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Abstract
An accurate and reliable model is the foundation for analysis, design, and control
of a modern automation system. It is often too complicated, too expensive, or too
inaccurate to develop these models based on first principles. In recent years, machine
learning has made tremendous progress through the usage of data to generate models.
Nevertheless, a key drawback is that for the identified models there is no stability
guarantee. Thus, within this thesis, methods for identifying both linear and nonlinear
systems based on finite impulse response (FIR) models are investigated. These avoid
feedback and thus ensure stability.

Linear FIR models o�er a compelling advantage due to the interpretability of the
impulse response and inherent stability. Recently, novel methods for regularization
based on a specifically designed Tikhonov regularization have been proposed. In
this contribution these approaches are extended to allow for a better incorporation of
existing prior knowledge. The developed method can be employed for order selection
and gray-box identification. Its feasibility is demonstrated on numerical benchmarks
and on a laboratory example.

Local model networks allow for the extension of linear identification methods to
nonlinear systems. Here, the regularization mechanism applied to linear systems is
employed to identify local FIR models. Especially for identification problems with a
low signal to noise ratio, the method performs significantly better than local model
networks with feedback of the output.

Finally, machine learning with convolutional neural networks is investigated. The
relation between these and block-oriented nonlinear systems is analyzed. Then, a
specific structure of a deep neural network containing FIR models as building blocks
is proposed. This structure is equipped with a regularization scheme adopted from
linear FIR models for the impulse responses comprised in the neural network. It
is shown that the bias-variance trade-o� is influenced positively on a benchmark
example and achieves state-of-the-art results while additionally the internal impulse
responses are smoothed and the stability of the system is guaranteed.
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Zusammenfassung
Ein genaues und zuverlässiges Modell ist die Grundlage für Analyse, Auslegung und
Regelung von modernen Automatisierungssystemen. Es ist häufig zu kompliziert,
zu teuer oder zu ungenau, diese Modelle basierend auf physikalischen Gleichun-
gen zu entwickeln. Innerhalb der letzten Jahre hat maschinelles Lernen deutliche
Fortschritte bei der Verwendung von Daten zur Erstellung dieser Modelle gemacht.
Ein wesentlicher Nachteil dieser Methoden ist, dass Stabilität der identifizierten Mod-
elle nicht garantiert ist. Daher werden in dieser Arbeit Methoden zur Identifikation
basierend auf FIR Modellen untersucht. Diese enthalten keine Rückkopplung und
garantieren deshalb strukturbedingt Stabilität.

Lineare FIR Systeme bieten signifikante Vorteile aufgrund der einfachen Interpretier-
barkeit ihrer Impulsantwort sowie ihrer inherenten Stabilität. In der jüngeren Lit-
eratur wurden neue Verfahren zur Vermeidung hoher Parametervarianz durch Wahl
einer speziellen Tikhonov-Regularisierung vorgestellt. In dieser Arbeit werden diese
Ansätze erweitert, um ein gezieltes Einbringen von Vorwissen zu ermöglichen. Die en-
twickelte Methode ist sowohl für Gray-Box-Identifikationsverfahren als auch für Ord-
nungsselektionsverfahren nutzbar. Die Anwendbarkeit wird anhand eines Laborsys-
tems demonstriert.

Lokale Modellnetze ermöglichen die Erweiterung linearer Identifikationsverfahren
auf nichtlineare Systeme. Hierbei wird der Regularisierungsmechanismus, der im
Rahmen der linearen Verfahren angewendet wird, zur Identifikation der lokalen
FIR Modelle genutzt. Besonders für Identifikationsprobleme mit schlechtem Signal-
Rausch-Verhältnis zeigt die Methode deutlich bessere Ergebnisse als lokale Modelle
mit Rückkopplung des Ausgangs.

Schließlich wird das maschinelle Lernen mit convolutional neural networks unter-
sucht. Das Verhältnis zwischen diesen und blockorientierten nichtlinearen Systemen
wird analysiert. Es wird eine spezifische Struktur von tiefen neuronalen Netzen
basierend auf FIR Modellen als Netzbestandteilen vorgeschlagen. Bei der Identifika-
tion des neuronalen Netzes wird der gleiche Regularisierungsansatz wie zur Identi-
fikation linearer FIR Modelle verwendet. Es wird gezeigt, dass der Bias-Varianz-
Tradeo� dadurch vorteilhaft beeinflust wird und der Ansatz auf einem aktuellen
Benchmarkproblem mit den Ergebnissen von Methoden, die dem aktuellen Stand
der Forschung entsprechen, verglichen. Hierbei werden vergleichbare Ergebnisse
erzielt und zusätzlich glattere interne Impulsantworten und die Stabilität des Sys-
tems garantiert.
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1 Introduction

In recent years, machine learning has seen significant success. Especially, the ability
of a method to achieve superhuman performance in the game Go using deep neu-
ral networks [117] is considered a significant achievement. Besides, the performance
of algorithms on image classification tasks has grown tremendously [62, 132]. These
scientific successes have received significant resonance by media. There is, actually, a
growing hype about artificial intelligence. The ever increasing computational power
leads to the prognosis that the cognitive ability of algorithms can become superior
to humans [107]. To understand the scientific progress in this field, a reasonable
view on this topic is essential. In [58], it is argued that the term machine learn-
ing is more appropriate to describe the techniques used for recent successes. The
success of learning technology is, as explained there, the result of a combination of
statistics and computer science. System identification [90, 67] is a field of research
which includes beside machine learning a perspective of system and control. Here,
temporal dependencies are included in the machine learning problem. This has the
consequence that other issues, like the stability of the identified model, become more
critical.

1.1 Models – the Key Success Factor for Modern
Automation

The result of an identification problem is a valid model of a plant or a process. In this
section, we analyze possible application areas of these models. Modern automation
systems have a trend to act more autonomously than they did several years ago. It
has been analyzed that in several worldwide production plants e�ects of flexible au-
tomation will lead to productivity gains and a tremendous opportunity of producers
to refine their market position [34].

From a technical perspective, models play a critical role here. Understanding a
process can most often be related to the availability of some sort of model for analysis.
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Furthermore, most modern control schemes like model predictive control (MPC) [20]
or robust control [68] require an explicit model. Besides, models allow for prediction,
simulation, and fault diagnosis of processes [90].

There exist several approaches to obtain a model. The most prominent strategy
in engineering is to apply first principles for the derivation of a model [55]. For
control systems, these models usually result in a system of coupled ordinary dif-
ferential equations. In most cases, the parameters of the equations are derived by
calculations (e.g., calculation of the mass of parts) or specially designed experiments
(e.g., derivation of the sti�ness of a spring element). Especially for dampings in me-
chanical models, often heuristic approaches are used. This first principle modeling
approach is often termed white box approach since it is transparent and does not
use any data at all [90]. When measured data is employed to improve the model,
e.g., by estimation of the damping coe�cients, the model is called gray box. If no
physical model is assumed at all, the approach is called black box. But also for the
black box approaches, several assumptions of the model structure are necessary. It
has thus been argued that there are several shades of gray for the quantization of the
amount of structural assumptions [69]. So, models derived from data become more
important for future automation systems and are necessary to achieve productivity
gains in production systems.

1.2 Comparison of FIR and IIR Models

To motivate the research done in this thesis, we will analyze the shortcomings of the
most prominent examples of dynamic models that are used for system identification.
These models are the autoregressive with exogenous input (ARX) model and the
finite impulse response (FIR) model. The mathematical derivations of the identifi-
cation procedures are provided in detail in Sect. 2.2.1. The example presented here
is to motivate the research objective of the thesis.

The first order system
Y (z) = (a ≠ 1)z

a ≠ z
U(z) +N(z), (1.1)

with a = 0.9, Y (z) denoting the z-transformation of the output, U(z) denoting
the z-transformation of the input, and N(z) describing the noise is considered. The
noise is assumed to be white and Gaussian. If the equation is rewritten in discrete
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time it holds that

y(k) = 0.1u(k) + 0.9y(k ≠ 1) + n(k) ≠ 0.9n(k ≠ 1) (1.2)

with k denoting the discrete time step. If an ARX model is employed, the model
structure is assumed to be

ŷ(k) = a1ŷ(k ≠ 1) + b0u(k) + n(k). (1.3)

Despite being completely the same in the deterministic part, the stochastic part
(the part with the noise terms n(k)) di�ers. The consequences that result can be
seen when the model is used for identification. Therefore, the system is excited
by a pseudo-random binary signal. The input and output signal are shown for
1 000 samples in Fig. 1.1. For the identification, 105 samples have been used. This
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1
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)
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Figure 1.1: Input and output of the first order system

high number is chosen to make clear that not the number of samples is an issue,
but the problem lies in the way the coe�cients are estimated and the wrong noise
assumption.

A first order ARX model is estimated for di�erent noise levels. The identified im-
pulse responses g(k) are shown in Fig. 1.2. It can be seen that for increasing noise
variance, the impulse response is represented wrongly, although the model structure
is able to represent the deterministic part exactly. This also shows that for system
identification, a high number of available data (which is often referred to as big data)
is not necessarily su�cient to reach a good model. A significant amount of care has
to be taken when the noise of the system is modeled. An inaccurate noise model
can deteriorate the performance. If an estimator does not reach the true parameters
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Figure 1.2: Comparison between true impulse response and first order ARX esti-
mates at di�erent variances of the measurement noise.

of the system for N æ Œ with probability 1, then it is inconsistent. So this simple
example shows that ARX models are inconsistent if noise enters a system at the
output.

A model structure which does not su�er from this inconsistency is the FIR model. For
this structure, no feedback is included, and thus the biasing e�ect of this feedback
is mitigated. A significant issue, though, for FIR models is the variance error in
the parameter estimate. To demonstrate this, an FIR model is identified with 1 000
samples and di�erent variances of the applied noise. The results are shown in Fig. 1.3.
Here, it can be seen that especially the last coe�cients of the impulse response are
prone to errors and that, as expected, the error grows with the noise level.
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Figure 1.3: Identified models of a first order system using FIR models of order n = 80.

The problem can be increased by consideration of a low-pass filtered input signal,
which does not excite high frequencies [30]. The identification result is shown in
Fig. 1.4. From numerical point of view, the reason for this dilemma is a bad condi-
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Figure 1.4: Identified impulse response of an FIR model estimated with a low-pass
filtered input.

tioning of the pseudo-inverse of the regression matrix.

To summarize the results, the most prominent problem with ARX models is their
unrealistic noise model and their resulting inconsistency. The most severe issue for
FIR models is their high variance error.

1.3 Structure and Contribution of the Thesis

As demonstrated in the previous section FIR and ARX models su�er from di�erent
problems. The goal of this thesis is to use novel regularization techniques to en-
able the reduction of variance error for FIR systems for both linear and nonlinear
problems. The di�erent methods developed for this purpose are shown in Fig. 1.5.
For linear systems, there is a significant body of recent work for appropriate regu-
larization of the impulse response [100]. These methods are used to develop three
di�erent methods, which are ordered by their interpretability and complexity in the
figure. The Impulse Response Preserving (IRP) method from Chap. 3 is a linear
method and thus the one with the lowest complexity and best interpretability. The
local linear model tree with regularized local FIR models (LOLIMOT RFIR) extends
this approach to the nonlinear world in Chap. 4. Here, the coe�cients of the local
models can be interpreted as impulse responses. Thus, interpretability is worse than
in the linear case but better than for the most complex method, the deep regularized
FIR neural network (deep RFIR NN), which is described in Chap. 5. In detail, the
di�erent chapters of the thesis describe the following:
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Figure 1.5: Introduced methods in the thesis. IRP FIR: Impulse response preserving
FIR, LOLIMOT RFIR: LOLIMOT with regularized local FIR models,
Deep RFIR NN: Deep regularized FIR neural network

Foundations of system identification In this chapter, the links between system
identification methods and statistics are described. System identification lies at
the intersection between computer science, statistics, and control. Therefore, for a
holistic understanding of the field, all three disciplines have to be considered. Here,
mainly the foundations for the results in the following chapters are laid out. Some
results have not been presented in this form. This includes the interpretation of
the result of the LOLIMOT algorithm with local estimation as a Gaussian mixture
model and the application of the VC bounds to FIR models.

Impulse response preserving identification This chapter proposes a novel method
to solve the order selection problem for linear systems. Therefore, it introduces the
concept of impulse response preserving filter (IRP) matrices for system identification.
Classical methods in system identification like ARX or OE identification impose the
order of a model as a rigid concept. The complexity of the model identified is solely
described by the order n for these approaches. In contrast, IRP matrices allow
for incorporation of prior knowledge of system dynamics for linear systems by a
penalty term whose strength can be optimized based on data by generalized cross-
validation (GCV). It is shown that incorporation of impulse response preserving filter
matrices improves state-of-the-art system identification methods on examples where
incorporation of prior knowledge is appropriate.

Regularized Local Model Networks Here, the concept of regularized FIR system
identification is transferred to the nonlinear world. Usually, nonlinear FIR (NFIR)
systems tend to be very prone to overfitting, due to the high number of parameters
required. To circumvent this issue, two measures are adopted. First, local model



7

networks are used, which allow the variables of the validity functions to be di�erent
from the variables of the local models. This allows for a low dimensional nonlinear
space. Second, the regularized approach is used for a weighted local regression. The
number of parameters required for the local FIR models is then significantly lower
compared to unregularized local FIR models. The approach is used with several
theoretical examples for both the MISO and MIMO case. Also, a simulated Diesel
engine process is investigated and identified.

Deep FIR Neural Networks Recently, deep convolutional neural networks have
shown tremendous success in the classification of images. In this chapter, the regu-
larized identification approach is extended to the nonlinear world and combined with
a novel regularization approach for the filter coe�cients of the deep neural networks.
The coe�cients of the convolutional filters of the neural network are interpreted
as impulse response coe�cients. A kernel-based regularization scheme regularizes
these. Several options for the design of such networks are investigated on a compli-
cated nonlinear benchmark example. It is shown that competitive state-of-the-art
results on this benchmark can be achieved without recurrence in a neural network
structure.
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2 Foundations of System
Identification

In this chapter, a short overview of system identification techniques is given. It
starts by introducing concepts from statistical learning, including maximum likeli-
hood (ML) and Bayesian approaches, which form the basis for data based problems.
Then, methods for the identification of dynamic systems are presented. Here, special
emphasis is given to methods allowing incorporation of prior information for linear
systems and their relation to Gaussian processes. Finally, methods for structure
selection are revised, since these are applied for the nonlinear method developed in
Sect. 4 for structure selection and allow for an understanding of the properties of
learning methods. Often system identification is decomposed in static and dynamic
systems [90]. So we follow this approach and start with static systems in Sect. 2.1
and continue with dynamical systems in Sect. 2.2. A recent overview of algorithms
for regression can also be found in [120].

2.1 Statistical Learning
In this thesis, the term Statistical Learning refers to the process of building a model
from data. This term is mostly used by statisticians and is part of the title of
well known standard books [43, 127]. The usage of this term in statistics is quite
common, but in system identification, it is often avoided. It seems that learning
here is considered somehow exclusive to humans. To emphasize the link between
statistics and system identification, the term is employed anyhow. For the description
of the learning problem, a data generating distribution p(z) is considered with z

denoting the data point. This distribution is the true distribution that generates
the data. This concept is very general and contains classification, density estimation
and regression as special cases [127]. For the description of a regression problem, the
variable z contains both, the input u and the output y. So, for regression problems,
z
T = [uT

, y] with u œ Rm, m denoting the input space dimension and y œ R. The



10 2.1 Statistical Learning

variable m instead of the common n is used for the input space dimension to mitigate
confusion with the order n of an FIR model, see Sect. 2.2.1.

The same concept can also be utilized to describe a classification problem. Here, u is
again the location in the input space and cl œ {0, . . . , nc} is the class label assigned
to one of the nc classes. These are collected in the random variable z

T = [uT
, cl]

then. In system identification, regression tasks dominate and are thus considered in
this short overview. For more information on learning techniques for classification
problems, the reader is referred to [51, 43]. For regression, a closer look at the
problem statement is important. There are several ways to approach the problem
from a theoretical perspective, and a sound understanding of the results obtained
by each viewpoint makes it necessary to distinguish some assumptions. As stated
above, the regression problem is characterized by a joint probability distribution
p(u, y). According to the definition of conditioned probability this distribution can
be decomposed as p(u, y) = p(y|u)p(u). For regression, usually one is interested only
in the first part p(y|u), and in practice, interest is often limited even more and only
the conditioned expected value

Ey≥p(y|u)y =
⁄
y p(y|u)dy (2.1)

is considered.

The first and most common assumption is that for the conditional probability of
p(y|u) a parametric model depending on some parameter ◊ is available. To denote
the model, the hat symbol ”̂·” will be used. Now, the model p̂(y|u, ◊) is given and
it is assumed that it matches the true conditional probability distribution p(y|u) =
p̂(y|u, ◊0) for the true value of the parameter ◊0. For the real world, this assumption
is, in many cases, fairly optimistic. However, the existence of some true ◊0 makes
things easier from a theoretic perspective. In fact, the development of the Maximum
Likelihood (ML) method [39, 40, 41], described in detail in Sect. 2.1.1, is based on
this assumption. Another important consequence is the behavior of the regression
estimate if the data distribution p(u) changes. Since model and true distribution
coincide, if the estimated parameters ◊̂ equal the true parameters ◊0, the input space
distribution can vary arbitrarily without a�ecting the validity of the model.

Extrapolation is also not a problem since by definition for every u, the probability
p(y|u, ◊̂) is correct. In reality, these changes often matter significantly. Thus, results
obtained by making this assumption require special care in reality.
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The second approach deals with this problem di�erently. Also here a parametric
model p̂(y|u, ◊) is given. The goal is now to measure and optimize the risk [127]

R(ŷ(u, ◊)) =
⁄
(y(u) ≠ ŷ(u, ◊))2p(u, y) dy du (2.2)

= Eu,y≥p(u,y) (y(u) ≠ ŷ(u, ◊))2 .

Instead of estimating a whole probability distribution, here, only the so-called regres-
sion function ŷ(u, ◊) is estimated. This risk is the integral of the squared deviation
of the model from the true function weighted by the probability distribution of the
data. It is important to notice that in this definition of risk, the probability dis-
tribution p(u) of the input space is included and is crucial for an interpretation of
error values. If the assumption of a true model is dropped, the input distribution
p(u) plays a crucial role in the determination of an error. In reality, neglection of
this fact can lead to a wrong assessment of the error on novel data, especially if
dynamic models are considered. The obtained error is only valid for the distribution
of input data which has been used during training. If this distribution is changed,
the obtained risk is not valid anymore.

2.1.1 Maximum Likelihood

In reality one has no access to the true underlying probability distribution p(u, y).
There are usually independent identically distributed (i.i.d.) samples from the distri-
bution available. These samples are denoted by z(i) =

Ë
u(i)T , y(i)

ÈT
and are stacked

in the matrix Z = [z(1), . . . , z(N)]T with N denoting the number of data points. The
central question is now how to obtain the parameter ◊ from Z. In statistics every
function, which assigns a value of ◊̂ to observed Z is called an estimator [130]. One
method to obtain such an estimator has been developed by R.A. Fisher in a series
of papers [39, 40, 41] and has been called the maximum likelihood (ML) method.
Since the mathematics of probability has been under development at this time, the
arguments given in these papers do not entirely coincide with nowadays notation,
for an overview of the historical development see [118]. Now, a parametric model of
the probability distribution p̂(z|◊) is considered which depends on some parameters
◊. Maximum likelihood works as follows: The parameters of the parametric proba-
bility distribution p̂(z|◊) are chosen such that the probability of the observed data
is maximized. Usually, it is assumed that the samples are identical independently
distributed (i.i.d). Thus, e.g., it holds that p(z(1), z(2)) = p(z(1))p(z(2)). For N
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Figure 2.1: Schematic illustration of the maximum likelihood method. Data and a
parametric probability density function are transformed to an optimiza-
tion problem for parameter estimation.

data points, the optimization problem

maximize
◊

NŸ

i=1

p̂(z(i)|◊) (2.3)

has to be solved. The logarithm is a monotonic function. Thus, taking the logarithm
of a pdf does not change the optimal parameter values. Furthermore, the product can
be rewritten as a sum such that the following optimization problem of the so-called
log-likelihood results

minimize
◊

≠

Nÿ

i=1

log p(z(i)|◊). (2.4)

By these steps, the problem of statistical estimation has been transformed to an
optimization problem. The general idea is illustrated in Fig. 2.1. Samples of a prob-
ability distribution (data) and a parametric pdf are transformed into an optimization
problem by the ML method. It has already been apparent to Gauss [46] that this
type of estimator is reasonable. Assuming that there is an exact ◊0 such that the
data has been sampled from the probability distribution p̂(z|◊0) and several regular-
ity conditions hold, Maximum Likelihood enjoys several favorable properties, which
will be reviewed briefly. These properties are also illustrated in Fig. 2.2.

Consistency The first property is consistency, see [39, 130]. It means that if the
number of data tends to infinity, the true value ◊0 for ◊ is recovered. More formally
this property is defined as

lim
NæŒ

Î◊̂N ≠ ◊0ÎŒ

P
≠æ
NæŒ

0. (2.5)

Here, ◊̂N denotes the ML estimate with N data points and ◊0 the true parameter.
The equation means that the probability of estimates deviating more than a small ‘

from the true value tends to zero as the number of data points tends to infinity. This
explains some of the success big data approaches had recently. For many of these
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Figure 2.2: Properties of the ML method. The consistency of the ML estimator for
the pdf of a single parameter ◊̂ is illustrated for the number of parameters
N1 < N2 < N3. The asymptotic normality (middle) is demonstrated for
the number of parameters N1 < N2. The shape of the pdf converges
to a normal distribution. The ML method is asymptotically e�cient
(right). The pdf of any other estimator has a higher variance than the
ML estimator.

approaches, the case N æ Œ can be achieved approximatively. Big data systems
include applications like image recognition, where large labeled datasets are available,
e.g. [62]. In mechanical engineering or production, this, however, is often not the
case. Available data is limited, and often, for some products, only a few samples
are available. In this case, other techniques, e.g. Bayesian approaches described in
Sect. 2.1.5 can be more advantageous.

Asymptotic Normality Another fact which can be analyzed for maximum likeli-
hood estimators is what happens to the distribution of the estimated parameters if
the number of observations tends to infinity. This analysis has been firstly conducted
in [40, 32]. For N æ Œ the distribution of the parameters is given according to

lim
NæŒ

p(◊̂N) = lim
NæŒ

N

A

◊̂N |◊0,
1

Ô
N
I

≠1

F (◊̂N)
B

. (2.6)

The m-dimensional multivariate Gaussian distribution with mean vector µ and co-
variance matrix � is described by

N (x|µ,�) = 1
Ò
(2fi)m det (�)

exp
3

≠
1
2(x ≠ µ)T�≠1(x ≠ µ)

4
. (2.7)

So, asymptotically the estimate ◊̂N has the mean of the true parameters ◊0. This
property is called asymptotic unbiasedness. In general the ML estimator is not unbi-
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ased for finite N [90]. For the calculation of the covariance, the Fisher information
matrix IF (◊) is defined as

IF (◊) = ≠

⁄
ˆ
2 log p̂(Z|◊)

ˆ◊
2

p(Z)dZ. (2.8)

The result (2.6) provides more information than consistency only. It also provides
an understanding of the variance of the solution for ◊̂N . A reasonable estimate for
the information matrix can be found by replacing the expectation by its empirical
counterpart

ÎF (◊̂N) =
Nÿ

i=1

ˆ
2 log p̂(z(i)|◊)

ˆ◊
2

-----
◊=◊̂N

. (2.9)

In contrast to (2.8) the expression (2.9) can be calculated based on the available
data. To do so, the second derivatives of the log-likelihood function have to be
calculated. These are then evaluated at the locations of the data points.

Asymptotic E�ciency A natural question that arises is if there could be another
rule to construct an estimate, which has lower variance than the maximum likelihood
estimate. This property has been analyzed in [32]. It can, however, be shown that
the maximum likelihood estimator is the most e�cient asymptotically unbiased esti-
mator [130]. Practically this means that if the number of data available is big, then
there is no better way to estimate the parameter than the usage of ML estimation.

Relation to Information Theory An exciting and practically highly relevant ques-
tion is what happens if the true probability distribution p(z) cannot be reached by
the modeled probability distribution p̂(z|◊). This could, e.g., occur if the true pdf
p(z) is a uniform distribution and p̂(z|◊) is modeled as a Gaussian distribution. An
answer to this question can be found from an information theoretic viewpoint to
ML [5]. The goal, in this case, cannot be to recover ◊0 as described in the previous
paragraph but to find parameters ◊

ú for the modeled probability distribution which
make the modeled pdf, in some sense, most similar to the true probability distribu-
tion. This notion of closeness has to be made more explicit mathematically.

One way to describe how good one probability distribution is described by another
is the so-called Kullback-Leibler (KL) divergence [51]

KL (p(z)||p̂(z|◊)) =
⁄
log p(z)

p̂(z|◊)p(z)dz. (2.10)

To illustrate the behavior of the KL divergence, a simple example is considered. Let
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Figure 2.3: Term within the integral of the KL divergence between a uniform distri-
bution and Gaussian distributions with correct mean and varying stan-
dard deviations ◊.

the true pdf be given by a uniform distribution between 1 and 3, so p(z) = U(z|1, 3),
and let the model be given by a Gaussian distribution with fixed mean 2 and the
standard deviation as a free parameter, so p̂(z|◊) = N (z|2, ◊2). There is no ◊ so
that p̂(z|◊) can be equal to the true pdf p(z). The densities for di�erent values of ◊

are shown in the upper part of Fig. 2.3. The lower part shows the term log p(z)
p̂(z)p(z)

which is the argument of the integral. For the uniform distribution the value of p(z)
is zero outside the interval [1, 3]. Since limxæŒ log(x)x = 0, the term within the
integral is plotted as zero there.

Two things can be seen in the lower plot of the figure. First, the KL divergence
assigns high values to regions where the pdf of the true distribution is higher than
the modeled pdf. Second, for regions where the pdf of the true distribution is lower
than the modeled one, a negative value can occur (◊ = 0.4 at z = 2 in the figure).
Thus, the KL divergence makes sure that everywhere, where the true distribution
is high, a high probability of the model is assigned. The parameter ◊ can now be
optimized to minimize the KL divergence between p̂(z, ◊) and p(z). This results in
◊ = 0.764.

For ML estimation it can now be shown that exactly this ◊ will be discovered asymp-
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totically. To see this, the definition of the KL divergence is considered and written
as an expected value

KL (p(z), p̂(z|◊)) = Ez≥p(z)

A

log p(z)
p̂(z|◊)

B

. (2.11)

This expected value can also be written as

KL (p(z), p̂(z|◊)) = ≠Ez≥p(z) {log p̂(z|◊)}+ Ez≥p(z) {log p(z)) (2.12)

by rewriting the logarithm. Since the second term is independent of the parame-
ters ◊, the minimization of the KL divergence is equivalent to the maximization of
Ez≥p(z) {log p̂(z|◊)}. This can be written as the optimization problem

maximize
◊

⁄
log p̂(z|◊)p(z)dz. (2.13)

When it is possible to draw samples from the true distribution p(z) then with an
empirical estimate of (2.13) the optimization problem can be rewritten as

minimize
◊

≠

Nÿ

i=1

log p(z(i)|◊). (2.14)

This expression is the same as (2.4). Thus ML estimation corresponds to the mini-
mization of the KL divergence between the estimated and the true distribution. This
means that also in the case the true and the estimated distribution do not coincide,
the obtained estimate will for N æ Œ be near (in the sense of a small KL divergence)
to the true solution.

Example To exemplify the usage of the method, the mean of a Gaussian distri-
bution is estimated by the maximum likelihood method [108]. The one-dimensional
Gaussian distribution is described by

p̂(z, µ) = 1
2fi

exp
3

≠
1
2(z ≠ µ)2

4
(2.15)

with unit variance and unknown mean value µ. The logarithm of this distribution
results in

log p̂(z, µ) = ≠ log(2fi) ≠
1
2 (z ≠ µ)2 . (2.16)
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This is the log-likelihood of one sample. For many samples concatenated in a vector
z, this results in

log p̂(z, µ) =
Nÿ

i=1

3
≠ log(2fi) ≠

1
2

1
z(i) ≠ µ)2

24
= ≠N log(2fi) ≠

1
2

Nÿ

i=1

(z(i) ≠ µ)2 .

(2.17)
To maximize the likelihood, the derivative with respect to µ is calculated according
to

ˆ log p̂(z, µ)
ˆµ

=
Nÿ

i=1

(µ ≠ z(i)) . (2.18)

Setting this derivative to zero results in the maximum likelihood estimator

µ = 1
N

Nÿ

i=1

z(i). (2.19)

This estimator is unbiased. In general, this only holds in the asymptotic case for
ML estimators (N æ Œ).

Discussion of the Assumptions The results of this section are very strong. In
fact, they say that you cannot do better than using an ML estimator, if there is
a parameter for the modeled pdf which describes the true pdf exactly, and if there
are very many data points. Unfortunately, in reality, this does not hold and several
problems occur. The first is that in case of a misspecified distribution, no statement
about e�ciency can be made. Furthermore, it is possible that convergence to an
appropriate value of the parameter happens only very slowly. Another, maybe prac-
tically more severe e�ect, are potential local optima of the likelihood function. The
likelihood function is not necessarily convex or unimodal. We will discuss Least-
Squares in Sect. 2.1.2, which is the most important case for the maximum likelihood
of having an analytic unimodal solution. In general, this does not hold. For linear
output error identification introduced in Sect. 2.2.1 multiple local maxima can exist
for the likelihood, and the same is true for the maximum likelihood identification of
multilayer neural networks. So, if the global optimum is not found, the guarantees
found in this section may not hold at all. Another problem is that all the results
only hold asymptotically. In reality, the number of samples will always be limited.
A class of methods which often performs well in the so-called low data regime are
Bayesian methods described in Sect. 2.1.5. But, even if an assumption is violated for
ML it does not necessarily mean that it fails completely. Often the resulting models
show reliable behavior in reality.



18 2.1 Statistical Learning

2.1.2 Linear Regression

The term linear regression refers to problems which are linear in their parameters.
Mathematically an nx-dimensional feature x is mapped to an output ŷ. Since this
mapping is linear, it can be represented by a scalar product with the parameter
vector ◊. Thus, the model can be written as

ŷ(k) = x(k)T ◊. (2.20)

There are various possible choices for the entries of x(k), which are also called
features [43]. It can be the input itself, contain a function of an element of the
input of the system, e.g. log(u1(k)), or it can be an interaction between two inputs
u1(k) · u2(k). To identify the parameters ◊ from N measured output samples y(k),
an identification criterion is necessary. A widespread identification criterion is the
mean squared error (MSE)

J = 1
N

Nÿ

k=1

(y(k) ≠ ŷ(k))2 . (2.21)

Beside often used, it is not directly clear that this error criterion is the best choice.
In [67], Ljung describes that this error is useful for its own right. This problem
has already been in the mind of Gauss when discovering this method [46]. In his
argumentation, two models are compared. The first model makes a mistake at one
observation, which is as big as the sum of errors made by another model at two
di�erent points. The absolute sum of errors made by these models is now equal. So,
if the sum of absolute values is employed as an error measure, the performance of both
models is the same. If, in contrast, the squared error is chosen as a loss function, the
model with two smaller errors is significantly better. In his argumentation, which
of the two models is to be preferred is not a matter of science but a matter of
the purpose of the model. It is interesting to note that this observation made at
the beginning of the nineteenth century is very much in accordance with modern
machine learning literature, arguing that the intended application of the learned
model should determine the loss function. [51, 3]. Another reason to choose the
squared loss is that the resulting optimization problem can be solved very e�ciently,
as shown in the next paragraph. Therefore, the features are stacked in a regression
matrix

X =
Ë
x(1) x(2) . . . x(N)

ÈT
(2.22)
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and the obtained outputs are stacked in the output vector

y =
Ë
y(1) y(2) . . . y(N)

ÈT
. (2.23)

A model structure which assumes a linear relationship between X and y

ŷ = X ◊ (2.24)

with the parameters ◊ is called a linear model. This model is linear in the parameters
but not necessarily linear in the inputs since it is easy to introduce a nonlinearity in
the input by using e.g. x2

1
(k) as a new feature. The well-known solution to the linear

regression problem is [90]
◊̂ =

1
X

T
X

2
≠1

X
T
y (2.25)

which can be derived by simply setting the derivative of the loss function to zero.
From an algorithmic perspective, this equation is solved using the QR factorization
of X

X = Q
X
RX (2.26)

with the orthonormal matrix Q
X
and the upper tridiagonal matrix RX . Substituting

results in
◊̂ = R

≠1

X Q
T
X
y. (2.27)

The computational complexity can be separated into three parts [15]. The first is
the computation of the QR factorization, which has the computational complexity
2Nn

2

x. The second is the computation of s = Q
T
X
y, which is a simple matrix-vector

multiplication, and thus of complexity nxN . Finally, the third component is the
computation of R≠1

s which is done by back-substitution and has the complexity n
2

x.
So the overall complexity is 2Nn

2

x +Nnx + n
2

x, whereby for high N , the first part is
dominating. It is remarkable that the complexity of least-squares grows only linearly
with the number of data points. This means that for moderately sized datasets,
e.g. up to 1 Mio. data points, a closed-form estimate of ◊̂ can be obtained.

The quadratic error criterion can also be derived using the arguments of the ML
method. Therefore, the density to be identified is the probability of the output given
the features p(y|x, ◊). For this density the parametric form

p(y(k)|x(k), ◊) = N (y(k)|x(k)T ◊,‡
2) (2.28)
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is assumed. Taking the logarithm results in the log-likelihood function

log p(y(k)|x(k), ◊) = ≠
1
2‡2

1
y(k) ≠ x(k)T ◊

22

≠
1
2 log(‡2) ≠

1
2 log 2fi (2.29)

Since only the first term depends on the parameter ◊, the maximum of the likelihood
of N i.i.d. samples can be found by

◊̂ = argminimize
◊

Nÿ

k=1

1
y(k) ≠ x(k)T ◊

22

(2.30)

which is the least squares solution.

2.1.3 Neural Networks

Initially, the term neural network has been chosen to refer to the structure of the
human brain [108]. Nowadays, the term neural network is understood in a very
general way as a representation of an artificial structure consisting of similar units
(neurons), which learn a mapping from an input to an output. A commonly made
distinction is between wide and deep networks. A wide network consists of multiple
units connected in parallel. An radial basis function (RBF) network with a Gaussian
kernel [90]

ŷ =
Mÿ

i=1

a
RBF

i exp
3

≠
1
2‡2

...u ≠ c
RBF

i

...
2

2

4
(2.31)

is a wide network with M neurons connected in parallel. The parameters aRBF are
the heights of the basis functions, ‡

2 is the variance which determines the width of
the basis function, and c

RBF

i are the centers. These networks have the advantage that
a large number of parameters (in this case, aRBF are linear). Thus, the least-squares
estimate can be calculated analytically by linear regression. For a detailed solution
procedure, especially the decomposition of the problem into linear and nonlinear
parameters, of this optimization problem the reader is referred to [90]. Deep neural
networks [108, 51, 63] look di�erent. Here multiple layers are stacked and the output
is a concatenation of nonlinear functions with unknown parameters. A two layer
rectified linear unit (ReLU) network is described by

ŷ(k) = b
NN

‡ReLU(DNN
h(k)) + c

NN (2.32)

h(k) = ‡ReLU(ENN
u(k)) (2.33)
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These structure has a hidden unit described by h(k) and the function ‡ReLU(x) =
max (x, 0) is the so-called ReLU nonlinearity. The variables bNN, DNN, cNN and E

NN

are learnable. Modern NN consist of more than two layers normally. This works
by stacking layers described by (2.33) one after another. Compared to wide neu-
ral networks which utilize the analytical least-squares solution for linear regression
extensively, the parameters of these structures are usually learned with first-order
nonlinear optimization methods, such as stochastic gradient descend (SGD) [51].

2.1.4 Local Model Networks

Deep neural networks, which consist of multiple stacked layers of nonlinearities, are
hardly interpretable. One option to increase the interpretability is to calculate the
output of the neural network by a weighted combination of several local models.
Such a structure is called a local model network (LMN) [86]. It can be described
by

ŷ(x, z) =
Mÿ

i=1

Li(x)�i(z) (2.34)

with Li(x) denoting the local models, �i(z) denoting the validity functions, and M

denoting the number of local models. The validity functions depend on the argument
z and the local models depend on x. One possibility is that the input spaces for the
local models and the validity functions are identical (z = x). Often, it can be
advantageous to use di�erent input spaces for the linear models and the nonlinear
validity functions [90]. This is applied for local FIR models in Chap. 4. The validity
functions have the property to sum to 1. This can be ensured by introducing local
membership functions µi(z) and to compute the validity functions by

�i(z) =
µi(z)

qM
j=1

µj(z)
. (2.35)

One common approach for choosing the membership function, also adopted by the
local linear model tree (LOLIMOT) algorithm [89], are Gaussian functions of the
form

µi(z) = exp
3

≠
1
2z

T�i z

4
. (2.36)

The orientation of the membership function is usually chosen orthogonally. This
results in a diagonal covariance matrix with entries

�i = k‡diag(�ij) (2.37)
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with k‡ = 1

3
(recommended value) and �ij denoting the width of the i-th local

model in the j-th direction [90]. This idea has been proposed under several names.
The names validity and membership functions stem from the fuzzy interpretation
of these systems [123]. Thus, this type of system is often named after its inventors
as Takagi Sugeno (TS) fuzzy system. It has been shown that this structure type
is a universal approximator [133], e.g. it can approximate any nonlinear function
arbitrarily well. Another interpretation is the mixture of experts formulation [56].
For dynamic systems, the term local model network has been proposed by Murray-
Smith [87] is often employed. The local models are usually chosen, such that its
parameters are linear. Thus estimation of the linear parameters of the local models
can be done analytically.

For the estimation of the linear parameters two ways are possible. One is the so-called
global estimation approach. The optimal parameters are determined by jointly opti-
mizing all linear parameters. The second is the so-called local optimization approach,
which computes the linear parameters by a local weighted linear regression.

Global Estimation The global estimation approach optimizes all linear parameters
jointly [90]. This results in the following optimization problem for identification of
the linear parameters

minimize
◊L1 ,...,◊

L
M

Nÿ

k=1

A

y(k) ≠

Mÿ

i=1

Li(x(k), ◊Li )�i(z(k))
B2

. (2.38)

Here, ◊
L
i denotes the part of the parameters on which the i-th local model depends

linearly. For local linear model this will be the slopes and the o�set. If it is assumed
that the system generating the data is disturbed by Gaussian noise with constant
variance ‡

2, the probability distribution of the output is given by

p(y(k)|x(k), z(k)) = N

A

y(k)
----

Mÿ

i=1

Li(x(k), ◊Li )�i(z(k)),‡2

B

. (2.39)

Then the ML estimator of the parameters corresponds to (2.38).

Local Estimation Local estimation of LMNs works di�erently. Instead of mini-
mization of the whole loss for all models, the local loss for each model is computed.
The global estimation approach optimizes all linear parameters jointly. This results
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in the following optimization problem for identification of the linear parameters

minimize
◊L1 ,...,◊

L
M

Nÿ

k=1

Mÿ

i=1

1
y(k) ≠ Li(x(k), ◊Li )�i(z(k))

22

. (2.40)

Also here, a maximum likelihood interpretation can be found. Therefore, the follow-
ing probability distribution is considered

p(y(k)|x(k), z(k)) =
Mÿ

i=1

N (y(k)|Li(x(k)),‡2)�i(z(k)) (2.41)

To exemplify the di�erence, a one dimensional example is chosen. The two local mod-
els are L1(x) = 0.8x+0.2, L2(x) = ≠0.5x+0.5, the variance ‡

2 = 0.1 and the mem-
bership functions µ1(x) = exp

1
≠

1

25
(x ≠ 0.25)2

2
and µ2(x) = exp

1
≠

1

25
(x ≠ 0.75)2

2
.

Here, for the z-input space it holds that x = z. For the local estimation case the
probability distribution is given by

p(y|x) = N (y|L1(x),‡2)�1(x) +N (y|L2(x),‡2)�2(x) (2.42)

and for the global estimation case

p(y|x) = N (y|L1(x)�1(x) + L2(x)�2(x),‡2). (2.43)

The probability distribution for both cases are illustrated in Fig. 2.4. It can be seen
that in the area where the local models are blended the behavior is di�erent. While
the global approach has a Gaussian shape around the mean value of the function,
for the local estimation approach the function becomes multimodal. Interestingly,
both functions have the same expected values but di�er significantly in their pdfs.

Construction of Validity Functions For the construction of the validity functions,
several options are possible. One approach is to apply the Gustaf-Kesselson cluster-
ing algorithm [2] on the available data. Also, algorithms generating splits based on
clustering in the parameter space [81] are possible. Alternative algorithms which are
more robust are tree-based splitting techniques [89, 88, 91, 52]. These algorithms are
inspired by tree construction methods, e.g. by CART [17]. A tree-based construc-
tion algorithm for local model networks is the local linear model tree (LOLIMOT)
algorithm [89, 88]. The working principle is depicted in Fig. 2.5. The idea is to
start with one local model and to conduct a stepwise splitting of the input space. In
the figure, the input space has two dimensions x1 and x2. This input space is then
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Figure 2.4: Probability distribution of a globally (left) and locally estimated (right)
LMN.
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Figure 2.5: Principle of the LOLIMOT algorithm. The worst local model is subse-
quently split orthogonally [90].
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split orthogonally in each dimension. Therefore, two membership functions µ1 and
µ2 are constructed, which are centered in the middle of the two new local models.
The parameters of the new local models are estimated in the next step. Afterwards,
the local loss of each local model is computed. Based on this local loss, it is decided
which model is to be split next. This worst model is split again. This algorithm is
continued until a termination criterion is met. The error on training data decreases
monotonously with an increasing number of splits. To stop the training process,
a complexity selection criterion, which is described in detail in Sect. 2.3, is used.
Usually, the corrected Akaike’s information criterion (AICc) works well [52].

2.1.5 Bayesian Approach

Methods which assign single values to parameters as an estimate are also known
as frequentist methods [43]. In contrast, Bayesian methods compute a probability
distribution of the parameters using Bayes rule and a prior probability. Therefore,
we consider that a distribution of the parameters p(◊) is given. Furthermore, a prob-
abilistic model p(y|◊) is available. The goal of Bayesian identification (or inference)
is to estimate the posterior probability

p(◊|y) =
p(y|◊)p(◊)

p(y) . (2.44)

In the Bayesian statistics literature, p(◊) is called prior, p(y|◊) is the likelihood and
p(y) is the evidence [85].

These methods have the advantages that instead of a single estimate of the param-
eters, the whole probability density function for the parameters is available. The
disadvantage is that the prior probability of the parameter has to be chosen some-
how. The maximum of the posterior distribution can be found according to

maximize
◊

p(◊|y) = maximize
◊

log
1
p(y|◊)p(◊)

2
(2.45)

= maximize
◊

1
log p(y|◊) + log p(◊)

2
,

considering that p(y) is a constant. The solution to this problem is referred to as
the maximum a posteriori (MAP) estimate. In practice, several choices for prior
probabilities of the parameters are possible. The most common ones are Gaussian
distributions.



26 2.1 Statistical Learning

Gaussian Bayesian Models To exemplify the methodology, a linear model is con-
sidered. In the Gaussian case, the parameters are usually distributed around zero
(if nothing else is known a priori) with a given covariance matrix P ◊. Thus, the
probability density of the parameters is given as

p(◊) = N (◊|0, P ◊). (2.46)

If the output is disturbed by white noise, the pdf for the output of the model is

p(y|◊) = N (y|X ◊,‡
2
I). (2.47)

The maximum of the pdf is found as for the prior (2.46) and the conditional proba-
bility of the output (2.47) as a solution to the optimization problem

minimize
◊

1
‡2

Îy ≠ X ◊Î
2

2
+ ◊

T
P

≠1

◊ ◊. (2.48)

For P ◊ = flI, this reduces to the well known Ridge regularization [16]. The parameter
fl is a hyperparameter to control the variance of the prior distribution.

2.1.6 Gaussian Process Models

Gaussian process models [103] extend the idea of Bayesian models to functions. If
it is possible to sample a function, then a Bayesian learning approach for the whole
function seems to be possible. Functions are mathematically more complicated than
parametric models. This is due to the fact that functions are mappings from a real
input space to a real output space. Functions are thus infinite dimensional objects
since, for each of the infinitely possible function inputs, a unique output value exists.
A parametric representation would thus require infinitely many parameters, one
for each possible input value. Handling of this problem is made possible by the
introduction of a kernel or covariance function k(·, ·). It is assumed that two output
values of the unknown function f(u(1)) and f(u(2)) are jointly Gaussian distributed
with the covariance k(u(1), u(2)). This avoids an explicit representation of each
input and each output as a random variable. It is now possible to obtain a joint
probability distribution for the output, given some query output points. The kernel
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matrix for query points has to be a valid covariance matrix

K =

S

WWWWWWU

k(u(1), u(1)) k(u(1), u(2)) . . . k(u(1), u(N))
k(u(2), u(1)) k(u(2), u(2)) . . . k(u(2), u(N))

... ... . . . ...
k(u(N), u(1)) k(u(N), u(2)) . . . k(u(N), u(N))

T

XXXXXXV
(2.49)

for both an arbitrary number and arbitrary values of input locations u(1), . . . , u(N).
Since K should represent a valid covariance matrix, the kernel function has to ful-
fill several properties. First, it has to be symmetric. Furthermore, every possible
matrix K that can be constructed has to be positive definite. If this is fulfilled the
function k(·, ·) has the property to be positive definite. From a standard Gaussian
process, values of a function can be sampled at N query locations u. Therefore, the
kernel matrix is built for these locations, and samples are drawn from a Gaussian
distribution with exactly this covariance matrix. The numerical implementation of
this sampling step works as follows: First, N i.i.d. distributed random numbers z

are generated. Then, the Cholesky decomposition of P = K = L
T
L is computed.

The sampled values of the output can be obtained as y
s
= Lz. The most common

kernel is the squared exponential kernel. It is given by the covariance function

k(u(i), u(j)) = — exp
A

≠Îu(i) ≠ u(j)Î2

2

l
2

G

B

. (2.50)

This kernel has two parameters the lengthscale lG and the factor — which controls the
regularization strength. Samples from the kernel are shown in Fig. 2.6. The lower
the hyperparameter lG is chosen, the more variation is allowed between neighboring
values.

Computation of the Posterior As described in Sect. 2.1.5, Bayesian methods use
Bayes formula to derive the posterior probability density function. For Gaussian
processes this posterior can be computed for the whole function. It can be shown
that the posterior at a query test point uú in the input space is [103]

p(y(uú)|y,X) = N (m̂(uú), ‡̂p(uú)), (2.51)

with X containing all samples of u(k),

m̂(uú) = k(uú
, X)

1
K + ‡

2
I

2
≠1

y, (2.52)
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Figure 2.6: Samples from the squared exponential kernel with varying lG and fixed
— = 1. The left plot shows samples for lG = 0.2, the middle for lG = 0.1
and the right for lG = 0.05.

and
‡̂p(uú) = k(uú

, u
ú) ≠ k(uú

, X)
1
K + ‡

2
I

2
≠1

k(X, u
ú). (2.53)

The prediction of the mean depends on the given output data y. For the predicted
variance ‡̂p(uú) this does not hold. The variance does only depend on the distribution
of the input data.

Relation of GPs and Kernel Based Methods Another understanding for Gaussian
process models can be obtained when kernel methods [109] are considered. This per-
spective also starts by the mathematical idea that functions are infinite-dimensional
objects. Consider two input values, u(1) and u(2), lying in the space of the real
numbers u(1), u(2) œ R and whose corresponding functions values y(1) = f(u(1))
and y(2) = f(u(2)) are given. A function that describes the behavior between u(1)
and u(2) is obviously not unique. In fact, there are uncountable infinitely many pos-
sible function values for the infinite number of locations in between u(1) and u(2).
To characterize the di�erent functions, one possibility is to assign a number to each
function describing its complexity. One possible mapping is called the norm ÎfÎH in
the space H. This idea is illustrated in Fig. 2.7. Here, three possible choices of func-
tions are shown. It is not clear a priori which of these functions to choose. In fact the
choice is motivated by the assumptions made. The assumption that a kernel-based
method makes is that the functions having the minimal norm and fulfill (in the case
of noise free measurements) the conditions f(u(1)) = y(1) and f(u(2)) = y(2). This
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Figure 2.7: Three functions f1, f2 and f3 which fit two points exactly. All functions
are elements of the Hilbert space L2.

can be written as an optimization problem

minimize
fœH

ÎfÎH

subject to f(u(i)) = y(i), i = 1, . . . , N.

(2.54)

If the data is allowed to deviate at the points with an error e(i) = y(i)≠ f(u(i)) this
problem can be formulated as

minimize
fœH

Nÿ

i=1

(y(i) ≠ f(u(i)))2 + ⁄ÎfÎ
2

H
(2.55)

where ⁄ controls the trade-o� between complexity of the function and the first fitting
term. The norm of the function is squared to avoid the occurrence of a square root
in the optimization problem. This idea seems appealing. Instead of minimizing over
real numbers, now the problem is converted into a minimization over functions. One
possibility to make this problem solvable is by choice of the space H, from which
the functions stem. It is useful to characterize H as a so-called reproducing Hilbert
space. For this space, the points u in the input space are mapped to a function each,
according to the feature map

„(u) = k(·, u). (2.56)

Here, to each point, a function is assigned. Usually, the space H in which these
functions lie is called the feature space. This space H is constructed using the kernel
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k(·, ·). Therefore, a function which is an element of H is constructed according to

f(·) =
Nÿ

i=1

dik(·, u(i)) (2.57)

for arbitrary N , di, and u(i). Another function g can then be represented in the
same form as

g(·) =
N Õÿ

i=1

eik(·, uÕ(i)). (2.58)

for arbitrary N
Õ, ei, and u(i)Õ. In this space a scalar product can be defined according

to [103] as

< f, g >H=
Nÿ

i=1

N Õÿ

j=1

diejk(u(i), uÕ(j)). (2.59)

If the scalar product is defined this way, the so-called reproducing property

< k(·, uÕÕ), f >H=
nÿ

i=1

dik(u(i), uÕÕ) = f(uÕÕ) (2.60)

is a special case of (2.59) with ej = 1, uÕ(j) = u
ÕÕ, and N

Õ = 1. This is the reason why
H is also called a reproducing kernel Hilbert space (RKHS). The norm of a function
ÎfÎH can be calculated according to

ÎfÎH =
Ò
< f, f > =

ı̂ııÙ
Nÿ

i=1

Nÿ

j=1

didjk(u(i), u(j)). (2.61)

Now, if the coe�cients di and the locations u(i) are specified, it is possible to calculate
the norm of a function. However, the locations u(i) can be any point in the space
and not necessarily coincide with the points where data has been measured. How is
it possible to minimize ÎfÎH? The answer to this problem is given by the so-called
representer theorem [59], which states that the minimizer fú of (2.54) and (2.55) can
be represented as

f
ú(·) =

Nÿ

i=1

dik(·, u(i)) (2.62)

where u(i) are the locations of the data points. With this result problem (2.55) can
be rewritten as

minimize
d

Nÿ

i=1

Q

ay(i) ≠

Nÿ

j=1

diu(j)
R

b
2

+ ⁄

Nÿ

i=1

Nÿ

j=1

didjk(u(i), u(j)) . (2.63)
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Thus, kernel methods with squared error loss lead to the same optimization problem
as Gaussian process models.

2.2 Dynamic Models

The main factor which distinguishes dynamic models from the classical problem of
statistical learning is the dependence of the process on the time history of the input.
In general, a deterministic dynamic system can be described by a nonlinear state
space system

xs(k + 1) = f(xs(k), u(k)) (2.64)

y(k) = g(xs(k), u(k)). (2.65)

Here, the variable xs(k) is the (hidden) state of the system, u(k) is the input of
the system, the function f(xs(k), u(k)) is the state update and g(xs(k), u(k)) is the
output equation.

The class of models which can be described by this type of structure is quite large.
Many classical mechatronic models, see [55] for an overview, can be described in
this form. However, the model described by (2.65) is deterministic. If disturbances
are considered the most general form of a stochastic nonlinear dynamic model is
described by two pdfs

p(xs(k + 1)|xs(k), u(k)) (2.66)

which is called state update density and

p(y(k)|xs(k), u(k)) (2.67)

called state output density. Now, the transition from one state to the next is stochas-
tic and also the output of the system is a�ected by noise.

The goal of system identification is to identify models for these systems based on
measured input and output data. As described in Sect. 2.1.1 a valid choice is the
construction of a maximum likelihood estimator for the prediction of the outputs
pdf. To simplify notation of the pdfs, consider a signal y(k) for which the following
vector is introduced.

y
ka:kb

= [y(ka), y(ka + 1), . . . , y(kb)]T (2.68)
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with discrete start time ka and discrete end time kb. For ML estimation, as for a
static systems, the pdf of a model p̂(y|u, ◊) is considered. The pdf of the output
conditioned on the input can be decomposed according to

p̂(y
0:N

|u0:N , ◊) = p̂(y(0)|u(0), ◊)p̂(y(1)|y(0), u0:1, ◊) . . . p̂(y(N)|y
0:N≠1

, u0:N , ◊).
(2.69)

In an ML problem, this has to be minimized with respect to the unknown parameters
◊. To make (2.69) hold, only the definition of conditional probability and the as-
sumption that the system is causal is employed. This holds, since for a causal system
it is true that p(y(k)|y

0:k≠1
, u0:N) = p(y(k)|y

0:k≠1
, u0:k). The probability distribution

p(y(k)|y
0:k≠1

, u0:k) is called the one-step predictor, due to the reason that the pdf
of the output is conditioned on all past inputs and outputs. Since maximizing the
logarithm of (2.69) is the same as minimizing the negative sum of the logarithm of
the probabilities of the one-step predictors

J =
Nÿ

k=0

log p̂(y(k)|y
0:k≠1

, u0:k). (2.70)

methods relying on this decomposition are called prediction-error methods (PEM) [66].

To find the likelihood p(y
0:N

|u1:n, y1:n≠1
) for a nonlinear state-space system is a chal-

lenging problem on its own and is called the filtering problem [110]. In general, for
the nonlinear state space structure, no analytical solution exists and the filtering
solution has to be approximated by an extended Kalman Filter [47] or a particle
filter [110] and the states have to be estimated concurrently with the identification
procedure. One way to avoid solving the filtering problem is to utilize model struc-
tures that allow for an analytical solution for the one-step predictors. In Sect. 2.2.1
linear model structures, e.g. model structures for which f(xs(k)) and g(x(k)) are
linear functions, are described.

2.2.1 Identification of Linear Dynamic Models

For linear system identification, a general model structure, which allows for an ana-
lytic calculation of the one-step predictions, has been proposed in [67]

y(k) = G(q)u(k) +H(q)n(k) (2.71)

This structure contains the input u(k) of the system, which is applied to the trans-
fer function G(q). This transfer function calculates a deterministic output signal. A
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u(k)

e(k)

y(k)

Figure 2.8: General model structure for linear system identification [67].

noise signal n(k) is applied to the transfer function H(q) and is added to the deter-
ministic output for obtaining the measured output y(k) of the system. The operator
q is the shift operator [48] which, if applied to a signal, increases the time step by 1
so that qu(k) = u(k+1) holds. A graphical representation of the system is shown in
Fig. 2.8. The one-step ahead predictor for this system class can be written as [67]

ŷ(k|k ≠ 1) = G(q)
H(q)u(k) +

A

1 ≠
1

H(q)

B

y(k ≠ 1) (2.72)

and is used in the prediction error method for system identification. We review three
basic types, which can be described in this form.

Autoregressive Exogenous (ARX) Models The ARX model considers the same
denominator dynamics for noise and the system. For the ARX model G(q) = B(q)

A(q)

and H(q) = 1

A(q) . It is described by

y(k) = ≠a1y(k≠1)≠ . . .≠any(k≠n)+ b0u(k)+ b1u(k≠1)+ . . .+ bnu(k≠n) (2.73)

with the model order n. Its popularity is mainly due to computational reasons, and
it has been highlighted that the noise assumption made here is usually unrealistic
for many technical systems, which are usually disturbed by white output noise [67].
To solve the identification problem, the parameters of the ARX model are collocated
in the 2n+ 1 dimensional parameter vector

◊
T =

Ë
a1 a2 . . . an b0 b2 . . . bn

È
(2.74)
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and the N ≠ n ◊ 2n+ 1 dimensional regressor matrix is constructed according to

X =

S

WWWWWWU

≠y(n) . . . ≠y(1) u(n+ 1) . . . u(1)
≠y(n+ 1) . . . ≠y(2) u(n+ 2) . . . u(2)

... ... ... ... . . . ...
≠y(N ≠ 1) . . . ≠y(N ≠ n) u(N) . . . u(N ≠ n)

T

XXXXXXV
. (2.75)

The output vector used for estimation is

y =
Ë
y(n+ 1) . . . y(N)

ÈT
. (2.76)

The solution can then be found by the least squares estimator (2.25). For an exam-
ple of results for ARX identification and the inconsistency problem for simulation
models, the reader is referred to Sect. 1.2.

Finite Impulse Response (FIR) Models The inconsistency problem with output
noise can be overcome by using FIR models. These models do not consider feedback
and G(q) = B(q) and H(q) = 1. These models are identified in exactly the same
way as ARX models with the di�erence that the coe�cients ai and the delayed
values for y(k) are not used in the parameter vector and the regressor matrix. The
problem these models can have is the issue of high parameter variance, as described
in Sect.1.2.

Output Error (OE) Models If G(q) = B(q)
A(q) and H(q) = 1, then the model is

called an output error (OE) model. The predictor for this model is not linear in
the parameters anymore, and thus the resulting optimization problem is nonlinear.
It is usually solved numerically using second order optimization schemes. For more
information, the reader is referred to [90]. The primary obstacle in the application
of this type of model is the possibility of local optima and a low robustness in
case of order mismatch. This type of model will be compared to novel regularized
identification techniques in Sect. 3.5.2. Here, it can be seen that the nonlinear
optimization problem possesses local optima.

2.2.2 Regularized Identification of FIR Models

As we have seen, FIR models su�er from a high variance error, especially if the
system is excited badly or the SNR is low. To avoid this issue, recently, regularized
identification methods for FIR systems have been developed [99, 98]. In the sur-
vey [100], the main contributions have been summarized. The idea is to reduce the
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variance error by adding a regularization term to the optimization objective. If a
quadratic penalty is chosen, the regularized FIR identification problem becomes

minimize
◊

...y ≠ X ◊

...
2

2
+ ⁄◊

T
R ◊ (2.77)

with ⁄ determining the strength and the semidefinite matrix R determining the
form of the penalty. The matrix R has to be semidefinite since otherwise arbitrarily
negative values can obtained for the loss by choosing ◊. If R is positive definite (2.77)
can also be written with R = P

≠1. Here P is another positive definite matrix, which
can be interpreted as a covariance matrix. Usually, the matrix P is restricted to some
subspace of the positive definite matrices. The simplest example is a diagonal matrix.
The resulting identification problem is then equivalent to ridge regression [54]. In [97]
a specific parameterization of P as well as the marginal likelihood algorithm for
hyperparameter tuning is proposed. The solution to the problem can be found
as [28]

◊̂ =
1
X

T
X + ⁄R

2
≠1

X
T
y. (2.78)

The solution can be computed e�ciently using a QR factorization as described in
Sect. 2.1.2 for linear regression [26].

The Bayesian Framework Deeper understanding of the role of P , can be obtained
by a Bayesian perspective [28]. The output of an FIR system can be written as

y = X ◊ + n. (2.79)

The vector n contains Gaussian noise with i.i.d. entries and covariance ‡
2. As de-

scribed in Sect. 2.1.5 in a Bayesian framework, prior probabilities are assigned to the
parameters. In contrast to the frequentist approach, the Bayesian approach assumes
prior knowledge for the parameters ◊. One could say that the Bayesian approach
favors some parameters in advance, while the frequentist approach considers every
possible parameter as equally probable. In the case of the regularized FIR identifi-
cation method, the prior distribution of the parameters is assumed to be Gaussian
with

p(◊) = N (◊|0, flP ) = N (◊|0, P ◊). (2.80)

The parameter fl is used to scale the prior distribution. It is not equal to ⁄ in (2.77),
since the strength of the regularization in the Bayesian case is influenced by both
the variance of the noise and the scaling factor of the parameter covariance. To
simplify the notation, we will denote the scaled covariance matrix of the parameters
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by P◊ = flP and the unscaled version by P .

Taking this into account, the joint probability distribution of y and ◊ can be calcu-
lated by [28]

p

Q

a

S

U ◊

y

T

V

R

b = N

Q

a

S

U ◊

y

T

V

------
0,

S

U P ◊ P ◊ X
T

X P ◊ X P ◊ X
T + ‡

2
IN

T

V

R

b . (2.81)

The posterior distribution of the parameters conditioned on the measured output y
can be calculated as

p(◊|y) = N

1
◊|◊̂, �̂◊

2
(2.82)

with

◊̂ =
1
P ◊ X

T
X + ‡

2
In+1

2
≠1

P ◊ X
T
y (2.83)

and

�̂◊ =P ◊ ≠ P ◊ X
T

1
X P ◊ X

T + ‡
2
IN

2
≠1

X P ◊. (2.84)

This result can be derived by using the analytical formula of conditionals for Gaussian
distributions, see [95].

The estimation of the posterior distribution for the mean of the parameters can also
be written as

◊̂ =
A

X
T
X + ‡

2

fl
P

≠1

B
≠1

X
T
y (2.85)

This is the same solution as (2.78) with ⁄ = ‡2

fl and R = P
≠1.

The computation of the variance �◊ is computational demanding since (2.84) con-
tains the inverse of a matrix which is N ◊ N . To simplify the relation, a matrix
inversion lemma can be employed

�̂◊ =P ◊ ≠ P ◊ X
T

A
IN

‡2
≠

IN

‡2
X

3
P

≠1

◊ +X
T IN

‡2
X

4≠1

X
T IN

‡2

B

X P ◊ (2.86)

=P ◊ ≠ P ◊
X

T
X

‡2
P ◊ ≠ P ◊

X
T
X

‡2

A

In+1 + P ◊
X

T
X

‡2

B≠1

P ◊
X

T
X

‡2
P ◊. (2.87)

This reduces the computational demand for the computation of �̂◊ since it only
contains inverses of the size n+1◊n+1. The Bayesian approach has, compared to
the regularized approach an additional hyperparameter ‡

2 which is the variance of
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Figure 2.9: Role of the hyperparameter fl for samples from the covariance matrix.
The left responses are sampled from fl = 10, the middle from fl = 1 and
the right from fl = 0.1, – = 0.92 is held fixed. The lower fl is chosen, the
further the samples deviate from zero.

the noise. Both scaling of the covariance matrix fl and ‡
2 influence the regularization

strength ⁄. The same holds for the Bayesian interpretation of Gaussian process
models.

Choice of the Prior Knowledge Several choices for the prior knowledge incorpo-
rated by the matrix P are possible. In the initial paper [99], the so-called stable-spline
kernel is introduced, leading to the covariance matrix

Pij = –
max(i,j) (2.88)

in the first order case. This kernel has one hyperparameter –. Samples of parameters
drawn from the prior distribution, corresponding to this kernel, are shown in Fig. 2.9
for di�erent choices of fl and in Fig. 2.10 for di�erent choices of –. It is clearly visible
that fl determines the deviation of the coe�cients of the impulse response from zero
and – influences the decay.

The identification of FIR models can significantly benefit from this approach in prac-
tice. Recently, for a polymer reactor, the application of this type of regularization
allowed for a remarkably better identification result. The behavior went from a very
wiggly to an interpretable behavior of the impulse responses [78].

There are several other options for the design of the covariance matrix. An approach
to include several system theoretical properties in the prior knowledge, like non-
oscillatory behavior or relative degree, has been described by [36]. An alternative
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Figure 2.10: Role of the hyperparameter – for samples from the covariance matrix.
The left responses are sampled from – = 0.85, the middle from – = 0.9
and the right from – = 0.95, fl = 1 is held fixed. The parameter –

determines the decay of the impulse responses.

is based on orthonormal basis function (OBF) kernels [33, 27]. Another approach
has been presented in [23]. Here, a linear state space system is excited from random
initial conditions to obtain the desired kernel. In [8], an approach is described which
trains a neural network, which constructs the kernel matrix for the regularization
based on the whole input/output data of the system. From this point of view,
the choice of the kernel seems to be vague and somewhat arbitrary. The primary
justification for the usage is the performance of the kernels on stochastic benchmarks.
However, it is essential to choose these benchmarks carefully, since otherwise, the
class of kernels selected on these benchmarks perform bad in the real world [105].
An attractive property, which the TC kernel has in contrast to other kernels, is the
maximum entropy property [25, 21]. In some sense, this property can be interpreted
as incorporation of the least prior knowledge possible when the covariance of two
values following one another should decay exponentially.

One of the major goals of this thesis is to put the design of the kernel back to a
systems viewpoint. Therefore, in Chap. 3 impulse response preserving kernels will be
introduced, which allow for a better interpretation of the prior knowledge induced.

Extensions There are some notable extensions to the FIR case. In [101], an ex-
tension has been proposed which also regularizes the coe�cients of the denominator
coe�cients of an ARX model. In [31] the method is extended to dynamic linear net-
work identification. In [14] a generalization for spectrum identification is given.
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Alternative Approaches Beside the usage of the quadratic regularization penalty,
there are other approaches which can be applied for regularization. An alternative
approach has been described in [125]. Here, the idea is to put a prior on the Hankel
singular values of the transfer function. This prior is compared to the Gaussian
prior not analytically tractable and thus advanced Bayesian techniques (like Markov
chain Monte Carlo) have to be used, which are computationally demanding. Another
approach is the usage of the 1-norm instead of the 2-norm of the parameters [104].
This encourages sparsity in the impulse response. A significant drawback of this
approach is that this prior knowledge is often not well suited for impulse responses
of dynamical systems which are exponentially decaying and thus not sparse in the
coe�cients. In [106], a sparse method which also considers the outputs of the system
is described. Another line of research follows identification of linear networks [31,
135]. The idea here is to impose two regularizers. One, with 2-norm, to regularize
the impulse response and another 1-norm regularizer to keep the interaction within
the dynamic network sparse.

2.2.3 Prediction Error Methods for Nonlinear Systems

The idea of PEM for linear systems has been described in the previous section. In
principle, PEM works for nonlinear systems in the same way [66]. However, finding
the optimal predictor for e.g. nonlinear state-space systems is a challenging problem
on their own. Several methods combining filtering and optimization for the model
parameters exist [110, 64, 45, 44, 122]. These methods increase the computational
demand needed for the filtering step significantly. In this contribution, we focus on
descriptions allowing a simple computation of the predictor.

NARX system identification As in the linear case, the NARX structure allows for
the computation of a simple one-step predictor. This commonly applied model [22]
is described by

ŷ(k) = f(u(k), . . . , u(k ≠ n), y(k ≠ 1), . . . , y(k ≠ n)). (2.89)

If the model structure holds in the real world, it has been shown that when f is chosen
as a GP as the number of observations tends to infinity, the function is identified
consistently [35]. In [61], identification of NARX models with GPs is described in
detail. However, as for the linear case described in Sect. 2.2.1, the noise assumptions
made are not valid for many real world systems. This has the consequence that the
estimate is biased. In the worst case, it can happen that, due to the inconsistency
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Figure 2.11: Overview of available model selection techniques.

of the NARX method, an unstable model is identified, although the true system is
stable.

NOE system identification Nonlinear output error (NOE) identification methods
mitigate the inconsistency issue. This idea can be applied for linear system iden-
tification as well. There, it is called an output error (OE) model. The significant
advantage of this approach is that if the correct order predictor for a simulation
model is trained, then the obtained solutions share the advantageous properties of
an MLE discussed in Sect. 4.2.2. The significant drawback is that it is possible that
the obtained solution is a local minimum. Some results exist for the construction
of appropriate input signals to avoid this issue [37]. For many real world systems,
however, the input cannot be chosen by the user.

2.3 Complexity Selection

Usually, the parameters of a model are estimated based on data. If the same data is
used again to evaluate the performance of the model, then the estimated performance
on these data will be better than on independently generated test data. The more
complex the model is, the higher will be the di�erence between these two errors. The
ability of a model to perform well on independent test data is termed generalization
ability of the model. The fact that the model is better on training than on test
data is called overfitting, and the process of selecting a model that performs best on
test data is called complexity selection. Several techniques for complexity selection
have been developed. Several models are fit on data and, subsequently, one of these
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Figure 2.12: Schematic illustration of the bias-variance dilemma. If the model com-
plexity is increased the bias of a model is reduced but the variance of
the estimate becomes worse.

multiple models is selected. The taxonomy of di�erent model selection techniques
is shown in Fig. 2.11. One way, shown at the right side of the figure, is to keep
a hold-out dataset aside to estimate the generalization ability of the model. The
classical train/test split technique falls under this category. Here, the training data
is split once. The model is trained on the training data. The performance of the
model is evaluated on test data kept aside during the training process.

General cross-validation methods are another class of approaches. Here, data is split
in several parts, e.g., 5 folds. Subsequently, on a fraction of each of these parts,
training is performed and the performance is evaluated on the part of the data left
aside. This procedure is repeated until each part has been left aside once. The sum
of the loss function of all repetitions is a measure for the performance on test data.
Methods falling under this category are discussed in Sect. 2.3.1.

Other approaches circumvent the need for a hold-out dataset. These can be fur-
ther divided depending on whether the criterion assumes that the true system is
contained in the model set or that it is not. Criteria assuming the true model struc-
ture to be contained are AIC [5], AICc [121], and BIC [116]. Techniques which rely
on probabilistic bounds include VC dimension [127], Rademacher complexity [10]
and PAC-Bayesian bounds [75] and work without this assumption. Although many
attempts have been made, the actual state of science is far from a complete under-
standing of the generalization phenomena. Recently, it has been discovered in [134],
that state-of-the-art neural networks can remember the labels for white-noise gener-
ated input images. Classical approaches are not able to explain the performance of
these interpolating methods.
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Bias-Variance Trade-o� In the following, a model with additive noise at the pro-
cess output is considered. The measured output of the model is described by

y(u(k)) = yu(u(k)) + n(k) (2.90)

with n(k) denoting i.i.d. noise with mean zero and variance ‡
2 and yu(u(k)) is the

undisturbed output of the system. If, for this system, a model is fit and the expected
value of the error is analyzed, then three terms occur [90, 43]

Ey≥p(y),ŷ≥p(ŷ)(y(u) ≠ ŷ(u))2 =
Ë
yu(u) ≠ Eŷ≥p(ŷ)(ŷ(u))

È2

¸ ˚˙ ˝
bias

2

+ Eŷ≥p(ŷ)

Ë
ŷ(u) ≠ Eŷ≥p(ŷ)ŷ(u)

È2

¸ ˚˙ ˝
variance

+ ‡
2

¸˚˙˝
irreducible error

. (2.91)

The first term is the bias which describes the error component of the model due to
the error between the modeled and the true function. The derivation of the bias-
variance decomposition is done at a specific point u within the input space. This,
however, makes this quantity local. The bias error happens just at one prespecified
location and there can and will be a di�erent bias error at every location of the
estimated function. A simple method to quantify the global bias error is to calculate
the mean of the bias error at all sampled locations. In many practical relevant cases,
this will be useful. However, when in a dataset e.g., many low values occur, the bias
error in these regions will be emphasized. In Fig. 2.12 it is illustrated that the bias
error decreases with increasing complexity of the model.

The second error term is the variance error. This error describes the e�ect of noise
contained in the data on the parameter estimate. In contrast to the bias error, the
variance error increases with increasing model complexity, as shown in Fig. 2.12. It
is, as the bias, a local quantity depending on the location u. Thus, the variance error
can also be di�erent at di�erent locations within the input space.

The third term is noise variance, the irreducible error. This part is entirely random
and cannot be reduced, whatever identification method is employed. In consequence,
this means that the choice of an appropriate model structure also means to choose
a suitable bias-variance trade-o�. This is illustrated by the U-shaped curve, shown
in Fig. 2.12 which is the sum of bias and variance error. The optimal complexity of
a model lies at the point where the sum of these two terms is minimal. Also, for
Bayesian methods in system identification, the appropriate bias-variance trade-o�
matters. Here, it is controlled by an appropriate amount of regularization [72].
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Train/Test Split A simple technique for this type of task is the decomposition of
the data in training, validation, and test data. The model is trained on the training
data, and model selection is performed on validation data. Finally, model assessment
is conducted on the test data. This type of technique is statistically quite sound.
It provides estimates for the right statistical quantities for the model selection and
the model assessment task. Its most significant drawback, however, is the necessity
to leave out data that must not be available for the training phase. This is not a
big deal if a large amount of data is available. In an industrial context, it can be
a substantial cost driver. This is a significant drawback of this approach for real
applications [12].

2.3.1 LOOCV and GCV

Another alternative is to use the leave-one-out cross-validation (LOOCV). Here, one
data point is left out and training is performed on the other N ≠ 1 points. This
procedure is repeated N times and the LOOCV error is the mean error on the data
points left out. It is often argued that the variance of the LOOCV error is high
since only one point at a time is changed [43]. Thus, it is advantageous to leave out
more than one point. A common procedure is to split the data into 5 equally sized
parts and estimate 5 models with each of the parts left aside once. Then the loss is
evaluated for each model on these left aside parts. This is called k-fold (or in this
case 5-fold) cross-validation.

In [12], though, it has been shown that the estimation of this variance for k-fold
cross-validation is rather problematic. Especially, it is not clear whether LOOCV
has higher or lower variance than k-fold cross-validation. Thus, this argument is at
least not valid in general.

Despite possible problems with the variance of the estimate, the practical applica-
bility of LOOCV is limited in general since a brute-force approach of LOOCV would
require the estimation of N models which is computationally demanding. Linear
models make an exception to this fact. For linear regression the leave-one out cross-
validation error JL can be computed according to [43]

JL = 1
N

Nÿ

i=1

A
y(i) ≠ ŷ(i)
1 ≠ Sii

B2

(2.92)
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with Sii denoting the i-th diagonal element of the smoothing matrix

S = X

1
X

T
X

2
≠1

X
T
. (2.93)

This quantity is not invariant to rotations of the measurement coordinate sys-
tem [50]. In contrast the generalized cross-validation (GCV) criterion

JG = 1
N

Nÿ

i=1

Q

ay(i) ≠ ŷ(i)
1 ≠

tr(S)
N

R

b
2

. (2.94)

fulfills this property. Instead of the diagonal entries which weight each error only
the trace of the smoothing matrix has to be calculated. This technique has been
derived for the estimation of a good ridge parameter [50]. It is also possible to apply
this technique for Bayesian system identification. In this case, the smoothing matrix
is calculated according to

S = X

1
X

T
X + ⁄R

2
≠1

X
T
. (2.95)

If (2.94) is optimized with respect to hyperparameters (like ⁄ or parameters of R),
the hyperparameters are identified consistently [76].

2.3.2 Information Criteria

Besides cross-validation, another option to deal with the bias-variance dilemma are
information criteria. These criteria penalize the number of parameters by adding a
penalty term to the log-likelihood [119]. The loss function then reads as

J = log p̂(y, ◊) + ‰(n,N)n (2.96)

with N denoting the number of samples and n denoting the number of parameters.
The function ‰(n,N) is chosen according to the used information criterion. An
overview of popular choices is given in Tab. 2.1.

To deal with the bias-variance trade-o�, an information criterion has been derived
by Akaike in a series of papers [4, 6, 5]. The idea of the AIC is to consider the loss
term

JAIC = Ey
v
≥p(y)Ey

t
≥p(y) log p̂(yv|◊̂(yt)). (2.97)
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Name (long) Name (short) ‰(n,N)
Akaike’s Information Criterion AIC 2
Corrected Information Criterion AICc 2 N

N≠n≠1

Bayesian Information Criterion BIC lnN

Table 2.1: Values of the penalty function ‰(n,N) depending on the chosen informa-
tion criterion [119]
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Figure 2.13: Illustration of di�erent expected values used for computation of JAIC.
The left side shows a sample from the training data y

t
employed to

estimate the parameters ◊̂(y
t
) and the right side shows a sample from

the validation data employed to estimate the performance of the model.

Here, it is important to distinguish between two probability distributions. The first
is the true underlying data generating distribution p(y) and the second p̂(y

v
|◊̂(y

t
)))

is the model of the probability distribution. The modeled probability distribution
depends on the ML estimate of the parameters ◊̂(y

t
) which themselves depend on the

vector of training data y
t
. The likelihood is evaluated on independently drawn vali-

dation data y
v
. This expectation Ey

v
≥p(y)Ey

t
≥p(y) means that validation data y

v
and

training data y
t
are sampled independently from the same probability distribution.

This is illustrated in Fig. 2.13. The left plot shows a sample from the training data y
t

and the right plot shows a sample from the validation data y
v
. In other words, (2.97)

means that the AIC estimates the expected valued of the likelihood on independently
generated validation data. Another important fact is that the locations of the data
within the input space remains the same for y

t
and y

v
. A fact, commonly ignored

about AIC, is the distribution of the input data. One common assumption is that
input data is generated from a distribution depending on the input space p(x). The
error for the estimation of AIC is then only estimated in sample [43]. This means
that for the estimation only a resampling of the points at exactly the same locations
as in the training data is considered.
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Taylor expansion at ✓̂ about the point ✓0

Taylor expansion at ✓0 about the point ✓̂

Figure 2.14: Route for the derivation of the AIC. The derivation requires two Taylor
expansions of the log likelihood.

The goal of the AIC is to get rid of the expectation term depending on the training
data Ey

t
≥p(y) [19]. To enable this, two Taylor expansions are needed. This process

is illustrated in Fig. 2.14. The first steps allows to eliminate the dependence on
the training data, but the result depends on the (unknown) true parameters ◊0. The
second Taylor expansion removes this dependence. These two steps for the derivation
are examined in detail.

The first Taylor expansion The second order Taylor approximation of p(y
v
, ◊̂) is

formed according to

log p̂(y
v
|◊̂(y

t
)) ¥ log p̂(y

v
, ◊0) +

S

U ˆ log p̂(y
v
|◊)

ˆ◊

-----
◊=◊0
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T Ë

◊̂ ≠ ◊0

È

+ 1
2

Ë
◊̂ ≠ ◊0
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2 log p̂(y

v
, ◊)

ˆ2◊

-----
◊=◊0

Ë
◊̂ ≠ ◊0

ÈT
. (2.98)

Now, the expectation with respect to the validation data is applied to the three
terms. The first term depends only on ◊0 and is thus not influenced by the training
data. The second term is the gradient of the log-likelihood function. The parameter
◊̂ maximizes the log-likelihood function. So

Ey
v
≥p(y)

S

U ˆ log p(y
v
|◊)

ˆ◊

-----
◊=◊0

T

V
T Ë

◊̂ ≠ ◊0

È
= 0 (2.99)
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The third term requires some analysis. First, it is noted that the third term can be
written as

1
2

Ë
◊̂ ≠ ◊0

ÈT ˆ
2 log p̂(y

v
, ◊)

ˆ2◊

-----
◊=◊0

Ë
◊̂ ≠ ◊0

ÈT

=1
2tr

Q

a ˆ
2 log p̂(y

v
, ◊)

ˆ2◊

-----
◊=◊0

Ë
◊̂ ≠ ◊0

È Ë
◊̂ ≠ ◊0

ÈT
R

b (2.100)

The expected value of the term ˆ2
log p̂(yv ,◊)

ˆ2◊

---
◊=◊0

is the Fisher information matrix. The

term
Ë
◊̂ ≠ ◊0

È Ë
◊̂ ≠ ◊0

ÈT
is the covariance of the parameters which is the inverse Fisher

information matrix [19]. If the Fisher information matrix has full rank, e.g. the
system is identifiable, the trace of a matrix times its inverse will be equal to the
number of the parameters. For the quantity JAIC, this leads to

JAIC ¥ Ey
v
≥p(y) log p(yv|◊0) +

1
2n (2.101)

Now, the quantity depends on the true parameters ◊0. Thus, the loss term is not
influenced by the e�ect the training data has on the parameter estimate. Unfortu-
nately the true value of the parameters ◊0 is unknown.

The second Taylor expansion To circumvent this issue, the same procedure as
before is applied again and it is found that

log p̂(y
v
|◊0)) = log p̂(y

v
, ◊̂) +

S

U ˆ log p̂(yv|◊)
ˆ◊

-----
◊=◊̂
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È
(2.102)
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ˆ2◊
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ÈT
. (2.103)

Here, with the same arguments as above, it can be shown that [19]

Ey
v
≥p(y) log p̂(yv|◊0) ¥ Ey

v
≥p(y) log p(yv|◊̂) +

1
2n (2.104)

so in total for JAIC the quantity

JAIC ¥ Ey
v
≥p(y) log p(yv|◊̂) + n (2.105)

is found. If all terms are multiplied by two, this is the classical AIC criterion of
Akaike [4]. In the orignal paper, multiplication by two has been done for simplifi-
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cation. If a Gaussian noise model is assumed, multiplication by two has the e�ect
that the term 1

2
occuring in the exponent of the Gaussian pdf is canceled in the first

term of the AIC.

To summarize the results, three steps are applied to derive the AIC. The first is to ap-
proximate the likelihood with a quadratic expansion. Secondly, the expectation with
respect to the training data is calculated. Thirdly, again a quadratic approximation
is applied to eliminate the dependence on the true parameters.

The AIC is derived for N æ Œ. For low ratios of N
n the estimate is biased. To deal

with this bias the corrected AIC or AICc [121]

AICc = log p̂(y, ◊̂) + 2 N

N ≠ n ≠ 1n (2.106)

has been proposed. The term N
N≠n≠1

tends to 1 if N >> n and increases the less N
and n deviate.

In many practical scenarios with local model networks, the AICc has been observed
to work quite well, even when it is the case that some assumptions for its derivation
do not hold. The reason is that the curve of the training error for the local model
networks is monotonically decreasing with an elbow-like shape. At the same time,
the number of parameters increases linearly. It is often not too crucial, whether 20
or 25 models are estimated so that many of the information criteria work well in
practice [52].

2.3.3 Statistical Learning Theory and VC-Dimension

Information criteria are important since they allow for easy handling of the penalty
term and often yield good results, especially for local model networks, see e.g. [52],
for an application to LOLIMOT and HILOMOT. There are two drawbacks, however.
The first is that the true model is assumed to lie in the model class parameterized
by ◊. The other is that only the in-sample error is investigated. The locations in
the input space the model is evaluated at is kept fixed. These drawbacks can be
circumvented considering the second possible interpretation of regression described
in Sect. 2.1. These methods find a probabilistic inequality, setting training and test
error in relation [127]. Therefore the risk R(◊), described by (2.2), is considered.

It is essential to notice that R(◊) is the expectation with respect to both the input
and the output, in the joint distribution p(x, y). This means that the risk calculated
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depends on the distribution of the input and output data. This is crucial for all
bounds derived. For a nonlinear dynamic system, this means that if the input signals
for training and testing are di�erent regarding their distribution in the input space,
then the value of the risk will change significantly. All the bounds derived by this
theory are only valid if the joint distribution of input and output is the same for
training and test data.

Now, the bounds derived assume that ŷ lies within a class of functions H. For exam-
ple, H can be every linear function or a neural network. In reality only samples from
p(y, x) are available. Thus the function ŷ is chosen which minimizes the empirical
risk

RS(◊) =
1
N

Nÿ

k=1

(y(k) ≠ ŷ(x(k), ◊))2 . (2.107)

The empirical risk is obtained when the available samples of p(x, y) are used to
approximate the expectation within the definition of R(◊). The goal of learning
theory is to provide bounds for the di�erence between the risk RS given by (2.107)
and R given by (2.2).

Since everything involved in this problem is random, the di�erence between these
two risks is also random. Thus any inequality will only hold with some probability of
1≠”. These bounds depend on a measure of the complexity of the set of functions H
from which a function minimizing the risk RS(◊) can be selected. The most common
measure of complexity is the VC dimension of H [127]. The VC dimension is a
measure of size for the, possibly infinite, set of hypotheses H. It has been originally
developed for the characterization of sets of indicator functions but can be extended
to sets of real-valued functions, too [127]. The most important case of functions for
which an explicit formula for the VC dimension can be provided are functions linear
in their parameters. For this function class the VC dimension is nV C = n + 1. The
number of parameters is thus (up to the summand 1) equal to the VC dimension.
It is important to notice that this does not necessarily hold for the nonlinear case,
see [126] for some illustrative examples. If the VC dimension of an estimator is
known, then usually bounds of the following type are proposed [127]

R(◊) Æ RS(◊)(1 ≠
Ô

‰)≠1

Œ
, (2.108)

where

x
≠1

Œ
=

Y
_]

_[

1

x x > 0

Œ x Æ 0
(2.109)



50 2.3 Complexity Selection

102 103 104 105
10�2

10�1

100

101

102

103

N

1
�

⇣
1

1
�
p
�

⌘

�C2

�C1

�Ch

�V 1

�V 2

Figure 2.15: Di�erent VC bounds for regression depending on the number of samples.
The VC dimension is fixed to 60. For ‰C1 and ‰V 1 the certainty is
” = 0.99 and for ‰C2 and ‰V 2 the certainty is ” = 1 ≠ 10≠6. For ‰Ch

the certainty depends on the number of samples according to ” = 1
Ô
N
.

is defined to simplify notation. Furthermore, ‰ depends on the number of samples
N and the VC dimension nV C . The original bound stems from Vapnik [127] and
reads

‰V = ·

nV C

1
ln

1
2 N
nV C

2
+ 1

2
≠ ln ”

4

N
. (2.110)

Here, the constant · depends on form and existence of the moments of the probabil-
ity distribution. If arbitrary moments exist (which is the case for most distributions
including the uniform and the Gaussian distribution), then · <

Ô
3. Another practi-

cal bound, which seems to be a looser version of Vapnik’s bound, has been described
in [29]. The ‰ term for the bound reads

‰C =
nV C

1
ln

1
N

nV C

2
+ 1

2
≠ ln ”

N
(2.111)

There is also a version where the safety factor depends on the available amount of
data and ” = 1

Ô
N

is chosen. This results in

‰Ch = nV C

N
≠

nV C

N
ln nV C

N
+ lnN

2N (2.112)

where nV C is the so-called VC dimension of an function [29]. The di�erent bounds
based on VC dimension are shown in Fig. 2.15. It can be seen that the bound
derived by Vapnik is significantly looser than the later bounds given by [29]. Also,
the asymptotic behavior is interesting. It can be seen that the quotient of the error
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decreases by a rate depending on
Ô
N .

For further investigation of the bounds, a second order system oscillatory system

G(z) = 0.476z + 0.456
z2 ≠ 1.79 + 0.882 (2.113)

is considered. The system is excited by independent white noise with unit variance
and also the output of the system is disturbed by white noise with unit variance. An
FIR system with nVC = 60 is identified with the generated data. The experiment is
repeated 20 times for logarithmically spaced values of N . The resulting bounds are
shown in Fig. 2.16. It can be seen that all bounds are always valid. However, espe-
cially in the areas which are practically very relevant N = 1000 up to N = 10 000,
the bounds are very loose. This is a significant drawback for the practical applica-
tion of this method. Another disadvantage of the bounds is that sequential tree
construction algorithms like LOLIMOT, do not perform an exhaustive search over
the space of possible models. Instead, these algorithms as described in Sect. 2.1.4,
follow a greedy strategy. To calculate the VC dimension of tree-based algorithms,
the number of possible models has to be considered. This is not a good estimator
since the reduction of complexity created by the greedy strategy is not taken into
account. This makes the bound obtained even worse. Using this bound for model
selection has the significant disadvantage that it will prefer very simple models and
not perform as well as other more optimistic estimates, like the AICc.
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2.3.4 The Maximum Likelihood Approach for Bayesian Methods

If Bayesian methods are applied for identification, hyperparameters “ have to be
tuned. One common way is the GCV approach described in Sect. 2.3.1. The other
option is the ML method to identify the hyperparameters. This works as follows.
The probability of the measured output

p(y) =
⁄

p(y|◊)p(◊)d◊ (2.114)

is computed. Since it involves the computation of a complicated integral, this is ana-
lytically only possible for some special cases. These cases include Gaussian processes
and the regularized FIR case. For the later it holds that [28]

p(y) = N

1
y|0, flXP X

T + ‡
2
IN

2
= N (y|0,�y). (2.115)

The log-likelihood can then be written as

log p(y) = ≠
1
2 log det�y ≠ y

T�≠1

y y + const. (2.116)

A significant burden lies in the computation of the second term since it includes
terms with the inverse of �y. The resultant matrix is N ◊ N which hinders e�cient
computation. This can be overcome by the usage of e�cient algorithms [26].

Some authors argue that the marginal likelihood approach works better than gener-
alized cross-validation or information criteria [96]. This discussion is not exclusive
for regularized FIR identification. It has already been discussed for the general case
of kernel methods [128]. In fact, it seems that di�erences between these methods are
marginal and strongly dependent on the random test systems employed for bench-
marking.

Optimization of the marginal likelihood or GCV is a non-convex problem [71]. In [24],
an approach for optimization of the hyperparameters is described, which can be for-
mulated as a di�erence of convex optimization problems. For this type of problems,
reliable heuristics for global optimization exist, see [65] for a recent overview.

2.3.5 Practical Recommendation

For practical purposes, it holds that estimates based on data unseen by the training
algorithm are the safest alternative to asses the performance of a model. In the
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end, this should be the method of choice if the number of available data allows for
it. If this is not the case and it is computationally feasible (as for linear models),
cross-validation methods provide a good compromise, especially for the tuning of
hyperparameters. The same holds for ML methods for Bayesian identification. The

Marginal Likelihood Generalized Cross-
Validation

Philosophy The hyperparameters
are estimated using the
maximum likelihood
approach

A rotation invariant for-
mulation of the cross-
validation error is ap-
plied for complexity se-
lection

Model Mismatch ML theory assumes that
the model is true

No assumption about the
model is required

Low rank R matrix Additional projec-
tion step required, see
Sect. 3.1.2

No additional calcula-
tions required

Uncertainty Estimate integrated not integrated

Table 2.2: Comparison of GCV and marginal likelihood for hyperparameter tuning
of regularized FIR models.

usage of methods involving complexity measures seems to be the most sound ap-
proach from a first view. There are, however, two significant drawbacks. First, the
bounds, as demonstrated, can be very loose, and second, it is challenging to deter-
mine the e�ect of regularization methods on the VC dimension of a model class.
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3 Impulse Response Preserving
Identification

Regularized identification of FIR systems o�ers, as described in Sect. 2.2.2, several
advantages. In this section, a novel technique for the construction of penalty matri-
ces is presented [77]. By this construction, penalty matrices can be tailored problem
specific. This enhances the interpretability of the induced prior knowledge. Further-
more, the matrices can be applied to solve problems like order selection [83] and gray
box identification [84].

Usually, the penalty matrix is constructed using Bayesian methods. This allows for
the interpretation of sampling an impulse response from a prior Gaussian distri-
bution. However, the choice of the kernel for the construction of this distribution
seems to be somewhat arbitrary. For the stable-spline kernel [99], for instance, it
is not clear why the form of the kernel is exactly the way it is. Furthermore, it re-
mains unclear whether a first-order or a second-order spline kernel is the appropriate
choice. It has been shown that the first-order stable spline kernel is the solution
to a maximum entropy problem [25]. This provides some justification, but still, a
relation to classical models used in signals and systems is not provided. This lack of
understanding of the penalty term shall be overcome by the methods described in
this chapter. Instead of relying on some space of prior functions, a class of penalty
matrices is constructed, which penalizes deviations from systems of a specified order.
This allows for enhanced integration of prior knowledge and also for the ability to
integrate a first principles linear model into gray box identification techniques.

3.1 Filter Based Regularized FIR Model Identification

If the penalty matrix R for regularized identification is obtained from the Bayesian
perspective, it holds that R = P

≠1. Since the matrix P is a kernel matrix, it is
positive definite by definition. Furthermore, the inverse will be positive definite as
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well. The matrix R can thus be decomposed into R = F
T
F . This has an interesting

consequence for the penalty term. It can be rewritten as

◊
T
R ◊ = ÎF ◊Î

2

2
. (3.1)

This result has been derived in [74]. There, it is shown that the di�erent rows of
F can be interpreted as FIR filters themselves. These filters act on the di�erent
components of ◊. It is also argued that standard filter design schemes for low-pass
or band-pass filters can be employed to construct the entries of the filter matrix.
In [73], methods for appropriate hyperparameter tuning are addressed.

3.1.1 Computation of the Estimate with Low Rank Matrices

As described, two methods allow for a regularized formulation of the FIR identifi-
cation problem. The first constructs a covariance matrix P with a kernel function,
and the second constructs the penalty matrix R directly from the filter matrix F .
If both matrices are full rank, it holds that R = P

≠1. This case can be handled
by the methods described in Sect. 2.2.2. It is obvious that the matrix R cannot
be allowed to be negative definite. If this was the case, there would be a linear
combination of the entries of the parameter vector, which would make the solution
of the optimization problem (2.77) arbitrarily small. A semidefinite R, though, is
possible. The same holds true for P . Since, if P has negative eigenvalues, its inverse
R has negative eigenvalues, too. This leads to the same undesirable consequences
described above. It is also possible for P to be semidefinite. These cases of P or R
being semidefinite are analyzed in detail.

Singular kernel matrix The first case is that the kernel or covariance matrix is not
full rank. The rank of the matrix P is denoted as

rank P = rP < n+ 1. (3.2)

This means that the prior distribution is collapsed to one or several directions.
The number of collapsed directions will be equal to n + 1 ≠ rP , which is the rank
deficiency of the covariance matrix. The fact that there is no variance along this
direction restricts the solution of the optimization problem (2.77). It is equivalent
to an additional linear constraint.
It can thus be understood as an extreme form of applying prior knowledge by assum-
ing certainty along with this linear combination of parameters. The mathematical
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analysis of this is done by using the singular value decomposition of P . It can be
computed as

P = UPSP U
T
P

=
S

UUP1

UP2

T

V

S

US
ú

P 0
0 0

T

V
Ë
U

T
P1

U
T
P2

È
. (3.3)

The right and left singular vectors are equal since the kernel matrix is symmetric.
The matrix UP1has as many rows as there are non-zero singular values. The matrix
UP2 as many as there are zero singular values. Within the space spanned by the
matrix UP2, there is no variance in the prior distribution for the parameters. This
means for the optimization problem that these directions result in a constraint [100].
A formal proof of this argument can be found by setting the zero components on the
diagonal of SP to ”. The inverse can then be found as

lim
”æ0

S

US
ú

P 0
0 ”IrP ≠n≠1

T

V
≠1

= lim
”æ0

S

WWWU

S
ú≠1

P 0

0 1
”
IrP ≠n≠1

¸ ˚˙ ˝
æŒ

T

XXXV . (3.4)

The penalty of the linear combinations described by UR2 tend to infinity, then. Thus,
the optimization problem (2.83) can be rewritten as

minimize
◊

Îy ≠ X ◊Î
2

2
+ ⁄◊

T
U

T
P1
S

ú≠1

P UP1◊

subject to UP2◊ = 0
(3.5)

The optimal solution to this problem is the same as for the full rank optimization
problem and is given by (2.83).

Singular penalty matrix The other possibility is that the rank of the penalty matrix
is deficient. Rank deficiency has the consequence that several linear combinations of
the parameters are not penalized. Also here, the singular value decomposition of R
can be obtained to understand the consequences. The singular value decomposition
of the penalty matrix is given as

R = URSR U
T
R =

Ë
UR1 UR2

È
S

US
ú

R 0
0 0

T

V

S

UU
T
R1

U
T
R2

T

V = UR1S
ú

RU
T
R1
. (3.6)
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The rank of R is denoted as rR. The matrix UR1 is n+ 1 ◊ rR and the matrix UR2

is n+ 1◊ n+ 1≠ rR. The optimization problem can, in this case, be rewritten as

minimize
◊

Îy ≠ X ◊Î
2

2
+ ⁄◊

T
UR1S

ú

RU
T
R1

◊. (3.7)

It can be seen that no terms of the form U
T
R2

◊ occur in the regularization term.
Thus, this linear combination of the parameters can be chosen arbitrarily, such that
the loss term Îy ≠ X ◊Î

2

2
is fit best.

3.1.2 Hyperparameter Estimation

If the penalty matrix is full rank, then both, generalized cross-validation and the
marginal likelihood described in Sect. 2.2.2 can be applied. In the other case, though,
it is not possible to compute the marginal likelihood since P = R

≠1 does not exist.
The likelihood is thus not well defined. This means that there is a linear combination
of impulse response coe�cients that can be arbitrary without a�ecting the penalty
term. For this linear combination, no prior knowledge is imposed. The prior variance
in this direction is infinitely large. If the marginal likelihood should be utilized as a
mean of hyperparameter estimation, the problem has to be split into two parts. The
frequentist parameters, for which no prior knowledge is induced

◊F = U
T
R2

◊ (3.8)

and the Bayesian parameters for which prior knowledge is available

◊B = U
T
R1

◊. (3.9)

In [101], the prior knowledge free part of the impulse response parameters is intro-
duced as a bias space. The directions not penalized by the kernel have to be dealt
with separately. The output of the system can now be calculated, according to

ŷ = X ◊̂ = X URU
T
R◊̂ = X UR

S

UU
T
R1

U
T
R2

T

V ◊̂ (3.10)

= X [UR1 UR2]
S

UU
T
R1

◊̂

U
T
R2

◊̂

T

V = X UR1◊̂B¸ ˚˙ ˝
ŷ
B

+X UR2◊̂F¸ ˚˙ ˝
ŷ
F

(3.11)
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Subtraction of the Frequentist part leads to the equation of the measured Bayesian
part, according to

y
B
= y ≠ X UR2◊̂F . (3.12)

The Bayesian parameters ◊B are a solution to the optimization problem

minimize
◊B

Îy
B

≠ XB ◊BÎ
2

2
+ ⁄◊

T
BS

ú

R◊B. (3.13)

with the transformed N ◊ rR regressor matrix XB = X UR1. For this problem, the
penalty matrix S

ú

R is of full rank. Thus, it has the same probabilistic interpretation
as (2.81). According to (2.115), the marginal distribution of the output y

B
is

y
B

≥ N

Q

cca0, flX UR1S
ú≠1

R U
T
R1
X

T + ‡
2
IN¸ ˚˙ ˝

�yB

R

ddb . (3.14)

The log marginal likelihood of the Bayesian part can then be calculated as

log p(y
B
) = ≠

1
2 log det�yB ≠

1
2y

T
B

�≠1

yByB
+ const. (3.15)

The algorithm for the computation of the marginal likelihood for rank deficient
penalty matrices is summarized in Algorithm 1. Though in principle possible, the

Algorithm 1 Calculation of the marginal likelihood for rank deficient penalty ma-
trices
Require: Penalty matrix R, regressor X, penalty matrix scaling fl, noise variance

‡
2, and output y

1: Calculate the singular value decomposition of R.
2: Compute the optimal parameters ◊̂ solving (2.78).
3: Transform ◊̂ to ◊̂F and ◊̂B with (3.8) and (3.9).
4: Calculate y

B
with (3.12).

5: Compute �yB, according to (3.14).
6: return The logarithm of the marginal likelihood computed by (3.15).

derivation of the marginal likelihood requires computations of terms which depend
on the inverse of �yB. Since this matrix is N ◊ N calculation of these terms is
computationally demanding. For the computation of the GCV error, these problems
do not occur. Thus, for the techniques developed in this chapter GCV is used.

Example To exemplify the methodology, the system

y(k) = au(k) + b+ n(k) (3.16)
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with i.i.d. Gaussian noise n(k) and parameters a and b is considered. To solve the
ML estimation problem, the regressor, the output vector, and the parameters are
found as

X =

S

WWWU

u(1) 1
... ...

u(N) 1

T

XXXV y =

S

WWWU

y(1)
...

y(N)

T

XXXV ◊ =
S

Ua

b

T

V . (3.17)

Furthermore, the term ⁄(a+b)2 is used as a regularization term for the identification.
The loss function then reads as

J = Îy ≠ X◊Î
2 + ⁄◊

T

S

U1 1
1 1

T

V

¸ ˚˙ ˝
R

◊. (3.18)

With this penalty term, regularization applies only to the sum of the parameters a
and b. If the di�erence between a and b changes, the penalty is not a�ected. From
a Bayesian perspective, this means that for the di�erence between a and b, there is
no prior knowledge that has been integrated into the identification process. This,
intuitively clear result, can also be found by the singular value decomposition of the
penalty matrix

R =
Ô
2
2

S

U1 1
1 ≠1

T

V

¸ ˚˙ ˝
UR

S

U2 0
0 0

T

V
Ô
2
2

S

U1 1
1 ≠1

T

V (3.19)

The transformed parameters are

◊F =
Ô
2
2 (a ≠ b) ◊B =

Ô
2
2 (a+ b) . (3.20)

This confirms the intuition described above. The di�erence between the parameters
is the non-Bayesian part ◊F , while the sum of both corresponds to the Bayesian
part. For the computation of the projected ML value, the optimal parameters are
estimated from the data. Then the Bayesian part of the output is calculated as

y
B
= y ≠ X

1
2

S

Ua ≠ b

b ≠ a

T

V (3.21)
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and used for the computation of

�yB = flX

Ô
2
2

S

U1
1

T

V 1
2

Ô
2
2 [1 1]XT + ‡

2
IN = flX

1
4

S

U1 1
1 1

T

VX
T + ‡

2
IN (3.22)

For the application of this methodology to rank deficient penalty matrices for regu-
larized FIR system identification, it will be the case that the entries of UR change
with the choice of the hyperparameters. Thus, a recomputation of UR for each
optimization step is necessary.

3.1.3 Analysis of the Optimal Kernel

If the true impulse response parameters ◊0 are known, it has been shown in [28] that
the optimal kernel is given by

P = ◊0 ◊
T
0
. (3.23)

This formulation of the kernel matrix is a candidate for the tailored incorporation
of prior knowledge. According to (3.23), a natural choice would be to set ◊0 to an a
priori available estimate of ◊ and construct P . The impulse response coe�cients are
then estimated by a regularized identification approach with this choice of P .

Low Rank Property of the Optimal Kernel The kernel, however, possesses an
undesirable property, which will be referred to as rank one property. It holds that
rank(P ) = 1due to (3.23). Thus, the singular value decomposition of the optimal
kernel matrix P 0 reads

P o =
5

◊o
Î◊oÎ2

U2

6 S

UÎ◊oÎ
2

2
0

0 0

T

V

S

WU
◊To

Î◊oÎ2

U
T
2

T

XV . (3.24)

This implies that if problem (3.7) is solved and the optimal solution is denoted by ◊
ú,

then there exist n constraints (since the FIR model has n + 1 coe�cients) ensuring
that

U
T
2
◊

ú = 0. (3.25)

Thus, the identified parameters depend linearly on the known parameters ◊
ú = –◊0.

Since multiplying every FIR coe�cient of an LTI system with a constant factor
means nothing else than changing the gain of the system by (n+ 1)– the optimiza-
tion problem is the same as linear regression of the gain of that system. This is
illustrated in Fig. 3.1 for a second order system with two non-oscillatory poles. The
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Figure 3.1: Samples from the optimal kernel for a second order system with two
non-oscillatory poles.

left plot shows samples of the prior distribution described by a system with two non-
oscillatory poles. On the right side of the figures, the entries of the resulting kernel
matrix are shown. Solving problem (3.7) with the hyperparameters as additional op-
timization variables is, in this case, approximatively equivalent (due to the truncation
of the impulse response) to the identification of an output error model. Regularized
identification is not better than known methods, like OE identification.

3.2 Impulse Response Preserving Matrices

In this section, a novel approach for the incorporation of prior knowledge is described.
To extend the possible forms of prior information which can be incorporated in regu-
larization techniques for system identification, the impulse response preserving (IRP)
matrices are introduced. These matrices allow for incorporating prior knowledge of
the dynamic behavior of the system. In contrast to the optimal kernel described in
Sect. 3.1.3, this method does not lead to a singular P matrix.

3.2.1 Example: Second Order System

To demonstrate the construction of IRP matrices, a second order system with the
transfer function

G(z) = b0 + b1z
≠1 + b2z

≠2

1 + a1z
≠1 + a2z

≠2
(3.26)
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is considered. Transformation in the discrete time domain results in the following
equation

y(k) = b0u(k) + b1u(k ≠ 1) + b2u(k ≠ 2) ≠ a1y(k ≠ 1) ≠ a2y(k ≠ 2). (3.27)

The impulse response of the system can be calculated using an input equal to the
discrete Dirac function. It is one at k = 0 and zero everywhere else. The impulse
response coe�cients are thus

◊(0) = b0 ◊(3) = ≠a2◊(1) ≠ a1◊(2) (3.28)

◊(1) = b1 ≠ a1◊(0)
...

◊(2) = b2 ≠ a2◊(0) ≠ a1◊(1) ◊(k) = a2◊(k ≠ 2) ≠ a1◊(k ≠ 1).

Here, two properties of the impulse response of a second order system can be ob-
served. The first property is that the first three coe�cients ◊(0), ◊(1), and ◊(2) can
be chosen arbitrarily by the parameters b0, b1, and b2. The second fact is that by
rearranging the last equation of (3.28) it can be seen that

a2◊(k ≠ 2) + a1◊(k ≠ 1) + ◊(k) = 0 for k Ø 3. (3.29)

This is a linear equation for the parameters of the impulse response coe�cients. Such
relations will be called impulse response preserving conditions. If this condition is
fulfilled, then the system possesses the exact impulse response which was assumed a
priori. These conditions can be rewritten in matrix form as

S

WWWWWWU

a2 a1 1 0 . . . 0
0 a2 a1 1 . . . 0
... ... ... ... ...
0 . . . 0 a2 a1 1

T

XXXXXXV

¸ ˚˙ ˝
F

◊ = 0. (3.30)

For n+1 FIR coe�cients, there will be n≠1 impulse response preserving conditions.
Thus, the size of F is n≠1◊n+1. This matrix will be referred to as an IRP matrix.
The idea of the described approach is to calculate R = F

T
F with this matrix and

solve the optimization problem (3.7). This means that deviations from the impulse
response preserving equations will be penalized. If the impulse response is exactly
equal to the true impulse response, then the penalty will also be zero.
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3.2.2 Systems of Arbitrary Order

The result from the previous subsection can be extended to LTI systems of arbitrary
order. Two kind of orders have to be distinguished now. The first is the order of the
FIR system, which will be denoted as regularly with n. The second is the prior order
o of the infinite impulse response (IIR) system available a priori for the integration
of prior knowledge. Given an IIR system of the order o, the recursive equations for
the computation of the impulse response read as

◊(0) = b0 ◊(3) = b3 ≠ a1◊(2) ≠ a2◊(1) ≠ a3◊(0)

◊(1) = b1 ≠ a1◊(0)
...

◊(2) = b2 ≠ a1◊(1) ≠ a2◊(0) ◊(i) = bi ≠

iÿ

j=1

ai◊(i ≠ j) (3.31)

for all i Æ o and

◊(i) = ≠

oÿ

j=1

aj◊(i ≠ j) (3.32)

for all others. The preserving conditions described by (3.32) can be summarized in
a set of linear equations F ◊ = 0 with

F =

S

WWWWWWU

ao ao≠1 . . . a1 1 0 . . . 0
0 ao ao≠1 . . . a1 1 . . . 0
... . . . . . . . . . . . . ...
0 . . . 0 ao ao≠1 . . . a1 1

T

XXXXXXV
. (3.33)

For o = 2, this results in exactly the same set of equations as for a second order
system given by (3.30). There are n + 1 ≠ o impulse response preserving equations
for n+1 coe�cients. Thus the size of F is n+1≠ o◊n+1. By (3.33) it is possible
to assign an IRP matrix to each IIR model. The matrix described by (3.33) will be
referred to as FIRP matrix of order o. This choice, however, is not unique, as will
be elaborated on in Sect. 3.2.3.

If FIR systems are employed to represent IIR systems, the resulting system will
always be an approximation. The coe�cients subsequent to the n-th coe�cient are
zero in the FIR representation but are non-zero for the IIR system (although they
are exponentially decaying and thus very small). Thus, the F matrix described by
(3.33) will be referred to as finite impulse response preserving (FIRP) matrix.
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If the assumption ◊(n + 1) = ◊(n + 2) = . . . = 0 is considered, there are n further
equations that can be derived from (3.32). For the last but one coe�cients, for
example, it holds that a1◊(n≠1)+a2◊(n) = 0. For the last, it holds that a1◊(n) = 0.
If these equations are put in matrix form, the resulting preserving matrix can be
extended to S

WWWWWWU

ao ao≠1 . . . a1 1 0 . . . 0
0 ao ao≠1 . . . a1 1 . . . 0
... . . . . . . . . . . . . ...
0 . . . 0 0 0 . . . 0 ao

T

XXXXXXV
. (3.34)

This matrix contains the rows of the matrix (3.33) and has o additional rows at the
end. In general, the last equations will not be zero for the true coe�cients. It can
be shown, see Sect. 3.3, that for n æ Œ these penalty terms tend to zero. This
matrix is thus called infinite impulse response preserving (IIRP). It is of quadratic
n + 1 ◊ n + 1 size. In general, F and in consequence also R = F

T
F has full rank.

This enables the computation of P . Therefore, a Bayesian interpretation is possible.
The properties of the FIRP and IIRP matrices are summarized in Tab. 3.1.

property FIRP IIRP
rank of R deficient full

penalty for finite n zero non-zero

Bayesian interpretation requires a non-
Bayesian bias space

possible

Table 3.1: Properties of FIRP and IIRP matrices.

The FIR models considered here are proper, but not strictly proper. Thus, u(k) can
influence the output via the first FIR coe�cient ◊(0) directly. If strictly proper FIR
models, where ◊(0) is forced to be zero, are considered, then one di�erence is that
the dimension of ◊ is n instead of n+1, since ◊(0) is left out. Furthermore, the IIRP
or FIRP matrices will contain one row and column less. This does not a�ect or even
hinder the applicability of the proposed method.

In practice, however, it seems that whether (3.33) or (3.34) is chosen for regulariza-
tion does not di�er much with regard to the performance on test data.

3.2.3 Possible Weightings

In fact, a preserving matrix can be multiplied by an arbitrary non-zero diagonal
weighting matrix and still be preserving for the corresponding impulse response.
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This holds since for any non-zero diagonal matrix if W F ◊ = 0 is a valid statement,
F ◊ = 0 is also valid. For the purpose of regularized identification, several choices
are possible. The first possibility is an exponentially increasing weighting matrix.
This leads to the matrix

W = diag(1,–≠
1
2 ,–

≠1
, . . . ,–

≠
n
2 ) (3.35)

with – < 1. This choice is related to the exponential decay of the TC kernel. This
exponential choice puts high penalties on the terms formed by the last rows of the
IRP matrix and, therefore, on the last coe�cients. To avoid these high weights, a
linear weighting

W = diag
A

1, 1 + a ≠ 1
n

, 1 + 2(a ≠ 1)
n

, . . . , a

B

(3.36)

with a > 1 can be used. A single parameter a for the control of the linear weighting is
su�cient since the penalty matrix itself is additionally multiplied by ⁄. Furthermore,
the most trivial alternative is to use constant weighting

W = I. (3.37)

To analyze the e�ect of weighting matrices on the estimated impulse responses, the
singular value decomposition of the penalty matrix R = UR SR U

T
R is considered

again. The parameter vector of the optimization problem is transformed into

◊T = U
T
R ◊. (3.38)

Since UR is unitary, e.g. that UT
R UR = I, it holds that

◊ = UR◊T . (3.39)

If this is used to transform (2.77), it follows that the identification problem can be
rewritten as

min
◊T

...y ≠ X UR◊T

...
2

2
+ ⁄

rRÿ

i=1

S
2

R,ii◊
2

T,i. (3.40)

The last sum follows from the fact that

◊
T
R ◊ = ◊

T
TU

T
RUR SR U

T
R UR◊T = ◊

T
TSR◊ =

rRÿ

i=1

S
2

R,ii◊
2

T,i. (3.41)
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This derivation shows the relation of regularized FIR models to OBF models as
discussed by [27, 33]. In fact, the construction of appropriate orthonormal basis
functions and how to incorporate prior knowledge in the form of poles have also
been addressed [92]. Here, the OBF system is constructed considering available
prior knowledge on the poles of the system. In contrast to our method, this ap-
proach requires these poles to be fixed. It is possible to include the poles for OBF
construction in an optimization problem, but the risk that the identification result
is poor due to local optima remains.

The matrix X UR contains in its i, j-th entry the convolution of the delayed inputs
contained in the i-th column of X with a filter described by the j-th row of UR. The
columns of the matrix UR can thus be interpreted as orthonormal basis functions.
The identification problem is then the identification problem with a ridge regular-
ization on the parameters for the OBFs characterized by the columns of UR. If the
OBFs are ordered in descending order with respect to the singular value, reordering
of the indices results in the impulse response coe�cients

g
(OBF)

i (k) = [UR]k,n+2≠i (3.42)

for the i-th least penalized OBF. In Fig. 3.2 the first 6 least penalized OBFs for the
TC kernel are shown. This means that the first upper left plot shows the last column
of UR. The basis functions are plotted in descending order by their singular value.
To make the penalty comparable, the caption of each figure shows the singular value
relative to the least non-zero value of the singular values. The basis functions for
the TC kernel show clearly where most flexibility is put. Due to the exponentially
increasing penalty, most flexibility is in the first basis functions. It can also be seen
that already the third basis function shows oscillatory behavior at the beginning.
This explains the ability of the TC kernel to approximate even oscillatory systems
well. Also, the first order FIRP matrix with exponential weighting and – = ≠a1 =
0.95 is analyzed. It can be seen in Fig. 3.3 that the behavior is very similar to the
TC kernel, except for the penalty of the first basis function. This penalty is zero in
the FIRP matrix case.

To demonstrate the e�ect of higher order FIRP matrices, in Fig. 3.4 an exponentially
weighted second order FIR matrix with – = 0.95, a1 = ≠1.92, and a2 = 0.957 is
shown. The corresponding transfer function has two oscillatory poles. In this case,
the resulting OBFs di�er significantly compared to the TC kernel or exponentially
weighted IRP matrix case. For this penalty matrix, the oscillatory behavior is clearly
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Figure 3.2: The 6 least penalized OBFs (i = 1, 2, . . . , 6) with corresponding relative
penalty weightings of the TC kernel with – = 0.95
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penalty weightings of the exponentially weighted first order FIRP matrix
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Figure 3.4: The 6 least penalized OBFs (i = 1, 2, . . . , 6) with corresponding rela-
tive penalty weightings of the exponentially weighted second order FIRP
matrix with – = 0.95, a1 = ≠1.92, and a2 = 0.957
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Figure 3.5: The 6 least penalized OBFs (i = 1, 2, . . . , 6) for di�erent weightings
(dashed: exp weighted with – = 0.95, dotted: linear weighted with
a = 10, dash-dotted: unweighted) of the first order FIRP matrix.
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visible. Also, the higher order OBFs (Ø 3) show oscillatory behavior. If this matrix
is utilized to impose prior knowledge, oscillatory parts of the impulse response will
be penalized least.

The e�ect of the weighting is shown in Fig. 3.5. The first order FIRP matrix is
analyzed with a1 = 0.95 without weighting, with exponential weighting (– = 0.95),
and with linear weighting (a = 10). Without weighting, the higher order terms look
very similar to sinusoidal functions. This is not very realistic for impulse responses.
The usage is thus not recommended for practical problems. Both the linear weighting
and the exponential weighting generate reasonable OBFs and can be applied for
practical problems.

3.2.4 Example

To illustrate the principle of IRP matrix based RFIR identification, the following
example composed out of two parts is considered. The transfer function of the first
part

Gp(z) =
(1 ≠ 0.94)z
z ≠ 0.94 (3.43)

describes a first order system with unit gain. It is assumed that for this part of the
system, perfect prior knowledge is available. The second transfer function

Gu(z) =
≠0.0148z2 + 0.0148z
z2 ≠ 1.774z + 0.922 (3.44)

has an oscillatory pole pair at p1,2 = 0.96e±ifi
8 and zero gain (di�erential characteris-

tic). For the example, no prior knowledge shall be available for this part. In practice,
it could be that this oscillatory behavior is completely unrecognized during physical
model building. The overall transfer function is

G(z) = Gp(z) +Gu(z). (3.45)

The system is excited by 1 000 samples of a PRBS signal and disturbed by i.i.d. Gaus-
sian noise with variance ‡

2 = 2.5 · 10≠3. A first order FIRP matrix with a1 = ≠0.94
is constructed and weighted by an exponential weighting with – = 0.94. This cor-
responds to the weighting of the TC kernel. In Fig. 3.6 the identification results for
di�erent values of the regularization parameter ⁄ and FIR model order n = 100 are
depicted. The e�ective number of parameters which is the trace of S is also shown.
If ⁄ = 0, then the identification result is the same as for unregularized FIR. This is
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Figure 3.6: Identified impulse responses with an exponentially weighted FIRP matrix
of first order. The regularization parameter is increased from 0 to 104,
and the e�ective number of parameters for di�erent impulse response
estimates are depicted.

shown in the upper left plot in the figure. The variance error of the FIR model is
clearly visible, especially at the end of the impulse response. As the regularization
parameter ⁄ is continuously increased, the variance error is reduced. The higher ⁄ is
chosen, the smaller the e�ective number of parameters becomes. This explains the
reduction of variance error. A high ⁄ of 104 limits the capacity of the model to 4.05
e�ective parameters. If ⁄ is increased further, then the e�ective number of parame-
ters is equal to 1. The impulse response is equal to a first order system, and only the
gain of the impulse response is identified. The optimal value of the e�ective number
of parameters lies between the extremes of 101 and 1. For the example, ⁄ = 102

is an appropriate choice. The example demonstrates the power of prior knowledge
for system identification since without prior assumptions, one cannot become better
than the dissatisfying response of the upper left subfigure.
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3.3 Mathematical Analysis of Impulse Response
Preservation

In this subsection, the behavior of impulse response preserving penalty matrices is
analyzed in more detail. True impulse response coe�cients for first or higher order
IIR systems are never exactly zero for any finite time step k. If impulse response
preserving matrices are constructed according to the IIRP construction rules given
by (3.34), an interesting question is what the penalty will look like if the number
of observations tends to infinity. To analyze the behavior of the parameters of the
impulse response, the following notation is introduced. The vector

◊n = [g(0) g(1) · · · g(n)]T (3.46)

contains the first n + 1 impulse response coe�cients. Now, an impulse response
coe�cient vector ◊n is said to be preserved by an IRP filter matrix with n rows F n,
if ÎF n◊nÎ2 = 0 holds. The FIRP matrix given by (3.33) is constructed to ensure
this. If the prior covariance matrix P n for an FIR system of order n has full rank,
like each IIRP matrix, then there is no ◊n which is preserved by the corresponding
F n. For penalty matrices, we call a sequence of filter matrices F n asymptotically
preserving for a vector of impulse response coe�cients ◊n if

lim
næŒ

ÎF n◊nÎ2 = 0. (3.47)

As will be discussed in the next subsections, an IIRP matrix is asymptotically pre-
serving for the true coe�cients of the corresponding impulse response.

3.3.1 Preservation Properties of the TC Kernel

Before impulse response preserving properties are made more explicit mathemati-
cally, the behavior of penalty matrices is analyzed in a simple experiment. Therefore
two di�erent impulse responses, shown in the upper part of Fig. 3.7, are considered.
The first one is simply constant, and the second one is exponentially decaying and
thus the impulse response of a stable first order LTI system. For each of these im-
pulse responses, the entries of the products F ◊ are considered. In the second row of
the figure, the TC kernel is considered. The inverse and the Cholesky decomposition
of the TC kernel can be computed analytically [74]. The filter matrix is the result
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of the TC kernel (second row) and the IIRP matrix of first order with
exponential weighting (third row) are shown.
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of the Cholesky decomposition for an impulse response with n entries and reads

F n =

S

WWWWWWWWWU

1 ≠1 0 0 . . . 0
0

Ò
1

– ≠

Ò
1

– 0 . . . 0
0 0

Ò
1

–2 ≠

Ò
1

–2 . . . 0

. . . . . . . . . . . .
. . . . . .

0 0 0 0 . . .

Ò
1

–n

T

XXXXXXXXXV

. (3.48)

This filter matrix is applied to both the constant and the exponentially decaying
impulse response. In the constant impulse response case, all resulting penalty terms
are zero, except for the last one. For the exponential decay, the first terms are
penalized, although a first order system has an ideal exponential decay. In the last
row of the figure, a first order IRP matrix, which matches the coe�cients of the
exponentially decaying impulse response, is constructed. The same analysis as for
the TC kernel is conducted. It can be seen that now the penalty term entries are
non-zero for the constant impulse response. For the exponentially decaying case, all
penalty terms, except for the last one, are zero.

3.3.2 Preserving Filter Matrices for Stable LTI Systems

Here, we will show that the proposed matrix is asymptotically preserving for arbi-
trary stable LTI systems. To analyze the preserving conditions for the IRP matrices
given by (3.34), the entries of the vector F n◊n are considered. The index n empha-
sizes the dependence of the matrix size on the order of the FIR system. The entries
of the vector can be calculated as

[F n◊n]i =

Y
_]

_[

si i Æ n ≠ o+ 1

gi else
(3.49)

with
si = ◊n(i+ o ≠ 1) +

oÿ

j=1

aj◊n(i+ o ≠ j ≠ 1) (3.50)

and
gi =

n≠i+1ÿ

j=0

ao≠j◊n(j + i ≠ 1). (3.51)

The quantity si is exactly the deviation from the IRP conditions. Since the true
coe�cients ◊0 fulfill these conditions exactly, it holds that si = 0. This is di�erent
for the gi coe�cients. Here, some terms from the IRP conditions are missing. It



75

is thus interesting to analyze the case that n æ Œ. If gi converges to zero, in this
case, it means that the penalty imposed on the true impulse response can be made
arbitrarily small by choosing an appropriately long impulse response to be fit. For
arbitrary stable LTI systems, it holds that there is always an —s with 0 < —s < 1
and a constant G such that it

|◊0(k)| Æ G—
k
s (3.52)

with ◊0(k) denoting the true impulse response coe�cients [124]. Now, for the limit
of n æ Œ, for the last coe�cients gi it is found that

lim
næŒ

|gi| = lim
næŒ

n≠i+1ÿ

j=1

|ao≠j◊n(j + i ≠ 1)| Æ lim
næŒ

(n ≠ i+ 1)G—
n
s = 0 (3.53)

for the true impulse response. The penalty for the true impulse response thus con-
verges to zero if n is chosen high enough. If exponential weighting is considered, the
quantities change. Then the weighted version of gi is found as gú

i = –
i
gi. Finally, it

holds for the limit that

lim
næŒ

|g
ú

i | = lim
næŒ

–
≠i

n≠i+1ÿ

j=1

|ao≠j◊n(j + i ≠ 1)| Æ lim
næŒ

–
≠n(n ≠ i+ 1)G—

n
s . (3.54)

If 0 < – < —s the last term sure converges to zero. This means that exponential
preservation can be guaranteed if – for the exponential weighting is chosen lower in
magnitude than the dominant pole of the system.

3.4 Performance on Numerical Benchmark Systems

For the identification of regularized FIR systems, the TC kernel [99, 28] achieves
state-of-the-art performance on numerical benchmarks. The behavior of the pro-
posed method is now evaluated on numerical benchmark problems. The investigated
hypothesis is that additional prior knowledge added by the proposed penalty matri-
ces results in better identification performance. The applied method is summarized
in Algorithm 2.

The hyperparameters of the algorithm are “ = [a1, a2, . . . , ao,–,⁄]T . Thus, for an
o-th order IRP matrix, o + 2 hyperparameters are optimized. The calculations in
this section are done with IIRP matrices, and for hyperparameter tuning, the GCV
method is employed. For an identification problem with n = 100 and N = 500,
identification, including hyperparameter tuning, takes in mean 10 s on a standard
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Algorithm 2 Regularized FIR identification based on GCV and IRP matrices
Require: Order o of the IRP system, order n of the FIR system, output y, and FIR

regressor matrix X

1: Optimize the GCV given by (2.94) with respect to the hyperparameters “ =
[a1, . . . , an,–,⁄]T

2: Use the optimal “̂ from the previous step to construct the optimal IRP matrix
R(“̂) with the filter matrix from (3.33).

3: Calculate the optimal parameters ◊̂ by solving (3.7)
4: return The optimal FIR parameters ◊̂

desktop PC.

3.4.1 Random First and Second Order Systems

Therefore, we investigate the case that the order of the investigated system and
the applied kernel coincide. The investigation is started with first order dynamic
systems. A first order system is described by the transfer function

G(z) = K(1 ≠ p)z
z ≠ p

(3.55)

with pole p and gain K. The input signal for the system is chosen to be a PRBS
signal with N = 500. The output of the system is disturbed by i.i.d. Gaussian white
noise. The noise is chosen such that the signal to noise ratio

S = 10 log10
qN

k=1
(y(k) ≠ ȳ)2

‡2
n

(3.56)

is equal to 3 dB. This high noise level makes the identification challenging in this
case. Ten di�erent models for fixed p and K but di�erent noise realizations are
depicted in Fig, 3.8. Both penalty terms are able to guarantee that the impulse
response decays near to zero after 100 steps. The behavior induced by the first order
IIRP matrix is, however, smoother than the behavior induced by the TC kernel.
This can be seen between k = 20 and k = 30, where one of the identified impulse
responses does not accurately describe the data. Both do not match the true impulse
response well there, but the behavior of the impulse response identified with the IIRP
penalty matrix is less spiky.

Now, the system considered for the identification is created randomly. Therefore,
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Figure 3.8: Impulse responses of ten di�erent models for the experiment for the iden-
tification of random first order systems. The upper subfigure shows the
results obtained by a first order IRP matrix penalty and the lower sub-
figure results obtained by the TC kernel.

the pole and gain are sampled from the uniform probability distributions

p ≥ U(pmin, pmax) K ≥ U(Kmin, Kmax) (3.57)

with pmin = 0.05, pmax = 0.95, Kmax = 10 and Kmin = 0.1. From this probability
distribution of transfer functions, 1 000 systems are sampled and disturbed with an
SNR of 3 dB and 6 dB. Then the regularized FIR systems are identified. Afterwards,
the NRMSE of the identified system is evaluated on noise free test data with Ntest =
1000. The results for the NRMSE are shown in Fig. 3.9. As expected for this
experiment, the first order IIRP penalty performs best, since the penalty matches
the first order system exactly. It is interesting to notice that also the second order
IIRP matrix is able to represent the data better than the TC kernel.

Second order system A similar experiment is done for second order systems. A
second order system

G(z) = K(1 ≠ p)2z2
(z ≠ p)2 (3.58)
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Figure 3.9: Results for 1000 realizations of the first order system. The left plot shows
an SNR of 3 dB, while the right plot shows the result for an SNR of 6 dB.

is considered. The same excitation and disturbance as for the first order system are
applied. Also, the identification procedure is kept the same, only an IIRP matrix
of second order is employed. First, Fig. 3.10 shows the results for fixed pole and
gain with di�erent noise realizations at an SNR of 3 dB. It can be seen that the
second order IIRP matrix method results in a significantly smoother behavior. In
the figure, there is one system for which the identification is challenging due to the
noise realization. By regularization, the behavior of the identified model improved
significantly between k = 40 and k = 50 by showing a smoother response.

Now, again for the analysis of the e�ectiveness of prior knowledge incorporation,
a Monte-Carlo experiment is conducted with randomly generated dynamic systems.
Gain and double pole of the second order system are drawn from the same probability
distribution as for the first order system. The results of the Monte-Carlo simulation,
which are done under the same conditions as for the first order system, are shown
in Fig. 3.11. It can be seen that for both investigated SNRs, the second order kernel
performs significantly better than the TC kernel or the first order IRP matrix. The
TC kernel and the first order IRP matrix method perform equally well. This result
is as expected. The second order kernel contains the most prior knowledge for the
sampled systems. From the two examples given here, it can be concluded that the
IRP matrix method is able to incorporate su�cient prior knowledge very successfully,
which is better tailored for the specific type of process.
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Figure 3.10: Results of the IRP matrix regularized FIR approach for the second order
system
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Figure 3.11: Results for 1000 realizations of the second order system. The left plot
shows an SNR of 3 dB, while the right plot shows the result for an SNR
of 6 dB.
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Figure 3.12: Results for 1000 realizations of the random dynamic system with ran-
dom order. The left plot shows an SNR of 3 dB while the right plot
shows the result for an SNR of 6 dB

3.4.2 Random Systems with Random Order

Finally, random systems with random order are investigated. The creation of the test
datasets has been performed using the Matlab method rss. Here, random systems of
order 20 are created. The sampling frequency is chosen to be three times the band-
width of the systems. The slowest pole of the system is guaranteed to be p < 0.95.
In Fig. 3.12, the results of the Monte-Carlo study are shown. Neither the TC kernel
nor the IRP matrix has any advantage in the investigated systems. Nevertheless, all
three ways of regularization perform similarly. This leads to the conclusion that IRP
identification o�ers a very robust way to incorporate prior knowledge. For reason-
ably randomly generated systems, a loss in performance is hardly visible, although,
for the second order IRP matrix, a system structure with two poles has been as-
sumed, an assumption not met by most of the investigated systems. Note that the
algorithm chooses itself how much prior knowledge is incorporated by determining
the regularization strength with ⁄, which is chosen automatically by tuning the GCV
error. This is the reason why these techniques are good choices for order selection
and gray box identification, as will be elaborated on in the next sections.

3.5 Order Selection via Hyperparameter Tuning

Order selection is a challenging issue for traditional system identification algorithms.
If the order is chosen poorly, the identification method can fail completely. Fur-
thermore, the order and the location of poles of a system characterize its dynamic
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properties. To generate reliable estimates of the pole locations for the investigated
system provides some insight on its own. Classically, the model order is selected by
complexity selection techniques, like AIC, described in detail in Sect. 2.3. Here, a
novel option will be specified based on the addition of an elementary penalty term.

3.5.1 Robustness with Respect to Wrong IRP Matrices

An interesting property of the regularized FIR method with IRP matrices can be
found if the behavior of the estimates is analyzed for wrong poles in the IRP matrix.
The ability of a method to perform well, even if the model assumptions are not true,
will be referred to as robustness. For the analysis, the transfer function

G(z) = 0.5372z2

(z ≠ 0.9ej fi
4 )(z ≠ 0.9e≠j fi

4 )
(3.59)

is considered. The system has an oscillatory pole pair and unit gain. Now, four
di�erent IRP matrices, for identification, are considered. All matrices are weighted
exponentially with – = 0.95. The first and second ((a) and (b)) are first order IRP
matrices with one pole at 5 and 0.95, respectively. Thus, IRP matrix (a) represents
a first order unstable system and IRP matrix (b) a stable first order system. The
third and fourth ((c) and (d)) are second order IRP matrices. The poles for the
construction of (c) are 0.85e±j fi

4 , so that the oscillation of (c) is more damped than
the oscillation of the true system. For (d), the poles are chosen to be equal to the
true system as 0.9e±j fi

4 .

For the experiment, the system is excited with 1 000 samples of a PRBS signal. The
output is disturbed by i.i.d. Gaussian noise such that the SNR is 5 dB. The identi-
fication results for the four di�erent systems are shown in Fig. 3.13. All four identi-
fication results correspond quite appropriately to the true response. This behavior
is explained by the automatic choice of the regularization strength ⁄. It is observed
that the more inappropriate the prior knowledge, the lower ⁄ is chosen. While for
the IRP matrix with a pole at 5 (a), the GCV algorithm determines ⁄ = 0.226, for
the correct poles (d), ⁄ = 6.525 · 104 is found by GCV. This experiment explains
the mechanism of the regularization. By the automatic tuning of ⁄, the algorithm
itself determines how much prior knowledge is incorporated. Thus, the algorithm al-
lows for two things, the incorporation of prior knowledge, and automatic conclusion
whether this prior knowledge is appropriate. This explains its high robustness.
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Figure 3.13: Results for regularized FIR impulse responses estimated with di�erent
IRP matrices. The true system has poles at 0.9e±j fi

4 .

3.5.2 Robustness in Comparison with OE

The practically most severe concern in system identification is an inappropriate
choice of the model order. For other techniques, like OE identification, a wrong
model order can deteriorate the identification result completely. Therefore, it is in-
vestigated how order-mismatch a�ects the performance of both the IRP matrices
FIR approach and an OE model. To assess this di�erence in performance, a model
with transfer function

G(z) = 0.05372z3

(z ≠ 0.9)(z ≠ 0.9eifi
4 )(z ≠ 0.9e≠ifi

4 )
(3.60)

is considered. This system has one real pole and an oscillatory pole pair. To identify
this system, N = 1000 samples are generated. These samples are disturbed by
i.i.d. Gaussian noise such that the SNR is 30 dB. This data is then used to identify
an OE model and an FIR model with the IRP approach with prior of second and
third order each. The procedure is repeated 200 times. For the demonstration of
the robustness of the order selection, – = 1 is chosen. The nonlinear optimization
of the OE model is initialized with the identification result of an ARX model of
the same order. The hyperparameter optimization of the regularized FIR model is
initialized at ai = 0, i = 1, . . . , o and ⁄ = 1000, but is not very sensitive to the
chosen initial values. The result of the optimization is shown in Fig. 3.14. On the
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Figure 3.14: Comparison of pole location between OE and IRP FIR models of second
and third order. In the order mismatch case, the IRP FIR model is able
to represent oscillatory behavior while the OE model is not. crosses:
true poles, dots: model poles
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left side of the figure, subfigure (a) and (c), the true pole locations and the obtained
poles for the OE system are shown. For the third order case, subfigure (a), the
result shows that the true poles are matched very well. There is one exception. In
one of the 200 cases, the poles are completely out of place. The reason for this
is that OE solves a nonlinear optimization problem that can have local optima,
which not necessarily correspond to the optimal global solution. As demonstrated
in Sect. 3.5.1, the RFIR problem is significantly more robust due to the ability to
assess the validity of the prior knowledge by choice of ⁄. For the order mismatch
case shown in subfigure (c), it can be concluded that the OE model is unable to
identify a system with oscillatory behavior. All poles identified have zero imaginary
values. Also here solutions which correspond to local optima can be seen. For the
FIR case with the correct model order, subfigure (b), the variance of the identified
poles is more considerable. An advantage found empirically is that the algorithm
does not converge to a local optimum for this case in the simulations. For the second
order case, poles with imaginary parts only occur for the FIR case, subfigure (d).
The fact that some of the poles found are not stable does not negatively influence
the outcome of the regularized estimate. This is not problematic since the algorithm
can choose ⁄ small, if the prior is not appropriate, as discussed in Sect. 3.5.1.

It can now be concluded that IRP matrices are more robust to order mismatch,
especially the choice of a too low order, than OE systems. This makes them a
reliable alternative in practice.

3.5.3 Penalized Order Selection Procedure

Nevertheless, in a real-world application, an appropriate order for the penalty matrix
must be selected. Here, a novel heuristic for the selection of the order IRP penalty
construction is proposed. To assess the robustness of the regularized identification, it
is proposed to penalize unstable poles p in the IRP FIR hyperparameter optimization
with the additional term

J
pen = (1 ≠ |p|)2 if |p| > 1 (3.61)

and non-oscillatory poles with negative real part with

J
pen = Re{p}

2 if Im{p} = 0, (3.62)
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Figure 3.15: Results for the (penalized) error of di�erent identified models for order
selection. (1) OE model, (2) regularized FIR model, and (3) regularized
FIR model with the proposed penalty

because they have no continuous time correspondence. This procedure is analyzed
for a third order system. In Fig. 3.15, the NRMSE values of the output (left) and
the sum of squared errors of the impulse response coe�cients (right) for di�erent
identification with prior orders 1-5 are shown. The prior poles of the regularized
FIR model were derived by an unconstrained optimization, while for the other (3),
the penalties (3.61) and (3.62) were added. It can be seen that the performance of the
OE model (1) deteriorates for low orders. The regularized FIR model (2), though,
is, as discussed in the previous subsection, very robust to the correct choice of the
model order. The penalized regularized FIR model (3) becomes significantly worse
when the model order surpasses the process order 3. This behavior is due to the
added penalties. None of the two other models, neither the OE nor the regularized
FIR model, show such a significant performance decrease. The penalized regularized
FIR identification technique with additional penalties can thus be robustly utilized
for an accurate order selection procedure.

3.6 Regularized Identification of Gray Box Models

Gray box identification is encountered quite frequently in the system identification
literature. In [13], it is argued that gray box identification always means to exploit
a priori available knowledge about an object and experimental data. Under this
perspective, all Bayesian methods employed for system identification are gray box
techniques. Especially in a nonlinear setting, not considered in this chapter, the va-
riety of modeling variants for systems is wide. Thus characterization between black
and white models is involved, leading to a whole palette of gray models [70]. Nev-
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Figure 3.16: Structure of gray box models

ertheless, in this paragraph, gray box models refer to the specific situation when a
physical linear model of the plant is available. Linearity is a restricting factor here,
but these models often work well when a specific operation point is considered. The
problem, as it is understood here, is illustrated in Fig. 3.16. If a white box model,
this is a model generated by first-principles only, is considered, the parameters of
this model will be fixed after a design phase. In this phase, it is possible to do
measurements of parts of the system, like experimentally evaluating the weight of a
component to determine a parameter of the equation of the system, but after that,
the values remain set. Parameters or the structure of the model is not determined
based on measured input or output values. Classical gray box identification works
by estimation of the parameters of the system by estimating their values from in-
put/output measurements. Statistically, this usually means that the parameters of
the model are estimated by a maximum-likelihood approach with the assumption
of i.i.d. Gaussian output noise. This leads to an output error formulation of the
identification problem and results in a nonlinear optimization problem, for which it
is not guaranteed that the global solution is found. A black box approach for linear
systems is an unregularized FIR identification algorithm. It is, however, possible
to take the uncertainty in the parameters of the system into account. For black
box identification, the most flexible model is to be used. Since the IO-behavior of
a linear system is uniquely characterized by its impulse response, identification of
all impulse response coe�cients is the most general approach. Whether a gray box
or a black box model is preferable depends strongly on the data available from the
system. If a large amount of informative data (sound system excitation, low noise
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level) is available, the black box model has the advantage of being insensitive to
inaccuracies made during the physical modeling process (e.g., neglection of higher
dynamic modes). If there is only a low amount of data or less informative data
available, the black box model is prone to overfitting. Impulse response preserving
models can, as will be shown in this section, provide a loophole of this dilemma by
combining classic gray box and the black box approach [84].

3.6.1 From State-Space to Impulse Response

We start by assuming that some physical model is available as a parameter depended
state space model

xs(k + 1) = A(◊p) xs(k) + b(◊p)u(k) (3.63)

y(k) = c
T (◊p)xs(k) + d(◊p)u(k).

Here, the system parameters A(◊p), b(◊p), c(◊p), d(◊p) depend (possibly nonlinearly)
on the parameters ◊p. If a physical model of a mechatronic system is available
this parameter ◊p can be, for example, a mass, a sti�ness, an inductivity, or any
other unknown physical constant of the system. An overview of techniques for the
construction of models from first principles can be found in [55]. It can be concluded
from simple recursion that the impulse response of the system described by (3.63) is
given by[67]

gp(k) =

Y
_]

_[

d(◊p) k = 0

c
T (◊p)A(◊p)k≠1

b(◊p) k > 0.
(3.64)

This equation allows for each value of the physical parameters ◊p to compute the cor-
responding impulse response. Furthermore, the transfer function of the input/output
behavior of the state space system is given by

G(z) = c
T (◊p)

1
zI ≠ A(◊p)

2
≠1

b(◊p) (3.65)

Thus, a transfer function is assigned to each possible value of ◊p. This transfer
function can then be employed for the construction of an impulse response preserving
matrix of the same order as the state space representation. The computation of a
value of the GCV function is summarized in Algorithm 3. Usually, this calculation of
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Algorithm 3 Calculation of the GCV error for RFIR identification
1: Construct a linear state space system depending on physical parameters ◊p.
2: Construct the corresponding transfer function Gp(z) by (3.65).
3: Build the impulse response preserving matrix with (3.33)
4: Calculate the GCV error, according to (2.94)
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Figure 3.17: Possible trade-o� between prior knowledge and available data for regu-
larized system identification.

the GCV error is embedded in an optimization loop to find the best hyperparameters
for the problem. If the optimal hyperparameters are found, the optimal model
parameters are found by solving the regularized estimation problem.

3.6.2 The Appropriate Amount of Prior Knowledge

With the gray box approach, there are three types of parameters estimated by the
GCV. These are the strength of the regularization ⁄, a parameter of the weighting
matrix –, and the physically relevant parameters ◊p. The e�ect of the incorporation
of prior knowledge is schematically depicted in Fig. 3.17. Here, it is shown that
by using the GCV for hyperparameter estimation, the trade-o� between data and a
priori available knowledge is done using ⁄. The most extreme case is the consider-
ation of an FIR model solely without any additional information. In this case, the
estimation of the parameters of the impulse response is only determined by data,
and prior knowledge has no influence. If prior knowledge is to be included, then
the most basic option is to construct the penalty matrix with the TC kernel. In
this case, ⁄ cannot grow arbitrarily large since the full rank for F would cause all
impulse response coe�cients to be equal to zero, which is usually of no practical
value. By using IRP matrices, it is possible to increase the level of detail of the prior
knowledge. If this prior knowledge is, as will be the case for most physical models,
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accurate, the value of ⁄ can be increased, and the hyperparameter tuning technique
will allow for more regularization and so more prior knowledge for the solution of the
identification problem. It is interesting to note that by this procedure, an automatic
data-based trade-o� between prior knowledge and information available in the data
is done.

3.6.3 Pendulum Example

For the investigation of the applicability of the algorithm to a real-world system,
a pendulum example is investigated. The structure of the experiment is shown in
Fig. 3.18. A force F (k) is applied to a car with the massmc. The movement of the car
results in both, a change in the car’s position x(k), and a rotation of the pendulum
with an angle –(k). The moment of inertia of the pendulum corresponding to its
rotation point is denoted by Jp. The car is further attached to a spring with spring
constant cs and damping constant d. If the sampling time is chosen as Ts = 20 ms,
then the following transfer function can be derived [84]

B(z)
z4 ≠ 3.73z3 + 5.27z2 ≠ 3.35z + 0.8 . (3.66)

The IRP matrix is constructed using the denominator coe�cients of the transfer
function.
In an experiment, N = 1000 samples are collected while the system is being exited
by a PRBS signal. The results obtained by the gray box method are shown in
Fig. 3.19. To demonstrate the e�ect of the chosen IRP matrix, the value of ⁄ is
varied. The first figure shows the identification result for ⁄ = 0. This means that



90 3.6 Regularized Identification of Gray Box Models

0 50 100 150 200 250 300 350 400 450 500

-2

0

2

10
-3  = 0

0 50 100 150 200 250 300 350 400 450 500

-2

0

2

10
-3  = 0.001

0 50 100 150 200 250 300 350 400 450 500

-2

0

2

10
-3  = 1.9136

0 50 100 150 200 250 300 350 400 450 500

-2

0

2

10
-3  = 10000

Figure 3.19: Obtained impulse responses for di�erent values of ⁄.
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Figure 3.20: NRMSE for di�erent penalty terms and di�erent number of samples.

no prior knowledge is induced. Since the term ⁄F
T
◊F is zero by definition, a classic

FIR system is identified. The spiky response of this FIR model is clearly visible.
This behavior does not only occur for the pendulum system but is typical for linear
system responses identified by an FIR model. If ⁄ is increased, which is shown in
the next subfigure, the spikiness of the response starts to decrease. In this case,
prior knowledge is induced in the system, and the response is fitted to be more like
the model based on physical principles. The subfigure thereafter shows the value
of ⁄ optimized by GCV. The spikiness is almost gone. However, compared to the
last subfigure, where ⁄ has been chosen to be very high so that the response will
correspond to a model with the given denominator coe�cients, it can be seen that
some coe�cients of the impulse response are allowed to di�er.
For a more detailed analysis of the trade-o� between incorporated prior knowledge
and model accuracy, both the length of the data and the used kernel are varied. To
compare the state of the art methods an unregularized FIR, regularized IRP matrices
of second and fourth order, the TC kernel, gray box kernel where only dampings
are estimated (partial gray box), and a complete gray box where all 4 parameters
are known from (3.66) are considered. The results are shown in Fig. 3.20. One
observation that can be made is that for a high number of informative data, e.g.,
N = 10 000, all methods perform almost similar. However, for less informative data,
this picture changes. If very little data is available, the pure gray box model (F)
performs best. This is relatively easy to explain. The number of hyperparameters to
be identified for this approach is two, since only regularization strength and penalty
parameter ⁄ have to be estimated. For the partial gray box model (D), this number
grows to four, and for the reg. IRP FIR (B) it grows to six. For a larger amount
of data, the IRP matrices of second and fourth order become comparable. However,
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Figure 3.21: Performance for di�erent penalty matrix approaches and varying noise
levels.

it is remarkable that, for this example, IRP matrices perform better than the TC
kernel for cases with an average number of data.

To evaluate the robustness of the method to noise, the obtained output data is
corrupted by Gaussian white i.i.d noise with variance ‡

2. The results are shown
in Fig. 3.21. For low noise levels, the performance of the identification techniques
is equal. If the noise is increased, the FIR models variance error increase, and
so the performance on test data. Also, the performance of the TC kernel starts to
deteriorate. For high noise levels, the performance of the IRP matrix of fourth order,
the partial gray box model, and the complete gray box model are nearly equal. The
proposed method is thus able to infer the gray box parameters accordingly with the
GCV approach.

Concluding, it has been shown that IRP matrices combined with the regularized
FIR identification approach allow for systematic integration of prior knowledge to
linear system identification. A significant benefit compared to classical gray box
identification techniques is the robustness of the method. Irrespective of the applied
construction techniques for the penalty term in the regularization, if su�cient data is
provided, all approaches are able to perform well. In the case where data is disturbed,
an excellent gray box model can make a substantial di�erence.
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4 Regularized Local FIR Model
Networks

The ideas described in Chap. 3 apply for linear system identification only. Variance
errors can, however, be much higher for nonlinear system identification. This is
caused by the significant increase in the number of parameters, especially for the
identification of nonlinear FIR systems. For the identification of linear FIR systems,
each delayed input requires the estimation of one parameter. For NFIR systems,
each delayed input increases the dimension of the input space by one, leading to
a substantial increase in the number of parameters required for each input and its
coupling with the other inputs.

The application of local model networks o�ers a loophole to this dilemma. Due to
the separation of z and x variables described in Sect. 2.1.4, it is possible to keep the
number of nonlinear dimensions small, while the local models are FIR models with
many parameters. However, if the local models are of FIR type, the variance error
remains an issue. In [80], initially, a possible solution to this problem is proposed.
As described in [79], this can also be extended to MIMO systems. Furthermore, the
approach has been applied to a simulated Diesel engine process [82].

In this chapter first, the structure of the proposed LMN with local FIR models
is introduced. Then, the role of regularization, including the estimation of hyper-
parameters, is addressed. The straightforward extension of the approach to MIMO
systems is treated afterward. Finally, the feasibility of the procedure is demonstrated
on two numerical examples, and the method is applied to a simulated Diesel engine
process.

4.1 Structure of Local Linear Model Networks
The structure of the network corresponds to the classical LMN, as described in
Sect. 2.1.4. In this approach, M local FIR models Li(x(k)) are weighted with validity
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functions �i(z(k)) to calculate the output

y(k) =
Mÿ

i=1

Li(x(k))�i(z(k)). (4.1)

To identify NFIR models, the local models Li(x(k)) are chosen as FIR models with
an additional o�set. The scheduling variables z(k) can be chosen di�erently for
the generation of the nonlinear partitioning with the validity functions �i(z(k)). In
contrast to x(k), the variables z(k) are chosen to also contain delayed values of the
output y(k). This enables a better representation of the nonlinear behavior.

L1(x(k))

�1(z(k))

⇥

�1R1(�1
)

.

.

.

LM (x(k))

�M (z(k))

⇥

�MRM (�
M
)

x(k)

z(k)

ŷ(k)

Figure 4.1: Structure of a regularized local FIR model network with M local models.

The proposed structure is summarized Fig. 4.1. Each neuron contains one validity
function and a local FIR model. These FIR models are identified using a regularized
approach. Therefore, the penalty matrix Ri(“i

) regularizes the estimate of each
local FIR model. The penalty term depends on the regularization strength ⁄i and
other hyperparameters “

i
. This connection is indicated in the figure by the arrow

pointing to the local models. The other hyperparameters contained in “
i
depend

on the chosen construction mechanism for the penalty matrix. In principle, every
approach described in Chap. 3 can be applied. Usually, the TC kernel is employed
for its simplicity. So “

i
will be a scalar and contains only the exponential decay

factor of the TC kernel.
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4.1.1 Local FIR Models

To construct the local FIR models, the n + 1-dimensional regressor variable x(k)
contains only delayed input values and reads as

x(k) = [u(k), u(k ≠ 1), . . . , u(k ≠ n)]T . (4.2)

The i-th local FIR model with o�set can be written as

Li(x(k)) = b
T
i x(k) + ci, (4.3)

with the n+ 1-dimensional vector of FIR coe�cients bi for the i-th local model and
the local o�set ci. The parameters of the local models are estimated by a local
estimation approach, see Sect. 2.1.4 for the probabilistic interpretation. For the
local estimation approach without regularization, the estimate is the solution to a
weighted least squares problem. This is similar in the regularized case. Here, the
local estimation approach leads to a weighted regularized least squares problem,
which also has an analytical solution. The weighted regressor and the weighted
output without o�set for the i-th local model are calculated as

X̃ i = W

1
2
i X ỹ

i
= W

1
2
i (y ≠ ci). (4.4)

To calculate ỹ
i
, the o�set ci has to be available. The procedure to identify the o�set

is described in Sect. 4.2.3. The weighting matrices W i are formed in the usual way
for local model networks [90] according to

W i = diag (�i(z(1)),�i(z(2)), . . . ,�i(z(N))) (4.5)

and the validity functions �i are calculated according to (2.35). The transformation
of the regressor matrix and the output vector given by (4.4) enables computation of
the estimate for the parameters of the local models according to

b̂i =
1
X̃

T
i X̃ i + ⁄iRi

2≠1

X̃
T
i ỹi

. (4.6)

Here, the matrix Ri serves as a penalty matrix for the regularization of the i-
th local model. Consequently, local model networks can be employed to transfer
favorable identification methods for linear systems to the nonlinear world by using
the local estimation technique. This also has been demonstrated for OBFs [53] and
for instrumental variable methods [90].
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4.1.2 Choice of the Partitioning Space in Local Model Networks

A characteristic of LMNs is that they blend di�erent models depending on the
scheduling variables z. Blending local FIR models is unique compared to the peculiar
blending behavior of local ARX models. First, this di�erence is illustrated. After-
wards, di�erent possible choices for the scheduling variables and the consequences
for the LMN will be analyzed.

Blending characteristics To explain the advantages of the blending behavior of
local FIR models, their blending behavior is compared with local ARX models. The
blending behavior of local ARX models has been investigated in [90]. There, it has
been shown that blending can cause undesired oscillatory and even unstable behavior
in the blending regime. To illustrate these issues and compare them to the FIR case,
we consider the two systems

G1(z) =
z
4

(z ≠ 0.9)2(z ≠ 0.8)2 = z
4

A1(z)
(4.7)

and
G2(z) =

z
4

(z ≠ 0.25)2(z ≠ 0.35)2 = z
4

A2(z)
. (4.8)

The first subsystem has relatively slow poles p1,2 = 0.9 and p3,4 = 0.8. In contrast,
the second subsystem has relatively fast poles at p1,2 = 0.25 and p3,4 = 0.35. The
denominator polynomial

A(z) = ’A1(z) + (1 ≠ ’)A2(z) (4.9)

describes the blending behavior for the ARX case with ’ = 0 . . . 1 being the blending
factor. Here, the coe�cients of the denominator polynomial are blended, which
changes the poles of the system during blending. In contrast to the FIR case, the
coe�cients of the impulse response are simply blended. Thus the impulse response
reads as

g(k) = ’g1(k) + (1 ≠ ’)g2(k) (4.10)

with g1(k) and g2(k) denoting the impulse responses of G1(z) and G2(z).

In Fig. 4.2 the impulse responses of the blended ARX systems are shown in the left
subfigure, while in the right subfigure the blended FIR impulse responses are shown.
The value of ’ is subsequently decreased. For ’ = 1, and for ’ = 0, the impulse
responses for G1(z) and G2(z) are obtained for both the ARX and the FIR case.
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Figure 4.2: Blending behavior of a fourth order system with p1,2 = 0.25, p3,4 = 0.35
blended to p1,2 = 0.8 and p3,4 = 0.9 for di�erent blending factors ’.

The di�erence between blending of local ARX and local FIR models can be seen for
the values of ’ in between. While for the FIR case, the blending is done smoothly,
the impulse responses for blended ARX systems behave awkwardly. For ’ = 0.7, the
ARX impulse response becomes negative for values around k = 40, although both
the impulse response of G1(z) and G2(z) are positive. But in particular, for ’ = 0.1,
the impulse response of the blended ARX system becomes oscillatory and unstable.

To explain the blending behavior of the ARX system, in Fig. 4.3 di�erent pole
locations for ’ between 0 and 1 are depicted. It can be seen that for all values of ’

except for the cases when ’ is exactly 0 or 1, the poles of the blended systems have
an imaginary part. Furthermore, it can be seen that the fastest poles are blended
to the slowest poles. This creates two ellipsoidal routes in the z-plane for blending,
which are symmetric to the imaginary axis.

The choice of the splitting variables z significantly influences the ability to represent
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Figure 4.3: Pole locations of the blended local ARX models. For values of ’ between
0 and 1, each cross represents the location of one pole. The directions of
the arrows indicate increasing values of ’.

nonlinearities with the local model network. Several options are possible. The al-
ternative, which is most straightforward for FIR models, is to consider only delayed
input values for the vector z. Another approach is to consider also delayed output
values. These two cases are discussed in detail.

Delayed values of the input If only delayed input values are contained within z,
it is guaranteed that for a constant input u(k) = u0, the output will be constant as
well. If this case is considered, the splitting variable is equal to a constant z(k) = z0

which contains only u0. So, for each validity function, �i(z(k)) = �i(z0) holds.
Thus, the validity functions will be constant as well. Using the constant input in the
equation for the local models leads to

Li(x(k)) = Li(x0) =
Mÿ

i=1

Nÿ

j=0

bi(j)u0 + ci, (4.11)

which is also a constant. So the total output of all local models will be constant,
too.

Delayed values of the output For delayed output values, this guarantee is lost. It
can happen that the system is in a limit cycle when the input is constant. However,
the output will remain bounded for an arbitrarily bounded input. First, assume that
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the input is bounded by u(k) Æ u0, then it holds that

y(k) Æ

Mÿ

i=1

Q

a
nÿ

j=0

bi(j)u0 + ci

R

b �i(z(k)) Æ max
i

Q

a
nÿ

j=0

bi(j)u0 + ci

R

b = const. (4.12)

The second inequality holds, due to the fact that all validity functions sum to one.
Besides guaranteeing that the input is bounded, it is not guaranteed that it remains
constant. It is possible that the system is in a limit cycle, but remain bounded. It is
often advantageous to accept this slight risk and increase the flexibility of the model
by including delayed output values.

4.2 Role of the Regularization Matrix
As described in detail in Chap. 3, identification of linear FIR systems is prone to
a high variance error. If local FIR models are considered, this problem becomes
significantly worse. The variance error increases since instead of the n+1 parameters
of one n-th order FIR system M(n + 2) parameters of the FIR models with o�set
have to be identified. Controlling this variance error by a suitable regularization is
thus the key for enabling well performing nonlinear identification with LMNs.

4.2.1 Choice of the Kernel or Penalty Matrix

To perform the identification routine described in Sect. 4.1.1, the local FIR models
are a�ected by the penalty matrices in the same way as one global regularized FIR
model. The major di�erence is that not one single regularization matrix, but as many
regularization matrices as local models have to be chosen. In principle, the penalty
matrix could be constructed by hand following an individual scheme for each local
model. However, to enable the usage of regularized identification in an automatic
local model construction algorithm (like LOLIMOT), an automatic procedure to
choose the penalty matrices is required. Usually, the penalty matrices for the local
models can be constructed from the same kernel or filter matrix. So, the penalty
matrix for each local model is, e.g., constructed by the TC kernel. If such a scheme
is employed, there are as many hyperparameters for each local model to choose, as
there are hyperparameters in the construction scheme for the chosen penalty matrix.
Here, di�erent choices are possible, as well. One viable option is to estimate the
local models with the same hyperparameters specified a priori, stemming, e.g., from
a global regularized FIR model. For the TC kernel, this means that each local model
has the same decay rate. This has the drawback that time constants which di�er



100 4.2 Role of the Regularization Matrix

between local models cannot be represented well. Alternatively, the local models can
be estimated with individually tuned hyperparameters. This increases the number of
unregularized parameters within the model but allows for more flexibility to capture
varying dynamic behavior at di�erent operation points.

It is, in principle, possible to integrate more complex prior knowledge, like the IRP
kernel described in Chap. 3. This increases the number of hyperparameters for each
local model. The risk here is, however, that if a scheme with very many hyperparam-
eters is used, there is also a risk to overfit the hyperparameters. For the avoidance
of too many parameters, the TC kernel is, therefore, a viable choice. For each local
model with marginal likelihood optimization, three additional unregularized param-
eters are estimated. For the i-th local model, these are the measurement noise ‡i,
the decay parameter –i of the TC kernel, and the regularization strength ⁄i.

4.2.2 The Marginal Likelihood

Tuning of the hyperparameters of the kernel for the local FIR models is critical for
a high accuracy of the identification result. In principle, the marginal likelihood,
as in the linear case, can be employed. There are, however, two di�erences. The
first di�erence is that instead of a global model, the likelihood is only estimated
for the output of the local model. The second di�erence is that an o�set does not
occur for linear identification. For the local FIR models, this o�set is not penalized.
This has the same consequence as for other unpenalized parameters, as described
in Sect. 3.1.2. The influence of such non-Bayesian parameters is eliminated by the
subtraction of their influence from the output. For the o�set, this simply means that
the o�set ci is subtracted from the local output. For a mathematical treatment of
the likelihood, this means that instead of the pdf p(y) for the global output, the pdf
for the local o�set corrected output p(ỹ

i
) is calculated. This pdf can be calculated

according to
p(ỹ

i
) = 1

Ò
(2fi)N detZi

exp
3

≠
1
2 ỹ

T
i
Z

≠1

i ỹ
i

4
(4.13)

with
Z i =

1
⁄i
X̃ i P i X̃

T
i + ‡

2

i IN . (4.14)

This is the likelihood function. Its logarithm is optimized. Thus the hyperparameter
optimization problem can be formulated as

minimize
“
i
,⁄i,‡i

ỹ
T
i
Z

≠1

i ỹ
i
+ log detZ i. (4.15)
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The computation of the marginal likelihood is described in detail in Sect. 4.3.1.

4.2.3 Estimation of O�set and Noise

In contrast to the other parameters of the local impulse responses bi, the o�set ci is
not penalized by the regularization matrix. In principle, a bias space, as introduced in
Sect. 3.1.2, has to be considered. This requires for each computation of the likelihood
to estimate the parameter ci from the solution of a regularized FIR problem. Then
this o�set is subtracted from the output. Afterwards, with this o�set corrected
output, the marginal likelihood is estimated.

In [100], it has been described that a two-step procedure for the estimation of the
noise is favorable for the linear FIR identification problem. For this procedure, in
the first step, a high order ARX or FIR model is identified, and the variance of the
error serves as an estimate for the noise variance. The same approach can be applied
for the estimation of the noise variance in the nonlinear case. Instead of a global
ARX or FIR model, a local FIR or ARX model, equipped with an additional o�set
term ci, is estimated. This allows for both the identification of the o�set ci and the
noise variance ‡

2

i . Also in the nonlinear case, this procedure has been observed to
be su�cient since the found o�set and noise do not di�er significantly from those
computed by a regularized estimation of the bias space.

The error made by a local model is di�erent from the error in the linear case. The
error of the local model is the sum of two terms. The first term stems from the noise
itself, and the second is due to the nonlinearity which cannot be described by the
linear structure in the validity region. This second contribution is also the cause of
the LOLIMOT algorithm to split local models with the highest local error greedily.
For regularized identification, a larger estimated error will via ‡

2

i influence the result
of the identification such that the penalty is increased. The higher the penalty term,
the more emphasis is put on prior knowledge, and less attention is given to obtain a
fit from the data. This, in turn, causes an even higher error on training data in the
areas of strong nonlinearity. The LOLIMOT algorithm is thus rewarded for splitting
this region further. So a noise estimate tuned by this procedure is not expected to
and has not been observed to interfere with the LOLIMOT algorithm negatively.
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4.3 Algorithmic Implementation

In Algorithm 4, the method for the identification of a regularized FIR LMN is summa-
rized. To control the overall complexity of the local model, an information criterion

Algorithm 4 Identification of a regularized local FIR LMN
1: Select variables and model order for the z regressor.
2: loop
3: Select the worst local model for splitting according to the LOLIMOT algorithm

4: for each possible splitting direction do
5: Identify an unregularized high order FIR model and estimate the o�set ci

and the noise variance ‡
2

i .
6: Tune the hyperparameters ⁄i and “

i
for the penalty matrix P i(“i

) by non-
linear optimization of (4.15).

7: Estimate the local FIR parameters b̂i by computing (4.6) with the optimized
hyperparameters.

8: Compute the e�ective number of parameters dfi utilized for the local model
estimation and calculate an information criterion.

9: end for
10: Split in the direction which results in the highest improvement of the infor-

mation criterion.
11: end loop

is applied. The AICc with the e�ective number of degrees-of-freedom for the number
of parameters will be employed in the subsequent analysis.

There are two sources of model complexity for LMNs with regularized local FIR
models. The first source stems from the parameters of the local FIR model. This
source of complexity is controlled by the described regularization, which is tuned
by an appropriate hyperparameter tuning method. The second source of complexity
stems from the number of local models. The more local models are within the LMN,
the better the nonlinear behavior of the system is described. As, due to splitting,
the number of data points lying within a local model is decreased, it can be expected
that the amount of regularization for this model will be higher due to less available
information in the data. So decreasing complexity caused by regularization and
increasing complexity caused by the number of local models interact. An appropriate
way to assess this interaction is the utilization of the e�ective number of degrees of
freedom for the calculation of the AICc.
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4.3.1 E�cient Implementation of Hyperparameter Tuning

During the estimation of the local models, the hyperparameters of the kernel matrix
“
i
and the regularization strength ⁄i have to be tuned. For the linear case, estimation

of the likelihood function poses a computational challenge since, in its fundamental
form, it contains the inverse of an N ◊N matrix, see Sect. 2.2.2. For the unweighted
linear case, an algorithm avoiding this explicit inversion has been proposed [26]. It
will be shown that this algorithm generalizes to the weighted and nonlinear case as
well. For the hyperparameter tuning, the weighted version of the hyperparameter
function is considered. First, as for the linear case [26], the Cholesky factorization of
the covariance matrix P i = L

T
i Li is computed. The matrix Li is a lower triangular

matrix. Then, the skinny QR factorization of
Q

aX̃ i Li ỹ

In‡
2 0

R

b =
1
Q

1
q
2

2
Q

aR1 r2

0 r

R

b (4.16)

is calculated. The matrix Q
1
is an orthogonal N + n ◊ n + 1 and R1 an upper

triangular n+1◊n+1 matrix. It is then possible, see [26], to calculate the negative
log likelihood function according to

J = r
2

‡2
+ (N ≠ n) log ‡

2 + 2 log detR1. (4.17)

Since R1 is an upper triangular matrix, the determinant is simply the product of
its diagonal elements. Thus, its computation is not demanding. The function J

is optimized by a nonlinear optimization algorithm. In this thesis, the constrained
optimization algorithm fmincon from MATLAB is employed. For the TC kernel,
the value of –i is constrained to lie between 0.85 and 0.98 and ⁄i to be positive.

4.3.2 E�cient Computation of the Number of Parameters

For calculation of the AICc of the LMN, the e�ective degrees of freedom for each
local model have to be calculated. Here, the QR factorization described by (4.16)
can be reused. Let tr(·) denote the trace of a matrix. Then, for the i-th local model,



104 4.4 Multiple Inputs and Multiple Outputs

the number of e�ective degrees of freedom dfi is calculated according to

dfi = tr
1
X̃ i(P i X̃

T
i X̃ i + ‡

2
In)≠1

P iX̃ i
T2

(4.18)

= tr
1
X̃ i(LiL

T
i X̃ i

T
X̃ i + ‡

2
In)≠1

L
T
i Li X̃ i

T2

= tr
1
X̃ iLi(RT

1
R1)≠1

L
≠1

i Li L
T
i X̃ i

T2

= tr
1
Q

1
R1(RT

1
R1)≠1(Q

1
R1)T

2

= tr(Q
1
Q

T
1
)

This form is significantly simpler than a direct calculation of the trace of the smooth-
ing matrix. The matrix Q

1
has already been computed for the calculation of the

marginal likelihood, and thus for the computation of the information criterion, only
the matrix multiplication of Q

1
Q

T
1
has to be performed.

4.4 Multiple Inputs and Multiple Outputs

Up to now, only the SISO case for identification has been considered. The algorithm
proposed here extends naturally to MISO and MIMO systems. The regressor variable
has to contain the delayed values of all inputs if the system has multiple input
signals.

4.4.1 Consideration of Multiple Inputs

If multiple inputs are considered for the RFIR LMN, in principle, the structure of
the model remains the same. The only di�erence is that the local models become
MISO FIR instead of SISO FIR models. This change is illustrated in Fig. 4.4. Here,
for m = 2 inputs, it is shown that both inputs are fed to a tap delay line before being
applied to the LMN as a nonlinear function approximator. The delayed output is,
as in the SISO case, contained only in z. For estimation of the local MISO FIR
models, the regressors for the individual inputs are denoted as Xu1 , . . . , Xum

with
m indicating the number of inputs to the system and Xui

denoting the regression
matrix to model the FIR system of input ui(k). These regressors are then stacked
to a common regressor

X =
Ë
Xu1 . . . Xum

.

È
. (4.19)
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Figure 4.4: Structure of a regularized FIR LOLIMOT model with two inputs

Besides the regressor, also the local regularization matrix has to be changed. There-
fore, individual regularization matrices are concatenated diagonally into a matrix

P =

S

WWWWWWU

P 1 0 . . . 0
0 P 2 . . . 0
... ... . . . ...
0 0 . . . Pm

T

XXXXXXV
. (4.20)

The matrices P 1, P 2, . . . , Pm are individual kernel matrices for the inputs u1(k),
u2(k), . . . , um(k). For the estimation procedure, nothing changes. The regressors
obtained by stacking the individual regressors are weighted according to (4.4). Then
the estimation of the parameters is processed as usual. A di�erence is that the
number of hyperparameters for the local model changes, too. Now, instead of the
hyperparameters for one regularization matrix, the hyperparameters ofm regulariza-
tion matrices have to be tuned. Both marginal likelihood and GCV can be employed
to do this. In principle, it is possible to assign identical hyperparameters to the
penalty matrices of di�erent inputs. This would cause, e.g., in the case of the TC
kernel, the dynamics of the individual FIR models for the inputs to be alike. Setting
the parameters to be equal can be useful if it is known a priori that the inputs a�ect
the output with a similar dynamic. If this is not known, di�erent regularization
parameters for each input are advantageous.

4.4.2 Consideration of Multiple Outputs

For the consideration of multiple outputs, two approaches are possible. The dif-
ference between these approaches is the partitioning of the input space. The first
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Figure 4.5: Structure of a regularized FIR LOLIMOT model with two outputs and
shared z-input spaces.

possibility is to train an individual RFIR LMN for each output. Here, nothing
changes compared to the MISO or SISO case. Indeed, no knowledge of the nonlinear
behavior of the di�erent outputs is shared. The second option allows for a simple
sharing of nonlinear behavior between the models for the di�erent outputs. For this
method, the nonlinear partitioning of the matrix z is shared. This approach is illus-
trated in Fig. 4.5. It can be seen that both output values y1(k) and y2(k) are fed
back over a tap delay line into the nonlinear approximator. These are both colored
in gray to underline that only z contains the delayed output values. The input space
for the local linear models is the FIR input space which is only spanned by delayed
values of u(k).

4.5 Numerical Examples

For an illustration of the behavior and the advantages of the RFIR LMN, two non-
linear test systems are investigated.

4.5.1 SISO Wiener System

To illustrate the advantages of the regularized estimation, a Wiener system, described
in [90], is investigated. The di�erence equation

y(k) = arctan(0.01867u(k ≠ 1) + 0.01746u(k ≠ 2)) (4.21)

+ 1.7826 tan(y(k ≠ 1)) ≠ 0.8187 tan(y(k ≠ 2)))
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Figure 4.6: Excerpt of the obtained responses of the system for the low (upper plot)
and the high noise (lower plot) case. ARX2 and ARX4 correspond to the
local ARX model of second and forth order. The ARX2 model becomes
unstable at A and performs poorly at C. The variance error of the non-
regularized local FIR model becomes visible at B.

describes its behavior. For this system, N = 1000 samples have been simulated and
disturbed by i.i.d. Gaussian noise. Two noise cases are investigated. The high noise
case has an SNR of 40 dB and the low noise case one of 20 dB. The chosen input
signal is an APRBS signal with a holding time of five samples. The regularized FIR
LMN is trained by Algorithm 4 for both cases. Therein, the complexity of the model
is determined by the AICc. For comparison, LMNs trained by LOLIMOT with local
unregularized FIR models, as well as local ARX models of second and fourth order,
have also been identified. An excerpt from the time domain behavior of the identified
models is shown in Fig. 4.6. It can be seen that the LMN with regularized local FIR
local models shows the best responses for both the low and the high noise case. The
local ARX model su�ers from the inconsistency of the identification procedure. In
the low noise case, the ARX model with two delayed input values becomes unstable
(letter A in the figure), while the ARX model with four models performs highly
undesirable (letter C). In the high noise case, it can be seen that local non-regularized
FIR models su�er from high variance errors (letter B in the figure). The response
becomes inaccurate for some samples, and the error changes between the samples at
a high rate. The cause for this error is the variance error of the FIR coe�cients of
the local models. For the local regularized local FIR models, this does not occur.
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Here, a change in the subsequent impulse response coe�cients of the local models
is penalized by the regularization. Thus, rapid changes between these coe�cients
occur less frequently. Another important reason for the improved performance of the
regularized FIR compared to the unregularized one is the fact that per local model,
fewer parameters are needed. Thus the regularized FIR LMN can split the input
space more frequently, allowing for a better representation of the nonlinearity of the
process. In Tab. 4.1 the results for di�erent SNRs for all investigated model types

SNR property ARX2 ARX4 FIR unreg. FIR reg.

20 dB
NMSE 0.185 0.069 0.013 0.0029
M 22 16 4 7
ne� 38 57 239 72

27 dB
NMSE 0.153 1.75 0.0073 0.0023
M 49 21 6 8
ne� 66 89 241 98

30 dB
NMSE 0.122 0.034 0.0050 0.0020
M 30 18 6 8
ne� 52 76 283 101

37 dB
NMSE 0.0618 1.02 0.0041 0.0021
M 24 35 6 9
ne� 40 102 285 107

40 dB
NMSE 0.798 1.51 0.0039 0.0019
M 36 42 6 9
ne� 57 134 284 107

Table 4.1: NMSE values on test data, number of local models M , and e�ective num-
ber of parameters ne� for di�erent local models and SNRs in the nonlinear
Wiener case. Best performing values are marked bold. The e�ective num-
ber of parameters is rounded to the next integer value.

are shown. All investigated models with NMSE values greater than 2·10≠1 have been
observed to be unstable. This does not occur for the unregularized local FIR models.
Nevertheless, regularization leads to substantial improvement. For all investigated
SNRs, the regularized models were able to achieve the best performance.

4.5.2 SISO Hammerstein System

Another nonlinear system is a Hammerstein nonlinear system. Here, in contrast to
the Wiener system, the input of the system is fed to a nonlinearity and then the
signal is applied to a dynamic system. A Hammerstein system of second order is
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given by [90]

y(k) =0.01867 arctan(u(k ≠ 1)) + 0.01746 arctan(u(k ≠ 2)) (4.22)

+ 1.7826 tan(y(k ≠ 1)) + 0.8187 tan(y(k ≠ 2)).

An APRBS between ≠3 and 3 is used for excitation. In Tab. 4.2 the results of
the system are shown. It can be seen that in case of low noise the ARX model

SNR property ARX2 ARX4 FIR unreg. FIR reg.

20 dB
NMSE 0.395 0.206 0.161 0.143
M 53 24 5 8
ne� 99 97 249 90

27 dB
NMSE 0.270 0.081 0.138 0.116
M 31 6 7 11
ne� 58 36 264 138

30 dB
NMSE 0.229 0.0592 0.144 0.124
M 46 17 7 11
ne� 80 64 269 148

37 dB
NMSE 0.142 0.0198 0.141 0.126
M 21 13 7 10
ne� 48 59 269 139

40 dB
NMSE 0.0746 0.0232 0.139 0.122
M 28 33 7 10
ne� 48 107 269 128

Table 4.2: NMSE values on test data, number of local models M , and e�ective num-
ber of parameters ne� for di�erent local models and SNRs in the Hammer-
stein case. Best performing values are marked bold. The e�ective number
of parameters is rounded to the next integer value.

achieves better peformance than the regularized FIR model, but for higher noise the
regularized FIR model performs better. This is due to the inconsistency of the ARX
estimation. The regularized FIR model does not have this problem. It is intereseting
to note that although the true process is of second order, only the ARX model of
fourth order performs better than the second order ARX model. It seems that the
higher order of the ARX model compensates the incosistency of the ARX model.

4.5.3 MISO Wiener System

To illustrate the behavior of the identification routine for a system with multiple
inputs, a Wiener system with two inputs is considered. Two second order systems
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which are Euler-forward discretized versions of a continuous time second order sys-
tem, with double poles at 0.8 for the first and 0.2 for the second input, are considered.
These two systems are then fed to a nonlinearity of arctan type. The di�erence equa-
tions of the system are

s1(k) = 0.004679u1(k ≠ 1) + 0.004377u1(k ≠ 2) (4.23)

+1.81s1(k ≠ 1) + 0.8187s1(k ≠ 2)

s2(k) = 0.1912u2(k ≠ 1) + 0.112u2(k ≠ 2)

+0.8987s2(k ≠ 1) + 0.2019s2(k ≠ 2)

y(k) = arctan(s1(k) + s2(k)).

The time constants of the second order systems have been chosen such that the
G1 function represents a fast response while the G2 function is representing a slow
one. The system is identified for N = 1000 samples, and the output is corrupted
by i.i.d. Gaussian noise such that the SNR is 27 dB. For testing Nt = 50 000 noise
free samples are generated. Three di�erent local model types, a regularized local
FIR model, an unregularized local FIR model, and a local ARX model of fourth
order are identified. These are referred to as unregularized FIR, regularized FIR, and
ARX. The order of the local FIR models is chosen as n = 80. The results of the
identification, however, are not sensitive to the chosen FIR model order due to the
appropriate regularization.

In Sect. 3.2.4, it has been demonstrated that regularized identification of impulse
responses improves the variance error. This is confirmed for the nonlinear case, too.
The identified local impulse responses are shown in Fig. 4.7.

The left two subfigures show the regularized behavior, while the right two subfigures
show the unregularized case. For the slow time constant, the behavior can hardly
be recognized for the unregularized case due to the sharp fluctuations from one
value of the impulse response to the next. This is not the case for the regularized
response. Here, it can also be seen that the gain of the di�erent operating regimes
identified by the LMN can be distinguished. The same e�ect is visible for the fast
time constant. Especially parameters which are almost zero in the regularized case
vary in the unregularized case due to the variance error. It is important to notice that
the number of local models and thus the ability to represent the nonlinear behavior
of the system is lower in the unregularized case too. In the unregularized case,
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Figure 4.7: Local impulse responses of the identified local models. The left half
of the figure shows the impulse response coe�cients bi(k) of the local
regularized FIR model, while the right half shows the impulse responses
of the unregularized impulse responses with i = 1 . . .M . The upper plot
corresponds to impulse responses from u1(k) and the lower to impulse
responses from u2(k) to the output.
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Figure 4.8: Block diagram of an ARX (left) and an FIR (right) model with two
inputs. In contrast to the ARX model the FIR model has no common
denominator dynamic.

M = 4 local models are chosen by the AICc, while in the regularized case M = 8
models are selected. This is caused by the lower number of e�ective parameters for
the regularized case, which is considered in the AICc to terminate the LOLIMOT
training procedure.

Besides the biased estimate, the ARX model has another structural drawback for
MISO systems. This is illustrated in Fig. 4.8. Here, block diagrams for the linear
ARX and linear FIR case are shown. Both inputs in the ARX case share the same
denominator dynamic A(z). In consequence, if the two inputs have di�erent domi-
nating time constants, e.g., one input has a very rapid influence on the output, while
the influence of the other is slow, the denominator A(z) will have to contain both
the fast and the slow pole and the nominator polynomials B1(z) and B2(z) have
to cancel this dynamic. The structural behavior carries over to the nonlinear LMN
case. Each local ARX model allows only for consideration of the influence of the
previous global output. In contrast, for the FIR case, the dynamics are represented
solely by the nominator dynamics B1(z) and B2(z), which have significantly more
coe�cients than in the ARX case. The only drawback is the higher amount of co-
e�cients. This is diminished though by regularization leading to the demonstrated
favorable behavior.

An excerpt of the identified model answer on test data is displayed in Fig. 4.9. Also,
it can be seen that shortcomings of the di�erent model types occurring in the linear
case, generalize to the nonlinear case as well. The variance error made for the esti-
mate of the FIR model parameters, which can also be seen in the impulse responses,
becomes visible in the output signal, too. Furthermore, for the local ARX models,
the dynamic representation of the process shows less variation for neighboring co-
e�cients than for the unregularized FIR, but the overall system dynamics are not
represented accurately. This is caused by the wrongly estimated time constants of



113

4,100 4,120 4,140 4,160 4,180 4,200 4,220 4,240 4,260 4,280 4,300
�1

�0.5

0

0.5

1

k

m
o
d
e
l
in
p
u
t
s
u

u1
u2

4,100 4,120 4,140 4,160 4,180 4,200 4,220 4,240 4,260 4,280 4,300
�1

�0.5

0

0.5

1

k

m
o
d
e
l
o
u
t
p
u
t
s
ŷ
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Figure 4.9: Excerpt of time response for test data. Results for local ARX, unregu-
larized, and regularized local FIR models for LOLIMOT are shown. The
regularized local models show the best performance on test data.
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Figure 4.10: Block diagram of the investigated engine process.

the ARX model due to inconsistency issues. In contrast, the regularized FIR is able
to represent the process accurately. The di�erent normalized root mean squared
error (NRMSE) values on test data are shown in Tab. 4.3. It is interesting to notice
that regularized FIR and unregularized FIR are able to find comparably good rep-
resentations on training data, while on test data, the performance of both methods
di�ers significantly. The regularized FIR model is substantially better, here. Thus,
it can be concluded that for regularized local FIR models, the applied regularization
strategy is able to reduce the variance error significantly while keeping the bias error
in an appropriate range.

Local model NRMSE for training data NRMSE for test data
regularized FIR 10.7% 2.98%

unregularized FIR 10.0% 4.65%
ARX 12.16% 9.37%

Table 4.3: Normalized root mean squared errors for the investigated local models

4.6 Application to a Diesel Engine Process

The simulative application of the method to a diesel engine process has been de-
scribed in [82]. The Diesel engine model is described in [129] and models the torque
Te(k) of a Diesel engine, which has a variable geometry turbocharger (VGT) and
exhaust gas recirculation (EGR). There are two input signals that can be applied to
the model: The mass of the injected fuel u”(k) and the position of the VGT actuator
uVGT(k). Both are scaled between 0 and 100, with 100 describing the maximal actu-
ator position. To simplify the identification problem, the position of the EGR valve
and the speed of the motor are kept constant. Furthermore, the nonlinear influence
of the remaining two input signals is investigated.
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Figure 4.11: Training and test error of the regularized FIR local model network in
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4.6.1 Data Generation

For the generation of samples of the system, uncorrelated APRBS signals with a
minimum holding time of 0.5 s have been applied to u” and uVGT. This is a reasonable
trade-o� between static and dynamic accuracy. The speed of the engine has been kept
constant at a rate of ne = 2000 rpm and the EGR valve is kept closed (uEGR = 0).
The sampling time is chosen to be Ts = 25 ms. The simulated output is corrupted
by di�erent noise levels, yielding an SNR of 10000, 1000, and 100. These di�erent
cases will be called the low, medium, and high noise case. For the evaluation of the
performance of the algorithm, the test data is kept noise free. Since no noise term is
present in the NRMSE, it can be used for a comparison of the model performance
over the di�erent noise cases. The input u” is varied between 1 and 250 mg/cycle
and the variable turbine geometry uVGT between 1 % and 100 %.

4.6.2 Training of the Regularized Local Models

The local models are trained with the LOLIMOT algorithm with regularized local
models, as described in Sect. 4.4.1. In Fig. 4.11, the convergence behavior of the
algorithm is shown. Both the training and the test error are depicted. The best
model has 8 local models since the generalization error monotonically decreases up
to here. Due to the variance error, the training error continues to decrease, although
the test error increases. This bias-variance behavior is very valuable. As will be
seen in Chap. 5, this bias-variance trade-o� is often tough to achieve for other model
structures. Especially for neural networks, structure selection is a tough problem.
For these several hyperparameters describing the structure have to be tuned. This
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tuning requires several runs (usually around 100) of complete neural network train-
ing. Furthermore, a validation dataset is required to compare the performance of the
resulting NN structures. For LMNs trained by the described method requires tun-
ing of only one hyperparameter (the number of local models), which is determined
reliably by AICc. This is a distinct advantage compared to deep neural networks,
especially for small and medium-sized datasets where due to limited availability of
data, no validation dataset can be provided.

4.6.3 Discussion of the Local Impulse Responses

To gain some insight into the behavior of the local models for the LMN, the identified
local impulse responses of the engine model are shown in Fig. 4.12. There are two
impulse responses for each local model, one for the injected fuel mass (upper part)
and one for the variable turbine geometry. It can be seen from the regularized
responses that the fuel mass has a very rapid influence on the engine torque Te(k),
while for the turbine geometry, the time constant is significantly longer in several
operation regimes. The unregularized FIR responses show such a strong change from
one time step to the next. This hinders a reliable assessment of properties like gain or
time constant from the depicted impulse responses. Another fact which can be seen
from the responses of the variable turbine geometry input is that the time constant
changes depending on the local model considered. Likewise, this fact is not visible
in the unregularized responses due to the substantial variation from one time step
to the next.

4.6.4 Comparison to Local ARX Models

To compare the behavior of the proposed method, also an LMN with local ARX
models is identified with the LOLIMOT algorithm. In Fig. 4.13, the behavior of
the models on train and test data is shown. It can be seen that both methods with
local ARX and with local FIR models work fairly well for this example. In Tab. 4.4,
the NRMSE values of the investigated models are shown. For high SNR (low noise

SNR regularized FIR ARX
10 000 0.079 0.078
1 000 0.071 0.08
100 0.072 0.076

Table 4.4: NRMSE values on test data for the corresponding model structures.
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case), ARX and regularized FIR work comparably well, with the ARX model working
slightly better. For lower SNRs (high noise case), however, the regularized FIR model
performs better than the ARX model.

Concluding, it has been shown that regularized local FIR models o�er advantages
compared to local ARX or local unregularized FIR models. The newly proposed
models are guaranteed to be stable, while for all examples, the performance was
at least comparable to established approaches. The stability guarantee thus comes
without a cost. Furthermore, the performance has always been better than unreg-
ularized FIR models for all examples. This allows for a better representation of
nonlinearities (due to a lower number of parameters) and a lower variance error for
the estimated coe�cients of the local FIR models.
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5 Regularized Deep FIR Neural
Networks

In the previous chapter, it has been shown that LMNs allow for an extension of
the regularized FIR method from the linear domain to nonlinear problems. Due
to the specific structure of LMNs, the estimation problem can be formulated as a
weighted least squares problem with an analytical solution. Recently, neural net-
works with many layers have shown tremendous success in several machine learning
problems [108, 63], including some applications to system identification [114]. Con-
volutional networks have also been applied for system identification [42, 7]. The
goal of this chapter is to investigate whether the regularized FIR approach from
the linear domain can be applied to identify a deep convolutional neural network
structure, too. Usually, stochastic gradient descent (SGD) is applied as an optimiza-
tion algorithm to train neural networks. This algorithm and its specific properties,
compared with other optimization algorithms, are analyzed with the example of a
linear FIR system first. Afterwards, the structure for a deep neural network which
uses regularized FIR systems as building blocks is described. Finally, training this
structure on the Bouc-Wen system, a standard benchmark for system identification,
is investigated.

5.1 Properties of SGD – A Review for FIR
Identification

As described in Sect. 2.1.3 for the training of a neural network, a non-convex opti-
mization problem is to be solved. A commonly employed characteristic is that Neural
Networks (NNs) are trained by stochastic gradient descend (SGD). In principle, this
algorithm is straightforward. It calculates the gradient of the loss function on a sub-
set of data (the mini-batch) and takes a step downwards this negative gradient. This
algorithm has the appealing advantage that its computational complexity grows only
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linearly with the number of parameters of the NN and also linearly with the number
of samples within the mini-batch [51].

5.1.1 Unregularized FIR

Stochastic gradient descend (SGD) is considered in the context of unregularized
linear FIR models first. The principle of SGD is to update the parameter in the
descending direction of the negative gradient of the loss function. This gradient is
calculated only on a subset of the data. The data subset onto which the gradient
is calculated is called a mini-batch [51]. As described in Sect. 2.2.1, the calculated
output of a linear FIR model can be written as

ŷb = Xb ◊. (5.1)

The process output vector y
b
and the modeled output vector ŷ

b
contain only a

subset of Nb samples of the output. Here, it is assumed that at each step of the
SGD algorithm, these samples are randomly picked (without replacement) from the
complete output y. The rows from the complete regressor X of the FIR problem are
picked at the same locations and concatenated in the batched regressor Xb. Then,
the loss function for the mini-batch reads as

Jb =
1
Nb

e
T
b eb =

1
Nb

(y
b

≠ ŷ
b
)T (y

b
≠ ŷ

b
) (5.2)

with the vector of errors for the mini-batch eb. It follows from the chain rule that
the gradient of the loss function is

ˆJb

ˆ◊
= 1

Nb

ˆe
T
b eb

ˆ◊
= ≠

2
Nb

C
ˆŷ

b

ˆ◊

DT

eb. (5.3)

The SGD algorithm simply moves along the descending direction of the negative
gradient with a learning rate ÷, and iteratively computes the updated value of the
parameters ◊

(n+1) at the n-th step of the algorithm according to

◊
(n+1) = ◊

(n) + ÷
2
Nb

C
ˆŷ

b

ˆ◊

DT

eb. (5.4)

For the linear FIR case, the gradient of the modeled output with respect to the
parameter is

ˆŷ
b

ˆ◊
= Xb. (5.5)
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Inserting in (5.4) results in

◊
(n+1) = ◊

(n) + ÷
2
Nb

X
T
b eb (5.6)

for the SGD algorithm. To demonstrate the mechanism of SGD, the second order
system

G(z) = 0.49z2 + 0.48z
z2 ≠ 1.84z + 0.94 (5.7)

is excited with N = 1000 samples of a PRBS input signal. The output is disturbed
by i.i.d. Gaussian noise with a variance of ‡

2 = 0.1.

The optimization problem is, from a computational perspective, simple. It has a
unique, analytically calculable optimum. If a second order method, like Newton’s
method, is applied, it converges within one step to this optimal solution.

If the behavior of SGD is concerned, its behavior depends strongly on the chosen
learning rate ÷. Convergence shows in all cases a non-monotonic behavior. For a too
high learning rate, its convergence is poor locally, and for a too small learning rate
its convergence is very slow. This is exemplified in Fig. 5.1.
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Figure 5.1: Comparison of di�erent learning rates (÷1 = 4 · 10≠1, ÷2 = 4 · 10≠2,
÷3 = 8 · 10≠3). On the right side, the estimated impulse response is
shown in black and the true impulse response in gray. For high ÷, the
local convergence is poor. For low ÷, convergence is slow.
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If now the problem is changed from linear to nonlinear, the problem becomes even
more pronounced. There is the possibility that the algorithm gets stuck within a
locally optimal solution or a saddle point. Recently, there has been some work, which
analyzes the escaping behavior of SGD from saddle points [57].

In contrast to all these disadvantages, SGD has one significant advantage: Its compu-
tational simplicity. The gradient of the loss function can be computed with the same
amount of operations as a forward-pass through a neural network. Furthermore, its
formulation allows for mini-batches and so the computation of a sample-wise gradi-
ent. For applications having a huge amount of data and for structures with many
parameters, this advantage is dominant, despite the existing disadvantages.

The application of SGD makes training of NNs a time-consuming activity. Often, it is
necessary to adjust the sizes of the mini-batches and the learning rate specifically for
the problem. And, even worse, the chosen structure of the network can interact with
the optimal learning rate. Usually, for the best training speed, the mini-batch size is
chosen according to the available cache of the GPU as a power of two. If, for example,
the number of neurons, e.g., is changed, it can be required to change the learning
rate too. Some heuristics, like the Adaptive Moment (Adam) algorithm [60], which
heuristically adjusts the learning rate automatically, are of help, but the fundamental
issues remain.

5.1.2 Regularized FIR

In Sect. 2.2.2 and Chap. 3, techniques for regularized identification of FIR systems
are described. These techniques work by adding a penalty term to the objective
function of the optimization problem for the identification of the FIR parameters.
For NNs, it is also common to apply a regularization term for the prevention of
overfitting. Adding a quadratic penalty for the parameters, according to

Jb =
1
Nb

Nÿ

i=1

(y(i) ≠ ŷ(i))2 + ⁄◊
T
◊, (5.8)

is referred to as weight decay [51]. It is equivalent to the simplest form of Tikhonov
regularization and its Bayesian interpretation is described in Sect. 2.1.5. Many addi-
tional and/or alternative regularization schemes, like drop-out or batch-normalization,
exist, see [108, 51] for an overview, but are not elaborated on in this thesis. Often,
the performance of the NN on test data can be influenced positively by regulariza-
tion. This might have several reasons. One reason is that due to regularization,
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the variance error of the estimate is reduced. The other is that the penalty term
within the gradient guides the estimate of the parameters obtained by SGD to a
useful region within the high dimensional parameter space. The prior distribution
for ◊, see (2.46), which is required to obtain (5.8), does not consider any correlation
between entries of ◊. For linear identification, as described in Sect. 2.2.2, it can be
beneficial to incorporate correlations into the prior distribution. For the regularized
FIR case, the objective function is slightly more complex with a penalty term that
considers the correlation between the entries of ◊. It is formulated as

Jb =
1
Nb

Nbÿ

i=1

(yb(i) ≠ ŷb(i))2 + ⁄
Nb

N
◊
T
P

≠1
◊. (5.9)

The term Nb
N occurs since the gradient is calculated only on a subset containing Nb

samples. If the gradient step for SGD is calculated for this structure, one obtains

◊
(n+1) = ◊

(n) + 2
Nb

÷X
T
b eb ≠ ÷

2Nb

N
⁄P

≠1
◊
(n)

. (5.10)

So, for a quadratic regularization, SGD steers the solution of the problem to a region
within the parameter space, which has both a low error and a small penalty value.

5.2 Architecture and Training Procedure

The idea of employing neural networks for nonlinear FIR identification is not new.
In [102], a special form of an NFIR neural network is proposed. To handle the
dimensionality of the NFIR NN, the regressor X of an FIR model is decomposed
into its principal components using principle component analysis (PCA). Then a
neural network for the projection of the input onto the first singular vector of the
PCA is trained such that the squared output error is minimized.

More recent approaches employ convolutional NNs of di�erent types for nonlinear
identification. In [7] a deep convolution NN is learned for several problems. There
the relation to block-oriented models is also described. In [42], convolutional NN
are applied to benchmark problems. Regularization is only utilized in the form of
weight decay or as a dropout regularization [7]. The regularized FIR approach is not
considered in the current literature.
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5.2.1 Architecture

For the identification of NFIR systems, a novel architecture is introduced. The archi-
tecture consists of several units, where each unit consists of a temporal convolutional
layer followed by two densely connected nonlinear layers. At the end of the NN, a
linear layer is connected to describe the output of the network. In Fig. 5.2, the
structure of the NN is depicted.
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h
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Figure 5.2: Structure of the Deep Regularized FIR Neural Network from the machine
learning perspective.

Input layer The input layer is utilized to preprocess the data for the NN. For most
NN structures, a rescaling is advantageous. For this architecture, the data is scaled
to zero mean and unit variance. The same scaling is applied to the training output,
too.

Index Range Description
i 0 . . . nu number of unit
j 0 . . . nn number of input
k 0 . . . Nb discrete time
l 0 . . . nn number of output

Table 5.1: Indices for the notation of quantities contained in the Deep RFIR NN

Convolutional layers The input layer is followed by a convolutional layer. In con-
trast to image processing NNs, the convolutional units here are one dimensional along
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the time dimension. The hidden values of the output of the convolutional layer are
denoted by c

(i)
l (k) for the output of the l-th convolutional neuron for the i-th unit at

the discrete time step k. The notation b
(i)
jl (k) denotes the k-th filter coe�cient for

the filter from the j-th input to the l-th hidden output for the i-th unit.

The scalar nn is the number of neurons for each layer. In principle, nn can be
chosen di�erently for each layer. This has the advantage that a custom-tailored NN
architecture can be found. The disadvantage is that instead of one value nn, one
parameter per layer has to be found. Usually, this increase in the search space for
hyperparameter tuning is not advantageous, and thus the proposed architecture has
the same number of neurons in each layer.

For the first convolutional layer, the equation describing the layer is

c
(1)

l (k) = ‡

A
nÿ

m=0

b
(1)

l (m)u(k ≠ m)
B

(5.11)

for l = 1, . . . , nn. For activation, a Relu function ‡(x) = max(0, x) is employed.
Thus, each neuron of the first hidden layer is a convolution of the corresponding
input. An extension to multiple inputs is straightforward.

In most software packages for neural networks, like Tensorflow [1], the convolution
is not implemented in exactly this way. Instead of a true convolution, the cross-
correlation is calculated. This, however, has no severe consequence. The value of
b
(i)
jl (k) can simply be found by flipping the entries along the time dimension k. The
number of parameters for the first convolutional layer is nn(n+ 1).

For the following layers, the equations describing convolutional layers are

c
(i)
l (k) = ‡

Q

a
nnÿ

j=1

nÿ

m=0

b
(i)
jl (m)h(i≠1)

j (k ≠ m)
R

b (5.12)

The final output of the units is denoted by h
(i)
l (k). As a reminder, index i refers to

the number of the unit, the index l refers to the number of the output, and k is the
discrete time step.

The number of parameters for the convolutional layers are n
2

n(n + 1). These layers
contain most of the parameters of the neural network due to the multiplication of
the n

2

n terms with the number of filter coe�cients.
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Nonlinear dense layers The output of the convolutional layer is fed to two nonlin-
ear dense layers. These are described by the equations

h
(i)(k) = ‡(A(i,2)

‡(A(i,1)
c
(i)(k) + d

(i,1)) + d
(i,2)). (5.13)

for the i-th unit with the parameters A(i,1)
, A

(i,2) for the description of the interactions
and d

(i,1) and d
(i,2) for the o�sets. The number of parameters of the two nonlinear

dense layers combined per unit is 2(n2

n + nn).

Linear dense layer The last computation of the network is a linear dense layer
which combines the filtered responses to the system response according to

ŷ(k) =
nnÿ

l=1

h
(nu)

l (k)pl + q. (5.14)

with an additional o�set parameter q and linear parameters p. The linear dense layer
thus has nn + 1 parameters.

In total, a network with nu units and nn neurons has

np = (nu ≠ 1)n2

n(n+ 1) + nn(n+ 1)
¸ ˚˙ ˝

convolutional layers

+ nu

1
2n2

n + 2nn

2

¸ ˚˙ ˝
nonlinear dense layers

+ nn + 1¸ ˚˙ ˝
linear dense layer

(5.15)

parameters. Most of the parameters are contained within the convolutional units.

5.2.2 Regularization

To deal with the variance error due to the large number of parameters, a regulariza-
tion term is applied. The loss function of the NN is

J =
Nbÿ

k=1

(y(k) ≠ ŷ(k))2 (5.16)

+ ⁄

nnÿ

j=1

nÿ

m=0

b
(1)T
j P

≠1
b
(1)

j

¸ ˚˙ ˝
1. layer

+⁄

nuÿ

i=2

nnÿ

j=1

nnÿ

l=1

b
(i)T
jl P

≠1
b
(i)
jl

¸ ˚˙ ˝
2. ... nu. layer

+⁄w
T
w.

The parameter vector w contains all parameters of the NN which are not filter
coe�cients for the convolutional layers. The matrix P is a kernel matrix obtained
by a TC kernel as described in Sect. 2.2.2. Thus, P itself has only one hyperparameter
- the decay factor –. This decay factor is chosen to be constant as – = 0.93 in all
the studies to simplify the search for optimal hyperparameters. A strategy to tune
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this hyperparameter is left for future work. This a demanding task since no closed
expressions for GCV or marginal likelihood are available.

5.2.3 Relation between FIR and Convolutional Models

There are two possible perspectives on the proposed structure. The first sees the
structure as a convolutional neural network with a specific kind of regularization for
the filters. The second perspective considers the system as a block-oriented nonlinear
system. This has also been described in [7]. From this second perspective, for the
first layer, there is only one input and the transfer functions are

B
(1)

l (z) =
nÿ

m=0

b
(1)

l (m)z≠m (5.17)

with l = 1, . . . nn. In the first layer the input is fed to nn transfer functions. From one
time signal, nn time signals are generated. These time signals are fed to individual
nonlinearities ‡(·) each. From the NN perspective, this nonlinear block usually be-
longs to the convolutional layer, whereby from the control perspective, two separate
blocks are displayed. This signal is then fed to another nonlinearity. This block is
a static nonlinearity. It corresponds to the densely connected layers of the NN, see
(5.13) and reads as

h
(i)(k) = N

(i)(c(i)(k)) = ‡

1
A

(i,2)
‡(A(i,1)

c
(i)(k) + d

(i,1)) + d
(i,2)

2
. (5.18)

Here, the control viewpoint o�ers a new perspective. The nonlinearity to which
the signals are applied is static. Thus, the output of this block is not a�ected by
the previous values of the input. Dynamic behavior happens solely in the transfer
functions realized by the convolutional layer.

For the following layers, again, more indices are required to describe the transfer
functions, but the principle remains the same. So, for the i-th unit, the transfer
functions of the convolutional unit are

B
(i)
jl (z) =

nÿ

m=0

b
(i)
jl (m)z≠m

. (5.19)

The block diagram of the proposed NN architecture is shown in Fig. 5.3. The diagram
starts with the input entering the first unit. This unit consists of the blue block
diagram part, equivalent to the convolutional unit. Interestingly, the block diagram
which describes the convolutional unit contains a nonlinear block at the end. This
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nonlinear block is due to the nonlinearity, usually part of the convolutional layer in
a NN. The two dense layers following the convolutional unit are represented by a
nonlinearity block (yellow) within the block diagram. The output of each unit is a
multidimensional signal h(i)(k) with the dimension equal to the number of neurons
nn. This output is then the input for the subsequent layer. This procedure is carried
on until nu units have been passed. At the end of the NN, the nn dimensional output
of the last layer is linearly weighted and summed up. Finally, the o�set is added
to obtain the output ŷ(k). Even though stemming from fundamentally di�erent
disciplines, convolutional NNs and block-oriented systems share strong similarities.
Therefore it makes perfect sense to apply techniques from the machine learning
community to identify block-oriented systems.

5.2.4 Training Procedure

Since it is not guaranteed that the globally optimal solution for the optimization
problem is found, several properties of the training procedure matter. A significant
influence can be attributed to the size of the mini-batches, kind of initialization of
the parameters, and the applied optimization algorithm.

Mini-batches As usual for SGD methods, training is performed with mini-batches.
The training data thus has to be subdivided into mini-batches of appropriate size.
This has the advantage that the model can be trained e�ciently on a GPU. Usually,
there is one input signal u(k) and one output signal y(k) which is available for values
of k between 1 and N . This signal has to be subdivided into several mini-batches.
For the identification of FIR systems, the input signal has to be longer than the
output signal, since n delayed input values are required for the computation of the
first output for y(k). For an NN with nu convolutional layers, with n filter coe�cients
each, this means that

nt = nnu (5.20)

additional input values are required for the computation of the first output. For the
division of the data, these nt samples have to be skipped only once. For the following
batches, some values of u(k) will be contained in both the actual and the previous
batch to avoid lost values of the output. The procedure is illustrated in Fig. 5.4.
The total number of batches can be calculated according to

nb =
N ≠ nt

Nb
. (5.21)
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Figure 5.3: Block diagram for the block-oriented perspective on the proposed NN
structure. The parts which correspond to convolutional units are colored
blue, parts which correspond to the nonlinear layers which consist of two
dense layers are shown in yellow, and the linear output unit is shown in
red.



130 5.3 Results on the Bouc-Wen Benchmark Example

If nb is not an integer, this means that the last batch will contain less than Nb

samples if rounded up. In this case, either a batch with a lower number of samples is
used, or the samples contained in this batch are discarded. For datasets containing
a large number of samples, the latter can be reasonable, since the variance of the
gradient will be higher, the fewer samples are contained within one batch. If not

· · ·

Nb Nb NbNb

ntnt nt nt nt

all N data

1. batch 2. batch nb � 1. batch nb. batch

Figure 5.4: Generation of mini-batches for sequential input and output data of a
neural network.

noted otherwise, the number of samples in a batch has been chosen as Nb = 128.

Initialization Several initialization schemes for NNs are available. For an overview,
see [51]. For the studies described here, the parameters are initialized by a Glorot
initialization scheme [49]. The initialization of the weights works according to

bini ≥ U

A

≠

Û
3
nn

,

Û
3
nn

B

, (5.22)

with bini denoting the initial values of the parameters for the layer.

Optimizer For optimization, the Adam optimization algorithm [60] is applied.
There are several types of heuristics for the optimization algorithms available [51].
The di�erence to SGD is that a so-called momentum is defined. This means that
the gradient is calculated as an exponentially decaying average of the gradients of
previous mini-batches and the gradient of the current mini-batch. From a systems
perspective, the gradient is low-pass filtered. Adam furthermore scales the gradient
with respect to each parameter according to the variance of the previous gradients.
The default learning rate is chosen, if not mentioned otherwise, as the recommended
default value of 1 · 10≠3 [60].

5.3 Results on the Bouc-Wen Benchmark Example

The proposed neural network structure is evaluated on a benchmark example. An ex-
ample, which is known to be notoriously di�cult due to its internal states describing
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the friction, is the Bouc-Wen benchmark [112]. The performance of the proposed
method on the benchmark will show that it is possible to represent systems with
nonlinear internal states by methods without any feedback appropriately.

5.3.1 Training Data Generation

The Bouc-Wen benchmark has been proposed in [112]. It describes the movement of
a mass attached to a damper and spring with a hysteretic behavior. The di�erential
equations describing the behavior are

mLÿ(t) + r(y, ẏ) + z(y, ẏ) = u(t), (5.23)

with
r(y, ẏ) = kLy + cLẏ. (5.24)

The function z(·) fulfills the first-order di�erential equation

ż(y, ẏ) = –hẏ ≠ —b(“b|ẏ||z|
‹b≠1

z + ”bẏ|z|
‹). (5.25)

For the benchmark problem, the parameters are mL = 2, cL = 10, kL = 5 · 104,
–b = 5 · 104, —b = 103, “b = 0.8, ”b = ≠1.1 and ‹b = 1 [112]. To numerically
integrate the di�erential equation, a Newmark integration scheme, according to the
benchmark description [112], is employed.

The excitation signal is a random phase multisine signal. This signal is described
by [111]

u(k) =
nmaxÿ

n=nmin

sin
3
2fi

n

N
k + „i

4
(5.26)

with nmin/max = fmin/max
Ts

and fmin/max denoting the lowest and highest frequency of
interest, respectively. If nmin/max is not an integer, it is usually rounded to the next
higher discrete frequency value. The phase „i of the di�erent sinusoidal components
is randomly sampled from a uniform distribution between 0 and 2fi. If not noted
otherwise, the performance on validation data is obtained by a validation signal with
105 samples generated by the aforementioned procedure.

5.3.2 Influence of the Regularization Strength

To analyze the e�ect of regularization, two di�erent experiments with the same NN
structure and training setup are performed. The goal of regularization is to prevent
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the NN from overfitting. A relatively complex NN with 4 units, 40 neurons per
layer, and 50 filter coe�cients per convolutional layer (398 151 parameters in total)
is considered.

The dataset contains 12 800 output samples (leading to 100 batches with a length of
128 samples) for training. The learning rate is chosen as 5 · 10≠4. Now, a completely
unregularized version and a regularized version with ⁄ = 10≠4 are compared. The
convergence behavior for training data with a high SNR of the NN structures is
shown in Fig. 5.5. By default, the output data generated for the benchmark is
disturbed by i.i.d. Gaussian noise such that the SNR is 40 dB [94]. This is referred
to as low noise or high SNR case. Training these NNs is performed on two Tesla
P100 GPUs on the CfaDS cluster of FH Bielefeld. The training of each NN takes
approximatively 4 h with this infrastructure.
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Figure 5.5: Convergence for low noise case of training (blue) and validation (read)
error for a deep RFIR network with 4 layers and 40 neurons per layer for
a regularized and an unregularized case.

It can be seen that for the low noise case (high SNR), the regularized version per-
forms only slightly better than the unregularized one. This holds, although it is
visible that the unregularized version overfits the training data, while the regular-
ized version reaches comparable performance on training and validation data. This
is a remarkable and highly surprising result since the number of parameters is more
than 30 times higher than the number of samples for training. This ability of NNs
to generalize, although the training data is overfitted, has been observed for other
machine learning problems, especially image recognition, too [134]. The mechanism
of this generalization is not completely understood, although several hints indicate
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that a favorable interpolation behavior of the NN contributes to the successful gener-
alization. There are also some classical interpolating methods, e.g., nearest neighbor
methods [43], which perform reasonably on unseen test data, although the training
data is fit perfectly.
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Figure 5.6: Convergence for high noise case of training (blue) and validation (red)
error for a deep RFIR network with 4 layers and 40 neurons per layer for
two di�erent regularization strengths.

In the second scenario, the information contained in the data is reduced. To ac-
complish this, the output is disturbed by i.i.d. Gaussian noise, such that the SNR
of the data becomes 6 dB (high noise case). The other hyperparameters and the
structure of the NN are chosen in the same way as in the first scenario. Here, the
overfitting of the NN structure becomes much more pronounced in the unregularized
case. The training error is further reduced after 80 epochs, but the validation error
starts to increase. For the regularized case, this problem is significantly reduced.
Also, here, a small amount of overfitting can be observed, but it is not as substantial
as for the unregularized case. This shows that the proposed regularization scheme is
able to control the capacity of the NN. Though, also in the high noise example, it is
remarkable that the unregularized deep NN is able to achieve a model that is able to
represent the behavior of the system at all due to the high number of unregularized
parameters.

5.3.3 Depth

For the analysis of the influence of the depth of the deep RFIR NN, the number of
units is changed systematically. In Fig. 5.7, it is shown that the error on validation
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Figure 5.7: Dependence of the RMSE on validation data a deep regularized FIR NN
with 50 neurons per layer on the number of units. For each number of
units 5 experiments have been conducted.

data decreases significantly with the number of units connected in series. The same
observation has been made for many other NN network structures. It is, however,
not fully understood. It has been derived that for deep fully connected ReLU NNs,
the number of linear regions of the output of the NN increases exponentially with
the number of layers [51]. But it is not clear why the best of these, exponentially
many, solutions is learnable and if SGD is able to recover that solution.

5.3.4 Number of Neurons

As another architectural relevant part, the number of neurons nn of the NN has to
be chosen. It is important to notice that the hyperparameter nn a�ects the total
number of parameters quadratically. In Fig. 5.8 the number of neurons of a nu = 4
units deep RFIR NN has been varied. For each number of neurons, 3 runs have
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Figure 5.8: Dependence of the RMSE on validation data for a 4 layer deep regularized
FIR NN on the number of neurons per layer.

been performed, to reduce e�ects resulting from di�erent initializations. The same
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training setup as for the variation of the number of units is employed.

It can be seen that also the number of neurons has an e�ect on the performance of the
NN. However, the e�ect is not as significant as for the number of layers. For nn < 50,
an increasing number of neurons a�ects the error positively. Afterwards, the error
remains relatively constant. The variations are more due to di�erent initializations
of the NN training than due to the number of neurons.

5.3.5 Best Performing Network

The proposed neural network structure is evaluated on the Bouc-Wen benchmark [94,
112]. Each configuration of a NN corresponds a unique nonlinear optimization prob-
lem. This optimization problem is then solved by an algorithm for which the solution
is known to depend strongly on the initialization of the parameters. It is the goal
to adapt the hyperparameters of the neural network in such a form, that the best
generalization performance of the network is obtained. Some guidelines for tuning of
these parameters can be found, e.g., in [51]. A summary of the used hyperparameters
for the proposed NN with an informal description of the influence of higher values
for some hyperparameters is given in Tab. 5.2. The choice of the learning rate is

Hyperparameter Influence of a higher value Applied value
Learning rate (Adam) faster convergence, poor local

convergence and a higher chance
of global divergence

1 · 10≠4

Decay of learning rate lower learning rate for later
epochs with better local, but
weaker global convergence

0.15

Bath size lower variance of the gradient 32
Number of filter coe�cients higher capacity, longer history 50
Number of layers higher capacity, longer history 5
Number of neurons higher capacity 80
Regularization strength lower capacity 1 · 10≠4

Decay rate (TC kernel) faster local responses, lower ca-
pacity

0.93

Table 5.2: Applied values of hyperparameters and influence of higher values for im-
portant hyperparameters.

critical for the determination of the best performing network structure. A significant
problem for the tuning of the learning rate is divergence of the model. The higher
the learning rate is chosen, the higher is the risk that the model will not converge.
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Figure 5.9: Filter coe�cients of the last convolutional (nu = 5) for the first output
from the inputs j = 1, . . . 20. The left plot shows a regularized NN with
nn = 80 and the right side shows an unregularized NN with nn = 60.

However, there seems to be a relation that the model performance becomes better,
the higher the learning rate is chosen. This relation is problematic since, for an inves-
tigation of the hyperparameters, it is advantageous to try out as many possibilities
as possible without the need to redo the computation, if the NN has not converged.
This behavior has also been observed for other types of problems [51] and occurs in
nonlinear system identification too. Another good trick for the learning rate is to
scale it sequentially according to

÷
(ne) = ÷0

Ô
1 + Ÿne

(5.27)

with ne denoting the number of the epoch, ÷
(ne) the learning rate for this epoch,

÷0 denoting the initial learning rate, and Ÿ the decay factor. This results in an
exponentially decaying learning rate [60]. For the NN described here, Ÿ = 0.15, and
÷0 = 1 · 10≠3 has been used.

In Fig. 5.9 some filter coe�cients of the last layer for the regularized Deep FIR NN
and the last layer for an unregularized Deep FIR NN are shown. It can be clearly
seen that regularization changes the chain of filter coe�cients significantly. It is
surprising to see that also for the unregularized case a high performance on the test
data is achieved. One explanation for this is that the spiky behavior of the filter
coe�cients is avoided in the mean.

In Tab. 5.3, the results for the o�cial test datasets of the Bouc-Wen benchmark
are summarized. Other methods with strong performance, especially the polynomial
nonlinear state space models (PNLSS) [93, 38], local model state space networks
(LMSSN) [114], or recurrent NN structures [115] all contain feedback. There is, for
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eRMS

multisine
[◊10≠5m]

eRMS

sinesweep
[◊10≠5m]

Description
(Num. of parameters) Ref.

PNLSS Models
1.34 1.12 Decoupled (51) [38]
1.87 1.20 MIMO / linear [2 ≠ 3] (90) [38]
5.42 - MIMO / linear [2] (34) [93]
3.15 - MIMO / linear [2 ≠ 4] (109) [93]
1.27 - MIMO / linear [2 ≠ 7] (364) [93]
1.21 - MIMO / linear [3 5 7] (217) [93]

Other Models
17.0 13.8 LMN with NARX [11]
16.4 17.2 regularized LMN FIR [11]
31.2 24.9 LMN with OBF [11]
7.9 11 Stochastic Subspace [9]
5.3 1.5 NARX Sigmoidal (1571) [131]
5.7 1.9 Decoupled NARX (151) [131]
8.76 6.39 Volterra feedback [113]
468 18.6 Nelder-Mead [18]
468 19.0 NOMAD [18]

Recurrent NN
2.8 5.98 LSTM (3 layers) [114]
7.6 4.1 ReLU RNN [114]

LMSSN Models
4.70 2.45 MISO / MISO, 18 Splits (110) [115]
3.32 1.76 MISO / a�ne, 21 Splits (125) [115]
2.66 2.36 MIMO / MISO, 9 Splits (125) [115]
2.83 2.30 MIMO / a�ne, 7 Splits (135) [115]

Convolutional NN
2.43 1.73 Deep RFIR NN
3.21 2.97 Deep FIR (without regularization) NN

Table 5.3: Comparison of selected methods on Bouc-Wen benchmark [115]
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these types of systems, no stability guarantee. It is often the case that the stability
of these models depends on the applied input. Especially for polynomial systems,
instabilities are the reason that no values can be given for the performance of several
PNLSS models on the sinesweep test system.

Convolutional NNs do not su�er from instability issues. In Tab. 5.3, the performance
values for the best deep RFIR NN is described as well. For completeness, the deep
FIR (without regularization) is listed as well. The RFIR NN is able to achieve a
comparable test error on both the multisine and the sinesweep test dataset. The
deep RFIR NN achieves comparable performance on the dataset. It is remarkable
that, in contrast to the polynomial state space systems which are unstable in many
scenarios, stability is guaranteed by the structure of the RFIR NN.

There are, however, drawbacks. The need for validation data is di�cult to avoid, and
finding the best performing structure is often more an art than science. Despite the
fact that the validation error o�ers a justification of the found structure, the process
of obtaining this structure is not straightforward. Finding an appropriate strategy
to automatize this process is an interesting question for further research. Another
drawback is the relatively high number of data required to train the network. The
RFIR NN is thus only recommended as an option for nonlinear modeling if a high
number of samples (> 100 000) are available.
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6 Conclusion

The goal of this thesis is the introduction of novel techniques for regularization of
both linear and nonlinear FIR models.

6.1 Summary

To develop these techniques, the foundations of system identification are described in
Chap. 2. The statistical perspective of maximum likelihood and Bayesian methods
are introduced. Then, the state-of-the-art approach for the regularized identification
of FIR models is discussed. The choice of appropriate criteria for model complexity
selection, including information criteria like Akaike’s information criterion or bounds
based on the VC-dimension, are discussed. Techniques for dynamic system identifi-
cation with FIR models o�er the compelling advantage that stability is guaranteed.
Their greatest weakness is the high number of parameters required.

In the following chapters of the thesis, three di�erent approaches for the identification
of dynamic systems are developed. All of these methods mitigate the variance error
due to the high number of parameters by application of an appropriate regularization
term.

The first technique, described in Chap. 3, which uses impulse response preserving
(IRP) matrices to regularize the impulse response of linear systems, o�ers the abil-
ity to integrate prior knowledge from a signals and systems perspective. In this
approach, the impulse response is forced to be similar an a priori assumed behav-
ior. The method has been applied to numerical benchmark studies and a laboratory
pendulum example.

The second procedure, described in Chap. 4, extends the regularized identification
approach of impulse responses to nonlinear systems within the framework of local
model networks (LMNs). Due to the separation of scheduling variables and variables
for the local models, the Regularized FIR Local Model Network (RFIR LMN) is able
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to fit high dimensional and locally regularized FIR models as local models, while the
dimensionality of the scheduling variables is kept low. This identification algorithm
is applied to a challenging nonlinear numerical process and a simulated Diesel en-
gine. Especially in the high noise case, the RFIR LMN can improve performance
considerably.

The third method, the deep Regularized FIR Neural Network (RFIR NN), described
in Chap. 5, combines convolutional NNs with the regularization approach for lin-
ear systems. It allows for building a deep neural network for the identification of
nonlinear dynamic systems. This approach is applied to the Bouc-Wen benchmark
example and achieves state-of-the-art results while additionally guaranteeing sta-
bility for arbitrary input signals. The advantages and disadvantages of the three
methods, introduced in Chaps. 3-5, are summarized in Tab. 6.1.

Property IRP RFIR RFIR LMN Deep
RFIR NN

Complexity ≠ o +
Computational E�ort (Training) ++ + ≠≠

Computational E�ort (Evaluation) ++ + ≠

Consideration of Prior Knowledge ++ + +
Extension to MIMO + + +
Extrapolation Behavior + + +
Noise Tolerance ++ + +
Required Amount of Data ++ + o
Stability ++ + ++
Suitability for Real-Time Systems ++ + ≠

Tuning E�ort ++ + ≠

++: very favorable model properties, ≠≠: very undesirable model properties

Table 6.1: Comparison of di�erent properties of the proposed methods.

The comparison shows that the simplest model, the IRP RFIR model, posses advan-
tageous properties in several areas. The major drawback is that the model complex-
ity, and thus its capability is limited to linear systems. In consequence, performance
can be limited compared to nonlinear methods. The comparison of the two nonlinear
approaches, the RFIR LMN and the Deep RFIR NN, shows that the complexity of
the RFIR LMN is smaller than the complexity of the Deep RFIR NN. Thus, the per-
formance of the Deep RFIR NN is better for highly nonlinear and dynamically com-
plex processes as the Bouc-Wen example from Sect. 5.3. The drawbacks of the Deep
RFIR NN are its computation e�ort required for training and for evaluation (due to
the high number of parameters and high dynamic order due to its deep structure).
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This also hinders its suitability for real-time systems, which require a fast model.
The largest disadvantage is the tuning e�ort required. While the RFIR LMN works
out of the box and estimates both the regularization strength and model complexity
automatically, the Deep RFIR NN requires substantial tuning of hyperparameters
for architecture, optimization algorithm, and regularization strength. The usage of
the Deep RFIR NN is recommended only if a large amount of samples (> 100 000)
is available, and high accuracy is needed.

6.2 Outlook

Impulse Response Preserving FIR Identification: The linear case for kernel and
penalty based regularization is well understood. The main topics lie in the extension
of these methods to nonlinear problems. A possible line of research can be online
learning approaches for both the linear parameters and the hyperparameters. This
would allow tracking of time varying systems.

Another interesting research direction is the investigation, whether non-causal sys-
tems can be employed to identify unstable causal systems. For this procedure, the
identification could benefit from regularization, too. Representation of systems with
pure integration are a concern for this approach, so a procedure to deal with this
type of systems is to be developed.

Regularized Local FIR Networks: For LMNs with local FIR models, there are
also several possible lines of further research. In this contribution, axis-orthogonal
splitting schemes have been investigated. The flexibility of LMNs can be increased
by allowing axis-oblique splits. To enable this kind of network to be learned, one
challenge is the learning method for the parameter estimation applied. With a
change in the orientation of the split, the validity function changes too. This change
requires a re-estimation of the linear parameters and in the case of FIR for the
hyperparameters as well. The way this estimation algorithm is to be designed is an
exciting line of further research.

The separation of nonlinear scheduling variables and linear parameters for the local
models is a unique feature of LMNs. The optimal choice of these variables is often
problem specific. Thus, the identification algorithm could benefit from a novel auto-
matic procedure for the selection of the variables for these input spaces. It is further
possible to select filtered versions of the input (e.g. by orthogonal basis functions)
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as scheduling variables. It remains to be investigated whether such a choice can
influence the identification result positively.

Another appealing topic is the further integration of physically available prior knowl-
edge, similar to the linear case with IRP matrices. It could be possible to linearize an
a priori available nonlinear system at the operation point corresponding to the center
of the local model and use this linearized model as a means for regularization.

Deep Regularized FIR Neural Networks: Deep learning o�ers increased perfor-
mance in the mid- and big data regimes. It remains, however, still dubious why very
deep methods allow for such good generalization performance. This will be a topic
for future research, not only for system identification but in context of deep neural
networks in general.

Extrapolation behavior of models is an issue of great concern for real-world prob-
lems. Thus, analysis and comparison of extrapolation behavior is a possible research
direction. Neural networks based on an FIR structure are guaranteed to have stable
extrapolation behavior. However, this hold for other structures, like the LMNs, too.
Comparing their extrapolation behavior could reveal unknown advantages of either
of the two methods.

The choice of optimal hyperparameters for neural networks is still an open topic.
Thus, for the regularized deep FIR networks, advanced techniques for tuning of the
regularization parameters are of significant importance. Using advanced methods of
regularization often requires an increasing number of fiddle parameters. Systematic
approaches from neural architecture search can provide ways to simplify the training
and extend the capability of the presented approach.

Finally, it is expected that system identification can significantly benefit from the
progress being made in the machine learning domain. A thorough understanding
of the properties of dynamic systems, especially stability, will remain a substantial
requirement for the application of the methods in reality.
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