memetic algorithms are among the best published approaches for various com-
binatorial optimization problems, as will be shown in the following chapters. Other meta
heuristics, such as large step markov chains and iterated local search, can be regarded as
special cases of the memetic approach.

In the following chapter, the analysis of fitness landscapes for combinatorial optimization
problems is discussed in order to enable performance prediction and to provide a guideline
for the development of memetic algorithms.

46 3 Memetic Algorithms

Chapter 4

Performance Prediction and Fitness
Landscape Analysis

4.1 Introduction

The number of publications is growing rapidly in the fields of heuristic optimization and
evolutionary computation. However, most of the work published deals with an existing algo-
rithm applied to a new problem or a new algorithm applied to well-known (test) problems.
Often, it is simply shown that a given algorithm works (for the problem instances tested) but
not why. In most cases, it would be more valuable to know for which types of problems (or
problem instances) an algorithm performs well or which parameters of an algorithm are best
under given circumstances. Being capable of predicting the performance of an algorithm al-
lows deciding which parameters are best for an algorithm or designing alternative algorithms
that perform better than the ones at hand. In evolutionary computation, much progress has
been made by theoretical investigations of evolution strategies or other evolutionary algo-
rithms to understand how and when these techniques work. However, the mathematical
analysis is usually limited to algorithms based on relatively simple models. For complex
techniques like hybrid algorithms that incorporate as much domain knowledge as possible,
the theoretical analysis appears to be too complicated. Fortunately, there are other ways to
analyze such algorithms, i.e., by controlled experiments.

This chapter is concerned with the experimental analysis of memetic algorithms for com-
binatorial optimization problems. Such an analysis has to be performed ideally without
actually conducting experiments with a heuristic optimization algorithm to be suitable for
performance prediction. Thus, the structure of the search space is investigated in a first
step, so that in a second step the characteristics of the search space can be used to find a
search strategy that is likely to perform well.

The structure of the search space can be analyzed by utilizing the notion of the fitness
landscape: the search space is regarded as a spatial structure were each point (solution) has
a height that constitutes forming a landscape surface. In this chapter, proposed statistical
measures for fitness landscapes are described and it is shown how they can be used to predict
the performance of certain types of memetic algorithms. In particular, an autocorrelation or
a random-walk correlation analysis is proposed to find the correlation length of a landscape
and thus a measure of its ruggedness. A measure of the global structure of the landscape
in terms of the distribution of local optima is shown to be the fitness distance correlation
coefficient which can be obtained by a fitness distance correlation analysis. Some other

47

48 4 Performance Prediction and Fitness Landscape Analysis

aspects of performance evaluation and relative algorithm performance are also considered.

Parts of this chapter have been published in [214].

4.2 Performance Evaluation of Heuristics

The design of experiments is an important topic in experimental studies of heuristic algo-
rithms. It has been argued in [144] that competitive testing as conducted by most researchers
has several pitfalls.

The most obvious difficulty is to make a competition of heuristics fair. Differences be-
tween machines including CPU performance, memory configuration, operating system, and
machine loads do not allow to compare running times directly. They can be overcome by
using a single machine to perform all experiments with the algorithms in the comparison if
the programs or source codes of all algorithms are available to the investigator. But there
are other aspects that have to be considered for a fair comparison such as coding skill, tuning
and effort invested. Not all authors use the same coding techniques due to different levels of
experience. Furthermore, it is not even clear which technique is best for a given algorithm.
Often, some of the investigators have tuned the parameters of their algorithm for a given set
of problems while others have not. Another aspect is the effort invested in the development
of an algorithm. Different data structures might, for example, be implemented for efficiently
performing a time consuming operation. After weeks or even months of development and
testing, the best suited data structure is selected, often resulting in a much improved perfor-
mance. For example, the Lin-Kernighan heuristic for the TSP [192] is a complex algorithm
for which many implementations with large performance differences in both solution quality
and computation time exist [158, 210, 261, 44, 235, 165]. The order in which moves/submoves
are considered, the number of nearest neighbors per node, the levels of backtracking, and
the used data structure for performing moves are examples of implementation issues that are
important for the efficiency of the heuristic. Three alternative data structures for performing
moves have been proposed that show considerable performance differences to a straightfor-
ward implementation [104]. The code used in this work has been developed in one man year
but is still inferior to the implementation of Johnson et al. [158].

Another important issue in experimental testing is the choice of problem instances. Ran-
domly generated problem instances generally do not resemble real problems. On the other
hand, using benchmark problems is also dangerous. Benchmark problems are collected after
they have appeared in publications that report the performance of a new approach. These
publications would not have appeared unless the new algorithm performed well on most of
the instances introduced. Thus, instances that are solved easily by a new heuristic have a
selective advantage. These instances may begin to design algorithms once they are accepted
since new algorithms are published only if they perform well on the established benchmark
set. Hence, the problem of finding an adequate, representative problem set is unsolved. It
even appears to be impossible to recognize a representative set as representative!

Hooker [144] argues that competitive testing diverts time and energy from more pro-
ductive experimentation. Since competitive testing only tells which algorithm is better than
another on a set of problems but not why, he proposes to follow a more scientific approach for
evaluating heuristics. Hooker argues that with experimental design methods such as factorial
design insights can be gained which factors have a significant impact on the performance of
a heuristic and which not.

4.3 The No Free Lunch Theorems 49

However, such an approach also has some disadvantages. First, such experimentation
is very time consuming and therefore not always practical. Second, if the hypothesis to
be tested is wrong, all conclusions drawn from the results of the experiments are useless.
Furthermore, if the factors selected or the test instances used are not representative, the
conclusions drawn have no general meaning. Finding the appropriate factors and adequate
test instances itself requires experiments.

4.3 The No Free Lunch Theorems

The no free lunch theorems for optimization [312] discuss the performance of black box
optimization algorithms such as genetic algorithms, simulated annealing and hill–climbing
in relation to the problems they are solving. In particular, it has been shown that all black-
box optimization techniques have the same average behavior over all problems f : X → Y .
Thus, if an algorithm is effective on average for one class of problems, then it must do worse
over the remaining problems. In fact, if the algorithm outperforms random search for a
particular class of problems, it follows that it is worse than random search on the remaining
problems.

These theorems support the claim that comparisons between such techniques are useless
and that there is no point in believing that EAs are superior to other optimization techniques.
However, it has been argued that concentrating on a subset of all problems F ′ ⊂ F = {f :
X → Y } (restricted black box optimization) in fact leads to performance differences of the
optimization techniques [79].

As discussed in the last chapter, in practical applications, as much domain knowledge as
available is used to develop hybrid optimization algorithms that are capable of exploiting the
structure of the problem to solve. Undoubtedly, these highly specialized algorithms perform
better than other more general methods on the problems they have been developed for. On
the other hand, they may not perform as good as a general method on other problems or
they are even not applicable at all.

The theorems stress even more the importance of finding exploitable structural proper-
ties in optimization problems and thus imply a demand for adequate analysis techniques.
Furthermore, they indicate the danger of defining problem instances that do not reflect the
characteristics of real world instances and thus favor optimization techniques that may be
inferior on real world instances than others.

4.4 Fitness Landscapes

The notion of fitness landscapes [313] has been proven to be a very powerful concept in
evolutionary theory. Moreover, the concept has been shown to be useful for understanding
the behavior of combinatorial optimization algorithms and can help in predicting their per-
formance. Viewing the search space, i.e. the set of all (candidate) solutions, as a landscape,
a heuristic algorithm can be thought of as navigating through it in order to find the highest
peak of the landscape; the height of a point in the search space reflects the fitness (objective)
of the solution associated with that point.

More formally, a fitness landscape L = (X, f, d) of a problem instance for a given combi-
natorial optimization problem consists of a set of points (solutions) X, an objective function

50 4 Performance Prediction and Fitness Landscape Analysis

f : X → IR, which assigns a real–valued fitness to each of the points in X, and a dis-
tance measure d, which defines the spatial structure of the landscape. The fitness landscape
can thus be interpreted as a graph GL = (V,E) with vertex set V = X and edge set
E = {(x, y) ∈ X ×X | d(x, y) = dmin}, with dmin denoting the minimum distance between
two points in the search space. The diameter diamGL of the landscape is another important
property; it is defined as the maximum distance between the points in the search space.

Alternatively, a landscape can be defined as the tuple L = (X, f,N), where the neighbor-
hood N of a solution defines the edges in the graph GL (E = {(x, y) ∈ X ×X | y = N (x)}).
Since distance and neighborhood are closely related, one can be expressed with the other.
For example, a neighborhood can be defined as Nk(x) = {y ∈ X : d(x, y) ≤ k}. On the
other hand, a distance metric can be defined via the (minimum) number of applications of
an elementary operator m to transform one solution into another.

For binary coded problems (X = {0, 1}n), the graph GL is a hypercube of dimension
n, and the distance measure is the Hamming distance between bit strings. The minimum
distance dmin is 1 (one bit with a different value), and the maximum distance is diamGL = n.
The elementary operator defining the Hamming distance is the bit-flip operator that flips a
single bit in the solution vector.

In the context of combinatorial optimization, the fitness landscape is often called cost
surface, since a cost has to be minimized in many COPs instead of a fitness maximized. In
the following, we refer to f as the objective function regardless of dealing with a minimization
or maximization problem and we assume a maximization problem if we talk about fitness
values.

4.4.1 Properties of Fitness Landscapes

Several properties of fitness landscapes are known to have influence on the performance of
heuristic optimization algorithms. The following characteristics are important:

• The distribution (mean and variance) of the objective function,

• the landscape ruggedness,

• the number of local optima (peaks) in the landscape,

• the distribution of the peaks in the search space,

• the number of iterations needed to reach a local optimum,

• the structure of the basins of attraction of the local optima, and

• the presence and structure of neutral networks.

Statistical methods have been proposed to measure some of the properties while measures
for others can not be determined easily. Furthermore, some of the properties are strongly
related in many landscapes.

In the following, proposed measures for properties of fitness landscapes are discussed.

4.4 Fitness Landscapes 51

4.4.2 Preliminaries

Before measures of landscape properties can be discussed, some statistical terminology has
to be introduced: the mean, variance, standard deviation and covariance of measurement
variables.

The mean X and variance σ2(X) of a measurement variable X = X1, . . . , Xn is defined
as

X = 〈X〉 =
1

n

n∑
i=1

Xi (4.1)

and

σ2(X) =
1

n− 1

n∑
i=1

(Xi −X)2. (4.2)

The square root of the variance – the standard deviation – is denoted by σ(X).
The covariance of two variables X = X1, . . . , Xn and Y = Y1, . . . , Yn is defined as

Cov(X, Y) = 〈XY 〉 − 〈X〉〈Y 〉 =
1

n

n∑
i=1

(Xi −X)(Yi − Y). (4.3)

Correlation coefficients are usually defined as the quotient of covariance of two measurement
variables and the product of the standard deviations of the two variables.

The mean objective value and the variance (or standard deviation) provide simple mea-
sures of a landscape. The mean objective value f of a landscape L = (X, f, d) with n = |X|
candidate solutions is defined as

f = 〈f〉 =
1

|X|
∑
x∈X

f(x) (4.4)

and can be easily obtained in experiments. The fitness variance σ2
f is defined as

σ2
f = σ2(f) =

1

|X|
∑
x∈X

(f(x)− f)2 =
1

|X|
∑
x∈X

f 2(x)− f 2
= 〈f 2〉 − 〈f〉2. (4.5)

Some other statistical properties depend on the mean and variance of the landscape as for
example the fitness distance correlation and the autocorrelation functions described below.

4.4.3 Fitness Distance Correlation

An important measure is the fitness distance correlation (FDC) coefficient, proposed in [160]
as a measure for problem difficulty for genetic algorithms. The FDC coefficient % is defined
as

%(f, dopt) =
Cov(f, dopt)

σ(f) σ(dopt)
=

〈fdopt〉 − 〈f〉〈dopt〉√
(〈f 2〉 − 〈f〉2)(〈d2

opt〉 − 〈dopt〉2)
(4.6)

and determines how closely objective and distance to the nearest optimum in the search
space are related. The FDC coefficient can be estimated by

%(f, d) ≈ 1

σ(f)σ(d)

1

m

m∑
i=1

(fi − f)(di − d) (4.7)

given a set of points x1, x2, . . . , xm with fi = f(xi) denoting the objective value and di =
dopt(xi) denoting the shortest distance to a global optimum solution. Note that there may

52 4 Performance Prediction and Fitness Landscape Analysis

be more than one global optimum. If fitness increases when the distance to the optimum
becomes smaller, then search is expected to be easy for selection–based algorithms, since
there is a “path” to the optimum via solutions with increasing fitness. A value of % = −1.0
(% = 1.0) for a maximization (minimization) problem indicates that fitness and distance to
the optimum are perfectly related and that search promises to be easy. A value of % = 1.0
(% = −1.0) means that with increasing fitness the distance to the optimum increases, too.

4.4.4 Autocorrelation

According to Kauffman [169], a fitness landscape is said to be rugged if there is low correlation
between neighboring points of the landscape, and a landscape is smooth if there is high
correlation between neighboring points. The ruggedness of a landscape has high influence
on the performance of search heuristics: generally, the more rugged a landscape, the harder
the problem instance for heuristic approaches.

The Autocorrelation Function

To measure of the ruggedness of a fitness landscape, Weinberger [306] suggests the use of
(auto)correlation functions. The autocorrelation function ρ(d) [277, 306] reflects the corre-
lation of points at distance d in the search space. Let X2(d) be the set of all pairs of points
in the search spaces with distance d:

X2(d) = {(x, y) ∈ X ×X | d(x, y) = d}, (4.8)

and let |X2(d)| denote the number of pairs in the set X2(d). Then ρ(d) is defined as

ρ(d) =
〈f(x)f(y)〉d(x,y)=d − 〈f〉2

〈f 2〉 − 〈f〉2
= 1−

〈(f(x)− f(y))2〉d(x,y)=d

2(〈f 2〉 − 〈f〉2)
(4.9)

where 〈f(x)f(y)〉d(x,y)=d denotes the average value of the product f(x)f(y) for all pairs
(x, y) ∈ X2(d). In terms of objective mean and variance, the formula becomes:

ρ(d) =
1

σ2(f)|X2(d)|
∑

(x,y)∈X2(d)

(f(x)− f)(f(y)− f). (4.10)

The autocorrelation ρ(d) can be estimated by computing a sufficiently large sample of solu-
tions with distance d.

The Random Walk Correlation Function

Alternatively, Weinberger suggested to perform random walks to investigate the correlation
structure of a landscape. The random walk correlation function [306, 278, 279]

r(s) =
〈f(xt)f(xt+s)〉 − 〈f〉2

〈f 2〉 − 〈f〉2
(4.11)

of a time series {f(xt)} defines the correlation of two points s steps away along a random
walk through the fitness landscape.

4.4 Fitness Landscapes 53

If the landscape is statistically isotropic, i.e., the time series {f(xt)} forms a stationary
random process, then a single random walk is sufficient to obtain r(s):

r(s) ≈ 1

σ2
f (m− s)

m−s∑
t=1

(f(xt)− f)(f(xt+s)− f) (4.12)

where m denotes the length of the random walk.
If a time series is isotropic, Gaussian and Markovian [306], then the corresponding land-

scape is called AR(1) landscape, and the random walk correlation function is of the form
r(s) = r(1)s = e−s/` with ` being the correlation length of the landscape. For example,
AR(1) landscapes are found in the NK-model and the TSP [306].

The Correlation Length

Hence, the correlation length ` [279] of the landscape is defined as

` = − 1

ln(|r(1)|)
= − 1

ln(|ρ(1)|)
(4.13)

for r(1), ρ(1) 6= 0. The correlation length directly reflects the ruggedness of a landscape: the
lower the value for `, the more rugged the landscape.

A ruggedness measure similar to the correlation length ` has been proposed in [9]. It is
defined as:

λ =
1

1− ρ(1)
≈ ` (4.14)

and is called the autocorrelation coefficient λ [9].
It is useful to normalize the correlation length by the diameter of the landscape. Let

ξ =
`

diamGL
. (4.15)

With ξ close to 1, the landscape is highly correlated, and with ξ close to 0, there is no
correlation.

Advanced Time Series Analysis

The analysis of a time series usually involves identifying an appropriate model that ade-
quately represents the data generating process. Once the parameters of the model have been
estimated, statistical tests can be applied to see how well the model approximates the data
and what the explanatory and predictive value of the model is. Thus, a model of the form

yt = g(yt, yt−1, . . . , y0) (4.16)

is derived from the observed data, which can be used to predict the future values of a time
series.

In [146], to measure and express the correlation structure of a fitness landscape, the
Box-Jenkins approach [38] is proposed for finding a model for the time series {yt} = {f(xt)}
generated by a random walk trough a fitness landscape. The Box-Jenkins approach is a
useful statistical method of model building. The purpose of the approach is to find an

54 4 Performance Prediction and Fitness Landscape Analysis

ARMA model that combines an autoregressive (AR) model and a moving average (MA)
model to represent a data generating process. An AR model of order p (AR(p)) has the form

yt = α1yt−1 + . . .+ αpyt−p + εt, (4.17)

with αi ∈ IR and the stochastic variable εt representing white noise (mean zero and finite
variance).

An MA model of order q (MA(q)) has the form

yt = εtβ1εt−1 + . . .+ βqεt−q, (4.18)

where βi ∈ IR and the stochastic variable εt represents white noise with Cov(εs, εt) = 0. The
combination of both yields the ARMA(p, q) model with

yt = α1yt−1 + . . .+ αpyt−p + εt + β1εt−1 + . . .+ βqεt−q. (4.19)

In other words, each value yt is a weighted sum of p past values of the time series and q
members of a white noise series.

There are three stages in the approach. First, an appropriate ARMA model is identified
by finding the values for p and q utilizing a correlogram, in which r(s) is plotted against
s, and a partial correlogram, in which the partial correlation of the time series against s is
plotted. Second, the parameters of the model are estimated, for example using the coefficient
of determination as a measure of “goodness of fit”. In the third and last step, the estimated
model is tested for adequateness, for example using a higher-order model, e.g., for an AR(p)
model a AR(p + 1) model is also estimated and the extra parameter (αp+1) is shown to be
not significant. A detailed description of the approach can be found in [147].

Selfsimilarlity

Another interesting property of fitness landscapes is the relation between correlation and self-
similarity. A landscape is said to be fractal if the variance of the fitness difference between
two points in the landscape scales as a power law with their distance from each other. More
formally, a landscape is fractal [275] if

〈|f(x)− f(y)|2〉 ∝ d(x, y)2h (4.20)

with h ∈ (0, 1) for all pairs of points (x, y) in the search space. This definition can be
reformulated using the autocorrelation function [309] as

1− ρ(d) ∝ d2h. (4.21)

The definition of fractal landscapes is derived from the fractional Brownian motion (fBm).
A fBm is a random function f : IRn → IR with the distribution of f(X ′) conditional on
f(X), X, and X ′ normally distributed with mean 0 and variance proportional to ||X ′−X||2h
with h ∈ (0, 1). Such functions have the statistical scaling property that for any r, f(rX) is
statistically indistinguishable from rhf(X).

Examples of fractal landscapes with h = 1
2

are NK-landscapes, TSP with edge–exchange,
and the GBP [309].

4.5 Performance Prediction and Analysis for Evolutionary Algorithms 55

4.5 Performance Prediction and Analysis for Evolu-

tionary Algorithms

In the context of evolutionary computation, attempts have been made to find problem char-
acteristics that make a problem hard for a EA. Furthermore, methods for analyzing evolu-
tionary variation operators have been proposed.

4.5.1 Problem Difficulty

Several attempts have been made to find a measure for problem difficulty in the context of
evolutionary algorithms (EAs). Certainly, there are many factors besides landscape rugged-
ness [168] that can influence the performance of an (evolutionary) search algorithm:

• deception [119]: Presence of sub-optimum solutions leading heuristic search algorithms
away from the global optimum, which is isolated from the other near optimum solutions

• multimodality [148]: a high number of local optima

• epistasis [68]: the nonlinearity of the problem as a result of the interaction of the
components of the solution vectors

• noise [256]: the effects of noise in fitness functions with signal and noise components

• neutrality [20]: the existence of terrains with equal fitness – neutral networks – in the
fitness landscape

For example, Davidor suggested that epistasis variance is suitable for measuring problem
difficulty for genetic algorithms (GAs) [68]. He argues that high epistasis – in other words:
a high degree of chromosome interaction – characterizes problems that are hard for a GA.
This implication can also be transferred to non–evolutionary search algorithms such as local
search. Moreover, epistasis and landscape ruggedness have been shown to be related in NK-
landscapes [168]: the higher the epistasis in a problem (the higher the K in the NK model),
the more rugged the landscape of the instance. However, for problems for which a binary
representation is not practical, the definition of epistasis is more complicated. For example,
a definition of gene interaction is not obvious for permutation encodings.

There is a growing awareness of the importance of neutral mutations as a significant
factor in evolutionary dynamics among population geneticists [172] and molecular biologists
[84, 268]. Recently, inspired by Kimura’s ”Neutral Theory of Molecular Evolution” [172],
the influence of the presence of neutral networks in fitness landscapes has been studied in
the context of evolutionary optimization. Barnett [20] has shown that the structure of the
neutral networks of a landscape can have higher influence on population dynamics than the
correlation structure of a landscape.

4.5.2 Variation Operator Analysis

The random walk correlation analysis described above is well suited in studying the behavior
of mutation-based EAs, since mutation operators can be thought of as producing a time
series of fitness values for a sequence of solutions to an optimization problem. Generally, the
higher the correlation, the better suited a mutation operator for a given landscape. Several

56 4 Performance Prediction and Fitness Landscape Analysis

attempts have been made to generalize this form of analysis to recombination operators in
EAs.

In [197, 204], the parent child fitness correlation

ρop =
Cov(Fp, Fc)

σ(Fp) σ(Fc)
(4.22)

has been used to compare crossover operators for GAs. Here, Fc denotes the average fitness
of the children produced by crossover and Fp the average fitness of the parents.

In [146, 147], a time series is produced by repeated application of a crossover operator
with a randomly generated mate, randomly chosen crossover point, and randomly selected
child. The random walk correlation of the time series is computed, and the time series is
further analyzed using the Box-Jenkins approach described above.

Stadler and Wagner [282] have extended the idea of viewing a landscape as a graph:
a P-structure is a pair (V,R) and consists of a vertex set and a mapping (recombination
operator) R : V × V → P(V). An algebraic theory for recombination spaces based on
P-structures is proposed in [282].

4.6 Landscape Analysis and Memetic Algorithms

Although the above measures have been applied to genetic algorithms or simulated annealing,
little effort has been made to use these or other techniques for hybrid evolutionary algorithms.
For example, fitness distance correlation has been used to study genetic algorithms in [160],
and it has been shown that there are counterexamples for which the FDC coefficient fails
in predicting GA performance [5]. Correlation has been used in [197, 146, 147] to analyze
mutation and crossover in genetic algorithms. Sorkin [275] has shown how fractal landscapes
are related to the effectiveness of simulated annealing.

In memetic algorithms, the techniques for analyzing recombination and mutation opera-
tors only make limited sense due to the different search strategies inherent in MAs.

4.6.1 The Role of Evolutionary Operators in Memetic Algorithms

In understanding how memetic algorithms work, the concept of fitness landscapes appears
very useful. Since all individuals in the population of a MA, as described in the previous
chapter, represent local optima (which is achieved by applying local search as needed) we can
think of the memetic search as follows: The MA produces a set of locally optimum solutions
by applying the evolutionary variation operators recombination and/or mutation to the
current population of local optimum solutions. Selection then reduces the set of individuals
to the original size of the population. Thus, the role of the variation operators is to discover
other local optima with higher fitness. Figure 4.1 illustrates the ‘jumps’ performed by the
operators in a landscape of a minimization problem. Thus, a jump has to be far enough to
escape from the basin of attraction of the current local optimum. If the jump is too far, the
search may degenerate to a multi–start local search that does not exploit the structure in
the distribution of the local optima (assuming that a structure is present). The local search
is responsible for descending from the destination point of the jump into the local optimum,
as illustrated in the figure.

From this picture it becomes obvious that mutation and recombination operators used in
simple evolutionary algorithms are not always suited in MAs. A mutation operator with a

4.6 Landscape Analysis and Memetic Algorithms 57

Search space

not far enough

F
it

n
es

s
global optimum

too far

Figure 4.1: Variation Operators and the Fitness Landscape

low mutation rate as usually used in GAs would have no effect since the mutation would be
reversed by the local search. On the other hand, the recombination operator does not need
to produce offspring with high fitness (the fitness of parent and offspring are not required to
have a high correlation). Instead, the operator just has to produce offspring in the attractor
region of a local optimum with high fitness. Hence, the methods for analyzing mutation and
recombination operators in standard evolutionary algorithms are not appropriate for MAs.

Mutation

Mutation is an unary operator and has to be performed so that the subsequently applied
local search does not revisit the parent solution by falling back into the same local optimum.
The optimal mutation rate and thus resulting jump distance depends at least on one property
of the search space: the size of the attractor region of the current local optimum. Assuming
that on average one local optimum is contained in a ball of radius R, an effective mutation
operator has to produce solutions with a distance greater than R in order to minimize the
probability to fall back into the same local optimum. In some cases, however, lower mutation
rates are reasonable due to properties of the neighborhood used in the local search, as will
be shown in chapter 7. Generally, the mutation operator should be designed to produce
solutions that are not in the neighborhood on which the local search is based.

Recombination

Recombination is an operator that requires two or more solutions as arguments. Hence,
jumps resulting from the application of recombination operators can be performed with a
predefined direction.

Consider the recombination operators k-point crossover and uniform crossover described
in the previous chapter. These crossover techniques applied to binary vectors have the
following properties:

(i) The alleles that are identical in both parents are preserved in the offspring.

(ii) The offspring contain only alleles from either one of the parents.

Following Radcliffe’s and Surry’s terminology [255, 254], a recombination operator obeying
(i) is called respectful, while an operator obeying (ii) is called assorting. With respect to

58 4 Performance Prediction and Fitness Landscape Analysis

the fitness landscape, the first property implies that the Hamming distance dH between the
parents x and y and the offspring z are lower or equal to the distance between the parents.
The second property implies that the offspring lie on a shortest path between the two parents
and hence the equality dH(x, z) + dH(z, y) = dH(x, y) holds.

For permutation search spaces, the first property can easily be fulfilled while the second
can not. However, if (i) is obeyed, the following holds for all parents x and y and offspring
z: d(z, x) ≤ d(x, y) and d(z, y) ≤ d(x, y), and furthermore d(x, z) + d(z, y) ≤ 2 · d(x, y).
Recombination operators which fulfill (i) or even (ii) produce offspring that are contained in

Child C

Parent A

Parent B

d

Child C

Parent A

Parent B

d

Child C

Parent A

Parent B

(a) Assorting Recombination (b) Respectful Recombination (c) Recombination for

 deceptive problems

Figure 4.2: Geometric Visualization of Recombination Operator Behaviors

a region of the search space spanned by the two parents. In Figure 4.2, two types of respectful
recombination operators are shown. The first one (a) is assorting, while the second (b) is not.
From the figure it can be seen that recombination produces directed jumps in the search
space, i.e., from one parent solution towards the other parent solution. Thus, if a jump
into the region between two local optima yields local optima with higher fitness on average
than jumps of the same distance in an arbitrary direction, recombination is preferable to
mutation. If a jump into a region between two local optima leads to local optima with worse
fitness than arbitrary jumps of the same distance, the problem is called deceptive. In such a
case, a recombination operator can be defined that exploits this characteristic of the fitness
landscape. Figure 4.2(c) shows a recombination operator for deceptive problems. Assuming
that parent B has a higher fitness than parent A, the operator produces solutions which
are distant from the subspace defined by the common features of the two parents and which
have a higher distance to the parent with better fitness. Obviously, such an operator is not
respectful.

Population Dynamics

The population in a memetic algorithm can be regarded as a set of points moving in the
fitness landscape. Initially, the points are distributed over a large fraction of the search
space, sometimes even the whole fitness landscape depending on the method used to generate
the starting population of local optima. Then, during evolution, the points tend to move

4.6 Landscape Analysis and Memetic Algorithms 59

closer to each other, concentrating in a small fraction of the search space. In a genetic
algorithm scenario where assorting recombination is exclusively used, the average distance of
the population converges exponentially fast towards zero, since in each generational step the
distance of the individuals is halved. This behavior can be also observed in many MAs: the
average distance of the population decreases rapidly and the points in the search space move
towards each other. Thus, a series of jumps towards other solutions is performed during the
run, where the jump distance decreases dynamically when using respectful recombination.
In an evolutionary algorithm, convergence is a necessary effect, since from an information
theory point of view, the loss of diversity can be viewed as “information gain”.

Using the restart mechanism as described in the previous chapter, the process of con-
traction is repeated and the exploitation of other regions is enforced as shown in the figure.
In a MA employing only mutation to achieve variation, this behavior can also be observed
for certain landscapes. The average distance of the population can be expected to decrease
at least to the average distance of the local optima in the landscape. However, there are
landscapes for which a MA does not converge at all.

4.6.2 Landscape Analysis and the Choice of Operators

In order to design a memetic algorithm for a combinatorial problem, i.e., to decide which
local search and which variation operators are best suited, it is required that the fitness
landscape is analyzed. In a first step, we are interested in finding the best suited local
search.

Finding Local Optima

The ideal properties of a local search for a MA are the following. The local search should

• be fast,

• produce near optimum solutions,

• introduce only few local optimum solutions, and

• be efficient in searching a limited region of the search space.

However, a tradeoff between running time of the local search and thus exploitation time
versus exploration time of the evolutionary framework has to be made. The longer the
running time of the local search, the less local optimum solutions can be visited.

To compare neighborhoods for a problem, the landscapes they define can be analyzed
by calculating or estimating the correlation length of the landscape. Generally, the more
correlated the landscape, the more effective the local search. The number of iterations to
reach a local optimum is usually higher in correlated landscapes due to larger basins of
attractions and less local optima. Thus, the exploitation of a region of the search space is
often higher and the produced optima are better than for a local search with few iterations.
An advantage of the landscape (auto)correlation analysis is that the correlation can be
computed mathematically for some problems. It has been shown, for example, that in the
TSP, local search neighborhoods based on edge exchange lead to much higher correlated
landscapes than neighborhoods based on city exchanges [281]. Not surprisingly, the former
local search algorithms perform much better than the latter.

60 4 Performance Prediction and Fitness Landscape Analysis

The quality of the solutions can be compared in experiments by running the local searches.
Additionally, it is useful to calculate the average distance of the starting solutions and the
resulting local optima. The distance is low if local search stays in a limited region of the
search space. If the distance is high, then the local search does not exploit regions in the
search space and traverses large portions of the search space directionless.

The Choice of Variation Operators

Once the best local search has been identified, the search space is analyzed to determine
the variation operators for the MA. The effectiveness of the evolutionary operators highly
depends on the distribution of the local optima in the search space. To identify a structure
in the distribution of the local optima, a fitness distance analysis (FDA) is well-suited.
In comparison to the estimation of the FDC coefficient described above, the correlation
of fitness and distance to the optimum is investigated for the local optima. Information
about the distribution of the local optima is drawn from the fitness distance plot, in which
the fitness of the local optima is plotted against their minimum distance to an optimum.
Instead of plotting fitness, the difference of objective value to the optimum solution value
can be used (∆f = |fopt − f(x)|), so that the plots of similar landscapes of a maximization
and a minimization problem have the same appearance. The FDC coefficient can also be
computed but plays just a secondary role. The plot provides more insight, since it contains
more information. Several researchers have used such FD plots for analyzing local optima,
including Kauffman [168] for NK-landscapes, Boese [35] for the TSP, and Reeves [259] for
a flow–shop scheduling problem, and Merz and Freisleben [217] for the graph bipartitioning
problem.

A major weakness of the FDC analysis is that the optimum solution has to be known in
advance. However, in most cases a near optimum solution found in experiments can be used
to replace the optimum solution. For correlated and uncorrelated landscapes, the FD plots
look similar to plots with the distance to the optimum solution.

Sometimes, it appears to be useful to generate another plot during analysis: the average
distance between the local optima against the distance to the optimum reveals additional
information how the local optima are located relatively to each other in the search space.
Additionally, when performing FDA, it is useful to calculate other properties such as the
number of distinct local optima found, and the average distance between the starting solu-
tions and the local optima as noted before.

The right choice of a variation operator for a MA depends on the distribution of the
local optima. Consider three different landscapes for which the fitness distance plots look as
displayed in Figure 4.3. The plot in the upper left shows the distribution of Lin-Kernighan
local optima of a TSP instance. The plot reveals that the local optima are found only in a
small fraction of the search space (the maximum distance to the optimum is approximately
a third of the diameter of the landscape), and fitness and distance are correlated. Thus,
a respectful recombination scheme can be used to exploit this structure. An example of a
totally uncorrelated landscape is shown in the upper right. The local optima of the NK
landscape have a distance up to the maximum distance to the optimum as well as to each
other (which can be verified by generating a mean distance - distance to optimum plot).
Here, a recombination scheme is of little help. Instead, a mutation operator with relatively
high, constant jump distance is more appropriate. The plot in the lower left shows a very high
correlation of the Kernighan-Lin local optima of a regular GBP instance. This landscape has

4.6 Landscape Analysis and Memetic Algorithms 61

0
100
200
300
400
500
600
700
800
900

0 100 200 300 400 500

T
ou

r
le

ng
th

 d
iff

er
en

ce

�

∆l

Distance to optimum dopt

att532

ss

0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09

0 200 400 600 800 1000

F
itn

es
s

di
ffe

re
nc

e

�

∆f

Distance to optimum dopt

xdr-B11-1024

0
100
200
300
400
500
600
700
800
900

1000

0 100 200 300 400 500 600 700 800 900

C
ut

 s
iz

e
di

ffe
re

nc
e

�

∆c

Distance to optimum dopt

Breg5000.16

0

2e+07

4e+07

6e+07

8e+07

1e+08

1.2e+08

0 20 40 60 80 100

C
os

t d
iff

er
en

ce

�
∆c

Distance to optimum dopt

tai100b

Figure 4.3: Correlation of local optima of a TSP, NK-model, GBP, and QAP instance

an ideal distribution of local optima. The optimum solution can be found by “jumping” from
one optimum to a better one with successively decreasing the jump distance. Furthermore,
the optimum lies central among the local optima such that a recombination operator with
high tendency to produce offspring on a shortest path between other local optima with near
optimal fitness is best suited. Finally, the plot in the lower right shows the correlation of local
minima of a QAP instance. All local optima have a large distance to the local optimum but
a slight tendency of decreasing cost difference with decreasing distance to the best-known
solution can be observed.

The Choice of Greedy Components

The use of randomized greedy heuristics for generating starting solutions depends highly
on the problem structure. Greedy heuristics are especially effective if the problem has low
epistasis, since the greedy choices of a decision variable affect only few other choices. In the
extreme case, where there is no linkage between the genes, a greedy heuristic will always
find the optimum solution. In the other extreme, if all genes (or decision variables) depend
on all other genes, the greedy heuristic does not perform better than random search.

To analyze a greedy heuristic, a fitness distance plot can be utilized for visualizing the
distribution of the greedy constructed solutions. The randomized greedy heuristic should be
capable of producing a variety of different solutions so that the search space is adequately
sampled.

62 4 Performance Prediction and Fitness Landscape Analysis

In a MA for a problem with low epistasis, greedy choices can be easily incorporated in
the recombination procedure. A respectful greedy recombination operator first copies all
alleles that are common in both parents and then uses a greedy construction procedure to
produce a feasible solution from the partial solution.

4.7 Summary

In this chapter, the performance evaluation and the performance prediction of heuristic
optimization approaches have been addressed. The most important issue in the research area
of heuristic optimization techniques including evolutionary computation is gaining insight
into the operation of these techniques. When we know why an algorithm (or an instance of
an algorithm) performs well on a type of problem, we are able to predict its performance
by identifying the type of problem to solve. Thus, we become able to choose the best
performing among the alternative instances of an algorithm. To gain insight, the notion of
fitness landscapes has been introduced that provides an intuitive picture of how a heuristic
search algorithm works. The search space can be regarded as a spatial structure in which
a heuristic performs moves from one point to another in order to find solutions of high
quality. Statistical properties of these landscapes can be found by a landscape analysis that
provides links between types of problems and search strategies that are best suited. Several
landscape properties and methods of their analysis have been discussed in this chapter.
Those especially important for the design of highly effective memetic algorithms have been
addressed in more detail. In MAs, regions of the search space are exploited by a local
search procedure that efficiently visits points of high fitness using a predefined neighborhood
structure. Autocorrelation or random walk correlation analysis can help to identify the most
appropriate neighborhood: the more correlated the neighboring points in the search space,
the lower the landscape ruggedness and hence the more effective a local search.

Memetic algorithms can be designed to follow several search strategies depending on the
variation operators to explore the search space. Variation operators can be regarded as per-
forming “jumps” in the search space to escape from the attractor region of a local optimum
with the aim of reaching the basin of attraction of a local optimum with higher fitness.
Variation operators can be divided into mutation and recombination operators, the latter
can be further divided into unrespectful, respectful and assorting recombination operators.
The effectiveness of the operators highly depends on another property of the landscape: the
distribution of the local optima (with respect to the chosen local search) within the search
space. If there is a certain structure in the arrangement of the local optima, e.g. the fitness
and distance to the optimum are correlated, a recombination operator can be used to exploit
this feature. If, on the other hand, the locally optimum solutions are uniformly distributed
in search space, a mutation operator with a sufficiently large jump distance to escape the
attractor regions of local optima is a better choice. The fitness distance (correlation) anal-
ysis of local optima provides a way to “measure” the arrangement structure of the locally
optimum solutions. A fitness distance plot is well suited in identifying characteristics: if
the problem is deceptive and therefore the plot shows a positive correlation (the higher the
fitness, the higher the distance to the optimum), an unrespectful recombination operator
can be used to exploit this property. For high, negative correlations, assorting or simple
respectful recombination operators should be used.

Moreover, it has been argued that fitness distance analysis can be utilized for determining
the usefulness of greedy choices (borrowed from greedy heuristics) in the initialization and

4.7 Summary 63

recombination steps.

64 4 Performance Prediction and Fitness Landscape Analysis

Chapter 5

NK-Landscapes

5.1 Introduction

The NK-model of fitness landscapes has been introduced by Kauffman [168] to study gene
interaction in biological evolution. In the NK-model, the fitness is the average value of
the fitness contributions of the loci in the genome. For each locus, the fitness contribution
is a function of the gene value (allele) at the locus and the values of K other interacting
genes. Although this model is a very simplified model, it allows to produce families of fitness
landscapes with interesting properties.

Besides its biological implications, the model is interesting for researchers in the field of
evolutionary computation, since the NK-landscape model provides combinatorial optimiza-
tion problems with tunable difficulty. Furthermore, traditional genetic algorithms can be
applied easily to these problems, since a genome in the NK-model is represented by a binary
string of fixed length.

In this chapter, new greedy and k-opt local search heuristics for NK-landscapes are
proposed that can be easily embedded into memetic algorithms. The properties of NK-
landscapes are discussed and a fitness distance correlation analysis is performed for the
newly introduced heuristic algorithms. Based on the results of the analysis, the performance
of memetic and even simple evolutionary algorithms can be predicted: For low epistasis
– low values of K in the model – recombination based algorithms are able to exploit the
structure of the search space effectively. With increasing epistasis, the landscapes become
quickly unstructured, limiting the usefulness of recombination. For high epistasis, mutation
based algorithms become favorable over recombination based evolutionary algorithms.

In computer experiments it is shown that simple genetic algorithms based on recombina-
tion or mutation do not scale well with increasing problem size, although NK-landscapes offer
perfect conditions for the application of GAs. In a comparison study it is shown that simple
MAs are able to outperform GAs based on crossover and EAs based on bit-flip mutation.

Finally, the effectiveness of more sophisticated MAs based on the proposed greedy and k-
opt local search heuristics is demonstrated. These algorithms offer (near) optimum solutions
in short time even for high dimensional landscapes.

The results presented in this chapter have been parially published in [212].

65

66 5 NK-Landscapes

5.2 Heuristics for the NK-Model

Since NK-Landscapes have only been studied in the context of simulated biological evolution,
little attention has been payed to the development of simple non-evolutionary heuristics.
However, besides hill climbing/local search techniques, constructive heuristics such as the
greedy algorithm can be applied to problems of the NK-model.

In the following, a solution vector x is assumed to be a binary vector of length N (x =
(x1, . . . , xN) with the fitness

f(x) =
1

N

N∑
i=1

fi(xi, xi1 , . . . , xiK), (5.1)

where the fitness contribution fi of locus i depends on the value of gene xi and the values of
K other genes xi1 , . . . , xiK . The function fi : {0, 1}K+1 → IR assigns a uniformly distributed
random number between 0 and 1 to each of its 2K+1 inputs.

5.2.1 Greedy Algorithms

A point in a NK-landscape can be constructed in N steps by assigning in each step a gene
value to a gene at a given locus. If the choice of a gene value follows a greedy rule, such an
approach can be classified as a greedy heuristic for NK-landscapes.

The greedy heuristic proposed in this thesis works as follows. A solution is built in N
steps by choosing a gene which is still not assigned a value, and a gene value to assign to the
gene. The choice is made by maximizing a gain function g(i, v) : {1, . . . , N} × {0, 1} → IR
with g(i, v) denoting the gain attained by setting the value of the i-th gene to v. The gain
function g(i, v) is defined as the difference between the fitness of a partial solution y with gene
i set to v and the fitness of a partial solution x with gene i unspecified: g(i, v) = fp(y)−fp(x)
with

yj =

{
v , if i = j
xj , otherwise.

The fitness fp of a partial solution is defined as the average fitness of all solutions match-
ing the template defined by the partial solution: Assume the partial solution x is x =
(1, 0, ∗, 0, ∗, 1) with ∗ denoting the don’t care symbol (the gene has no value). Then, the
fitness fp of x is the average fitness of the four solutions (1, 0, 0, 0, 0, 1), (1, 0, 0, 0, 1, 1),
(1, 0, 1, 0, 0, 1), and (1, 0, 1, 0, 1, 1).

Assuming the fitness contribution of site i denoted fi(xi, xi1 , . . . , xiK), depends on the
site i itself and K neighbors i1, . . . , iK , then the neighborhood Ni = {i, i1, . . . , iK} defines
the set of genes/loci which contribute to the fitness at site i. The set of loci/genes which
depend on the value of gene k is thus defined as Dk = {i | k ∈ Ni}.

Hence, the gain function becomes

g(i, v) = fp(y)− fp(x) =
∑
i∈Dk

fpi (xi, . . . , v, . . .)− fpi (xi, . . . , xk, . . .). (5.2)

Initially, the partial fitness contribution of locus i is the average over all 2K+1 possible values
of fi. Hence, the greedy heuristic based on partial fitness calculations requires more than
n · 2K+1 additions and is therefore only practically useful for landscapes with small values of
K. On the other hand, with increasing K, the solutions produced by the greedy heuristic
approach the average fitness of the points in the landscape since for high epistasis the values
of fpi differ significantly from the values of fi in the final solution.

5.2 Heuristics for the NK-Model 67

5.2.2 Local Search

The application of local search techniques to NK-landscapes is straightforward: Neighboring
solutions can be reached by flipping one or more bits simultaneously in the genome. However,
instead of calculating the fitness for each neighboring solution anew it is more efficient to
calculate the gain achieved by moving to the new solution. In this context the gain is referred
to as the fitness difference between the new and the old solution.

The gain associated with the flipping of a single gene k in the genome x leading to a
solution y with

yi =

{
1− xi , if i = k
xi , otherwise

is the fitness difference of the new solution y and the old solution x:

gk(x) = f(y)− f(x) =
∑
i∈Dk

fi(xi, . . . , 1− xk, . . .)− fi(xi, . . . , xk, . . .). (5.3)

A local search for the NK-model can be implemented by maintaining a gain vector g =
(g1 . . . , gN) instead of calculating all gains anew in each iteration. After flipping gene k,
generally not all of the gains have to be updated. A gain gi only changes if there is a j ∈ Di

with k ∈ Nj or in words the gain of flipping gene i changes if there is a fitness distribution
function that depends on the value of gene k and i.

A 1-opt Local Search

A simple local search based on a 1-opt neighborhood can be realized straightforwardly. The
neighborhood is searched by flipping a single bit in the current solution. The gain vector
can now be used to find an improving flip in reduced computation time. However, after
flipping the gene value, some elements of the gain vector have to be updated accordingly.
The pseudo code for such a local search is displayed in Figure 5.1. Alternative to selecting

procedure Local-Search-1-opt(x ∈ X): X;
begin

calculate gains gi for all i in {1, . . . , n};
repeat

find k with gk = maxi gi;
if gk > 0 then
xk := 1− xk;
update gains gi;

endif
until gk ≤ 0;
return x;

end;

Figure 5.1: Fast 1–opt Local Search for NK Landscapes

the best move in each iteration, a move can be selected randomly among those with positive
associated gain.

68 5 NK-Landscapes

A k-opt Local Search

The basic scheme described above can be extended to derive more powerful local search
algorithms. For example, a 2-opt local search can be realized by flipping two genes to reach
a solution in the neighborhood of the current solution. More generally, a k-opt local search
can be realized by flipping k genes simultaneously. Since the neighborhood size of a k-opt
local search grows exponentially with k, mechanisms are required to perform a k-opt local
search in reasonable time. This can be achieved be considering a small fraction of the k-opt
neighborhood similarly to the heuristics by Lin and Kernighan for the TSP [192] and the
GBP [171]. The k-opt local search for NK-landscapes proposed in this thesis is based on
the ideas of Lin and Kernighan: in each iteration, a variable number of genes is flipped,
depending on a gain criterion. To find the most profitable k-opt move, a sequence of up to n
solutions is generated by stepwise flipping genes with the highest associated gain. Every gene
is flipped no more than once to guarantee that all solutions in the sequence are different. The
solution in the sequence with the highest gain is accepted as the new current solution. This
solution may differ in 1 up to n genes depending on the position in the sequence. The pseudo
code for the approach is provided in Figure 5.2. To reduce the running time of the algorithm,

procedure Local-Search-k-opt(x ∈ X): X;
begin

calculate gains gi for all i in {1, . . . , N};
repeat
xprev := x, Gmax := 0, G := 0, steps = 0, C := {1, . . . , N};
repeat

find j with gj = maxi∈C gi;
G := G+ gj;
xj := 1− xj;
if G > Gmax then

Gmax := G;
xbest := x;

endif
update gains gi for all i;
C := C\{j};
steps := steps+ 1;

until steps > maxsteps or C = ∅;
if Gmax > 0 then
x := xbest;

else
x := xprev;

endif
until Gmax ≤ 0;
return x;

end;

Figure 5.2: k-opt Local Search for NK Landscapes

5.3 The Fitness Landscape of the NK-Model 69

the value for the maximum k can be bound to a value smaller than N . Furthermore, the
inner repeat loop may be terminated if there was no new xbest for more than m solutions.

The k-opt local search described here can be applied to any binary-coded problem, in
fact the k-opt local search proposed for the BQP in this thesis is very similar to the one
described above. The gains gi, however, are calculated differently.

5.3 The Fitness Landscape of the NK-Model

The NK-model of Kauffman [168, 169] defines a family of fitness landscapes which can be
tuned by two parameters: N and K. While N determines the dimension of the search space,
K specifies the degree of epistatic interactions of the genes constituting a genome. Each
point in the fitness landscape is represented by a bit string of length N and can be viewed
as a vertex in the N -dimensional hypercube.

With this model, the “ruggedness” of a fitness landscape can be tuned by changing the
value of K and thus the number of interacting genes per locus. Low values of K indicate
low epistasis and high values of K represent high epistasis.

To get a feeling of how the various landscapes look like, it is helpful to look at the two
extreme cases of the NK-model which are the landscapes with K = 0 and the landscapes
with K = N − 1.

Properties of K = 0 Landscapes

The K = 0 landscapes have the following properties [168]:

• There is only one local/global optimum

• The landscape is smooth; neighboring points (1-opt neighbors) in the search space are
highly correlated. The fitness of 1-opt neighbors can differ by no more than 1

N
.

• The number of fitter neighbors decreases by one in each iteration of a 1-opt local search.

• The average number of iterations to reach the optimum is N
2

and thus in O(N).

For the highest value of K, the properties of the fitness landscapes become quite different.

Properties of K = N − 1 Landscapes

If K = N − 1, the fitness contribution of a gene depends on the values of all other genes,
which results in a highly uncorrelated, rugged fitness landscape. These landscapes have the
following properties [168]:

• The expected number of local optima is 2N

N+1

• The expected fraction of fitter 1-opt neighbors dwindles by 1
2

after each iteration of a
1-opt local search

• The number of improvement steps in a 1-opt local search to reach the local optimum
is expected to be in O(logN)

• The expected number of solutions to examine to reach a 1-opt local optimum is pro-
portional to N

70 5 NK-Landscapes

• The ratio of accepted to tried moves scales as logN/N

• Starting from an arbitrary solution, only a small fraction of local optima can be reached
by a 1-opt local search. An upper bound is given by the formula N log2(N−1)/2

• Only from a small fraction of starting solutions (2(log2 N)2/2), the global optimum can
be reached by 1-opt local search.

Furthermore, Kauffman [168] has shown that for increasing N , the fitness values of the local
optima decrease towards 1

2
. He calls this phenomenon a complexity catastrophe.

Random vs. Adjacent Neighbor Model

Besides the values for the parameters N and K, the choice of the neighbor model is important
for NK-landscapes, too. Kauffman [168] distinguishes two variants, the random neighbor
model and the adjacent neighbor model. In the former, the genes which contribute to the
fitness at locus i are chosen at random. In other words, the neighbors i1 through iK are
randomly selected among the N . In the latter, the i1 through ik are the nearest loci to
the gene at locus i, e.g. if K = 2 and i = 5, then i1 = 4 and i2 = 6, the neighborhood is
N5 = {5, 4, 6}.

The landscape properties described above are independent of the neighbor model. How-
ever, Weinberger [308] has shown that the computational complexity of both models differs.
He studied the NK decision problem – Is the global optimum of a given instance of an NK
landscape greater than some specified value F? – and was able to show that the NK decision
problem with adjacent neighbors is solvable in O(2KN) steps and is thus in P and that the
NK decision problem with random neighbors is NP-complete for K ≥ 3. To the best of the
authors knowledge, the question whether the NK decision problem with random neighbors
is NP-complete for K = 2 is open.

5.3.1 Autocorrelation Analysis

The random walk correlation function for the NK-model has been calculated by Fontana et
al. [101]. Their results can be summarized as follows: The random walk correlation function
becomes

r(s) ≈
(

1− K + 1

N

)s
(5.4)

for the adjacent and random neighbor model. Hence, the correlation length is in both cases

` ≈ N

K + 1
. (5.5)

It is not surprising that the correlation length decreases with increasing K.

Weinberger [307] derived formulas for the autocorrelation function of NK-landscapes. He
found that the autocorrelation function ρ(d) depends on the neighbor model of the landscape.
In the random neighbor model, the autocorrelation function becomes

ρ(d) =

(
1− d

N

)(
1− K

N − 1

)d
, (5.6)

5.3 The Fitness Landscape of the NK-Model 71

and for the adjacent neighbor model, ρ becomes

ρ(d) = 1− d(K + 1)

N
+

d

N
(
N−1
d−1

) K∑
l=1

(K + 1− l)
(
N − l − 1

d− 2

)
, (5.7)

with d denoting the hamming distance between bit vectors.
The formula show that the NK-model allows to produce landscapes with arbitrary rugged-

ness. The correlation length can be set to 1 by choosing K = N − 1 leading to a totally
random landscape with uncorrelated neighboring points. Choosing the other extreme K = 0,
the correlation length grows to its maximum value: N resulting in a smooth, single peaked
landscape.

5.3.2 Fitness Distance Correlation Analysis

In his studies of NK-landscapes, Kauffman [168] investigated the correlation of fitness and
distance to the optimum of local optimum solutions with respect to 1-opt local search. In
this work, the analysis is extended by investigating fitness distance correlation with respect
to the greedy heuristic and k-opt local search. Experiments were conducted for three selected
instances with N fixed to 1024, K in {2, 4, 11} and a random neighbor model. Since the
optimum solutions for these instances are not known, the best solutions found with the MAs
described below in long runs (14400 s on a Pentium II 300 MHz PC) are used instead. These
solutions are likely to be the global optima or at least close to the global optima with respect
to fitness and distance.

In the first experiment, the distribution of greedy solutions in the search space is inves-
tigated. The results of the analysis are summarized in Table 5.1. In the first column, the

Table 5.1: Results of the Fitness Distance Analysis of Greedy Solutions to three NK Land-
scapes

Instance N K min dopt dopt dgr Ngr %

C2-1024 1024 2 130 220.62 (0.22) 195.03 2500 -0.62
D4-1024 1024 4 264 372.29 (0.36) 377.38 2500 -0.24
B11-1024 1024 11 458 515.74 (0.50) 469.35 2500 -0.01

name of the instance is displayed, and in the second and third column the parameters N and
K are given. In columns four through eight, the minimum distance of the greedy solutions
to the expected global optimum (min dopt), the average distance of greedy solutions to the
global optimum (dopt), the average distance between the greedy solutions (dgr), the number
of distinct greedy solutions (Ngr) out of 2500, and the fitness distance correlation coefficient
(%) are provided, respectively. Additionally, the normalized average distance, i.e. the average
distance of the local optima to the global optimum divided by the maximum distance in the
search space N is shown in column five in parentheses.

For small K, the greedy solutions are close to each other and close to the best known
solution. There is a correlation between fitness and distance to the best known solution as
the value ρ indicates. About three fourth of the gene values are equal in all greedy solutions
for K = 2 and thus the solutions are contained in a small fraction of the search space. With
increasing K, average distance between the greedy solutions quickly converges to the average

72 5 NK-Landscapes

distance (N/2) of the solutions in the search space. Surprisingly, already at K = 11 there
is no correlation between greedy solutions and they have random distribution in the search
space as expected for large values of K. In the second and third experiment, the correlation of

Table 5.2: Results of the Fitness Distance Analysis of 1-opt Solutions to three NK Landscapes
Instance N K min dopt dopt dloc N1−opt %

C2-1024 1024 2 215 337.21 (0.33) 381.75 2500 -0.59
D4-1024 1024 4 383 463.56 (0.45) 489.25 2500 -0.27
B11-1024 1024 11 447 511.47 (0.50) 511.90 2500 0.03

fitness and distance to the best known solution of 1-opt and k-opt solutions was investigated.
The results are shown in Tables 5.2 and 5.3. Again, in the first column, the name of the
instance is displayed, and in the second and third column the parameters N and K are given.
In columns four through eight, the minimum distance of the locally optimum solutions to the
expected global optimum (min dopt), the average distance of the local optima to the global
optimum (dopt), the average distance between the local optima (dloc), the number of distinct
local optima (N1−opt, Nk−opt) out of 2500, and the fitness distance correlation coefficient (%)
are provided, respectively. Additionally, the normalized average distance, i.e. the average
distance of the local optima to the global optimum divided by the maximum distance in the
search space N is shown in column five in parentheses. Similar as for the greedy heuristic,

Table 5.3: Results of the Fitness Distance Analysis of k-opt Solutions to three NK Landscapes
Instance N K min dopt dopt dloc Nk−opt %

C2-1024 1024 2 191 301.47 (0.29) 346.16 2500 -0.65
D4-1024 1024 4 347 440.57 (0.43) 470.36 2500 -0.33
B11-1024 1024 11 459 511.88 (0.50) 511.72 2500 0.02

the average distance between the local optima and the average distance to the best known
solution increases quickly with increasing K. At K = 11 there is no correlation between
fitness and distance, and the distribution is similar to a uniform distribution of random
points in the search space. There is slightly higher correlation in case of k-opt in comparison
to 1-opt in case of the K = 2, 4 landscapes. However, greedy solutions have even a shorter
minimum and average distance to the best known solution than k-opt solutions. The fitness
distance plots for the three instances are shown in Figure 5.3. On the left, the scatter plots
for the greedy solutions are provided, and on the right the scatter plots for k-opt solutions
are displayed. The 2-opt plots are not shown since they are very similar to the plots of
k-opt solutions. For K = 2, the orientation of the points towards the origin is obvious. The
cloud of points “moves” with increasing K quickly to the middle of the plane losing the
orientation to the origin and thus to the optimum. These results correspond to the findings
of Kauffman [168]. He further observed that for instances of the adjacent neighbor model
the correlation of fitness and distances decreases not as rapidly as for the random neighbor
model with increasing K.

From the perspective of performance prediction of MAs, the analysis provides some useful
information. For small K (< 5) , recombination-based memetic algorithms are expected to

5.3 The Fitness Landscape of the NK-Model 73

0

0.005

0.01

0.015

0.02

0.025

0 200 400 600 800 1000

F
itn

es
s

di
ffe

re
nc

e

�

∆f

Distance to optimum dopt

C2-1024

0
0.005

0.01
0.015

0.02
0.025

0.03
0.035

0.04

0 200 400 600 800 1000

F
itn

es
s

di
ffe

re
nc

e

�

∆f

Distance to optimum dopt

C2-1024

0
0.005

0.01
0.015

0.02
0.025

0.03
0.035

0.04
0.045

0.05

0 200 400 600 800 1000

F
itn

es
s

di
ffe

re
nc

e

�

∆f

Distance to optimum dopt

D4-1024

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 200 400 600 800 1000

F
itn

es
s

di
ffe

re
nc

e
�

∆f

Distance to optimum dopt

D4-1024

0

0.01

0.02

0.03

0.04

0.05

0.06

0 200 400 600 800 1000

F
itn

es
s

di
ffe

re
nc

e

�

∆f

Distance to optimum dopt

B11-1024

0
0.005

0.01
0.015

0.02
0.025

0.03
0.035

0.04
0.045

0.05

0 200 400 600 800 1000

F
itn

es
s

di
ffe

re
nc

e

�

∆f

Distance to optimum dopt

B11-1024

Figure 5.3: Fitness-Distance Plots of Greedy Solutions (left) and k-opt Solutions (right)

have a good performance since with recombination the fitness distance correlation of the
local optima can be exploited: With increasing fitness, the local maxima are closer together,
and their distance to the optimum becomes smaller. Furthermore, the locally optimum
solutions are found in a small region of the search space in which the global optimum has
a more or less central position. The greedy heuristic is very well suited for these instances
with low epistasis and it is therefore promising to include the heuristic in the initialization
phase of the population as well as in the recombination step. For larger K, the effectiveness
of recombination decreases and eventually mutation based EAs are better suited.

74 5 NK-Landscapes

5.4 A Memetic Algorithm for NK Landscapes

The application of MAs to NK-landscapes is straightforward. Since problems of the NK-
model are binary-coded, all GA operators known for bit strings can be used in a MA.

5.4.1 Population Initialization and Local Search

The population can be initialized by randomly generating bit strings and by subsequently
applying local search. For low values of K, the use of the randomized greedy heuristic
described above can be used alternatively in combination with local search.

Suitable local search algorithms are 1-opt local search and k-opt local search as described
above.

5.4.2 Evolutionary Variation Operators

Due to the binary coding of the problem, all operators on binary strings can be applied
in an evolutionary algorithm and therefore in a memetic algorithm, such as single point or
two-point crossover, uniform crossover and bit flip mutation operators.

Recombination

A variant of uniform crossover (UX) that is used in the CHC algorithm of Eshelman [88]
is an alternative to the crossover operators noted above. The operator creates (with high
probability) offsprings that have a maximum Hamming distance to the parents which is half
of the distance between the parents themselves. The operator is called denoted HUX in the
following.

Alternatively, the greedy construction scheme can be used in recombination to produce
offspring. A greedy recombination operator denoted GX is therefore devised that works by
first inheriting all the gene values that are common to the two parents to retain respectful
recombination. Then the remaining loci are set making greedy choices as in the greedy
heuristic described above. This operator is especially effective for problems with low epistasis.

Mutation

Simple bit flip mutation is not useful in a memetic algorithm, since the flipping of a single
bit will be reversed by a subsequently performed local search with high probability. Hence
more than one bit must be flipped simultaneously in the parent solution. If p bits are flipped
by the mutation operator, the Hamming distance of the resulting offspring and the original
parent solution becomes p. The value of p should be chosen to minimize the probability that
the subsequent local search rediscovers the unmutated solution.

5.4.3 Performance Evaluation

Since optimum solutions are generally not known for NK-landscapes of arbitrary values of
K and N , it cannot be determined whether a given algorithm has found the optimum or
not. Thus, the relative performance of heuristic algorithms has to be investigated.

5.4 A Memetic Algorithm for NK Landscapes 75

Table 5.4: Performance of six algorithms on 9 NK-landscapes

Alg. gen Fitness gen Fitness gen Fitness

K = 2, N = 12 K = 4, N = 12 K = 11, N = 12
GA-UX 74214 0.731330, 0.00% 73759 0.709572, 0.00% 68805 0.806116, 0.00%
GA-1X 77228 0.731330, 0.00% 76442 0.709572, 0.00% 70460 0.806116, 0.00%
GA-M 78830 0.731330, 0.00% 76733 0.709572, 0.00% 61691 0.806116, 0.00%
MA-C 256649 0.731330, 0.00% 188791 0.709572, 0.00% 80925 0.806116, 0.00%
MA-M 207388 0.731330, 0.00% 161325 0.709572, 0.00% 68589 0.806116, 0.00%
MLS 2813352 0.731330, 0.00% 2020097 0.709572, 0.00% 851995 0.806116, 0.00%
Best 0.731330 0.00% 0.709572 0.00% 0.806116 0.00%
Time: 120 s

K = 2, N = 64 K = 4, N = 64 K = 11, N = 64
GA-UX 92813 0.726979, 1.54% 90163 0.776360, 1.75% 73216 0.755914, 5.51%
GA-1X 116482 0.730261, 1.09% 111878 0.772472, 2.25% 86808 0.757258, 5.34%
GA-M 142796 0.731240, 0.96% 134603 0.780548, 1.22% 95112 0.762200, 4.73%
MA-C 161881 0.738320, 0.00% 93204 0.790226, 0.00% 17364 0.791819, 1.02%
MA-M 138577 0.738320, 0.00% 71474 0.790226, 0.00% 20023 0.792688, 0.91%
MLS 383323 0.738320, 0.00% 227791 0.790152, 0.01% 120469 0.787223, 1.60%
Best 0.738320, 0.00% 0.790226, 0.00% 0.8000067, 0.00%
Time: 300 s

K = 2, N = 256 K = 4, N = 256 K = 11, N = 256
GA-UX 32199 0.735637, 0.97% 29332 0.763774, 3.69% 20756 0.742701, 4.56%
GA-1X 44481 0.728916, 1.88% 39116 0.757387, 4.50% 25245 0.726255, 6.67%
GA-M 67639 0.735617, 0.98% 57011 0.766737, 3.32% 32735 0.749083, 3.74%
MA-C 35230 0.741997, 0.12% 15257 0.788822, 0.54% 752 0.760639, 2.25%
MA-M 34523 0.741688, 0.16% 16082 0.788270, 0.61% 3390 0.772114, 0.78%
MLS 23316 0.731418, 1.54% 13711 0.762318, 3.88% 5490 0.747768, 3.91%
Best 0.742879 0.00% 0.793068 0.00% 0.778175 0.00%
Time: 300 s

Genetic/Evolutionary Algorithms vs. Memetic Algorithms

In a first set of experiments, traditional genetic algorithms and evolutionary algorithms
based on mutation are compared with memetic algorithms based on 1-opt local search. The
algorithms use either mutation or recombination operators to study their effectiveness on
various landscapes.

The following algorithms were used in the experiments: The first algorithm (GA-UX) is
a simple GA with uniform crossover [292]. In the second algorithm (GA-1X) the uniform
crossover operator is replaced by one-point crossover [142]. The third algorithm (EA-M) is an
EA with mutation: here, a single bit-flip mutation operator is used. These three algorithms
use stochastic uniform selection for recombination and worst replacement (µ + λ selection)
as the survival selection strategy. The crossover application rate was set to 0.5, i.e. 0.5 · P
new offsprings were created per generation (P denotes the population size). In the GA-M
algorithm, 0.2 · P offsprings were created per generation with a mutation rate of 1

N
per bit.

Together with the restart technique described in chapter 3, the algorithms are similar to the
CHC algorithm by Eshelman [88]. His experiments have shown that this approach performs

76 5 NK-Landscapes

Table 5.5: Performance of six algorithms on 6 NK-landscapes

Alg. gen Fitness gen Fitness gen Fitness

K = 2, N = 512 K = 4, N = 512 K = 11, N = 512
GA-UX 31569 0.735041, 1.58% 29356 0.762612, 3.54% 21179 0.735579, 4.44%
GA-1X 42978 0.722648, 3.24% 39047 0.745724, 5.67% 25770 0.720248, 6.43%
GA-M 66270 0.730120, 2.24% 58505 0.762168, 3.59% 35516 0.743602, 3.39%
MA-C 20902 0.746324, 0.07% 8585 0.787023, 0.45% 269 0.744263, 3.31%
MA-M 25640 0.745696, 0.15% 12947 0.778917, 1.47% 2907 0.763278, 0.84%
MLS 9183 0.727272, 2.62% 5366 0.752791, 4.78% 2376 0.739058, 3.99%
Best 0.746840, 0.00% 0.790573, 0.00% 0.769733, 0.00%
Time: 600 s

K = 2, N = 1024 K = 4, N = 1024 K = 11, N = 1024
GA-UX 31183 0.735720, 1.85% 29000 0.753166, 4.23% 20913 0.730662, 3.89%
GA-1X 42214 0.721064, 3.80% 38173 0.734302, 6.63% 25293 0.708768, 6.77%
GA-M 68301 0.731607, 2.40% 60088 0.752943, 4.26% 36581 0.737865, 2.94%
MA-C 12615 0.748230, 0.18% 4540 0.783665, 0.35% 105 0.732874, 3.60%
MA-M 21486 0.747369, 0.29% 10915 0.775932, 1.34% 2522 0.756074, 0.55%
MLS 3669 0.723803, 3.44% 2344 0.743459, 5.46% 1014 0.731868, 3.73%
Best 0.749580, 0.00% 0.786437, 0.00% 0.760222, 0.00%
Time: 1200 s

significantly better than the standard genetic algorithm. The fourth and fifth algorithm
(MA-C and MA-M) are memetic algorithms using 1-opt local search. In MA-C, the HUX
recombination operator is used to create offspring while the MA-M performs flip mutation:
three bits are flipped simultaneously in the genome. In order to circumvent the problem of
premature convergence, restarts are performed when the population has converged (i.e. when
the average Hamming distance between individuals of the population has become smaller
than a threshold). To restart the search, all members of the population except the best
one are mutated by flipping k randomly chosen bits; k is determined by a third of the
average Hamming distance between the individuals in the initial population. This value for
k exhibited good performance in several experiments.

The sixth and last algorithm (MLS) in the first set of experiments is a simple multi-
start local search: Independent randomly generated solutions are improved by a local search
algorithm and the best solution obtained is returned.

The evolutionary algorithms described above were tested on 15 landscapes. Test set A
contains five landscapes with K = 2 and N ∈ {12, 64, 256, 512, 1024}, set B contains five
landscapes with K = 4 and N ∈ {12, 64, 256, 512, 1024}, and set C contains five landscapes
with K = 11 and N ∈ {12, 64, 256, 512, 1024}. All landscapes are based on a random
neighbor model. Test set A and B consist of problems with low epistasis and test set C
consists of problems with relatively high epistasis. Higher values of K could not be chosen
due to the high amount of memory required to store the fitness contribution tables, since
the memory requirements grow with O(N 2K+1). Each of the six algorithms was applied
to the 15 test problems of different K and N . In order to enable a fair comparison, the
running time of the algorithms was fixed: after a predefined time limit the algorithms were
terminated, and the best solution found so far was recorded. The population size for GA-

5.4 A Memetic Algorithm for NK Landscapes 77

UX, GA-1X and GA-M was set to 100, and the memetic algorithms (MA-C and MA-M)
operated on a population of only 20 members due to the relatively long computation times
needed to produce the local optima. Tables 5.4 and 5.5 summarize the results. The first
column denotes the algorithm used; the entry “Best” shows the highest fitness ever found
by one of the algorithms. The second, fourth and sixth column contain the value for the
average number of generations evolved. The third, fifth and seventh column display the the
average fitness values obtained over twenty runs. Furthermore, the percentage excess over
the best solution found is given in parentheses. The time limit chosen per run is given in
seconds on a PC (Pentium II, 300 MHz) under Linux; all algorithms were programmed in
C++.

0.9

0.95

1

1.05

1.1

0 200 400 600 800 1000 1200

R
el

at
iv

e
fit

ne
ss

�

Dimension N

GA-UX
GA-1-PT

GA-M
MA-C
MA-M
MSLS

0.9

0.95

1

1.05

1.1

0 200 400 600 800 1000 1200

R
el

at
iv

e
fit

ne
ss

�

Dimension N

GA-UX
GA-1-PT

GA-M
MA-C
MA-M
MSLS

Figure 5.4: Relative fitness over N for K = 2 and K = 4

Figure 5.4 shows the relative fitness of the algorithms for K = 2 and K = 4 graphically,
i.e. the best objective value ever found divided by the average objective value obtained by the
specific algorithm over twenty runs. Figure 5.5 displays the relative fitness of the algorithms
for K = 11. The results show that for the lowest dimension (N = 12) all algorithms perform

0.9

0.95

1

1.05

1.1

0 200 400 600 800 1000 1200

R
el

at
iv

e
fit

ne
ss

�

Dimension N

GA-UX
GA-1-PT

GA-M
MA-C
MA-M
MSLS

Figure 5.5: Relative fitness over N for K=11

equally good. For N = 64 the genetic algorithms (GA-*) are outperformed by multi–start
local search (MLS).

78 5 NK-Landscapes

Surprisingly, GA-M performs better than GA-UX for K = 2 and N = 64. For K = 4, this
is true even for N = 256. For greater N , GA-UX performs slightly better than the mutation–
only evolutionary algorithm. In case of K = 11, GA-M is better than the crossover–based
GAs for all N > 12.

GA-1X however performs worst in all test cases. It appears that one–point crossover
is not a good recombination strategy if the interacting genes for each locus are selected
randomly among the N , as it is the case in the test instances. Here, favorable combinations
of genes - the building blocks - are not made up by sequences of consecutive genes in the
genome. Additional experiments were performed by generating landscapes with the adjacent
neighborhood model. The experiments conducted support the claim made: here GA-1X
performed much better.

The memetic algorithms on the other hand performed better than the simple EAs in all
cases. The relative difference in performance increases significantly with the dimension of
the search space. Again, for K = 11, the mutation based search is preferable to the crossover
based search: MA-M outperforms MA-C by far. One reason may be the fact that the average
number of generations evolved by MA-C is much less than the average number of generations
for MA-M (105 vs. 2522) because the time consumed by the local search procedure is much
higher in case of MA-C. For K = 2 and K = 4 MA-C beats MA-M.

Figure 5.4 through Figure 5.5 give hints on the relative performance when the problem size
increases. The GA-* algorithms as well as the MLS algorithm do not scale well compared to
the MAs. Assuming that the MAs’ ability to reach the optimum solution also decreases with
the problem size, the efficiency of the GA-* algorithms degrades even faster than displayed
in the figures.

Greedy and Local Search

To investigate the relative performance of the greedy heuristic and the k-opt local search, ex-
periments were conducted in which the two together with the 1-opt local search were applied
to the three landscapes with N = 1024 used in the analysis and in the comparison above.
The results are shown in Table 5.6. In the table, the average performance (fitness and aver-

Table 5.6: Performance of the Greedy Heuristic, 1-opt and k-opt Local Search

Greedy 1-opt LS k-opt LS
Instance fitness t/ms fitness t/ms fitness t/ms
C2-1024 0.732613 (2.33%) 76.9 0.713496 (4.88%) 19.7 0.725135 (3.32%) 52.3
D4-1024 0.756306 (4.34%) 173.2 0.723684 (8.47%) 28.4 0.751549 (4.94%) 114.8
B11-1024 0.726171 (5.56%) 22120 0.709401 (7.74%) 112.5 0.740319 (3.72%) 677.3

age percentage access in parentheses) and the average running time (t/ms) in milliseconds
of a single run, is shown for the greedy heuristic and 1-opt and k-opt local search applied to
randomly generated solutions. The values are averaged over 10000 runs except for the greedy
heuristic and the problem instance B11-1024: Due to the long running time, 1000 runs were
performed instead of 10000. The values given in parentheses denote the deviation from the
best known solution in percent. Note, that these values are not comparable with the values
presented in Table 5.5, since in the later, the percentage access is provided relative to the

5.4 A Memetic Algorithm for NK Landscapes 79

best of the runs in the comparison. The best-known solution has been found in a long run
of a MA algorithm with k-opt local search.

For K = 2 and K = 4, the greedy heuristic outperforms the local searches but requires
more CPU time. For K = 11, the k-opt local search dominates over the two others. The
CPU time required for a run of the greedy algorithm grows to 22 seconds and is thus more
than 32 times higher than for k-opt local search rendering the greedy heuristic impractical for
such relative large K. The greedy heuristic is furthermore capable of producing comparable
results in a single run and thus in 173 milliseconds to a GA/EA requiring 1200 seconds for
K = 2. For K = 4 and K = 11, the GAs/EAs are outperformed by the greedy heuristic
and the k-opt local search in a single run, demonstrating even more drastically the inferior
performance of traditional GAs/EAs on relatively large instances.

Memetic Algorithms with k-opt Local Search

To assess the performance of memetic algorithms with k-opt, additional experiments have
been conducted. With the same time limit as chosen for the comparison of evolutionary
algorithms with MAs, the MAs with k-opt local search were applied to the three instances of
size 1024. With a population size of 40, the production of 20 new offspring per generation,
and restarts enabled, the MA were run with three different variation operators. The first MA
uses the greedy heuristic in the initialization phase and the greedy recombination operator
(GX). The second MA uses HUX as the recombination operator and the third MA uses the
mutation operator like the MA denoted MA-M in the comparison above. The results of
the experiments are summarized in Table 5.7. For each algorithm, the average number of

Table 5.7: Performance of k-opt Local Search MAs on three NK-landscapes

C2-1024 D4-1024 B11-1024

Op gen fitness, quality gen fitness, quality gen fitness, quality
GX 12505 0.75000189, 0.01% 5750 0.78757009, 0.39% 3 0.75677286, 1.58%
HUX 11954 0.75000956, 0.01% 5730 0.78687418, 0.48% 216 0.75356503, 1.99%
MUT 6402 0.74475693, 0.71% 4306 0.77277608, 2.26% 704 0.75574657, 1.71%
Best 0.75006522, 0.00% 0.79064095, 0.00% 0.768882, 0.00%

generations (gen) produced is provided as well as the average fitness (fitness) of the final
solution along with the percentage access over the best known solution (quality).

For K = 2, the MA with greedy recombination and HUX recombination perform equally
well. Both find the best known solution in one out of 20 runs and have the same worst
result. For K = 4 and K = 11, the greedy recombination MA outperforms the others.
The mutation based MA is as expected the worst out of the three for K = 2 and K = 4.
For K = 11, the mutation based MA achieves a better average result than the MA with
HUX, but its performance is still below the performance of the greedy recombination MA
after the third generation. However, mutation is still preferable over recombination for the
K = 11 landscape since the good result of the greedy recombination MA stems from the
initialization of the greedy heuristic rather than from the effectiveness of recombination. The
recombination base MAs with k-opt local search perform clearly better than the algorithms
with 1-opt local search. Furthermore, these algorithms have a higher potential and perform
better if longer running times are chosen.

80 5 NK-Landscapes

5.5 Summary

NK-landscapes have been introduced as a formal model of gene interaction in biological evo-
lution, and since they are random, several statistical properties of the landscapes are known.
In this chapter, the characteristics of NK-landscapes have been summarized including their
autocorrelation and random-walk correlation functions, their fitness distance correlation, and
their computational complexity. Furthermore, to derive highly effective memetic algorithms
for the NK-model, two new heuristics have been proposed, a greedy algorithm and a k-opt lo-
cal search. The distribution of the solutions produced by these heuristics has been analyzed
by performing a fitness distance correlation analysis on selected instances. The results allow
to predict when greedy choices based on the greedy heuristic are favorable in a memetic
framework and when not. Additionally, investigating the distribution of local optima in the
landscapes allows to determine whether or not recombination is effective.

To assess the performance of the memetic approach, MAs have been compared with
traditional evolutionary algorithms with focus on genetic algorithms that do not incorporate
heuristic components. The NK-model offers the best conditions for the application of GAs
for two reasons. First, NK-landscapes are binary-coded problems with no explicit or implicit
constraints: each binary vector of length N represents a feasible solution. In contrast to
other combinatorial optimization problems such as the traveling salesman problem or the
knapsack problem, the traditional crossover operators of genetic algorithms can be applied
without modification to the NK-model. Second, the NK-model provides instances with low
epistasis for which GAs are claimed to be best suited [68, 67].

Nevertheless, memetic algorithms using simple local search have been shown to scale
much better with the problem size; traditional EAs/GAs quickly become ineffective with
increasing problem size. Furthermore, it has been shown that the more sophisticated greedy
heuristic produces in a single run and thus in a few milliseconds solutions that are better than
those found by a GA in 20 minutes on landscapes with low epistasis (K = 4). The greedy
heuristic incorporated in the initialization phase as well as in the recombination operator of a
MA with k-opt local search is shown to be highly effective for landscapes with low epistasis.
The landscape analysis has shown that with increasing epistasis, the landscape becomes
rapidly unstructured. Thus, for these instances, a k-opt local search MA with mutation
instead of recombination has been shown to be favorable.

Chapter 6

The Binary Quadratic Programming
Problem

6.1 Introduction

The unconstrained binary quadratic programming problem (BQP) of the form f(x) =
xtQx, x ∈ {0, 1}n (Q is an×nmatrix) is an important combinatorial optimization problem.
Several other combinatorial problems can be reformulated as a binary quadratic programms,
as for example, the maximum clique problem. Moreover, it allows for the straight-forward
application of genetic algorithms, since a solution to the problem is a binary vector of fixed
length. Therefore, the BQP is of special interest not only from the viewpoint of problem
transformation but also in heuristic algorithm design.

In this chapter, new greedy and local search heuristics for the BQP are proposed. In
particular, a k-opt local search is devised based on ideas used in the Lin-Kernighan heuristic
for the traveling salesman problem and the Kernighan-Lin heuristic for graph partitioning.
Moreover, a fitness landscape analysis of commonly used benchmark instances is performed
to identify problem characteristics influencing the performance of memetic algorithms. Com-
pared to well-known landscape properties of NK-landscapes, landscape ruggedness does not
increase with increasing epistasis for the studied BQP instances. Furthermore, it is shown
that the local optima are found in a small fraction of the search space and that there is a
high correlation between the objective value of local optima and their hamming distance to
the optimum or best-known solution. In particular, the local optima found by the k-opt local
search are shown to be very similar.

The newly proposed greedy and local search heuristics are evaluated in experiments on
105 problem instances. It turns out that a randomized variant of the k-opt local search is
highly effective. Additionally, a comparison of genetic algorithms and memetic algorithms
is performed. The results indicate that a memetic algorithm incorporating a simple 1-opt
local search scales much better with the problem size than simple GAs. For large problem
instances, a memetic algorithm employing the greedy heuristic in the initialization phase and
the randomized k-opt local search for producing local optima is proposed, and its effectiveness
is shown on the largest instances available to the author. Due to the similarity of the local
optima of the studied instances, a mutation-based MA with a mutation rate derived from
the landscape analysis is proven to be superior to a recombination-based MA.

Some of the results presented in this chapter are published in [215, 218].

81

82 6 The Binary Quadratic Programming Problem

6.2 Heuristics for the BQP

Several exact methods have been developed to solve the BQP [244, 19, 32, 133], but due to
the computational complexity of the problem, heuristics have been proposed recently to find
solutions to large problem instances, including tabu search [26, 116, 115], scatter search [6],
simulated annealing [26, 166] and evolutionary algorithms [194, 215].

Since greedy heuristics and local search are well suited for the incorporation into an
evolutionary framework, new algorithms of both types of heuristics are presented in the
following paragraphs. It is assumed that the BQP is defined as maximizing

f(x) = xt Q x =
n∑
i=1

n∑
j=1

qij xi xj, (6.1)

with x ∈ {0, 1}n and qij ∈ IR.

6.2.1 Greedy Heuristics

Greedy algorithms are intuitive heuristics in which greedy choices are made to achieve a
certain goal. In combinatorial optimization, a solution to a given problem is searched which
maximizes or minimizes an objective function. Greedy heuristics are constructive heuristics
since they construct feasible solutions for optimization problems from scratch by making
the most favorable choice in each step of construction. By adding an element to the (par-
tial) solution which promises to deliver the highest gain, the heuristic acts as a “greedy
constructor”.

A Simple Greedy Algorithm

In the BQP, a solution is constructed by assigning a binary value to an element in the
solution vector x: a zero or a one. The general outline of the greedy algorithm is provided
in Figure 6.1. In each step, the heuristic searches for an element k in the solution vector and

procedure Greedy(x ∈ X): X;
begin
C := {1, . . . , n};
repeat

find k, l with glk = maxi∈C, j∈{0,1} g
j
i ;

xk := l;
C := C\{k};

until C = ∅;
return x;

end;

Figure 6.1: A Greedy Heuristic for the BQP

a value l to assign to it so that a gain function glk is maximized. Afterwards, the value l is
assigned to the vector component xk.

6.2 Heuristics for the BQP 83

To find an appropriate gain function, we modify the problem by adding a third state:
Let y ∈ Y = {0, 1

2
, 1}n be a vector in which each component yi can have three values 0, 1

2
,

and 1. Starting with a vector ŷ with ŷi = 1
2

for all i, the greedy heuristic can be viewed as
a transformation algorithm that transforms ŷ into a vector x for which xi ∈ {0, 1} for all i
and thus x ∈ X. The objective of the solution ŷ is

f(ŷ) =
n∑
i=1

n∑
j=1

qij ŷi ŷj =
1

4

n∑
i=1

n∑
j=1

qij. (6.2)

Let ỹ ∈ Y be a vector that is equal to y ∈ Y except for the component yk. Then

∆f(y) = f(ỹ)− f(y) = qkk (ỹ2
k − y2

k) + 2 (ỹk − yk)
n∑

j=1,j 6=k
qkj xj. (6.3)

Hence, the gain for changing yk from 0.5 to 0 (denoted g0
k) or 1 (denoted g1

k) can be
defined as

g1
k =

3

4
qkk +

n∑
j=1,j 6=k

qkj yj, and g0
k = −1

4
qkk −

n∑
j=1,j 6=k

qkj yj. (6.4)

Using this formula, the greedy heuristic as displayed in Figure 6.1 has a runtime com-
plexity of O(n3) since the calculation of all gi takes O(n2) and this has to be done n times
before the algorithm terminates. Thus, the greedy heuristic has an expected running time
equal to an algorithm that calculates the objective function f(x) for n solutions. However,
the greedy algorithm can be implemented more efficiently. If the matrix Q is not stored in
a two-dimensional array, but instead, for each i in {1, . . . , n} a list of j’s for which qij 6= 0
is maintained, the running time is reduced considerably for instances with a low density. To
reduce the running time to find a choice with a highest gain, the following formula can be
used to calculate the new gain gi after yk has been set to 0 or 1:

∆g1
i =

{
1
2
qik if yk = 1

−1
2
qik otherwise

and ∆g0
i =

{
−1

2
qik if yk = 1

1
2
qik otherwise

(6.5)

Thus, once the gains gi have been calculated, they can be efficiently updated after the
component yk has been set. Since the gains g only change for those i with qik 6= 0, the
running time to update the gains has a complexity of O(n). In Figure 6.2, the pseudo code
of the fast greedy heuristic is provided. The running time for the improved heuristic is in
O(n2) since the running time to find the maximum gain g0

k and g1
k is in O(n) and has to

be performed n times to construct a feasible solution. Thus, the greedy heuristic has the
same computational complexity as an algorithm calculating f(x) for a single solution. The
running time behavior of the greedy heuristic can be improved even further if additional
data structures are used to find the maximum gain in shorter than O(n) time. However,
this has no influence on the computational complexity of the algorithm since the time for
the initial calculation of the gains dominates over the times for the greedy choices.

A Randomized Greedy Algorithm

The greedy heuristic described above is deterministic, since it always produces the same
solution for a given problem instance. Often, it is desired that a construction heuristic

84 6 The Binary Quadratic Programming Problem

procedure Greedy(x ∈ X): X;
begin
C := {1, . . . , n};
for i := 1 to n do xi = 1

2
;

calculate gains gi for all i in {1, . . . , n};
repeat

find k0 with g0
k = maxi∈C g

0
i ;

find k1 with g1
k = maxi∈C g

1
i ;

if g0
k0
> g1

k1
then

xk0 := 0; C := C\{k0};
else
xk1 := 1 C := C\{k1};

endif
update gains gi for all i ∈ C;

until C = ∅;
return x;

end;

Figure 6.2: A Fast Greedy Heuristic for the BQP

produces many different solutions, for example in hybrid algorithms. The above procedure
can be randomized as follows:

By making the first choice randomly, i.e., selecting k and l randomly and setting xk = l
in the first step, a random component is incorporated. Furthermore, the deterministic choice
among xk0 and xk1 can be replaced by a random choice proportional to the gains g0

k0
and

g1
k1

: xk0 is set to 0 with probability
g0
k0

g0
k0

+g1
k1

and xk1 is set to 1 with probability
g1
k1

g0
k0

+g1
k1

. The

pseudo code of the randomized greedy heuristic is provided in Figure 6.3.

6.2.2 Local Search

Local search (LS) algorithms are improvement heuristics that search in the neighborhood of
the current solution for a better one until no further improvement can be made, i.e. there
is no better solution in the neighborhood of the current solution. Local search algorithms
can be categorized by the neighborhoods they consider. For example, the neighborhood of a
solution represented by a binary vector can be defined by the solutions that can be obtained
by flipping a single or multiple components in the binary vector simultaneously.

1-opt Local Search

The simplest form of local search for the BQP is the 1-opt local search: In each step, a new
solution with a higher fitness in the neighborhood of the current solution is searched. The
neighborhood of the current solution is defined by the set of solutions that can be reached by
flipping a single bit. Hence, the 1-opt neighborhood contains all solutions with a hamming
distance of 1 to the current solution. In our implementation, we search for the solution

6.2 Heuristics for the BQP 85

procedure RandomizedGreedy(x ∈ X): X;
begin
C := {1, . . . , n};
for i := 1 to n do xi = 1

2
;

calculate gains gi for all i in {1, . . . , n};
Select k, l randomly and set xk := l;
C := C\{k};
repeat

find k0 with g0
k = maxi∈C g

0
i ;

find k1 with g1
k = maxi∈C g

1
i ;

set p =
g0
k0

g0
k0

+g1
k1

;

if randomNumber[0,1]< p then
xk0 := 0; C := C\{k0};

else
xk1 := 1; C := C\{k1};

endif
update gains gi for all i ∈ C;

until C = ∅;
return x;

end;

Figure 6.3: A Randomized Greedy Heuristic for the BQP

with the highest fitness, i.e. we search for a flip with the highest associated gain in fitness
(g = fnew − fold). The gain gk of flipping bit k in the current solution can be calculated in
linear time using the formula

gk = qkk(xk − xk) + 2
n∑

i=1,i6=k
qik xi (xk − xk), (6.6)

with xk = 1− xk.
The local search algorithm is given in pseudo code in Figure 6.4. A straightforward

implementation of the 1-opt local search displayed in the figure has a running time of O(n2)
per iteration. Analogous to the greedy heuristic, the efficiency of the algorithm can be
increased considerably. The gains gi do not have to be recalculated each time. Instead, it
is sufficient to calculate the difference of the gains ∆gi. Assuming that all gi for a BQP
solution have been calculated and the bit k is flipped, the new gains g′i can be calculated
efficiently by the formula:

g′i =

{
−gi if i = k

gi + ∆gi(k) otherwise
with ∆gi(k) = 2 qik (xi − xi) (xk − xk) (6.7)

Thus, the update of the gains can be performed in linear time. Furthermore, only the
gains gi for qik 6= 0 have to be updated. The fast 1-opt local search is displayed in Figure 6.5.
The running time of this algorithm is O(n) per iteration. The initialization of the gains is

86 6 The Binary Quadratic Programming Problem

procedure Local-Search-1-opt(x ∈ X): X;
begin

repeat
find k with gk = maxi gi;
if gk > 0 then xk := 1− xk;

until gk ≤ 0;
return x;

end;

Figure 6.4: 1-opt Local Search

procedure Local-Search-1-opt(x ∈ X): X;
begin

calculate gains gi for all i in {1, . . . , n};
repeat

find k with gk = maxi gi;
if gk > 0 then
xk := 1− xk;
update gains gi;

endif
until gk ≤ 0;
return x;

end;

Figure 6.5: Fast 1–opt Local Search for the BQP

in O(n2).

k-opt Local Search

The k-opt neighborhood Nk−opt of a binary vector of length n is defined by the binary
vectors that can be reached by flipping one up to k bits in the vector simultaneously. Hence,
the neighborhood Nk−opt(x) = {x′ ∈ X|dH(x, x′) ≤ k} (dH denotes the hamming distance

between bit vectors) grows exponentially with k: |Nk−opt| = nk.
Since it is computationally too expensive to search the complete k-opt neighborhood,

Lin and Kernighan have proposed heuristics for the traveling salesman problem (TSP) and
the graph partitioning problem that efficiently search a small fraction of the k-opt neighbor-
hood. These algorithms, known as the Lin-Kernighan algorithm for the TSP [192], and the
Kernighan-Lin algorithm for graph partitioning [171], belong to the best available heuristics
for these two combinatorial optimization problems. In the following, a local search algorithm
for the BQP is presented that is based on the ideas of Lin and Kernighan.

The basic idea of the heuristic is to find a solution by flipping a variable number of k
bits in the solution vector per iteration. In each step, a sequence of n solutions is generated

6.2 Heuristics for the BQP 87

by flipping the bit with the highest associated gain. Analogous to the 1-opt local search
procedure, a vector of gains is maintained and updated according to equation (6.7) after each
flip. Furthermore, a candidate set is used to assure that each bit is flipped exactly once. The
best solution in the sequence is accepted as the new solution for the next iteration. Thus, in
each iteration of the algorithm a variable number of bits are flipped to find a new solution
in the neighborhood of the current solution. The pseudo code of the k-opt local search is
presented in Figure 6.6.

procedure Local-Search-k-opt(x ∈ X): X;
begin

calculate gains gi for all i in {1, . . . , n};
repeat
xprev := x, Gmax := 0, G := 0, C := {1, . . . , n};
repeat

find j with gj = maxi∈C gi;
G := G+ gj;
if G > Gmax then Gmax := G, xbest := x;
xj := 1− xj, C := C\{j};
update gains gi for all i;

until C = ∅;
if Gmax > 0 then x := xbest else x := xprev;

until Gmax ≤ 0;
return x;

end;

Figure 6.6: k-opt Local Search for the BQP

The runtime complexity for the initialization is in O(n2) and the running time per iter-
ation is also of complexity O(n2).

The reduce the running time, the termination condition of the inner repeat-loop can be
modified so that the loop is terminated if there were no new xbest for more than m iterations.
Thus, the resulting fast k-opt procedure has a shorter running time for m � n than the
k-opt procedure described before.

A Randomized k-opt Local Search

When a local search is used in meta-heuristics, it is often desired that the probability to fall
in a previously discovered local optimum is low. One way to achieve this is to randomize
the local search. Katayama [164, 167] has proposed the following randomization scheme
for the k-opt local search introduced above. In the inner loop, before the bits are flipped
in decreasing order of associated gain, the bits are considered in random order and they
are flipped if the associated gain is positive. The outline of the algorithm is provided in
Figure 6.7; the added lines are marked with an asterix. The randomization is essentially a
randomized fast 1-opt local search with a fixed number of iterations (≤ n). It will be shown
later that this combination is very effective for the BQP.

88 6 The Binary Quadratic Programming Problem

procedure Randomized-Local-Search-k-opt(x ∈ X): X;
begin

calculate gains gi for all i in {1, . . . , n};
repeat
xprev := x, Gmax := 0, G := 0, C := {1, . . . , n};
repeat

∗ Generate a random permutation RP[] of the set {1, . . . , n};
∗ for j := 1 to n do
∗ k = RP[j];
∗ if gk > 0 then
∗ G = G+ gk, Gmax = G;
∗ xj := 1− xj, xbest := x;
∗ update gains gi for all i;
∗ C := C\{j};
∗ endif
∗ endfor

find j with gj = maxi∈C gi;
G := G+ gj;
if G > Gmax then Gmax := G, xbest := x;
xj := 1− xj, C := C\{j};
update gains gi for all i;

until C = ∅;
if Gmax > 0 then x := xbest else x := xprev;

until Gmax ≤ 0;
return x;

end;

Figure 6.7: Randomized k-opt Local Search for the BQP

6.3 The Fitness Landscape of the BQP

Since the local search procedures introduced above rely on the k-opt neighborhood as defined
as

Nk-opt(x) = {x′ ∈ X|dH(x′, x) ≤ k} (6.8)

where dH denotes the hamming distance between bit strings and X the set of all bit strings
of length n (X = {0, 1}n), the landscape considered in the search space analysis of the BQP
is L = (X, f, dH). The graph of this landscape is a hypercube of dimension n in which the
nodes represent the (candidate) solutions of the problem. An edge in the graph connects
neighboring points in the landscape, i.e. points that have hamming distance 1.

6.3.1 Epistasis in the BQP

There is a close relation between binary quadratic programming and NK-landscapes as
defined by Kauffman [169]. The objective function of the BQP can be decomposed into n

6.3 The Fitness Landscape of the BQP 89

functions. The fitness of a BQP solution can thus be rewritten as a sum of functions for
each site, called the fitness contributions fi of site i in the genome:

f(x) =
n∑
i=1

fi(xi, xi1 , . . . , xik(i)
), (6.9)

fi(x) =
n∑
j=1

qij xi xj (6.10)

Similar to the NK-landscapes defined in [169], the fitness contribution fi of a site i depends
on the gene value xi and of k(i) other genes xi1 , . . . , xik(i)

. While for NK-landscapes k(i) = K
is constant for all i, in the BQP k(i) is defined as the number of non-zero entries in the i-th
column of matrix Q. Hence, the degree of epistasis in a BQP instance can be easily determined
by calculating the density of the matrix Q. It is defined as the number of non-zero entries
divided by the number of total entries in the matrix. Thus, the density is between 0 and 1,
where 0 means no epistasis and 1 maximum epistasis (every gene depends on the values of
all other genes).

The density of an instance and hence epistasis in the problem is expected to have an
influence on the fitness landscape and thus on the hardness of A BQP instance for heuristics
as, observed in other problems like NK-landscapes.

6.3.2 Autocorrelation Analysis

Since there are no theoretical results on the autocorrelation function or the random walk cor-
relation function for the BQP, experiments have been conducted to estimate the correlation
length of selected landscapes. In Table 6.1, the instances selected for the analysis are listed
along with their size n and their matrix density dens(Q). The instances denoted glov500
and beas2500 have been introduced in [116] and [26], respectively; both sets are contained in
ORLIB [25]. The instances with prefix kb-g have been provided by G. Kochenberger and are
used in the performance evaluation of tabu search and scatter search [115, 6]. The results
of the random walk correlation analysis are displayed in the last two columns of Table 6.1:
The normalized correlation length (n/`) and the correlation length itself (`) are provided.

Considering all selected instances, the quotient of n/` varies in tight bounds: the lowest
value for n/` is 2.36 and the highest is 2.71. Compared to NK-landscapes, this is fairly low
since in the NK-model n/` ≈ K + 1. For the instances denoted glov500, the values are very
similar (2.67 ± 0.04) and thus remain constant independent of the density of the problem.
For the set kb-g, the values for n/` do change with the density of Q, but the values become
smaller with increasing density. This is surprising, since in the NK-model, the correlation
length decreases with increasing epistasis, and the density can be regarded as a measure of
epistasis in the BQP. For the set of instances of size 2500 and a density of 0.1, the values for
n/` are constant (about 2.66).

Summarizing, all the instances of the BQP considered here have got a smooth landscape
similar to NK-landscapes with K ≤ 3.

6.3.3 Fitness Distance Correlation Analysis

In a second analysis, the correlation of fitness (objective f(x)) and distance to the optimum
was investigated for local optima with respect to 1-opt and k-opt local search. The results

90 6 The Binary Quadratic Programming Problem

Table 6.1: Results of the Fitness Distance Analysis for 1-opt Solutions of the BQP

Instance n dens(Q) min dopt dopt dloc N1-opt % n/` `

glov500-1 500 0.1 11 68.58 (0.14) 80.14 2500 -0.79 2.64 189.30
glov500-2 500 0.2 0 68.29 (0.14) 80.03 2498 -0.74 2.64 189.63
glov500-3 500 0.5 16 74.52 (0.15) 86.18 2498 -0.75 2.69 185.94
glov500-4 500 0.7 0 81.36 (0.16) 78.76 2499 -0.31 2.67 187.39
glov500-5 500 1.0 17 76.13 (0.15) 89.01 2498 -0.77 2.71 184.59
kb-g01 1000 0.1 42 160.17 (0.16) 177.31 2500 -0.69 2.61 382.71
kb-g02 1000 0.2 73 177.11 (0.18) 209.76 2500 -0.72 2.55 391.96
kb-g03 1000 0.3 54 213.61 (0.21) 229.71 2500 -0.72 2.55 391.83
kb-g04 1000 0.4 94 212.98 (0.21) 219.69 2500 -0.58 2.48 403.42
kb-g05 1000 0.5 40 149.53 (0.15) 171.29 2500 -0.77 2.45 408.25
kb-g06 1000 0.6 55 225.48 (0.23) 251.53 2500 -0.66 2.45 408.03
kb-g07 1000 0.7 68 223.41 (0.22) 243.12 2500 -0.56 2.43 411.25
kb-g08 1000 0.8 66 197.43 (0.20) 224.89 2500 -0.72 2.38 419.75
kb-g09 1000 0.9 112 220.21 (0.22) 250.97 2500 -0.65 2.38 420.13
kb-g10 1000 1.0 92 229.95 (0.23) 240.97 2500 -0.63 2.36 424.12
beas2500-1 2500 0.1 152 289.12 (0.12) 318.58 2500 -0.74 2.62 953.69
beas2500-2 2500 0.1 131 321.64 (0.13) 335.91 2500 -0.66 2.68 934.12
beas2500-3 2500 0.1 165 298.75 (0.12) 326.03 2500 -0.74 2.67 936.90
beas2500-4 2500 0.1 87 231.85 (0.09) 283.00 2500 -0.82 2.66 941.42
beas2500-5 2500 0.1 102 252.16 (0.10) 291.19 2500 -0.81 2.66 940.87
beas2500-6 2500 0.1 126 264.68 (0.11) 290.24 2500 -0.74 2.66 938.71
beas2500-7 2500 0.1 168 325.28 (0.13) 333.77 2500 -0.53 2.66 940.76
beas2500-8 2500 0.1 84 232.02 (0.09) 270.62 2500 -0.74 2.66 940.30
beas2500-9 2500 0.1 134 259.01 (0.10) 309.77 2500 -0.81 2.65 942.93
beas2500-10 2500 0.1 171 319.61 (0.13) 348.61 2500 -0.75 2.66 940.37

of this analysis for 1-opt local optima are displayed in Table 6.1. In columns four through
eight, the minimum distance to the optimum (min dopt), the average distance to the optimum
(dopt) with the average distance divided by n in parentheses, the average distance between
the local optima themselves (dloc), the number of distinct optima out of 2500 (N1-opt), and
the fitness distance correlation (FDC) coefficient (%) are provided. Since the global optima
are not known for the problems in the analysis, the best-known solutions are used instead
which are likely to be the global optima of the instances.

In most cases, the average distance between the local optima and the average distance
to the global optimum (best-known solution) are very similar. Moreover, the local optima a
located in a small region of the search space: the average distance between the local optima
is between a fourth and sixth of the maximum distance (the diameter) between two solutions
in the search space. For set glov500, the average distance to the optimum is a sixth of the
diameter independent of the density of Q. For set beas2500 the local optima are even closer
to the optimum in relation to the maximum distance of two solutions in the landscape:
the average distance to other local optima is more than a seventh of the diameter of the
landscape. The FDC coefficient varies from -0.56 to -0.81 excluding glov500-4. The FDC
coefficient for this instance is -0.31.

In Figure 6.8, some scatter plots are provided in which the distance to the global optimum
is plotted against the fitness difference ∆f = f(xopt)− f(xloc) for each local optimum found.
As can be seen in the figure, the plot for glov500-4 looks different from all other plots. There

6.3 The Fitness Landscape of the BQP 91

0

2000

4000

6000

8000

10000

12000

0 50 100 150 200 250 300 350 400 450 500

F
itn

es
s

di
ffe

re
nc

e

�

∆f

Distance to optimum dopt

glov500-4.b

0
5000

10000
15000
20000
25000
30000
35000
40000
45000

0 500 1000 1500 2000 2500

F
itn

es
s

di
ffe

re
nc

e

�

∆f

Distance to optimum dopt

beas2500-1.b

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000

0 200 400 600 800 1000

F
itn

es
s

di
ffe

re
nc

e

�

∆f

Distance to optimum dopt

kb-g01.b

0
5000

10000
15000
20000
25000
30000
35000
40000

0 200 400 600 800 1000

F
itn

es
s

di
ffe

re
nc

e
�

∆f

Distance to optimum dopt

kb-g10.b

Figure 6.8: Fitness-Distance Plots produced with 1-opt local Search

are solutions with similar fitness to the optimum although they are located at a distance of
about 90 units from the optimum. The plots of the other instances in the set glov500 are
not displayed since they look like the plot of kb-g01. The instance beas2500-1 is displayed as
a representative of set beas2500; the other plots are similar. All plots of set kb-g are similar
to the two displayed plots of instance kb-g01 and kb-g10 with only minor differences.

The FDC analysis of k-opt local optima produced similar results to the ones described
above. In Table 6.2, the results are summarized. Once again, for each instance, the problem
size n, the density of Q, the minimum distance to the optimum (min dopt), the average
distance to the optimum (dopt) with the average distance divided by n in parentheses, the
average distance between the local optima themselves (dloc), the number of distinct optima
out of 2500 (Nk-opt), and the fitness distance correlation coefficient (%) are provided.

The major difference of the properties of 1-opt and k-opt local optima is that the latter
are more similar, they are closer to each other in terms of average hamming distance. As
a consequence, they are closer to the global optimum (best-known solution). The local
optima have more than four fifth of the bit values in common. Averaged over all problems
of set beas2500, the average distance to the optimum is about a 12th of the diameter of the
landscape. In the set kb-g, the average distance to the optimum lies between a 5th and a 10th
of the maximum distance between two points in the search space. Furthermore, it appears
that the number of local optima is lower for k-opt local search: the number of distinct local
optima found is lower than the number of local searches performed for all instances. In
many cases, the optimum solution or a solution quite close to the best-known solution could

92 6 The Binary Quadratic Programming Problem

Table 6.2: Results of the Fitness Distance Analysis for k-opt Solutions of the BQP

Instance n dens(Q) min dopt dopt dloc Nk-opt %

glov500-1 500 0.1 0 39.68 (0.08) 45.67 1209 -0.77
glov500-2 500 0.2 0 42.46 (0.08) 47.85 1140 -0.79
glov500-3 500 0.5 0 52.36 (0.10) 62.96 1484 -0.74
glov500-4 500 0.7 0 74.91 (0.15) 67.16 1431 0.04
glov500-5 500 1.0 0 50.37 (0.10) 63.63 1421 -0.82
kb-g01 1000 0.1 0 121.11 (0.12) 129.70 2468 -0.59
kb-g02 1000 0.2 0 131.70 (0.13) 154.97 2488 -0.65
kb-g03 1000 0.3 0 150.77 (0.15) 166.36 2415 -0.83
kb-g04 1000 0.4 14 181.94 (0.18) 174.20 2486 -0.47
kb-g05 1000 0.5 0 104.46 (0.10) 111.00 2295 -0.68
kb-g06 1000 0.6 43 182.65 (0.18) 204.64 2499 -0.68
kb-g07 1000 0.7 10 188.65 (0.19) 198.90 2500 -0.52
kb-g08 1000 0.8 0 149.34 (0.15) 156.01 2464 -0.64
kb-g09 1000 0.9 22 184.09 (0.18) 205.82 2500 -0.44
kb-g10 1000 1.0 11 194.29 (0.19) 193.83 2495 -0.54
beas2500-1 2500 0.1 18 220.32 (0.09) 240.11 2500 -0.75
beas2500-2 2500 0.1 95 264.84 (0.11) 255.78 2500 -0.50
beas2500-3 2500 0.1 46 234.34 (0.09) 237.70 2500 -0.52
beas2500-4 2500 0.1 7 158.45 (0.06) 194.17 2499 -0.79
beas2500-5 2500 0.1 16 171.53 (0.07) 202.37 2499 -0.80
beas2500-6 2500 0.1 48 211.23 (0.08) 218.08 2499 -0.56
beas2500-7 2500 0.1 70 280.44 (0.11) 270.35 2500 -0.49
beas2500-8 2500 0.1 0 173.11 (0.07) 189.07 2500 -0.62
beas2500-9 2500 0.1 19 180.21 (0.07) 210.99 2500 -0.71
beas2500-10 2500 0.1 83 246.63 (0.10) 256.75 2500 -0.70

be found in the analysis. However, the fitness distance correlation coefficients are in some
cases lower than for 1-opt local optima. Selected scatter plots are provided in Figure 6.9.
Differences of the plots within each set are minor with one exception: As before, glov500-4
shows different properties compared to the four other instances in the set.

In an additional experiment, it has been observed that the randomization of k-opt local
search above has no significant influence on the results of the analysis.

6.4 A Memetic Algorithm for the BQP

The BQP referred to in this chapter is a binary-coded problem with no additional constraints.
Thus, the application of genetic algorithms is a straight-forward task: operators like bit-flip
mutation, single-point crossover, two-point crossover, or uniform crossover can be applied
without modification. For memetic algorithms, only slight modifications to the operators
are required. These modifications are described in the following along with the other details
required for the application of evolutionary algorithms to the BQP. The GA and the MA
described here are compared experimentally on several BQP instances, afterwards.

6.4.1 A Simple Genetic Algorithm for the BQP

The genetic algorithm for the BQP consists of the following components:

6.4 A Memetic Algorithm for the BQP 93

0
500

1000
1500
2000
2500
3000
3500
4000

0 50 100 150 200 250 300 350 400 450 500

F
itn

es
s

di
ffe

re
nc

e

�

∆f

Distance to optimum dopt

glov500-4.b

0
2000
4000
6000
8000

10000
12000
14000
16000

0 500 1000 1500 2000 2500

F
itn

es
s

di
ffe

re
nc

e

�

∆f

Distance to optimum dopt

beas2500-1.b

0

500

1000

1500

2000

2500

3000

3500

0 200 400 600 800 1000

F
itn

es
s

di
ffe

re
nc

e

�

∆f

Distance to optimum dopt

kb-g01.b

0
2000
4000
6000
8000

10000
12000
14000
16000
18000

0 200 400 600 800 1000

F
itn

es
s

di
ffe

re
nc

e
�

∆f

Distance to optimum dopt

kb-g10.b

Figure 6.9: Fitness-Distance Plots produced with k-opt local Search

Evaluation of the fitness function: The objective function of the BQP (equation (2.22))
can be used as the fitness function for a genetic algorithm.

Representation: As mentioned before, a solution x to the problem can be represented as
a binary string x of length n. All bit combinations are feasible and thus no penalty
function is needed.

Crossover: Due to the binary representation, classical genetic operators such as single–
point, two–point and uniform crossover can be applied without modification to the
BQP.

Mutation: In the GA, a simple bit–flip mutation operator is employed that flips a single
bit of the bit string constituting a solution to the BQP.

Selection: There are many different selection techniques for genetic algorithms which can
be divided into selection–for–reproduction and selection–for–survival strategies. For
example, a random selection scheme for selection–for–reproduction can be used in a
GA for the BQP as done in subsequent experiments. Selection–for–survival can be
performed by selecting the best out of the pool of parents and newly created offspring,
as done in the (µ+λ) evolution strategy [269]. Additionally, it is reasonable to ensure
that every solution is contained only once in the population (duplicate checking).

94 6 The Binary Quadratic Programming Problem

Diversification/restarts: To overcome the problem of premature convergence, the diver-
sification strategy borrowed from the CHC algorithm proposed by Eshelman [88] can
be incorporated into the GA: If the algorithm is said to have converged (the average
hamming–distance of the population has dropped below a threshold d=10 or there was
no change in the population for more than 30 generations), the whole population is
mutated except the best individual, and the search is restarted. This kind of selec-
tion/diversification strategy has been shown to be very effective for small populations.
Essentially, the same diversification mechanism is employed in the MA described below.

The GA for the BQP proposed in this chapter includes the above components and is
therefore similar to the CHC algorithm [88] as well as to the MA proposed for the BQP (a
local search is not incorporated, of course).

6.4.2 The Memetic Algorithm

A well recognized approach to use domain knowledge in genetic algorithms is the incorpo-
ration of local search as found in MAs. Due to the circumstance that all solutions an a
population of an MA represent local optima mutation and recombination operators should
be modified.

Mutation Operators

The mutation operator is required to flip more than a single bit simultaneously in the solution
in order to show effect. The number of bits to change depends on the local search performed
subsequently and the properties of the fitness landscape. The hamming distance between
parent and mutated offspring should be high enough to minimize the probability that the
local search falls back into the same local optimum. On the other hand, it is desired that this
jump distance is not too high to prevent the MA from acting like a multi–start local search.
In case of a 1-opt local search, a distance of 3 may be sufficient but for a k-opt local search,
the jump distance should be considerably higher. At this point, the results of the landscape
analysis can help: A distance near the average distance between local optima appears to be
a reasonable choice.

Recombination Operators

Recombination should be designed to maximize the distance of offspring and parents. This
can be achieved by biasing uniform crossover such as to produce offspring with expected
distance of d/2 to both parents provided that the hamming distance between the parents
is d. Thus, the distance of offspring and parents is maximized by simultaneously obeying
respectfulness. This variant of uniform crossover is called HUX [86].

The MAs considered in the experiments include either the mutation operator with a
predefined jump distance or the HUX recombination operator. The local search applied
to the resulting offspring after recombination is restricted to a region of the search space
defined by the two parents: the genes with equal values in the two parents are not modified
during local search. Selection and replacement are performed as described above. The simple
MAs compared with GAs employ the 1-opt local search while a sophisticated MA has been
evaluated using the randomized k-opt local search. Moreover, the greedy heuristic described
above is incorporated in the latter MA to produce the starting solutions for the local search
in the initialization step of the algorithm.

6.5 Performance Evaluation 95

6.5 Performance Evaluation

Three series of experiments have been performed with the algorithms described above. In
a first series, experiments have been conducted to evaluate the performance of the greedy
and local search heuristics. A comparison of GAs and MAs with 1-opt local search has been
carried out in a second series of experiments. In the last series, the MA with k-opt local
search has been evaluated on large BQP instances.

6.5.1 Performance of the Greedy and Local Search Heuristics

To evaluate the performance of the greedy and local search heuristics, several experiments
were conducted on all 105 problem instances contained in ORLIB [25]. The sets glov-a,
glov-b, glov-c and glov-d contain the instances of type a through d described in [116]. The
set glov200 (glov500) consists of five problem instances of size n = 200 (n = 500) and is
denoted as type e (f) in [116]. The six sets described in [26] with a density dens(Q) of
0.1 and n ∈ {50, 100, 250, 500, 1000, 2500} consist of 10 instances each. They are denoted
beas〈n〉. In the experiments, the instances of type g used in [116, 6] with n = 1000 and
dens(Q) between 0.1 and 1 were also considered. They are denoted as kb-g.

To find a good parameter value for m in the k-opt procedure, experiments were performed
for beas1000 and beas2500. It appeared that m = 100 is a good trade-off between running
time and solution quality. For larger values, the running time increased considerably with
only small changes in solution quality. Therefore m = 100 was chosen in all subsequent k-opt
local search experiments.

In the experiments, the performance of the randomized greedy algorithm, the 1-opt local
search applied to randomly generated solutions, the fast k-opt local search applied to ran-
domly generated solutions, and the combination of the randomized greedy heuristic and fast
k-opt local search was investigated. To enable a fair comparison, all algorithms implemented
in C++ were run under the same conditions on a Pentium II PC (300 MHz) under the
operating system Solaris 2.6.

0
20

40
60

80
100

120
140

160
180

0 0.2 0.4 0.6 0.8 1

tim
e

in
 m

s

�

density of Q

greedy
1-opt
k-opt

greedy+k-opt

0

100

200

300

400

500

600

700

0 500 1000 1500 2000 2500

tim
e

in
 m

s

�

Problem size n

greedy
1-opt
k-opt

greedy+k-opt

Figure 6.10: Average running times of greedy and local search heuristics for the BQP

In a first experiment, the average running times of the four algorithms and the average
solution quality was studied. In Figure 6.10, the average running times (in milliseconds) of
10000 runs of the algorithms are provided. In the left plot, the running times are provided for

96 6 The Binary Quadratic Programming Problem

the five instances of the set glov500 with n = 500 and a density dens(Q) contained between
0.1 and 1. As expected, the running time of the algorithms grows linearly with the density
of the matrix Q. The running times of the combination of the randomized greedy heuristic
and k-opt local search are slightly lower than the running times of the k-opt local search
applied to randomly generated solutions, since the number of iterations of the local search is
reduced when it is applied to solutions produced by the greedy heuristic. In the right plot,
the running times are provided for the six sets beas50 to beas2500. For all algorithms, the
running times grow quadratically with n. The k-opt algorithms appear to be 2.5 times slower
than the 1-opt algorithm, and for large n, the greedy heuristic is slower than 1-opt. Thus,
the number of iterations of the 1-opt procedure grows at most linearly with the problem size
for the instances studied.

Table 6.3: Average solution quality of greedy and local search heuristics for the BQP

instances greedy 1-opt k-opt greedy-k-opt
avg sdev avg sdev avg sdev avg sdev

glov-a 3.83 % 1.33 2.02 % 0.83 0.38 % 0.30 0.20 % 0.27
glov-b 42.98 % 8.25 29.44 % 5.31 14.69 % 4.54 19.76 % 6.03
glov-c 3.52 % 0.60 1.21 % 0.78 0.24 % 0.24 0.19 % 0.14
glov-d 2.81 % 0.42 2.71 % 0.73 0.71 % 0.35 0.42 % 0.27
glov200 2.41 % 0.77 1.99 % 0.96 0.50 % 0.31 0.31 % 0.15
glov500 1.84 % 0.12 1.95 % 0.36 0.56 % 0.09 0.31 % 0.10
beas50 4.31 % 1.92 5.20 % 3.57 0.89 % 0.82 0.55 % 0.50
beas100 2.37 % 0.94 3.02 % 1.54 0.65 % 0.46 0.49 % 0.56
beas250 2.09 % 0.53 2.44 % 1.12 0.65 % 0.45 0.41 % 0.24
beas500 1.73 % 0.35 2.12 % 0.48 0.62 % 0.23 0.48 % 0.18
beas1000 1.67 % 0.15 1.71 % 0.24 0.54 % 0.12 0.39 % 0.08
beas2500 1.38 % 0.13 1.15 % 0.13 0.40 % 0.07 0.29 % 0.07

The average solution quality of the approaches is displayed in Table 6.3. The solution
quality is measured by the average percentage excess (avg) (100 · (1.0− f(x)/fbest)) over the
best-known solution for a set of up to 10 instances, and the standard deviation (sdev) is also
provided for each algorithm. The greedy heuristic shows a better average performance on
six of the sets than the 1-opt local search, while the latter performs better on the remaining
six. The k-opt heuristic performs considerably better than the greedy and 1-opt heuristic:
with one exception, the average percentage excess is below 1%. However, the combination
of greedy and k-opt local search performs best on all but one instance with respect to the
average quality of the solutions.

In a second experiment, the heuristics were repeatedly applied (multi–start) to show their
ability to reach the optimum or best-known solution. Each of the heuristics was started
multiple times and the best solution found was returned. For each instance, 30 runs were
performed for each algorithm, and the times to reach the best-known solutions were recorded.
In Table 6.4, the times for the algorithms that were capable of finding the optimum in all
30 out of 30 runs for all instances in a set are displayed. The average number of repetitions
needed (rep), the average time in seconds (avg t) to reach the best-known solution, as well
as the maximum time in seconds (max t) to reach the best-known solution is provided. For
problems up to a size of n = 200, the 1-opt local search is capable of finding the optimum in

6.5 Performance Evaluation 97

Table 6.4: Time to reach the optimum

instances 1-opt k-opt greedy-k-opt
rep avg t max t rep avg t max t rep avg t max t

glov-a 8.88 0.01 0.04 2.12 0.01 0.03 9.75 0.01 0.14
glov-b 16.89 0.03 0.20 3.11 0.02 0.08 5.67 0.02 0.13
glov-c 9.29 0.01 0.05 1.57 0.01 0.02 2.29 0.01 0.03
glov-d 52.11 0.05 0.33 4.11 0.02 0.08 4.67 0.02 0.11
glov200 217.20 0.40 1.80 12.80 0.08 0.21 10.60 0.07 0.22
beas50 10.70 0.01 0.03 1.70 0.01 0.02 3.00 0.01 0.03
beas100 173.40 0.06 0.81 5.40 0.01 0.05 11.90 0.02 0.15
beas250 – – – 20.00 0.09 0.77 10.30 0.05 0.52

less than 2 seconds. For the set glov200 the average number of local searches is about 217.
The k-opt heuristic needs only about 13 local searches on the average to find the best-known
solutions for the instances of this set. Both k-opt algorithms perform better on the instances
up to n = 200; they need less than 0.23 seconds to find the best-known solutions and are
able to find the best-known solutions of all the instances of the set beas250. On this set, the
greedy k-opt combination performs slightly better than the k-opt on random solutions: less
than 0.53 seconds are needed.

The results show that for small instances (up to n = 250), a simple local search is
sufficient to find best-known solutions quickly. The more challenging problems have a size of
n = 500 and higher. The third experiment concentrated on these instances. To enable a fair
comparison, the four algorithms were repeatedly applied until a predefined time limit was
reached. Once again, 30 runs were performed for each instance. The results are summarized
in Tables 6.5. For each instance and algorithm, the average number of repetitions (rep),
and the average percentage excess (avg) is given. The time limit in seconds (time) used is
provided in the last column of the table.

The greedy heuristic shows to be inferior to the 1-opt local search: The average percentage
excess for the set beas1000 and beas2500 is between 0.727% and 1.170% in case of the
greedy heuristic; for the 1-opt local search the results are between 0.216% and 0.543%. The
algorithms based on k-opt are considerably better. The worst performance lies 0.128% below
the optimum for the beas instances. The kb-g instances appear to be harder; within a time
limit of 30 seconds, the average solution quality lies between 0.012 % and 0.489 %. A
preference to one of the k-opt based algorithms can not be given, since their performance
does not differ significantly. Both are able to find the best-known solution for the problems
glov500-1 and glov500-2 in all 30 runs, but not for the other problems with n = 500 and a
density dens(Q) greater 0.25. This indicates that problems with high densities are slightly
harder for the k-opt local search. However, as the results on the kb-g instances show, the
average solution quality is not a simple function of the density: the average percentage access
for the problem with density 0.8 (kb-g08) is better than for the problems with density 0.4
and 0.7 (kb-g04 and kb-g07).

The same experiments as for the k-opt local search have been performed for the random-
ized k-opt local search. The results are presented in Table 6.6. Considering the instances
with n ≥ 1000, the randomized k-opt produces solutions with slightly higher objective value
than the deterministic k-opt local search in the majority of cases (18 out of 30).

98 6 The Binary Quadratic Programming Problem

Table 6.5: Comparison of greedy, 1-opt, k-opt, and greedy-k-opt on large BQP instances

instances greedy 1-opt k-opt greedy-k-opt time
rep avg rep avg rep avg rep avg (sec)

glov500-1 1163 0.472 % 1476 0.100 % 7 0.000 % 7 0.000 % 10
glov500-2 674 0.489 % 798 0.059 % 48 0.000 % 27 0.000 % 10
glov500-3 321 0.796 % 329 0.168 % 85 0.005 % 66 0.001 % 10
glov500-4 211 0.824 % 208 0.170 % 60 0.009 % 41 0.011 % 10
glov500-5 159 0.862 % 153 0.248 % 55 0.003 % 64 0.002 % 10
kb-g01 785 1.039 % 1108 0.581 % 282 0.013 % 276 0.012 % 30
kb-g02 478 1.488 % 574 0.865 % 196 0.046 % 184 0.012 % 30
kb-g03 349 2.739 % 389 1.383 % 88 0.017 % 137 0.085 % 30
kb-g04 275 2.262 % 296 1.148 % 112 0.244 % 131 0.245 % 30
kb-g05 227 1.491 % 235 0.740 % 84 0.022 % 103 0.031 % 30
kb-g06 193 2.810 % 200 1.570 % 72 0.283 % 87 0.188 % 30
kb-g07 168 3.190 % 172 2.012 % 62 0.414 % 76 0.489 % 30
kb-g08 148 2.131 % 150 1.147 % 52 0.183 % 67 0.146 % 30
kb-g09 133 3.083 % 134 1.760 % 48 0.479 % 60 0.320 % 30
kb-g10 120 2.959 % 121 1.788 % 43 0.438 % 54 0.377 % 30
beas1000-1 710 0.766 % 1004 0.221 % 96 0.000 % 246 0.006 % 30
beas1000-2 717 1.086 % 1025 0.351 % 280 0.000 % 340 0.048 % 30
beas1000-3 708 0.890 % 1010 0.239 % 165 0.006 % 289 0.013 % 30
beas1000-4 709 0.813 % 1002 0.216 % 333 0.015 % 337 0.025 % 30
beas1000-5 715 0.984 % 1019 0.348 % 255 0.014 % 360 0.014 % 30
beas1000-6 704 0.727 % 985 0.316 % 236 0.024 % 321 0.037 % 30
beas1000-7 711 0.815 % 1016 0.300 % 367 0.026 % 327 0.033 % 30
beas1000-8 698 1.044 % 991 0.397 % 345 0.051 % 350 0.049 % 30
beas1000-9 712 1.029 % 1011 0.422 % 317 0.014 % 152 0.001 % 30
beas1000-10 719 0.838 % 1020 0.300 % 348 0.008 % 354 0.053 % 30
beas2500-1 164 1.170 % 275 0.541 % 97 0.073 % 100 0.089 % 60
beas2500-2 164 0.864 % 276 0.456 % 97 0.083 % 102 0.106 % 60
beas2500-3 164 1.114 % 274 0.543 % 97 0.053 % 100 0.059 % 60
beas2500-4 164 0.829 % 275 0.390 % 100 0.022 % 93 0.010 % 60
beas2500-5 164 1.051 % 273 0.401 % 98 0.028 % 101 0.036 % 60
beas2500-6 165 0.956 % 275 0.383 % 101 0.091 % 101 0.071 % 60
beas2500-7 164 1.088 % 275 0.527 % 98 0.128 % 99 0.108 % 60
beas2500-8 164 0.749 % 275 0.289 % 102 0.073 % 98 0.024 % 60
beas2500-9 165 0.985 % 273 0.359 % 98 0.063 % 101 0.057 % 60
beas2500-10 165 0.941 % 276 0.450 % 95 0.110 % 101 0.080 % 60

In comparison to the tabu search and simulated annealing for the BQP proposed in [26],
the best found solutions obtained with the greedy heuristic and k-opt local search for the 10
problems of size 2500 are in 7 out of 10 cases better than the best found solutions reported
in [26]. For tabu search and simulated annealing, the running times on a Silicon Graphics
Indigo workstation (R4000, 100MHz) are between 12721 and 51873 seconds compared to the
60 seconds for the local search on a Pentium II 300 MHz PC. Thus, the results produced by
the k-opt local search appear to be superior or at least competitive to the other approaches in

6.5 Performance Evaluation 99

Table 6.6: Randomized k-opt local search on large BQP instances

instance rep avg obj sdev Nbest t (sec)
glov500-1 32 61194.0 (0.000 %) 0.0 30/30 0
glov500-2 44 100161.0 (0.000 %) 0.0 30/30 1
glov500-3 75 138027.2 (0.006 %) 15.5 21/30 5
glov500-4 45 172750.5 (0.012 %) 48.8 22/30 5
glov500-5 54 190502.1 (0.003 %) 2.1 3/30 9
kb-g01 286 131429.0 (0.021 %) 27.8 10/30 23
kb-g02 189 172711.5 (0.044 %) 63.7 2/30 29
kb-g03 80 192533.7 (0.016 %) 66.9 20/30 18
kb-g04 102 215020.7 (0.305 %) 225.7 0/30 30
kb-g05 74 242288.0 (0.033 %) 164.6 9/30 25
kb-g06 65 242522.2 (0.317 %) 310.2 0/30 30
kb-g07 56 252437.8 (0.454 %) 558.3 0/30 30
kb-g08 47 263833.4 (0.164 %) 314.3 4/30 29
kb-g09 43 261595.0 (0.405 %) 543.7 1/30 30
kb-g10 39 273192.9 (0.431 %) 367.4 0/30 30
beas1000-1 182 371434.0 (0.001 %) 9.1 25/30 13
beas1000-2 265 354926.7 (0.002 %) 19.4 19/30 20
beas1000-3 212 371213.7 (0.006 %) 41.1 23/30 16
beas1000-4 295 370628.3 (0.013 %) 50.4 12/30 23
beas1000-5 358 352726.1 (0.010 %) 39.6 2/30 28
beas1000-6 274 359554.4 (0.021 %) 83.1 15/30 21
beas1000-7 344 371096.7 (0.026 %) 69.3 7/30 25
beas1000-8 372 351873.4 (0.034 %) 71.1 1/30 30
beas1000-9 238 349321.0 (0.005 %) 37.3 20/30 18
beas1000-10 297 351397.9 (0.005 %) 44.8 11/30 22
beas2500-1 103 1514987.6 (0.063 %) 456.3 0/30 60
beas2500-2 102 1469920.8 (0.100 %) 384.3 0/30 60
beas2500-3 101 1412953.1 (0.088 %) 440.6 0/30 60
beas2500-4 105 1507080.2 (0.041 %) 408.4 0/30 60
beas2500-5 103 1491470.0 (0.023 %) 190.3 0/30 60
beas2500-6 106 1468076.7 (0.074 %) 401.9 0/30 60
beas2500-7 103 1477232.4 (0.122 %) 566.0 0/30 60
beas2500-8 106 1483541.3 (0.044 %) 242.0 0/30 60
beas2500-9 103 1481734.4 (0.046 %) 365.0 0/30 60
beas2500-10 100 1481874.4 (0.100 %) 470.9 0/30 60

solution quality per time. However, a comparison of the methods under the same conditions
(computing hardware, operating system, programming language, coding techniques, . . .) is
required to support this claim.

6.5.2 Comparison of Genetic Algorithms and Memetic Algorithms

Several experiments were conducted to compare the GAs described above with MAs employ-
ing 1-opt local search. The algorithms were applied to 75 different instances contained in OR-

100 6 The Binary Quadratic Programming Problem

Table 6.7: Comparison of mutation vs. crossover based algorithms for the BQP

Uniform Crossover Mutation
instance n dens best avg. Nopt t/s avg. Nopt t/s
glov-3a 70 0.11 6037 6036.1 (0.014%) 17/30 38 6036.1 (0.014%) 17/30 30
glov-5a 50 0.21 5737 5734.5 (0.044%) 27/30 12 5735.3 (0.029%) 28/30 6
glov-8b 90 1.00 145 142.9 (1.471%) 22/30 23 145.0 (0.000%) 30/30 1
glov-10b 125 1.00 154 148.1 (3.831%) 20/30 29 154.0 (0.000%) 30/30 5
glov-1d 100 0.11 6333 6293.0 (0.632%) 15/30 33 6324.5 (0.134%) 27/30 8
glov-2d 100 0.22 6579 6543.2 (0.544%) 22/30 26 6559.5 (0.297%) 25/30 14
glov-3d 100 0.30 9261 9217.8 (0.466%) 8/30 44 9238.6 (0.242%) 16/30 28
glov-4d 100 0.41 10727 10713.6 (0.125%) 24/30 23 10718.1 (0.083%) 26/30 8
glov-5d 100 0.50 11626 11599.6 (0.227%) 12/30 44 11608.7 (0.148%) 16/30 29
glov-6d 100 0.61 14207 14163.8 (0.304%) 12/30 37 14172.2 (0.245%) 12/30 36
glov-7d 100 0.70 14476 14433.2 (0.295%) 19/30 28 14466.6 (0.065%) 28/30 9
glov-8d 100 0.80 16352 16317.8 (0.209%) 21/30 21 16352.0 (0.000%) 30/30 5
glov-9d 100 0.89 15656 15610.8 (0.289%) 9/30 42 15590.0 (0.422%) 13/30 34
glov-10d 100 1.00 19102 19064.0 (0.199%) 18/30 32 19102.0 (0.000%) 30/30 2

LIB [25] – 35 small instances (n ≤ 125) [116], 10 instances of medium size (n = 200, n = 500)
[116], and 30 large instances with n up to 2500 [26]. The population size was set to P = 100
in case of the genetic algorithms without local search, and in the presence of local search a
population size of P = 40 was used. For all experiments, the recombination/mutation (ap-
plication) rate was set to 0.5, i.e., 0.5 · P offsprings were created in each generation. During
the restarts, the individuals were mutated by flipping a third of all the bits in the bit vector.

The genetic algorithms described above, including the local search heuristic, were imple-
mented in C++. All experiments were performed on a Pentium II PC (300 MHz) under
the operating system Solaris 2.6. The algorithms were terminated when the optimum/best-
known solution was found or a predefined time limit was reached.

In a first experiment, the genetic algorithm with uniform crossover as well as a genetic
algorithm solely based on mutation were run on the set of 35 small instances. The time
limit was set to 60 seconds per run. The results are shown in Table 6.7. In the first four
columns, the name of the instance, the problem size n, the density (dens) of matrix Q, and
the fitness of the optimum or best-known solution (best), respectively, is provided. The fifth
and the sixth columns contain the results for two genetic algorithms, the first using uniform
crossover and the second using the bit-flip mutation operator with a mutation rate of 1/n
per gene. These columns contain the average final fitness values (avg.) out of 30 runs, the
number of runs in which the optimum/best-known solution could be found (Nopt), and the
average runtime of the algorithm in seconds (t/s). Only those instances are listed for which
the best-known solution could not be found in all the runs. For the remaining 21 instances,
the optimum/best-known solution could be found in 1 – 8 seconds.

The results in Table 6.7 show that mutation based search is superior to crossover based
search for all instances. The application of uniform crossover yields better average fitness
than mutation in case of glov-9d, but the mutation GA finds the best-known solution more
often. The amount of epistasis in the problem expressed by the density of the matrix Q does
not seem to influence the “hardness” of an instance since the algorithms do not perform
significantly better on instances with low epistasis: other characteristics of the problems
seem to have a higher influence. The hardest problems are the problems of type d (glov-1d

6.5 Performance Evaluation 101

Table 6.8: Comparison of genetic algorithms and memetic algorithms

Uniform Crossover Mutation MA
instance dens best avg. p Nopt t/s avg. p Nopt t/s avg. p Nopt t/s
glov200-1 0.1 16464 0.154 15/30 38 0.117 15/30 32 0.000 30/30 <1
glov200-2 0.2 23395 0.156 2/30 56 0.106 14/30 36 0.000 30/30 <1
glov200-3 0.3 25243 1.036 11/30 45 0.980 11/30 41 0.000 30/30 <1
glov200-4 0.4 35594 0.240 5/30 51 0.075 12/30 37 0.000 30/30 <1
glov200-5 0.5 35154 0.610 3/30 55 0.526 10/30 42 0.000 30/30 <1
glov500-1 0.1 61194 0.689 0/30 120 0.359 2/30 115 0.000 30/30 3
glov500-2 0.25 100161 0.802 0/30 120 0.361 0/30 120 0.000 30/30 5
glov500-3 0.5 138035 1.369 0/30 120 0.509 1/30 116 0.000 30/30 32
glov500-4 0.75 172771 1.291 0/30 120 0.446 2/30 117 0.077 0/30 120
glov500-5 1.0 190507 2.500 0/30 120 0.775 0/30 120 0.002 9/30 103

– glov-10d), and the corresponding densities have a wide range (from 0.11 up to 1.0).

To investigate the scalability of the algorithms, a second experiment was performed for
20 medium sized instances with varying densities. The time limit was set to 60 seconds for
the problems of size n = 200, and to 120 seconds for the problems of size n = 500. The
results for the GA with uniform crossover, the GA with mutation, and the MA are shown
in Table 6.8.

Again, the density of matrix Q and the best-known solutions are provided for each
instance in the second and third columns. For each algorithm, the average deviation from
the optimum (avg. p) is given in percent (p(x) = 100 · (1.0 − f(x)/fbest)), the number of
times (Nopt) the optimum/best-known solution was found, and the average running time in
seconds (t/s) is provided. Again, mutation-based search outperforms crossover-based search,
but the memetic algorithm (MA) proves to be much more effective. For the instances of size
n = 200, the running times to reach the best-known solution are below one second on the
average. Problem glov500-4 appears to be hard for the MA: in the time limit of 120 seconds,
the best-known solution could not be found. However, allowing longer running times (2000
seconds), our algorithm was able to find the best-known solution, too (in 3 out of 30 times).
Problem glov500-5 also seems to be a harder problem, although in comparison to glov500-4
the best-known solution could be found in 9 out of 30 times.

In order to put the results into perspective, the MA with 1-opt local search was applied
to larger problems of size 500, 1000, and 2500. For these problems, the performance of
two alternative approaches, tabu search and simulated annealing, has been reported in [26].
Table 6.9 displays the results of the memetic algorithm on 30 large problems (all with a
density of 0.1) in comparison to the results reported in [26].

For the MA, the average number of generations (gen), the best solution value found
(best) and the average final solution over 30 runs (avg.), as well as the runtime in seconds
(t/s) are shown. For the tabu search (TS) and simulated annealing (SA) algorithms, the
best solution found and the total running times on a Silicon Graphics Indigo (R4000 CPU
with 100 MHz) are provided. The dots indicate the approach for eacvh instance that found
the best-known solution. The figures demonstrate the effectiveness of the proposed MA
approach: for 14 out of the 30 problems, new best solutions could be found, and only for 4
problems one of the competitors found a slightly better solution. However, the comparison
should be treated with care since the running times are not directly comparable due to the

102 6 The Binary Quadratic Programming Problem

Table 6.9: Comparison of three algorithms for the BQP

MA TS SA
instance gen best avg. t/s best t/s best t/s
beas500-1 4361 • 116586 116586.0 120 • 116586 956 • 116586 1006
beas500-2 4611 • 128339 128339.0 120 128223 979 128204 1009
beas500-3 4336 • 130812 130812.0 120 • 130812 987 • 130812 1030
beas500-4 4723 • 130097 130095.7 120 • 130097 1003 130077 1061
beas500-5 4511 • 125487 125487.0 120 • 125487 964 125315 1030
beas500-6 4565 • 121772 121770.2 120 121719 966 121719 1028
beas500-7 4378 • 122201 122201.0 120 • 122201 952 • 122201 1014
beas500-8 4725 • 123559 123535.8 120 • 123559 1006 123469 1050
beas500-9 4668 • 120798 120789.8 120 120797 954 • 120798 998
beas500-10 4422 • 130619 130619.0 120 • 130619 971 • 130619 1012
beas1000-1 3824 • 371438 371304.1 600 • 371438 4608 371134 7150
beas1000-2 3834 • 354932 354862.3 600 • 354932 4514 354637 6794
beas1000-3 3829 • 371236 371233.8 600 371073 4518 371226 6943
beas1000-4 3819 • 370675 370506.0 600 370560 4580 370265 7011
beas1000-5 3796 352730 352687.6 600 • 352736 4512 352297 6939
beas1000-6 3687 • 359629 359487.8 600 359452 4444 359313 6749
beas1000-7 3927 • 371193 371084.9 600 370999 4546 370815 6885
beas1000-8 3491 • 351994 351844.6 600 351836 4461 351001 6961
beas1000-9 3910 • 349254 349253.3 600 348732 4488 348309 6626
beas1000-10 4100 351408 351125.6 600 351408 4474 • 351415 6734
beas2500-1 998 • 1515306 1514804.6 1200 1514971 52011 1515011 63080
beas2500-2 992 • 1470470 1469721.0 1200 1468694 51659 1468850 62787
beas2500-3 1019 • 1413671 1412943.0 1200 1410721 49101 1413083 60963
beas2500-4 978 • 1507701 1507674.2 1200 1506242 50642 1506943 63018
beas2500-5 982 • 1491796 1491623.4 1200 • 1491796 51194 1491465 63470
beas2500-6 987 • 1468427 1467918.2 1200 1467700 51669 • 1468427 63310
beas2500-7 993 1478297 1477101.7 1200 1476059 50798 • 1478654 62833
beas2500-8 1012 1483702 1483226.9 1200 • 1484199 49861 1482953 61918
beas2500-9 989 • 1482413 1481622.9 1200 1482306 51873 1481834 62978
beas2500-10 1010 • 1482733 1481899.2 1200 1482354 50981 1482166 62777

different hardware/software platforms used.

Another evolutionary approach by Lodi et al. is reported in [194]. The approach is
similar to the 1-opt local search MA in that all individuals in the population represent local
optima. Recombination is performed by utilizing the MinRange algorithm [244] instead of
our simple form of crossover. It is unclear how much the heuristic crossover of the authors
contributes to the performance of their algorithm. A direct comparison is not possible since
they used a different platform and do not provide the average final solution values. For
example, the (shortest) running time to reach the best-known solution of instance glov500-1
is reported to be 43.06 seconds on a Silicon Graphics INDY R10000sc with 195 MHz. The
MA took 3 seconds on the average on a Pentium II PC with 300 MHz to find the same
solution value.

6.5 Performance Evaluation 103

Table 6.10: Comparison of mutation and recombination-based MAs for the BQP

MA-MUT MA-HUX
instance gen avg. (quality) Nopt t/s gen avg. (quality) Nopt t/s
glov500-1 0 61194.0 - 0.000% 20/20 1 0 61194.0 - 0.000% 20/20 1
glov500-2 0 100161.0 - 0.000% 20/20 2 0 100161.0 - 0.000% 20/20 2
glov500-3 1 138035.0 - 0.000% 20/20 3 9 138035.0 - 0.000% 20/20 4
glov500-4 0 172771.0 - 0.000% 20/20 5 57 172764.9 - 0.004% 18/20 27
glov500-5 7 190507.0 - 0.000% 20/20 23 141 190505.0 - 0.001% 12/20 68
kb-g01 9 131456.0 - 0.000% 20/20 13 252 131455.1 - 0.001% 19/20 55
kb-g02 7 172788.0 - 0.000% 20/20 18 375 172785.5 - 0.001% 16/20 146
kb-g03 3 192565.0 - 0.000% 20/20 15 192 192563.5 - 0.001% 19/20 102
kb-g04 46 215441.0 - 0.110% 11/20 162 438 215127.6 - 0.256% 0/20 300
kb-g05 2 242367.0 - 0.000% 20/20 20 260 242358.5 - 0.003% 8/20 210
kb-g06 14 243293.0 - 0.000% 20/20 84 324 243017.6 - 0.113% 0/20 300
kb-g07 24 253446.9 - 0.056% 13/20 151 255 253113.0 - 0.188% 1/20 296
kb-g08 15 264216.2 - 0.020% 15/20 112 206 264042.9 - 0.085% 4/20 257
kb-g09 18 262597.4 - 0.023% 16/20 155 196 262093.0 - 0.215% 0/20 300
kb-g10 29 274289.7 - 0.031% 5/20 253 186 273814.5 - 0.204% 0/20 300
beas2500-1 11 1515944.0 - 0.000% 20/20 101 428 1515761.9 - 0.012% 0/20 600
beas2500-2 65 1471243.4 - 0.010% 10/20 488 365 1470487.4 - 0.061% 1/20 583
beas2500-3 13 1414192.0 - 0.000% 20/20 114 422 1413645.9 - 0.039% 0/20 600
beas2500-4 4 1507701.0 - 0.000% 20/20 52 154 1507671.4 - 0.002% 14/20 234
beas2500-5 15 1491816.0 - 0.000% 20/20 130 433 1491688.8 - 0.009% 0/20 600
beas2500-6 24 1469162.0 - 0.000% 20/20 191 423 1468727.8 - 0.030% 0/20 600
beas2500-7 37 1479004.4 - 0.002% 19/20 289 401 1478354.9 - 0.046% 0/20 600
beas2500-8 7 1484199.0 - 0.000% 20/20 71 407 1483916.6 - 0.019% 1/20 572
beas2500-9 43 1482408.8 - 0.000% 14/20 324 403 1482173.5 - 0.016% 2/20 570
beas2500-10 36 1483286.2 - 0.005% 16/20 281 410 1482570.8 - 0.053% 0/20 600

6.5.3 A Memetic Algorithm with k-opt Local Search

In a final series of experiments, the MA employing randomized k-opt local search was inves-
tigated. In the experiments, the population size was set to 40, and the diversification rate to
n/3. The variation operator application rate was set to 0.5, i.e., 20 offspring were generated
per generation. Two variants of the MA, one using mutation and one using recombination
to achieve variation in the evolutionary search were considered. In the mutation-based MA
(MA-MUT), the mutation operator produces offspring with a distance of d = n/10 to the
parent (a 10th of the bits in the genome are flipped). The recombination-based MA relies
on the HUX recombination operator (MA-HUX). To evaluate the performance of the algo-
rithms, runs were performed on the five instances of set glov500, the ten instances of set kb-g
used in the search space analysis above, and on the 10 instances of the set beas2500. A time
limit was chosen for each set: the algorithms were terminated as soon as the best-known
solution was found or after 120 seconds in case of the first set, after 300 seconds in case of set
kb-g, and after 600 seconds in case of the third set. All running times are provided for a Pen-
tium II PC with 300 MHz. The results are summarized in Table 6.10: For each instance and

104 6 The Binary Quadratic Programming Problem

Table 6.11: Best-known Solutions of large BQP Instances

instance MA k-opt MA 1-opt TS/SA
beas1000-1 371438 • 371438 • 371438
beas1000-2 354932 • 354932 • 354932
beas1000-3 371236 • 371236 371226
beas1000-4 370675 • 370675 370560
beas1000-5 • 352760 352730 352736
beas1000-6 359629 • 359629 359452
beas1000-7 371193 • 371193 370999
beas1000-8 351994 • 351994 351836
beas1000-9 • 349337 349254 348732
beas1000-10 351415 351408 • 351415
beas2500-1 • 1515944 1515306 1515011
beas2500-2 • 1471392 1470470 1468850
beas2500-3 • 1414192 1413671 1413083
beas2500-4 1507701 • 1507701 1506943
beas2500-5 • 1491816 1491796 1491796
beas2500-6 • 1469162 1468427 1468427
beas2500-7 • 1479040 1478297 1478654
beas2500-8 1484199 1483702 • 1484199
beas2500-9 1482413 • 1482413 1482306
beas2500-10 • 1483355 1482733 1482354

algorithm, the average number of generations evolved (gen), the average final solution value
(avg) together with the percentage access (quality), the number of times the best-known
solution was found (Nopt), and the average running time in seconds (t/s) is provided.

Although the landscape of the BQP instances considered are highly correlated, the
recombination-based MA performs significantly worse than the MA with mutation. The
local optima appear to be too close to each other for a recombination operator to be ef-
fective. In an additional experiment, this claim could be supported: After the majority
of recombinations, the local search produces a solution equal to one of the parents. Thus,
recombination-based search is ineffective for this type of landscape despite of the high cor-
relation of fitness and distance to the optimum.

Compared to the MA based on 1-opt local search, new best-known solutions could be
found for 7 of the 10 instances of the set beas2500 in shorter time. In Table 6.11, the (new)
best-known solution values for large instances are shown. The dot in each line indicates
which algorithm discovered the best-known solution.

The MA employing mutation appears to be highly effective since even for large instances,
the best-known solution can be found in 52 up to 488 seconds (on average). for the set kb-g,
the best-known solution reported in [6] could be found for each instance in short time ranging
from 13 seconds on average for the instance with density 0.1 to five out of 20 times within
300 seconds for the instance with density 1.0. The set glov500 is easily solved to optimality
within less than 24 seconds on average by MA-MUT.

In comparison, the tabu search utilizing critical event memory [115] found the best-
known solution only for 7 out of the 10 instances of set kb-g, in a CPU time of four minutes

6.6 Summary 105

on a Pentium 200 PC. The scatter search approach proposed in [6] found the best-known
solutions of all problems in this set, but no CPU times were reported. Recently, a highly
effective simulated annealing approach has been devised for the BQP [166]. In very short
time, the best-known solutions could be found for the sets beas1000 and beas2500, but the
average solution quality is worse in comparison to the MA. The authors therefore proposed a
MA similar to the one presented here showing a similar performance [167]. Hence, memetic
algorithms prove to be very robust and effective search algorithms for the BQP.

6.6 Summary

In this chapter, a random-walk correlation analysis as well as a fitness distance correlation
analysis has been employed to gain insight into the structure of the BQP. Although BQP in-
stances have resemblance to NK-landscapes with non-uniform fitness distribution functions,
they exhibit totally different properties. In NK-landscapes, with increasing epistasis the
landscape becomes more and more rugged. This phenomenon could not be observed in the
studied BQP instances. Instead, landscape ruggedness expressed by the correlation length
of the landscapes tends to decrease slightly with increasing epistasis. Furthermore, the local
optima with respect to 1-opt and a newly proposed k-opt local search are shown to lie in
a small fraction of the search space. The local optima produced by the latter local search
have an average distance of a 5th to the 10th of the diameter of the landscape. The correla-
tion of the objective value of the local optima and their distance to the global optimum or
best-known solution is also shown to be very high.

A memetic algorithm for the BQP has been proposed, and in experiments it was compared
to genetic algorithms without local search. The results clearly demonstrate the superiority
of the memetic approach even if the simple 1-opt local search is incorporated: beginning
at a problem size of n = 200, the MA outperforms the GA by far. However, it is shown
that for such small instances the k-opt local search is capable of finding the optimum in less
than a second. For larger instances, a MA is devised incorporating randomized k-opt local
search. Although the landscapes of the studied BQP instances are highly structured with
respect to the distribution of the local optima, it turned out that a recombination-based MA
is not able to exploit this property since the local optima are too close together hindering the
recombination in exploring new local optima. Hence, a MA is proposed for large instances
employing a mutation operator with a mutation jump distance derived from the landscape
analysis: The jump distance is set to a tenth of the problem size and is thus close to the
average distance of the local optima. The performance of the mutation-based MA has been
evaluated on several large instances, and it was shown that better solutions compared to the
MA using 1-opt local search have been found with a high frequency in shorter time. Thus,
the MA proves to be among the best performing heuristics for the BQP especially when high
average solution quality for large instances is desired.

However, due to the fact that the local optima of the considered instances are close
together in terms of the hamming distance, it may be more promising to focus on neighbor-
hood search techniques such as simulated annealing and tabu search in combination with
k-opt neighborhoods which can be designed to overcome the small barriers between the local
optima by considering appropriate down-hill moves. Other instances, which are not purely
random in nature or represent transformed problems, may not have the property that the
local optima are located in such a small region of the search space. Here, MAs may be

106 6 The Binary Quadratic Programming Problem

required to achieve high quality solutions.

Chapter 7

The Traveling Salesman Problem

7.1 Introduction

The traveling salesman problem (TSP) is one of the best-known combinatorial optimization
problems. It can be stated as follows: Given n cities and the geographical distance between
all pairs of these cities, the task is to find the shortest closed tour in which each city is
visited exactly once. In the last years, the exact solution of large TSP instances has made
an enormous progress due to the improvement of branch & cut algorithms. Furthermore,
the TSP has been widely used as a problem for testing new heuristic algorithms and general
purpose optimization techniques. As a result, highly effective heuristics have been proposed
that a capable of solving TSPs with thousands of cities.

In this chapter, memetic algorithms for the TSP are introduced which have been shown
to belong to the best heuristics currently available for the TSP. A landscape analysis is
performed to identify properties of TSP instances which can be exploited by MAs. It is shown
that although all TSP instances share certain characteristics, there are some landscapes that
differ significantly from others, leading to a different performance of heuristic approaches.
However, the analysis reveals that respectful recombination is capable of exploiting the
distribution of local minima in the TSP landscape.

A new generic greedy recombination operator is described that is used to identify im-
portant properties of recombination operators in memetic algorithms for the TSP. Various
recombination operators are compared in experiments, and it is shown that many operators
show similar performance. On the other hand, it is shown – as expected due to the results
of the landscape analysis – that recombination needs to be respectful to be highly effective.

Furthermore, it is demonstrated that the successor of the already published MA [106, 210]
is capable of finding optimum solutions for problems up to 3795 cities in short time and is
thus superior to any other evolutionary algorithm for the TSP known to the author. In
additional experiments, it is shown that with the approach problems of up to 85900 cities
can be tackled.

The memetic algorithms based on DPX have been published in [105, 106, 210, 214].
However, the results reported in this chapter have been improved considerably.

7.2 Heuristics for the TSP

Because of its simplicity and applicability, the TSP has for decades served as an initial
proving ground for new ideas to solve combinatorial optimization problems. Besides the fast

107

108 7 The Traveling Salesman Problem

development in solving TSP instances to optimality, an enormous progress has been made
in the field of heuristics.

Most of the earliest algorithms belong to the class of construction heuristics. Examples
of this class are nearest neighbor heuristics and insertion heuristics, for which a detailed
description and comparison can be found in [219, 261]. Another intuitive approach is the
greedy heuristic, also known as the multi-fragment heuristic [158, 27]. Furthermore, there are
more elaborate tour construction heuristics, such as the Christofides algorithm [53] which is
based on spanning trees, or the savings heuristic also known as Clarke and Wright algorithm
originally developed for the vehicle routing problem [54]. However, these heuristics perform
poor in comparison to local search heuristics which belong to the class of improvement
heuristics. But, instead of applying a local search to randomly generated solutions, a local
search can be applied to solutions generated by a (randomized) tour construction heuristic.
Surprisingly, not the best performing construction heuristic is best suited in combination
with local search, as shown by several researchers independently [29, 158, 219, 261]. For
example, in [158], it is shown that although the savings heuristics performs better than the
greedy and nearest neighbor heuristics, in combination with 2-opt or 3-opt local search it
performs worst (even worse than the local search applied to random solutions). In fact, the
best suited construction heuristic is the greedy heuristic, as shown in [29, 158]. It appears
that the starting tour for a local optimization must contain a number of exploitable defects,
i.e., some rather long edges, and if a tour is too good it may not have these.

Since greedy and local search heuristics are among the most efficient algorithms for the
TSP with short running times and thus the most interesting for incorporation into an MA,
these two types of algorithms are described in the following paragraphs in more detail. Many
other heuristics have been proposed for the TSP including simulated annealing [303, 153],
tabu search [90], ant colonies [112, 78, 287], artificial neural networks [253, 223, 81], search
space smoothing [130], perturbation [55], and evolutionary algorithms [232, 311, 103, 95,
143, 299, 305, 302].

7.2.1 The Greedy Heuristic

Although the nearest neighbor heuristic can be regarded as a greedy heuristic, the term is
usually used for the following variant of the greedy algorithm.

This heuristic can be viewed as considering the edges of the graph in increasing order of
length, and adding any edge that will not make it impossible to complete a tour. Thus, the
algorithm builds up a TSP tour for N cities (a cycle of length N in a graph) by adding one
edge at a time, starting with the shortest edge, and repeatedly adding the shortest remaining
available edge. In the algorithm, an edge is referred to as available if it is not yet in the tour
and if adding it would not create a degree-3 vertex or a cycle of length less than N .

While in the nearest neighbor heuristic, partial tours maintain a single TSP fragment,
the greedy heuristic employs a set of fragments. Therefore, the greedy heuristic is also known
under the name multi-fragment heuristic [29].

The implementation sketched above requires O(N2 logN) time. However, using appro-
priate data structures, the running time of the algorithm can be reduced considerably. As
shown in [29], using K-d trees to calculate nearest neighbors [28], and using a priority queue
to store available candidate edges, the running time is reduced to O(N logN) for uniform
data (Euclidean TSP with points uniformly distributed in the unit square).

7.2 Heuristics for the TSP 109

7.2.2 Local Search

Local search algorithms for the TSP are based on simple tour modifications. A local search
algorithm is specified in terms of a class of operations called moves that can be used to
transform one tour to another. We can view local search as a neighborhood search process
where each tour has an associated neighborhood of tours, i.e., those that can be reached by
a single move. The search algorithm repeatedly moves to a better neighbor until no better
neighbors exist. Moves proposed for the TSP can be divided into node exchange operators,
node insertion operators and edge exchange operators.

Viewing a TSP tour as a sequence of cities which defines the order in which to visit the
cities, the node exchange operator simply exchanges two nodes in the sequence.

The node re-insertion operators work by deleting a node from a tour and inserting it at
another place in the tour. Variations of this scheme exist in which two nodes are reinserted
(edge insertion) [261] or up to 3 nodes are reinserted (Or-opt) [241].

Among simple local search algorithms, the most famous are 2-opt and 3-opt [191] which
are examples of edge exchange algorithms. The 2-opt algorithm was first proposed by Croes
[59], although the basic move had already been suggested by Flood [94]. This move deletes
two edges thus breaking the tour into two paths, then reconnects those paths in the other
possible way as shown in Figure 7.1. In the example, the edges (0, 2) and (5, 6) are exchanged

0

1

2

3

4

5

6

7

8

9

➭
0

1

2

3

4

5

6

7

8

9

Figure 7.1: Neighborhood search by exchange of two edges

by the edges (0, 5) and (2, 6).

Analogously, in 3-opt, up to three edges exchanged. With 3-opt the neighborhood size
increases from O(N2) to O(N3) compared to the other local searches. In practice, however,
the running time for searching the neighborhood can be reduced so that 3-opt is applicable
even to large instances. For example, nearest neighbor lists are used to restrict the number of
candidate edges for the replacement of edges in an exchange [261, 219, 158]. Furthermore, the
concept of don’t look bits proposed by Bentley [27] reduces the search time for an improving
move considerably. Compared to other neighborhood search algorithms such as tabu search,
the first improving move is accepted in this scheme rather than the best.

It has been shown that edge exchange local search is much more effective than node
re-insertion or node exchange [261, 219]. Generally, the higher the k of a k-opt local search,
the better the resulting tours. However, since the neighborhood size grows exponentially
with k only small k turn out to be practical. Lin and Kernighan have shown that a subset of
the k-opt neighborhood can be searched very efficiently with considerable decrease in tour
length compared to 2 or 3-opt.

110 7 The Traveling Salesman Problem

The Lin-Kernighan Algorithm

For over a decade and a half, from 1973 to about 1989, the world champion heuristic for the
TSP was generally recognized to be the local search algorithm of Lin and Kernighan (LK)
[192]. This algorithm is both a generalization of 3-opt and an outgrowth of ideas the same
authors had previously applied to the graph partitioning problem [171].

The basic idea of the LK algorithm is to build up complex moves by combining simple
sub-moves to exchange a variable number of edges. The sub-moves usually employed are
2-opt and 3-opt moves although variants exist where node re-insertion and 2-opt has been
used [261]. To illustrate the behavior of the heuristic, an example of an edge exchange is
shown in Figure 7.2. (In the figure, a TSP tour is displayed as a circle and the length of

u1

u2

u3

u1

u2

u3

u4

u5

u1

u2

u3

u4

u5
u6

u7

Figure 7.2: An edge exchange in the LK heuristic

the edges do not resemble their length in the TSP graph.) Briefly, the LK heuristic can
be described as follows. In each step, we have a situation where the tour is broken up at
one node forming a 1-tree (a spanning tree with an extra edge) as shown on the left of
the figure. This 1-tree can be easily transformed into a feasible TSP tour by breaking up
one edge of the degree-3 vertex and connecting the two degree-1 vertices. Consider now
the example in which an improving k-exchange is searched beginning with node u1. First,
the edge (u1, u2) is replaced by a shorter edge (u2, u3). Now, the algorithm considers to
close up to a tour by connecting the predecessor of u3 called u4 with u1 and thus replacing
edge (u3, u4) with edge (u4, u1). In this case, we made a 2-change since we replaced the
edges (u1, u2) and (u4, u3) with (u2, u3) and (u4, u1). Alternatively, we can replace the edge
(u3, u4) with (u4, u5) resulting in a new 1-tree. Once again, we may close up to a tour by
connecting u6 with u1 or continue searching by connecting u6 to another node u7 as shown
in the right of the figure. Thus, the heuristic performs sequential changes of edges until no
further exchanges are possible or favorable to find the best k-change in an iteration. The
number of exchanges that are tried is bound by the gain criterion which is fulfilled if the
gain of replacing k edges with new edges without closing up to a tour is above zero. The
change made in an iteration is the one with the highest gain when closing up to a tour. If
the search for an improving k-change fails, several levels of backtracking are considered. For
example, alternatives for (u2, u3) at the first level and alternatives for (u4, u5) at the second
level are considered.

A more detailed description of the LK algorithm would go beyond the scope of this thesis
and can be found in the original paper by Lin and Kernighan [192].

7.2 Heuristics for the TSP 111

A major drawback of the LK heuristic besides the high effort needed for its implementa-
tion is its rather long running time. Therefore, several improvements to the original algorithm
have been made such as candidate lists based on nearest neighbors, and don’t look bits [158].
Furthermore, efficient data structures have been proposed to perform the sub-moves since
they consume most of the running time of the algorithm especially for large TSP instances
(N > 1000) [201, 104].

7.2.3 Evolutionary Algorithms

Various attempts have been made to apply evolutionary algorithms to the TSP. For example,
evolutionary programming has been applied to the TSP by Fogel using node re-insertion as
mutation operator [96] and random 2-opt moves (random exchanges of two edges) [95].
Evolution strategies have been applied to the TSP by Herdy [136] and Rudolph [266]. While
Herdy conducted experiments with node exchange, node re-insertion, and edge exchange
operator (two and three edges), Rudolph chose a real vector representation for the TSP and
applied the ES on continuous variables. The majority of publications, however, deals with
representations and/or recombination operators for GAs for the TSP.

Besides the most commonly used path representation [118, 69, 239, 121] in which a tour
is coded as a vector of discrete variables of length N that provides the order in which to visit
the cities and is thus a permutation π of the set {1, . . . N}, other representations have been
proposed such as the adjacency representation [124], the adjacency matrix representation
[143], the precedence matrix representation [103], the ordinal representation [124], and the
edge list representation in combination with the path representation [311].

There is enormous number of recombination operators for the TSP, most of which have
the disadvantage that they do not scale well or they are only effective in combination with
additional heuristic operators. The reason will be illustrated by an example.

The partially–mapped crossover (PMX) has been introduced by Goldberg and Lingle
[118]. It performs a sequence of swapping operations to create offspring. Firstly, a mapping
section is chosen at random. In the example below, the mapping section is marked by ’|’:

Partially–Mapped Crossover

Parent A 0 9 6 | 5 3 7 8 | 1 4 2
Parent B 0 5 3 | 7 4 1 8 | 2 6 9
Offspring A’ 0 9 6 | 7 4 1 8 | 5 3 2
Offspring B’ 0 1 4 | 5 3 7 8 | 2 6 9

Secondly, in parent A, cities 5 and 7 are swapped, then 3 and 4, and at last cities 5 and
1. Now, the mapping section is equal to the mapping section of parent B. Third, parent B
has to be transformed analogously by a sequence of swaps, these are: 5 and 7, 3 and 4, 6 and
5, and 1 and 7. The resulting offspring are shown above. Both offspring A’ and B’ contain
three and two edges not shared by the parents, respectively. For example, offspring A’ is a
feasible solution but does not consist entirely of genetic material from its parents: The edges
(6, 7), (5, 8), and (2, 3) are not contained in either of the parents. Figure 7.3 displays the
tours of parent A, parent B, and offspring A’. The tour lengths are 1707.96, 1834.27, and
2251.00, for parent A, parent B and child A’, respectively. Here, the crossover has disruptive
effects: although only three edges are included that are not contained in the parents, the
tour length is considerably longer than the lengths of the parent tours. Note that the edges
of the parents in the example above can be recombined to the solution of length 1507.94.

112 7 The Traveling Salesman Problem

0

1

2

3

4

5

6

7

8

9

✕
0

1

2

3

4

5

6

7

8

9

➭
0

1

2

3

4

5

6

7

8

9

Figure 7.3: Crossover of TSP tours (PMX)

The introduction of foreign edges into the child is referred to as implicit mutation and
has a high impact on the effectiveness of recombination operators. If the number of foreign
edges gets to high, the GA degrades to pure random search. But even a small number of
foreign edges can prevent a GA from finding (near) optimum solutions, since these edges can
be arbitrarily long and thus may have a high impact on the objective value. In other words,
the objective values of parents and offspring may not have a high correlation.

The phenomenon of implicit mutation during recombination can be observed by almost
all recombination operators for the TSP. Grefenstette [125] concludes from his studies:

”Finally, it’s widely recognized that GAs are not well suited to performing
finely tuned local search. [...] Once the high performance regions of the search
space are identified by the GA, it may be useful to invoke a local search routine
to optimize the members of the final population.”

As a consequence, many researchers incorporated greedy choices into their recombination
operators and/or used a local improvement techniques to achieve better results [125, 291,
190, 154]. Beginning with Brady [39], many researchers have made consequent use of local
search in their evolutionary algorithms for the TSP. In the following, these approaches –
which can be classified as memetic algorithms – are briefly described. They have been
shown to be among the best heuristic techniques for the TSP.

The Evolutionary Algorithm of Brady

One of the earliest evolutionary approaches for the TSP using local search is the evolutionary
algorithm of Brady [39]. In his approach, the solutions produced by crossover are optimized
with a local search he calls quenching since it can be regarded as a zero temperature simulated
annealing. In this evolutionary algorithm, TSP tours are coded using the path representation.
A sub-path in one parent is sought that has a corresponding sub-path in the other parent
containing the same cities. If the sub-path is shorter than the corresponding sub-path, this
sub-path in the other parent is replaced:

Brady’s Crossover

Parent A 4 2 0 | 8 9 5 3 7 | 6 1
Parent B 2 | 9 8 3 7 5 | 0 1 6 4
Offspring A’ 4 2 0 | 9 8 3 7 5 | 6 1

7.2 Heuristics for the TSP 113

In the above example, the sum d89 +d95 +d53 +d37 is greater than sum d98 +d83 +d37 +d75,
hence the sub-path 9,8,3,7,5 form B is copied over to A (see A’) overwriting path 8,9,5,3,7.
The path in parent B remains unchanged. Brady reports that for a 64-city problem it was
best to search for sub-paths of length between 8 and 32. A disadvantage of this approach is
that it is quite expensive to search for possible crossing-over points.

With this scheme only up to two foreign edges are copied to the parents. In the above
example, the edges are (0,9) and (5,6).

Brady’s algorithm can be regarded as the first memetic algorithm proposed for the TSP.

ASPARAGOS

The Asynchronous Parallel Genetic Optimization Strategy (ASPARAGOS) [121, 122] has
been the best evolutionary strategy for the TSP for years. In this approach, offspring are
generated using Maximum Preservative Crossover (MPX). Mutation is applied afterwards
followed by a 2-repair, a variant of 2-opt local search focusing on newly introduced edges.

The MPX proposed in [232, 122] has similarities with the traditional two–point crossover.
To construct an offspring tour, a sub-path between two randomly chosen crossover points
is copied from the first parent to the offspring. The partial tour is extended by copying
edges from the second parent afterwards. If the the sub-path cannot be extended this way
to retain a feasible solution, the edges from the first parent are checked. If there is no such
edge from the first parent that can be used to extend the tour, a previously unvisited city is
added from the second parent which comes next after the end point in the string. The table
below shows an example.

MPX Crossover

Parent A 4 2 0 8 9 5 3 7 6 1
Parent B 2 9 8 3 7 5 0 1 6 4
Offspring C 0 8 9 5 7 3 1 6 4 2

In the example, the highlighted sub-path from parent A is copied to the offspring. The
offspring is extended by appending cities 7 and 3 so that the edges (5, 7) and (7, 3) contained
in parent B are copied over. Edge (3, 8) cannot be inserted since city 8 is already contained
in offspring C. Looking at parent A, we see that both edges (3, 5) and (3, 7) cannot be used
to extend the tour further. Hence, the city next to city 3 in parent B is identified: city
1. After adding city 1 two the partial offspring, the algorithm proceeds by inserting the
remaining edges from parent B: edges (1, 6), (6, 4) and (4, 2). The edge from the last to the
first node is also contained in tour A, so we got only one foreign edge in offspring C.

Initially, a slightly different crossover had been used in ASPARAGOS [121] that is iden-
tical to the order crossover operator [69] except that a sub-path of the second parent is
inverted before crossing over. In the literature, this operator has been called Schleuter
crossover [204, 83] to avoid confusion with the MPX described above.

A major difference to other EAs is that the algorithm is asynchronous and parallel.
In contrast to traditional genetic algorithms, there is no discrete generation model, i.e.,
there are no well distinguished (time-stepped) generations. Instead, selection for variation
(mating selection) and selection for survival (replacement) are performed asynchronously.
Furthermore, the population is spatially structured and consists of overlapping demes (local
subpopulations). Mating (recombination) happens only between individuals within a deme
(neighborhood). Therefore, no central control is needed and only local interactions occurs.

114 7 The Traveling Salesman Problem

Thus, the algorithm is robust, is well suited for small populations and can be executed on
parallel hardware. The term PGA [233] is often used for such a model with population
structures.

Fine-grained PGAs for the TSP have also been studied in [155] and a variant of ASPARA-
GOS has been proposed in [40] called the insular genetic algorithm. A modified version of
ASPARAGOS has been proposed in [123] called ASPARAGOS96 with a hierarchical popu-
lation structure and slightly modified MPX and mutation.

Local Search and Recombination

Whitley et al. devised in [311] a crossover operator called edge recombination operator. This
operator explicitly tries to keep the number of foreign edges in the child to a minimum. The
operator itself has evolved over time. The first variant is the enhanced edge recombination
operator [283] also known as Edge-2 [204]. Further improvements have been made in Edge-2
resulting in Edge-3 operator described in [204] and finally Edge-4 [83] has been proposed. This
family of operators is superior to MPX in a GA without local search; as shown in [204, 83],
the Edge family has a smaller failure rate (number of introduced foreign edges) than MPX.
But when local search is added to the algorithm, the picture changes and MPX becomes
superior to the Edge operators. As with tour construction heuristics in combination with
local search, in the case of evolutionary variation operators not necessarily the best stand
alone operator performs best in combination with local improvement [204, 83].

Genetic Local Search

The name Genetic Local Search (GLS) was first used by Ulder et al. [301] to describe a
evolutionary algorithm with recombination and consequently applied local search. Within
this scheme all individuals of the population represent local optima with respect to the
chosen local search. In [301], the population model of a GA has been used instead of a model
with structured a population with asynchronous application of the variation operators. The
recombination operator used was MPX, and opposed to 2-repair, 2-opt and the LK local
search were incorporated.

In [44], Bui and Moon also propose a genetic local search algorithm with LK as the
local search procedure. They developed a k-point crossover operator with additional repair
mechanism to produce feasible offspring.

The approach described in this thesis as published in [105, 106, 210] is also a GLS and uses
LK local search and a new recombination operator called DPX. This algorithm has won the
first international contest on evolutionary optimization (ICEO) at the IEEE International
Conference on Evolutionary Optimization [31, 105].

Walters [305] developed a two-point crossover for a nearest neighbor representation and
a repair mechanism called directed edge repair (DER) to achieve feasibility of the solutions.
He uses 3-opt local search to improve the solutions further. Brood selection is incorporated
to select the best of the children produced by crossover.

Katayama and Narihisa [165] proposed an EA with LK and small populations (just two
individuals) and a heuristic recombination scheme. Their approach is similar to the iterated
Lin-Kernighan heuristic but additional diversification is achieved by the recombination of
the current solution and the best solution found. The results presented for large instances
are impressive.

7.3 The Fitness Landscape of the TSP 115

Other Highly Effective Evolutionary Algorithms

There are some other highly effective evolutionary algorithms for the TSP which do not
belong to the class of memetic algorithms and are therefore worth mentioning.

Nagata and Kobayashi [234] devise an evolutionary algorithm that uses the edge assembly
crossover to produce offspring. In this recombination operator, children are constructed by
first creating an edge set from the edges contained in the parents (E-set) and than producing
intermediate children for which the sub-tour constraint is generally not fulfilled. In order to
obtain feasible offspring, sub-tours are merged in a greedy fashion based on the minimum
spanning tree defined by the disjoint sub-tours.

Tao and Michalewicz [299] propose an evolutionary algorithm which is very easy to
implement. The operator used in the algorithm is called inver-over since it can be regarded
as a mixture of inversion and crossover. The operator has resemblance with the LK heuristic
since a variable number of edges is exchanged. Thus, it is more a local search utilizing a
population of solutions than an EA utilizing local search.

Möbius et al. [225, 224] propose a physically inspired method for the TSP called ther-
mal cycling with iterative partial transcription (IPT). To a population of solutions called
“archive”, a heating phase (similar to simulated annealing with nonzero temperature) and
a quenching phase (local search) is repeatedly applied. After quenching, IPT is used to im-
prove the solutions in the archive further. IPT can be regarded as a form of recombination
in which some of the alleles of one parent are copied to the other explicitly maximizing the
fitness of the resulting individual.

Several other approaches have been published for solving the TSP. However, only few of
them are suited for solving large TSP instances (>> 1000 cities) like the ones discussed here.
It is meaningless to test an approach on just small TSP instances, since (a) there are exact
methods for solving small instances to optimality in a few seconds, (b) simple local search
algorithms are much faster than most EAs and produce comparable or better results, and
(c) the behavior of an algorithm on small instances can not be used to conclude its behavior
on large instances.

7.3 The Fitness Landscape of the TSP

Several researchers have studied the fitness landscape of the traveling salesman problem to
find more effective search techniques. Even a theoretical analysis exists that coincides with
conclusions drawn from experiments.

7.3.1 Distances between TSP tours

Besides landscape analysis, distance functions for solution vectors of optimization problems
are important in a number of EA techniques, such as mechanisms for preventing premature
convergence [86], or the identification of multiple solutions to a given problem [263]. Fur-
thermore, they can be used to observe the dynamic behavior of the EA (or CCVA [87]) and
to guide the search of the EA [105].

A suitable distance measure for TSP tours appears to be a function that counts the
number of edges different in both tours: Since the fitness of a TSP tour is determined by the
sum of the weights of the edges the tour consists of, the distance between two tours t1 and
t2 can be defined as the number of edges in which one tour differs from the other. Hence

116 7 The Traveling Salesman Problem

d(t1, t2) = |{e ∈ E | e ∈ t1 ∧ e 6∈ t2}|. (7.1)

This distance measure has been used by several researchers, including [233, 36, 196, 106].
Recently, it has been shown that this distance function satisfies all four metric axioms [264].

Alternatively, a distance measure could be defined by counting the number of applications
of a neighborhood search move to obtain one solution from the other. In the case of the
2-opt move, the corresponding distance metric d2−opt is bound by d ≤ d2−opt ≤ 2d [196].

With this distance measure, the neighborhoods based on edge exchange can be defined
as

Nk-opt(t) = {t′ ∈ T : d(t, t′) ≤ k}, (7.2)

with T denoting the set of all tours of a given TSP instance. Note that the node exchange
neighborhood is a small subset of the 4-opt neighborhood and the node (re)insertion neigh-
borhood is a subset of the 3-opt neighborhood since 4 edges and 3 edges are exchanged,
respectively.

7.3.2 Autocorrelation Analysis

Stadler and Schnabl [281] performed a landscape analysis of random TSP landscapes consid-
ering different neighborhoods: the 2-opt and the node exchange neighborhood. Their results
can be summarized as follows.

For the symmetric TSP, both landscapes (based on 2-opt and node exchange) are AR(1)
landscapes. The random walk correlation function for random landscapes is of the form

r(s) ≈ exp(−s/`) = exp(−b/n · s), (7.3)

with n denoting the number of nodes/cities of the problem instance and b denoting the
number of edges exchanged between neighboring solutions. Thus, for the 2-opt landscape,
the normalized correlation length ξ = `/n is 1

2
, for the node re-insertion landscape ξ is

1
3
, and for the node exchange landscape ξ is 1

4
. This result coincides with experimentally

obtained results that 2-opt local search is much more effective than local search based on node
exchange or node re-insertion [261]. The formula 7.3 implies that a landscape with a strict
3-opt neighborhood is more rugged than a landscape with a 2-opt neighborhood. One may
conclude that a 2-opt local search performs better than a 3-opt local search. However, the
opposite is true, since the 3-opt neighborhood is much greater than the 2-opt neighborhood
and the 3-opt neighborhood as defined above contains the 2-opt neighborhood. Therefore, a
3-opt local search cannot perform worse than a 2-opt local search in terms of solution quality.

In case of the asymmetric TSP, the above equation holds, too, with the exception that
there is no 2-opt move if the distance matrix is asymmetric. Reversing a sub-path in a ATSP
tour leads generally to a k-change depending on the length of the sub-path. Stadler and
Schnabl [281] have shown that such reversals yield a random walk correlation function of the
form

r(s) ≈ 1

2
δ0,s +

1

2
exp(−4s/n), (7.4)

where δ denotes the Dirac function. δ0,s is defined as

δ0,s =

{
1, if s = 0
0, otherwise

(7.5)

in the discrete case. The Dirac function plays an important role in signal theory.

7.3 The Fitness Landscape of the TSP 117

7.3.3 Fitness Distance Correlation Analysis

The correlation of fitness of local optima and distance to the optimum solution has already
been studied by Boese [35, 34] in order to derive a suitable search strategy for the TSP.
However, he concentrated in his studies [35] on a single TSP instance contained in TSPLIB
[260], a public accessible library of TSP instances.

To obtain more general information, additional instances have been analyzed for which
the results are presented in the following. The instances are selected to cover different
problem sizes as well as problem characteristics. The first three instances denoted mpeano7,
mnpeano7, and David5 are fractal instances based on L-systems (such as the Koch-curve)
with known optimum tours described in [229, 228, 238]. The number in the name denotes
the order of the fractal.

The other nine instances are chosen from TSPLIB. The first instance denoted ts225 is
known to be hard to solve exactly by Branch-&-Cut algorithms [10] although it has a small
number of cities. Instance pcb442 is a PCB production instance with a regular location of
the nodes. The instances att532, pr1002, and pr2392 are instances derived from real city
locations. rat783 is an instance with random distribution of the cities in a rectangular area.
dsj1000 denotes an instance with clustered cities. And finally, the instances fl1400 and fl1577
are PCB drilling problems. The latter of the two has been the smallest unsolved problem in
TSPLIB for a long time. Recently, it could be solved to optimality, however. In Figure 7.4,
some characteristic instances are displayed.

To obtain insight into the structure of the fitness landscapes of these instances, experi-
ments have been conducted in which the (cor-)relation of fitness and distance to the optimum
of locally optimum solutions has been investigated. For instances with more than one known
optimum solution, the distances to the nearest optimum was considered. For example, the
number of optima found in experiments for the instances ts225, rat783, and fl1400, is 147,
17, and 7, respectively. For the first two instances, the average distance between the optima
is 25.8 and 9.5, respectively. The optima found for instance fl1400 have an average distance
of 336.6. It is assumed that all fl instances have a high number of global optima. Since just
one global optimum was known to the author at the beginning of the experiments, no other
global optima has been considered in the FDC.

In a first series of experiments, the local optima were produced by a fast 3-opt local search
applied to randomly generated solutions. The results are presented in Table 7.1. In the first
column, the name of the instance is displayed, and in the second column the problem size
n is given. In columns three through seven, the minimum distance of the local optima to a
global optimum (min dopt), the average distance of the local optima to the global optimum
(dopt), the average distance between the local optima (dloc), the number of distinct local
optima (N3−opt) out of 2500, and the fitness distance correlation coefficient (%) are provided,
respectively. Additionally, the normalized average distance, i.e., the average distance of the
local optima to the global optimum divided by the maximum distance in the search space
n is shown in column four in parentheses. In case of more than one known global optimum,
the distance to optimum means the distance to the nearest optimum.

In case of the fractal instances mpeano7 and David5, the optimum could be found with
fast 3-opt. The average distance to the optimum is very small compared to the maximum
distance in the search space, and the locally optimum solutions are close together. mpeano7
appears to have a small number of local optima since in the analysis only 840 distinct local
optima could be found. For the problems contained in TSPLIB, the normalized average

118 7 The Traveling Salesman Problem

pcb442 mpeano7 dsj1000

att532 fl1577

Figure 7.4: Optimum tours of five TSP instances

distance to the optimum is about 0.2 with one exception: for fl1400 the value is about 0.4.
Thus, all TSPLIB instances have local optima with a significantly higher distance to the
optimum than the fractal instances. For all instances, the average distances between the
local optima are similar to the average distance to the optimum. The correlation coefficient
is high for the instances based on real city instances and clusters seem to affect correlation
negatively. For the random instance rat783, the correlation coefficient is highest, and it is
lowest for the drilling problems and ts225.

For the same set of instances, a second series of experiments has been conducted. In these
experiments, the local optima were generated with the Lin-Kernighan heuristic rather than
with 3-opt. The results are displayed in Table 7.2. The local optima generated by the LK
heuristic show the same properties than those obtained by 3-opt. The correlation coefficients
are slightly higher for almost all TSPLIB instances, and in case of the fractal instances they
are close to 1. Fitness distance plots for some of the instances are provided in Figure 7.5.
The distance to the optimum is plotted against the fitness (cost) difference between the
locally optimum solutions and the fitness of the global optimum (∆f = c(πloc)−c(πopt)). The

7.3 The Fitness Landscape of the TSP 119

Table 7.1: Results of the Fitness Distance Analysis for 3-opt Solutions of the TSP

Instance n min dopt dopt dloc N3−opt %

mnpeano7 724 20 85.32 (0.12) 138.53 2500 0.50
mpeano7 852 0 1.93 (<0.01) 3.83 840 0.40
David5 1458 0 29.98 (0.02) 57.55 2498 0.56

ts225 225 19 33.90 (0.15) 35.07 2496 0.18
pcb442 442 63 105.95 (0.24) 109.74 2500 0.48
att532 532 36 106.48 (0.20) 123.17 2500 0.57
rat783 783 83 151.82 (0.19) 184.77 2500 0.68
dsj1000 1000 122 207.93 (0.21) 239.87 2500 0.36
pr1002 1002 123 203.00 (0.20) 242.16 2500 0.57
fl1400 1400 504 574.85 (0.41) 561.26 2500 0.07
fl1577 1577 152 239.90 (0.15) 260.10 2500 0.27
pr2392 2392 283 430.04 (0.18) 496.62 2500 0.63

Table 7.2: Results of the Fitness Distance Analysis for LK Solutions of the TSP

Instance n min dopt dopt dloc NLK %

mnpeano7 724 0 20.94 (0.03) 39.09 118 0.99
mpeano7 852 0 13.56 (0.02) 25.99 87 0.99
David5 1458 0 3.82 (<0.01) 7.55 137 0.94

ts225 225 20 33.60 (0.15) 34.98 2497 0.21
pcb442 442 61 105.92 (0.24) 109.82 2500 0.50
att532 532 47 106.29 (0.20) 122.71 2500 0.54
rat783 783 75 151.38 (0.19) 184.51 2500 0.70
dsj1000 1000 105 208.19 (0.21) 240.01 2500 0.36
pr1002 1002 108 202.15 (0.20) 241.77 2500 0.60
fl1400 1400 511 575.23 (0.41) 560.71 2500 0.06
fl1577 1577 151 238.95 (0.15) 259.55 2500 0.34
pr2392 2392 310 429.35 (0.18) 496.47 2500 0.64

instance mpeano7 shows perfect correlation between the fitness difference and the distance
to the optimum. The local optima form a straight line originating from the optimum. The
plot for ts225 looks quite different: for some fitness values, there are several local optima
while for most fitness values there is not even a single one leading to large gaps in fitness
of the local optima. Problems att532, rat783, and pr2392 exhibit a “cloud” of local optima
in their scatter plots. The mean of the points are oriented along a straight line. The
clustered instance dsj1000 is similar but there is no orientation towards the optimum. This
phenomenon becomes more apparent in the problems fl1400 and fl1577. The mean of the
points are distributed parallel to the δf -axis.

The analysis has shown that local optima in the TSP are found in a small region of the
search space: on average, more than 3

4
of the edges are common to all local optima with

120 7 The Traveling Salesman Problem

0

100

200

300

400

500

600

700

800

0 100 200 300 400 500 600 700 800

F
itn

es
s

di
ffe

re
nc

e

�

∆f

Distance to optimum dopt

mpeano7.tsp

0

1000

2000

3000

4000

5000

6000

7000

0 50 100 150 200

F
itn

es
s

di
ffe

re
nc

e

�

∆f

Distance to optimum dopt

ts225.tsp

0
100
200
300
400
500
600
700
800
900

0 100 200 300 400 500

F
itn

es
s

di
ffe

re
nc

e

�

∆f

Distance to optimum dopt

att532.tsp

0

50

100

150

200

250

300

0 100 200 300 400 500 600 700

F
itn

es
s

di
ffe

re
nc

e
�

∆f

Distance to optimum dopt

rat783.tsp

0

200000

400000

600000

800000

1e+06

1.2e+06

0 200 400 600 800 1000

F
itn

es
s

di
ffe

re
nc

e

�

∆f

Distance to optimum dopt

dsj1000.tsp

0

2000

4000

6000

8000

10000

12000

14000

0 500 1000 1500 2000

F
itn

es
s

di
ffe

re
nc

e

�

∆f

Distance to optimum dopt

pr2392.tsp

0

1000

2000

3000

4000

5000

6000

0 200 400 600 800 1000 1200 1400

F
itn

es
s

di
ffe

re
nc

e

�

∆f

Distance to optimum dopt

fl1400.tsp

0
500

1000
1500
2000
2500
3000
3500
4000
4500

0 200 400 600 800 1000 1200 1400

F
itn

es
s

di
ffe

re
nc

e

�

∆f

Distance to optimum dopt

fl1577.tsp

Figure 7.5: Fitness-Distance Plots produced with LK local Search

7.4 A Memetic Algorithm for the TSP 121

one exception (fl1400). Furthermore, fitness and distance to the optimum are correlated
for most instances, and the average distance between the local optima is similar to the
distance to the optimum. Thus, the global optimum appears to be more or less central
among the local optima. Boese calls the structure of the TSP landscape the big valley
structure, since local optima are closer together if they are closer to the optimum, and
the smaller the cost, the closer they are to the optimum. However, the analysis has also
shown that not all instances exhibit this structure as, for example, ts225. Furthermore, the
analysis indicates that problems from application domains such as the drilling problems are
harder to solve than randomly generated instances with uniform distribution. The fractal
instances on the other hand are very easy to solve. They are not well suited as benchmark
problems for highly effective heuristics, since they do not have same the characteristics as
the instances arising in TSP applications. The big valley structure can be well exploited by a
memetic algorithm with recombination since good solutions are more likely to be found near
other local optima and most recombination operators produce solutions that lie “between”
other solutions (respectful recombination). Furthermore, an evolutionary algorithm usually
increases fitness of the solutions contained in the population while simultaneously decreasing
the distance between the solutions.

7.4 A Memetic Algorithm for the TSP

The memetic algorithm for the TSP is as outlined in the previous chapter: a population of
local optimum solutions is evolved over time by applying evolutionary variation operators
(mutation and recombination operators). To ensure that the individuals in the population
are local optima, after each application an evolutionary variation operator, local search
is applied. This includes the initialization phase of the population in which solutions are
constructed from scratch: A local search procedure is applied to these solutions so that even
the first generation consists exclusively of local optima.

The problem-specific parts of the algorithm comprise initialization, local search, and the
evolutionary variation operators.

7.4.1 Initialization and Local Search

To initialize the population of the MA, a local search procedure is applied to solutions con-
structed by the randomized greedy heuristic described above. However, the randomization
technique proposed by Johnson et al. [158], is not well suited for initialization of an MA
since the resulting solutions are very similar. Therefore, a variant is used: Before the greedy
construction scheme is applied, n

4
edges are inserted in the tour solution randomly by se-

lecting the edge to the nearest or second nearest unvisited neighbor of a randomly chosen
unvisited city. The edge to the nearest city is selected with a probability of 0.66 and the edge
to the second nearest city is selected with probability 0.33. After an edge has been inserted,
the endpoints of the edge are marked as visited to guarantee that the partial solution will
not become an infeasible solution.

Since the Lin-Kernighan heuristic is the best local search heuristic proposed for the TSP,
it is used in our algorithm. In some cases, the simpler fast 3-opt heuristic is used when it is
more efficient to use a fast but less elaborate local search.

122 7 The Traveling Salesman Problem

7.4.2 Variation Operators

Mutation operators used in simple evolutionary algorithms are not suited for use in MAs,
since subsequently applied local search procedures will usually revert the changes made. For
example, the inversion operator randomly exchanging two edges is ineffective when 2-opt,
3-opt or LK local search is used. Therefore, in MAs alternative mutation operators are
required.

The Mutation Operator

The mutation operators of our algorithms are based on edge exchange. There a two variants,
one of which produces arbitrary exchanges of a predefined number of k edges, and and the
other one which produces non-sequential edge exchanges. The smallest of such an exchange
is displayed in Figure 7.4.2 and involves four edges [192]. It stands in contrast to the
sequential edge exchanges performed by the Lin-Kernighan heuristic as described above.
Since the LK heuristic performs sequential changes, the probability is minimized that LK

u1

u2
u3
u4

u5 u6

u7u8

u1

u2
u3
u4

u5 u6

u7u8

Figure 7.6: The non-sequential 4-change

reverses mutation if non-sequential edge exchanges are utilized. In the effective iterated LK
heuristic, the non-sequential four-change is used as a mutation operator to escape from the
basins of attraction of local optima.

The DPX Recombination Operator

In case of recombination, previously published operators for EAs without LS can be used in
MAs, but as shown in [204, 83], there may be others that are better suited for the use in
MAs. These operators may be ineffective when used without LS.

The distance preserving crossover (DPX) proposed in [106, 105] is such an operator that
is only useful in combination with local search. In contrast to other recombination operators
such as the edge recombination operators [311, 283], it forces the inclusion of foreign edges
in the offspring instead of preventing it.

DPX tries to generate an offspring that has equal distance to both of its parents, i.e.,
its aim is to achieve that the three distances between offspring and parent 1, offspring and
parent 2, and parent 1 and parent 2 are identical. It works as follows: the content of the
first parent is copied to the offspring and all edges that are not in common with the other
parent are deleted. The resulting parts of the broken tour are reconnected without using the
non-shared edges of the parents. A greedy reconnection procedure is employed to achieve

7.4 A Memetic Algorithm for the TSP 123

this: if the edge (i, j) has been destroyed, the nearest available neighbor k of i among the
remaining tour fragments is taken and the edge (i, k) is added to the tour, provided that
(i, k) is not contained in the two parents. In order to illustrate the DPX operator, let us
consider an example.

5 3 9 1 2 8 0 6 7 4

1 2 5 3 9 4 8 6 0 7

5 3 9 8 7 2 1 46 0Offspring:

Parent 1:

Parent 2:

5 3 9 1 2 8 0 6 7 4Fragments:

Figure 7.7: The DPX recombination operator for the TSP

Suppose that the two parents shown in Figure 7.4.2 are given, then copying parent 1 to
the offspring and deleting the edges not contained in both parents leads to the tour fragments
5 3 9 - 1 2 - 8 - 0 6 - 7 - 4. The greedy reconnection procedure fixes the broken connections
by producing the offspring shown in Figure 7.4.2 as follows. First, a city is chosen randomly
as the starting point for the reconnection. Let us assume that the city to begin with is city
6, then the other endpoint (city 0) of the fragment containing city 6 is considered and its
nearest neighbor in the set of available cities, {5,9,1,2,4}, is determined. The set of available
cities only contains the start and endpoints of not yet visited tour fragments. City 8 and
city 7 are not contained in this set, because it is not desirable to reinsert edge (0, 8) or edge
(0, 7), since they are contained in parent 1 or parent 2, respectively. Let us assume that in
the example the nearest neighbor to city 0 is city 5, so city 0 is connected to city 5, and
the end of the connected fragment (city 9) is considered. At this point the set of available
cities is {2,8,7}. The procedure is repeated until all fragments have been reconnected. Note
that the distance d between the offspring and both parent 1 and parent 2 is identical to the
distance between the two parents (d = 6), hence the name distance preserving crossover.

In some rare cases, it is necessary to introduce backtracking into the greedy reconnection
procedure to fulfill the distance criterion. E.g., if in the example above the edges (2, 0),
(6, 4), (7, 8), (7, 9), and edge (1, 8) are inserted due to the nearest neighbor relations, the
remaining edge to close up the tour is edge (4, 5). Since this edge is contained in parent
A, the resulting child will will not fulfill the distance criterion: the distance to parent A
becomes 5 and the distance to parent B becomes 6. In such a situation, a backtracking
mechanism trying alternative edges in preceding steps has to be employed. However, in the
MA used in the experiments, the DPX operator does not include backtracking since it is
not worth to spend the extra computation time for backtracking. The cases for which the
distance criterion is not obeyed are extremely rare and it has been shown that the use of
backtracking in the DPX has no influence on the overall performance of the MA. Thus, the
easier to implement “one-pass” DPX is used in the MA experiments.

124 7 The Traveling Salesman Problem

The Generic Greedy Recombination Operator

Another recombination operator has been developed that utilizes the greedy construction
scheme of the greedy heuristic described above. The generic greedy recombination operator
(GX) consists of four phases. In the first phase, some or all edges contained in both parents
are copied to the offspring tour. In the second phase, new short edges are added to the
offspring that are not contained in one of the parents. These edges are selected randomly
among the shortest edges emanating from each node. These edges are with high probability
contained in (near) optimum solutions and are thus good candidates for edges in improved
tours. In a third phase, edges are copied from the parents by making greedy choices. Here,
edges may be included that are not common to both of the parents. Edges are inserted in
order of increasing length, and only candidate edges are considered, i.e., edges that violate
the TSP constraints. In the fourth and last phase, further edges are included utilizing the
greedy construction scheme of the greedy heuristic described above until the child consists
of n edges and is thus a feasible TSP tour. The pseudo code of the recombination operator
is provided in Figure 7.8.

The GX operator has three parameters: the common edges inheritance rate (cRate) that
determines the probability that a common edges is added to the child and is thus a control
parameter for the first phase. With a rate of 1.0, respectful recombination is achieved, all
other rates lead to unrespectful recombination. The second phase is controlled by the new
edges introduction rate (nRate) that determines the number of new edges to insert. A rate
of 0.5, for example, determines that half of the remaining edges to insert after phase one are
new edges that are short but not contained in one of the parent solutions. The number of
edges to inherit from the parents including edges not common two both parents is determined
by the inheritance rate (iRate). In the last phase, edges in increasing length are chosen that
may or may not be found in the parents.

Local Search and Recombination

In an MA, recombination operators are desired that are efficiently in combination with the
local search that is applied after a child has been generated. Thus, it makes sense to tune
the local search for its operation after recombination. The landscape analysis has shown
that there is correlation between tour length and distance to the optimum of local minima
and that a local optimum with high fitness (short tour length) is contained near other
local optima with high fitness. Therefore, it makes sense to restrict a local search after
recombination to search only the region around or between the two parents. This can be
accomplished by fixing all common edges that have been included in the child in the first
step of recombination. The edges that are common to both parents can be regarded as the
“building blocks” of the evolutionary search and should be found in good offspring tours.
Fixing these edges prevents the local search to replace these edges by others and reduces the
running time of the local search considerably. From the perspective of the local search, the
fixing of edges reduces the problem size since fixed edges are never considered during the
search for edge exchanges.

The landscape analysis has shown that less than one fourth of the edges in the local
optima are different. Thus, in the first generation of an MA, a local search operates on
a problem with a dimensionality of one fourth of the original one if the fixing of edges is
performed during recombination. Since with ongoing evolution, the distance between the
members of the population diminishes, the size of the problem becomes smaller for the local

7.4 A Memetic Algorithm for the TSP 125

procedure GreedyRecombination(a,b in X; cRate, nRate, iRate: Real): X;

begin
let x be the edge set of the partial offspring tour;
let remaining = n;
/∗ Copy common edges ∗/
foreach edge e in a do

if (e in a and cRate < random[0,1)) then
add e to x;
remaining := remaining − 1;

end;
end;
/∗ Insert new edges ∗/
for k:=1 to (remaining ∗ nRate) do

i := n ∗ random[0,1);
j := select from (the 5 nearest neighbors of i)

with (i, j) feasible and (i,j) not in a or b;
add edge (i,j) to x;
remaining := remaining − 1;

end;
/∗ Inherit edges from parents ∗/
for k:=1 to (remaining ∗ iRate) do

parent := select randomly from (parent a, parent b);
if (parent has a candidate edges) then

edge := select from (shortest, second shortest candidate edge);
add edge to x;
remaining := remaining − 1;

end;
end;
/∗ greedy completion ∗/
while (remaining > 0) do

edge := select from (shortest, second shortest candidate edge);
add edge to x;
remaining := remaining − 1;

end;
end;

Figure 7.8: The Generic Greedy Recombination Operator

search in each generation. This leads to a radically reduced running time for the local search.

7.4.3 Implementation Details

In the implementation of the algorithms for the TSP described in this chapter, a nearest
neighbor list of size m = 100 for each node is maintained, which is initialized by nearest
neighbor queries on a two-dimensional binary search tree [28]. In the local search procedures,

126 7 The Traveling Salesman Problem

a data structure for maintaining don’t look bits is incorporated, with the local search for
the initial population starting with all don’t look bits set to zero. After recombination has
been performed, only the don’t look bits of the nodes that are incident to the edges not
shared by both parents are cleared. Similarly, after mutation, only nodes incident to the
edges newly included in the tour have their don’t look flags set to zero. This focuses the
search of the hill-climber to the promising regions of the search space and also reduces the
time for checking the interesting members of the neighborhood.

Additionally, in the algorithm for the TSP, data structures have been incorporated to
deal with large instances of up to 100.000 cities. Since for large instances it is not possible
to store the entire distance matrix in main memory, the Euclidean distances are computed
online. This is a rather expensive operation, so a distance cache of size 3 · n is maintained,
where the first n entries are used to cache the distances of the edges in the current tour and
the remaining 2 · n entries are organized as described in [28]. The average hit rate of the
cache varies between 80% and 95%.

Another target for optimizations is the Lin-Kernighan heuristic itself. Most of the com-
putation time is spent in submoves that will be reversed later in the algorithm. Hence, it
is profitable to distinguish between tentative and permanent moves. Applegate and Cook
have proposed a segment tree data structure for efficiently managing tentative moves, as
described in [104]. Instead of using a segment tree, the algorithms described here operate on
a segment list that represents a tentative tour. Operations performing a flip on this tentative
tour are highly optimized, such that a high performance gain compared to the simple array
representation can be achieved. The running times for all operations are in O(1), since the
data structure is limited to perform 20 flips only. In practice, this has been proven to be
sufficient.

7.4.4 Performance Evaluation

Several experiments have been conducted to evaluate the performance of memetic algorithms
for the TSP. All experiments described in the following were conducted on a PC with Pentium
III Processor (500 MHz) under Linux 2.2. All algorithms were implemented in C++.

In a first set of experiments, several recombination operators for the TSP were tested
under the same conditions on three selected TSP instances contained in TSPLIB: att532,
pr1002, and fl1577. To get a clear picture of the operator effectiveness, no additional mutation
was performed and the restart mechanism was disabled during the runs. Furthermore, a fast
2-opt local search was used in the MAs that is not as effective as 3-opt local search or the
Lin-Kernighan heuristic to reduce the strong influence of the (sophisticated) local search.
The recombination operators MPX, DPX, and the generic greedy recombination operator
was studied with various parameter settings. The population was set to P = 100 in all runs,
and the variation operator application rate was set to 0.5, i.e., 50 offspring were generated
per generation. The results of the experiments are summarized in Table 7.3. For each
instance/operator, the average number of generations, the shortest tour length found, and
the percentage access over the optimum solution value is provided. For the GX operator, the
values for cRate, nRate and iRate are provided in the form cRate/nRate/iRate. For example,
a parameter setting of 1/0.25/0.75 means that the common inheritance rate cRate was set
to 1.0, the new edges introduction rate nRate was set to 0.25, and the inheritance rate iRate
was set to 0.75. The dot in each column block indicates the best result within this block.

For all three instances, MPX and DPX are outperformed by GX for some of the parameter

7.4 A Memetic Algorithm for the TSP 127

Table 7.3: Comparison of MA Recombination Strategies for the TSP (2-opt)

Operator att532 pr1002 fl1577

DPX 1565 27793.0 - 0.386% 664 266240.5 - 2.778% 653 22314.0 - 0.292%
MPX 2691 27772.0 - 0.311% 3404 261695.5 - 1.023% 1240 22347.8 - 0.444%
GX-Params
1/1/1 650 27738.7 - 0.190% 307 268183.5 - 3.528% 554 22295.6 - 0.210%
1/1/0.75 708 27744.7 - 0.212% 354 268072.9 - 3.485% 592 22306.7 - 0.259%
1/1/0.5 725 27740.0 - 0.195% 415 267033.1 - 3.084% 585 22304.0 - 0.247%
1/1/0.25 669 27772.0 - 0.311% 304 268487.4 - 3.645% 580 22296.5 - 0.213%
1/0.5/1 868 27729.8 - 0.158% 759 260907.8 - 0.719% 624 22294.8 - 0.206%
1/0.5/0.75 929 27727.0 - 0.148% 733 261981.0 - 1.133% 713 22294.6 - 0.205%
1/0.5/0.5 923 27725.2 - 0.142% 808 261121.2 - 0.801% 682 22296.7 - 0.214%
1/0.5/0.25 892 27723.9 - 0.137% 832 260723.4 - 0.648% 641 22303.5 - 0.245%
1/0.25/0 928 27724.5 - 0.139% 1223 260671.2 - 0.628% 690 22304.5 - 0.250%
1/0.25/0.75 1091 • 27719.2 - 0.120% 1430 260683.9 - 0.633% 769 22294.8 - 0.206%
1/0.25/0.5 1065 27722.4 - 0.131% 1422 260585.9 - 0.595% 684 22311.7 - 0.282%
1/0.25/0.25 998 27723.3 - 0.135% 1334 • 260508.6 - 0.565% 696 22307.0 - 0.261%
1/0/1 956 27763.5 - 0.280% 1321 261379.9 - 0.901% 736 22323.4 - 0.335%
1/0/0.75 1071 27728.0 - 0.152% 1481 260894.8 - 0.714% 735 • 22287.8 - 0.174%
1/0/0.5 1035 27725.4 - 0.142% 1434 260949.5 - 0.735% 744 22312.0 - 0.283%
1/0/0.25 1006 27737.7 - 0.186% 1412 260984.0 - 0.749% 719 22326.2 - 0.347%
0.75/0.5/1 201 28429.8 - 2.686% 226 269423.5 - 4.007% 212 22725.8 - 2.143%
0.75/0.5/0.75 224 28435.5 - 2.707% 254 269423.5 - 4.007% 230 22725.8 - 2.143%
0.75/0.5/0.5 215 28435.5 - 2.707% 243 269423.5 - 4.007% 225 22725.8 - 2.143%
0.75/0.5/0.25 206 28434.8 - 2.705% 232 269423.5 - 4.007% 219 22725.8 - 2.143%
0.75/0.25/0 233 27986.0 - 1.084% 229 269271.2 - 3.948% 227 22679.0 - 1.932%
0.75/0.25/0.75 269 28230.8 - 1.968% 288 269423.5 - 4.007% 269 22671.2 - 1.897%
0.75/0.25/0.5 254 28063.3 - 1.363% 258 269335.2 - 3.972% 254 22657.9 - 1.838%
0.75/0.25/0.25 243 27976.5 - 1.049% 240 269384.7 - 3.991% 239 22649.5 - 1.800%
0.75/0/1 407 27869.0 - 0.661% 422 263536.0 - 1.734% 270 22583.3 - 1.503%
0.75/0/0.75 517 27771.5 - 0.309% 705 • 261696.8 - 1.024% 620 • 22319.3 - 0.316%
0.75/0/0.5 457 • 27747.2 - 0.221% 558 262236.0 - 1.232% 398 22415.2 - 0.747%
0.75/0/0.25 415 27750.5 - 0.233% 435 262634.5 - 1.386% 298 22492.2 - 1.093%
0.5/0.25/0 156 28394.2 - 2.558% 179 269400.0 - 3.998% 161 22725.8 - 2.143%
0.5/0.25/0.75 191 28433.2 - 2.699% 224 269423.5 - 4.007% 187 22725.8 - 2.143%
0.5/0.25/0.5 172 28414.0 - 2.630% 201 269423.5 - 4.007% 178 22724.8 - 2.139%
0.5/0.25/0.25 162 28373.5 - 2.483% 187 269423.5 - 4.007% 170 22725.8 - 2.143%
0.5/0/1 195 28041.8 - 1.285% 216 266696.7 - 2.954% 174 22693.8 - 1.999%
0.5/0/0.75 403 27870.7 - 0.667% 455 • 263020.8 - 1.535% 363 • 22416.0 - 0.751%
0.5/0/0.5 293 • 27838.5 - 0.551% 316 263258.8 - 1.627% 242 22530.1 - 1.263%
0.5/0/0.25 220 27894.7 - 0.754% 227 265673.8 - 2.559% 192 22628.6 - 1.706%
ILS 61365 27777.7 - 0.331% 126457 260683.6 - 0.633% 150797 22369.2 - 0.540%
NS4 744 27860.2 - 0.629% 1438 261922.0 - 1.111% 1633 22304.0 - 0.247%
Time: 60 sec. 120 sec. 200 sec.

128 7 The Traveling Salesman Problem

settings: all GX variants with a common inheritance rate of 1.0 and a new edge introduction
rate of 0.25 perform better than MPX and DPX. However, the best parameter setting for GX
is for each of the instances a different one implying that there is no “golden rule” leading
to the best recombination strategy for all TSP instances! For example, the best setting
for fl1577 is 1/0/0.75 but all other combinations with nRate set to 0.0 do not perform as
good as the GX variants with nRate set to 0.25. Furthermore, it becomes apparent that
respectfulness is a very important property of recombination operators since all GX versions
with a common inheritance rate less than 1 perform significantly worse than the respectful
greedy recombination operators. However, choosing a high inheritance rate can compensate
the phenomenon to an extent since the common edges of the parents have a chance to be
included in the offspring in the third phase of the generic recombination. Additionally,
iterated 2-opt local search (ILS) and a MA with the non-sequential four-change mutation
(NS4) and no recombination has been applied to the three instances. The mutation based
algorithms perform relatively good but can not compete with the greedy recombination MAs.
The correlation structure of the landscape can be exploited by a recombination-based MA.
For the instance fl1577, the MA with NS4 performs much better than ILS indicating that
for such a type of landscape search from multiple points (population-based search) is more
promising.

In the second experiment, the fast 2-opt local search has been replaced by the Lin-
Kernighan heuristic. The population size was set to 40, the variation operator application
rate was set to 0.5, i.e., 20 offspring were generated per generation, and restarts were en-
abled with a diversification rate of 0.3. The results obtained from experiments with MAs
using DPX, MPX, respectful GX, non-sequential-four-change mutation (denoted NS4) in
comparison to the iterated Lin-Kernighan heuristic (ILK) are displayed in Table 7.4. For
each instance/operator pair, the average number of generations, and the percentage access
over the optimum solution value is provided. For the GX operator, the values for nRate and
iRate are provided in the form nRate/iRate. cRate was set to 1.0 in all experiments. The
dot in each row indicates the best result for an instance.

Here, the performance differences of the MAs are in most cases not significant. For the
problems att532, rat783, and pr1002 all algorithms perform well with only small differences,
except for the MA with MPX recombination in case of pr1002. Surprisingly, this MA performs
significantly worse than the other algorithms. For fl1577 the MAs with DPX and GX
outperform all other competitors with the MA using DPX being the best. For pr2392,
all recombination based algorithms perform similar, but the MA with mutation and ILK
perform significantly worse. In case of pcb3038, the largest instance considered, all results
lie close together. The MAs with DPX and MPX outperform ILK and the MA with NS4.
In the greedy recombination GAs, high differences can be observed. The best results are
obtained with a new edge introduction rate of 0.25. The results show no clear tendency, and
often the values lie to close together to being significantly different. However, in none of the
cases, ILK or the MA with mutation is able to outperform the MA using DPX or the best
greedy recombination. The performance differences between mutation and recombination
operators have become more apparent using 2-opt local search. For larger instances, this
may be also observed for MAs with the LK heuristic.

In an additional experiment, the combination of recombination and mutation operators
in a MA has been investigated. In the same experimental setup as before, the MAs with
DPX and MPX recombination have been run with the non-sequential four change mutation
operator (NS4). The results are provided in Table 7.5. The table contains the results

7.4 A Memetic Algorithm for the TSP 129

Table 7.4: Comparison of MA Recombination Strategies for the TSP (LK)

att532 rat783 pr1002 fl1577 pr2392 pcb3038

ILK 0.046 % 0.018 % 0.065 % 0.158 % 0.215 % 0.135 %
DPX 0.030 % 0.004 % 0.023 % • 0.028 % 0.068 % 0.113 %
MPX • 0.021 % • 0.001 % 0.169 % 0.142 % 0.054 % 0.128 %
NS4 0.055 % 0.010 % 0.020 % 0.181 % 0.119 % 0.171 %
GX 1.0/1.0 0.030 % 0.007 % 0.036 % 0.055 % 0.042 % 0.132 %
GX 1.0/0.75 0.035 % 0.026 % 0.022 % 0.058 % 0.053 % 0.211 %
GX 1.0/0.5 0.040 % 0.008 % 0.011 % 0.045 % 0.050 % 0.171 %
GX 1.0/0.25 0.043 % 0.006 % 0.013 % 0.051 % 0.047 % 0.146 %
GX 0.5/0.5 0.033 % 0.006 % 0.009 % 0.042 % 0.037 % 0.112 %
GX 0.5/0.75 0.031 % 0.007 % 0.031 % 0.048 % 0.055 % 0.175 %
GX 0.5/0.5 0.035 % 0.008 % 0.005 % 0.046 % 0.051 % 0.143 %
GX 0.5/0.25 0.037 % 0.009 % 0.011 % 0.037 % 0.044 % 0.136 %
GX 0.25/0 0.026 % 0.002 % 0.017 % 0.044 % 0.022 % 0.125 %
GX 0.25/0.75 0.038 % 0.012 % 0.003 % 0.041 % 0.031 % 0.151 %
GX 0.25/0.5 0.035 % 0.006 % 0.002 % 0.036 % 0.025 % 0.111 %
GX 0.25/0.25 0.041 % 0.005 % 0.002 % 0.040 % 0.023 % • 0.111 %
GX 0.0/1.0 0.045 % 0.008 % 0.006 % 0.052 % • 0.020 % 0.123 %
GX 0.0/0.75 0.036 % 0.003 % • 0.000 % 0.043 % 0.027 % 0.115 %
GX 0.0/0.5 0.034 % 0.011 % 0.008 % 0.052 % 0.029 % 0.122 %
GX 0.0/0.25 0.037 % 0.004 % 0.002 % 0.050 % 0.035 % 0.123 %
Time: 60 sec. 80 sec. 200 sec. 300 sec. 400 sec. 800 sec.

Table 7.5: Comparison of MAs with Recombination and Mutation (NS4) for the TSP

att532 rat783 pr1002 fl1577 pr2392 pcb3038

DPX 0.030 % 0.004 % 0.023 % 0.028 % 0.068 % 0.113 %
DPX, m = 0.1 0.017 % 0.001 % 0.012 % 0.027 % 0.021 % 0.099 %
DPX, m = 0.5 0.017 % 0.007 % 0.000 % 0.041 % 0.043 % 0.106 %
MPX 0.021 % 0.001 % 0.169 % 0.142 % 0.054 % 0.128 %
MPX, m = 0.1 0.013 % 0.000 % 0.041 % 0.146 % 0.053 % 0.094 %
MPX, m = 0.5 0.025 % 0.005 % 0.054 % 0.138 % 0.047 % 0.103 %
Time: 60 sec. 80 sec. 200 sec. 300 sec. 400 sec. 800 sec.

achieved with DPX and MPX without mutation as well as the results for a mutation operator
application rate of m = 0.1 and m = 0.5. The number of offspring per generation produced
by mutation is m · P . The results have a clear tendency: in the majority of runs, additional
mutation improves the results. Furthermore, it is shown that the mutation application rate
of m = 0.1 is preferable.

Using a mutation application rate of m = 0.1, the MAs have been run on a variety
of problem instances contained in TSPLIB, to show the robustness and scalability of the
memetic approach. In Table 7.6, the results are shown for five instances up to a problem size
of 1002. The population size was set to P = 40 in all runs and the recombination application
rate was set to 0.5 and the diversification rate to 0.1. Two MAs were run on each instance,

130 7 The Traveling Salesman Problem

the first one with DPX recombination and the second one with GX recombination. In the
latter, cRate was set to 1.0, nRate was set to 0.1 which appears to be a good compromise
between 0.25 and 0.0, and iRate was set to 0.5. The programs were terminated as soon as

Table 7.6: Average Running Times of two MAs to find the Optimum

Instance Op gen quality Nopt t in s

DPX 19 42029.0 (0.000%) 30/30 8
lin318

GX 13 42029.0 (0.000%) 30/30 8
DPX 824 50778.0 (0.000%) 30/30 147

pcb442
GX 286 50778.0 (0.000%) 30/30 68
DPX 560 27686.0 (0.000%) 30/30 127

att532
GX 289 27686.0 (0.000%) 30/30 106
DPX 122 8806.0 (0.000%) 30/30 26

rat783
GX 136 8806.0 (0.000%) 30/30 35
DPX 333 259045.0 (0.000%) 30/30 112

pr1002
GX 182 259045.0 (0.000%) 30/30 98

they reached an optimum solution. In the table, the average number of generations (gen)
and the average running time of the algorithms (t in s) in seconds is provided. In 30 out of
30 runs, the optimum could be found for all instances in less than two minutes. The average
running time for rat783 is much lower than for att532 which is not surprising since the
landscape of the random instance rat783 has a higher FDC coefficient. The MA with greedy
recombination appears to be slightly superior to the MA with DPX in most cases. For larger
instances, the average time to reach the optimum as well as the deviation of the running time
increases dramatically. Thus, the MA were run on the larger instances with a predefined
time limit. Table 7.7 summarizes the results for the MA with greedy recombination (GX).
The population size was set to P = 100 for pr2392 and pcb3038 since smaller population size

Table 7.7: Performance of MA-GX on large TSP instances

Instance gen quality sdev. Nopt t in s

pr2392 2407 378032.6 (0.000%) 0.8 27/30 2588
pcb3038 5248 137702.6 (0.006%) 6.4 3/30 6955
fl3795 341 28794.7 (0.079%) 21.3 1/30 7212

led to worse performance. Due to long running time of the LK heuristic, the population size
for fl3795 was set to P = 40. In the table, the average number of generations evolved by the
MA (gen), the average final tour length, the percentage access over the optimum solution
value (in parentheses), the standard deviation of the final tour length (sdev.), the number of
times the optimum was found (Nopt), and the running time in seconds (t in s) is provided.

The running times presented here cannot be compared directly with results of alternative
approaches found in the literature, since different hardware/software platforms have been
used. However, it appears that the MA presented here outperforms other approaches. With
ASPARAGOS96 [123], an average tour length of 8809 (0.03%) could be found in approx.

7.4 A Memetic Algorithm for the TSP 131

3 hours on a SUN UltraSparc with 170 MHz for rat783, and an average final tour length
of 28820 (0.34%) for fl 3795 in approx. 17 hours. The results are significantly worse in
both running times and solution quality. With the Edge Assembly Crossover EA [234], the
running time for finding the optimum for rat783 is 3013 seconds on a PC with a 200 MHz
Intel Pentium processor which is much slower even taking the performance differences of the
processors into account. The running time to reach a solution quality of 0.006 % for pr2392
is 33285 seconds with their approach which is worse than the MA presented here in both
quality and time.

The physically inspired IPT approach [225] outperforms the MA on problem fl3795, for
which it requires 6050 seconds on a HP K460 Server with 180 MHz PA8000 processors to
find the optimum solution. However, the MA is superior on the instances att532, rat783,
and pr2392 in terms of average solution quality. For the latter instance, IPT required 9380
seconds to reach an average final tour length of 378158 (0.033 %).

The Genetic Iterated Local Search approach (GILS) [165] is similar to the MA presented
in this chapter. Due to the different hardware platform and different running times, a
comparison is not possible. GILS delivers very impressive results for the instance pr2392:
an average quality of 0.006 % – the optimum is found 3 out of 10 times – is achieved
in 1635 seconds on a Fujitsu S-4/5 workstation (microSPARCII 110 MHz). The average
final quality for att532 and rat783 is 0.056% and 0.022 % found in 113 and 103 seconds,
respectively. However, the MA is able to find the optimum for fl3795 while the optimum
could not be found in 26958 seconds by the GILS.

All other heuristics proposed for the TSP, such as simulated annealing [303, 153], tabu
search [90], ant colonies [112, 78, 287], artificial neural networks [253, 223, 81], search space
smoothing [130], and perturbation [55] have been applied only to rather small problems from
TSPLIB or to randomly generated problems. None of these heuristics has been applied to
TSPLIB instances between 3000 and 4000 cities.

The Branch & Cut approach by Applegate et al. [11, 12] required 80829 seconds for
pcb3038, and 69886 seconds for fl3795 on a Compaq XP1000 (500 MHz) machine, which is
more than two times faster than a Pentium III 500 MHz.

Large Instances

Finally, the MA has been applied to the largest instances in TSPLIB. For these instances,
there are no published results of heuristic methods known to the author. Table 7.8 shows the
tour length of the optimum solutions as well as the computation time required by Branch
& Cut to find the optimum [12] on a Compaq XP1000 (500 MHz) machine. The estimated
time on a Pentium II 600 MHz PC is provided in the last column to allow a comparison with
the running times provided in this chapter. For the three largest problems, the optimum
solutions are not known. Therefore, the bounds in which the optimum is known to lie is
provided instead of the optimum value itself.

To demonstrate the applicability of the algorithms to very large instances, the MA has
been applied to the seven problems listed in Table 7.8. With the same parameters as above,
but with termination before the third restart, the MAs were run with a population size P
of 10, 20, and 40. The results are presented in Table 7.9. For each population size (P) and
each instance, the average number of generations (gen), the average final tour length and
percentage access over the optimum or the lower bound (quality), the standard deviation
(sdev), and the average time (t) in seconds of 10 runs is displayed.

132 7 The Traveling Salesman Problem

Table 7.8: The largest instances in TSPLIB

Time to find the optimumInstance Optimum/Bounds
XP1000 500 MHz Pentium II 600 MHz

fnl4461 182566 53420.13 sec ≈ 108044 sec
pla7397 23260728 428996.2 sec ≈ 867661 sec
rl11849 923288 ≈ 155 days ≈ 313 days
usa13509 19982859 ≈ 4 years ≈ 8 years
d18512 [645198, 645255] – open –
pla33810 [66005185, 66059941] – open –
pla85900 [142307500, 142409553] – open –

Table 7.9: Performance of MA-GX on the largest instances in TSPLIB

P Instance gen quality sdev. t in s

fnl4461 291 183762.7 (0.655%) 192.1 105
pla7397 887 23328499.5 (0.291%) 21931.7 802
rl11849 314 931333.5 (0.871%) 1417.2 417

10 usa13509 466 20186311.8 (1.018%) 17135.1 790
d18512 379 653474.3 (1.283%) 381.3 930
pla33810 1386 66575838.8 (0.864%) 57687.2 3443
pla85900 2216 143596390.7 (0.906%) 103234.6 12314
fnl4461 528 183366.3 (0.438%) 163.7 294
pla7397 1155 23307621.7 (0.202%) 14120.4 1860
rl11849 536 928115.5 (0.523%) 795.8 1006

20 usa13509 1082 20125182.2 (0.712%) 27980.9 2422
d18512 1226 650803.2 (0.869%) 477.8 2873
pla33810 3832 66321344.7 (0.479%) 45162.4 11523
pla85900 9069 142986675.5 (0.477%) 79510.3 52180
fnl4461 856 183047.1 (0.263%) 82.2 742
pla7397 1185 23294046.2 (0.143%) 12538.2 3789

40 rl11849 861 926253.7 (0.321%) 605.5 2503
usa13509 1936 20057767.0 (0.375%) 10176.8 6638
d18512 2091 649354.6 (0.644%) 501.6 7451

The results show that a running time smaller than an hour is sufficient to reach a quality
of less than 1% for all problems except the largest one. For the latter, the running time
increases to 12000 seconds. Increasing the population size increases the final solution quality,
but running times increase drastically. In the extreme case – the largest problem, the running
times grow 4.2 times from 12314 to 52180 seconds. In most other cases the running time
grows less than 3 times. It can be observed that the pla-problems are better solved than the
other instances with respect to the solution quality.

To allow a comparison to a non-population-based approach, ILK has been applied to the
seven problem instances. The running times were chosen to allow a comparison with the MA
at P = 20. Table 7.10 shows the results of the experiments. For each instance, the average

7.5 Summary 133

Table 7.10: Performance of ILK on the largest instances in TSPLIB

Instance iter quality sdev. t in s

fnl4461 7108 183191.1 (0.343%) 72.7 300
pla7397 1830 23324376.2 (0.273%) 17985.5 1800
rl11849 11274 926139.9 (0.309%) 772.9 1000
usa13509 9912 20063763.7 (0.405%) 13400.8 2400
d18512 22243 647949.3 (0.426%) 229.1 2900
pla33810 7930 66270531.2 (0.402%) 22368.1 7200
pla85900 19437 142919653.4 (0.430%) 54291.6 14400

number of iterations (iter), the average final tour length and percentage access over the
optimum or the lower bound (quality), the standard deviation (sdev), and the average time
in seconds (t in s) of 10 runs is displayed. Except for pla7397, ILK produces better results
than the MA. The reason may lie in the fact that in ILK, more local minima are visited.
In the MA with P = 20, 12 local searches per generation are performed, while in ILK the
number of local searches is given by the number of iterations. Thus, the MA performs 13860
local searches compared to the 1830 in ILK for problem pla7397. For instance d18512, ILK
visits 22243 local optima, while the MA visits only 14712 in the same time. Generally, the
MA appears to be effective on very large instances only if a long running time is spent. The
much simpler ILK appears to be the better choice if good solutions are required in short time.
However, the results indicate that if high quality solutions (< 0.2%) are required, extremely
long running times of several hours to a few days have to be spent for both methods. Taking
into account that calculating the optimum for usa13509 took more than 8 years, the running
times in the MA experiments are considered fairly small.

The long running times favor the parallel execution of the heuristics in workstation
clusters, since compared to the computation times the communication times are small. Here,
MAs appear to be better suited than ILK, since they have more potential for concurrent
execution. However, besides distributed MAs, distributed ILK algorithms are issues for
future research.

7.5 Summary

In this chapter, the fitness landscape of various (Euclidean) traveling salesman problem
(TSP) instances has been investigated. The autocorrelation analysis as described in chapter 4
is well suited to find the most effective family of local search algorithms but it does not allow
to predict the performance of meta-heuristics based on local search. Therefore, a fitness
distance correlation analysis of local optima has been conducted on various TSP landscapes.
It has been shown that there are different types of landscapes although the majority of
instances has common characteristics: locally optimum tours have more than three third
edges in common. Thus, the local minima are contained in a small fraction of the search
space. Fractal instances are artificial; they have a highly correlated landscapes and are thus
easily solved by simple heuristics. Although they are of interest in the worst case analysis
of heuristics [229], they are not well suited for testing highly effective heuristic approaches
for the TSP. Random instances in which the the cities are uniformly distributed have got

134 7 The Traveling Salesman Problem

higher correlated local optima with respect to fast 2-opt and Lin-Kernighan local search than
others based on real city coordinates. The local optima of instances in which the cities form
clusters – as found in the application of drilling holes in printed circuit boards – have even
lower correlation of tour length and distance to the global optimum. These instances belong
to the hardest type of instances from the viewpoint of heuristics for the TSP.

The high correlation of tour length and distance to the optimum of the local optima in
the TSP landscape is an indicator for a good performance of recombination-based search
algorithms, since recombination is capable of exploiting this correlation in an efficient way.
However, for the TSP, an effective combination of local search and mutation exists – iter-
ated local search. In an extensive study, several recombination operators including a newly
proposed generic greedy recombination operator (GX), are compared against each other in a
memetic algorithm framework. The MAs show significant performance differences if a sim-
ple fast 2-opt local search is employed. For MAs with the sophisticated Lin-Kernighan local
search, the results lie much closer together. The study has shown that respectfulness is the
most important property of a recombination operator. Furthermore, the MA with the newly
proposed greedy recombination operator has been shown to outperform all its competitors:
MAs with DPX or MPX recombination, MAs with non-sequential fur change mutation, and
iterated local search.

MAs with DPX and GX recombination and mutation have been applied to various in-
stances contained in TSPLIB to show robustness and scalability of the approach. While for
problems with up to 1000 cities the optimum could be found in all runs in an average time
of less than two minutes on a state of the art personal computer, for the larger instances
much more time was required to find the optimum solution. However, for a problem size up
to 3795, the optimum could be found in less than two hours. Compared to other proposed
approaches, the memetic algorithm appears to be superior in average solution quality and
running times. Finally, the MA with GX has been applied to very large instances up to
85900 cities and is thus the first meta-heuristic known to the author which can tackle very
large problems.

Chapter 8

The Graph Bipartitioning Problem

8.1 Introduction

The graph bipartitioning problem (GBP) is a combinatorial problem in which a graph has
to be partitioned into two equal sized sets by minimizing the number of edges connecting
vertices in the different sets.

In this chapter, memetic algorithms for the GBP are discussed. First, two types of
heuristics are described that are well suited to be incorporated into a memetic algorithm:
greedy heuristics and k-opt local search heuristics. A landscape analysis is performed af-
terwards, employing the techniques described in chapter 4. For solutions generated with
the differential greedy heuristic as well as for solutions obtained by the Kernighan-Lin local
search, a fitness distance correlation analysis is conducted. The analysis reveals that the
types of graphs investigated have extremely different characteristics, ranging from totally
uncorrelated landscapes to highly correlated search spaces. For random geometric graphs, it
is shown that the correlation of cut size and distance to the optimum is higher for solutions
generated by the differential greedy heuristic than for locally optimum solutions with respect
to Kernighan-Lin local search if the average vertex degree of the graph is low. For random
geometric graphs with higher density (average vertex degree), Kernighan-Lin local optima
exhibit a higher correlation of cut size and distance to the optimum. This is surprising, since
graph density can be regarded as an indicator for epistasis in the problem. It is shown that
with increasing epistasis, the number of local minima decreases in case of random geometric
graphs, in contrast to NK-landscapes for which it was shown that with increasing epistasis
the number of local optima increases as discussed in chapter 5. Completely random graphs,
however, do not show such a property. Furthermore, it is shown that for regular graphs there
are completely different landscapes in terms of the distribution of local optima. For some
graphs, cut size and distance to the optimum are highly correlated while for others, there is
no correlation at all.

In experiments it is shown that depending on the type and size of a graph either the
combination of differential greedy and Kernighan-Lin local search is sufficient to find (near)
optimum partitions or a memetic algorithm is required. The MA is shown to be one of the
best approaches developed for the GBP up till now.

The results of this chapter have been published in [217].

135

136 8 The Graph Bipartitioning Problem

8.2 Heuristics for the GBP

Several exact solution approaches to graph partitioning have been proposed, but due to the
NP-hardness, their practical usefulness is limited to fairly small problem instances. For
example, a branch & cut algorithm proposed in [42] has been applied to instances with
no more than 100 vertices. To find partitions of larger graphs, several heuristics have been
developed that are capable of producing (near) optimum solutions in reasonable time. Among
these are (a) heuristics especially developed for graph partitioning, such as the Kernighan-Lin
algorithm [171], greedy algorithms [21], inertial algorithms [271], spectral partitioning [135],
multilevel approaches [163], and (b) general-purpose heuristic optimization approaches, such
as simulated annealing [157], tabu search [22] and genetic algorithms [47, 284, 141, 149, 184].
Greedy and local search heuristics are described in more detail, since they are used in the
fitness distance correlation analysis subsequently, and in the MAs for the GBP.

In the next paragraphs, it is assumed that the cost function to be minimized is given as

c(V1, V2) = |e(V1, V2)|, with e(V1, V2) = {(i, j) ∈ E : i ∈ V1 ∧ j ∈ V2}, (8.1)

where c(V1, V2) is referred to as the cut size of the partition and e(V1, V2) ∈ E is referred to
as the (edge) cut.

8.2.1 Greedy Heuristics

The differential greedy heuristic (Diff-Greedy) [21] has been shown to be a good construc-
tive heuristic which is capable of producing partitions with a small cut size in short time.
Furthermore, Diff-Greedy has shown to be superior to other greedy algorithms, including
Min-Max Greedy [22] and the standard greedy algorithm with random extraction [22, 21].

Diff-Greedy randomly builds partitions from scratch by adding alternately vertices to one
of the sets until each vertex is included in either the first or the second set. The selection
which vertex is added to a set in each step is aimed to minimize the difference between new
edges across the cut and new internal edges: a vertex j with D(j, set) = miniD(i, set) is
chosen randomly among the candidates assuming D(·) is defined as:

D(i, set) = |E(i, set)| − |E(i, set)|, with (8.2)

E(i, set) = {(i, j) ∈ E | j ∈ set},

where set ∈ {1, 2}, and set = 1 if set = 2, and 2 otherwise. Thus, for a vertex that is
included, the difference between the number of adjacent vertices in the other set, and the
number of vertices in the same set is minimal. This explains the name differential greedy.

8.2.2 Local Search

The simplest form of local search can be realized by repeatedly exchanging one vertex from
set 1 with one vertex from set 2, and accepting the resulting solution if it has a lower cut
size than the current one. Thus, in the simplest case, the 1-opt neighborhood of a partition
s is defined as the set of partitions that can be obtained by exchanging one vertex from set
1 with one vertex from set 2 in the solution s.

8.2 Heuristics for the GBP 137

The Kernighan-Lin Heuristic

Analogously to the TSP, this local search can be extended by exchanging k > 1 vertices
from set 1 with k vertices from set 2. Kernighan and Lin [171] have proposed a heuristic
(KL heuristic) for the GBP that exchanges a subset of set 1 with a subset of set 2. Since the
size of a k-opt neighborhood grows exponentially with k, a small size of this neighborhood
is searched utilizing a gain criterion similar to the LK heuristic for the TSP. Thus, the size
of the subsets exchanged in each step varies. Fiduccia and Mattheyses [89] proposed a data
structure to store the gains achieved when moving a vertex to the other set to speed up the
search for a move with the highest gain. With this data structure, the KL algorithm runs
in Θ(|E|) instead of O(|n2|) per iteration.

The Kernighan-Lin heuristic is one of the best state-of-the-art algorithms for the GBP
[157], and it is used in other algorithms for graph partitioning such as multi-level approaches
[163].

Bit-Flip Local Search

Alternatively, a local search can be realized by moving just one vertex from one set to another
to reach a neighboring solution, allowing the partitions to be unbalanced. Since solutions
may thus become infeasible, the objective function has to be redefined:

c′(V1, V2) = |e(V1, V2)|+ α(|V1| − |V2|)2, (8.3)

where α is called the imbalance factor [157]. With this cost function, imbalanced partitions
are penalized depending on the distance to a feasible solution and the imbalance factor. The
advantage of this approach is that the neighborhood size of N ′1-opt reduces to n: two points
in the search space are neighbors (d′ = 1) if they differ in a single bit. On the other hand, the
search space is enlarged. The difficulty with penalty functions is to find suitable parameters
– in this case the imbalance factor – so that the search can become effective.

For the GBP, a suitable value for the imbalance factor can be derived mathematically as
shown below.

8.2.3 Hybrid Evolutionary Algorithms

Several hybrid evolutionary algorithms have been developed for the GBP. For example, Bui
and Moon [46, 47] propose an evolutionary algorithm with local search. They use a five–point
crossover and bit-flip mutation as evolutionary variation operators and a straightforward
binary representation. Since their operators do not guarantee feasible offspring, a random
repair scheme is embedded. Their local search is the Kernighan–Lin algorithm, but it is
limited to perform only one pass (iteration). Thus, the members of the population are not
truly local minima with respect to the KL heuristic. Furthermore, they perform a breadth
first search to reorder the vertices on the chromosome before starting the genetic algorithm.

Steenbeek et al. [284] have proposed a hybrid genetic algorithm based on a cluster
emplacement heuristic (CEH). In a preprocessing phase, the clusters of the input graph are
identified, and each solution is encoded as a set of these clusters. A value of 0 (1) of the i-th
gene indicates that cluster i is contained in set 0 (1). The used genetic operators are uniform
crossover and bit–flip mutation, both not guaranteed to produce balanced partitions. The
cluster emplacement heuristic acts as a combination of local search and repair by iteratively
exchanging clusters between the two sets.

138 8 The Graph Bipartitioning Problem

Inayoshi and Manderick [149] have proposed a genetic local search algorithm using a
variant of uniform crossover for the weighted graph bipartitioning problem. In the weighted
GBP, to each edge a real value, called weight, is assigned. The objective is to minimize the
total weight of the edges contained in the cut. The encoding is a straightforward binary
representation and the crossover is a variant of the uniform crossover, which is guaranteed
to produce balanced partitions. The authors use the Kernighan-Lin heuristic to perform
local search on each member of the population.

8.3 The Fitness Landscape of the GBP

A solution to the GBP can be encoded in a binary bit string x of length n = |V |, where a 0
at locus i indicates that vertex vi belongs to set 1 and a 1 at locus j indicates that vertex vj
belongs to set 2. The cut size of the partition defined by V1 and V2 thus becomes

c(V1, V2) = c(x) =
n∑
i=1

n∑
j=1

1

2
wij|xi − xj| (8.4)

with V = {1, . . . , n} and wij = 1 if (i, j) ∈ E, 0 otherwise. Because the GBP is a minimiza-
tion problem, the objective function c(x) has to be minimized, and it is referred to c(x) as
the cost function rather than the fitness function. However, the GBP can be turned into a
maximization problem by defining the fitness as f(x) = cmax − c(x).

8.3.1 A Distance Measure

With the representation described above, the distance metric d can be defined as the ham-
ming distance [131] between two bit strings. If operators are used that guarantee the feasi-
bility of the bit strings, another distance measure appears to be more useful. The smallest
possible change in the genotype is to flip two genes simultaneously, a 0 to a 1 and a 1 to
a 0. Hence, a vertex from one set is exchanged with one vertex from the other set and the
constraint |V1| = |V2| is obeyed. Exchanging more than one vertex from set 1 with vertices
from set 2 leads to a greater genotypic distance, thus the distance between two solutions x
and y can be defined as the minimum number of vertices to exchange between set 1 and set
2 to transform one solution into the other. Considering the hamming distance dH between
bit strings, we have

d(x, y) = min (
dH
2
,
n− dH

2
), (8.5)

with dmin = 1, and dmax = n
4
. In contrast to other distance metrics [149, 280], this

distance function takes into account that the cut is identical for the two partitions x =
{1, 1, 1, 1, 0, 0, 0, 0} and y = {0, 0, 0, 0, 1, 1, 1, 1}.

Neighborhoods for the local search algorithms described above can be easily defined based
on this distance metric. The k-opt neighborhood is defined as

Nk-opt(s) = {s′ ∈ S : d(s, s′) ≤ k}. (8.6)

The size of the neighborhood N1-opt is n2

4
and in the general case |Nk-opt| =

∑k
i=1

(
n/2
i

)2
. The

size of the search space is |S| = 1
2

(
n
n/2

)
.

8.3 The Fitness Landscape of the GBP 139

8.3.2 Autocorrelation Analysis

The correlation functions of the GBP landscape L = (S, c, d) induced by the distance metric
d(x, y) = dH

2
has been determined mathematically in [280] for randomly generated graphs:

ρ(d) = 16

(
d

n

)2 (
1 +

1

n− 2

)
, r(s) =

(
1− 8

n
+

8

n2

)s
. (8.7)

Thus, the correlation length of the landscape becomes [280]:

` =
1

8
(n− 3) +O(

1

n
). (8.8)

Surprisingly, the autocorrelation function and the correlation length are independent of the
average vertex degree of the graph.

In [181], Krakhofer and Stadler show that for the GBP the expected number of local op-

tima in a ball with radius R(`) is 1, with R(s) = n
4

[
1−

(
1− 4

n

)s]
denoting the expected dis-

tance reached after s steps of a simple random walk. They have proven experimentally that
the probability that a solution is a local optimum is approximately µn with µ = 0.609058...

An Alternative Landscape

An alternative landscape to the landscape L defined above is the landscape L′ = (S ′, c′, d′)
which is based on the neighborhood N ′1-opt described above. The advantage of considering
this landscape is that the neighborhood size of N ′1-opt reduces to n − 1: two points in the
search space are neighbors (d′ = 1) if they differ in a single bit. A disadvantage is that the
optimum value for the imbalance factor α is not known in advance. However, the optimum
value for α for random graphs has been obtained mathematically by Angel and Zissimopoulos
[9]: the autocorrelation coefficient λ is maximal if α is set to p/4, with p denoting the edge

probability p = 2|E|
|V |(|V |−1)

of the given graph. Furthermore, the authors have shown that the

autocorrelation coefficient and hence the correlation length of the alternative landscape L′
is higher than the correlation length of the landscape L.

8.3.3 Fitness Distance Correlation Analysis

Since in general, the fitness distance correlation can not be calculated mathematically, ex-
periments have to be conducted to estimate the FDC coefficient % and to produce the fitness
distance plots. To perform the fitness distance analysis for the GBP, several instances with
different characteristics have been selected.

The first set of test instances studied in the experiments is taken from Johnson et al.
[157], since these instances have been used by several researchers to test their algorithms
and thus are a good basis for comparing the results presented in this chapter. Two types of
randomly generated instances were considered in [157]:

The first type (a) is denoted Gn.p, where n represents the number of nodes and p the
probability that any given pair of vertices in the graph constitutes an edge; the expected
average degree is thus p(n− 1). The second type (b) is a random geometric graph denoted
Un.d, where n is the number of nodes and d the expected average vertex degree. The
coordinates of the vertices are chosen randomly from within the unit square and only vertex
pairs with a squared distance smaller or equal to d

nπ
constitute an edge to the graph.

140 8 The Graph Bipartitioning Problem

The second set of benchmark graphs has been provided by Bui and Moon [47] and
consists of (c) regular graphs denoted Breg.n.b with n vertices and optimum cut size b [45],
(d) caterpillar graphs denoted Cat.n and Rcat.n with a known optimum cut size of 1 [46],
and (e) regular grid graphs (grid.n.b and W-grid.n.b) with optimum bisection size b.

The last set of graphs (f) consists of 2– and 3–dimensional meshes also studied in [134].
The number of edges emanating from the vertices determines the amount of epistasis in a

given problem instance. This becomes obvious when the objective function c(x) = c(V1, V2) is
rewritten as a sum of fitness contributions of each site of the genome x ∈ {0, 1}n representing
the partition (V1, V2):

c(V1, V2) = c(x) =
n∑
i=1

n∑
j=1

1

2
wij|xi − xj| =

n∑
i=1

ci(xi, xi1 , . . . , xik(i)
) (8.9)

with V = {1, . . . , n} and wij = 1 if (i, j) ∈ E, 0 otherwise. Similar to the NK-landscapes
defined in [169], the fitness contribution ci of a site i depends on the gene value xi and of k(i)
other genes xi1 , . . . , xik(i)

, where k(i) denotes the degree of vertex i. While for NK-landscapes
k(i) = K is constant for all i, k(i) varies in the GBP instances introduced above.

Fitness Distance Correlation of Kernighan-Lin Local Optima

In the first experiment, the theoretically determined correlation length for the landscapes
of all types of graph was verified. In all cases, the experimentally estimated correlation
length coincides with the theoretical value, as given in equation (8.8). Since this value is
independent of the average vertex degree or the structure of the graph, it is ill–suited for
predicting the performance of evolutionary algorithms on the different types of graph.

To assess the relation between fitness and average distance to the optimum (or optima),
the average distance of 2500 points in the search space to all known optima against the cut
size difference ∆c = c(x)− copt is plotted.

In a first FDA experiment, the points in the search space were generated by the Kernighan-
Lin heuristic [171] on random starting solutions. The Kernighan-Lin heuristic is used here
since it has been proven to be among the best heuristics for graph partitioning and it is used
later in the memetic algorithm for the GBP. Since there are no solutions for the instances
of type (a), (b), and (f) proven to be optimum solutions, the experiments were performed
using the best-known solutions for the graphs, which are likely to be the optimum solutions.

Additional characteristics of the landscapes are summarized in Table 8.1. Along with
the number of vertices |V | and the average vertex degree δ of the analyzed graphs, the
number of (global) optima Nopt found by the algorithms and the average distance between
these optima (in braces) is provided. Furthermore, the average distance to the found optima
〈dopt〉, the average cut size difference 〈∆c〉, the number of different local optima NKL, the
fitness distance correlation coefficient % and the average distance between the local minima
〈dother〉 are given.

The scatter plots of the landscapes of the graphs of type (a) look quite different compared
to the ones of the graphs of type (b), as can be seen in Figure 8.1, although both are randomly
generated.

For the G1000 and U1000 graphs, the average cut size increases with higher average
vertex degree. This is not surprising, since the fitness contribution ci of each vertex increases
with higher epistasis. But the average cut size difference to the optimum cut size does not
increase continuously for the U1000 graphs. Furthermore, the number of distinct local optima

8.3 The Fitness Landscape of the GBP 141

Table 8.1: Average distances and fitness distance coefficients for KL local minima

Instance |V | δ Nopt(〈d〉) 〈dopt〉 〈∆c〉 NKL % 〈dother〉
G1000.0025 1000 2.5 66 (8.5) 212.9 33.4 10000 0.37 225.3
G1000.005 1000 5.0 3 (1.0) 219.7 56.5 10000 0.22 227.9
G1000.01 1000 10.1 175 (62.2) 215.4 73.6 10000 0.37 226.0
G1000.02 1000 20.2 1 (0) 212.4 103.1 10000 0.47 224.7

U1000.05 1000 4.8 2032 (28.1) 216.2 74.4 10000 0.28 224.7
U1000.10 1000 9.4 10 (2.7) 191.6 123.5 9999 0.36 206.5
U1000.20 1000 18.7 1 (0) 129.4 99.3 4542 0.63 157.6
U1000.40 1000 36.0 1 (0) 94.5 131.1 624 0.82 130.2

hammond.graph 4720 5.8 1 (0) 632.7 51.5 9385 0.54 754.1

Breg5000.16 5000 3.0 1 (0) 104.2 163.0 9117 0.99 197.7
Cat.5252 5252 2.0 1 (0) 1255.5 252.6 10000 0.02 1267.8
RCat.5114 5114 2.0 1 (0) 1143.6 183.8 10000 0.07 1165.7
Grid5000.50 5000 3.9 1 (0) 119.8 10.3 2201 0.91 214.8
W-grid5000.100 5000 4.0 12 (618.9) 677.8 24.4 6519 0.66 721.5

decreases, as well as their average distance to each other: the higher the epistasis, the closer
the local minima in the search space. The same effects can not be observed for the G1000
instances: the average distance to the optima is relatively constant and much higher than for
the random geometric graphs. The number of optima found for the U1000 graphs decreases
with the average vertex degree, and more than 2000 optima could be found for U1000.05.
These optima are located in a small region of the search space since their distance to each
other is small. For three G1000 instances, more than one optimum solution could be found,
but the highest number could surprisingly be found for G1000.01.

The mesh hammond of graph type (f) exhibits a similar structure as the random geometric
graphs with average vertex degree 10 and 20, as shown in Figure 8.2. The random regular
graph of type (c) shows a high correlation of distance and cut size. Most of the local
optima lie close to the optimum, as the average distance to the optimum and the average
cut size difference suggest. The caterpillar graphs (d) are again completely different. The
graph Cat.5252 does not show a correlation between cut size and distance to optimum and
the Kernighan-Lin local optima lie on the average with maximum distance apart from the
optimum. The scatter plot for the instance RCat.5114 has no similarity to the plot for
Cat.5252. The nearest local minimum has a distance greater than 600 to the optimum.
The last type of instances (e), the grid graphs, also have an interesting distribution of
local optima. The local optima of regular grid graphs seem to have high correlation (% =
0.91) between cut size and distance to optimum, while for the wrapped-around grid graphs
the correlation is significantly lower. A possible reason for this is that the optima for the
wrapped–around grid have a relatively high distance (618).

The random geometric graphs have a structure that may be exploited by a search algo-
rithm, as mentioned in [157]. While the adjacent vertices of a given vertex are completely
random for the graphs of type (a), the adjacent vertices have a small geographical distance,
for all other graphs.

142 8 The Graph Bipartitioning Problem

0

10

20

30

40

50

60

0 50 100 150 200 250

C
ut

 s
iz

e
di

ffe
re

nc
e

�

∆c

Distance to optimum dopt

G1000.0025

0

20

40

60

80

100

120

140

0 50 100 150 200 250

C
ut

 s
iz

e
di

ffe
re

nc
e

�

∆c

Distance to optimum dopt

U1000.05

0
10
20
30
40
50
60
70
80
90

0 50 100 150 200 250

C
ut

 s
iz

e
di

ffe
re

nc
e

�

∆c

Distance to optimum dopt

G1000.005

0

50

100

150

200

250

300

0 50 100 150 200 250

C
ut

 s
iz

e
di

ffe
re

nc
e

�

∆c

Distance to optimum dopt

U1000.10

0

20

40

60

80

100

120

140

0 50 100 150 200 250

C
ut

 s
iz

e
di

ffe
re

nc
e

�

∆c

Distance to optimum dopt

G1000.01

0
50

100
150
200
250
300
350
400
450

0 50 100 150 200 250

C
ut

 s
iz

e
di

ffe
re

nc
e

�

∆c

Distance to optimum dopt

U1000.20

0
20
40
60
80

100
120
140
160
180

0 50 100 150 200 250

C
ut

 s
iz

e
di

ffe
re

nc
e

�

∆c

Distance to optimum dopt

G1000.02

0

100

200

300

400

500

600

700

800

0 50 100 150 200 250

C
ut

 s
iz

e
di

ffe
re

nc
e

�

∆c

Distance to optimum dopt

U1000.40

Figure 8.1: G1000.d (left) and U1000.p (right) fitness-distance plots with KL

8.3 The Fitness Landscape of the GBP 143

0

20

40

60

80

100

120

140

0 100 200 300 400 500

C
ut

 s
iz

e
di

ffe
re

nc
e

�

∆c

Distance to optimum dopt

hammond.graph

0

200

400

600

800

1000

1200

0 200 400 600 800 1000 1200

C
ut

 s
iz

e
di

ffe
re

nc
e

�

∆c

Distance to optimum dopt

Breg5000.16

0

50

100

150

200

250

300

350

400

0 200 400 600 800 1000 1200

C
ut

 s
iz

e
di

ffe
re

nc
e

�

∆c

Distance to optimum dopt

Cat.5252

0

100

200

300

400

500

600

700

0 200 400 600 800 1000 1200

C
ut

 s
iz

e
di

ffe
re

nc
e

�

∆c

Distance to optimum dopt

RCat.5114

0

20

40

60

80

100

0 200 400 600 800 1000 1200

C
ut

 s
iz

e
di

ffe
re

nc
e

�

∆c

Distance to optimum dopt

Grid5000.50

0
20
40
60
80

100
120
140
160
180
200

0 200 400 600 800 1000 1200

C
ut

 s
iz

e
di

ffe
re

nc
e

�

∆c

Distance to optimum dopt

W-grid5000.100

Figure 8.2: Fitness-distance plots using KL for graphs of type (c) to (f)

Fitness Distance Correlation of Diff-Greedy Solutions

In the second FDA, the points in the search space were generated with the differential greedy
algorithm [21]. The scatter plots are provided in Figure 8.3, and in Table 8.2 the average
distance to the found optima 〈dopt〉, the average cut size difference 〈∆c〉, the number of
different Diff-Greedy solutions NDG, the fitness distance correlation coefficient % and the
average distance between the solutions 〈dother〉 are given.

The Diff-Greedy algorithm performs poorly on the type (a) graphs but performs well on
the type (b) graphs. It performs better than the Kernighan-Lin algorithm on the random
geometric graphs, but the latter is superior on uniform random graphs. The Diff-Greedy

144 8 The Graph Bipartitioning Problem

Table 8.2: Average distances and fitness distance coefficients for Diff-Greedy solutions

Instance 〈dopt〉 〈∆c〉 NDG % 〈dother〉
U1000.05 111.5 10.1 9998 0.63 144.4
U1000.10 128.1 45.8 9415 0.58 153.9
U1000.20 135.3 143.4 7981 0.58 149.4
U1000.40 104.7 265.3 5174 0.66 136.0

G1000.0025 208.6 43.0 10000 0.34 220.9
G1000.005 216.8 79.2 10000 0.18 223.6
G1000.01 213.6 118.0 10000 0.29 222.1
G1000.02 208.6 177.0 10000 0.41 222.0

hammond.graph 674.1 106.7 10000 0.33 744.5

Breg5000.16 599.1 455.0 9994 0.99 895.1
Cat.5252 605.1 3.3 8221 0.21 765.6
RCat.5114 585.8 6.4 6709 0.70 739.4
Grid5000.50 604.3 76.8 9391 0.70 753.3
W-grid5000.100 677.6 32.6 8594 0.70 721.6

algorithm is capable of exploiting the structure of the graphs (c) - (f), too. Optima or near–
optimum solutions are found easily by Diff–Greedy, even for the caterpillar graphs – even
though the distribution of Diff–Greedy solutions for these instances shows no correlation.

Discussion

The analysis has shown that the landscape of the GBP is highly dependent on the structure
of the graph. The analysis of a single graph is not sufficient to predict the performance of
an algorithm on other graphs, hence the insights gained by the analysis performed in [149]
for the weighted graph bipartitioning problem are probably rather limited. It seems likely
that certain distributions of weights may also have a strong influence on the properties of
the fitness landscape of the weighted graph bipartitioning problem.

The average vertex degree, or in other words the amount of epistasis in the problem is
only one characteristic of a graph influencing the structure of the fitness landscape. Other
aspects such as regularity (graphs of type (c) to (e)) and the locality of epistatic interactions
are also important.

Gene interaction in a given representation can appropriately be expressed by a depen-
dency graph. An edge in the dependency graph from vertex i to vertex j indicates that the
fitness contribution fi of gene i depends on the value of xj. Thus, the fitness contribution of
gene i is of the form fi(xi, . . . , xj, . . .). For NK-landscapes defined by Kauffman, the vertex
degree of the dependency graph is K + 1, including the edges going from the vertices to
themselves. It appears that the structure of the dependency graph may have a large impact
on the fitness landscape. In the GBP, the dependency graph is similar to the graph to be
partitioned, with the difference that the latter does not contain edges from a vertex to itself.
The fitness landscape analysis of the GBP has shown that the structure of the dependency
graph is responsible for the structure of the fitness landscape. If the dependency graph
contains only edges between neighboring points and thus induces a spatial structure, the

8.3 The Fitness Landscape of the GBP 145

0

10

20

30

40

50

60

70

0 50 100 150 200 250

C
ut

 s
iz

e
di

ffe
re

nc
e

�

∆c

Distance to optimum dopt

G1000.0025

0

10

20

30

40

50

60

0 50 100 150 200 250

C
ut

 s
iz

e
di

ffe
re

nc
e

�

∆c

Distance to optimum dopt

U1000.05

0

20

40

60

80

100

120

0 50 100 150 200 250

C
ut

 s
iz

e
di

ffe
re

nc
e

�

∆c

Distance to optimum dopt

G1000.005

0

20

40

60

80

100

120

140

0 50 100 150 200 250

C
ut

 s
iz

e
di

ffe
re

nc
e

�

∆c

Distance to optimum dopt

U1000.10

0
20
40
60
80

100
120
140
160
180

0 50 100 150 200 250

C
ut

 s
iz

e
di

ffe
re

nc
e

�

∆c

Distance to optimum dopt

G1000.01

0
50

100
150
200
250
300
350
400
450
500

0 50 100 150 200 250

C
ut

 s
iz

e
di

ffe
re

nc
e

�

∆c

Distance to optimum dopt

U1000.20

0

50

100

150

200

250

300

0 50 100 150 200 250

C
ut

 s
iz

e
di

ffe
re

nc
e

�

∆c

Distance to optimum dopt

G1000.02

0

200

400

600

800

1000

1200

0 50 100 150 200 250

C
ut

 s
iz

e
di

ffe
re

nc
e

�

∆c

Distance to optimum dopt

U1000.40

Figure 8.3: G1000.d (left) and U1000.p (right) fitness-distance plots with Diff–Greedy

146 8 The Graph Bipartitioning Problem

0

50

100

150

200

250

0 100 200 300 400 500

C
ut

 s
iz

e
di

ffe
re

nc
e

�

∆c

Distance to optimum dopt

hammond.graph

0
100
200
300
400
500
600
700
800
900

1000

0 200 400 600 800 1000 1200

C
ut

 s
iz

e
di

ffe
re

nc
e

�

∆c

Distance to optimum dopt

Breg5000.16

0

2

4

6

8

10

12

14

0 200 400 600 800 1000 1200

C
ut

 s
iz

e
di

ffe
re

nc
e

�

∆c

Distance to optimum dopt

Cat.5252

0

20

40

60

80

100

120

140

160

0 200 400 600 800 1000 1200

C
ut

 s
iz

e
di

ffe
re

nc
e

�

∆c

Distance to optimum dopt

RCat.5114

0
20
40
60
80

100
120
140
160
180

0 200 400 600 800 1000 1200

C
ut

 s
iz

e
di

ffe
re

nc
e

�

∆c

Distance to optimum dopt

Grid5000.50

0
20
40
60
80

100
120
140
160
180
200

0 200 400 600 800 1000 1200

C
ut

 s
iz

e
di

ffe
re

nc
e

�

∆c

Distance to optimum dopt

W-grid5000.100

Figure 8.4: Fitness-distance plots using Diff–Greedy for non–random graphs

resulting landscape is quite different from a landscape resulting from a dependency graph
with edges randomly sampled over all vertex pairs, as can be seen from the FDC plot for
the U1000 and G1000 graphs, respectively. If there is regularity in the dependency graph,
the fitness landscape may show a high correlation between fitness and distance to an op-
timum (see the plot for instance Breg5000.16). Other forms of regularity lead to a totally
uncorrelated landscape (Cat.5252).

8.4 A Memetic Algorithm for the GBP 147

8.4 A Memetic Algorithm for the GBP

A memetic algorithm employing the greedy and local search heuristics is described in the
following. Since the outline of the memetic algorithm for the GBP is identical to the gen-
eral description in chapter 3, the description focuses on the problem–specific parts: the
initialization of the population, the local search, and the evolutionary variation operators.

8.4.1 Initialization and Local Search

Instead of generating the starting solutions randomly, the randomized differential greedy
heuristic may be used, since it is one of the best construction heuristics for the GBP and is
capable of producing a wide range of high quality solutions.

Three different local search algorithms for the GBP were considered: The 1-opt lo-
cal search based on the neighborhood N1-opt (SWAP), the alternative neighborhood N ′1-opt
(FLIP) as described above, and the Kernighan-Lin algorithm which efficiently searches a
small part of the Nk-opt neighborhood. In the case of FLIP, it is not guaranteed that the
resulting local optimum of a local search is a feasible solution. Hence, a repair algorithm as
described in [157] is applied to turn the solution into a feasible one. Table 8.3 shows the typ-
ical performance in terms of average cut sizes (of 10000 runs) and time per local search (LS)
on random starting solutions of the three local search algorithms for four different graphs.
The problem instances, computing platforms, and experimental conditions are described in
detail in section 8.5.

Table 8.3: Average cut sizes and CPU times (Pentium II - 300 MHz) per local search

SWAP FLIP KL
Graph cut size time/LS cut size time/LS cut size time/LS

G1000.0025 232.0 1.49 ms 186.2 1.96 ms 126.2 16.41 ms
G1000.005 625.6 2.09 ms 583.6 2.62 ms 501.3 21.01 ms
G1000.01 1585.2 3.36 ms 1567.7 3.91 ms 1435.5 37.07 ms
G1000.02 3663.8 6.02 ms 3646.9 6.75 ms 3484.7 72.11 ms

All algorithms utilize a data structure based on the ideas of Fiduccia and Mattheyses
[89], to speed up the search for a swap with the highest gain. Instead of using a single gain
list, two different gain lists are used for the two sets. Thus, the KL algorithm used in the
experiments is exactly the one proposed by Kernighan and Lin with the difference that it
runs in Θ(|E|) instead of O(|n2|) per iteration.

Not surprisingly, the FLIP algorithm performs better than the SWAP algorithm, which
could be expected from the higher correlation length of the FLIP landscape L′, as mentioned
in the previous section. Since the Kernighan-Lin local search is capable of finding partitions
with a significantly smaller cut size, the decision was made to use this algorithm in the
memetic approach.

148 8 The Graph Bipartitioning Problem

8.4.2 The Evolutionary Variation Operators

Mutation for the GBP can be realized by exchanging a randomly chosen subset of size s of
vertices from partition 1 with a randomly chosen subset of vertices from partition 2. The
sizes of the subsets determine the distance between a solution and the mutated offspring.

Traditional crossover operators such as one–point, two–point, and uniform crossover can-
not be applied without modification to guarantee feasibility. For example, valid crossover
points for one or two–point crossover are those where the number of ones on the left side of
the crossover point is identical in both parents. Restricting the operator to cut the parents
only at these cut points assures the feasibility of the generated offspring.

Uniform crossover can be modified to operate on GBP solutions as follows. First, all
1s that are found at the same locus in both parents are copied to the offspring. Then,
additional 1s are inserted into the offspring by randomly selecting a locus from one of the
parents containing a one, until the offspring consists of n/2 1s and hence is feasible.

Another crossover operator for the memetic algorithm is the HUX [86], a variant of the
uniform crossover. In order to maintain feasibility, HUX must also be adapted for application
to the GBP. HUX can be performed by first copying all 0s and 1s that are found at the same
location in both parents. The remaining entries are filled with 1s in random order from
alternating parents until n

2
1s are included. Those entries that are still not set will be filled

with 0s. An example illustrating the functionality of HUX is given below:

Parent A: 1 0 1 0 1 0 1 0 0 0 1 0

Parent B: 0 1 1 0 1 1 0 1 0 1 0 0

Step 1: 1 0 1 0 0

Step 2: 1 1 1 0 1 1 0 1 0

Offspring C: 1 1 1 0 1 0 0 1 0 0 1 0

Thus, HUX is biased so that nearly as many 1s are taken from the first as from the
second parent.

A fourth recombination operator was developed called greedy recombination operator
(GX) based on the differential greedy algorithm. The pseudo code for the GX operator is
provided in Figure 8.5.

In the first phase, all vertices that are contained in the same set in both parents are
included in the same set in the offspring. Then, both sets are filled according to the selection
scheme in the Diff–greedy algorithm. If |V1| < |V2|, a vertex is added to V1, otherwise to V2.

8.5 Memetic Algorithm Performance

Several experiments were conducted to test the memetic algorithm on 48 instances, 8 graphs
of type (a) and (b), 12 graphs of type (c), 8 graphs of type (d) and (e), and 4 graphs of type
(f).

The memetic algorithm described above, including the Kernighan-Lin heuristic and the
differential greedy heuristic, has been implemented in C++. All experiments were performed

8.5 Memetic Algorithm Performance 149

procedure GXrecombination(a ∈ S; b ∈ S): S;
begin

for i := 1 to n do
if a[i] = b[i] then c[i] := a[i] else c[i] := −1;

endfor
n0 := number of 0s in child c;
n1 := number of 1s in child c;
while n0 + n1 < n do

if n0 ≥ n1 then
randomly select j with D(j, 1) = miniD(i, 1);
c[j] := 1;
n1 := n1 + 1;

else
randomly select j with D(j, 0) = miniD(i, 0);
c[j] := 0;
n0 := n0 + 1;

endif
endwhile
return c;

end;

Figure 8.5: The GX recombination operator

on a Dual Pentium II PC (300 MHz) with Solaris 2.6 as operating system (only one processor
was used by the algorithms).

In the first set of experiments to test the performance of the memetic algorithm, the MA
was applied with 10 different genetic operators to the uniform random instances Gn.p, since
the landscapes of these instances are the most challenging of all landscapes considered in
this paper. The first MA, denoted MA-UX is a memetic algorithm with uniform crossover.
Two further MAs use one-point and two-point crossover operators and are denoted by MA-
1pt and MA-2pt, respectively. The HUX operator is used in the memetic algorithm called
MA-HUX. The MA with the greedy recombination operator is called MA-GX; in a variant
denoted by MA-RGX, the subsequent LS after recombination is restricted to exchange only
those vertices that do not belong to the same set in both parents. In all these algorithms no
additional mutation is performed. The algorithms with mutation instead of recombination
are denoted MA-M. The size of the subsets exchanged by the mutation operator is varied
from s = 50 to s = 200. Furthermore, runs with the multi–start Diff-Greedy+Kernighan-
Lin local search (DG+KL) algorithm and an iterated Kernighan-Lin algorithm (IKL) were
performed to put the results into perspective.

The MAs were run with a population size of 40 and a recombination/mutation application
rate of 0.5. These parameters have been used in the memetic algorithms for the TSP and the
QAP [210, 209]. They are a good a priori choice, but depending on the landscape and the
running time of the algorithms, other choices may produce better results. Finding the best
parameters for the MA is itself an optimization problem [107], and it is unlikely that there is
an optimum parameter set which is best for every instance. On the other hand, determining

150 8 The Graph Bipartitioning Problem

Table 8.4: MA results for G500.p instances

algorithm gen c̄ σ2
c Nopt t/s gen c̄ σ2

c Nopt t/s
G500.005 G500.02

MA-UX 974 50.3 0.76 5/30 60 492 627.0 0.76 6/30 60
MA-1pt 1333 50.3 0.95 9/30 60 639 627.0 0.76 6/30 60
MA-2pt 1335 50.5 0.90 7/30 60 670 627.3 1.15 8/30 60

MA-HUX 901 50.0 0.85 10/30 60 475 627.3 0.99 6/30 60
MA-GX 1252 • 49.1 0.37 29/30 60 633 627.5 1.14 6/30 60

MA-RGX 1985 49.1 0.51 28/30 60 1335 627.4 0.97 4/30 60
MA-M,s=50 709 50.9 0.40 1/30 60 346 • 626.7 0.71 13/30 60
MA-M,s=100 504 51.5 0.51 0/30 60 234 627.0 0.76 8/30 60
MA-M,s=150 489 51.5 0.51 0/30 60 229 627.0 0.76 9/30 60
MA-M,s=200 626 50.9 0.35 0/30 60 317 626.8 0.70 9/30 60

DG+KL 14603 52.0 0.26 0/30 60 5673 627.8 1.45 8/30 60
IKL 26292 55.8 2.11 0/30 60 12925 638.8 4.26 0/30 60

G500.01 G500.04
MA-UX 676 • 218.0 0.00 30/30 60 226 1745.5 1.50 14/30 60
MA-1pt 909 218.1 0.55 29/30 60 320 1745.9 1.76 11/30 60
MA-2pt 955 218.1 0.37 29/30 60 341 1746.5 2.52 10/30 60

MA-HUX 691 218.2 0.65 28/30 60 223 1745.8 1.65 12/30 60
MA-GX 959 218.1 0.51 28/30 60 326 1745.4 1.50 15/30 60

MA-RGX 1731 218.1 0.51 28/30 60 807 1746.5 2.47 12/30 60
MA-M,s=50 535 218.1 0.37 29/30 60 194 • 1745.3 1.54 12/30 60
MA-M,s=100 372 218.5 0.51 16/30 60 119 1745.6 1.28 7/30 60
MA-M,s=150 363 218.3 0.48 20/30 60 117 1745.3 1.12 7/30 60
MA-M,s=200 476 218.0 0.00 30/30 60 182 1745.8 2.07 11/30 60

DG+KL 9251 219.3 0.84 5/30 60 2815 1747.1 2.12 3/30 60
IKL 19172 229.7 5.21 0/30 60 6984 1763.8 8.67 0/30 60

the best parameter choices for each graph separately will soon become computationally
prohibitive. Furthermore, since the influence of the choice of the genetic operators is much
higher on the performance of the algorithm, the population size and operator rates were kept
constant. Each run was terminated after a predefined time limit. The results are displayed
in Tables 8.4 and 8.5. For each algorithm, the average number of generations in case of a
MA or the average number of iterations in case of IKL and DG+KL, the average cut size
c̄, its standard deviation σ2

c , the number Nopt of times an optimum (best-known solution)
was found and the time limit t in seconds is provided. The best average cut size for each
instance is marked with a dot. All average values are based on 30 runs. In almost all cases,
the MA with greedy recombination (GX) performs better than any other crossover–based
MA. However, for a high average vertex degree, the mutation based MAs outperform the
MAs with crossover. In [212], we have shown that for NK-Landscapes with high epistasis,
the mutation based MA is more effective than the recombination based MA. The same
obviously holds for the GBP. Multi-Start LS (Diff-Greedy + Kernighan-Lin) and IKL are
clearly outperformed by the MAs. It appears that the concept of a population–based search
is important in case of the GBP, since the IKL based on a single solution does not produce
competitive results.

A major drawback of a mutation–based MA is that the optimum mutation operator is
not known in advance. To find the optimum distance of a jump performed by mutation,
additional experiments were conducted on the G1000 graphs. The results are summarized in

8.5 Memetic Algorithm Performance 151

Table 8.5: MA results for G1000.p instances

algorithm gen c̄ σ2
c Nopt t/s gen c̄ σ2

c Nopt t/s
G1000.0025 G1000.01

MA-UX 802 96.3 0.95 0/30 120 360 1363.4 1.33 8/30 120
MA-1pt 1187 96.9 1.50 0/30 120 519 1366.7 2.95 1/30 120
MA-2pt 1294 96.9 1.53 0/30 120 558 1367.0 3.79 2/30 120

MA-HUX 757 96.1 0.97 0/30 120 360 1363.2 1.48 13/30 120
MA-GX 1031 94.5 1.33 10/30 120 514 • 1363.1 1.04 9/30 120

MA-RGX 1616 • 94.2 1.32 14/30 120 1145 1366.2 3.64 4/30 120
MA-M,s=50 742 96.7 1.18 0/30 120 341 1370.9 3.66 0/30 120
MA-M,s=100 612 96.3 1.03 0/30 120 261 1367.5 3.49 3/30 120
MA-M,s=150 466 97.0 0.76 0/30 120 200 1364.6 2.75 7/30 120
MA-M,s=200 369 99.9 1.03 0/30 120 160 1372.0 2.33 0/30 120

DG+KL 10706 101.4 1.45 0/30 120 3945 1378.1 2.62 0/30 120
IKL 9790 99.5 2.87 0/30 120 4230 1370.8 4.66 2/30 120

G1000.005 G1000.02
MA-UX 578 449.4 1.99 2/30 120 188 3384.5 1.38 0/30 120
MA-1pt 853 451.6 3.22 1/30 120 291 3385.5 2.40 0/30 120
MA-2pt 936 451.5 3.33 0/30 120 299 3385.3 2.20 1/30 120

MA-HUX 576 449.0 2.24 3/30 120 187 3383.9 0.78 2/30 120
MA-GX 807 • 447.7 0.99 2/30 120 282 3384.0 0.49 0/30 120

MA-RGX 1514 448.1 1.73 4/30 120 742 3385.0 1.27 0/30 120
MA-M,s=50 557 452.2 2.72 1/30 120 201 3389.4 7.00 4/30 120
MA-M,s=100 443 450.4 1.79 0/30 120 147 3386.3 4.51 1/30 120
MA-M,s=150 350 448.9 1.48 0/30 120 110 • 3383.2 0.81 6/30 120
MA-M,s=200 290 457.3 2.20 0/30 120 80 3387.9 2.03 0/30 120

DG+KL 7087 459.9 2.23 0/30 120 2029 3397.5 5.17 0/30 120
IKL 7330 452.9 4.09 0/30 120 2276 3399.5 14.73 1/30 120

Figure 8.6. The optimum mutation jump distance seems to increase with the average vertex
degree of the graphs, and for all graphs this distance is near the correlation length of the
landscape (` ∼ 125).

In an additional experiment, the best recombination operator (GX) and the best mutation
operator (s = 50 for G500 and s = 150 for G1000) shown in Table 8.4 and 8.5 were combined
into a further memetic algorithm, called MA-GXM. The results are shown in Table 8.6,
where the first column displays the average cut size and computation time (in seconds)
after 30 generations, and the second column shows the average cut size (of 30 runs) after
a predefined time limit of 60 and 120 seconds, respectively. Compared to other algorithms,
including simulated annealing (SA) [157], the hybrid genetic algorithms CE-GA [284] and
BFS-GBA [47], as well as reactive–randomized tabu search (RRTS) [22], the MA with both
GX recombination and mutation seems to be superior or at least competitive, as shown in
Table 8.6 (the values for simulated annealing are not displayed here, since they are worse
than any of the results presented in the table; they can be found in [157, 47, 284]). In
particular, the MA outperforms the algorithms SA, CE-GA and BFS-GA on all random
non-geometric graphs, and it is better than RRTS on Gn.p graphs with low average vertex
degree and slightly worse on the graphs with high vertex degree. However, allowing longer
running times, the MA is capable of finding smaller cuts than RRTS for the graphs with
high average vertex degree, too, as displayed in the second column. The CPU times cannot
be compared directly since CE-GA was run on a SGI-O2 workstation (R5000, 180 MHz),

152 8 The Graph Bipartitioning Problem

96

96.5

97

97.5

98

98.5

99

99.5

100

40 60 80 100 120 140 160 180 200

A
vg

. c
ut

 s
iz

e

Mutation distance

G1000.0025

448
449
450
451
452
453
454
455
456
457
458

40 60 80 100 120 140 160 180 200

A
vg

. c
ut

 s
iz

e

Mutation distance

G1000.005

1363
1364
1365
1366
1367
1368
1369
1370
1371
1372

40 60 80 100 120 140 160 180 200

A
vg

. c
ut

 s
iz

e

Mutation distance

G1000.01

3383

3384

3385

3386

3387

3388

3389

3390

40 60 80 100 120 140 160 180 200

A
vg

. c
ut

 s
iz

e

Mutation distance

G1000.02

Figure 8.6: Mutation jump distances for the G1000 problems

BFS-GA on a Sparcstation IPX, and RRTS was run on a Digital AlphaServer 2100 Model
5/250 (the time for input/output and the initialization of data structures was not included
for the latter).

Table 8.6: Comparison of five algorithms on non-geometric graphs

Instance MA-GXM MA-GXM CE-GA BFS-GBA RRTS
cut time cut time cut time cut time cut time

G500.005 50.4 2 49.3 60 54.1 24.9 54.0 6 52.06 2
G500.01 218.2 3 218.1 60 221.8 23.7 222.1 8.1 218.29 2.5
G500.02 627.8 5 626.7 60 631.1 27.5 631.5 11.7 626.44 3.6
G500.04 1746.9 10 1744.9 60 1750.3 33.4 1752.5 21.6 1744.36 6.8
G1000.0025 96.5 7 95.1 120 104.5 79.2 103.6 16.8 98.69 6.5
G1000.005 450.7 10 447.6 120 458.5 79.9 458.6 23.7 450.99 6.5
G1000.01 1365.0 17 1363.3 120 1374.6 79.5 1376.4 37.1 1364.27 9.3
G1000.02 3384.6 31 3383.5 120 3396.8 85.8 3401.7 62.3 3383.92 14.7

The second set of experiments was performed on the geometric graphs of types (b)
through (f). Since the Kernighan-Lin algorithm performs better on the random geometric
instances of high epistasis and the Diff-Greedy algorithm has advantages on the graphs

8.6 Summary 153

Table 8.7: Comparison of four algorithms on geometric graphs

Instance DG+KL CE-GA BFS-GBA RRTS
cut time cut time cut time cut time

U500.05 2.0 0.09 2.2 13.4 3.7 7.5 2.0 1.7
U500.10 26.0 0.55 26.0 10.5 32.7 9.6 26.0 2.7
U500.20 178.0 0.46 178.0 26.3 197.6 11.5 178.0 5.3
U500.40 412.0 0.08 412.0 9.2 412.2 9.9 412.0 10.2
U1000.05 1.0 0.14 3.2 43.3 1.8 17.6 1.0 4.2
U1000.10 39.0 1.59 39.0 20.1 55.8 30.9 39.03 6.3
U1000.20 222.0 0.68 225.9 37.1 231.6 33.0 222.0 12.5
U1000.40 737.0 0.40 738.2 38.1 738.1 37.0 737.0 24.3

with low epistasis as revealed by the fitness distance analysis, the combination of both
appears to be a good idea. Thus, the multi–start Diff-Greedy + Kernighan-Lin algorithm
(DG+KL) was run on all geometric instances. Instead of limiting the time, the algorithms
were stopped as soon as they reached the optimum cut size. Table 8.8 displays the average
time (in seconds) to reach the optimum as well as the average number of iterations (iter).
For the graphs of type (b) a comparison with other heuristics is provided in Table 8.7. The
combination DG+KL is superior to all other algorithms, since it finds the best-known cut
sizes in all the runs. Again, the CPU times should be treated with care due to the different
hardware/software platforms used.

All running times are less than one second (with one exception), hence the use of a
memetic algorithm is not justified. It seems that with increasing problem size, the multi–start
approach becomes ineffective and that a MA is superior. In order to check this hypothesis,
experiments were conducted summarized in Table 8.9 on large 2D and 3D meshes.

For graph hammond, the multi–start approach is slightly faster, but for graph barth5
(|V | = 15606) and brack2 (|V | = 62631) the MA proves to be considerably faster. For the
largest mesh (ocean) with 143437 vertices, the DG+KL algorithm was not able to find a
bisection of size 464, so runs were performed with a predefined time limit of 1200 seconds.
The recombination–based MA was able to find the (probably minimal) cut size of 464 four
out of 30 times. Average cut size and standard deviation are much smaller for the MA than
for DG+KL, indicating that the MA scales much better with the problem size.

8.6 Summary

In this chapter, a fitness distance analysis (FDA) for several instances of the GBP was
performed. It has been shown that the structure of the search space of several types of
graphs differs significantly: Locally optimum solutions of some graphs show a high correlation
between fitness and distance to the optimum (or best-known solution), while for others no
correlation between fitness and distance can be observed. Thus, it is not sufficient to perform
a FDA for only one or two instances (or type of instance) and to draw conclusions from the
obtained results for all other instances, as in previous studies on graph partitioning [149, 34].
This, of course, may also be true for other combinatorial optimization problems.

The search space analysis has shown that neither the correlation length of the landscape,

154 8 The Graph Bipartitioning Problem

Table 8.8: Diff-Greedy + Kernighan-Lin on regular, caterpillar and grid graphs

instance iter cut size average t/s

Breg100.0 1.03 0 0.005
Breg100.4 1.30 4 0.005
Breg100.8 4.23 8 0.007
Breg100.20 7.10 16 0.010
Breg500.0 1.13 0 0.019
Breg500.12 5.37 12 0.035
Breg500.16 9.43 16 0.050
Breg500.20 27.10 20 0.113
Breg5000.0 1.13 0 0.183
Breg5000.4 1.30 4 0.216
Breg5000.8 2.07 8 0.270
Breg5000.16 4.53 16 0.513

Cat.352 5.97 1 0.018
Cat.702 6.60 1 0.037
Cat.1052 6.80 1 0.052
Cat.5252 6.73 1 0.273
RCat.134 2.27 1 0.008
RCat.554 4.20 1 0.024
RCat.994 3.87 1 0.041
RCat.5114 6.63 1 0.390

Grid100.10 1.53 10 0.009
Grid500.21 2.23 21 0.023
Grid1000.20 1.60 20 0.049
Grid5000.50 2.67 50 0.361
W-grid100.20 1.77 20 0.007
W-grid500.42 2.27 42 0.026
W-grid1000.40 2.00 40 0.038
W-grid5000.100 2.57 100 0.254

nor epistasis in terms of the average number of interacting genes per site in the problem
can help in predicting the structure of the landscape and hence the performance of heuristic
algorithms. Therefore, the notion of a dependency graph was introduced describing the
spatial structure of the gene interactions of the underlying representation. It has been shown
that the regularity of the dependency graph has a high influence on the shape of the fitness
landscape of the graph bipartitioning problem. Furthermore, locality (i.e., the dependency
graph contains only edges between vertices near to each other) seems to be an important
property. In the GBP, randomly generated geometric instances are shown to have a more
structured landscape than purely random instances with a dependency graph exhibiting no
spatial structure.

Algorithms such as the differential greedy algorithm exploit the structure of the search
space and are thus very effective. A new greedy recombination operator has been developed

8.6 Summary 155

Table 8.9: Diff–Greedy vs. MA on large 2D/3D meshes

algorithm graph gen/iter cut size avg. time/s

DG+KL hammond.graph 19.67 90 1.523
MA-GX,P=10 hammond.graph 3.73 90 1.580
DG+KL barth5.graph 1151.77 139 424.962
MA-GX,P=20 barth5.graph 21.60 139 43.943
DG+KL brack2.graph 145.47 731 473.503
MA-GX,P=40 brack2.graph 4.20 731 255.199

algorithm graph gen cut size sdev. Nopt time/s

DG+KL ocean.graph 260 475.9 5.12 0/30 1200
MA-GX ocean.graph 28 467.8 1.58 2/30 1200
MA-RGX ocean.graph 72 467.2 1.81 4/30 1200

which is based on the same idea and can be easily embedded in a memetic algorithm. It has
been shown in computer experiments that the MA with greedy recombination is superior
to five MAs using other crossover operators, and also superior to multi–start local search
and iterated local search on random uniform graphs. However, for graphs with high average
vertex degree, the memetic algorithm using mutation instead of recombination proves to be
superior. This phenomenon can also be observed for NK-Landscapes as shown in chapter 5
where it also appears to be better to use mutation instead of recombination for high K and
hence high epistasis. A MA in which the greedy recombination operator is combined with
mutation delivered the best results for uniform random graphs with low and high epistasis.
This algorithm is superior or at least competitive to the best currently available heuristics
the author is aware of.

For geometric graphs, the combination of differential greedy and Kernighan-Lin local
search is sufficient for small graphs (up to 5000 nodes). It was shown that for larger graphs
the memetic algorithm is much more effective. Thus, the memetic algorithm proves to be
an efficient, scalable and very robust search algorithm on all types of graphs and is capable
of producing better average cut sizes than every other heuristic search method known to the
author, including simulated annealing, hybrid genetic algorithms, and tabu search.

156 8 The Graph Bipartitioning Problem

Chapter 9

The Quadratic Assignment Problem

9.1 Introduction

The quadratic assignment problem (QAP) is a combinatorial problem in which a set of
facilities with given flows has to be assigned to a set of locations with given distances in such
a way that the sum of the product of flows and distances is minimized.

In this chapter, a fitness landscape analysis for several instances of the quadratic assign-
ment problem is performed and the results are used to classify problem instances according
to their hardness for memetic algorithms. The local properties of the fitness landscape are
studied by performing an autocorrelation analysis, while the global structure is investigated
by employing a fitness distance correlation analysis as described in chapter 4. It is shown
that epistasis, as expressed by the dominance of the flow and distance matrices of a QAP
instance, the landscape ruggedness in terms of the correlation length of a landscape, and the
correlation between fitness and distance of local optima in the landscape together are useful
for predicting the performance of memetic algorithms to a certain extent. Thus, based on
these properties a favorable choice of recombination and/or mutation operators for MAs can
be found.

Furthermore, experiments comparing three different evolutionary operators for a memetic
algorithm are presented. It is shown in an extensive comparison study that a memetic
algorithm employing the recently proposed information-preserving recombination operator
for the QAP is able to outperform five of its competitors, two variants of tabu search, two
ant colony algorithms, and simulated annealing, on all tested instances of practical interest
on a set of problem instances with a problem size of up to 256.

The results presented in this chapter have been published in [216].

9.2 Heuristics for the QAP

Several heuristics have been proposed for finding near–optimum solutions to large QAP
instances, including ant colonies [199, 111, 290, 288], evolution strategies [237], genetic
algorithms [300], simulated annealing [50, 56], neural networks [150], memetic algorithms
[41, 152, 93, 231] tabu search [23, 273, 274, 296, 14], threshold accepting [236], randomized
greedy search (GRASP) [189], scatter search [61], and tree search [198].

In the following, the usefulness of greedy construction heuristics for the QAP is discussed,
and local search variants for the QAP are described since both types of algorithms are
relevant for the development of effective MAs for the QAP.

157

158 9 The Quadratic Assignment Problem

Throughout this chapter, it is assumed that a solution to the QAP is written as a per-
mutation π of the set {1, . . . , n}. The cost associated with a permutation π is

C(π) =
n∑
i=1

n∑
j=1

aij bπ(i)π(j), (9.1)

where n denotes the number of facilities/locations, and A = (aij), B = (bij) are referred to
as the distance and flow matrices, respectively.

9.2.1 Greedy Heuristics

Greedy construction heuristics have been proposed for several combinatorial optimization
problems. However, for the QAP these algorithms are fairly limited.

A construction heuristic for the QAP works by assigning facilities to locations until all
facilities are assigned. Thus, a greedy construction heuristic requires N steps to produce a
feasible QAP solution for an N facility/location problem. The crucial part of such a heuristic
is the criterion that determines which facility to assign to which location in a construction
step. The criterion is aimed to maximize a ‘profit’ associated with each possible assignment
and is only meaningful if the profit is observed in the resulting solution. Thus, the profit
can be regarded as the contribution to the final objective value of the solution. Usually,
QAP instances have a high degree of non-linearity. Except for instances with distance and
flow matrices with low density, an assignment of a facility to a particular location influences
many other choices and the profit estimated for prior assignments becomes totally different
from the real contribution to the final objective. Hence, a greedy heuristic performs in most
cases not considerably better than random search but requires much more running time and
thus cannot be justified as an alternative to random search.

9.2.2 Local Search

The commonly used local search for the QAP is the the 2-opt heuristic, also known as the
pairwise interchange heuristic [43].

In the QAP, the 2-opt neighborhood is defined as the set of all solutions that can be
reached from the current solution by swapping two elements in the permutation π. Fig-
ure 9.1 illustrates such a 2-opt move. The number of swaps and consequently the size of this

2 4 9 1 8 7 3 5 6

Individual A:

Individual A’:

2 4 7 1 8 9 3 5 6

Figure 9.1: Local Search for the QAP

neighborhood grows quadratically with n. The change in the total cost C(π) − C(π′) by a

9.2 Heuristics for the QAP 159

swap of the elements i and j in the permutation π can be calculated in linear time:

∆C(π, i, j) = C(π)− C(π′) (9.2)

= (ajj − aii)(bπ(i)π(i) − bπ(j)π(j)) + (aji − aij)(bπ(i)π(j) − bπ(j)π(i))

+
n∑

k=1,k 6=i,j
(ajk − aik)(bπ(i)π(k) − bπ(j)π(k)) + (akj − aki)(bπ(k)π(i) − bπ(k)π(j)).

However, the formula is reduced considerably if both matrices A and B are symmetric and
all the diagonal elements of one of the matrices are zeros:

∆C(π, i, j) = 2
n∑

k=1,k 6=i,j
(ajk − aik)(bπ(i)π(k) − bπ(j)π(k)). (9.3)

There are several techniques to speed up the neighborhood search. The most commonly used
technique in tabu search is to maintain a cost gain matrix ∆C. Instead of calculating each
element of the matrix in each iteration anew, the gain matrix can be updated efficiently by
utilizing the following formula assuming that the solution π′ has been obtained by exchanging
facilities k and l in the solution π:

∆C(π′, i, j) = ∆C(π, i, j) (9.4)

+(aki − akj + alj − ali) · (bπ(l)π(i) − bπ(l)π(j) + bπ(k)π(j) − bπ(k)π(i))

+(aik − ajk + ajl − ail) · (bπ(i)π(l) − bπ(j)π(l) + bπ(j)π(k) − bπ(i)π(k)).

The formula is valid for all i, j /∈ {k, l}. In the other cases, equation (9.2) has to be used
instead. Again, for symmetric instances, the formula is less complicated.

Instead of searching for the best neighboring solution, the first swap found reducing the
total cost C(π) may be accepted. Furthermore, another mechanism may be included to
reduce the running time of the local search. The use of don’t look bits has been described
in chapter 7 and has been proposed by Bentley for the TSP [27]. However, the technique
can be used in any other local search algorithm for other combinatorial problems, too. In
the QAP, the mechanism works as follows. If the don’t look bit for location i is set to one,
the facility at location i will not be considered for an improvement swap in the current local
search iteration. Initially, all don’t look bits are set to zero. The don’t look bit for location
i will be set to one, if no improving move could be found for the current solution with the
facility at location i being one of the facilities to swap. If an improving swap is found in
which the facility at location k has to be exchanged with the facility at location l, the don’t
look bits for location k and l are set to zero.

This technique reduces the running time without a significant loss in quality of the
solutions.

9.2.3 Hybrid Evolutionary Algorithms

Some evolutionary approaches incorporating local search have been proposed for the QAP,
some of which are based on recombination and can be classified as memetic algorithms.
These will be briefly described in the following.

In [231], a parallel genetic algorithm is presented that incorporates 2-opt local search.
Recombination is performed by a voting mechanism: Each child has p parents. The number

160 9 The Quadratic Assignment Problem

of parents in which a facility is assigned to the same location is counted. If the facility is
assigned to a location more often than a predefined threshold, the facility is assigned to that
location in the child. All other assignments are made at random. Voting recombination is a
highly disruptive recombination with a high degree of implicit mutation.

The SAGA algorithm proposed in [41] incorporates simulated annealing instead of a sim-
ple 2-opt local search. Recombination is performed similar to the PMX crossover proposed
by Goldberg and Lingle [118] for the TSP. A sequence of assignments between two ran-
domly chosen crossover points is copied from the first parent to the offspring. Additional
assignments are made that are found in the second parent while maintaining feasibility. The
remaining unassigned facilities are randomly allocated. Hence, the operator also performs
implicit mutations.

The memetic algorithm described in [152] uses the crossover operator as in SAGA. But
here, a tabu search is used instead of simulated annealing.

The Genetic Hybrids introduced in [93] are genetic algorithms incorporating local search
or tabu search. The recombination operator used in their algorithms is borrowed from Tate
and Smith [300] and works as follows. Firstly, all facilities assigned to the same location in
both parents are copied to this location in the child. Secondly, the unassigned locations are
scanned from left to right. For the unassigned locations, a facility is chosen at random from
those occupying the location in the parents if they are not yet included in the child. Thirdly,
remaining facilities are assigned at random. Thus, implicit mutation occurs in the last step
of the recombination scheme.

9.3 The Fitness Landscape of the QAP

The binary matrix representation as defined in equation (2.12) is impractical for the coding of
the solutions due to the high storage requirements and the complicated constraint handling.
Therefore, the permutation π is usually encoded as a vector of facilities, such that the value j
of the i-th component in the vector indicates that facility j is assigned to location i (π(i) = j).
Individual A in Figure 9.1 represents a solution where facility 2 is assigned to location 1,
facility 4 is assigned to location 2 and so on.

9.3.1 A Distance Measure

The fitness landscape analysis and the memetic algorithm described below rely on a distance
metric for QAP solutions. There are several possibilities for measuring distances between
permutations. The commonly used distance measure is as follows. Let π1 and π2 be valid
permutations and hence valid solutions to a given QAP instance. The distance between the
solutions π1 and π2 is defined as:

d(π1, π2) = |{i ∈ {1, . . . , n} | π1(i) 6= π2(i)}| . (9.5)

Thus, the minimum distance between distinct solutions is dmin = 2, and the maximum
distance and therefore the diameter of the landscape is dmax = n with n denoting the
problem size.

Although there may be alternative landscapes for the QAP, the search space analysis
is focused on the landscape L = (S, f, d) with S = Π(n) (the set of all permutations of
{1, . . . , n}), f = c(π) as defined in equation(2.11), and d as defined in equation (9.5), since

9.3 The Fitness Landscape of the QAP 161

the local search is designed for that landscape. The diameter diamGL of the landscape is
equal to the problem size n.

9.3.2 Types of QAP Instances

The transformation of instances of a given optimization problem into easier solvable problem
instances is an interesting issue for designing heuristics. Thus, the goal is to find transfor-
mations that help in increasing the efficiency or the effectiveness of an algorithm. For the
QAP, the following transformation may be employed for developing promising heuristics.

QAP matrix transformations

Assuming the matrix B of a QAP instance is symmetric, the matrix A = (aij) can be
transformed into A′ = (a′ij) without changing the resulting cost, if

a′ij = λij (aij + aji) with λij = 1− λji, λii =
1

2
. (9.6)

Thus, setting λij to 0.5 for all i, j, the transformation of an asymmetric matrix A yields a
symmetric matrix A′ with

C(π) =
n∑
i=1

n∑
j=1

aij bπ(i)π(j) =
n∑
i=1

n∑
j=1

1

2
(aij + aji) bπ(i)π(j) =

n∑
i=1

n∑
j=1

a′ij bπ(i)π(j). (9.7)

An analogous transformation can be utilized to obtain two symmetric matrices if matrix
A is symmetric while B is not. By using this transformation, the computation time for a
local search can be reduced significantly for asymmetric instances. In the memetic algorithm
described in this chapter, the transformation is performed once upon startup, and thus the
computation time for the local search is reduced considerably (up to a factor of 4 in the
implementation) due to the much faster evaluation of ∆C.

The transformation provided in equation (9.6) does not change the structure of the
fitness landscape. Assuming matrix A is asymmetric and B is symmetric, the fitness (cost)
difference between neighboring points in the search space is given by:

∆C(π, i, j) = C(π)− C(π′) (9.8)

= (ajj − aii)(bπ(i)π(i) − bπ(j)π(j))

+
n∑

k=1,k 6=i,j
(ajk − aik + akj − aki)(bπ(i)π(k) − bπ(j)π(k)).

Thus, the sum of ajk and akj always contribute to the cost change between neighboring
solutions. The transformation above does not change the sum of two elements aij and aji,
thus ∆C does not change for a transformed problem, and hence the structure of the fitness
landscape remains.

Flow and Distance Dominance

QAPLIB [49] is a publicly accessible library of instances of the QAP. It contains differ-
ent types of QAP instances; some of them were drawn from real world applications, while

162 9 The Quadratic Assignment Problem

others were generated randomly to assess the performance of heuristics. In order to find
a complexity measure for QAP instances, Vollmann and Buffa [304] have introduced the
flow dominance, which measures to what extent the flow matrix B shows “dominant” flow
patterns. The dominance dom(X) for a matrix X is defined as the coefficient of variation
multiplied by 100:

dom(X) = 100 · σ(X)

µ(X)
, (9.9)

µ(X) =
1

n2

n∑
i=1

n∑
j=1

xij,

σ(X) =

√√√√ 1

n2 − 1

n∑
i=1

n∑
j=1

(xij − µ(X))2.

Thus the flow dominance is denoted dom(B). In case a few entries comprise a large part of
the overall flow, the flow dominance is high, and if almost all entries are equally sized, the
flow dominance is low. However, the major drawback of this complexity measure is that it
does not take the influence of the distance matrix A into account. Analogously, let dom(A)
be the distance dominance, then the dominance of a QAP instance can be defined according
to [7, 8] as a vector (min{dom(A), dom(B)},max{dom(A), dom(B)}).

QAP instances with randomly generated flows (distances) using a uniform distribu-
tion typically have a low flow (distance) dominance, whereas real-life instances and (non-
uniformly) randomly generated instances similar to real-life instances have considerably
higher dominance values for at least one of the matrices.

Epistasis and the QAP

The amount of gene interaction (epistasis) is known to have a strong influence on the per-
formance of heuristics. If the solutions of a problem can be encoded in a bit string (binary
vector), and the fitness can be decomposed into fitness contribution functions for each site,
epistasis can be estimated easily. Consider the NK-Landscapes proposed by Kauffman [168].
The fitness f of a genome x = (x1, . . . , xN) ∈ {0, 1}N is defined as follows:

f(x) =
1

N

N∑
i=1

fi(xi, xi1 , . . . , xiK). (9.10)

Thus, the fitness contribution fi for each site i depends on the gene value xi of gene i and
on the values of K other genes at the sites i1, . . . , iK . Hence, the higher the value of K,
the higher the epistasis. It is shown in chapter 8, that there are problems for which the
quantity denoting the (average) number of interacting genes does not sufficiently reflect the
characteristics of the fitness landscape. To gain insight into the role of gene interactions, the
notion of a dependency graph reflecting gene interaction is introduced. The vertices in the
dependency graph represent the genes. An edge in the dependency graph from vertex i to
vertex j indicates that the fitness contribution fi of gene i depends on the value of xj. Thus,
the fitness contribution of gene i is of the form fi(xi, . . . , xj, . . .). For NK-landscapes, the
vertex degree of the dependency graph is K + 1, including the edges going from the vertices
to themselves.

Since the commonly used representation of the QAP is a permutation of the set {1, . . . , N},
it is not obvious what gene interaction means in the QAP. The cost function c(π) (equation

9.3 The Fitness Landscape of the QAP 163

(2.11)) can be decomposed in the following way:

c(π) =
n∑
i=1

n∑
j=1

aij bπ(i)π(j) =
n∑
i=1

ci(π) (9.11)

Assuming the matrix B does not contain zeros in the off–diagonal entries, a fitness (cost)
contribution function ci depends on those sites j for which aij 6= 0. In other words, the
dependency graph is described by the matrix A, where aij 6= 0 defines the weight of the edge
(i, j). If matrix B has more elements in the off–diagonal entries equal to zero, the role of the
matrices can be exchanged. Note that exchanging the matrices A and B does not change
the fitness landscape of a problem instance.

Thus, the dominance measure defined above is a good indicator for the amount of epistasis
in a problem instance. For example, assuming matrix B (A) has no or only few zero entries,
dom(A) (dom(B)) is low and epistasis is high; if matrix A (B) has many zero entries, the
dominance is high and epistasis is low.

The Complexity Catastrophe

In his book [168], Kauffman describes a phenomenon called the complexity catastrophe. He
observed that in NK landscapes the expected fitness of local optima decreases towards 0.5,
the mean fitness of the search space, if both K and N increase (K increases as a constant
fraction of N).

Burkard and Fincke [48] have shown for the QAP that the ratio between the objective
function values of worst and optimal solutions is arbitrarily close to one with probability
tending to one as the size of the problem (n) approaches infinity. They have proven this
theorem for instances with independently and identically distributed random variables for
the entries of the matrices A and B. Hence, the complexity catastrophe occurs also in the
QAP at least for instances with uniformly random generated matrices. A consequence of the
theorem is that simple heuristics are sufficient for large problem instances, and for infinitely
large n, even random search is appropriate.

9.3.3 Autocorrelation Analysis

To analyze the fitness landscape of the QAP, 12 instances were selected from QAPLIB,
including real-world instances, randomly generated instances, and instances with known op-
timum solutions generated by an algorithm proposed in [188]. Furthermore, two instances
of the graph bipartitioning problem and two traveling salesman problem instances trans-
formed into QAP instances were included in the analysis. The chosen instances are listed in
Table 9.1. Viewing the table from left to right, the name of the instance, the problem size
n, and the dominance of matrix A and B (dom(A) and dom(B), respectively) are provided.
The last two columns contain the correlation length in relation to the diameter of the land-
scape (n/`), and the correlation length ` itself. The correlation length ` has been estimated
experimentally by performing random walks of length 100000000.

The first 9 instances (tai80a - tai256c) are either real world or randomly generated QAP
instances, the lipa90a/b QAP instances are randomly generated in a way that optimum
solutions can be calculated in polynomial time. The two instances beginning with G124 are
transformed graph bipartitioning instances. The transformed TSP instances are kroA124p
and kroA100, an asymmetric and a symmetric TSP, respectively.

164 9 The Quadratic Assignment Problem

Table 9.1: Average distances and fitness distance coefficients for local minima

Instance n dom(A) dom(B) 〈dopt〉 〈∆c〉 q % 〈dls〉 ils n/` `

tai80a 80 59.2 60.4 78.9 547619.7 4.04 0.02 78.9 139.8 4.04 19.60
tai100a 100 59.3 60.3 97.7 776234.7 3.67 0.06 99.0 183.9 4.05 24.71
sko100a 100 50.8 106.6 97.6 3035.6 2.00 0.08 97.9 342.8 3.66 27.29
wil100 100 50.8 64.5 97.8 2909.4 1.07 0.03 97.6 343.2 3.59 27.82
tho150 150 51.5 147.2 147.9 185767.2 2.28 0.04 147.8 632.8 3.68 40.72
tai80b 80 64.0 323.2 77.3 44117586.0 5.39 0.22 77.7 366.9 3.41 23.48
tai100b 100 80.4 321.3 95.2 53694038.8 4.53 0.62 96.7 490.1 2.86 35.01
tai150b 150 51.8 314.1 148.1 15278698.1 3.06 0.05 148.1 839.4 3.75 39.95
tai256c 256 259.7 217.9 254.6 231150.2 0.52 0.05 255.0 193.5 4.04 63.29
lipa90a 90 18.4 41.9 88.8 2834.3 0.79 0.03 89.0 159.0 4.09 22.02
lipa90b 90 60.0 41.9 88.5 2758634.9 22.09 0.37 88.9 161.8 4.05 22.24
G124-02 124 100.0 711.3 123.0 20.7 79.74 0.00 123.0 42.9 4.00 30.97
G124-16 124 100.0 224.7 122.8 47.9 5.33 0.00 123.0 84.6 4.05 30.58
kro124p 100 995.0 49.6 99.0 25043.0 69.12 0.07 99.0 292.9 4.09 24.47
kroA100 100 995.0 54.8 99.1 20840.0 97.92 0.07 99.0 358.3 4.08 24.52

Focusing on the local structure of the landscapes, the instances can be divided into
two classes. Several instances have a highly rugged fitness landscape as reflected by a low
correlation length (n/` ∼ 4). The instances sko100a, wil100, tho150 and tai*b have a higher
relative correlation length as expressed by a lower n/`. The smoothest landscape has instance
tai100b with n/` = 2.86. Some of the rugged landscapes have another interesting property:
For the instances tai*a and tai256c, the average number of improvements made by the 2-opt
local search is very low compared to the other instances.

The Random Walk Correlation Function

In an additional experiment, the random walk correlation function of some of the landscapes
was studied. The computed correlation functions are plotted in Figure 9.2 for the instances
tai100a (left) and tai100b (right).

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70 80 90 100

ra
nd

om
 w

al
k

co
rr

el
at

io
n

�

Step distance s

tai100a

random walk
exp(-s/l)

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70 80 90 100

ra
nd

om
 w

al
k

co
rr

el
at

io
n

�

Step distance s

tai100b

random walk
exp(-s/l)

Figure 9.2: Random Walk Correlation functions for tai100a and tai100b

The random walk correlation functions have an exponentially decaying form as expected

9.3 The Fitness Landscape of the QAP 165

for AR(1) landscapes. The computed functions rc(s) are very close to the functions r(s) =
e−s/`, as can be seen in the plots. The latter function is included in the plots for comparison.

9.3.4 Fitness Distance Correlation Analysis

To investigate the distribution of local optima in the search space, 10000 local optima were
produced using the fast 2–opt local search described above. In Table 9.1, the distance to
the optimum or best-known solution 〈dopt〉, the cost difference ∆c = c − copt, the average
quality q = 100 · (copt/c − 1) of the local optima, the fitness distance correlation coefficient
%, the mean distance between the local optima 〈dls〉, and the average number of iterations
per local search ils are provided. Although for some instances more than one best-known
solution may exist, only one best-known solution for each instance was considered in the
experiments, since at most one best-known solution is available from QAPLIB. In Figure 9.3
the scatter plots (FDC plots) are provided for representatives of the studied instances.

For all studied instances, the distances between the local optima and best known solutions
〈dopt〉 as well as the average distances between the local optima are very close to the diameter
of the landscape. Thus, as can also be seen in the plots, the QAP instances have very
unstructured landscapes. The local optima are neither restricted to a small region of the
search space, nor do they seem to be correlated. An exception to this rule is instance
tai100b, which exhibits a relatively high correlation of fitness and distance to the optimum.
Surprisingly, the results can not be predicted by looking at the dominances of the instances.
For example, the TSP instances and the GBP instances have a high value for dom(A) and
dom(B), respectively, but do not show any correlation. Furthermore, instances tai80b and
tai100b have similar flow and distance dominance values, but the former has significantly
less correlated local optima. According to the distribution of the local optima, the instances
can be divided into two types: the first type has correlated local optima and consists of the
tai*b problems. The second type has no exploitable structure in the distribution of the local
optima and consists of the remaining instances.

The Role of Epistasis and Structured Landscapes

To find out whether there are QAP landscapes that show a high correlation and have a
correlation length close to n/2 and thus n/` close to 2, new instances were created with
varying epistasis. The two sets of problems consisting of 5 instances with n = 100 have been
generated as follows. The distance matrix A of each instance was constructed by randomly
creating n points in the unit square. An entry aij is defined by the Euclidean distance
D(i, j) between point i and j multiplied by 100. Thus, the entries of A lie between 0 and
100. The matrix B is constructed in a similar fashion by randomly creating n points in
another unit square. For the first set of instances, bij is set to the Euclidean distance D(i, j)
multiplied by 100 between point i and j if the distance is below or equal to a predefined
maximum distance Dmax, zero otherwise. For the second set, bij is set to 100/(D(i, j) + 1),
if D(i, j) is below or equal to a predefined maximum distance Dmax. Thus, by varying the
threshold distance Dmax, instances with arbitrarily epistasis/flow dominance can be created.
The instances are structured since for the elements in the matrices the triangle inequality is
obeyed. In real world applications at least one of the matrices represent a form of distance
which naturally fulfills the triangle inequality. Thus, the generated instances are aimed to
provide a structure that is found in real world applications. Table 9.2 provides an overview

166 9 The Quadratic Assignment Problem

0
100000
200000
300000
400000
500000
600000
700000
800000

0 10 20 30 40 50 60 70 80

C
os

t d
iff

er
en

ce

�

∆c

Distance to optimum dopt

tai80a

0

2e+07

4e+07

6e+07

8e+07

1e+08

1.2e+08

0 20 40 60 80 100

C
os

t d
iff

er
en

ce

�

∆c

Distance to optimum dopt

tai100b

0
50000

100000
150000
200000
250000
300000
350000
400000
450000

0 50 100 150 200 250 300

C
os

t d
iff

er
en

ce

�

∆c

Distance to optimum dopt

tai256c

0

500000

1e+06

1.5e+06

2e+06

2.5e+06

3e+06

0 10 20 30 40 50 60 70 80 90

C
os

t d
iff

er
en

ce

�
∆c

Distance to optimum dopt

lipa90b

0

20

40

60

80

100

120

0 20 40 60 80 100 120 140

C
os

t d
iff

er
en

ce

�

∆c

Distance to optimum dopt

G124-16

0

5000

10000

15000

20000

25000

30000

35000

0 20 40 60 80 100

C
os

t d
iff

er
en

ce

�

∆c

Distance to optimum dopt

kroA100

Figure 9.3: FDC analysis I

of threshold distances used. The same experiments were performed on the newly created

Table 9.2: Threshold parameters for the generated QAP instances

Dmax 1 0.75 0.5 0.25 0.1
Set 1 pmd100a pmd100b pmd100c pmd100d pmd100e
Set 2 pmr100a pmr100b pmr100c pmr100d pmr100e

problems as for the previously described instances. The results are displayed in Table 9.3

9.4 A Memetic Algorithm for the QAP 167

and Figure 9.4. To obtain the best-known solutions for the new instances, several long runs
(2 hours) with the MA using CX recombination as described below have been performed.

Table 9.3: Average distances and fitness distance coefficients for local minima

Instance n dom(A) dom(B) 〈dopt〉 〈∆c〉 q % 〈dls〉 ils n/` `

pmd100a 100 48.2 50.9 93.9 49337.6 0.20 0.23 94.8 416.9 2.99 33.46
pmd100b 100 49.2 68.1 96.5 83625.5 0.54 0.26 97.0 450.5 2.97 33.67
pmd100c 100 48.9 119.9 93.4 115679.7 2.32 0.46 95.1 470.2 2.55 39.25
pmd100d 100 49.5 252.0 96.7 81714.1 17.80 0.29 97.6 446.9 3.10 32.30
pmd100e 100 49.3 686.7 98.0 5444.5 61.66 0.09 98.5 323.9 3.65 27.40
pmr100a 100 48.8 24.5 94.9 122075.6 0.40 0.24 95.5 427.9 2.42 41.27
pmr100b 100 48.4 52.4 95.1 192941.5 0.84 0.25 95.6 431.5 2.36 42.38
pmr100c 100 49.3 100.3 94.4 442360.6 3.62 0.42 95.8 447.9 2.50 39.95
pmr100d 100 48.8 237.9 97.3 497712.5 22.23 0.16 98.0 446.0 3.39 29.50
pmr100e 100 48.6 651.9 97.8 85554.9 67.60 0.15 98.5 341.6 3.73 26.82

The pmd* problems have a dom(A) value of approximately 50, while the flow dominances
dom(B) are between 50 and 690. The pmr* instances have also a distance dominance of 50,
but the flow dominance varies from 24 to 650. Again, the average distance to the best-known
solution and the average distances between the local minima are close to the diameter of the
landscape. The fitness distance correlation coefficient is significantly higher compared to the
FDC of the other instances. However, all instances have a lower FDC than tai100b. pmd100c
has the highest FDC % in the first set, and pmr100c has highest FDC in the second. The
plots in Figure 9.4 show that there exists a structure in the distribution of the local optima
of the generated instances except for the ones with high flow dominance. Furthermore, it
can be seen for pmd100c and pmr100c that there are local optima which are much closer to
the best-known solution than most of the others. Even instance tai100b has no local optima
which are similarly close to the best-known solution.

The correlation length ` in the first set is highest for pmd100c, and for the second set
pmr100b has highest correlation length. The values for n/` are closer to 2 than the value for
tai100b. Neither the correlation length nor the FDC nor 〈∆c〉 reflects the effectiveness of the
local search to approach the optimum cost: The quality q of the locally optimum solutions
decreases rapidly with decreasing epistasis (increasing dom(B)). For example, for pmd100a,
the locally optimum solutions have a cost 0.20% above the optimum on average, while for
pmd100e the percentage excess is 61.71%! Thus, it seems that reaching the optimum cost
is easy for meta–heuristics based on LS, if the instances are structured and there is high
epistasis (low flow dominance). For instances with low epistasis (high flow dominance),
reaching the optimum cost seems to be harder.

9.4 A Memetic Algorithm for the QAP

Although the memetic algorithm template is general in the sense that it can be used for every
combinatorial optimization problem, some components are problem–specific. The creation
of the initial population, as well as the the local search and the genetic operators are specific
to the QAP, and will thus be described in the following.

168 9 The Quadratic Assignment Problem

0

20000

40000

60000

80000

100000

120000

140000

0 20 40 60 80 100

C
os

t d
iff

er
en

ce

�

∆c

Distance to optimum dopt

pmd100a

0

50000

100000

150000

200000

250000

300000

350000

0 20 40 60 80 100

C
os

t d
iff

er
en

ce

�

∆c

Distance to optimum dopt

pmr100a

0
50000

100000
150000
200000
250000
300000
350000
400000

0 20 40 60 80 100

C
os

t d
iff

er
en

ce

�

∆c

Distance to optimum dopt

pmd100c

0
200000
400000
600000
800000
1e+06

1.2e+06
1.4e+06
1.6e+06
1.8e+06

2e+06

0 20 40 60 80 100

C
os

t d
iff

er
en

ce

�
∆c

Distance to optimum dopt

pmr100c

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000

0 20 40 60 80 100

C
os

t d
iff

er
en

ce

�

∆c

Distance to optimum dopt

pmd100e

0
20000
40000
60000
80000

100000
120000
140000
160000

0 20 40 60 80 100

C
os

t d
iff

er
en

ce

�

∆c

Distance to optimum dopt

pmr100e

Figure 9.4: FDC analysis of additional QAP instances

9.4.1 Initialization and Local Search

The initial population of the MA is created by randomly generating solutions and applying a
2-opt local search. The solutions subject to the local search a generated in a poorly random
fashion, since greedy heuristics or similar construction heuristics are not effective for most
QAP instances.

The local search is a fast variant of 2-opt accepting the first improving move found and
making use of don’t look bits. Equation (9.4) is not utilized since for each local search the
gain matrix ∆C has to be initialized anew leading to an undesirable runtime penalty.

9.4 A Memetic Algorithm for the QAP 169

9.4.2 The Evolutionary Variation Operators

In the MA for the QAP described in this chapter, two recombination operators, the distance
preserving recombination operator and the cycle crossover, as well as a simple mutation
operator are employed each of which will be described in the following.

The DPX Recombination Operator

A distance measure between solutions is useful for explaining the behavior of evolutionary
operators, since it defines the distance of the jumps made in the search space, and in some
cases, the relative direction of a jump, if reference points exist. The evolutionary operators
described in this section rely on the distance measure defined in equation (9.5).

The recombination operator DPX (distance preserving crossover) previously introduced
in [209] relies on the notion of a distance between solutions. The basic idea behind DPX
has also shown to be effective for the traveling salesman problem [105, 106], and can be
described as follows. In general, the DPX is aimed at producing an offspring which has the
same distance to each of its parents, and this distance is equal to the distance between the
parents themselves. The alleles that are identical for the same genes in both parents will be
copied to the offspring. The alleles for all other genes change. Thus, although the crossover
is highly disruptive, the local search procedure applied subsequently is forced to explore a
region of the search space that is defined by the genes with different alleles in the parents,
which is the region where better solutions are most likely to be found in some search spaces.

The DPX operator for the QAP works as follows. Suppose that two parents A and B as
shown in Figure 9.5 are given.

2 4 7 1 8 9 3 5 6

7 4 5 3 8 9 2 1 6

4 8 9 6

Parent A:

Parent B:

5 4 1 2 8 9 7 3 6Child C:

Figure 9.5: The DPX Recombination operator for the QAP

First, all assignments that are contained in both parents are copied to the offspring C.
The remaining positions of the genome are then randomly filled with the yet unassigned
facilities, taking care that no assignment that can be found in just one parent is inserted
into the child. After that, we end up with a child C, for which the condition d = d(C,A) =
d(C,B) = d(A,B) holds; in the example in Figure 9.5 the distance d is 5. Since it is
computationally expensive to ensure that the child has exactly the distance d to both parents,
a linear time algorithm is used that produces offspring that are with high probability d units
away from their parents. Experiments have shown that there is no significant performance

170 9 The Quadratic Assignment Problem

difference between the exact and approximate version of DPX in terms of solution quality.
Therefore, we prefer the much simpler approximate algorithm.

The CX Recombination Operator

The second recombination operator (CX) recently proposed for the QAP [213] – the name
was changed from UX to CX to account for the fact that it is similar to the cycle crossover
proposed for the TSP – preserves the information contained in both parents in the sense
that all alleles of the offspring are taken either from the first or from the second parent. In
other words, the operator does not perform any implicit mutation, since a facility that is
assigned to location i in the child is also assigned to location i in one or both parents. The
CX recombination operator works as shown in Figure 9.6.

function CXrecombination(a ∈ Π(n), b ∈ Π(n)) : Π(n);

begin
mark all c(i) as unset;
set c(i) := a(i) for all i where b(i) = a(i);
set j to a random position between 0 and n− 1 with c(j) unset;
while not all locations of c are set do

assign a, b randomly to parent, other;
l := j;
repeat
c(l) := parent(l);
k := l;
find l with parent(l) = other(k);

until other(k) in c;
j := j + 1 mod n;

endwhile;
return c;

end;

Figure 9.6: The CX recombination

In the first phase, all facilities found at the same locations in the two parents are assigned
to the corresponding locations in the offspring. Then, starting with a randomly chosen
location with no assignment, a facility is randomly chosen from the two parents. After that,
additional assignments are made to ensure that no implicit mutation occurs. Then, the next
unassigned location to the right (in case we are at the end of the genome, we proceed at its
beginning) is processed in the same way until all locations have been considered.

Consider the example shown in Figure 9.7. First, all facilities that are assigned to the
same location in the parents are inherited by the offspring. These are the facilities 4, 9, and
6. Then, beginning with a randomly chosen location (in this case location/position 3), a
facility is randomly selected from one of the parents and is assigned to the same location
in the child. In the example, this is facility 7. Now, other facilities have to be assigned to
guarantee that no implicit mutation occurs. By assigning facility 7 of parent A to location 3

9.4 A Memetic Algorithm for the QAP 171

Parent A: 2 4 7 1 8 9 3 5 6

Parent B: 7 4 5 8 3 9 1 2 6

Locations: 1 2 3 4 5 6 7 8 9

4 9 6

2 4 7 9 5 6

2 4 7 8 3 9 1 5 6

Offspring: 2 4 7 8 3 9 1 5 6

Figure 9.7: The CX recombination operator for the QAP

we prevent the possibility to assign facility 5 of parent B to that location. Hence, we have to
assign facility 5 to the same location as in parent A. Again, assigning facility 5 to location
8 requires that facility 2 has to be assigned, too. After that, facility 2 is located at site 1
in the genome. Since the facility at location 1 in parent B is 7, and 7 is already included
in the child, we can proceed in choosing a facility for the next free location to the right in
the offspring. In the example, facility 8 of parent B is inserted into the offspring, and to
avoid implicit mutations, we have to insert facility 1 at location 7 and facility 3 at location
5. Then, the algorithm terminates since all facilities have been assigned.

To limit the region where the local search takes place after the DPX or CX recombination
operator has been applied, the genes with the same alleles contained in both parents are
fixed. Hence, in the above example, swaps can only be performed between locations 1, 3, 4,
5, 7, and 8. This restricts the local search to the subspace defined by the two parents. The
neighborhood size for the local search is reduced from |N2opt| = 1

2
n·(n−1) to |N | = 1

2
d·(d−1)

(with d = d(π1, π2)), which results in an increased performance of the local search phase, since
the average distances between individuals of the population decrease during the evolution.

The Mutation Operator

The mutation operator used in the MA approach exchanges a sequence of facilities in the
solution until the offspring has a predefined distance to its parent, as shown in Figure 9.8.
To ensure that the offspring has the predefined distance, in each step, the second facility
chosen is exchanged again in the succeeding step, such that the resulting distance between
parent and offspring is one plus the number of exchanges. To illustrate the operation of the
mutation operator, consider the example shown in Figure 9.8.

In the first step, facilities 9 and 4 are exchanged, then facility 4 and 1, and in the last
step facility 1 is exchanged with 3. Thus, the resulting (mutation jump) distance between
parent and offspring is 4.

172 9 The Quadratic Assignment Problem

Parent: 2 4 7 1 8 9 3 5 6

Offspring: 2 9 7 4 8 3 1 5 6

exchanging 9 & 4: 2 9 7 1 8 4 3 5 6

exchanging 4 & 1: 2 9 7 4 8 1 3 5 6

exchanging 1 & 3: 2 9 7 4 8 3 1 5 6

Figure 9.8: The Mutation Operator for the QAP

9.5 Memetic Algorithm Performance

In the first experiment, the recombination operators DPX and CX described above as well
as the mutation operator with several jump distances were tested. Runs were performed
on the instances tai100a, tai100b, tai150b, tho150, tai256c, kroA100, and all pmd* and pmr*
instances. Results are displayed for selected instances in Figure 9.9.

The experiments show that for all instances except tai100a and tai256c, the CX operator is
more effective than the mutation operator. Furthermore, the DPX recombination operator
is outperformed by CX for all tested instances. In case of tai100a and tai256c, mutation
becomes superior to recombination for some jump distances. These instances have a n/`
value close to 4 and are considered to be unstructured. Although kroA100 has an extremely
rugged landscape (n/` ∼ 4), the MA with CX recombination is better or as good as the
MAs using mutation. The DPX recombination shows to be efficient only for the instances
tai100b and pmr100b.

In the studies, a general rule for setting the optimum mutation jump distance could not
be found. Besides the fact that the optimum depends on the structure of the landscape (e.g.
the optimum for tai100a is 20 while for tai100b it is 40), the running times of the algorithms
appear also to have an influence. However, it seems that the optimum jump distance lies
below the correlation length of the landscape (below n/4) for unstructured landscapes.

The results can be summarized as follows. If the landscape is highly rugged (n/` ∼ 4)
and the average number of improvements (iterations) made by the local search is low, recom-
bination becomes inefficient and mutation with a jump distance below the correlation length
of the landscape is the best choice. DPX recombination is only efficient if the landscape is
highly structured (low n/` and correlation between local optima). CX recombination is the
best choice for all landscapes with low n/` and for rugged landscapes (n/` ∼ 4) with low
epistasis (high flow or distance dominance).

9.5.1 Comparison of Heuristic Algorithms for the QAP

To evaluate the performance of the MA using CX relative to other proposed approaches
for the QAP, a comparison study with 5 of its competitors was performed. Included in

9.5 Memetic Algorithm Performance 173

1

1.5

2

2.5

3

0 10 20 30 40 50 60 70

Q
ua

lit
y

of
 C

os
t i

n
%

Mutation Jump Distance

tai100a

Mutation
UX

DPX

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 10 20 30 40 50 60 70

Q
ua

lit
y

of
 C

os
t i

n
%

Mutation Jump Distance

tai100b

Mutation
UX

DPX

0.04
0.06
0.08

0.1
0.12
0.14
0.16
0.18

0.2
0.22
0.24

0 50 100 150 200 250

Q
ua

lit
y

of
 C

os
t i

n
%

Mutation Jump Distance

tai256c

Mutation
UX

DPX

10
15
20
25
30
35
40
45
50
55

0 10 20 30 40 50 60 70 80 90

Q
ua

lit
y

of
 C

os
t i

n
%

Mutation Jump Distance

kroA100

Mutation
UX

DPX

0
0.005

0.01
0.015

0.02
0.025

0.03
0.035

0.04
0.045

0 10 20 30 40 50 60 70 80 90

Q
ua

lit
y

of
 C

os
t i

n
%

Mutation Jump Distance

pmr100b

Mutation
UX

DPX

10

15

20

25

30

35

0 10 20 30 40 50 60 70 80 90

Q
ua

lit
y

of
 C

os
t i

n
%

Mutation Jump Distance

pmd100e

Mutation
UX

DPX

Figure 9.9: Operator performance for tai100a, tai100b, and tai256c

the comparison are the robust tabu search algorithm (Ro-TS) [295], the reactive tabu search
algorithm (Re-TS) [23], the fast ant colony algorithm (FANT) incorporating local search
[298, 297], simulated annealing (SA) according to Connolly [56], and the Min-Max Ant
System (MMAS) [286, 290].

16 QAP instances from the QAPLIB were selected, ranging from n = 19 locations up to
n = 256. Included are structured as well as unstructured instances.

Figure 9.4 displays the results obtained by the MA, together with the results produced by
the robust tabu search algorithm (Ro-TS), reactive tabu search algorithm (Re-TS), fast ant
colony algorithm (FANT), simulated annealing (SA), and the min–max ant system (MMAS).
The five competitors belong to the best currently available heuristic approaches to the QAP.

174 9 The Quadratic Assignment Problem

To enable a fair comparison with the MA, the code developed by the corresponding authors
was used and executed the programs on the same hardware and operating system platform.
All algorithms were terminated after the same predefined time for each instance.

Table 9.4: Comparison of four algorithms for the QAP

MAR=3 MAR=1 Ro-TS Re-TS FANT MMAS SA
instance best-known avg.% avg.% avg.% avg.% avg.% avg.% avg.% t/s
els19 17212548 • 0.000 • 0.000 0.124 • 0.000 • 0.000 • 0.000 31.96 5
chr25a 3796 1.222 • 0.000 6.567 5.297 4.549 ∗0.669 49.52 15
bur26a 5426670 0.003 • 0.000 0.001 0.029 0.020 • 0.000 0.390 20
nug30 6124 0.004 0.007 0.020 0.589 0.219 ∗• 0.000 0.882 20
kra30a 88900 0.369 • 0.000 0.223 0.612 0.931 0.119 4.601 20
ste36a 9526 • 0.045 0.091 0.128 1.189 0.545 ∗0.051 12.55 30
tai60a 7208572 1.314 1.597 1.313 • 0.794 2.577 ∗1.159 3.199 90
tai80a 13557864 1.106 1.305 1.023 • 0.482 2.525 ∗0.768 3.298 180
tai100a 21125314 1.089 1.252 0.909 • 0.385 2.569 ∗0.728 1.848 300
sko100a 152002 • 0.096 0.127 0.191 0.397 0.474 ∗0.195 2.942 300
tai60b 608215054 • 0.000 • 0.000 1.898 0.929 0.213 0.075 1.760 90
tai80b 818415043 0.191 • 0.004 2.929 1.602 0.821 0.718 5.092 180
tai100b 1185996137 0.076 • 0.038 2.373 1.469 0.360 0.328 6.696 300
tai150b 498896643 • 0.361 0.397 2.851 1.775 1.176 1.167 3.787 600
tho150 8133484 • 0.151 0.202 0.548 0.488 0.765 ∗0.395 2.939 600
tai256c 44759294 0.070 0.099 0.326 0.266 0.273 ∗0.067 0.370 1200

The MA was run in two variants, one with a diversification rate 1/R of 1, and one with a
diversification rate of 1/3. In the table, instance denotes the name of the QAP instance from
the QAPLIB (the number indicates its size n). The best-known solution is provided for each
instance in the second column. For each algorithm, avg. shows the average percentage excess
over the best-known solution obtained within 30 runs, and t/s displays the time in seconds
allowed for each of the 30 runs. The dots in each row indicate the best average performance
for each instance. The min–max ant system was run in two variants, one incorporating 2–opt
local search and the other using tabu search. The results for the best of the two variants are
displayed in the column denoted MMAS. An asterisk indicates that the result was obtained
by the tabu search variant.

The results indicate that the MA is superior, in terms of solution quality within a given
time limit, to all alternative approaches for all but five instances. The unstructured instances
tai60a, tai80a, and tai100a, are solved more effectively by Ro-TS, Re-TS and MMAS, but
these instances have no practical importance. For instances nug30 and tai256c, MMAS shows
a slightly better performance than the MA. However, the MA using the mutation operator
finds the best-known solution of tai256c 8 out of 30 times with an average percentage excess
of 0.038%, and thus outperforms MMAS. For the problems tai60a, tai80a, and tai100a, the
results of the mutation based MA are 1.385%, 1.001%, and 0.936%, respectively. In an
additional experiment, the MA with CX has been shown to be superior to an MA with of
combination of CX and mutation for the structured problems.

In fact, it is hardly surprising that the MA is not the top performer for the three uniformly
randomly generated instances (tai60a, tai80a, and tai100a), since the MA is designed to
exploit some kind of (assumed) structure in the QAP search space; if there is no structure
at all, there is not much the MA can do (except for randomly jumping around). However,

9.5 Memetic Algorithm Performance 175

considering that the performance of the MA for tai60a, tai80a, and tai100a is still acceptable
(better than FANT and nearly as good as Ro-TS), and the MA outperforms its competitors
on the remaining instances, the MA appears to be the method of choice for the QAP instances
studied.

An explanation why the tabu search algorithms and the MMAS with tabu search per-
form better than MMAS with 2-opt local search and the MA can be found with a little
help from the fitness landscape analysis. For the instances tai60a, tai80a, and tai100a, the
average number of iterations of the local search is low. Tabu search allows to find much
better solutions since it does not stop in a local optimum. It efficiently searches for other
improvements once a local optimum has reached. For totally unstructured landscapes, this
appears to be the best strategy.

To illustrate the behavior of the MA using CX in more detail, Table 9.5 shows the times
(of 30 runs) required by the MA to reach the best-known solution. In the figure, gen denotes
the number of generations, average the average value of the objective function (equation
(2.11)), deviation the average deviation from the known optima, min. t in s and avg. t in
s the minimum and average runtime in seconds, respectively. The results illustrate that the
algorithm is able to find the best-known solutions in all 30 out of 30 runs in short average
running times for all structured problems.

Table 9.5: Shortest and average times to reach the best-known solution with the MA

instance gen average cost quality min. t in s avg. t in s
chr25a 131 3796.0 0.00% 0.3 2.6
bur26a 20 5426670.0 0.00% 0.2 1.0
nug30 234 6124.0 0.00% 0.8 7.1
kra30a 83 88900.0 0.00% 0.4 2.7
ste36a 925 9526.0 0.00% 2.0 36.7
tai60b 151 608215054.0 0.00% 7.5 23.2
tai80b 787 818415043.0 0.00% 54.8 258.3
tai100b 1312 1185996137.0 0.00% 57.5 629.1
G124-02 12 26.0 0.00% 9.2 33.2
G124-16 2 898.0 0.00% 7.4 15.0
lipa90b 121 12490441.0 0.00% 5.2 72.1
pmd100c 58 4992484.0 0.00% 19.4 41.1
pmr100c 143 12223044.0 0.00% 21.1 72.0

Although the alternative approaches used in the comparison are – to the best of the
authors’ knowledge – the most powerful methods available today for solving QAP instances,
several other techniques have been published. For example, another high quality algorithm
based on the ant system, called HAS-QAP [111], has been proposed which is not included
in the comparison, since the source code was not available to us. However, the MMAS
algorithm appears to be superior to HAS-QAP when selecting the best of MMAS with 2-opt
and MMAS with tabu search [288]. The results presented in [111] indicate that the MA is
superior to HAS-QAP in terms of CPU time and solution quality for problems with n > 30.

Compared to further approaches, it seems that the proposed MA algorithm is also su-
perior. In [231], the parallel genetic algorithm described above has been used to solve the

176 9 The Quadratic Assignment Problem

instances ste36a and nug30. The optima for both problems could be found in 279 seconds
and 363 seconds, respectively, on a transputer with 64 processors. However, on a state-
of-the-art workstation, the optima could be found in less than 3 seconds by the proposed
MA. In [199], results are reported for solving nug30 with the Ant System (AS). The best
solution found by a combination of AS and simulated annealing had a fitness value of 6128
while the MA finds the optimum solution with a value of 6124 easily. The combinatorial
evolution strategy (CES) proposed in [237] produces remarkable results for problems of up
to size 64 without any kind of domain knowledge, but the results are worse in both quality
and computation time than the results presented here. In [300], a genetic algorithm has
been proposed and tested for problems of up to size 30. For the largest problem investigated
there (nug30), the optimum could not be found. Comparison studies have been made in
[14, 200] for relatively small instances with the conclusion that genetic algorithms perform
relatively poor, but that hybridization may enhance the search significantly. The Genetic
Hybrids [93] have been proven to be effective for finding near optimum solutions: In long
runs (up to 22 hours on a Sun Sparcstation 10) new best solutions could be found for some
of the problems contained in QAPLIB. In comparison studies [296, 298], the genetic hybrids
have been shown to be the best algorithms for most of the studied instances. However, the
results presented in [298] are worse than the results obtained with the MA on the structured
tai*b problems in both quality and running times.

9.6 Summary

In this chapter, the fitness landscapes of several instances of the quadratic assignment prob-
lem (QAP) have been analyzed. To investigate the local and global properties of the fitness
landscapes, an autocorrelation analysis and a fitness distance correlation analysis has been
utilized as described in chapter 4. While the local properties have a large impact on the ef-
fectiveness of a local search algorithm, the global structure can be exploited by a population
based search. Thus, the analysis is especially important for the design of hybrid algorithms.

The analysis has revealed that the majority of problems is unstructured with respect to
their global and local structure. Many instances represent highly rugged landscapes and
the local minima are totally uncorrelated; they appear to be uniformly distributed over the
search space. Furthermore, it has been shown that low dominance proposed as a measure for
problem difficulty for the QAP is not suited to predict the hardness of a problem instance
since it does not reflect the structure in a fitness landscape. However, with flow and distance
dominance, a measure for gene interaction (epistasis) can be defined which allows to separate
instances of the QAP, if the correlation length of the landscape as a measure the landscape
ruggedness, and the correlation of fitness and distance of the local minima in the landscape,
is also considered.

To investigate the influence of epistasis on the structure of the fitness landscapes, struc-
tured instances with varying flow dominance and thus varying epistasis were generated. It has
been shown that there are instances exhibiting highly structured, rather smooth landscapes
in the QAP besides the ones obtained from QAPLIB, a public library for QAP instances.

Epistasis, correlation length and fitness distance correlation considered together, allows
to separate QAP instances into four classes. The first type, characterized by high epistasis,
high landscape ruggedness (low correlation length) and uncorrelated local optima, is the
hardest of all types of instances. Both local search and population based meta–heuristics
are relatively ineffective since there is no local or global structure to exploit. The second

9.6 Summary 177

type of instances has a rugged landscape but low epistasis and no correlation between fitness
and distance of the local optima. These instances are considered to be easier to solve but
still are very unstructured. The instances that are easiest to search have a relatively smooth
landscape (high correlation length) and the local optima are correlated. Instances with
a relatively smooth landscape, but very low epistasis and no global correlation structure
constitute the fourth class.

A memetic algorithm (MA), i.e. a genetic algorithm incorporating 2-opt local search
was applied to instances of the four classes with recombination or mutation operators. For,
the first and hardest class, it turned out that recombination is ineffective, which is not
surprising since recombination is thought of as exploiting a present structure in a problem,
and for these problems the structure is missing. For all other types of instances the MA
with the recently proposed recombination operator CX performed best. A highly disruptive
form of recombination as realized in the DPX recombination operator appears to be only
effective for the instances with correlated local optima and thus for the class of problems
with exploitable global structure.

Thus, it has been shown how a fitness landscape analysis is useful for finding a suitable
choice of evolutionary operators in an MA for the QAP. However, the fitness landscape
analysis may also be used for other meta–heuristics such as the ant colony system: The best
choice of local search or tabu search can be easily done based on a landscape analysis.

To compare the performance of the memetic algorithm, a comparison study was con-
ducted on a set of QAP instances with a problem size up to n = 256. In particular, the
MA was compared with five very good alternative heuristic approaches to the QAP: reactive
tabu search [23], robust tabu search [295], fast ant colony system [298], the min-max ant sys-
tem, and simulated annealing. The MA using the CX recombination operator is shown to
be superior to the other approaches, except for the hardest, totally unstructured instances.
Furthermore, the MA approach proves to be very robust, since the best-known solutions
could be found in all runs with short average running times for instances with a problem
size up to n = 100.

178 9 The Quadratic Assignment Problem

Chapter 10

Conclusions

The research in the field of combinatorial optimization is primarily focused on developing new
or improved heuristics for selected combinatorial problems. Not much effort has been made
in gaining insight into the structure of such problems in order to predict the performance of
existing search strategies or to develop even more effective approaches. Therefore, this work
is intended to show not just that a given search strategy is effective for some problems. The
main goal is to find reasons why a search strategy in a given situation performs better than
others.

The studies in this thesis concentrated on a particular class of heuristics: memetic algo-
rithms (MAs). The combination of efficient neighborhood search strategies and evolutionary
algorithms has been shown to be highly effective for many combinatorial optimization prob-
lems. While the neighborhood search is responsible for finding locally optimum solutions in
small regions of the search space, the evolutionary component is responsible for exploring
new promising regions. Each of the two components requires different problem character-
istics in order to be effective. These characteristics are best described with the notion of
fitness landscapes: if the candidate solutions of an optimization problem are arranged in
a spatial structure, and the heights of these points are determined by the solution quality
(fitness), they are said to form a fitness landscape.

The effectiveness of neighborhood search methods is strongly related to the ruggedness
of the landscape, i.e., the correlation of the fitness of neighboring points in the search space.
A measure for landscape ruggedness is the correlation length of a landscape that can be
either calculated mathematically or estimated experimentally employing an autocorrelation
or random-walk correlation analysis. On the other hand, the effectiveness of evolutionary
variation is strongly influenced by the distribution of the points produced by the neighbor-
hood search. If there is a structure in the distribution of these points, i.e., there is correlation
between the fitness of the points and their distance to the highest peak in the landscape, the
evolutionary component can be designed to exploit this feature. A fitness distance correlation
(FDC) analysis can be utilized to discover such a present global structure.

After an introduction to combinatorial optimization problems, memetic algorithms, and
fitness landscapes in the chapters 2 through 4, five different combinatorial optimization
problems have been investigated in the chapters 5 through 9: NK-landscapes, unconstrained
binary quadratic programming (BQP), the traveling salesman problem (TSP), the graph
bipartitioning problem (GBP), and the quadratic assignment problem (QAP). The local
structure in terms of landscape ruggedness and the global structure in terms of the distri-
bution of the local optima produced by a local search have been investigated. For three out
of the five considered problems, an autocorrelation analysis has been performed by other

179

180 10 Conclusions

researchers and thus a theoretical value for the correlation length exists. For the uncon-
strained binary quadratic programming problem and the quadratic assignment problem, a
random-walk analysis has been performed experimentally in this work. For all five problems,
a fitness distance correlation analysis has been conducted.

Furthermore, new evolutionary variation operators and/or greedy and local search heuris-
tics have been proposed for memetic algorithms for all problems: For NK-landscapes, a new
greedy heuristic, a new k-opt local search, and a new greedy recombination operator have
been proposed in chapter 5. In chapter 6, a new greedy heuristic, and a new k-opt local
search have been introduced for binary quadratic programming. For the traveling sales-
man problem, two new recombination operators have been proposed: a distance preserving
recombination operator and a generic greedy recombination operator. Both operators are
described in chapter 7. A new greedy recombination operator could be successfully applied
for graph bipartitioning in chapter 8. For the QAP, two new recombination operators have
been described in chapter 9: a distance preserving recombination operator and a cycle re-
combination operator similar to the cycle crossover for the TSP. In all five cases, the memetic
algorithms employing the new operators and/or local search and greedy heuristics are shown
to be among the most efficient heuristics available.

From the various landscape analysis experiments some important conclusions can be
drawn as described in the following paragraphs.

Conclusions drawn from the fitness landscape analysis

The properties of fitness landscapes can vary enormously between problems and even between
instances of the same problem. A fitness distance correlation analysis has been performed by
researchers in their studies for some of the investigated problems. However, it has been shown
in this thesis that investigating a single or few instances is not sufficient for drawing general
conclusions: The instances of the graph bipartitioning problem investigated in chapter 8
are selected to cover all available types of graphs. In fact, the results of the FDC analysis
vary drastically between the types of graphs. There are highly correlated landscapes and
landscapes with no correlation of fitness and distance to the optimum.

Regular instances and instances for which optimum solutions can be calculated in poly-
nomial time may not reflect the characteristics of real-world or complex instances. For the
traveling salesman problem, the graph bipartitioning problem, and the quadratic assign-
ment problem it has been shown that generated instances with known optimum solutions
(the optimum solution can be calculated in polynomial time) are not well suited for the eval-
uation of heuristics since they do not resemble characteristics of the instances with higher
computational complexity. The fractal instances of the traveling salesman problem, the reg-
ular graphs in the graph bipartitioning, and the quadratic assignment problem instances
generated with the Li-Pardalos generator mentioned in chapter 9 are such examples.

Random instances may be not as hard as real-world instances. A uniform distribution of
instance data may not resemble the structure of real-world instances. The results obtained
from the fitness landscape analysis indicate that random benchmark instances for combina-
torial problems should be generated with care. In the TSP, choosing randomly generated
instances with points uniformly distributed in the unit square has the advantage that a tight
lower bound on the optimum tour length exists. However, it has been shown in the analysis
in chapter 7 that these instances show a higher correlation of fitness and distance to the
optimum than other instances. In the graph bipartitioning problem, it appears to be crucial

181

in which way random graphs are generated. If the edges of a complete graph are selected
with a uniformly with a given probability, the resulting graphs have totally different land-
scape characteristics compared to random graphs in which all edges connect vertices that
are closer or or equal to a predefined Euclidean distance in a two-dimensional plane. The
latter type of graph more appropriately resembles the structure of graphs found in appli-
cations of the GBP. In the quadratic assignment problem, the influence of random choices
becomes even more obvious. Randomly generated flow and distance matrices with uniformly
distributed element values yield totally uncorrelated landscapes, while instances with ran-
domly generated matrices based on distributions found in real-life problems show correlation
of fitness of the local optima and their distance to the optimum. NK-landscapes have fitness
contribution functions with a uniform distribution in contrast to binary quadratic programs.
Consequently, the landscape properties of the two problems differ significantly. Thus, uni-
formly distributed instance data may probably not be appropriate for generating realistic
benchmark instances for combinatorial problems.

Test instances should be chosen to cover all types of fitness landscapes. A diverse set of
random instances can be generated taking the fitness landscape properties into account. In
the QAP, it has been shown that creating matrices with distributions of the element values
likely to be found in real-world applications, instances with arbitrary landscape ruggedness
can be generated.

The size of the region in which the local optima are contained matters. In the studies,
another aspect besides fitness distance correlation has been found to be important: the size
of the region in the search space containing the local optima. For some problems like most
instances of the QAP, the local optima are distributed over the whole search space while for
other problems like the TSP they are contained in a small fraction of the search space. If
this fraction is very small as in the case of binary quadratic programs, this property can be
exploited by heuristics.

High epistasis does not always imply hard search. Epistasis – the amount of interaction
of the components in a solution – in a problem has been widely recognized as an indicator
for problem hardness. In the NK-landscape model, increasing epistasis yields increasing
landscape ruggedness and a higher number of local optima. This rule appears to be specific
to NK-landscapes. For some binary quadratic programs, landscape ruggedness decreases
slightly with increasing epistasis, as shown in chapter 6. Moreover, in the studies of the
graph bipartitioning problem, it could be observed that increasing epistasis can yield a
decreasing number of local optima. More important than just the number of interacting
solution components appears to be the topology of interactions. In chapter 8, the notion
of a dependency graph has been introduced defining which solution components influence
the fitness contribution of other components. The structure of the dependency graph has
been shown to be a better indicator for problem hardness; in some cases it appears not to
be sufficient to take just the degree into account. The way in which random instances are
generated directly influences the dependency graph. Uniform distribution of instance data as
discussed above certainly yields different dependency graphs than non-uniform distribution.

Performance prediction requires a deep understanding of the problem under consideration.
The experiments have shown that the performance of heuristics cannot be predicted based
on problem characteristics alone without taking the behavior of the considered heuristics
into account. In experiments on the QAP, it turned out that dominance, a measure of
epistasis for the QAP, and the results of a fitness landscape analysis together are required to
predict the performance of a memetic algorithm. The studies have shown that performance

182 10 Conclusions

prediction is a complicated task and is only reasonable if all or most problem characteristics
having influence on heuristic search are taken into account. Today, not much about these
characteristics is known. It is very likely that other yet undiscovered characteristics are
important or even dominant in some cases. Nevertheless, the local structure of the landscape
– its ruggedness – and its global structure in terms of fitness distance correlation appear
to be key characteristics in memetic search. Since the fitness landscape is a product of
the central component of the memetic algorithm, the fitness landscape analysis provides
algorithm specific results compared to the dominance measure noted above.

Conclusions drawn from memetic algorithm experiments

Several conclusions could be drawn from the experiments performed with the proposed
memetic algorithms. These conclusions are described in the following.

Memetic algorithms scale much better with the problem size than evolutionary algorithms
or multi–start local search. Multi-start local search or simple evolutionary algorithms per-
form significantly worse than the combination of local search and evolutionary algorithms, as
shown in various experiments in chapters 5 through 9. In comparison to the latter, memetic
algorithms have been shown to scale significantly better with the problem size even for prob-
lems with ideal properties for the application of GAs/EAs (binary representation and no
constraints) like NK-landscapes and binary quadratic programs. The inferior performance
of evolutionary algorithms based on the recombination of solutions in permutation prob-
lems like the TSP is thus only partially explained by the difficulty of satisfying the implicit
constraints of the problem.

Greedy components in a memetic framework are promising for problems of low epistasis.
Greedy components can be incorporated into the initialization phase of a memetic algorithm
as well as in the recombination step. For problems with low epistasis this is a very promising
approach, as shown for the traveling salesman problem, NK-landscapes with low epistasis
(low values of K), and graph bipartitioning problem instances with low vertex degree.

Memetic algorithms are most effective on correlated landscapes. The most important
property of landscapes on which MAs have been shown to be highly effective is the correlation
of fitness of the local optima and their distance to the global optimum. MAs employing
recombination are capable of exploiting this structure since with respectful recombination,
offspring are produced located in a subspace defined by the parents. These offspring are
used as starting solutions for a local search that likely ends in a local optimum relatively
near the starting point and thus near the parents. Due to the correlation structure of the
search space this point has more likely a higher fitness than local optima more distant in an
arbitrary direction from both parents. Viewing the evolutionary search process as a whole,
recombination is capable of decreasing the distance between the solutions (and the distance
to the optimum) if the landscape is correlated, while fitness is increased by selection: the
higher the fitness of the local optima and the closer they are in terms of distance, the more
likely the optimum is found in the vicinity of these solutions.

Memetic algorithms should employ respectful recombination operators on correlated land-
scapes. In experiments on the traveling salesman problem, it turned out that the most
important property of a recombination operator is respectfulness, i.e., all edges (solution
components) common to both parents are also found in the offspring. Other properties had
only minor influence due to the effects of the local search. In cases where the landscapes are
unstructured (exhibit no correlation) recombination is ineffective and a simple mutation that

183

jumps out of the basin of attraction of the current local optimum proves to be more suitable,
as shown on the totally unstructured landscapes of the quadratic assignment problem or
the NK-landscapes with large K. For these landscapes, other techniques might be more
effective, such as sophisticated tabu search variants that incorporate mechanisms to explore
unvisited regions once a region has exhaustively been searched without searching the same
region twice. However, it is believed that such unstructured landscapes most likely do not
appear in real-world applications if the best suited neighborhood structure for the landscape
is chosen.

If the local optima are correlated, but too close to each other, recombination becomes
ineffective. The experiments on the binary quadratic programming problems have shown
that high correlation of local optima does not always guarantee a good performance of
recombination-based MAs. The reason lies in the fact that the local optima of the studied
problem instances are too similar. A recombination too often yields a starting solution for
which the local search ends in a solution equal to one of the parents. In this case, a memetic
algorithm with a mutation operator producing offspring with a constant distance to the
parents has been shown to be more effective.

Iterated Local Search is highly effective in the TSP but inferior to population-based search
for other combinatorial problems. For the TSP, an effective combination of a simple muta-
tion and a sophisticated local search exists – the non-sequential four-change and the Lin-
Kernighan heuristic. This combination has a similar performance as recombination-based
memetic search. However, such a combination is believed not to exist for other combinatorial
problems - the high effectiveness of iterated local search appears to be limited to the TSP.

Areas of future research

There are several areas of future research. In this thesis, two classes of combinatorial opti-
mization problems have been addressed: Problems without implicit or explicit constraints
and problems with implicit constraints according to the classification introduced in chapter
2. Combinatorial problems with explicit constraints are probably more common in real-
world applications. The research presented in the thesis is essential for the analysis of these
problems since the problems addressed here can be regarded as special cases of the class
of combinatorial problems with explicit constraints. This work is worth being continued
to cover all kinds of combinatorial problems with explicit constraints and with or without
implicit constraints.

Memetic algorithms require some parameters such as population size and the number
of generated offspring by mutation and by recombination. (Self-)adaptation can help in
finding reasonable or sometimes even optimum parameter settings. Preliminary experiments
have been conducted with an adaptive variant of the MA outlined in chapter 3 with first
promising results. Extensive studies have to be made to show under which conditions the
adaptive framework is capable of finding the globally optimum parameter settings.

An important aspect in memetic search has not been addressed in this work. Compared
to other evolutionary approaches, the computation times required by the components of
the algorithm have a great importance. The neighborhood search in a MA is a central
component for which the number of iterations performed and thus the computation time
required varies. Selection in the MA outlined in chapter 3 only takes the solution quality
into account. However, not only the fitness of a solution is important but also the time
required to find this solution. Especially in an adaptive framework, where search strategies

184 10 Conclusions

compete with each other, it is essential to take the objective solution value and the running
time of an ‘agent’ into account when selection is performed. Thus, it is of interest how
much can be gained by replacing the static MA design used in this work with an adaptive
asynchronous design.

For each combinatorial optimization problem investigated, there are issues for future
research:

• NK-landscapes offer a simple model for investigating the dependencies of the compo-
nents in the solution vector of binary coded problems. As the studies of the bipartition-
ing problems have shown, the structure of the dependency graph has strong influence
on the problem characteristics. The influence is worth being studied in more detail in
the NK-model.

• The studies on the unconstrained binary quadratic programming problem indicate
that the existing problem instances are too easy for heuristic search. Large instances
with higher landscape ruggedness should be generated to provide harder test cases.
The fitness landscapes of combinatorial problems transformed into equivalent binary
quadratic programs should be analyzed and compared with other BQP landscapes to
gain more insight into the general landscape structure of the BQP.

• The experiments of memetic algorithms for large instances of the TSP have shown that
parallel/distributed algorithms are required for solving instances with more than 10000
cities. Workstation clusters offer the ability to solve these instances in reasonable time.
Thus, future research should focus on developing distributed memetic algorithms and
distributed iterated local search heuristics for the TSP.

• The graph bipartitioning problem is a special case of the graph partitioning problem.
The studies on the graph bipartitioning problem can be extended to the general case
in future work.

• The results obtained from various experiments on the quadratic assignment problem
raise the issue of self-adapting algorithms that are capable of choosing the best search
strategy in memetic algorithms, i.e., variation by mutation or recombination, as well
as the best parameter for the mutation operator (mutation jump distance). Initial
experiments have shown that self-adaptation can aid in finding the most promising
regions in the search space quickly, but to reveal the full potential of self-adapting
memetic algorithms for the QAP, further detailed studies are required.

Most importantly, the research should be focused on searching for alternative ways to
analyze fitness landscapes to identify other problem characteristics having influence on the
effectiveness of heuristics. Therefore, a better understanding of the dynamics of the search
process in a heuristic is required. As a consequence, more reliable tools for performance
prediction and more effective heuristics will result.

Bibliography

[1] E. Aarts, P. van Laarhoven, J. Lenstra, and N. Ulder, “A Computational Study of
Local Search Algorithms for Job–shop Scheduling,” ORSA Journal on Computing,
vol. 6, pp. 118–125, 1994.

[2] E. H. L. Aarts and J. K. Lenstra, “Simulated Annealing,” in Local Search in Combi-
natorial Optimization, (E. H. L. Aarts and J. K. Lenstra, eds.), ch. 1, pp. 1–17, Wiley,
1997.

[3] D. H. Ackley, A Connectionist Machine for Genetic Hillclimbing. Kluwer Academic
Publishers, 1987.

[4] B. Alidaee, B. G. Kochenberger, and A. Ahmadian, “0–1 Quadratic Programming Ap-
proach for the Optimal Solution of Two Scheduling Problems,” International Journal
of Systems Science, vol. 25, pp. 401–408, 1994.

[5] L. Altenberg, “Fitness Distance Correlation Analysis: An Instructive Counterex-
ample,” in Proceedings of the 7th International Conference on Genetic Algorithms,
(T. Bäck, ed.), pp. 57–64, Morgan Kaufmann, 1997.

[6] M. M. Amini, B. Alidaee, and G. A. Kochenberger, “A Scatter Search Approach to
Unconstrained Quadratic Binary Programs,” in New Ideas in Optimization, (D. Corne,
M. Dorigo, and F. Glover, eds.), pp. 317–329, London: McGraw-Hill, 1999.

[7] E. Angel and V. Zissimopoulos, “On the Hardness of the Quadratic Assignment Prob-
lem with Meta–Heuristics,” Tech. Rep., Laboratoire de Recherche en Informatique,
Université Paris Sud, France, 1997.

[8] E. Angel and V. Zissimopoulos, “On the Landscape Ruggedness of the Quadratic As-
signment Problem,” Tech. Rep., Laboratoire de Recherche en Informatique, Université
Paris Sud, France, 1997.

[9] E. Angel and V. Zissimopoulos, “Autocorrelation Coefficient for the Graph Biparti-
tioning Problem,” Theoretical Computer Science, vol. 191, pp. 229–243, 1998.

[10] D. Applegate, R. Bixby, V. Chvátal, and B. Cook, “Finding Cuts in the TSP (A
preliminary report),” Technical Report 95-05, DIMACS, 1995.

[11] D. Applegate, R. Bixby, V. Chvátal, and W. Cook, “On the Solution of Traveling
Salesman Problems,” Documenta Mathematica, vol. Extra Volume ICM III, pp. 645–
656, 1998.

185

186 10 Conclusions

[12] D. Applegate, R. Bixby, V. Chvátal, and W. Cook, “Concorde Benchmarks on TSPLIB
Instances,” W. M. Keck Center for Computational Discrete Optimization, Rice Univer-
sity, Houston, USA, 2000. http://www.keck.caam.rice.edu/concorde/bench.html.

[13] G. C. Armour and E. S. Buffa, “A Heuristic Algorithm and Simulation Approach to
the Relative Location of Facilities,” Management Science, vol. 9, no. 2, pp. 294–309,
1963.

[14] V. Bachelet, P. Preux, and E.-G. Talbi, “Parallel Hybrid Meta–Heuristics: Application
to the Quadratic Assignment Problem,” in Proceedings of the Parallel Optimization
Colloquium, (Versailles, France), 1996.

[15] T. Bäck, U. Hammel, and H.-P. Schwefel, “Evolutionary Computation: Comments on
the History and Current State,” IEEE Transactions on Evolutionary Computation,
vol. 1, no. 1, pp. 3–17, 1997.

[16] T. Bäck and H.-P. Schwefel, “An Overview of Evolutionary Algorithms for Parameter
Optimization,” Evolutionary Computation, vol. 1, no. 1, pp. 1–24, 1993.

[17] J. E. Baker, “Adaptive Selection Methods for Genetic Algorithms,” in Proceedings of
an International Conference on Genetic Algorithms and their Applications, pp. 101–
111, Carnegie Mellon publishers, 1985.

[18] W. Banzhaf, P. Nordin, R. E. Keller, and F. D. Francone, Genetic Programming – An
Introduction. Morgan Kaufmann, 1998.

[19] F. Barahona, M. Jünger, and G. Reinelt, “Experiments in Quadratic 0-1 Program-
ming,” Mathematical Programming, vol. 44, pp. 127–137, 1989.

[20] L. Barnett, Evolutionary Dynamics on Fitness Landscapes with Neutrality. Master’s
thesis, School of Cognitive Sciences, University of East Sussex, UK, 1997.

[21] R. Battiti and A. Bertossi, “Differential Greedy for the 0–1 Equicut Problem,” in
Proceedings of the DIMACS Workshop on Network Design: Connectivity and Facilities
Location, (D. Du and P. Pardalos, eds.), pp. 3–21, American Mathematical Society,
1998.

[22] R. Battiti and A. Bertossi, “Greedy, Prohibition, and Reactive Heuristics for Graph-
Partitioning,” IEEE Transactions on Computers, vol. 48, no. 4, pp. 361–385, 1999.

[23] R. Battiti and G. Tecchiolli, “The Reactive Tabu Search,” ORSA Journal on Comput-
ing, vol. 6, no. 2, pp. 126–140, 1994.

[24] E. B. Baum, “Towards Practical “Neural” Computation for Combinatorial Optimiza-
tion Problems,” in Neural Networks for Computing, (J. S. Denker, ed.), (Snowbird
1986), pp. 53–58, American Institute of Physics, New York, 1986.

[25] J. E. Beasley, “OR-Library: Distributing Test Problems by Electronic Mail,” Journal
of the Operational Research Society, vol. 41, no. 11, pp. 1069–1072, 1990.

187

[26] J. E. Beasley, “Heuristic Algorithms for the Unconstrained Binary Quadratic Pro-
gramming Problem,” Tech. Rep., Management School, Imperial College, London, UK,
1998.

[27] J. L. Bentley, “Experiments on Traveling Salesman Heuristics,” in Proceedings of the
First Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 91–99, 1990.

[28] J. L. Bentley, “K-d-Trees for Semidynamic Point Sets,” in Proceedings of the Sixth
Annual ACM Symposium on Computational Geometry, pp. 187–197, 1990.

[29] J. L. Bentley, “Fast Algorithms for Geometric Traveling Salesman Problems,” ORSA
Journal on Computing, vol. 4, no. 4, pp. 387–411, 1992.

[30] R. Berretta and P. Moscato, “The Number Partitioning Problem: An Open Challenge
for Evolutionary Computation?,” in New Ideas in Optimization, (D. Corne, M. Dorigo,
and F. Glover, eds.), ch. 17, pp. 261–278, McGraw-Hill, London, 1999.

[31] H. Bersini, M. Dorigo, S. Langerman, G. Seront, and L. Gambardella, “Results of the
First International Contest on Evolutionary Optimisation (1st ICEO),” in Proceedings
of the 1996 IEEE International Conference on Evolutionary Computation, (Nagoya,
Japan), pp. 611–615, 1996.

[32] A. Billionnet and A. Sutter, “Minimization of a Quadratic Pseudo–Boolean Function,”
European Journal of Operational Research, vol. 78, pp. 106–115, 1994.

[33] R. E. Bland and D. F. Shallcross, “Large Traveling Salesman Problems Arising from
Experiments in X–ray Crystallography: A Preliminary Report on Computation,” Op-
erations Research Letters, vol. 8, pp. 125–128, 1989.

[34] K. D. Boese, Models for Iterative Global Optimization. PhD thesis, University of
Carlifornia, Los Angeles, USA, 1996.

[35] K. Boese, “Cost versus Distance in the Traveling Salesman Problem,” Tech. Rep. TR-
950018, UCLA CS Department, 1995.

[36] K. Boese, A. Kahng, and S. Muddu, “A New Adaptive Multi-start Technique for
Combinatorial Global Optimizations,” Operations Research Letters, vol. 16, pp. 101–
113, 1994.

[37] L. B. Booker, D. E. Goldberg, and J. H. Holland, “Classifier Systems and Genetic
Algorithms,” Artificial Intelligence, vol. 40, pp. 235–282, 1989.

[38] G. E. P. Box and G. M. Jenkins, Time Series Analysis: Forecasting and Control.
Holden Day, 1970.

[39] R. M. Brady, “Optimization Strategies Gleaned from Biological Evolution,” Nature,
vol. 317, pp. 804–806, 1985.

[40] H. Braun, “On Solving Traveling Salesman Problems by Genetic Algorithms,” in Par-
allel Problem Solving from Nature - Proceedings of 1st Workshop, PPSN 1, (H.-P.
Schwefel and R. Männer, eds.), (Dortmund, Germany), pp. 129–133, Springer-Verlag,
Berlin, Germany, 1-3 Oct. 1991.

188 10 Conclusions

[41] E. D. Brown, L. C. Huntley, and R. A. Spillance, “A Parallel Genetic Heuristic for the
Quadratic Assignment Problem,” in Proceedings of the Third Conference on Genetic
Algorithms, (J. D. Schaffer, ed.), pp. 406–415, Morgan Kaufmann, 1989.

[42] L. Brunetta, M. Conforti, and G. Rinaldi, “A Branch-and-Cut Algorithm for the Equi-
cut Problem,” Mathematical Programming, vol. 78, no. 2, pp. 243–263, 1997.

[43] E. S. Buffa, G. C. Armour, and T. E. Vollmann, “Allocating Facilities with CRAFT,”
Harvard Business Review, pp. 136–158, March 1964.

[44] T. G. Bui and B. R. Moon, “A New Genetic Approach for the Traveling Salesman
Problem,” in Proceedings of the First IEEE Conference on Evolutionary Computation,
pp. 7–12, 1994.

[45] T. N. Bui, S. Chaudhuri, F. T. Leighton, and M. Sipser, “Graph Bisection Algorithms
with Good Average Case Behavior,” Combinatorica, vol. 7, no. 2, pp. 171–191, 1987.

[46] T. N. Bui and B. R. Moon, “A Genetic Algorithm for a Special Class of the Quadratic
Assignment Problem,” in Quadratic Assignment and Related Problems, (P. M. Pardalos
and H. Wolkowicz, eds.), pp. 137–187, American Mathematical Society, 1994.

[47] T. N. Bui and B. R. Moon, “Genetic Algorithm and Graph Partitioning,” IEEE Trans-
actions on Computers, vol. 45, no. 7, pp. 841–855, 1996.

[48] R. E. Burkard and U. Fincke, “Probabilistic Asymptotic Properties of Some Combi-
natorial Optimization Problems,” Discrete Applied Mathematics, vol. 12, pp. 21–29,
1985.

[49] R. E. Burkard, S. Karisch, and F. Rendl, “QAPLIB – A Quadratic Assignment Prob-
lem Library,” European Journal of Operational Research, vol. 55, pp. 115–119, 1991.
Updated Version: http://www.imm.dtu.dk/~sk/qaplib.

[50] R. E. Burkard and F. Rendl, “A Thermodynamically Motivated Simulation Procedure
for Combinatorial Optimization Problems,” European Journal of Operational Research,
vol. 17, pp. 169–174, 1984.

[51] R. E. Burkhard and J. Offerman, “Entwurf von Schreibmaschinentastaturen mit-
tels quadratischer Zuordnungsprobleme,” Zeitschrift für Operations Research, vol. 21,
pp. B121–B132, 1977.

[52] P. Cejchan, “Personal communication,” 1998.

[53] N. Christofides, “The Traveling Salesman Problem,” in Combinatorial Optimization,
(N. Christofides, A. Mingozzi, P. Toth, and C. Sandi, eds.), pp. 131–149, Wiley and
Sons, 1979.

[54] G. Clarke and J. W. Wright, “Scheduling of Vehicles from a Central Depot to a Number
of Delivery Points,” Operations Research, vol. 12, pp. 568–581, 1964.

[55] B. Codenotti, G. Manzini, L. Margara, and G. Resta, “Perturbation: An Efficient
Technique for the Solution of Very Large Instances of the Euclidean TSP,” Tech.
Rep. TR-93-035, International Computer Science Institute, Berkeley, CA, 1993.

189

[56] D. T. Connolly, “An Improved Annealing Scheme for the Quadratic Assignment Prob-
lem,” European Journal of Operational Research, vol. 46, pp. 93–100, 1990.

[57] D. Corne, M. Dorigo, and F. Glover, eds., New Ideas in Optimization. McGraw-Hill,
London, 1999.

[58] D. Corne and P. Ross, “Practical Issues and Recent Advances in Job- and Open-Shop
Scheduling,” in Evolutionary Algorithms in Engineering Applications, (D. Dasgupta
and Z. Michalewicz, eds.), pp. 531–546, Springer, 1997.

[59] G. A. Croes, “A Method for Solving Traveling Salesman Problems,” Operations Re-
search, vol. 5, pp. 791–812, 1958.

[60] H. Crowder and M. W. Padberg, “Solving Large–Scale Symmetric Traveling Salesman
Problems to Optimality,” Management Science, vol. 26, pp. 495–509, 1980.

[61] V.-D. Cung, T. Mautor, P. Michelon, and A. Tavares, “A Scatter Search Based Ap-
proach for the Quadratic Assignment Problem,” in Proceedings of the 1997 IEEE Inter-
national Conference on Evolutionary Computation (ICEC), (T. Baeck, Z. Michalewicz,
and X. Yao, eds.), (Indianapolis, USA), pp. 165–170, IEEE Press, 1997.

[62] G. B. Dantzig, “Programming of Interdependent Activities,” Econometrica, vol. 17,
pp. 193–211, 1949.

[63] G. B. Dantzig, Linear Programming and Extensions. Princeton Univ. Press, 1963.

[64] G. B. Dantzig, D. R. Fulkerson, and S. M. Johnson, “Solution of a Large-Scale Trav-
eling Salesman Problem,” Operations Research, vol. 2, pp. 393–410, 1954.

[65] C. Darwin, On the Origin of Species. London: John Murray, 1859.

[66] D. Dasgupta, “Information Processing in the Immune System,” in New Ideas in Opti-
mization, (D. Corne, M. Dorigo, and F. Glover, eds.), ch. 10, pp. 161–165, McGraw-
Hill, London, 1999.

[67] Y. Davidor, “Epistasis Variance: Suitability of a Representation to Genetic Algo-
rithms,” Complex Systems, vol. 4, no. 4, pp. 369–383, 1990.

[68] Y. Davidor, “Epistasis Variance: A Viewpoint on GA-Hardness,” in Foundations of
Genetic Algorithms, (G. J. E. Rawlins, ed.), pp. 23–35, Morgan Kaufmann, 1991.

[69] L. Davis, “Applying Adaptive Algorithms to Epistatic Domains,” in Proceedings of the
International Joint Conference on Artificial Intelligence, 1985.

[70] L. Davis, Genetic Algorithms and Simulated Annealing. London: Pitman, 1987.

[71] R. Dawkins, The Selfish Gene. Oxford University Press, 1976.

[72] K. A. De Jong, Analysis and Behavior of a Class of Genetic Adaptive Systems. PhD
thesis, University of Michigan, 1975.

[73] J. W. Dicky and J. W. Hopkins, “Campus Building Arrangement Using TOPAZ,”
Transportation Research, vol. 6, pp. 59–68, 1972.

190 10 Conclusions

[74] W. Domschke, Einführung in Operations-Research (Introduction to Operations Re-
search). Springer, 1998.

[75] M. Dorigo and G. Di Caro, “The Ant Colony Optimization Meta-Heuristic,” in New
Ideas in Optimization, (D. Corne, M. Dorigo, and F. Glover, eds.), pp. 11–32, McGraw–
Hill, 1999.

[76] M. Dorigo, V. Maniezzo, and A. Colorni, “Positive Feedback as a Search Strategy,”
Tech. Rep. 91–016, Politecnico di Milano, Milano, Italy, 1991.

[77] M. Dorigo, V. Maniezzo, and A. Colorni, “The Ant System: Optimization by a Colony
of Cooperating Agents,” IEEE Transactions on Systems, Man, and Cybernetics - Part
B, vol. 26, no. 1, pp. 29–41, 1996.

[78] M. Dorigo and L. M. Gambardella, “Ant Colony System: A Cooperative Learning
Approach to the Traveling Salesman Problem,” IEEE Transactions on Evolutionary
Computation, vol. 1, no. 1, pp. 53–66, 1997.

[79] S. Droste, T. Jansen, and I. Wegener, “Perhaps Not a Free luch But At Least a Free
Appetizer,” in GECCO-1999: Proceedings of the Genetic and Evolutionary Computa-
tion Conference, (W. B. et al., ed.), pp. 833–839, Morgan Kauffman, 1999.

[80] G. Dueck and T. Scheuer, “Threshold Accepting: A General Purpose Optimization Al-
gorithm Superior to Simulated Annealing,” Journal of Computational Physics, vol. 90,
pp. 161–175, 1990.

[81] R. Durbin, R. Szeliski, and A. Yuille, “An Analysis of the Elastic Net Approach to the
Traveling Salesman Problem,” Neural Computation, vol. 1, pp. 348–358, 1989.

[82] R. Durbin and D. Willshaw, “An Analogue Approach to the Travelling Salesman Prob-
lem Using an Elastic Net Method,” Nature, vol. 326, pp. 689–691, 1987.

[83] J. Dzubera and D. Whitley, “Advanced Correlation Analysis of Operators for the
Traveling Salesman Problem,” in Parallel Problem Solving from Nature - Proceedings
of the third Workshop, PPSN III, (H.-P. Schwefel and R. Männer, eds.), (Dortmund,
Germany), pp. 68–77, Springer-Verlag, Berlin, Germany, 1994.

[84] M. Eigen, J. McCaskill, and P. Schuster, “The Molecular Quasispecies,” Advanced
Chemical Physics, vol. 75, pp. 149–263, 1989.

[85] A. N. Elshafei, “Hospital Layout as a Quadratic Assignment Problem,” Operations
Research Quarterly, vol. 28, pp. 167–179, 1977.

[86] L. J. Eshelman and J. D. Schaffer, “Preventing Premature Convergence in Genetic
Algorithms by Preventing Incest,” in Proceedings of the 4th International Conference
on Genetic Algorithms, pp. 115–122, Morgan Kaufmann, 1991.

[87] L. Eshelman, K. Mathias, and J. D. Schaffer, “Convergence Controlled Variation,” in
Foundations of Genetic Algorithms 4, (R. K. Belew and M. D. Vose, eds.), pp. 203–224,
Morgan Kaufman, 1997.

191

[88] L. Eshelman, “The CHC Adaptive Search Algorithm: How to Have Safe Search When
Engaging in Nontraditional Genetic Recombination,” in Foundations of Genetic Algo-
rithms, (G. J. E. Rawlings, ed.), pp. 265–283, Morgan Kaufmann, 1991.

[89] C. M. Fiduccia and R. M. Mattheyses, “A Linear-Time Heuristic for Improving Net-
work Partitions,” in Proceedings of the 19th ACM/IEEE Design Automation Confer-
ence (DAC’82), pp. 175–181, 1982.

[90] C.-N. Fiechter, “A Parallel Tabu Search Algorithm for Large Traveling Salesman
Problems,” Discrete Applied Mathematics and Combinatorial Operations Research and
Computer Science, vol. 51, pp. 243–267, 1994.

[91] M. Fischetti, J. J. S. González, and P. Toth, “A Branch-and-Cut Algorithm for the
Symmetric Generalized Traveling Salesman Problem,” Operations Research, vol. 45,
pp. 378–394, 1997.

[92] M. Fischetti and P. Toth, “An Additive Bounding Procedure for the Asymmetric
Travelling Salesman Problem,” Mathematical Programming, vol. 53, pp. 173–197, 1992.

[93] C. Fleurent and J. A. Ferland, “Genetic Hybrids for the Quadratic Assignment Prob-
lem,” in Quadratic Assignment and Related Problems, (P. M. Pardalos and H. Wolkow-
icz, eds.), pp. 137–187, Amer. Math. Soc., 1994.

[94] M. M. Flood, “The Traveling–Salesman Problem,” Operations Research, vol. 4, pp. 61–
75, 1956.

[95] D. B. Fogel, “Applying Evolutionary Programming to Selected Traveling Salesman
Problems,” Cybernetics and Systems, vol. 24, pp. 27–36, 1993.

[96] D. B. Fogel, “An Evolutionary Approach to the Traveling Salesman Problem,” Biolog-
ical Cybernetics, vol. 60, pp. 139–144, 1988.

[97] L. J. Fogel, A. J. Owens, and M. J. Walsh, “Artificial Intelligence through a Simulation
of Evolution,” in Biophysics and Cybernetic Systems, (M. Maxfield, A. Callahan, and
L. J. Fogel, eds.), pp. 131–155, London: Macmillan & Co, 1965.

[98] L. J. Fogel, A. J. Owens, and M. J. Walsh, Artificial Intelligence through Simulated
Evolution. New York: John Wiley & Sons, 1966.

[99] C. M. Fonseca and P. J. Fleming, “Multiobjective genetic algorithms,” in IEE Collo-
quium on Genetic Algorithms for Control Systems Engineering, pp. 6/1–6/5, 1993.

[100] C. M. Fonseca and P. J. Fleming, “On the Performance Assessment and Comparison of
Stochastic Multiobjective Optimizers,” in Proceedings of the 4th International Confer-
ence on Parallel Problem Solving from Nature - PPSN IV, (H.-M. Voigt, W. Ebeling,
I. Rechenberg, and H.-P. Schwefel, eds.), pp. 584–593, Springer, 1996.

[101] W. Fontana, P. F. Stadler, E. G. Bornberg-Bauer, T. Griesmacher, I. L. Hofacker,
M. Tacker, P. Tarazona, E. D. Weinberger, and P. Schuster, “RNA Folding Landscapes
and Combinatory Landscapes,” Physcal Review E, vol. 47, pp. 2083–2099, 1993.

192 10 Conclusions

[102] L. R. Ford and D. R. Fulkerson, Flows in Networks. Princeton, NJ: Princeton Univ.
Press, 1963.

[103] B. R. Fox and M. B. McMahon, “Genetic Operators for Sequencing Problems,” in
Foundations of Genetic Algorithms, (G. J. E. Rawlings, ed.), pp. 284–300, Morgan
Kaufmann, 1991.

[104] M. L. Fredman, D. S. Johnson, L. A. McGeoch, and G. Ostheimer, “Data Structures
for Traveling Salesmen,” Journal of Algorithms, vol. 18, pp. 432–479, 1995.

[105] B. Freisleben and P. Merz, “A Genetic Local Search Algorithm for Solving Symmet-
ric and Asymmetric Traveling Salesman Problems,” in Proceedings of the 1996 IEEE
International Conference on Evolutionary Computation, (T. Bäck, H. Kitano, and
Z. Michalewicz, eds.), pp. 616–621, IEEE Press, 1996.

[106] B. Freisleben and P. Merz, “New Genetic Local Search Operators for the Traveling
Salesman Problem,” in Proceedings of the 4th International Conference on Parallel
Problem Solving from Nature - PPSN IV, (H.-M. Voigt, W. Ebeling, I. Rechenberg,
and H.-P. Schwefel, eds.), pp. 890–900, Springer, 1996.

[107] B. Freisleben, “Meta-Evolutionary Approaches,” in Handbook of Evolutionary Compu-
tation, (T. Bäck, D. B. Fogel, and Z. Michalewicz, eds.), pp. C2.8.1–C2.8.12, Oxford
University Press, 1997.

[108] R. M. French and A. Messinger, “Genes, Phenes and the Baldwin Effect: Learning and
Evolution in a Simulated Population,” in Proceedings of the 4th International Work-
shop on the Synthesis and Simulation of Living Systems ArtificialLifeIV , (R. A.
Brooks and P. Maes, eds.), pp. 277–282, MIT Press, 1994.

[109] G. Gallo, P. L. Hammer, and B. Simeone, “Quadratic Knapsack Problems,” Mathe-
matical Programming, vol. 12, pp. 132–149, 1980.

[110] L. M. Gambardella, E. Taillard, and G. Agazzi, “MACS-VRPTW: A Multiple Ant
Colony System for Vehicle Routing Problems with Time Windows,” Technical Re-
port IDSIA-06-99, IDSIA - Instituto Dalle Molle di Studi sull’Intelligenza Artificiale,
Lugano, Switzerland, 1999.

[111] L. Gambardella, É. Taillard, and M. Dorigo, “Ant Colonies for the QAP,” Journal of
the Operations Research Society, vol. 50, pp. 167–176, 1999.

[112] L. M. Gambardella and M. Dorigo, “Ant-Q: A Reinforcement Learning Approach to
the Traveling Salesman Problem,” in Proc. 12th International Conference on Machine
Learning, pp. 252–260, Morgan Kaufmann, 1995.

[113] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory
of NP-Completeness. Freeman, New York, 1979.

[114] J. S. Gero, V. A. Kazakov, and T. Schnier, “Genetic Engineering and Design Prob-
lems,” in Evolutionary Algorithms in Engineering Applications, (D. Dasgupta and
Z. Michalewicz, eds.), pp. 47–68, Springer, 1997.

193

[115] F. Glover, G. Kochenberger, B. Alidaee, and M. Amini, “Tabu Search with Criti-
cal Event Memory: An Enhanced Application for Binary Quadratic Programs,” in
Meta-Heuristics - Advances and Trends in Local Search Paradigms for Optimization,
(S. Voss, S. Martello, I. Osman, and C. Roucairol, eds.), pp. 83–109, Kluwer Academic
Publishers, 1998.

[116] F. Glover, G. A. Kochenberger, and B. Alidaee, “Adaptive Memory Tabu Search for
Binary Quadratic Programs,” Management Science, vol. 44, no. 3, pp. 336–345, 1998.

[117] F. Glover and M. Laguna, Tabu Search. Kluwer Academic Publishers, 1998.

[118] D. E. Goldberg and J. R. Lingle, “Alleles, Loci, and the Traveling Salesman Prob-
lem,” in Proceedings of an International Conference on Genetic Algorithms and their
Applications, pp. 154–159, Carnegie Mellon publishers, 1985.

[119] D. E. Goldberg, “Simple Genetic Algorithms and the Minimal, Deceptive Problem,”
in Genetic Algorithms and Simulated Annealing, pp. 74–88, Morgan Kaufmann, 1987.

[120] D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning.
Addison Wesley, 1989.

[121] M. Gorges-Schleuter, “ASPARAGOS: An Asynchronous Parallel Genetic Optimization
Strategy,” in Proceedings of the Third International Conference on Genetic Algorithms,
(J. D. Schaffer, ed.), pp. 422–427, Morgan Kaufmann, 1989.

[122] M. Gorges-Schleuter, Genetic Algorithms and Population Structures – A Massively
Parallel Algorithm. PhD thesis, Universität Dortmund, Germany, 1990.

[123] M. Gorges-Schleuter, “Asparagos96 and the Traveling Salesman Problem,” in Pro-
ceedings of the 1997 IEEE International Conference on Evolutionary Computation,
pp. 171–174, IEEE Press, 1997.

[124] J. Grefenstette, R. Gopal, B. Rosimaita, and D. V. Gucht, “Genetic Algorithms for
the Traveling Salesman Problem,” in Proceedings of an International Conference on
Genetic Algorithms and their Applications, pp. 160–168, Carnegie Mellon publishers,
1985.

[125] J. J. Grefenstette, “Incooperating Problem Specific Knowledge into Genetic Algo-
rithms,” in Genetic Algorithms and Simulated Annealing, (L. Davis, ed.), pp. 42–60,
Morgan Kaufmann Publishers, 1987.

[126] M. Grötschel, “On the Symmetric Traveling Salesman Problem: Solution of a 120-city
problem,” Mathematical Programming Studies, vol. 12, pp. 61–77, 1980.

[127] M. Grötschel and O. Holland, “Solution of Large-scale Symmetric Travelling Salesman
Problems,” Mathematical Programming, vol. 51, pp. 141–202, 1991.

[128] M. Grötschel, M. Jünger, and G. Reinelt, “Optimal Control of Plotting and Drilling
Machines: a Case Study,” ZOR - Methods and Models of Operations Research, vol. 35,
pp. 61–84, 1991.

194 10 Conclusions

[129] M. Grötschel and M. W. Padberg, “Polyhedral Theory,” in The Traveling Salesman
Problem, (E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, and D. B. Shmoys,
eds.), ch. 8, pp. 251–305, John Wiley & Sons, 1985.

[130] J. Gu and X. Huang, “Efficient Local Search With Search Space Smoothing: A Case
Study of the Traveling Salesman Problem (TSP),” IEEE Transactions on Systems,
Man, and Cybernetics, vol. 24, pp. 728–735, 1994.

[131] R. W. Hamming, “Error Detecting and Error Correcting Codes,” The Bell System
Technical Journal, vol. 29, no. 2, pp. 147–160, 1950.

[132] P. J. B. Hancock, “An Empirical Comparison of Selection Methods in Evolutionary
Algorithms,” in Proceedings of the AISB Workshop on Evolutionary Computing, (T. C.
Fogarty, ed.), pp. 80–94, Springer, 1994.

[133] C. Helmberg and F. Rendl, “Solving Quadratic (0,1)-Problems by Semidefinite Pro-
grams and Cutting Planes,” Mathematical Programming, vol. 82, pp. 291–315, 1998.

[134] B. Hendrickson and R. Leland, “A Multi-Level Algorithm For Partitioning Graphs,”
in Proceedings of the 1995 ACM/IEEE Supercomputing Conference, (S. Karin, ed.),
ACM Press and IEEE Computer Society Press, 1995.

[135] B. Hendrickson and R. Leland, “An Improved Spectral Graph Partitioning Algorithm
for Mapping Parallel Computations,” SIAM Journal on Scientific Computing, vol. 16,
no. 2, pp. 452–469, 1995.

[136] M. Herdy, “Application of the Evolutionsstrategie to Discrete Optimization Prob-
lems,” in Parallel Problem Solving from Nature, (H.-P. Schwefel and R. Männer, eds.),
pp. 188–192, Springer, 1991.

[137] J. Hertz, A. Krogh, and R. G. Palmer, An Introduction to the Theory of Neural Com-
putation. Addison Wesley, 1991.

[138] W. D. Hillis, “Co-evolving Parasites Improve Simulated Evolution as an Optimiza-
tion Procedure,” in Artificial life II, (C. G. Langton, C. Taylor, J. D. Farmer, and
S. Rasmussen, eds.), pp. 313–324, Addison-Wesley, 1992.

[139] F. Hoffmeister and T. Bäck, “Genetic Algorithms and Evolution Strategies: Similar-
ities and Differences,” in Parallel Problem Solving from Nature - Proceedings of 1st
Workshop, PPSN 1, (H. P. Schwefel and R. Männer, eds.), pp. 455–469, Springer,
1991.

[140] F. Hoffmeister and T. Bäck, “Genetic Algorithms and Evolution Strategies: Similarities
and Differences,” Tech. Rep. SYS-1/92, University of Dortmund - Systems Analysis
Research Group, 1992.

[141] C. Höhn and C. Reeves, “Graph Partitioning Using Genetic Algorithms,” in Proceed-
ings of the 2nd International Conference on Massively Parallel Computing Systems,
(G. R. Sechi, ed.), pp. 27–43, IEEE Computer Society Press, 1996.

[142] J. Holland, Adaptation in Natural and Artificial Systems. University of Michigan Press,
1975.

195

[143] A. Homaifar, S. Guan, and G. E. Liepins, “A New Approach to the Traveling Salesman
Problem by Genetic Algorithms,” in Proceedings of the 5th International Conference
on Genetic Algorithms, pp. 460–466, Morgan Kaufmann, 1993.

[144] J. N. Hooker, “Testing Heuristics: We Have It All Wrong,” Heuristics, vol. 1, pp. 33–
42, 1996.

[145] J. J. Hopfield and D. W. Tank, “‘Neural’ Computation of Decisions in Optimization
Problems,” Biological Cybernetics, vol. 52, pp. 141–152, 1985.

[146] W. Horjik, Population Flow on Fitness Landscapes. Master’s thesis, Erasmus Univer-
sity Rotterdam, Department of Computer Science, 1994.

[147] W. Horjik and B. Manderick, “The Usefulness of Recombination,” in Proceedings of
the European Conference on Artificial Life, p. , Springer, 1995.

[148] J. Horn and D. E. Goldberg, “Genetic Algorithm Difficulty and the Modality of Fit-
ness Landscapes,” in Proceedings of the Third Workshop on Foundations of Genetic
Algorithms, (L. D. Whitley and M. D. Vose, eds.), pp. 243–270, Morgan Kaufmann,
1995.

[149] H. Inayoshi and B. Manderick, “The Weighted Graph Bi-Partitioning Problem: A
Look at GA Performance,” in Parallel Problem Solving From Nature – PPSN III,
(Y. Davidor and H.-P. Schwefel, eds.), pp. 617–625, Springer, 1994.

[150] S. Ishii and M. Sato, “Constrained Neural Approaches to Quadratic Assignment Prob-
lems,” Neural Networks, vol. 11, pp. 1073–1082, 1998.

[151] P. L. Ivănescu, “Some Network Flow Problems Solved with Pseudo-Boolean Program-
ming,” Operations Research, vol. 13, pp. 388–399, 1965.

[152] F. T. J. Carrizo and P. Moscato, “A Computational Ecology for the Quadratic As-
signment Problem,” in Proceedings of the 21st Meeting on Informatics and Operations
Research, (Buenos Aires), SADIO, 1992.

[153] C.-S. Jeong and M.-H. Kim, “Fast Parallel Simulated Annealing for Traveling Sales-
man Problem on SIMD Machines with Linear Interconnections,” Parallel Computing,
vol. 17, no. 2–3, pp. 221–228, 1991.

[154] P. Jog, J. Y. Suh, and D. V. Gucht, “The Effects of Population Size, Heuristic Crossover
and Local Improvement on a Genetic Algorithm for the Travelling Salesman Problem,”
in Proceedings of the Third International Conference on Genetic Algorithms, pp. 110–
115, Morgan Kaufman, 1989.

[155] P. Jog, J. Y. Suh, and D. V. Gucht, “Parallel Genetic Algorithms Applied to the
Traveling Salesman Problem,” SIAM Journal on Optimization, vol. 1, no. 4, pp. 515–
529, 1991.

[156] D. S. Johnson, “Local Optimization and the Traveling Salesman Problem,” in Proceed-
ings of the 17th International Colloquium on Automata, Languages and Programming,
pp. 446–461, Springer, Berlin, 1990.

196 10 Conclusions

[157] D. S. Johnson, C. R. Aragon, L. A. McGeoch, and C. Schevon, “Optimization by Sim-
ulated Annealing; Part I, Graph Partitioning,” Operations Research, vol. 37, pp. 865–
892, 1989.

[158] D. S. Johnson and L. A. McGeoch, “The Traveling Salesman Problem: A Case Study,”
in Local Search in Combinatorial Optimization, (E. H. L. Aarts and J. K. Lenstra, eds.),
pp. 215–310, Wiley and Sons, New York, 1997.

[159] D. S. Johnson and C. H. Papadimitriou, “Computational Complexity,” in The Travel-
ing Salesman Problem, (E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, and D. B.
Shmoys, eds.), ch. 3, pp. 37–85, John Wiley & Sons, 1985.

[160] T. Jones and S. Forrest, “Fitness Distance Correlation as a Measure of Problem Dif-
ficulty for Genetic Algorithms,” in Proceedings of the 6th International Conference on
Genetic Algorithms, (L. J. Eshelman, ed.), pp. 184–192, Morgan Kaufmann, 1995.

[161] M. Jünger and G. Rinaldi, “Relaxations of the Max Cut Problem and Computation of
Spin Glass Ground States,” in Proceedings of the Symposium on Operations Research
(SOR’97), (P. Kischka, ed.), pp. 74–83, Springer, 1998.

[162] L. P. Kaelbling, M. L. Littman, and A. W. Moore, “Reinforcement Learning: A Sur-
vey,” Artificial Inteligence Research, vol. 4, pp. 237–285, 1996.

[163] G. Karypis and V. Kumar, “Multilevel Graph Partitioning Schemes,” in Proceedings of
the 24th International Conference on Parallel Processing, (Oconomowoc, WI), pp. 113–
122, 1995.

[164] K. Katayama, “Personal Communication,” 2000.

[165] K. Katayama and H. Narihisa, “Iterated Local Search Approach using Genetic Trans-
formation to the Traveling Salesman Problem,” in GECCO-1999: Proceedings of the
Genetic and Evolutionary Computation Conference, (W. B. et al., ed.), pp. 321–328,
Morgan Kauffman, 1999.

[166] K. Katayama and H. Narihisa, “Performance of Simulated Annealing-based Heuristic
for the Unconstrained Binary Quadratic Programming Problem,” Tech. Rep., Okayama
University of Science, Dept. of Information and Computer Engineering, Okayama,
Japan, 1999.

[167] K. Katayama and H. Narihisa, “Solving Large Binary Quadratic Programming Prob-
lems by Effective Genetic Local Search Algorithm,” in GECCO-2000: Proceedings of
the Genetic and Evolutionary Computation Conference, Morgan Kauffman, 2000. to
appear.

[168] S. A. Kauffman, The Origins of Order: Self-Organization and Selection in Evolution.
Oxford University Press, 1993.

[169] S. A. Kauffman and S. Levin, “Towards a General Theory of Adaptive Walks on
Rugged Landscapes,” Journal of Theoretical Biology, vol. 128, pp. 11–45, 1987.

197

[170] J. Kennedy and R. C. Eberhart, “The Particle Swarm: Social Adaptation in
Information-Processing Systems,” in New Ideas in Optimization, (D. Corne, M. Dorigo,
and F. Glover, eds.), ch. 25, pp. 379–388, McGraw-Hill, London, 1999.

[171] B. Kernighan and S. Lin, “An Efficient Heuristic Procedure for Partitioning Graphs,”
Bell Systems Journal, vol. 49, pp. 291–307, 1972.

[172] M. Kimura, The Neutral Theory of Molecular Evolution. Cambridge University Press,
1883.

[173] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by Simulated Anneal-
ing,” Science, vol. 220, pp. 671–680, 1983.

[174] T. Kohonen, Self–Organisation and Associative Memory. Springer, 3rd edition, 1990.

[175] A. Kolen and E. Pesch, “Genetic Local Search in Combinatorial Optimization,” Dis-
crete Applied Mathematics and Combinatorial Operations Research and Computer Sci-
ence, vol. 48, pp. 273–284, 1994.

[176] T. C. Koopmans and M. J. Beckmann, “Assignment Problems and the Location of
Economic Activities,” Econometrica, vol. 25, pp. 53–76, 1957.

[177] B. Korte, “Applications of Combinatorial Optimization,” in Talk at the 13th Interna-
tional Mathematical Programming Symposium, (Tokyo), 1988.

[178] B. Korte, “Applications of Combinatorial Optimization,” in Mathematical Program-
ming: Recent Development and Applications, (M. Iri and K. Tanabe, eds.), pp. 203–
225, Kluwer Academic Publishers, 1989.

[179] J. R. Koza, Genetic Programming: On the Programming of Computers by Natural
Selection. Cambridge, MA: MIT Press, 1992.

[180] J. R. Koza, Genetic Programming II: Automatic Discovery of Reusable Programs. Cam-
bridge: MIT Press, 1994.

[181] B. Krakhofer and P. F. Stadler, “Local Minima in the Graph Bipartitioning Problem,”
Europhys. Lett., vol. 34, pp. 85–90, 1996.

[182] J. Krarup and P. M. Pruzan, “Computer-Aided Layout Design,” Mathematical Pro-
gramming Study, vol. 9, pp. 75–94, 1978.

[183] J. B. Kruskal, “On the Shortest Spanning Subtree of a Graph and the Traveling Sales-
man Problem,” Proceedings of the American Mathematical Society, vol. 7, pp. 48–50,
1956.

[184] G. Laszewski and H. Mühlenbein, “Partitioning a Graph with a Parallel Genetic Al-
gorithm,” in Parallel Problem Solving from Nature, (H.-P. Schwefel and R. Männer,
eds.), (Berlin), pp. 165–169, Springer, 1991.

[185] D. J. Laughunn, “Quadratic Binary Programming,” Operations Research, vol. 14,
pp. 454–461, 1970.

198 10 Conclusions

[186] E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, and D. B. Shmoys, The Traveling
Salesman Problem: A Guided Tour of Combinatorial Optimization. New York: Wiley
and Sons, 1985.

[187] J. K. Lenstra and A. H. G. R. Kan, “Some Simple Applications of the Travelling
Salesman Problem,” Opl Res. Q., vol. 26, pp. 717–733, 1975.

[188] Y. Li and P. M. Pardalos, “Generating Quadratic Assignment Test Problems with
Known Optimal Permutations,” Computational Optimization and Applications, vol. 1,
pp. 163–184, 1992.

[189] Y. Li, P. M. Pardalos, and M. G. C. Resendre, “A Greedy Randomized Adaptive
Search Procedure for the Quadratic Assignment Problem,” in Quadratic Assignment
and Related Problems, (P. M. Pardalos and H. Wolkowicz, eds.), pp. 237–261, Amer.
Math. Soc., 1994.

[190] G. E. Liepins and M. R. Hilliard, “Greedy Genetics,” in Genetic Algorithms and their
Applications: Proceedings of the Second International Conference on Genetic Algo-
rithms, pp. 90–99, Lawrence Erlbaum, 1987.

[191] S. Lin, “Computer Solutions of the Travelling Salesman Problem,” Bell System Tech.
Journal, vol. 44, pp. 2245–2269, 1965.

[192] S. Lin and B. Kernighan, “An Effective Heuristic Algorithm for the Traveling Salesman
Problem,” Operations Research, vol. 21, pp. 498–516, 1973.

[193] J. D. Litke, “An Improved Solution to the Traveling Salesman Problem with Thousands
of Nodes,” Communications of the ACM, vol. 27, no. 12, pp. 1227–1236, 1984.

[194] A. Lodi, K. Allemand, and T. M. Liebling, “An Evolutionary Heuristic for Quadratic
0–1 Programming,” European Journal of Operational Research, vol. 119, pp. 662–670,
1999.

[195] A. Lucena and J. E. Beasley, “A Branch and Cut Algorithm for the Steiner Problem
in Graphs,” Networks: An International Journal, vol. 31, pp. 39–59, 1998.

[196] K.-T. Mak and A. J. Morton, “Distances between Traveling Salesman Tours,” Discrete
Applied Mathematics and Combinatorial Operations Research and Computer Science,
vol. 58, pp. 281–291, 1995.

[197] B. Manderick, M. de Weger, and P. Spiessens, “The Genetic Algorithm and the Struc-
ture of the Fitness Landscape,” in Proceedings of the 4th International Conference on
Genetic Algorithms, pp. 143–150, Morgan Kaufmann, 1991.

[198] V. Maniezzo, “Exact and Approximate Nondeterministic Tree-Search Procedures
for the Quadratic Assignment Problem,” Tech. Rep. CSR 98-1, C.L. in Scienze
dell’Informazione, Universitá di Bologna, Sede di Cesena, Italy, 1998.

[199] V. Maniezzo, A. Colorni, and M. Dorigo, “The Ant System Applied to the Quadratic
Assignment Problem,” Tech. Rep. 94/28, IRIDIA, Université de Bruxelles, 1994.

199

[200] V. Maniezzo, M. Dorigo, and A. Colorni, “Algodesk: An Experimental Comparison of
Eight Evolutionary Heuristics Applied to the Quadratic Assignment Problem,” Euro-
pean Journal of Operational Research, vol. 81, pp. 188–204, 1995.

[201] F. Margot, “Quick Updates for p-opt TSP Heuristics,” Operations Research Letters,
vol. 11, pp. 45–46, 1992.

[202] O. Martin, S. W. Otto, and E. Felten, “Large-Step Markov Chains for the TSP Incor-
porating Local Search Heuristics,” Operations Research Letters, vol. 11, pp. 219–224,
1992.

[203] O. Martin, S. W. Otto, and E. W. Felten, “Large-Step Markov Chains for the Traveling
Salesman Problem,” Complex Systems, vol. 5, pp. 299–326, 1991.

[204] K. Mathias and D. Whitley, “Genetic Operators, the Fitness Landscape and the Trav-
eling Salesman Problem,” in Parallel Problem Solving from Nature - Proceedings of
2nd Workshop, PPSN 2, (R. Männer and B. Manderick, eds.), pp. 219–228, Elsevier
Science Publishers, 1992.

[205] R. D. McBride and J. S. Yormark, “An Implicit Enumeration Algorithm for Quadratic
Integer Programming,” Management Science, vol. 26, no. 3, pp. 282–296, 1980.

[206] J. McCarthy, “LISP: A Programming System for Symbolic Manipulations,” Report,
ACM Annual Meeting, Cambridge, Mass., 1959.

[207] E. J. McCormick, Human Factors Engineering. New York: McGraw-Hill, 1970.

[208] W. S. McCulloch and W. Pitts, “A Logical Calculus of the Idea Immanent in Nervous
Activity,” Bulletin of Mathematical Biophysics, vol. 5, pp. 115–133, 1943.

[209] P. Merz and B. Freisleben, “A Genetic Local Search Approach to the Quadratic As-
signment Problem,” in Proceedings of the 7th International Conference on Genetic
Algorithms, (T. Bäck, ed.), pp. 465–472, Morgan Kaufmann, 1997.

[210] P. Merz and B. Freisleben, “Genetic Local Search for the TSP: New Results,” in
Proceedings of the 1997 IEEE International Conference on Evolutionary Computation,
(T. Bäck, Z. Michalewicz, and X. Yao, eds.), pp. 159–164, IEEE Press, 1997.

[211] P. Merz and B. Freisleben, “Memetic Algorithms and the Fitness Landscape of the
Graph Bi-Partitioning Problem,” in Proceedings of the 5th International Conference
on Parallel Problem Solving from Nature - PPSN V, (A.-E. Eiben, T. Bäck, M. Schoe-
nauer, and H.-P. Schwefel, eds.), pp. 765–774, Springer, 1998.

[212] P. Merz and B. Freisleben, “On the Effectiveness of Evolutionary Search in High–
Dimensional NK-Landscapes,” in Proceedings of the 1998 IEEE International Con-
ference on Evolutionary Computation, (D. Fogel, ed.), pp. 741–745, IEEE Press, 1998.

[213] P. Merz and B. Freisleben, “A Comparison of Memetic Algorithms, Tabu Search, and
Ant Colonies for the Quadratic Assignment Problem,” in 1999 Congress on Evolution-
ary Computation (CEC’99), (P. Angeline, ed.), pp. 2063–2070, IEEE Press, 1999.

200 10 Conclusions

[214] P. Merz and B. Freisleben, “Fitness Landscapes and Memetic Algorithm Design,” in
New Ideas in Optimization, (D. Corne, M. Dorigo, and F. Glover, eds.), pp. 245–260,
McGraw–Hill, 1999.

[215] P. Merz and B. Freisleben, “Genetic Algorithms for Binary Quadratic Programming,”
in GECCO-1999: Proceedings of the Genetic and Evolutionary Computation Confer-
ence, (W. Banzhaf, J. Daida, A. E. Eiben, M. H. Garzon, V. Honavar, M. Jakiela, and
R. E. Smith, eds.), pp. 417–424, Morgan Kauffman, 1999.

[216] P. Merz and B. Freisleben, “Fitness Landscape Analysis and Memetic Algorithms for
the Quadratic Assignment Problem,” IEEE Transactions on Evolutionary Computa-
tion, vol. 4, no. 4, pp. 337–352, 2000.

[217] P. Merz and B. Freisleben, “Fitness Landscapes, Memetic Algorithms and Greedy
Operators for Graph Bi-Partitioning,” Evolutionary Computation, vol. 8, no. 1, pp. 61–
91, 2000.

[218] P. Merz and B. Freisleben, “Greedy and Local Search Heuristics for Uncontrained
Binary Quadratic Programming,” Tech. Rep., Department of Electrical Engineering
and Computer Science, University of Siegen, Germany, 2000. Accepted for publication
in Journal of Heuristics.

[219] P. Merz, Genetische Algorithmen für kombinatorische Optimierungsprobleme. Master’s
thesis, University of Siegen, Germany, 1996.

[220] N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, and E. Teller, “Equation of
State Calculation by Fast Computing Machines,” Journal of Chemical Physics, vol. 21,
pp. 1087–1092, 1953.

[221] Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution Programs. Berlin:
Springer, 1996.

[222] D. L. Miller and J. F. Pekny, “Exact Solution of Large Asymmetric Traveling Salesman
Problems,” Science, vol. 251, pp. 754–761, 1991.

[223] C. Ming and L. Minghui, “Kohonen neural network-based solution of TSP,” Mini-
Micro Systems, vol. 15, no. 11, pp. 35–9, 1994.

[224] A. Möbius, A. Diaz-Sanchez, B. Freisleben, M. Schreiber, A. Fachat, K. Hoffmann,
P. Merz, and A. Neklioudov, “Two Physically Motivated Algorithms for Combinato-
rial Optimization: Thermal Cycling and Iterative Partial Transcription,” Computer
Physics Communications, vol. 121–122, no. 1–3, pp. 34–36, 1999.

[225] A. Möbius, B. Freisleben, P. Merz, and M. Schreiber, “Combinatorial Optimization
by Iterative Partial Transcription,” Physical Review E, vol. 59, no. 4, pp. 4667–4674,
1999.

[226] P. Moscato, “On Evolution, Search, Optimization, Genetic Algorithms and Martial
Arts: Towards Memetic Algorithms,” Tech. Rep. No. 790, Caltech Concurrent Com-
putation Program, California Institue of Technology, 1989.

201

[227] P. Moscato and M. G. Norman, “A Memetic Approach for the Traveling Salesman
Problem Implementation of a Computational Ecology for Combinatorial Optimization
on Message-Passing Systems,” in Parallel Computing and Transputer Applications,
(M. Valero, E. Onate, M. Jane, J. L. Larriba, and B. Suarez, eds.), (Amsterdam),
pp. 177–186, IOS Press, 1992.

[228] P. Moscato and M. Norman, “Arbitrarily Large Planar ETSP Instances with Known
Optimal Tours,” Pesquisa Operacional, vol. 15, pp. 89–96, 1995.

[229] P. Moscato and M. Norman, “On the performance of Heuristics on Finite and Infinite
Fractal Instancesof the Euclidean Traveling Salesman Problem,” INFORMS Journal
on Computing, vol. 10, no. 2, pp. 121–132, 1998.

[230] P. Moscato, “Memetic Algorithms: A Short Introduction,” in New Ideas in Optimiza-
tion, (D. Corne, M. Dorigo, and F. Glover, eds.), ch. 14, pp. 219–234, McGraw-Hill,
London, 1999.

[231] H. Mühlenbein, “Parallel Genetic Algorithms, Population Genetics and Combinato-
rial Optimization,” in Proceedings of the Third International Conference on Genetic
Algorithms, (Schaffer, ed.), pp. 416–421, Morgan Kaufmann, 1989.

[232] H. Mühlenbein, M. Gorges-Schleuter, and O. Krämer, “Evolution Algorithms in Com-
binatorial Optimization,” Parallel Computing, vol. 7, pp. 65–88, 1988.

[233] H. Mühlenbein, “Evolution in Time and Space – The Parallel Genetic Algorithm,”
in Foundations of Genetic Algorithms, (G. J. E. Rawlins, ed.), Morgan Kaufmann
Publishers, 1991.

[234] Y. Nagata and S. Kobayashi, “Edge Assembly Crossover: A High–power Genetic Al-
gorithm for the Traveling Salesman Problem,” in Proceedings of the 7th International
Conference on Genetic Algorithms, (T. Bäck, ed.), pp. 450–457, Morgan Kaufmann,
1997.

[235] D. Neto, Efficient Cluster Compensation for Lin-Kernighan Heuristics. PhD thesis,
University of Toronto, Computer Science Department, 1999.

[236] V. Nissen and H. Paul, “A Modification of Threshold Accepting and its Application
to the Quadratic Assignment Problem,” OR Spektrum, vol. 17, pp. 205–210, 1995.

[237] V. Nissen, “Solving the Quadratic Assignment Problem with Clues from Nature,”
IEEE Transactions on Neural Networks, vol. 5, no. 1, pp. 66–72, 1994.

[238] M. G. Norman and P. Moscato, “The Euclidean Traveling Salesman Problem and a
Space-Filling Curve,” Chaos, Solitons and Fractals, vol. 6, pp. 389–397, 1995.

[239] I. M. Oliver, D. J. Smith, and J. R. C. Holland, “A Study of Permutation Crossover
Operators on the Traveling Salesman Problem,” in Genetic Algorithms and their Ap-
plications: Proceedings of the Second International Conference on Genetic Algorithms,
pp. 224–230, Lawrence Erlbaum, 1987.

202 10 Conclusions

[240] F. Oppacher and M. Wineberg, “The Shifting Balance Genetic Algorithm: Improving
the GA in a Dynamic Environment,” in Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO’99), (W. Banzhaf, J. Daida, A. E. Eiben, M. H.
Garzon, V. Honavar, M. Jakiela, and R. E. Smith, eds.), pp. 504–510, Morgan Kauf-
mann, 1999.

[241] I. Or, Traveling Salesman-Type Combinatorial Problems and Their Relation to the
Logistics of Regional Blood Banking. PhD thesis, Northwestern University, Evanston,
1976.

[242] M. Padberg and G. Rinaldi, “Optimization of a 532-city Symmetric Traveling Salesman
Problem by Branch and Cut,” Operations Research Letters, vol. 6, pp. 1–7, 1987.

[243] M. Padberg and G. Rinaldi, “A Branch-and-Cut Algorithm for the Resolution of Large-
Scale Symmetric Traveling Salesman Problems,” SIAM Review, vol. 33, pp. 60–100,
March 1991.

[244] P. M. Pardalos and G. P. Rodgers, “Computational Aspects of a Branch and Bound
Algorithm for Unconstrained Quadratic Zero–One Programming,” Computing, vol. 45,
pp. 131–144, 1990.

[245] P. M. Pardalos and G. P. Rodgers, “A Branch and Bound Algorithm for the Maximum
Clique Problem,” Computers and Operations Research, vol. 19, no. 5, pp. 363–375,
1992.

[246] P. M. Pardalos and J. Xue, “The Maximum Clique Problem,” Journal of Global Op-
timization, vol. 4, pp. 301–328, 1994.

[247] J. Paredis, “Coevolutionary Computation,” Artificial Life, vol. 2, no. 4, pp. 355–375,
1995.

[248] C. Peterson and B. Soderberg, “Artificial Neural Networks,” in Modern Heuristic Tech-
niques for Combinatorial Problems, (C. R. Reeves, ed.), McGraw Hill, 1993.

[249] C. Peterson and J. Anderson, “Neural Networks and NP-complete Optimization Prob-
lems; A Performance Study on the Graph Bisection Problem,” Complex Systems, vol. 2,
no. 1, pp. 59–89, 1988.

[250] A. T. Phillips and J. B. Rosen, “A Quadratic Assignment Formulation for the Molec-
ular Conformation Problem,” Journal of Global Optimization, vol. 4, pp. 229–241,
1994.

[251] R. D. Plante, T. J. Lowe, and R. Chandrasekaran, “The Product Matrix Traveling
Salesman Problem: An Application and Solution Heuristics,” Operations Research,
vol. 35, pp. 772–783, 1987.

[252] A. Pothen, “Graph Partitioning Algorithms with Applications to Scientific Comput-
ing,” Tech. Rep. TR–97–03, Old Dominion University, 1997.

[253] J.-Y. Potvin, “The Traveling Salesman Problem: A Neural Network Perspective,”
ORSA Journal on Computing, vol. 5, pp. 328–348, 1993.

203

[254] N. Radcliffe and P. Surry, “Fitness Variance of Formae and Performance Prediction,” in
Proceedings of the Third Workshop on Foundations of Genetic Algorithms, (L. Whitley
and M. Vose, eds.), (San Francisco), pp. 51–72, Morgan Kaufmann, 1994.

[255] N. Radcliffe and P. Surry, “Formal Memetic Algorithms,” in Evolutionary Computing:
AISB Workshop, (T. Fogarty, ed.), pp. 1–16, Springer-Verlag, Berlin, 1994.

[256] S. Rana, L. D. Whitley, and R. Cogswell, “Searching in the Presence of Noise,” in Par-
allel Problem Solving from Nature - PPSN IV, (H. Voigt, W. Ebeling, I. Rechenberg,
and H.-P. Schwefel, eds.), (Berlin), pp. 198–207, Springer, 1996.

[257] I. Rechenberg, Evolutionsstrategie: Optimierung technischer Systeme nach Prinzipien
der biologischen Evolution. Stuttgart: Frommann-Holzboog, 1973.

[258] I. Rechenberg and P. Bienert, “Evolutionsstrategie,” Tech. Rep., TU Berlin, 1969.

[259] C. R. Reeves, “Landscapes, Operators and Heuristic Search,” Tech. Rep., School of
Mathematical and Information Science, Coventry University, Coventry, UK, 1997. Ac-
cepted for publication in Annals of Operations Research.

[260] G. Reinelt, “TSPLIB— A Traveling Salesman Problem Library,” ORSA Journal on
Computing, vol. 3, no. 4, pp. 376–384, 1991.

[261] G. Reinelt, The Traveling Salesman: Computational Solutions for TSP Applications.
Vol. 840 of Lecture Notes in Computer Science, Springer-Verlag, Berlin, Germany,
1994.

[262] R. G. Reynolds, “Cultural Algorithms: Theory and Applications,” in New Ideas in Op-
timization, (D. Corne, M. Dorigo, and F. Glover, eds.), ch. 24, pp. 367–377, McGraw-
Hill, London, 1999.

[263] S. Ronald, “Finding Multible Solutions with an Evolutionary Algorithm,” in Pro-
ceedings of the 1995 IEEE International Conference on Evolutionary Computation,
pp. 641–646, IEEE Press, 1995.

[264] S. Ronald, “Distance Functions for Order–Based Encodings,” in Proceedings of the
1997 IEEE International Conference on Evolutionary Computation, pp. 49–54, IEEE
Press, 1997.

[265] B. Roy and B. Sussmann, “Les Problèmes D’Ordonnancement Avec Constraints Dis-
jonctives,” Note DS 9 bis, SEMA, Paris, France, 1974.

[266] G. Rudolph, “Global Optimization by Means of Distributed Evolution Strategies,” in
Parallel Problem Solving from Nature - Proceedings of 1st Workshop, PPSN 1, (H. P.
Schwefel and R. Männer, eds.), pp. 209–213, Springer, 1991.

[267] H. Salkin and K. Mathur, Foundations of Integer Programming. North Holland, 1989.

[268] P. Schuster, W. Fontana, P. F. Stadler, and I. L. Hofacker, “From Sequences to Shapes
and Back: A Case Study in RNA Secondary Structures,” Proc. Roy. Soc. Lond. B,
vol. 255, pp. 279–284, 1994.

204 10 Conclusions

[269] H.-P. Schwefel, Numerische Optimierung von Computer–Modellen mittels der Evolu-
tionsstrategie. Vol. 26 of Interdisciplinary Systems Research, Basel: Birkhäuser Verlag,
1977.

[270] H.-P. Schwefel, Numerical Optimization of Computer Models. Wiley, 1981.

[271] H. D. Simon, “Partitioning of Unstructured Problems for Parallel Processing,” Com-
puting Systems in Engineering, vol. 2, no. 3, pp. 135–148, 1991.

[272] C. D. Simone, M. Diehl, M. Jünger, P. Mutzel, G. Reinelt, and G. Rinaldi, “Exact
Ground States in Spin Glasses: New Experimental Results with a Branch and Cut
Algorithm,” Journal of Statistical Physics, vol. 80, pp. 487–496, 1995.

[273] J. Skorin-Kapov, “Tabu Search Applied to the Quadratic Assignment Problem,” ORSA
Journal on Computing, vol. 2, no. 1, pp. 33–45, 1990.

[274] J. Skorin-Kapov, “Extensions of a Tabu Search Adaptation to the Quadratic Assign-
ment Problem,” Computers and Operations Research, vol. 21, no. 8, pp. 855–865, 1994.

[275] G. B. Sorkin, “Efficient Simulated Annealing on Fractal Energy Landscapes,” Algo-
rithmica, vol. 6, pp. 367–418, 1991.

[276] D. A. Spielman and S.-H. Teng, “Spectral Partitioning Works: Planar Graphs and
Finite Element Meshes,” in 37th Annual Symposium on Foundations of Computer
Science, (Burlington, Vermont), pp. 96–105, 1996.

[277] P. F. Stadler, “Correlation in Landscapes of Combinatorial Optimization Problems,”
Europhys. Lett., vol. 20, pp. 479–482, 1992.

[278] P. F. Stadler, “Towards a Theory of Landscapes,” in Complex Systems and Binary
Networks, (R. Lopéz-Peña, R. Capovilla, R. Garćıa-Pelayo, H. Waelbroeck, and F. Zer-
tuche, eds.), (Berlin, New York), pp. 77–163, Springer Verlag, 1995.

[279] P. F. Stadler, “Landscapes and their Correlation Functions,” J. Math. Chem., vol. 20,
pp. 1–45, 1996.

[280] P. F. Stadler and R. Happel, “Correlation Structure of the Landscape of the Graph-
Bipartitioning-Problem,” J. Phys. A:Math. Gen., vol. 25, pp. 3103–3110, 1992.

[281] P. F. Stadler and W. Schnabl, “The Landscape of the Travelling Salesman Problem,”
Physics Letters A, vol. 161, pp. 337–344, 1992.

[282] P. F. Stadler and G. P. Wagner, “The Algebraic Theory of Recombination Spaces,”
Evolutionary Computation, vol. 5, pp. 241–275, 1998.

[283] T. Starkweather, S. McDaniel, K. Mathias, D. Whitley, and C. Whitley, “A Com-
parison of Genetic Sequencing Operators,” in Proceedings of the 4th International
Conference on Genetic Algorithms, pp. 69–76, Morgan Kaufmann, 1991.

[284] A. G. Steenbeek, E. Marchiori, and A. E. Eiben, “Finding Balanced Graph Bi-
Partitions Using a Hybrid Genetic Algorithm,” in Proceedings of the IEEE Interna-
tional Conference on Evolutionary Computation ICEC’98, pp. 90–95, IEEE Press,
1998.

205

[285] L. Steinberg, “The Backboard Wiring Problem: A Placement Algorithm,” SIAM Re-
view, vol. 3, pp. 37–50, 1961.

[286] T. Stützle, “MAX –MIN Ant System for Quadratic Assignment Problems,” Tech.
Rep. AIDA–97–4, FG Intellektik, TU Darmstadt, Germany, 1997.

[287] T. Stützle, Local Search Algorithms for Combinatorial Problems — Analysis, Improve-
ments, and New Applications. PhD thesis, FB Informatik, TU Darmstadt, 1998.

[288] T. Stützle and M. Dorigo, “ACO Algorithms for the Quadratic Assignment Problem,”
in New Ideas in Optimization, (D. Corne, M. Dorigo, and F. Glover, eds.), pp. 33–50,
McGraw–Hill, London, 1999.

[289] T. Stützle and H. Hoos, “The MAX –MIN Ant System and Local Search for the
Traveling Salesman Problem,” in Proceedings 1997 IEEE International Conference on
Evolutionary Computation (ICEC’97), (T. Baeck, Z. Michalewicz, and X. Yao, eds.),
pp. 309–314, 1997.

[290] T. Stützle and H. Hoos, “MAX –MIN Ant System and Local Search for Combi-
natorial Optimization Problems,” in Meta-Heuristics: Advances and Trends in Local
Search Paradigms for Optimization, (S. Voss, S. Martello, I. Osman, and C. Roucairol,
eds.), pp. 313–329, Kluwer, Boston, 1999.

[291] J. Y. Suh and D. V. Gucht, “Incorporating Heuristic Information into Genetic Search,”
in Genetic Algorithms and their Applications: Proceedings of the Second International
Conference on Genetic Algorithms, pp. 100–107, Lawrence Erlbaum, 1987.

[292] G. Syswerda, “Uniform Crossover in Genetic Algorithms,” in Proceedings of the 3rd
International Conference on Genetic Algorithms, (J. D. Schaffer, ed.), pp. 2–9, Morgan
Kaufmann, 1989.

[293] G. Syswerda, “A Study of Reproduction in Generational and Steady State Genetic
Algorithms,” in Foundations of Genetic Algorithms, (G. J. E. Rawlings, ed.), pp. 94–
101, San Mateo: Morgan Kaufmann, 1991.

[294] È. Taillard, “Tabu Search,” in Local Search in Combinatorial Optimization, (E. H. L.
Aarts and J. K. Lenstra, eds.), ch. 1, pp. 1–17, Wiley, 1997.

[295] É. D. Taillard, “Robust Taboo Search for the Quadratic Assignment Problem,” Parallel
Computing, vol. 17, pp. 443–455, 1991.

[296] É. D. Taillard, “Comparison of Iterative Searches for the Quadratic Assignment Prob-
lem,” Location Science, vol. 3, pp. 87–105, 1995.

[297] É. D. Taillard, “FANT: Fast Ant System,” Tech. Rep. IDSIA-46-98, IDSIA, Lugano,
Switzerland, 1998.

[298] É. D. Taillard and L. M. Gambardella, “Adaptive Memories for the Quadratic Assign-
ment Problem,” Tech. Rep. IDSIA-87-97, IDSIA, Lugano, Switzerland, 1997.

206 10 Conclusions

[299] G. Tao and Z. Michalewicz, “Inver-over Operator for the TSP,” in Proceedings of the
5th International Conference on Parallel Problem Solving from Nature - PPSN V, (A.-
E. Eiben, T. Bäck, M. Schoenauer, and H.-P. Schwefel, eds.), pp. 803–812, Springer,
1998.

[300] D. M. Tate and A. E. Smith, “A Genetic Approach to the Quadratic Assignment
Problem,” Computers and Operations Research, vol. 22, no. 1, pp. 73–83, 1995.

[301] N. L. J. Ulder, E. H. L. Aarts, H. J. Bandelt, P. J. M. van Laarhoven, et al., “Genetic
Local Search Algorithms for the Traveling Salesman Problems,” in Parallel Problem
Solving from Nature - Proceedings of 1st Workshop, PPSN 1, (H. P. Schwefel and
R. Männer, eds.), (Dortmund, Germany), pp. 109–116, Springer-Verlag, Berlin, Ger-
many, 1-3 Oct. 1991.

[302] C. L. Valenzuela, “Evolutionary Divide and Conquer (II) for the TSP,” in Proceedings
of the Genetic and Evolutionary Computation Conference, (W. Banzhaf, J. Daida,
A. E. Eiben, M. H. Garzon, V. Honavar, M. Jakiela, and R. E. Smith, eds.), pp. 1744–
1749, Morgan Kaufmann, 1999.

[303] P. J. M. van Laarhoven and E. H. L. Aarts, Simulated Annealing: Theory and Appli-
cations. Kluwer Academic Publishers, 1987.

[304] T. E. Vollmann and E. S. Buffa, “The Facilities Layout Problem in Perspective,”
Management Science, vol. 12, no. 10, pp. 450–468, 1966.

[305] T. Walters, “Repair and Brood Selection in the Traveling Salesman Problem,” in Pro-
ceedings of the 5th International Conference on Parallel Problem Solving from Nature
- PPSN V, (A.-E. Eiben, T. Bäck, M. Schoenauer, and H.-P. Schwefel, eds.), pp. 813–
822, Springer, 1998.

[306] E. D. Weinberger, “Correlated and Uncorrelated Fitness Landscapes and How to Tell
the Difference,” Biological Cybernetics, vol. 63, pp. 325–336, 1990.

[307] E. D. Weinberger, “Local Properties of Kauffman’s N-k model: A tunably Rugged
Energy Landscape,” Physical Review A, vol. 44, no. 10, pp. 6399–6413, 1991.

[308] E. D. Weinberger, “NP Completeness of Kauffman’s N-k Model, A Tuneable Rugged
Fitness Landscape,” Tech. Rep. 96-02-003, Santa Fe Institute, Santa Fe, New Mexico,
1996.

[309] E. D. Weinberger and P. F. Stadler, “Why Some Fitness Landscapes are Fractal,” J.
Theor. Biol., vol. 163, pp. 255–275, 1993.

[310] D. Whitley, V. S. Gordon, and K. Mathias, “Lamarckian Evolution, The Baldwin
Effect and Function Optimization,” in Parallel Problem Solving From Nature – PPSN
III, (Y. Davidor and H.-P. Schwefel, eds.), pp. 6–15, Springer, 1994.

[311] D. Whitley, T. Starkweather, and D. Fuquay, “Scheduling Problems and Traveling
Salesman: The Genetic Edge Recombination Operator,” in Proceedings of the Third
International Conference on Genetic Algorithms, pp. 133–140, Morgan Kaufman, 1989.

207

[312] D. H. Wolpert and W. G. Macready, “No Free Lunch Theorems for Optimization,”
IEEE Transactions on Evolutionary Computation, vol. 1, no. 1, pp. 67–82, 1997.

[313] S. Wright, “The Roles of Mutation, Inbreeding, Crossbreeding, and Selection in Evo-
lution,” in Proceedings of the Sixth Congress on Genetics, p. 365, 1932.

[314] T. Yamada and R. Nakano, “Scheduling by Genetic Local Search with Multi-Step
Crossover,” in Proceedings of the 4th Conference on Parallel Problem Solving from
Nature - PPSN IV, (H.-M. Voigt, W. Ebeling, I. Rechenberg, and H.-P. Schwefel,
eds.), pp. 960–969, Springer, 1996.

[315] H.-J. Zimmermann, Methoden und Modelle des Operations Research. Für Ingenieure,
Ökonomen und Informatiker. (Methods and models of operations research. For engi-
neers, economists and computer scientists). Friedr. Vieweg & Sohn, Braunschweig,
1987.

	1 Introduction
	2 Combinatorial Optimization Problems
	2.1 Introduction
	2.2 Definitions
	2.3 Computational Complexity
	2.4 Examples of COPs
	2.4.1 The Traveling Salesman Problem
	2.4.2 Graph Partitioning
	2.4.3 The Quadratic Assignment Problem
	2.4.4 Vehicle Routing
	2.4.5 Scheduling
	2.4.6 Unconstrained Binary Quadratic Programming
	2.4.7 NK-Landscapes
	2.4.8 The Knapsack Problem

	2.5 Exact Methods for Solving COPs
	2.5.1 Branch & Bound
	2.5.2 Branch & Cut
	2.5.3 Heuristic Methods

	2.6 Classification of COPs
	2.7 Summary

	3 Memetic Algorithms
	3.1 Introduction
	3.2 Evolutionary Algorithms
	3.2.1 Natural Evolution
	3.2.2 History of Evolutionary Computation
	3.2.3 Outline of Evolutionary Algorithms
	3.2.4 The Evolutionary Variation Operators
	3.2.5 The Relation between Genotype and Phenotype
	3.2.6 Application of EAs

	3.3 Other Biologically Motivated Optimization Techniques
	3.3.1 The Ant Colony System
	3.3.2 Artificial Neural Networks
	3.3.3 Recent Developments

	3.4 Greedy and Local Search Heuristics
	3.4.1 Greedy Heuristics
	3.4.2 Local Search Heuristics
	3.4.3 Simulated Annealing and Threshold Accepting
	3.4.4 Tabu Search

	3.5 Towards Memetic Algorithms
	3.5.1 Combination of Evolutionary Algorithms and Neighborhood Search
	3.5.2 Cultural Evolution
	3.5.3 The Memetic Algorithm
	3.5.4 Special Cases of the Memetic Approach

	3.6 Summary

	4 Performance Prediction and Fitness Landscape Analysis
	4.1 Introduction
	4.2 Performance Evaluation of Heuristics
	4.3 The No Free Lunch Theorems
	4.4 Fitness Landscapes
	4.4.1 Properties of Fitness Landscapes
	4.4.2 Preliminaries
	4.4.3 Fitness Distance Correlation
	4.4.4 Autocorrelation

	4.5 Performance Prediction and Analysis for Evolutionary Algorithms
	4.5.1 Problem Difficulty
	4.5.2 Variation Operator Analysis

	4.6 Landscape Analysis and Memetic Algorithms
	4.6.1 The Role of Evolutionary Operators in Memetic Algorithms
	4.6.2 Landscape Analysis and the Choice of Operators

	4.7 Summary

	5 NK-Landscapes
	5.1 Introduction
	5.2 Heuristics for the NK-Model
	5.2.1 Greedy Algorithms
	5.2.2 Local Search

	5.3 The Fitness Landscape of the NK-Model
	5.3.1 Autocorrelation Analysis
	5.3.2 Fitness Distance Correlation Analysis

	5.4 A Memetic Algorithm for NK Landscapes
	5.4.1 Population Initialization and Local Search
	5.4.2 Evolutionary Variation Operators
	5.4.3 Performance Evaluation

	5.5 Summary

	6 The Binary Quadratic Programming Problem
	6.1 Introduction
	6.2 Heuristics for the BQP
	6.2.1 Greedy Heuristics
	6.2.2 Local Search

	6.3 The Fitness Landscape of the BQP
	6.3.1 Epistasis in the BQP
	6.3.2 Autocorrelation Analysis
	6.3.3 Fitness Distance Correlation Analysis

	6.4 A Memetic Algorithm for the BQP
	6.4.1 A Simple Genetic Algorithm for the BQP
	6.4.2 The Memetic Algorithm

	6.5 Performance Evaluation
	6.5.1 Performance of the Greedy and Local Search Heuristics
	6.5.2 Comparison of Genetic Algorithms and Memetic Algorithms
	6.5.3 A Memetic Algorithm with k-opt Local Search

	6.6 Summary

	7 The Traveling Salesman Problem
	7.1 Introduction
	7.2 Heuristics for the TSP
	7.2.1 The Greedy Heuristic
	7.2.2 Local Search
	7.2.3 Evolutionary Algorithms

	7.3 The Fitness Landscape of the TSP
	7.3.1 Distances between TSP tours
	7.3.2 Autocorrelation Analysis
	7.3.3 Fitness Distance Correlation Analysis

	7.4 A Memetic Algorithm for the TSP
	7.4.1 Initialization and Local Search
	7.4.2 Variation Operators
	7.4.3 Implementation Details
	7.4.4 Performance Evaluation

	7.5 Summary

	8 The Graph Bipartitioning Problem
	8.1 Introduction
	8.2 Heuristics for the GBP
	8.2.1 Greedy Heuristics
	8.2.2 Local Search
	8.2.3 Hybrid Evolutionary Algorithms

	8.3 The Fitness Landscape of the GBP
	8.3.1 A Distance Measure
	8.3.2 Autocorrelation Analysis
	8.3.3 Fitness Distance Correlation Analysis

	8.4 A Memetic Algorithm for the GBP
	8.4.1 Initialization and Local Search
	8.4.2 The Evolutionary Variation Operators

	8.5 Memetic Algorithm Performance
	8.6 Summary

	9 The Quadratic Assignment Problem
	9.1 Introduction
	9.2 Heuristics for the QAP
	9.2.1 Greedy Heuristics
	9.2.2 Local Search
	9.2.3 Hybrid Evolutionary Algorithms

	9.3 The Fitness Landscape of the QAP
	9.3.1 A Distance Measure
	9.3.2 Types of QAP Instances
	9.3.3 Autocorrelation Analysis
	9.3.4 Fitness Distance Correlation Analysis

	9.4 A Memetic Algorithm for the QAP
	9.4.1 Initialization and Local Search
	9.4.2 The Evolutionary Variation Operators

	9.5 Memetic Algorithm Performance
	9.5.1 Comparison of Heuristic Algorithms for the QAP

	9.6 Summary

	10 Conclusions

