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Zusammenfassung

Kombinatorische Optimierungsprobleme sind in vielen Bereichen der Forschung und Ent-
wicklung zu finden. Betriebswirtschaftlich ausgedriickt, handelt es sich um Entscheidungs-
situationen, in denen ein vorgegebener Nutzen in kostenminimaler Weise zu realisieren ist,
wobei aus mehreren Alternativen eine nach speziellen Kriterien optimale ausgewéhlt wird.
Voraussetzung ist, dafl sich das Problem auf ein mathematisches Modell abbilden 148t, das
jeder Alternative — einer Losung des Problems — eine Giite zuordnet. Die Ermittlung des
Fertigungssplans mit der hochsten Produktivitit, die Entwicklung eines Telekommunikati-
onsnetzwerkes mit der hochst méglichen Zuverlassigkeit, oder die Vorhersage der rdumlichen
Struktur eines Proteins nach seiner Faltung sind nur einige Beispiele kombinatorischer Opti-
mierungsprobleme. Viele dhnliche Probleme sind aus den Bereichen der Betriebswirtschaft,
dem Maschinenbau, der Elektrotechnik, der Informatik, der Biologie und der Physik bekannt.

Im Gegensatz zu anderen Optimierungsproblemen haben kombinatorische Optimierungs-
probleme eine endliche Zahl moglicher Losungen. Daher kénnen prinzipiell optimale Lésun-
gen durch das Betrachten aller moglichen Losung gefunden werden. Dieses Vorgehen der
vollstdndigen Enumeration erweist sich aber nur selten als praktikabel, da bei den meisten
kombinatorischen Problemen die Anzahl der moglichen Losungen einfach zu grof§ ist. Eini-
ge der in dieser Arbeit betrachteten Optimierungsprobleme haben mehr als 10°%%° mogliche
Losungen, wogegen die geschiitzte Anzahl der Atome in unserem Universum mit 10%° als
unbedeutend klein erscheint. Fiir einige kombinatorische Optimierungsprobleme sind Algo-
rithmen gefunden worden, die deutlich schneller als die vollstédndige Enumeration sind. Man
sagt, daf sie eine polynomiale Laufzeit in Abhéngigkeit der Problemgriéfie besitzen, falls die
Laufzeit durch ein Polynom in n (der Problemgroe) ausgedriickt werden kann. Fiir viele
andere harte kombinatorische Optimierungsprobleme ist kein solch schneller Algorithmus be-
kannt. Es wird gemeinhin angenommen, daf3 kein Algorithmus mit polynomialer Laufzeit fiir
diese Probleme existiert, auch wenn ein Beweis fiir diese Annahme aussteht. Dennoch hat
man in den vergangenen Jahren enorme Fortschritte in der exakten Losung dieser Proble-
me mittels hoch entwickelter Verfahren erzielt. Doch die Komplexitdt der Probleme bleibt.
Daher ist man in den meisten Féllen darauf angewiesen, Heuristiken einzusetzen, die zwar
die Ermittlung einer besten (optimalen) Losung nicht garantieren, aber in der Praxis mit
hoher Wahrscheinlichkeit das Optimum oder ein Suboptimum mit geringfiigig schlechterer
Losungsgiite finden. Ein Teilbereich der Informatik hat sich zum Ziel gesetzt, neue Heuristi-
ken fiir kombinatorische Optimierungsprobleme zu finden, bereits bekannte zu verbessern,
und verschiedene Verfahren zu kombinieren.

Heuristiken fiir kombinatorische Optimierungsprobleme kénnen in problemspezifische
und problemunabhéngige Heuristiken eingeteilt werden. Beispiele fiir problemunabhéngige
Techniken sind Nachbarschaftssuche, wie lokale Suche und Tabu-Suche, sowie biologisch in-
spirierte Methoden, wie evolutionéire Algorithmen, simulierte Ameisenkolonien, oder kiinst-
liche neuronale Netze. In den letzten Jahren hat man erkannt, dafl die Kombination aus
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problemspezifischen und problemunabhéngigen Heuristiken besonders vielversprechend ist:
Durch Einbringen von problemspezifischem Wissen in evolutionéire Algorithmen kann sich
in vielen Fillen die Effektivitat des Ansatzes erheblich verbessern. Dabei werden Synergie-
effekte deutlich: Die Kombination zeigt eine deutliche Effektivitéitssteigerung gegeniiber den
Einzelkomponenten.

Die Forschung im Bereich der heuristischen Losung kombinatorischer Optimierungspro-
bleme konzentriert sich iiberwiegend auf die Entwicklung von neuen, effektiveren Varianten
bestehender Heuristiken, welche hédufig nur auf einigen, zumeist selbst generierten Instanzen
eines ausgesuchten Optimierungsproblems getestet werden. Ferner werden diese Heuristiken
mehr oder weniger adéiquat mit anderen Ansiitzen verglichen, um ihre Uberlegenheit zu “be-
weisen”. Das Ziel der vorliegenden Arbeit ist nicht, an der Suche nach der “besten” Heuristik
zu partizipieren — es ist anzunehmen, dafl keine solche existiert. Stattdessen beschéftigt sich
die Dissertation mit den folgenden Fragen: Warum ist eine gegebene Heuristik auf einer
gegebenen Menge von Testinstanzen effektiver als eine andere? Was sind die entscheidenden
Eigenschaften von Probleminstanzen, die sich auf die Effektivitdt von Heuristiken auswir-
ken? Wie kann man problemspezifisches Wissen einsetzen, um eine Heuristik fiir ein Problem
effektiver und effizienter zu machen? L&t sich das zu losende Problem in Instanzklassen
einteilen, und kann man das vorhandene Problemwissen dazu einsetzen, addquatere Testfalle
fiir Heuristiken zu erzeugen?

Um Antworten auf die obigen Fragen zu finden, konzentriert sich diese Arbeit auf ei-
ne bestimmte Klasse von Heuristiken: die der memetischen Algorithmen. Es gibt mehrere
Griinde fiir diese Wahl. Zum einen erlauben memetische Algorithmen das Einsetzen von
problemspezifischem Wissen in einer kontrollierten Art und Weise, ohne dafl dabei die zu
Grunde liegende Methodik verloren geht. Weiterhin profitieren memetische Algorithmen
von den Vorteilen eines hybriden Ansatzes. Sie nutzen die symbiotischen Effekte der unter-
schiedlichen Suchstrategien, die sie verwirklichen: Sie beinhalten Nachbarschaftssuche, die
sich sehr gut fiir die intensive Suche in einem ausgewé#hlten Gebiet eignet, sowie die popu-
lationsbasierte evolutionédre Variation, wie sie in evolutiondren Algorithmen zu finden ist,
die der Identifikation vielversprechender Gebiete im Suchraum dient. Ein weiterer Grund
fiir die getroffene Wahl ist, dal sich memetische Algorithmen als sehr effektive Algorithmen
erwiesen haben. Sie sind unter den effektivsten bis heute entwickelten Heuristiken fiir eine
Reihe von kombinatorischen Optimierungsproblemen.

Der Versuch, Einblicke in die Struktur von kombinatorischen Optimierungsproblemen
und in die Dynamik von heuristischen Suchprozessen zu erlangen, ist der erste Schritt, um
Antworten auf die oben gestellten Fragen zu finden. Das aus der Evolutionstheorie ent-
liechene Konzept der Fitness-Landschaften ist in diesem Zusammenhang &duflerst hilfreich.
Die Idee ist dabei, die Menge aller Losungen — den Suchraum — als eine rdumliche Struk-
tur aufzufassen. Jeder Punkt in dieser rdumlichen Struktur représentiert eine Losung. Die
Fitness (Losungsgiite) wird durch die Hohe des Punktes, der sie représentiert, dargestellt.
Somit ergibt sich ein Gebirge bzw. eine Landschaft, wenn man im Losungsraum benach-
barte Punkte miteinander verbindet. Die Gebirgsspitzen stellen folglich lokale Optima und
die hochste Gebirgsspitze das globale Optimum dar. FEinige Eigenschaften dieser Fitness-
Landschaften beeinflussen stark die Effektivitdt und die Effizienz der Nachbarschaftssuche
sowie der evolutiondren (Meta-)Suche eines memetischen Algorithmus. Fiir die erstere ist
die lokale Struktur von entscheidender Bedeutung, die mit einer statistischen Autokorrela-
tionsanalyse untersucht werden kann. Die globale Struktur, die sich unter anderem in der
Verteilung der lokalen Optima, also der Gebirgsspitzen in der Fitness-Landschaft, ausdriickt,
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hat auf die evolutiondre Komponente des memetischen Algorithmus entscheidenden Einflufi.
Zur Analyse der globalen Struktur ist die statistische Fitness-Distanz-Korrelationsanalyse
ein hilfreiches Werkzeug.

Um die Verbindung zwischen Fitness-Landschaften von Optimierungsproblemen und der
Effektivitdt von memetischen Algorithmen systematisch zu untersuchen, werden fiinf ver-
schiedene Probleme in dieser Arbeit betrachtet: NK-Fitness-Landschaften (NK-Landscapes),
das unbeschrankte bindre quadratische Optimierungsproblem (BQP), das Problem des Hand-
lungsreisenden ( T'SP), das Graphen-Bipartitionierungsproblem (GBP) und das quadratische
Zuweisungsproblem (QAP).

Die Arbeit ist wie folgt gegliedert. Nach einer kurzen Einfithrung wird in Kapitel 2
ein Uberblick iiber kombinatorische Optimierungsprobleme gegeben. Es werden die be-
kanntesten Vertreter beschrieben, exakte Verfahren und Heuristiken diskutiert und eine
Klassifikation beziiglich der beinhalteten Nebenbedingungen getroffen, welche bei der Ent-
wicklung von Heuristiken eine groflie Rolle spielt. Im dritten Kapitel werden moderne
heuristische Techniken beschrieben. Hier liegt der Schwerpunkt auf evolutiondren Algo-
rithmen und der Nachbarschaftssuche, sowie der Kombination aus beiden, den memeti-
schen Algorithmen. Eigenschaften von Fitness-Landschaften und deren statistische Ana-
lyse sind Gegenstand von Kapitel 4. Der Fokus liegt auf der Autokorrelationsanalyse und
der Fitness-Distanz-Korrelationsanalyse. Es wird diskutiert, wie diese Techniken genutzt
werden konnen, um die Effektivitit eines Ansatzes vorherzusagen, bzw. wie die Ergebnisse
fiir die Entwicklung effektiver memetischer Algorithmen verwertet werden kénnen. In den
Kapiteln 5 bis 9 werden nacheinander NK-Fitness-Landschaften, das unbeschriankte binére
quadratische Optimierungsproblem, das Problem des Handlungsreisenden, das Graphen-
Bipartitionierungsproblem und das quadratische Zuweisungsproblem detailliert untersucht.
In jedem dieser Kapitel werden Heuristiken fiir die Probleme beschrieben mit Schwerpunkt
auf Greedy-Heuristiken und Nachbarschaftssuche, da diese gut fiir die Verwendung in einem
memetischen Algorithms geeignet sind. Zusétzlich wird eine Analyse mit den in Kapitel 4
eingefithrten statistischen Werkzeugen durchgefiihrt. Hier kommen die Autokorrelationsana-
lyse und die Fitness-Distanz-Korrelationsanalyse zum Einsatz. Daran anschlieBend werden
unter Beriicksichtigung der Analyseergebnisse memetische Algorithmen entwickelt, deren Ef-
fektivitat in Computersimulationen gezeigt wird. Im abschlieenden Kapitel wird die Arbeit
zusammengefafit und es werden kapiteliibergreifende Schliisse gezogen. Das Kapitel und die
Dissertation enden mit einem Ausblick auf zukiinftige Forschungsrichtungen.

In der vorliegenden Arbeit werden systematisch die fiinf betrachteten kombinatorischen
Optimierungsprobleme analysiert. Fiir drei der fiinf Probleme ist die Autokorrelation mathe-
matisch von anderen Forschern ermittelt worden. Fiir das binédre quadratische Optimierungs-
problem und fiir das quadratische Zuweisungsproblem wird in dieser Arbeit die Autokorrela-
tionsanalyse experimentell durchgefiihrt. Zusétzlich wird fiir alle fiinf Probleme die Fitness-
Distanz-Korrelation experimentell bestimmt. Weiterhin werden fiir alle Probleme neue evo-
lutionére Variationsoperatoren und/oder Greedy- und lokale Suchheuristiken vorgeschlagen:
Fiir NK-Landschaften werden eine neue Greedy-Heuristik, eine k-optimale lokale Suche und
ein heuristischer Rekombinationsoperator eingefiithrt. Eine neue Greedy-Heuristik und eine
k-optimale lokale Suche werden ebenfalls fiir das bindre quadratische Optimierungsproblem
entwickelt. Fiir das Problem des Handlungsreisenden werden zwei neue Rekombinationsope-
ratoren definiert, ein distanzerhaltender Rekombinationsoperator und ein generischer, heuri-
stischer Rekombinationsoperator. Im Falle des Graphen-Bipartitionierungsproblems wird ein
neuer heuristischer Rekombinationsoperator in Anlehnung an eine Greedy-Heuristik vorge-



schlagen. Fiir das quadratische Zuweisungsproblem werden ebenfalls zwei Rekombinations-
operatoren eingefiihrt, ein distanzerhaltender Rekombinationsoperator und eine zyklischer
Rekombinationsoperator in Anlehnung an den Cycle-Operator fiir das Problem des Hand-
lungsreisenden. In allen fiinf Fallen wird gezeigt, dafl memetische Algorithmen, die diese
neuen Operatoren und Heuristiken einsetzen, zu den besten bisher verdffentlichten Heuristi-
ken fiir das jeweilige Problem zéhlen.

Beziiglich der oben gestellten Fragen lassen sich sowohl aus den Analyseexperimenten als
auch aus den Experimenten mit den memetischen Algorithmen Schliisse ziehen. Zusammen-
gefafit ergeben sich aus der Analyse die folgenden Aussagen.

e Die Eigenschaften der Fitness-Landschaften sind keinesfalls fiir alle Probleme gleich.
Sie variieren stark von Problem zu Problem, und es gibt innerhalb eines Problems
sehr stark unterschiedliche Instanzen, die sogar komplementére Eigenschaften besitzen
koénnen.

e Instanzen mit regelméfiger Struktur oder Instanzen deren Optima in polynomialer
Zeit berechnet werden konnen, haben nicht die charakteristischen Eigenschaften von
in Anwendungen auftretenden Instanzen. In den betrachteten Fillen haben sie sich
(fiir Heuristiken) als deutlich leichter 16sbar erwiesen.

e Die Effektivitdt von Heuristiken bei zuféllig generierten Instanzen unterscheident sich
deutlich von der Effektivitdt bei strukurierten Instanzen, die in Anwendungen auf-
treten. Insbesondere haben Instanzen, bei denen die Daten eine Gleichverteilung an-
nehmen, vollig andere Eigenschaften. Ein Algorithmus, der auf diesen Instanzen gute
Ergebnisse liefert, muss dies nicht notwendigerweise auch auf anderen Instanzen tun.

e Daraus ergibt sich die Forderung, dafl Testinstanzen Vertreter aller Typen von Fitness-
Landschaften eines Problems beinhalten sollten.

e Der Grofle der Region des Suchraums, in der die lokalen Optima liegen, kommt eine
grofle Bedeutung zu. Sie variiert stark von Problem zu Problem. Effektive Heuristiken
sollten dies beriicksichtigen.

e Hohe Epistasis — ein Ma8 fiir die Interaktion zwischen den Komponenten eines Losungs-
vektors und somit ein Maf3 fiir die Nichtlinearitét des Problems — bedeutet nicht immer,
wie bisher angenommen, daf ein Problem (fiir Heuristiken) schwer losbar ist.

Die SchluBfolgerungen aus den Experimenten mit den memetischen Algorithmen lassen
sich ebenfalls zusammenfassen:

e Memetische Algorithmen skalieren viel besser mit der Problemgrofie als evolutionére
Algorithmen oder wiederholte lokale Suche. Insbesondere lassen sich evolutionére Al-
gorithmen ohne heuristische Elemente nur auf Probleme mit einer Problemgréfie, die
in der Praxis uninteressant ist, effektiv anwenden.

e Greedy-Komponenten sind fiir Probleme mit geringer Epistasis in einem memetischen

Algorithmus vielversprechend. Sie konnen bei der Initialisierung der Population und
bei der Rekombination verwendet werden.
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e Memetische Algorithmen erweisen sich am effektivsten, wenn die Fitness-Landschaft
einer Instanz Korrelation aufweist, d.h. wenn eine globale Struktur erkennbar ist. In
diesem Fall kann Rekombination als Mittel der evolutionédren Variation gewinnbringend
eingesetzt werden, da sie die Struktur ausnutzt und die Suche auf den Bereich des
Suchraums mit iiberdurchschnittlichen Losungen konzentriert.

e Wenn die Fitness-Landschaft korreliert ist, die lokalen Optima im Suchraum aber zu
dicht beieinander liegen, wird evolutionédre Suche mittels Rekombination ineffektiv, da
die Diversifikationseigenschaft zu schnell mit der Konvergenz der Suche abnimmt.

e Es hat sich gezeigt, dafl iterierte lokale Suche beim Problem des Handlungsreisenden
sehr effektiv ist. In den anderen untersuchten Problemen ist sie allerdings der popula-
tionbasierten Suche unterlegen.

Wie die vorliegende Dissertation zeigt, ist es moglich, die Effektivitdt von Rekombination
im Vergleich zu Mutation als Mittel der Variation in memetischen Algorithmen in gewissem
Mafle vorherzusagen, wenn eine Analyse der Fitness-Landschaft als Grundlage dient.

Teile der Ergebnisse zu den NK-Fitness-Landschaften und der bindren quadratischen
Optimierung in den Kapiteln 5 und 6 sind in den Konferenzbénden der IEEE Internatio-
nal Conference on Evolutionary Computation (1998) [212] und in den Tagungsbénden der
International Genetic and Evolutionary Computation Conference (GECCO) (1999) [215] er-
schienen. Einige der Heuristiken fiir das binédre quardratische Optimierungsproblem sind in
einem Arikel beschrieben, der in der Fachzeitschrift Journal of Heuristics erscheint [217].
Friithere Ergebnisse des memetischen Algorithmus fiir das Problem des Handlungsreisen-
den, wie in Kapitel 7 beschrieben, sind in den Konferenzbénden der IEEE Conference on
Evolutionary Computation (ICEC) (1996 und 1997) [105, 210] und in den Tagungsbénden
der Fourth International Conference on Parallel Problem Solving from Nature (1996) [100]
veroffentlicht. Teilergebnisse der Untersuchungen fiir das Graph-Bipartitionierungsproblem
in Kapitel 8 sind in den Tagungsbédnden der Fifth International Conference on Parallel Pro-
blem Solving from Nature (PPSN) (1998) [211] erschienen. Ein ausfiihrlicher Artikel ist in
der Zeitschrift Journal of Evolutionary Computation [217] publiziert. Erste Ergebnisse fiir
das quadratische Zuweisungsproblem sind in den Konferenzbénden Seventh International
Conference on Genetic Algorithms and their Applications (ICGA) (1997) [209] und Con-
gress on Evolutionary Computation (CEC) (1999) [213] zu finden. Ein ausfiihrlicher Artikel
zu den Resultaten in Kapitel 9 ist in der Fachzeitschrift IEEE Transactions on FEvolutio-
nary Computation verdffentlicht [216]. Schlieflich ist zur Fitness-Landschaft-Analyse und
der Entwicklung effektiver memetischer Algorithmen ein Kapitel in dem Buch New Ideas in
Optimization [211] erschienen. Der Artikel enthélt Grundlagen aus Kapitel 4 sowie frithe
Teilergebnisse zum Problem des Handlungsreisenden, Graph-Bipartitionierungsproblem und
zum quadratischen Zuweisungsproblem.
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Chapter 1

Introduction

Combinatorial optimization problems are found in many areas of research and development.
They arise when the task is to find the best out of many possible solutions to a given prob-
lem, provided that a clear notion of solution quality exists. Finding the factory production
schedule with the highest throughput, designing the most reliable telecommunications net-
work, or finding the structure of a protein molecule in the three dimensional space that
minimizes potential energy are just few examples of combinatorial optimization problems.
Many others have been reported in the fields of management science, industrial engineering,
computer science, biology, and physics.

In contrast to other optimization problems, combinatorial problems have a finite number
of candidate solutions. Therefore, an obvious way to solve these problems is to enumerate
all candidate solutions by comparing them against each other. Unfortunately, for most
interesting combinatorial optimization problems, this approach proves to be impractical since
the number of candidate solutions is simply too large. For example, some of the problems
considered in this thesis have more than 109%% candidate solutions which is an extraordinary
high number compared to the estimated number of 10%0 atoms in the universe. For some
combinatorial problems, algorithms have been found which are much faster than exhaustive
search: they are said to run in polynomial time depending on the problem size. For many
other hard combinatorial optimization problems it is commonly believed that there is no such
fast algorithm. However, in recent years enormous progress has been made in solving these
problems with exact algorithms. But the computational complexity still remains: for the
vast majority of cases, the only way to tackle the problems is to apply heuristic search that
delivers no guarantee of finding the optimum solution. Consequently, an enormous effort has
been made in developing heuristics that are aimed at finding high quality solutions in short
time.

Heuristics for combinatorial optimization problems can be separated into problem-specific
algorithms and problem-independent methods. Examples of modern problem-independent
techniques are neighborhood search algorithms such as local search, tabu search, or simu-
lated annealing, and biologically inspired methods like evolutionary algorithms, ant colony
systems, and neural nets. Even hybrid methods exist that combine two or more search
strategies, e.g. memetic algorithms which are hybrids of neighborhood search methods and
evolutionary algorithms. In recent years, researchers focused on the development of new,
more effective variants of heuristics which are tested on some, often self-generated instances of
a selected problem. They are compared more or less adequately with alternative approaches
to ‘prove’ superior effectiveness.

The goal of this thesis is not to participate in the quest of finding the ‘best heuristic
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ever developed’ - in fact it is commonly believed that there is no such ‘best’ heuristic that
is superior to all other heuristics on all problems. Instead, the research is focused on the
following important questions: why does a given heuristic perform better on a given set of
problem instances than others? What are the key problem characteristics that make it hard
for a certain class of heuristics? Is there a way to predict the performance of a heuristic on a
particular problem? How can we use knowledge about the problem to design more effective
algorithms? Can we employ knowledge of the problem to determine better test cases?

In an attempt to find answers to the questions, this thesis is focused on a particular
class of heuristics: memetic algorithms. There are several reasons for this choice. Many
researchers experienced that it is very important to incorporate domain-specific knowledge
into problem-independent algorithms. Memetic algorithms allow to do this in a controlled
manner, keeping the basic ideas behind the memetic approach. Moreover, memetic algo-
rithms are hybrids. They exploit the symbiotic effects of the combination of two (sometimes
more) different search strategies: they incorporate neighborhood search algorithms that are
well-suited for intensifying search while the evolutionary framework enables effective diver-
sification. Finally, memetic algorithms have been shown to be among the most effective
heuristics for combinatorial optimization problems to date.

Gaining insight into the structure of combinatorial problems is the first step in finding
answers to the questions stated above. The concept of fitness landscapes borrowed from
biologists has proven to be very useful in the context of optimization. The basic idea is
to view the set of all candidate solutions — the search space — as a spatial structure in
which each point represents a candidate solution. Each point has a height that reflects
the quality (fitness) of the represented solution. The spatial arrangement based on a well-
defined neighborhood structure yields a fitness landscape since the heights vary from one
point to the other. Some characteristics of fitness landscapes are strongly related to the
performance of the neighborhood search as well as to the evolutionary meta-search of the
memetic algorithm. For the former, the local structure of the fitness landscape is of great
importance which can be investigated with an autocorrelation or random-walk correlation
analysis. The effectiveness of the latter is highly influenced by the distribution of the points
in the search space which are produced by the neighborhood search. A fitness distance
correlation analysis can be utilized to find characteristics in this distribution.

To investigate the relation between the fitness landscapes of combinatorial optimization
problems and the performance of memetic algorithms, five problems are studied in detail,
each of which covers different aspects of problem difficulty: NK-landscapes, unconstrained
binary quadratic programs, the traveling salesman problem, the graph bipartitioning prob-
lem, and the quadratic assignment problem. Therefore, a more general view of the landscape
characteristics and algorithm performance is provided than by other studies in the field. For
each of the problems, heuristics that can be incorporated into memetic algorithms are dis-
cussed, a fitness landscape analysis is performed to reveal important problem characteristics,
and the effectiveness of memetic algorithms is investigated in experiments.

The thesis is organized as follows. In chapter 2, a brief overview of combinatorial op-
timization problems is provided: well-known examples of these problems are described, ex-
act methods and heuristics are discussed, and a classification of combinatorial problems
is given. Chapter 3 describes modern heuristic techniques with emphasis on evolution-
ary algorithms and neighborhood search as well as their combination: memetic algorithms.
Techniques for analyzing fitness landscapes are described in chapter 4. The focus is put
on autocorrelation /random-walk analysis and fitness distance correlation analysis. It is dis-



cussed how these techniques can be utilized for the performance prediction or the design
of memetic algorithms. In the chapters 5 through 9, NK-landscapes, unconstrained binary
quadratic programs, the traveling salesman problem, the graph bipartitioning problem, and
the quadratic assignment problem are investigated, respectively. In each of these chapters,
heuristics for the problems are described with emphasis on greedy and local search heuristics,
since these two types of heuristics are well-suited for the incorporation into an evolutionary
framework. Additionally, a search space analysis of the problems is performed by employ-
ing the techniques discussed in chapter 4. The performance of memetic algorithms for the
particular problem is evaluated in computer experiments afterwards. In the final chapter,
the results obtained from the experiments described in the various chapters are compared,
and general conclusions are drawn. The thesis finishes with a discussion of important future
work.

Parts of the results on NK-landscapes and binary quadratic programming in the chap-
ters 5 and 6 have been published in the proceedings of the 1998 IEEE International Confer-
ence on Evolutionary Computation [212], and in the proceedings of the International Genetic
and Evolutionary Computation Conference (GECCO) [215], respectively. The heuristics de-
veloped for the binary quadratic programming problem are described in an article which
is accepted for publication in the Journal of Heuristics [218]. Early results of the memetic
algorithm for the traveling salesman problem described in chapter 7 have been published in
the proceedings of the IEEE Conference on Evolutionary Computation (ICEC) in the years
1996 and 1997 [105, ], and in the proceedings of the Fourth International Conference
on Parallel Problem Solving from Nature [106]. Partial results of the studies on the graph
bipartitioning problem presented in chapter 8 have been published in the proceedings of the
Fifth International Conference on Parallel Problem Solving from Nature (PPSN) [211]. A
full-length paper appears in the Journal of Evolutionary Computation [217]. Preliminary
results on the quadratic assignment problem have been published in the proceedings of Sev-
enth International Conference on Genetic Algorithms and their Applications (ICGA) [209]
and in the proceedings of the 1999 Congress on Evolutionary Computation (CEC) [213]. A
self-contained version of chapter 9 has been published in the journal IEEE Transactions on
FEvolutionary Computation [216]. Finally, a chapter on the fitness landscape analysis and
the design of memetic algorithms containing research results of an earlier stage of this work
have been published in the book New Ideas in Optimization [211].
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Chapter 2

Combinatorial Optimization Problems

2.1 Introduction

Combinatorial optimization problems (COPs) arise in many practical applications in the
fields of management science, biology, chemistry, physics, engineering, and computer science.
Project and resource management, transportation management, capital budgeting, network
routing, protein folding/molecular conformation, x-ray crystallography, spin glass models,
and VLSI design and fabrication are just a few examples of fields in which combinatorial
optimization problems occur.

Many of these problems are very complex and thus hard to solve; general mathematical
methods are not available. Often, the number of candidate solutions of an optimization
problem instance grows exponentially with the problem size so that simple enumeration
schemes are rendered impractical. Thus, combinatorial optimization problems constitute a
class of problems with high practical importance but extreme hardness with respect to the
solution of these problems.

In this chapter, a formal definition of COPs is given to distinguish them from other op-
timization problems. Several examples of well-known combinatorial problems in operations
research and their application areas are provided afterwards. Furthermore, exact methods for
solving COPs are described, and the importance of heuristics for these problems is discussed.
Finally, a classification of COPs based on the characteristics of the constraints present in a
problem is provided.

2.2 Definitions

According to [113], a combinatorial optimization problem P is either a minimization problem
or a maximization problem, and it consists of

(i) a set Dp of instances,
(ii) a finite set Sp(I) of candidate solutions for each instance I € Dp, and

(iii) a function mp that assigns a positive rational number mp([,x) called the solution
value for z to each instance I € Dp and each candidate solution z € Sp([).

Thus, an optimal solution for an instance I € Dp is a candidate solution z* € Sp(I)
such that, for all z € Sp(I), mp(I,2*) < mp(Il,z) if P is a minimization problem, and
mp(I,x*) > mp(l,x) if P is a maximization problem.

bt
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Due to the fact that the set of candidate solutions is finite, an algorithm for finding
an optimum solution always exists. This algorithm, referred to as exhaustive search, sim-
ply evaluates and compares mp(I,z) for all x € Sp(I). Unfortunately, the search space of
many combinatorial problems grows exponentially with the problem size, i.e., the number
of components in a solution vector x. Thus, this complete enumeration scheme becomes im-
practical. For a large class of combinatorial optimization problems no alternative algorithms
running in polynomial time are known. This phenomenon has led to the development of
complexity theory [113], and in particular, to the theory of NP-completeness.

2.3 Computational Complexity
The theory of N'P-completeness is focused on decision problems such as:
Is there a feasible solution x € Sp(I) such that mp(I,x) < L (mp(l,z) > L )7

Two basic classes of decision problems are distinguished: the class P of decision problems

that can be solved by a polynomial-time algorithm, and the class NP of decision problems

that can be solved by a non-deterministic polynomial-time algorithm. The latter consists

of two stages. In the first stage, a solution to a given instance I is guessed. In the second

stage, this solution is checked by a deterministic polynomial verification algorithm [113].
Given these two classes, N'P-complete problems can be defined [113, ):

Def. 2.1 A decision problem p is N'P-complete, if (a) p € NP, and (b) all problems in N'P

can be reduced to p by a polynomial-time algorithm.

Probably the most important open question in computer science is whether P = N'P. From
the above definition follows immediately that if for one problem in AP a polynomial time
algorithm can be found, all problems in NP can be solved in polynomial time and thus
P = N'P. However, it is commonly believed that P # NP, but no proof has been found
yet.

So far, nothing has been said about combinatorial optimization problems. Optimization
problems cannot be N'P-complete, since they are not decision problems, even though for each
optimization problem a decision problem can be defined which is equivalent in complexity.
However, the notion of NP-hard problems is less restricted than the definition of NP-
completeness [159]:

Def. 2.2 A problem (decision or otherwise) is N'P-hard if all problems in N'P are polyno-
maally reducible to it.

This definition includes decision problems that are not contained in NP as well as problems
which are not decision problems.

This work concentrates on NP-hard combinatorial optimization problems for which the
equivalent decision problems exist which are NP-complete. Due to their computational
complexity (assuming P # N'P), powerful approximation algorithms are required that —
although they do not guarantee to find the optimum solution — are able to find optimum or
near—optimum solutions in short time.
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2.4 Examples of COPs

Some combinatorial optimization problems that have been studied extensively are presented
in the following paragraphs. The problems are selected according to their importance to the
development of heuristics. They constitute only a small fraction of the family of COPs and
will be studied in detail in the following chapters. A virtually unlimited number of other
combinatorial optimization problems exists, which can not be considered in this work.

2.4.1 The Traveling Salesman Problem

The traveling salesman problem (TSP)! is a well-known COP, and has attracted many re-
searchers from various fields, partly because it is hard to solve but can be easily stated: given
a set of n cities and the geographical distance between them, the traveling salesman has to
find the shortest tour in which he visits all the cities exactly once and returns to his starting
point. More formally, the tour length

n—1

Um) =) dutiymit1) + duin)n() (2.1)

i=1

has to be minimized, where d;; is the distance between city ¢ and city j and 7 a permutation
of (1,2,...,n). Thus, an instance I = (D) is defined by a distance matrix D = (d);;, and a
solution (TSP tour) is a vector = with j = 7(7) denoting city j to visit at the i-th step.

A special case of the TSP is the Euclidean TSP. Here, the distance matrix d;; is sym-
metric, that is d;; = dj; Vi,7 € {1,2,...,n}, and the triangle inequality holds: d;; <
dix +dp; Vi,5.k € {1,2,...,n}. The distance between two cities is defined by the Eu-
clidean distance between two points in the plane. These two assumptions do not lead to a
reduction of the complexity, hence the problem remains N P-hard.

Although there is a TSP tour for every permutation 7, there are many permutations
that represent the same tour. Alternatively to equation (2.1), the TSP can be defined as
finding a shortest Hamiltonian cycle in a complete weighted graph G = (V| E, d) where the
set V.= {1,...,n} represents the cities and the edge set F the arcs between them. A weight
that corresponds to the distance d;; between the incident cities is assigned to each edge.
Thus a solution T is a subset of F with |T'| = |V| = n.

Let the matrix X = (x;;) be a boolean matrix with z;; = 1, if the arc from i to j is in
the tour, 0 otherwise. The TSP is then defined as:

minimize [(X) = > Y d;; i (2.2)
i=1 j=1
subject to Y ay=1 VjeVv (2.3)
i=1,ij
=1,
i€Q jevV-Q

!The TSP was formerly known under the name traveling salesperson problem. In 1976, researchers of the
field have agreed to use the term traveling salesman [180].
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The above equations illustrate that the TSP can be formulated as a zero/one integer pro-
gramming problem. While the first two constraints ensure that the degree of each node is
two (one incoming and one outgoing edge), the last constraint ensures that solutions are not
consisting of disjoint sub-tours. In Figure 2.1(b), a graph is given that does not represent

Figure 2.1: A feasible and two infeasible traveling salesman tours

a TSP tour, since node 3 and node 6 do not have degree 2, hence the constraints (2.3,2.4)
are not obeyed. Figure 2.1(c) shows the violation of constraint equation (2.5): although all
nodes have degree two, there are two disjoint sub-tours and thus the solution becomes infea-
sible. The elimination of the constraint (2.5) leads to the well-known assignment problem,
which can be solved in polynomial time by the Hungarian method [267].

Applications of the TSP

The TSP has its applications in a wide range of domains, including drilling of printed circuit
boards (PCBs) of 17000 nodes (cities) and more [193, 261], X-ray crystallography with up
to 14000 nodes [33], VLSI-chip fabrication with as many as 1.2 million nodes [177], as well
as overhauling of gas turbine engines of aircrafts [251], mask plotting in PCB production
[128, |, computer wiring and clustering of data arrays [187], scheduling, seriation in
archaeology, and the control of robots [261].

2.4.2 Graph Partitioning

The graph partitioning problem (GPP) is an N'P-hard combinatorial optimization problem
[113]. Given an undirected graph G = (V, E), the GPP is to find a partition of the nodes
in k sets of equal size, denoted Vi, V5, ...V}, so that the number of edges between nodes in
different sets is minimized. More formally, the problem is to minimize

C(‘/h s 7Vk) = ‘6(‘/17‘ . '7‘/k>|7 with (26)
e(Vi,.. Vi) = {(G,5) € B3l e{1,....kY:i e Vinj¢ Vi), (2.7)

where ¢(-) is referred to as the cut size of the partition and e(-) € E is referred to as the
(edge) cut. An instance I = (A) of the GPP consists of an adjacency matrix A of the graph
G.
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A special case of the GPP is the graph bipartitioning problem (GBP) (also known as the
graph bi-section problem) which can be defined as minimizing

c(Vi,Va) = |e(Vi, Vo), with e(Vi, Va) = {(i,5) € Eli € Vi Aj € Va}. (2.8)

Figure 2.2 displays a partition of a small geometric graph into two sets. The edges in the
cut are emphasized.

Figure 2.2: A solution to a graph bipartitioning problem

The GBP can be formulated as a 0/1 integer programming problem as follows.

1 n n
minimize ¢(z) = 5 SN aya (1—ay) (2.9)
i=1 j=1
: - n
subject to sz =5 (2.10)

where matrix A = (a;;) is the adjacency matrix of the graph G. A value of 0 in the solution
vector x for component x; denotes that vertex k belongs to the first set Vj, and to V,
otherwise.

If it is not required that both sets have the same size (equation (2.10)), the optimum can
be found in polynomial time by the algorithm of Ford and Fulkerson [102]. This problem is
known as the minimum cut problem.

Applications of the GPP

The graph partitioning problem arises in many applications such as parallel and distributed
computing, VLSI circuit design and simulation, transportation management, and data min-

ing [252, ].

2.4.3 The Quadratic Assignment Problem

The quadratic assignment problem (QAP) has been introduced by Koopmans and Beckmann
[176] to describe a location problem where a set of facilities has to be assigned to given
locations at minimal cost. Mathematically, the QAP can be defined as follows.
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Given two nxn matrices A = (a;;) and B = (b;;), the following cost function for assigning
n facilities to n locations has to be minimized:

Clm) =3

=17

aij br(iyr(j)s (2.11)
1

where a;; denotes the distance between location ¢ and location j, and by, denotes the flow
of materials from facility k to facility {. Thus, a QAP instance I = (A, B) consists of a flow
and distance matrix, and a solution 7 denotes a permutation of (1,2,...,n) (7(i) denotes
the facility assigned to location 7).

As an alternative to equation (2.11), the QAP can be formulated as a 0/1 integer pro-
gramming problem as follows:

minimize C(X) = > > > aw bj x5 2, (2.12)

subject to Za:ijzl, Vi=12,...,n,

JZZ‘jE{O,l}, Vi, j=1,2,...,n.

This definition has some resemblance to the 0/1 integer programming definition of the TSP.
In fact, both TSP and GPP are special cases of the QAP, as shown below.

Applications of the QAP

The QAP has many practical applications, such as backboard wiring on electronic circuits
[285] or the design of typewriter keyboards and control panels [51, |. Furthermore, it
has been used in facility location problems, in particular hospital planning [182, 85] and in
finding locations for new buildings of a campus [73]. Besides other domains of engineering
and design [I11], a new application of the QAP in biology has recently been discovered
in the context of indirect gradient analysis (reconstruction of the intensity of some latent
environmental factors from species’ responses) [52].

Two Special Cases of the QAP
The TSP can be formulated as a QAP by defining the matrix A = (a;;) and B = (b;;) as
follows. Let

Q5 = { Lif J = (Z +1 mod n) and bij = dij7 (213)

0 otherwise

with d;; denoting the distance between city ¢ and city j. Then

n n n—1
C(m) =3 aij bagiyr(i) = D duiym(ivn) + d(n) w(1) (2.14)
i=1j=1 i=1

which is, in fact, the definition of the TSP. A permutation 7 provides a tour through n cities
where the city (i) is the city to visit at the i-th step.
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The graph bipartitioning problem, in which a partition of a graph G = (V, E) into two
equally sized sets with a minimum number of edges between the different sets is desired, can
be expressed as a QAP by defining

[0 it qj<2Vvig>t (1 i (,j)eE
ij = { 1 otherwise and bij = 0 otherwise ’ (2.15)

A partition represented by a permutation 7 is defined as follows. A vertex j belongs to the
first set, if 7(j) < %, and to the second set otherwise.

2.4.4 Vehicle Routing

The wvehicle routing problem (VRP) arises in distribution management. The problem is
to determine the optimal delivery route for vehicles through a set of customer locations,
subject to some constraints. More formally, the VRP can be defined on a weighted graph
G = (V,E,d) with V.= {0,1,...,n} denoting the set of customer locations including the
depot (vertex 0), E the set of all arcs between the vertices, and a distance/travel time d
assigned to each arc in the graph. The total travel time of m vehicles starting from the
depot is to be minimized:

m -1
minimize l(ﬂ') Z dﬂj(i)ﬂrj(i_;_n + dﬂj (1,0 T dOJI'j(l) (2.16)
j=1 i=1
L
subject to > wn) < C; Vji=1,...m, (2.17)

=1

where [; denotes the number of customers for vehicle j to visit, w; denotes the weight of
customer ¢’s demand, and the permutation 7; of a subset defines the route of vehicle j (7;(%)
denotes the i-th customer in the route of vehicle j). Each customer has to be served by
exactly one vehicle.

Several variants of the VRP exist, such as (a) the capacitated VRP in which the total
weight of any route may not exceed the vehicle capacity C; as defined in equation (2.17);
(b) the time constrained VRP, in which each customer has a service time s; and the total
duration of any route may not exceed a time limit L; (c) the VRP with time windows, in
which each customer must be visited in a given time interval and the vehicles are allowed to
wait if they arrive before the beginning of the time window. Alternatively, the number of
vehicles may be minimized instead of the total delivery time.

An instance of the capacitated VRP consists of a distance matrix D = d,;, a weight
vector w, and the capacity vector C' (I = (D, w,C)). A solution to a VRP is displayed in
Figure 2.3. The TSP is a special case of the uncapacitated VRP: in the TSP only one vehicle
is used to visit the customers/cities.

2.4.5 Scheduling

Given n jobs and m machines, the job shop scheduling problem (JSSP) is defined as follows.
Each job consists of a sequence of operations (tasks), which must be executed in a given
order. Furthermore, each operation has to be executed on a given machine for a given period
of time. Assuming that a machine can perform at most one operation at a time, the problem
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Figure 2.3: A solution of a vehicle routing problem

is to find a schedule, i.e. an assignment of operations to time intervals, such that the total
length of the schedule (called the makespan) is minimal. More formally, let J, M and O be
the sets of jobs, machines, and operations, respectively. For each operation o € O, there is
a job j(o) € J to which it belongs, a machine m(o) € M on which it must be processed,
and a processing time ¢,(0). Furthermore, for each o € O, its successor in the job is denoted
succ(o) € O. The problem is to find a start time ¢, for each operation o € O, and can be

defined as:

minimize max (ts(0) +t,(0)) (2.18)
subject to  ts(succ(o)) > ts(0) — t,(0) Yo € O, (2.19)
ts(0") > ts(0) + tp(0) V ts(o) > ts(0) + t,(0) (2.20)

Vo,0' € Olo# 0 AN m(o) =m(d). (2.21)

According to Roy and Sussmann [265], an instance I = (J, O, M, t,) of the job-shop schedul-
ing problem can be represented by a vertex weighted disjunctive graph G = (V| A, E), where
the vertex set V' corresponds to the set of operations O, the arc set A consists of arc connect-
ing consecutive operations of the same job, and the edge set E consists of edges connecting
operations that must be executed on the same machine. An example of a solution to a 3 x 3
instance is displayed in Figure 2.4.

Machine

1

2

3

time

Job 1 Job 2 Job 3

Figure 2.4: A solution to a 3-jobs/3-machines instance of the JSSP
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Variants of the JSSP

In the flow shop scheduling problem (FSSP), there is a strict ordering in which the operations
have to be performed and this ordering is the same for each job, e.g. first do the machine
1 operation, then the machine 2 operation, and so on. In the general job shop scheduling
problem (GJSSP), the operations within a job must be partially ordered. If there is no order
required in the processing of the operations within a job, the problem is called open shop
scheduling problem (OSSP).

Applications of Scheduling Problems

Scheduling problems occur wherever a number of tasks has to be performed with limited
resources [58]. Thus, applications can be found in production planning, project resource
management, and distributed or parallel computing.

2.4.6 Unconstrained Binary Quadratic Programming

In the unconstrained binary quadratic programming problem (BQP), a symmetric rational
n x n matrix @) = (g;;) is given, and a binary vector of length n is searched for, such that
the quantity

f(:v):xtQa::zn:zn:qijxixj, r; €{0,1} Vi=1,...,n (2.22)

i=1j=1

is maximized. This problem is also known as the (unconstrained) quadratic bivalent program-
ming problem, (unconstrained) quadratic zero—one programming problem, or (unconstrained)
quadratic (pseudo-) boolean programming problem [26]. The general BQP is known to be
NP-hard but there are special cases that are solvable in polynomial time [20].

Applications of the BQP

The BQP has a large number of applications, for example in capital budgeting and financial
analysis problems [185, ], CAD problems [182], traffic message management problems
[109], machine scheduling [1], and molecular conformation [250]. Furthermore, several other
combinatorial optimization problems can be formulated as a BQP, such as the maximum
cut problem, the maximum clique problem, the maximum vertex packing problem and the
maximum independent set problem [151, , 246].

Special Cases of the BQP

The BQP has been shown to be a generalization of other combinatorial optimization prob-
lems. For example, the maximum clique problem and the maximum independent set prob-
lem are known to be special cases of the BQP. Let G = (V, E) be an undirected graph and
G = (V, E) be the complement graph of G, where E = {(i,j)|i,7 € V, i # j, and(i,j) ¢ E}.
Furthermore, let Ag = (a;;) be the adjacency matrix of G, I denote the identity matrix, and
T(x) ={i|z; =1, i€ V}. Then, the maximum clique problem is

mingex f(z) = 2'Qzr, where Q= Az— 1. (2.23)
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If 2* solves equation (2.23), the maximum clique of G is defined as C' = T'(z*) with |C| =
f@).

Similarly, the maximum independent set problem is
mingex f(z) = 2'Qr, where Q=A—1. (2.24)

If 2* solves equation (2.24), the maximum independent set of G is defined as S = T'(z*) with

|S] = f(z).

In the mazimum cut problem, the objective function

1 n n
=5 2wy (l-x) (2.25)

i=1j5=1

has to be maximized, where w;; denotes the weight of the edge (i,j) € E in the graph
G = (E,V) for which the maximum cut is desired. The maximum cut problem can be
formulated as a 0/1 quadratic programming problem by assigning:

1 1>
Qij = —§wij, Vi 7é j, and Gii = 5 Zwij, Vi. (226)
j=1

The maximum cut size ¢(z*) is equal to the objective f(x*) of the corresponding BQP, and
the cut itself is C' = {(i,j) € F' | v; = 0and 2} = 1}.

Another application of the BQP arises in condensed matter physics. The calculation
of ground states in Ising Spin Glasses is a combinatorial optimization problem in which a
configuration of the spins with minimum energy is searched. The energy of an Ising spin
glass, in which the spins lie on a two dimensional grid, is given by the Hamiltonian

_ZZ‘]ZJ SiSj, SiySj = :l:l, (227)
i
where J;; denotes the interaction between site ¢ and j on the grid. By setting

qij = 4J;;, Vi #j, and qii:—4ZJU, Vi, (2.28)

the solution of the BQP yields a configuration with minimum energy, where s; = 2x; — 1 Vi

and H(w) = —f(z) — 3, 2, Jij-

2.4.7 NK-Landscapes

To study rugged fitness landscapes, Kauffman [168, | developed a formal model for gene
interaction which is called the NK-model. In this model, N refers to the number of parts in
the system, i.e. genes in a genotype or amino acids in a protein. Each part makes a fitness
contribution which depends on the part itself and K other parts. Thus, K reflects how richly
cross-coupled the system is; it measures the richness of interactions among the components
of the system, called epistasis.

Each point in the NK-fitness landscape is represented by a bit string of length N and can
be viewed as a vertex in the N-dimensional hypercube. The fitness f of a point b = by, ..., by
is defined as follows:

1 N
)=y 2 filbi b bi), (2.29)
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where the fitness contribution f; of the gene at locus ¢ depends on the allele (value of
the gene) b; and K other alleles by, ...,b;,.. The function f; : {0,1}*T! — IR assigns a
uniformly distributed random number between 0 and 1 to each of its 25+ inputs. The
values for i, ..., ik are chosen randomly from {1,..., N} or from the left and right of locus
i.

With this model, the “ruggedness” of a fitness landscape can be tuned by changing the
value of K and thus the number of interacting genes per locus. Low values of K indicate
low epistasis and high values of K indicate high epistasis.

From the viewpoint of combinatorial optimization, the NK-model represents an uncon-
strained binary programming problem that can be seen as a generalization of the BQP.

2.4.8 The Knapsack Problem

The knapsack problem (KP) is another well-known combinatorial problem. Given a knapsack
which can be used to transport a number of items with a maximum total weight, the task is
to select a subset of all items available such that the value of the items is maximized. More
formally, the KP can be defined as follows:

maximize Y ¢ (2.30)
€K

subject to Y w; <W, K C{l,...,n}, (2.31)
€K

where ¢; denotes the value (or resulting profit) of item i, w; the weight of item i, and W the

total weight the knapsack can hold. An instance of the knapsack problem is hence defined

by the tuple I = (¢, w, W) with ¢ = (¢1,...,¢,) € R", w = (wy,...,w,) € R" and W € RR.
An generalization of this problem is the multidimensional knapsack problem (MKP):

maximize Y ¢ (2.32)
i€eK

subject to Y w;; <W;, K cC{l,...,n}, Vj=1,...m. (2.33)
€K

Here, the “weight” of an item as well as the maximum capacity of the knapsack has m
dimensions. Formulated as 0/1 integer programming problem, the MKP is:

maximize Y ¢ (2.34)
i=1

subject to Zwij r <W;, Vi=1,...m. (2.35)
i=1

The KP is one of the simplest constrained 0/1 integer programming (binary programming)
problems since without its constraints it is a linear problem that can be solved in O(n).

Applications of the MKP

The (multidimensional) knapsack problem has its application in capital budgeting, project
selection and capital investment, budget control, and numerous loading problems [267].
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2.5 Exact Methods for Solving COPs

The simplest way to obtain optimum solutions to combinatorial optimization problems is to
evaluate all possible solutions. As mentioned above, this approach is impractical due to the
large number of candidate solutions that usually grows exponentially with the problem size.
However, there are other ways to find guaranteed optimum solutions.

2.5.1 Branch & Bound

An algorithm for finding optimal solutions consists of methods for finding lower and up-
per bounds for the optimal solution and an enumeration scheme. Assuming a minimization
problem, upper bounds are usually obtained by effective heuristics that produce near op-
timum solutions in short time. Lower bounds are obtained by relaxations of the problem
by removing one or more constraints. The enumeration scheme works as follows. In each
stage, the problem is split into subproblems such that the union of feasible solutions of the
subproblems gives the feasible solutions of the master problem. Subproblems are further
divided into subproblems until they are solved, i.e. their lower bounds are equal to their
upper bounds, or their lower bounds are above the best feasible solution found so far. Thus,
the approach produces a branching tree in which each node corresponds to a problem and the
sons of the node represent the subproblems into which it is split. To prevent an exponential
growth of the nodes in the tree, relaxations for producing strong lower bounds and good
heuristics for producing upper bounds are required.

In the branch € bound approach, discrete relaxation schemes are used for combinatorial
optimization problems to provide lower bounds.

The branch & bound approach has been applied successfully to the asymmetric TSP (with
asymmetric distance matrices) using the assignment relaxation (equation (2.5) is ignored)
[92, ]. However, for most other problems there appear to be no discrete relaxations that
are strong enough for solving large problem instances.

2.5.2 Branch & Cut

An even more elaborate approach is based on linear programming [63, |. The basic idea
is to find a relaxation in form of a linear program with the same optimal solution as the
original problem. The linear programming problem (LP) is defined as follows:

min 'z (2.36)
subject to Ax <b, x<0e€IR"

For such a linear program, an efficient search algorithm called the simplex algorithm [62, (3]
exists that provides always the optimum solution. This algorithm works by systematically
searching the corners of the polytope (polyhedron) P defined by the inequalities of the LP:
P={zeR"|Ax <b}.

Thus, to solve a COP with linear programming techniques, the search space is enlarged by
extending the solution vectors (usually of a 0/1 integer formulation) to vectors of continuous
variables. Since not all facets of the polytope Py (the inequalities a' x < «) are known
for every combinatorial problem or the number of facets is simply too high, a cutting plane
approach has been developed. This approach works as follows. First, an initial polytope
P O Py is generated so that the LP can be solved in reasonable time. Then, an LP
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solver is used to generate a solution z*. If the solution x* represents a feasible solution to
the COP, then the algorithm terminates: the optimum solution is found. Otherwise, the
algorithm searches for a cut (facet) such that z* is cut off the polytope by ensuring that
the new polytope still contains the polytope of the COP. The inequality found is added to
the system of equations and the resulting LP is solved to obtain a new x*. These steps are
repeated until the optimum is found or the algorithm fails to find a new feasible cut. Since
the latter case is more likely to occur, a branching rule can be used to split the problem into
subproblems and the cutting plane procedure can be applied recursively to the subproblems.
The resulting approach is called branch € cut [2412].

Branch & cut has been successfully applied to various combinatorial problems such as
the traveling salesman problem [91], the Steiner problem on graphs [195], the spin glass
problem [272], the graph bipartitioning problem [12], and the maximum cut problem [1(1].
Especially for the TSP, enormous progress has been made in the last 30 years in solving large
instances to optimality. Table 2.1 gives an overview of the history of solving TSP instances
to optimality with branch & cut. The year of publication, the number of cities (N), the
total number of candidate solutions (]S| = (N —1)!/2), and the names of the researchers are
provided.

| Year | N | [S| | Researchers |

1954 48 > 10° | Dantzig, Fulkerson & Johnson [(4]
1980 120 | > 10" | Grotschel [120]

1980 318 | > 10%° | Crowder & Padberg [60]

1987 532 | > 10'%'7 | Padberg & Rinaldi [212]

1991 666 | > 10'°% | Grotschel & Holland [127]

1991 | 2392 | > 107 | Padberg & Rinaldi [213]

1992 | 3038 | > 109% | Applegate, Bixby, Chvatal & Cook [10]
1993 | 4461 | > 10341 | Applegate, Bixby, Chvatal & Cook [10]
1994 | 7397 | > 10%*1% | Applegate, Bixby, Chvatal & Cook [10]
1998 | 13509 | > 1079931 | Applegate, Bixby, Chvatal & Cook [11]

Table 2.1: History of Records in solving the TSP with Branch & Cut

However, finding appropriate cuts is a problem dependent and highly complicated task.
For each COP, new theories are necessary for deriving useful classes of facets. In case of the
TSP, much effort has been made in developing polyhedral theories [129] in the last decades,
and it appears that the TSP is well suited for this kind of approach. For other COPs,
however, theories are needed to apply branch & cut to instances of practical interest.

2.5.3 Heuristic Methods

Heuristics are search methods that find (near) optimum solutions to optimization problems
in short time. In comparison to exact approaches, they do not guarantee to find optimum
solutions nor do they generally provide a guarantee to find solutions within a certain range
to the optimum.

Nevertheless, they are of great importance since they are the only way to arrive at high
quality solutions for large combinatorial problems of practical interest. Many heuristics have
the advantage to be applicable to a wide range of problems so that the time for developing
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an optimization algorithm for a new problem is usually short. These heuristics can easily
be modified to account for changes in the objective function. If a previously not considered
constraint is added to the problem description, heuristics can be modified easily to deal with
the altered problem. Due to the complexity of combinatorial spaces, exact methods are only
in rare cases an alternative to heuristics. Even in those cases in which exact methods are
required, powerful heuristics are necessary to provide good upper bounds for a branching
approach to be effective.

2.6 Classification of COPs

According to [71], there are at least four classes of combinatorial optimization problems. For
each class, a few examples are provided:

Assignment Problems: The linear and the quadratic assignment problem are examples
of this type, as well as time tabling problems (the assignment of teachers to classes
and rooms).

Ordering Problems: The traveling salesman problem, the linear ordering problem, the
chinese postman problem, and scheduling problems constitute this class of problems.

Partitioning Problems: The graph partitioning problem and the number partitioning
problem are of this class.

Subset Selection Problems: The knapsack problem, the set partitioning problem, the set
covering problem, the graph bipartitioning problem, and the maximum cut problem
belong to this type.

Some COPs can hardly be classified according to these classes. Other problems belong
to more than one class such as the vehicle routing problem which is a combination of a
partitioning problem and an ordering problem.

Another form of classification can be derived if the constraints defined in the problems
are considered. This kind of classification is important for developing heuristics. There are
problems with

(i) no constraints, like the BQP (and its special cases) or the NK-model,
(ii) emplicit constraints, like the TSP or the GBP,
(iii) explicit constraints like the MKP, and problems with
(iv) amplicit and explicit constraints like the capacitated vehicle routing problem.
The difference between implicit and explicit constraints is that implicit constraints are prob-
lem instance independent. For example, the size constraints in the GBP defined in equation
(2.10) (both sets are required to have the same size) do not depend on the structure of

the graph and are thus instance independent, while the capacity constraints in the MKP do
depend on the instance to be solved: the total capacity W; is part of the instance description.
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2.7 Summary

In this chapter, a formal definition of combinatorial optimization problems (COPs) has been
provided and examples of this class of problems have been described. COPs can be dis-
tinguished from other optimization problems in that the decision variables constituting a
solution vector are discrete. For example, in selection problems, a solution is usually a bi-
nary zero-one vector. For ordering problems, a permutation of a vector with components
of different discrete values constitutes a solution. Some of the most famous problems in
operations research have been introduced: the traveling salesman problem (TSP), the graph
partitioning problem (GPP) and its special case, the graph bipartitioning problem (GBP),
the quadratic assignment problem (QAP), vehicle routing problems (VRP), scheduling prob-
lems like flow shop (FSSP) and job-shop scheduling problems (JSSP), unconstrained binary
programming (BQP), NK model of fitness landscapes stemming from biology, and the mul-
tidimensional knapsack problem (MKP). Some of the problems will be investigated in detail
in the following chapters.

Furthermore, exact methods for solving COPs — in particular branch & bound and branch
& cut methods — have been discussed and the importance of effective heuristics has been
stressed. Although it has been shown that branch & cut methods produce remarkable results
for the TSP, heuristics are still preferable to arrive at high quality solutions in short time for
large practical problems and are not limited to a particular problem domain. Furthermore,
they are required in exact methods to produce feasible solutions (upper or lower bounds).

A classification of COPs based on the characteristics of constraints present in a problem
has been provided: implicit constraints are problem inherent and are independent of the
problem instance to solve. Explicit constraints, on the other hand, depend on the prob-
lem instance description and thus vary from instance to instance. The distinction between
implicit and explicit constraints is important for developing heuristics.

In the following chapter a highly effective family of hybrid heuristics is introduced, called
memetic algorithms, which have been shown to be especially effective in combinatorial opti-
mization.
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Chapter 3

Memetic Algorithms

3.1 Introduction

Evolutionary computation, a tremendously growing field of computer science, covers all
aspects of the simulation of evolutionary processes in computer systems. On the one hand,
simulations of natural evolution have been used by biologists to study adaptation in changing
environments to gain insight in the evolution of the complex organisms found on earth.
On the other hand, it has been shown that complex optimization problems can be solved
with simulated evolution. In the last decades, wide applicability has been demonstrated by
successfully applying evolutionary computation techniques to various optimization problems
in the fields of engineering, management science, biology, chemistry, physics and computer
science.

However, it has been shown that some kind of domain knowledge has to be incorporated
into evolutionary algorithms to be competitive with other domain specific optimization tech-
niques. There are many ways to achieve this. A promising approach is the hybridization with
other (domain-specific) heuristics for the optimization problem to be solved. The resulting
hybrid evolutionary algorithms often fall into the category of memetic algorithms. These
algorithms are similar to traditional evolutionary algorithms, although they have more in
common with principles found in the evolution of the human culture rather than in biological
evolution.

This chapter is devoted to the fundamentals of evolution as well as their simulation
in computer experiments with emphasis on solving optimization problems. First, genetic
evolution and its simulation in evolutionary algorithms is described. Afterwards, modern
alternative heuristics for solving combinatorial optimization problems are presented: some
that are also biologically inspired and others that are particularly useful for incorporation
into evolutionary algorithms. Finally, memetic algorithms are described in detail and the
analogy to cultural evolution is shown.

3.2 Evolutionary Algorithms

Inspired by the power of natural evolution, several computer scientists independently studied
evolutionary systems keeping in mind the idea that engineering problems could be solved by
simulating natural evolution processes. Several evolutionary algorithms (EAs) — for example
evolution strategies, evolutionary programmaing, and genetic algorithms — have been proposed
since the early 1960s in which a population of candidate solutions is evolved subject to

21
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replication, variation, and selection.
Before evolutionary algorithms are described in detail, a short introduction to natural
evolution is presented and the necessary biological terminology is introduced.

3.2.1 Natural Evolution

In his book The Origin of Species [65], Darwin presented a theory for the existence and
evolution of life on earth. According to his theory, evolution is based on three fundamental
concepts: replication, variation, and natural selection. New organisms cannot evolve solely
with replication, since the produced offspring are identical copies. But due to errors in the
replication process, variation is introduced that gives rise to the gradual development of
new organisms. Sexual recombination is another form of variation and is itself a product
of evolution. Due to the limited resources on earth, replication can not go on infinitely;
individuals of the same or other species have to compete with each other and only the
fittest survive. Thus, natural evolution implicitly causes the adaptation of life forms to their
environment since only the fittest have a chance to reproduce (“survival of the fittest”).

Natural evolution can be thought as being a gigantic optimization process in which the
fitness of the species is maximized. However, it is an open-ended dynamic process in which
the fitness of an individual can only be defined in relation to the environment. For example,
a polar bear has a high fitness in its native environment, since it is well adapted to the cold
temperatures. Bringing the polar bear to the African savanna would certainly reduce its
fitness. Sometimes, species become extinct when they are not able to react to rapid changes
in their environment.

From the information science point of view, natural evolution can be regarded as a huge
information processing system. FEach organism carries its genetic information referred to
as the genotype. The organism’s traits, which are developed while the organism grows up,
constitute the phenotype. The genetic information is eventually passed on to the next gener-
ation if the organism reproduces before it dies. Thus, the organisms can be regarded as the
mortal survival machines of the potentially immortal genetic information. While replication
combined with variation allows for improving the genetic information, natural selection im-
plicitly evaluates the fitness of each phenotype and thus indirectly of the genotype, which
can be thought of as the construction plan of an organism.

Genetics

All living organisms consist of cells, and each cell contains a copy of a set of one or more
chromosomes, which are strings of DNA (desozyribonucleic acid). The chromosomes serve
as a “blueprint” (construction plan) for the organism, and can be conceptually divided into
genes. Genes are functional blocks of DNA and each encodes a particular protein. Each
gene is located at a particular locus on the chromosome. In a very simplified model, we can
think of a gene as encoding a trait such as eye color. The different possible settings of a trait
are called alleles. Many complex organisms have more than a single chromosome in each
cell. All chromosomes taken together and thus the complete collection of genetic material
is called genome. The genotype mentioned above refers to the set of genes in a particular
genome and gives rise to the phenotype of the organism under fetal or later development.
Two forms of reproduction can be found in nature. The first form is asexual repro-
duction in which an organism reproduces itself by cell division and the replication of its
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chromosomes. Mutation eventually occurs during this process: one or more alleles of genes
are changed, genes are deleted, or they are reinserted at other loci on the chromosomes. In
sexual recombination, the second form of reproduction, genes are exchanged between the
chromosomes of the two parents to form a new set of chromosomes. This recombination of
genetic material can be thought of as crossing-over of the chromosomes.

The fitness of an organism is defined as the probability that the organism will live to
reproduce, called wviability, or defined by the number of offspring the organism has, called
fertility.

The results of genetic variations occurring during mutation or recombination are hardly
predictable due to the universal effects of gene interaction called epistasis. Pleiotropy is the
effect that a single gene may simultaneously affect several phenotypic traits. On the other
hand, a single phenotypic characteristic may be determined by the simultaneous interac-
tion of many genes. This effect is called polygeny. In Figure 3.1, pleiotropy and polygeny
are illustrated. There are no one-gene, one-trait relationships in natural evolved systems.
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Figure 3.1: Epistatic Gene Interaction: An Example of Pleiotropy and Polygeny

Epistatic interactions in form of pleiotropy and polygeny are almost always found in living
organisms so that the phenotype varies as a complex, nonlinear function of the interaction
between the underlying genetic structures and the environmental conditions.

3.2.2 History of Evolutionary Computation

In the 1960s at the Technical University of Berlin, Rechenberg and Schwefel [258, 257] intro-
duced evolution strategies (ES — Evolutionsstrategie in the German original), an approach
they developed to optimize the real-valued parameters for devices such as airfoils. Mainly
focusing on continuous parameter optimization, this idea was further developed by Schwefel
[269], and is still an active area of research. In the beginning, ES included mutation and
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selection on a two-membered population. Later, it has been extended by allowing more
than two members and alternative selection strategies. The current ES include multi-parent
recombination and the self-adaptation of strategy parameters.

The technique called evolutionary programming (EP) was developed at the same time
by Fogel, Owens, and Walsh [97, 98]. Initially, they studied a system that shows intelligent
behavior by predicting its environment and producing suitable responses in the light of a
given goal. Therefore, they developed an evolutionary algorithm based on mutation and
selection on finite state machines. Later, EP has been applied successfully to various other
problems and is also still an area of active research. ES and EP have many similarities.

Genetic algorithms (GAs) were invented by Holland [112] at the University of Michigan
in the 1960s. Hollands original goal was to study the phenomenon of adaptation as it occurs
in nature and to develop ways in which the mechanisms might be imported into computer
systems. Thus, GAs served as an abstraction of biological evolution. Holland provided a the-
oretical framework for adaptation under the GA. In his model, the chromosomes or genomes
were strings of ones and zeros (bits) to which genetics-inspired operators of crossover, muta-
tion, and inversion where applied, followed by a kind of natural selection. Hence, the genes
in his model are bits with the alleles “0” and “1”. Compared to ES and EP, Holland’s GA
was the first algorithm incorporating a form of recombination (crossover).

In the last several years, there has been an enormous amount of research in evolutionary
computation with increasing interaction among the researchers of the various methods. The
boundaries between GAs, EP and ES have been broken down to some extent and evolutionary
algorithms have been developed that combine the advantages of the approaches. The fields
of applications of EAs have been drastically extended including the evolution of computer

programs known under the name genetic programming [179, |, or the implementation of
machine learning in classifier systems [112, 37]. Other extensions to the basic concepts have
been made such as co-evolution [138, ] or the hybridization of traditional problem-specific

methods with EAs [70, 221].

3.2.3 Outline of Evolutionary Algorithms

Without referring to a particular algorithm, a general template of an EA is shown in Fig-
ure 3.2. All proposed methods, GAs, EP and ES are special cases of this scheme. First, an
initial population is created randomly, usually with no fitness or structural bias. Then, in
the main loop, a temporary population is selected from the current population utilizing a
selection strategy. Afterwards, the evolutionary operators mutation and/or recombination
are applied to some or all members (individuals) of the temporary population. Usually, the
main loop is repeated until a termination criterion is fulfilled (a time limit is reached or the
number of generations evolved exceeds a predefined limit). The newly created individuals
are evaluated by calculating their fitness. Before a new generation is processed, the new
population is selected from the old and the temporary population. Now, the algorithm can
continue by building a new temporary population. Besides the way the methods encode the
candidate solutions of the problem to solve, they differ in the order and rate in which the
variation operators are applied and in the type of selection strategy they use.

Fitness Evaluation

The fitness evaluation is the central part of an evolutionary algorithm. The fitness function
is usually the objective function of the problem to be solved by the evolutionary algorithm.
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procedure EA;

begin
t:=0;
initializePopulation(P(0));
evaluate(P(0));
repeat
P’ := selectForVariation(P(t));
recombine(P’);
mutate(P’);
evaluate(P’);
P(t+ 1) := selectForSurvival(P(t), P’);
t:=t+1;
until terminate = true;
end;

Figure 3.2: The EA pseudo code

Thus, for each problem, the fitness function has to defined individually.

Constrained optimization problems have to be treated differently from unconstrained
problems. For example, before the fitness of a solution is evaluated, a repair algorithm
has to be applied to transform infeasible to feasible solutions if the evolutionary variation
operators do not always produce feasible solutions. An alternative approach to repairing is
the use of penalty functions. In this approach, a penalty term is added to the fitness function
to penalize infeasible solutions in such a way that the EA is focused on the feasible region
of the search space.

For many problems, the fitness evaluation dominates the running time of the algorithm.
However, problem specific characteristics may be exploited to reduce the running time of
the fitness evaluation. Furthermore, fitness evaluations can be performed in parallel on
workstations with more than one processor or in workstation clusters.

Selection

Two forms of selection can be found in evolutionary algorithms, as shown in Figure 3.2. In
the first (selectForVariation), individuals are chosen for recombination and/or mutation. In
the second (selectForSurvival), the indivduals for the new generation are selected. The latter
is sometimes called replacement, since some or all parents are replaced by some or all of the
offspring.

Strategies for selection for variation can be divided as follows:

Fitness-proportionate selection:
In fitness-proportionate selection, the probability of selecting individual s; is given by:

(3.1)
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Fitness-proportionate selection can be realized by roulette wheel sampling [120]. Roulette
wheel sampling works by spinning a roulette wheel, on which each individual has a
roulette wheel slot sized in proportion to its fitness.

Rank-based selection:
A drawback of the fitness-proportionate selection method is that with decreasing vari-
ance of the fitness values of the population, the sampling becomes purely random.
Therefore, rank-based selection [17] has been proposed to keep selection pressure con-
stant independent of the variance of the fitness values. In the linear ranking model,
the probability of selecting individual s; is given by the formula

1—1
p(sz) = Pmax — (pmax - pmin)mv (32)
where n denotes the population size, and py,;, and py. denote the minimum and max-
imum selection probability. The latter are parameters of the method. Alternatively,
non-linear functions for p(s;) can be defined.

Tournament selection:
A third method of selection for variation is tournament selection. In each step, k
individuals of the population are preselected randomly (independent on the fitness)
and the best out of the £ is chosen. k is a parameter of the method.

Several strategies exist for the selection for survival:

Generational replacement:
The simplest form is generational replacement, in which all parents are replaced by their
offspring. This method has been used in traditional genetic algorithms in combination
with fitness-proportionate selection for variation to enforce the selection pressure.

Steady state selection :
In steady state selection [293], the number of children produced by variation is smaller
than the number of parents. Thus, a strategy is required to decide which parents are
replaced. Several variants exist, such as worst replacement, and oldest replacement

[132].

(i, A) selection:
In the (u, A)-ES, the p parents are replaced by the best of the A offspring (A > u).
The selection pressure can be increased by increasing the number of offspring .

(u+ ) selection:
In the (x 4+ A\)-ES, the best u individuals are chosen from a temporary population
containing the p parents and the A offspring.

Further methods exist that are used in combination with the selection strategies above,
such as elitism (the best individuals always survive) [72], and duplicate checking (children
identical to a parent are not included in the new generation) [36]. The latter is especially
important in evolutionary algorithms with small population sizes.



3.2 Evolutionary Algorithms 27

3.2.4 The Evolutionary Variation Operators

Mutation and recombination operators depend on the coding of the candidate solutions of
the optimization problem. In the following, operators for binary codings as used in GAs,
operators for real-valued codings as used in ES, operators on finite state machines in EP,
and operators on trees as used for example in genetic programming (GP) will be described
to show their dependence on the underlying representation.

Genetic Operators on Bit Strings

The following operators on binary vectors are typically used in genetic algorithms. Let
A, B € {0,1}" be a bit-string (genome) representing a candidate solution.

One-point crossover:
This operator [1412] works by cutting the two bit strings at a randomly selected cutting
point p. The head of the first (second) is then connected to the tail of the second (first)
chromosome. Thus, one-point crossover produces two solutions A" and B’ with

A,:{Ai if i<p B{:{Bi if i<p

i and A if isp

B, if i>p !
The following example illustrates the operation:

A=0110100 A’ = 0110|001
B = 1011]001 B’ = 1011]100

Two-point crossover:
In comparison to the one-point crossover, the two chromosomes are cut by the two point
crossover [112] at two randomly chosen cutting points p; and py (p; < pe) resulting in
three pieces. Thus, two solutions A" and B’ are generated with

A/_{Bi it pr<i<p and

_ B — A, it pr<i<py
v A; otherwise

i | B; otherwise
The following example illustrates how the two-point crossover works:

A=011[0100 A’ = 011]10]00
B = 101]10]01 B’ = 101]01]01

A generalization if this crossover operator exists in which the bit strings are cut at k
randomly chosen points, called a k-point crossover.

Uniform crossover:
The uniform crossover [3, | utilizes a crossover mask, to allow alternative forms of
crossing-over. A crossover mask M is simply a bit string of the same length as the so-
lution vector. The value of each bit M; in the mask determines, for each corresponding
gene in the child, from which parent it will receive the gene value:

g A; otherwise

and ;

B; otherwise
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Thus, one-point and two-point crossover are special cases of the uniform crossover:
For the examples above, the corresponding masks are: M = 0000111 for one-point
crossover, and M = 0001100 for two-point crossover. With uniform crossover, the
1-bits are uniformly distributed over the mask, typically occurring at each locus with
a probability of 0.5. An example is provided in the following how uniform crossover
works.

A =0110100 A= 1111100
M = 1011010
B—1o1001 )= B’ = 0010001
Bit flip mutation:
Bit flip operators [112, | simply flip a small number of genes in the genome:

A =011011001 — A"=011010001

Generally, there are two ways to implement such a mutation operator. The first way
is to predefine a rate in which each bit in the genome is flipped. The other way is to
predefine the number of bits to flip in the genome and to select the loci in the genome
randomly. Assuming a bit string of length n, a mutation with a rate of 1/n per bit has
almost the same effect as the mutation of a single randomly selected bit out of the n.

Inversion:

An alternative mutation operator is the inversion operator [112]: Two points are chosen
along the length of the chromosome, the chromosome is cut at these points, and the
substring is reversed.

A =01/101100/1 — A"=01/001101|1

Mutation operators play only a secondary role in genetic algorithms. They are often

used as “background operators” to add a source of diversity aimed to prevent a premature
convergence. Mutation is typically applied to the offspring generated by crossover before the
evaluation of the fitness.

Evolutionary Operators on Continuous Variables

Since evolution strategies mainly concentrate on continuous parameter optimization, the
operators used in ES are described in the following as examples for operators on continuous
search spaces.

Mutation:

Mutation can be realized by adding a random normally distributed number (with mean
0) to each component of a vector z € IR". The resulting vector #’ becomes:

with N(0,0;) denoting an independent normally distributed random number with ex-
pectation 0 and standard deviation o; [257, 269].
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Recombination:
Recombination operators for continuous variables can be divided into discrete/intermediate
and local/global operators [270, 139]. Let a,b,cy,..., ¢y, d1, ..., d, € IR" represent can-
didate solutions. The solution vector @’ = (a,...,a,) is generated as follows:

a; or b; (discrete)

T(a; + by) (intermediate)
Ciiord;; (global, discrete)
%(CH +d;;) (global, intermediate)

Self adaptation:
The self adaptation of the strategy parameter o [269, ] can be achieved by adding
o to the solution vector. Thus, the tuple (z,0) is subject to variation. The mutated
offspring (2, 0’) is defined as:

o; exp(7' N(0,1) + 7 N;(0, 1)), (3.5)
= z; + N(0,0)). (3.6)

SO

where ¢ = 1,...,n and the notation V;(-,-) indicates that the random variable is
sampled anew for each value of i. 7 and 7' are operator set parameters which define
global and individual step sizes [16]. Variants of this self adaptation scheme have been
proposed which are described, for example, in [110] in detail.

In contrast to GAs, in most applications of ES, mutation operators are used as the main
search operators.

Evolutionary Operators for Finite State Machines

To evolve a system that is capable of showing intelligent behavior by predicting its envi-
ronment and producing suitable responses, Fogel, Owens and Walsh [07] used finite state
machines in their original evolutionary programming approach. In their model, the environ-
ment was described as a sequence of symbols taken from a finite alphabet. The problem
was to find a finite state machine that would operate on the sequence of symbols thus far
observed as to produce an output symbol to predict the next symbol to appear in the en-
vironment. In their algorithm, a finite state machine (FSM) consists of a finite number of
states, for each of which there is an associated output symbol and next-state transition for
every possible input symbol. For each FSM an initial state is defined. Figure 3.3 shows an
FSM consisting of three states with an input alphabet of {0, 1} and an output alphabet of
{a, 5,7}. In the EP approach, selection is based on a payoff that is defined for each output
symbol dependent on the symbol to appear next in the environment.

Mutation:
Offspring machines are generated by five possible modes of random mutation based on
the description of the finite state machine:
e change of an output symbol,
e change of a state transition,

e addition of a state,



30 3 Memetic Algorithms

Oly

i 0B

0
/\{ 1/\
) A e // C

Figure 3.3: A Finite State Machine Consisting of three States

e deletion of a state, and

e change of the initial state.

No recombination has been used by Fogel et al. in the original EP approach.

Evolutionary Operators for Tree Data Structures

Koza [179] proposed the optimization of computer programs to solve problems. In his studies,
he used the functional programming language LISP [206]. LISP functions can be interpreted
as trees with arithmetical operators (functions) at the nodes and variables or constants
(terminals) at the leafs. The following operators have been proposed for such trees.

Recombination:
Koza [179] proposed the exchange of subtrees between two selected parents. This
preserves the correctness of the syntax and thus ensures that the offspring are feasible.

Mutation:
Due to the secondary role of mutation in GAs, mutation operators have not been used
by most GP researchers. However, some unary operators exist [13]:
e The switching of siblings (if order matters),
e cycle operations,
e the growing of new subtrees,
e shrinking of a subtree to a leaf, and

e numerical terminal mutation.
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3.2.5 The Relation between Genotype and Phenotype

In real world applications, the search space is defined by a set of objects, such as processing
units, pumps or other technical devices, which have different parameters, e.g. energy con-
sumption or capacities. These parameters are subject to optimization and thus constitute
the phenotype space. In evolutionary algorithms, operators are often defined on abstract
mathematical objects like binary strings. In these cases, a mapping between the genotype
and the phenotype space is required to evaluate the fitness of a solution or to obtain the
actual parameters for the optimization problem. In Figure 3.4, the relation between the
genotype and the phenotype space is shown: While the genetic operators mutation and re-

selection
/ phenotype space,
‘ ‘ search space

decoding
function

genetic operators
genotype space,

genetic
representation

Figure 3.4: Phenotype and Genotype Space

combination operate on the elements in the genotype space, selection is performed within
the phenotype space. A decoding function is required to map a genotype to its phenotype.
Often, a representation as close as possible to the characteristics of the phenotype space is
chosen, almost avoiding the need for a decoding function. This approach has the advantage
that the introduction of additional nonlinearities or a higher computational complexity by a
complex coding is avoided. On the other hand, organic evolution is based on the principle of
using a genetic code. However, the decoding mechanism in nature is a highly complex and
not well-understood process.

3.2.6 Application of EAs

Evolutionary algorithms are often referred to as black box optimization algorithms since
they do not use any kind of domain knowledge for a given problem. The operators are
defined independently of the problem: only the evaluation of the fitness function has to
be implemented as long as the problem can be encoded as an unconstrained problem on
bit vectors (GA) or as an unconstrained problem on continuous variables (ES). However,
in many applications either implicit or explicit constraints are involved, which requires the
definition of problem-dependent variation operators as in case of GP. Other examples are
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evolutionary programming on finite state machines or EAs for mixed integer programming
problems.

In combinatorial optimization, the decision variables constituting a candidate solution
are often discrete. Some problems have a solution space of binary vectors such as subset
problems in which a solution is a subset of a larger set. These problems can be solved with
a traditional GA, while others can not. Often, additional constraints — implicit or explicit
— do not allow the application of a standard GA. For many problems, the solutions can
be encoded with k-ary strings with or without implicit constraints. A common implicit
constraint is that these k-ary strings must represent permutations of a set. EAs for these
problems must contain specialized operators to ensure that crossover or mutation always
produces feasible solutions. In the case of explicit constraints, other techniques are required
for an EA to work, such as the use of penalty functions to penalize the fitness of infeasible
solutions or repair algorithms that transform infeasible to feasible solutions.

Besides the presence of constraints, there are other characteristics that prevent the ap-
plication of a standard EA such as multi-objective problems [99, |, in which more than
one fitness function has to be maximized, or dynamic problems [240] in which the fitness
of a solution changes over time. These problems are current research topics in the field of
evolutionary computation.

3.3 Other Biologically Motivated Optimization Tech-
niques

Other methods inspired by nature have been proposed for solving combinatorial optimization
problems besides evolutionary computation techniques. Ant Colony Systems (ACS) are
inspired by the efficient cooperation of ants in ant colonies [76, 77, 75]. Artificial Neural
Networks (ANN) [1415, : , 208] are simple models of the central nervous system of
the human brain. These approaches have been shown to be applicable to a wide range
of combinatorial problems and can in some cases be extended to other domains of mixed
parameter optimization.

3.3.1 The Ant Colony System

Real ants have developed an efficient way of finding the shortest path from a food source
to their nest without using visual information. While searching for food, ants deposit
pheromone on the ground and follow, in high probability, pheromone previously deposited
by other ants. Assuming a single food source, more than one way to reach the source and
initially equal probability for an ant to chose a path, more ants will visit the shortest path
on average and therefore pheromone accumulates faster if they walk with approximately the
same speed. If new ants arrive at a point where they have to decide on one or another path
they prefer to choose the shorter path with higher probability. This in turn increases the
pheromone on the shortest path such that after a while all ants will choose the shortest path.

The ant colony system is inspired by the behavior of real ants. In the ACS algorithm,
a solution to a combinatorial optimization problem is constructed by agents (ants) which
choose the values for the decision variables constituting a feasible solution stepwise. Each
choice is — in analogy to real ants — a probabilistic choice proportionate to a global variable
representing the amount of pheromone. Thus, in the ACS, the agents communicate indirectly
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via global, distributed memory: the vector or matrix of pheromone variables. After assigning
a value to a component of a solution vector, a local pheromone update rule is applied.
Furthermore, if an agent has finished in building a feasible solution, a global pheromone
update rule is applied that takes the objective function value of the produced solution into
account. This kind of learning imposed by the agents has some resemblance to reinforcement
learning [162].

The Ant Colony System has been applied to various combinatorial optimization problems
including the TSP [78], the QAP [288], and Vehicle Routing [110]. Since the beginning, the
ACS has been developed further and its successor is called the Ant Colony Optimization
(ACO) meta-heuristic [75]. ACO allows the combination of the ant system and a local
search heuristic to improve its efficiency. This hybrid approach has lead to an improved
performance for the TSP [78, 289], and for the QAP [1 11, 290].

3.3.2 Artificial Neural Networks

Artificial neural networks were mainly developed for the purpose of feature recognition or
pattern classification and function approximation in, for example, time series prediction.
However, it has been shown that the model can be modified for combinatorial optimization
tasks. ANNs consist of neurons, the information processing units, and synapses, the links
between the units, with associated weights. Common to most ANNs is a local updating rule
that determines the state of a neuron dependent on the states of its other linked neurons
and the weights of the links.

Classical ANNs are feed-forward networks, i.e., neurons are organized in layers and signals
are processed from the input layer through one or more hidden layers to the output layer
by applying a local update rule. Links are usually unidirectional and connect units from
one layer with the next upper layer. ANNs for optimization based on the Hopfield model
[115], however, are feed-back networks: the synapses are bidirectional and there is no layer
structure.

The decision variables of a solution vector are derived from the states of the neurons.
After the network is set up by choosing appropriate weights to describe the problem instance,
an energy function depending on the states of the neurons and the weights is minimized. This
is achieved by iteratively updating the neuron states with a local update rule based on ap-
propriate mean field equations (MET). The system then converges to a state that represents
a feasible solution or a greedy repair heuristic is applied to obtain a feasible solution. Many
variants of this scheme have been proposed for several combinatorial optimization problems,
including the TSP [115, 253] and graph bipartitioning [219]. They differ in the way solutions
are encoded and the types of MFT used. In some approaches, annealing schemes are used to
prevent the system from getting stuck in poor local optima [218, ]. The results obtained
with these approaches are, however, of moderate quality. They are not comparable with
other state-of-the-art heuristics.

Some other ANN techniques have been proposed based on deformable templates [218] or
self-organizing maps [253]. These algorithms, such as elastic nets for the TSP [82], can be
applied to geometric problems with low dimensionality. Besides their limited applicability
they can not compete with other heuristics [158, 253].
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3.3.3 Recent Developments

Recently, further approaches have been proposed for solving optimization problems. These
approaches include (a) immune system methods [06], which are based on the principles of the
information processing in the (human) immune system, (b) particle swarm optimization [170],
which draws from the metaphore of human sociality, and (¢) cultural algorithms [262], which
model the evolution of cultural systems based upon principles of human social evolution.
In contrast to memetic algorithms or other evolutionary algorithms, a cultural algorithm is
a dual inheritance system with a population and a belief space. Thus, operators for both
components and a communication protocol between the two spaces are required.

3.4 Greedy and Local Search Heuristics

Heuristics can be divided into construction heuristics and improvement heuristics. The for-
mer construct feasible solutions for a given optimization problem from scratch, while the
latter take a feasible solution as input and try to find better solutions by stepwise transfor-
mations. Both types of heuristics can be implemented efficiently and are often capable of
producing near optimum solutions for combinatorial optimization problems. There is a huge
number of approaches for combinatorial optimization for both types. Construction heuris-
tics include various types of highly problem-dependent heuristics. For example, for the TSP,
construction heuristics are nearest neighbor heuristics, insertion and addition heuristics, the
greedy heuristic, the savings heuristic, and heuristics based on spanning trees. Examples
of improvement heuristics are neighborhood search based algorithms such as local search,
simulated annealing, threshold accepting and tabu search which can be applied to various
problems.

In the following, f(s € S) is referred to as an objective function of a maximization
problem (f(s) = mp(I,s) if P is a maximization problem, and f(s) = —mp(I, s) otherwise).

3.4.1 Greedy Heuristics

Greedy algorithms are intuitive heuristics in which greedy choices are made to find solutions
to a combinatorial optimization problem. Greedy heuristics are constructive heuristics since
they construct feasible solutions for optimization problems from scratch by making the most
favorable choice for a decision variable in each step. An appropriate measure for greedy
choices is highly problem-dependent (sometimes even instance-dependent). Most important,
a choice in each step depends on the decisions already made — the effects of future choices are
unknown. Figure 3.5 shows the pseudo code for a problem that is encoded with a solution
vector s of length n with s = (s1,...,s,) € S ={1,...,k}" C denotes the candidate set of
solution vector components for which no value as been chosen so far. The greedy choice of
the pair (z,y) is performed in a way that the expected objective value f(s) is maximized.
This can be achieved, for example, by defining a partial function f,(s) that is defined over
all s; with ¢ ¢ C that is maximized in each step. Greedy choices can be viewed as local
decision rules and usually lead to sub-optimum solutions since the resulting solution at the
end of construction is unknown and future decision may have a large impact on the resulting
objective value of the solution.

Greedy algorithms have been proposed for various COPs such as Kruskal’s polynomial-
time algorithm for minimum spanning trees [153], the nearest neighbor and greedy heuristics
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procedure Greedy(s € S): S;
begin
C:={1,2,...,n}
repeat
Greedy choose a pair (i,v) € C' x {1,...,k};
i 1= v;
C = C\{i};
until C' = (;
return s;
end;

Figure 3.5: The Greedy Algorithm

for the TSP [261], the min-max and differential greedy heuristics for graph bipartitioning
[21], and and a greedy heuristic for binary quadratic programming [215].

3.4.2 Local Search Heuristics

Local search as well as simulated annealing, threshold accepting, and tabu search are neigh-
borhood search based algorithms. Therefore, in the following a definition of neighborhoods
for solutions of COPs is provided.

Neighborhoods

A neighborhood of a solution s to a combinatorial optimization problem is defined as a set
of solutions which can be reached by applying an elementary operator M : .S — P(S) to the
solution s. This set is denoted N (s):

N(s) = M(s) C S (3.7)

Such an operator is, for example, the bit-flip operator for binary vectors (S = {0,1}"). The
1-opt or bit-flip neighborhood of x is defined as the set of all solutions obtained by flipping
a single bit in x:

Nl—opt(x)j\/bit—flip(x) = Mbit—flip(x) = {xl €S | dH(xv ZL‘/) = 1}a (38)

with dy denoting the hamming distance of bit vectors. The elementary operator M defines
a move set since the application of the operator yields a move m from a solution to another
solution in its vicinity. The number of possible moves |M]|, i.e., transformations of one
solution into another, usually defines the neighborhood size.

Local search and the other variants of neighborhood search are based on the definition
of a move set for a given COP and thus on a neighborhood defined by the move set.

Local Search

In the field of combinatorial optimization, local search algorithms (LSAs) have a long history
since they are intuitive and very efficient. For example, the first local search algorithm for
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the traveling salesman problem was proposed in 1956/58 [59, 94], and a local search for
the facilities location problem was developed before 1962 [13]. Figure 3.6 shows the general
local search algorithm for a maximization problem: beginning with a feasible solution to the
problem, a new solution with a higher objective f is searched in its neighborhood. If such a
solution is found, the new solution is accepted and its neighborhood is searched for a better
solution, and so on. The algorithm terminates when a local optimum is reached, i.e. when
there is no solution in the neighborhood of the current best solution with a higher objective
value.

procedure Local-Search(s € S): S;
begin
repeat
Generate neighboring solution s € N (s);
if f(s') > f(s) then s :=¢';
until Vs € N(s): f(s) < f(s);
return s;
end;

Figure 3.6: Local Search

Local search (LS) is thus similar to simple hill-climbing with the difference that (a) the
neighborhood of the current solution is searched systematically instead of randomly, and (b)
the neighborhood search is repeated until a locally optimum solution is found. In some local
search algorithms, a solution with the highest objective value is selected (best improvement)
instead of the first improving solution found (first improvement).

The effectiveness of the heuristic depends highly on the choice of an appropriate neigh-
borhood N. The greater the neighborhood, the better the expected resulting objective may
be, but enlarging the neighborhood quickly becomes impractical. For many combinatorial
optimization problems, algorithms with neighborhoods of size greater than O(n?) with n
denoting the problem size become inefficient and are therefore not used in practice.

One advantage of LS over other heuristics is that the configuration space can be searched
very efficiently: instead of calculating the objective value of s’ € N (s), it is sufficient to
calculate the difference Af = f(s) — f(s’) (by utilizing problem—specific properties to avoid
the explicit computation of f(s) and f(s")) and to test whether Af is less than zero. There
are neighborhoods for almost every combinatorial optimization problem, where Af can be
computed much faster than f(s’). For example, in the traveling salesman problem, the
calculation of Af takes time O(1), while the calculation of f takes O(n). In other words, an
LS algorithm is able to visit n solutions of the search space in the same time a traditional
EA evaluates a single solution. LS shares this advantage with all other neighborhood-based
search algorithms including the algorithms described below.

A disadvantage of LS is that the obtained solutions are — by definition — only local optima.
Once a local optimum solution has been reached, the algorithm terminates. Therefore, to
allow longer running times for finding better solutions, simulated annealing, tabu search and
other neighborhood based search heuristics have been developed.
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3.4.3 Simulated Annealing and Threshold Accepting

Simulated annealing [173] and threshold accepting [30] are variants of the simple local search
introduced above. Both methods are neighborhood search methods, but they differ in the
acceptance criterion for neighboring solutions. While in local search only better solutions
are accepted in relation to their objective function value, simulated annealing and threshold
accepting allow accepting solutions worse than the current solution.

Simulated Annealing

The origin of simulated annealing (SA) lies in the analogy of optimization and a physical
annealing process [173]. In condensed matter physics, annealing is a thermal process for
obtaining low-energy states of a solid in a heat bath. Roughly, the process can be described
as follows. First, the temperature of the heat bath is increased to a maximum value at which
the solid melts. Thus, all particles of the solid arrange themselves randomly. Afterwards,
the temperature is carefully decreased until the particles of the melted solid reach in the
ground state of the solid in which the particles are arranged in a highly structured lattice
with minimum energy.

The physical annealing process can be simulated by computer programs using Monte
Carlo techniques proposed by Metropolis et al. [220]. Given a current state ¢ of the solid
with energy F;, a subsequent state j is generated by applying a perturbation mechanism,
which transforms the current state into the next state by a small distortion, for instance by
displacement of a single particle. If the energy difference AE = E; — Ej is less or equal to
zero, the state j is accepted as the current state. If the energy difference is greater than zero,
the state j is accepted with probability exp(—AFE/(kT)), where T' denotes the temperature
of the heat bath and k the Boltzmann constant. The acceptance rule described above is
known as the Metropolis criterion.

In simulated annealing, the Metropolis criterion is used to generate sequences of solutions
of combinatorial optimization problems. Thus, the solutions of a COP can be interpreted
as the states of the physical system, and the objective value of a solution can be regarded
as the energy of the state (for maximization problems: F = —f). The general outline
of SA is illustrated in Figure 3.7. To successfully apply SA to a COP, a cooling schedule
T : IN — IR must be determined, which provides an initial value for the temperature ¢ as well
as an updating rule 7'() for the temperature. Various cooling schedules have been proposed
including static and dynamic schedules. An overview is presented in [2]. However, there
is no accepted methodology for choosing the schedule, since finding the optimal schedule is
itself an optimization problem.

Threshold Accepting

Threshold accepting (TA) has been proposed as an alternative to simulated annealing [30].
Here, the Metropolis criterion is replaced by a much simpler (computationally inexpensive)
acceptance criterion. A neighboring solution is accepted, if the difference of the objective
values of the current and the neighboring solution is below a threshold 6. Thus, in TA the
acceptance criterion is deterministic as opposed to the one used in SA. In Figure 3.8, the
pseudo code of TA is given. Similar to simulated annealing, initial value and update rule for
6 have to be provided in form of the function © [30].
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procedure Simulated-Annealing(s € S) : S