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Summary

In this thesis we establish a constructive framework for homological algebra with a special
focus on (complete) strong exceptional sequences in bounded homotopy categories and
their induced exact equivalences, alongside with a Cap [GSP22] and homalg [hom22]
based implementation of this framework in the computer algebra system GAP [GAP21].

First, we assemble the key concepts in homological algebra in a constructive style that
is suitable for a direct computer implementation. This includes constructing bounded
complexes, homotopy and derived categories in which we can perform computations like
projective and injective resolutions of bounded complexes and derived functors. Then, we
set the stage for performing computations in triangulated categories. This is accomplished
by stating all the existential quantifiers and disjunctions in the defining axioms of a tri-
angulated category as concrete algorithms. The two primary examples of a triangulated
category in this thesis are the stable category of a Frobenius category and the bounded
homotopy category of an additive category.

Given a field k, a k-linear Hom-finite additive category C and a strong exceptional
sequence E in the bounded homotopy category Kb(C ), we develop an algorithm to check
the membership of objects in the triangulated hull E4 ⊆ Kb(C ). In particular, if Kb(C ) is
finitely generated as a triangulated category, one can employ that to algorithmically decide
the completeness of the strong exceptional sequence E , i.e., decide whether E4 = Kb(C ).
For a complete strong exceptional sequence E , we use the so-called Postnikov systems to
provide an explicit construction of exact equivalences

Db(EndTE ) ' Kb(E ⊕) ' Kb(C )
where TE := ⊕

E∈E E, Db(EndTE ) denotes the bounded derived category of the category
EndTE -mod of finitely generated EndTE -modules, and E ⊕ is the universal additive closure
category of E .

These techniques enable us to make the following special case of Happel’s theorem for
derived equivalences constructive: Let A be a finite dimensional k-algebra and T a tilting
A-module whose indecomposable summands form a complete strong exceptional sequence
in A-mod. Then we can compute the induced adjoint derived equivalences

−⊗L T : Db(EndT )� Db(A) :RHom(T,−).
The categorical framework along with all algorithms presented in this thesis are imple-

mented in the GAP meta-package HigherHomologicalAlgebra [Sal21a].





Zusammenfassung

In dieser Arbeit wird ein konstruktiver Zugang für homologische Algebra mit einem Fokus
auf (vollständige) stark-exzeptionelle Sequenzen in beschränkten Homotopiekategorien und
ihre induzierten exakten Äquivalenzen entwickelt. Dieser Zugang wurde basierend auf Cap
[GSP22] und homalg [hom22] im Computeralgebrasystem GAP [GAP21] implementiert.

Zuerst werden die zentralen klassischen Konzepte der homologischen Algebra in einem
konstruktiven Rahmen entwickelt, der sich für eine direkte Computerimplementierung
eignet. Diese beinhalten die Konstruktion von beschränkten Komplexen, Homotopie- und
derivierten Kategorien, in denen zum Beispiel Berechnungen von projektiven und injek-
tiven Auflösungen von beschränkten Komplexen, derivierten Funktoren durchgeführt wer-
den können. Danach wird die Grundlagen für die Durchführung von Berechnungen in
triangulierten Kategorien entwickelt. Dies geschieht, indem alle Existenzquantoren und
Disjunktionen in den Definitionsaxiomen einer triangulierten Kategorie als konkrete Al-
gorithmen spezifiziert werden. Damit sind wir in der Lage, die stabile Kategorie einer
Frobenius-Kategorie und die beschränkte Homotopiekategorie einer additiven Kategorie
auf dem Computer zu konstruieren.

Gegeben sei ein Körper k, eine k-lineare Hom-endliche additive Kategorie C und eine
stark-exzeptionelle Sequenz E in der beschränkten Homotopiekategorie Kb(C ). In der
Arbeit wird ein Algorithmus entwickelt, um die Mitgliedschaft von Objekten in der tri-
angulierten Hülle E4 ⊆ Kb(C ) zu entscheiden. Und falls Kb(C ) als triangulierte Kat-
egorie endlich erzeugt ist, kann man insbesondere damit die Vollständigkeit der stark-
exzeptionellen Sequenz E algorithmisch entscheiden, d.h. entscheiden, ob E4 = Kb(C ).
Für eine vollständige stark-exzeptionelle Sequenz E benutzen wir sogenannte Postnikov-
Systeme, um folgende exakte Äquivalenzen auf dem Computer explizit zu realisieren

Db(EndTE ) ' Kb(E ⊕) ' Kb(C ),
wobei TE := ⊕

E∈E E, Db(EndTE ) die beschränkte derivierte Kategorie der Kategorie
EndTE -mod der endlich erzeugten EndTE -Moduln und E ⊕ ist die universelle additive
Abschlusskategorie von E bezeichnen.

Diese Methoden ermöglichen den folgenden Spezialfall des Happel’schen Satzes für de-
rivierte Äquivalenzen konstruktiv zu machen: Sei A eine endlichdimensionale k-Algebra
und T ein Tilting A-Modul, dessen unzerlegbare Summanden eine vollständige stark-
exzeptionelle Sequenz in A-mod bilden. Dann können die in dieser Arbeit entwickelten
Software die induzierten adjungierten derivierten Äquivalenzen explizit ausrechnen:

−⊗L T : Db(EndT )� Db(A) :RHom(T,−).
Der konstruktiv-kategorielle Rahmen sowie alle in dieser Arbeit vorgestellten Algorith-

men wurden im GAP-Metapaket HigherHomologicalAlgebra [Sal21a] implementiert.
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Introduction and Scope

The Main Goal. Let k be a field, C a k-linear Hom-finite additive category, Kb(C ) the
bounded homotopy category of C and E ⊂ Kb(C ) a finite full subcategory consisting of
the n objects E1, . . . , En. Denote by E ⊕ the additive closure of E and by Db(EndTE ) the
bounded derived category of k-finite dimensional left EndTE -modules1 where TE := ⊕n1Ei.

The main goal of this thesis is to design and implement an algorithmic framework to
tackle the following two questions:

(1) Can we check whether E defines a complete2 strong exceptional sequence inKb(C )?
And if so,

(2) Can we construct exact equivalences
Db(EndTE ) ' Kb

(
E ⊕

)
' Kb(C )?

We will, among other things, prove:
Theorem 1 (Lemmas 6.77 and 6.79 and Corollary 6.81). Let k be a field, C a k-linear

Hom-finite additive category and E a strong exceptional sequence in Kb(C ). Then
(1) E induces a fully faithful exact functor

F : Kb
(
E ⊕

)
→ Kb(C )

whose essential image is the triangulated hull E4 of E . Moreover, we can algorith-
mically decide whether an object A in Kb(C ) belongs to E4 or not. In particular,
if Kb(C ) is finitely generated as a triangulated category, then, using an explicit
set of generating objects, we can decide the completeness of the strong exceptional
sequence E .

(2) If E is complete, then F has a right adjoint functor G giving rise to quasi-inverse
adjoint exact equivalences

F : Kb
(
E ⊕

)
� Kb(C ) : G.

Motivation. Although this thesis does not require any knowledge in algebraic geometry,
it was sparked by a question that arose in algebraic geometry. The story started by the

1The multiplication in EndTE is defined by the pre-composition “•” of morphisms, i.e., fg := f • g :=
g ◦ f .

2We will use the notion “complete” for what is sometimes called “full”. We do this to avoid confusion
with the notion of a full subcategory.

9



10 INTRODUCTION AND SCOPE

celebrated “resolution of the diagonal” theorem of Beilinson (cf. [Bĕı78]) which states that
the full subcategories Ω and O generated by the sequences(

Ωn
Pn
k
(n), . . . ,Ω0

Pn
k
(0)
)

and (
OPn

k
, . . . ,OPn

k
(n)

)
,

respectively, are complete strong exceptional sequences in the category Coh Pnk of coherent
sheaves over the projective space Pnk , where Ωi

Pn
k
(i), i = 0, . . . , n are the twisted cotan-

gent bundles over Pnk and OPn
k
(i), i = 0, . . . , n are twists of structure sheaf OPn

k
. That

is, the associated tilting sheaves TΩ := ⊕n
i=0 Ωi

Pn
k
(i) and TO := ⊕n

i=0OPnk (i) induce exact
equivalences

Db(EndTΩ) ' Kb
(
Ω⊕
)
' Db(Pnk) ' Kb

(
O⊕

)
' Db(EndTO),

where
• Db(Pnk) is the bounded derived category of Coh Pnk ;
• Ω⊕ and O⊕ and are the additive closure categories of the full subcategories of
Coh Pnk generated by Ω resp. O;
• Kb(Ω⊕) and Kb(O⊕) are the bounded homotopy categories of Ω⊕ resp. O⊕;
• Db(EndTΩ) and Db(EndTO) are the bounded derived categories of the categories
of the finite dimensional left modules over the endomorphism k-algebras EndTΩ
resp. EndTO.

In particular, any bounded complex over Coh Pnk can be resolved (up to a quasi-isomorphism3)
in terms of a complex which consists only of direct sums of objects in O; and also can be
resolved (up to a quasi-isomorphism) in terms of a complex which consists only of direct
sums of objects in Ω.

This raises the following question: Suppose we know only how to resolve the objects of
Ω and the morphisms between them in terms of objects and morphisms in Kb(O⊕), i.e., we
are given the full embedding Ω ↪

ι−→ Kb(O⊕) whose image is a complete strong exceptional
sequence in Kb(O⊕). Can we algorithmically extend it to exact equivalences

Db(EndTΩ) ' Kb
(
Ω⊕
)
' Kb

(
O⊕

)
without using geometric methods, i.e., without needing to pass through Db(Pnk)?

Theorem 1 answers this question affirmatively with Ω ∼= ι(Ω) and ι(Ω) ⊆ Kb(O⊕) is a
complete strong exceptional sequence. (cf. Chapter 1).

Another application of Theorem 1 originates from the representation theory of finite
dimensional k-algebras. Given a finite dimensional k-algebra A over some field k and
a finite full subcategory E = (E1, . . . , En) in Kb(A-proj) where A-proj is the category
of finitely generated projective left A-modules. If we have HomKb(A-proj)(Ei, Ei) ' k for
i = 1, . . . , n and HomKb(A-proj)(Ei, Ej) = 0 for j > i, then checking whether E is a complete

3Cf. Definition 3.4
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strong exceptional sequence in Kb(A-proj) is equivalent to checking whether TE := ⊕n1Ei
is a tilting complex in Kb(A-proj), i.e., whether

(1) HomKb(A-proj)(TE ,Σi(TE )) = 0 for all i 6= 0 where Σ is the shift automorphism on
Kb(A-proj),

(2) The smallest thick triangulated subcategory in Kb(A-proj) that contains TE is
Kb(A-proj) itself.

In the affirmative case this means that A and EndTE are derived equivalent. This follows
as a special case of the celebrated “Morita theorem for derived categories” of Rickard
[Ric89],[Kel07],[KZ98], which states that if R and S are two rings, then the following
conditions are equivalent:

(1) R and S are derived equivalent4;
(2) Kb(R-proj) ' Kb(S-proj) as triangulated categories;
(3) There exists a tilting complex T in Kb(R-proj) such that S ∼= EndT .

The Proof Strategy. Our proof of Theorem 1 mainly relies on constructing a fully
faithful exact functor

F : Kb
(
E ⊕

)
→ Kb(C ),

and then proving that the essential image of F is the triangulated hull E4 ⊆ Kb(C ). After
this, it is evident how to construct the desired right adjoint functor

G : Kb(C )→ Kb
(
E ⊕

)
of F in case the strong exceptional sequence E is complete, i.e., in case E4 = Kb(C ).

A Problem. The full embedding E ↪−→ Kb(C ) extends to a full embedding E ⊕ ↪−→ Kb(C ),
which also extends to a full embedding Kb(E ⊕) ↪−→ Kb

(
Kb(C )

)
. That is, F should map

some of the objects of Kb
(
Kb(C )

)
to objects in Kb(C ). Hence, we need a construction

similar to the classical total complex construction which maps the objects of Cb
(
Cb(C )

)
to objects in Cb(C ). The objects of Kb

(
Kb(C )

)
can not always be considered as objects

in Cb
(
Cb(C )

)
, hence the brute-force application of the total complex construction on the

objects of Kb
(
Kb(C )

)
might not produce well-defined outputs in Kb(C ).

The Solution. Our construction of F is based on the notion of a Postnikov system,
a construction which associates to a bounded complex U over a triangulated category T
a set of objects in T, usually called the set of “totalizations” of U . This construction
is a priori not functorial for arbitrary triangulated categories (cf. Section 6.3). However,
we will be able to circumvente this limitation in case T is a bounded homotopy category.
The proposed technique relies on computing chain-homotopies witnessing the equality
of morphisms in Kb(C ), i.e., for two equal morphisms α, β : A→ B in Kb(C ), we must be
able to compute a family (hi : Ai → Bi−1)i∈Z of morphisms with

∂iA •h
i+1 + hi • ∂i−1

B = αi − βi

4I.e., their bounded derived categories of modules are equivalent as triangulated categories.



12 INTRODUCTION AND SCOPE

for all i ∈ Z. Computing such a witness amounts to solving a system of two-sided
inhomogeneous linear equations:

∂iA •χ
i+1 + χi • ∂i−1

B = αi − βi

of morphisms in C for unknown morphisms χi where i takes a finite number of values
dependent on the lower and upper bounds of A and B (cf. Corollary 3.26). The method we
will use to solve these systems will be explained later in this introduction (cf. Chapter 4).

The essential image of F . For each object A in Kb(C ), we construct an object R in
Kb(E ⊕) and then prove that A ∼= F (R) if and only if A ∈ E4 (cf. Lemma 6.77). The
computation of R is based on an iterative construction which terminates because it relies
on computing what we call E -covers of objects in Kb(C ) (cf. Definition 6.65). The functor

HomKb(C )(TE ,−) : Kb(C )→ EndT -mod
reduces the computation of E -covers in Kb(C ) to the computation projective covers
in the Abelian category EndTE -mod (cf. Remark 6.71). The computation of the afore-
mentioned isomorphism A ∼= F (R) is mainly based on applying the octahedral axiom
(TR′ 4.) (cf. Section 5.2) in the triangulated category Kb(C ).

Constructing Db(EndTE ). In Lemma 6.33, we provide an algorithm to compute a finite
acyclic quiver qE and an admissible set of k-relations ρ such that

E ∼= AE

where AE is the finitely presented k-linear category defined by qE subject to the set of
relations ρ. We call the category AE the abstraction k-algebroid of E . In fact, End TE can
be recovered as the endomorphism k-algebra of AE (cf. Definition A.29).

According to the theory of quiver representations, a k-finite dimensional right (resp.
left) module over End TE is nothing but a k-linear functor from AE (resp. Aop

E ) to the
category k-mat of matrices5 over k (cf. Theorem 2.70). That is

EndTE -mod ∼= AE -mod := [Aop
E , k-mat]

where [Aop
E , k-mat] denotes the Abelian category of k-linear functors from Aop

E to k-mat.
We denote by AE -proj the full subcategory of AE -mod generated by the projective objects.

Since q is acyclic and AE is Hom-finite we can extend the Yoneda embedding
AE ↪−→ AE -mod

to the following exact equivalences (cf. Section 6.2):
Kb
(
E ⊕

) ∼= Kb(A⊕E ) ' Kb(AE -proj) ' Db(AE )

where Db(AE ) is the bounded derived category of AE -mod.
The role of homomorphism structures. We have already found that the functor F is

based on computing chain-homotopies witnessing equalities of morphisms in Kb(C ), i.e., on
solving systems of two-sided inhomogeneous linear equations in the category C . So, how
can we solve such systems? The concept of homomorphism structures provides a very good

5The category k-mat is equivalent to the category veck of finite dimensional k-vector spaces (cf. Def-
inition 2.11).
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answer. This concept was first formulated by Posur in [Pos21a] as a common generalization
of the external Hom functor and the internal Hom functor in a closed symmetric monoidal
categories. Let D be a category. A D-homomorphism structure on a category C consists
of an object 1 ∈ D , a bifunctor

H(−,−) : C op × C → D

and a natural isomorphism
ν : HomC (−,−) ∼−→ HomD(1, H(−,−)).

The naturality of ν translates to the equality
νB,C(χ) •H(α, β) = νA,D(α •χ • β)

for all triples of morphisms A α−→ B
χ−→ C

β−→ D in C (cf. Chapter 4).
The main computational advantage of having a D-homomorphism structure is the

ability to convert any two-sided inhomogeneous equation
α •χ • β = γ

in C for given morphisms α, β, γ and an unknown morphism χ to a one-sided inhomoge-
neous equation

χ′ •H(α, β) = νA,D(γ)
in D . A solution χ can be recovered from a solution χ′ as χ = ν−1

B,C(χ′). If C and D are
additive, then we can extend this advantage to convert any system of two-sided inhomo-
geneous linear equations over C to a one-sided linear equation over D (cf. Theorem 4.17).

We also employ the D-homomorphism structure of a category C to compute the ex-
ternal Hom bifunctor HomC (−,−) itself. In particular, the homomorphism structure
reduces computing a generating set of HomC (A,B) to computing a generating set of
HomD(1, H(A,B)), which is usually much easier to perform. As a matter of fact, the
majority of triangulated categories considered in this thesis are k-linear, Hom-finite and
equipped with a (k-mat)-homomorphism structure for some field k. For instance, we use
this technique to compute the aforementioned functors:

• The Yoneda embedding (cf. Corollary 2.89)
AE ↪−→ AE -mod;

• The Hom(TE ,−) functor (cf. Lemma 6.35)
HomKb(C )(TE ,−) : Kb(C )→ EndTE -mod.

The Computer Implementation. All the proposed techniques and methods of this
thesis are implemented in the GAP meta-package HigherHomologicalAlgebra [Sal21a] which
is mainly based on the Cap-project, a software project written in GAP for constructive category
theory [GSP22], [GP19] and [GPS18].

From the viewpoint of Cap, every category is specified by data types for its objects and
morphisms together with two algorithms to compute identities of objects and compose morphisms.
We refer to a category C as computable if the mathematical equality of the morphisms is realized
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by an algorithm. More generally, we say that C is computable as an instance of a doctrine6 D if
all existential quantifiers and disjunctions in the defining axioms of the doctrine D are realized
by algorithms. The Appendix A provides a brief introduction to Cap.

In Cap, categories are constructed using so-called category constructors. The are special
functions which are applied to data structures or already existing categories. The category con-
structor uses the data of the input to derive all algorithms required by the specified doctrines of
the output category. For example, the category constructor MatrixCategory(-) takes as input
a field k and returns the Abelian category of matrices k-mat over k whose objects are the non-
negative integers and whose morphisms are the finite dimensional matrices over k. The skeletal
category k-mat is computer-friendly and is equivalent to the category of finite dimensional k-
vector spaces. The category constructors used in this thesis are covered in details in Chapter 2
and Chapter 3. For instance, we discuss how the bounded homotopy category Kb(C ) can be con-
structed as a stable category of the category of bounded complexes Cb(C ), and how EndTE -mod
can be constructed as a functor category.

The HigherHomologicalAlgebra meta-package [Sal21a] is intended to provide an accessible
computing environment for performing all of the constructions proposed in this thesis. In the
subsequent chapter, we present a software demonstration and thereby explain the syntax. It
consists of various packages, the most important of which are

(1) TriangulatedCategories [Sal21f] provides a framework for triangulated categories.
Our basic examples for triangulated categories are bounded homotopy categories and
stable categories of Frobenius categories.

(2) StableCategories [Sal21e] provides a framework for stable categories associated to
classes of lifting or colifting objects.

(3) ComplexesCategories [Sal21b] provides a framework for categories of complexes. If
the C is an Abelian category with enough projectives or injectives, then we can compute
projective and injective resolutions of complexes in Cb(C ). It enables us to perform many
homological constructions such as computing derived functors and total complexes of
double complexes.

(4) HomotopyCategories [Sal21d] provides a framework for bounded homotopy categories.
A homotopy category Kb(C ) is constructed as a stable category of Cb(C ) with respect
to the class of contractible objects. It also provides an implementation of the triangu-
lated structure of Kb(C ). The computation of Postnikov systems and their associated
convolutions are also performed by this package.

(5) DerivedCategories [Sal21c] provides a framework for constructing derived categories
of Abelian categories with enough projectives or injectives. It also contains all implemen-
tations related to strong exceptional sequences and their associated exact equivalences.

Outline. This thesis is organized as follows. Chapter 1 gives a software demonstration to show
how our framework solves the question raised at the beginning of this introduction: How to extend
a given full embedding ι : Ω ↪−→ Kb(O⊕) to an exact equivalence Kb(Ω⊕) ' Kb(O⊕). Chapter 2
discuss in detail constructing the majority of preadditive, additive and Abelian categories that
are used in Chapter 1, e.g., finitely presented categories (cf. Section 2.2.5) and their (Abelian)
functor categories (cf. Section 2.2.7); and introduces also other categories for a later use, e.g.,

6We use the term “doctrine” to describe a class of categories with specified additional properties or
structures, e.g., additive, Abelian, monoidal, etc.
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Freyd categories (cf. Section 2.2.3). Chapter 3 summarizes in a constructive style the key con-
cepts in homological algebra that needed in this thesis. e.g., constructing bounded homotopy
(cf. Section 3.2) or derived categories (cf. Section 3.4), computing projective and injective resolu-
tions of complexes (cf. Section 3.3), computing derived functors (cf. Examples 3.67 and 3.71), etc.
Chapter 4 reviews the basic facts and examples on homomorphism structures (cf. Section 4.1) and
investigates creating new homomorphism structures from already existing onces. For example, we
discuss how to lift a homomorphism structure on a category C to the bounded homotopy category
Kb(C ) (cf. Section 4.5) and the functor category [A ,C ] for some finitely presented category A
(cf. Section 4.2). Chapter 5 provides a constructive framework in which we can perform com-
putations in triangulated categories. We provide two main examples: The bounded homotopy
category of an additive category (cf. Section 5.2) and the stable category of a Frobenius category
(cf. Section 5.3). Chapter 6 provides a constructive framework to perform computations on strong
exceptional sequences such as computing the abstraction k-algebroids and then lastly computing
their adjoint exact equivalences: The aforementioned adjunction F a G. The Appendix is meant
to provide a software demonstration for the computational goals of this thesis.





CHAPTER 1

A Demo for a Tilting Equivalence Using
HigherHomologicalAlgebra

The following is a software-demonstration for creating a complete strong exceptional sequence
in a bounded homotopy category. We use the associated tilting equivalences to resolve objects in
the homotopy category in terms of the objects of the sequence.

We use the Higher Homological Algebra meta-package [Sal21a] which is mainly based
on the homalg [hom22] and Cap [GSP22] software projects.

The Julia [BEKS17] package CapAndHomalg [CAP21a] provides an interface to the above
and many other required GAP packages. We start by loading CapAndHomalg and the GAP package
DerivedCategories [Sal21c]:
julia> using CapAndHomalg
CapAndHomalg v1.4.0
Imported OSCAR's components GAP and Singular_jll
Type: ?CapAndHomalg for more information
julia> LoadPackage( "DerivedCategories" )

As our running example, we consider the Beilinson k-algebroid over a field1 k. We construct
it as the finitely presented k-linear category AO generated by the Beilinson quiver

qO := O(0) O(1) O(2)x1

x0

x2

y1

y0

y2

subject to the relations ρO = {xiyj − yjxi|i, j = 0, 1, 2}. This can be done in three steps:
(1) Construct the free category FO generated by the Beilinson quiver qO.
(2) Construct the k-linear closure category k[FO] of FO.
(3) Construct the quotient category AO of k[FO] modulo the two-sided ideal generated by

the relations ρO.
The name and the labels of the quiver reflect its geometric origin. The Beilinson algebroid

AO is an isomorphic to the full subcategory of the category Coh P2
k of coherent sheaves over the

projective space P2
k generated (as a k-linear subcategory) by the structure sheaf OP2

k
= O = O(0)

and two further twists OP2
k
(i) = O(i) for i = 1, 2 (see, e.g., [Bĕı78]). However, none of this is

relevant to the following demonstration.
The package DerivedCategories uses the package QPA2 [Qt21] which provides the needed

infrastructure for quivers with relations:
1or a nonzero commutative unital ring.

17
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julia> q_O = RightQuiver(
"q_O(O0,O1,O2)[x0:O0->O1,x1:O0->O1,x2:O0->O1,y0:O1->O2,y1:O1->O2,y2:O1->O2]");

julia> SetLabelsAsLaTeXStrings( q_O,
[ "\\mathcal{O}(0)", "\\mathcal{O}(1)", "\\mathcal{O}(2)" ],
[ "x_0", "x_1", "x_2", "y_0", "y_1", "y_2" ] )

julia> F_O = FreeCategory( q_O )
GAP: Category freely generated by the right quiver
q_O(O0,O1,O2)[x0:O0->O1,x1:O0->O1,x2:O0->O1,y0:O1->O2,y1:O1->O2,y2:O1->O2]

julia> Q = HomalgFieldOfRationals( )
GAP: Q

julia> k = Q
GAP: Q

julia> kF_O = k[F_O]
GAP: Algebroid( Q * q_O )

julia> ρ_O = [ PreCompose( kF_O.x0, kF_O.y1 ) - PreCompose( kF_O.x1, kF_O.y0 ),
PreCompose( kF_O.x0, kF_O.y2 ) - PreCompose( kF_O.x2, kF_O.y0 ),
PreCompose( kF_O.x1, kF_O.y2 ) - PreCompose( kF_O.x2, kF_O.y1 ) ];

julia> A_O = kF_O / ρ_O
GAP: Algebroid( (Q * q_O) /

[ -1*(x1*y0) + 1*(x0*y1), -1*(x2*y0) + 1*(x0*y2), -1*(x2*y1) + 1*(x1*y2) ] )

julia> InfoOfInstalledOperationsOfCategory( A_O )
27 primitive operations were used to derive 74 operations for this category which
* IsLinearCategoryOverCommutativeRing
* IsEquippedWithHomomorphismStructure

julia> ListInstalledOperationsOfCategory( A_O )
GAP: [ AdditionForMorphisms, AdditiveInverseForMorphisms, BasisOfExternalHom, ... ]

julia> 2 * A_O."x0" + 3 * A_O."x1" - A_O."x2"
GAP: (O0)-[{ -1*(x2) + 3*(x1) + 2*(x0) }]->(O1)

julia> BasisOfExternalHom( A_O."O0", A_O."O1" )
GAP: [ (O0)-[{ 1*(x0) }]->(O1), (O0)-[{ 1*(x1) }]->(O1), (O0)-[{ 1*(x2) }]->(O1) ]

Since the relations ρO = {xiyj = yjxi|i, j = 0, 1, 2} of the Beilinson quiver are categorical,
i.e., they can be expressed without reference to any coefficients ring k, one can equally construct
the associated k-algebroid AO as the k-linear closure category of a finitely presented category
BO, which we call the Beilinson category:
julia> ρ_O = [ [ PreCompose( F_O.x0, F_O.y1 ), PreCompose( F_O.x1, F_O.y0 ) ],
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[ PreCompose( F_O.x0, F_O.y2 ), PreCompose( F_O.x2, F_O.y0 ) ],
[ PreCompose( F_O.x1, F_O.y2 ), PreCompose( F_O.x2, F_O.y1 ) ] ];

julia> B_O = F_O / ρ_O
GAP: Category generated by the right quiver

q_O(O0,O1,O2)[x0:O0->O1,x1:O0->O1,x2:O0->O1,y0:O1->O2,y1:O1->O2,y2:O1->O2]
with relations [ x0*y1 = x1*y0, x0*y2 = x2*y0, x1*y2 = x2*y1 ]

julia> InfoOfInstalledOperationsOfCategory( B_O )
7 primitive operations were used to derive 13 operations for this category which
* IsFinitelyPresentedCategory

julia> A_O = k[B_O]
GAP: Algebroid( (Q * q_O) /

[ -1*(x1*y0) + 1*(x0*y1), -1*(x2*y0) + 1*(x0*y2), -1*(x2*y1) + 1*(x1*y2) ] )

Since AO is Hom-finite (i.e., has finite k-dimensional Hom-spaces), we get the Yoneda
embedding

Y : AO ↪→ Hom(Aop
O , k-mat)

where k-mat is the category of matrices over k, which yields a full embedding of AO into a
k-linear Abelian category with enough injectives and projectives:

AO ∼= Y (AO).
For this k-Abelian functor category we use the notation

AO-mod := Hom(Aop
O , k-mat)

and call it the category finite k-dimensional AO-modules.
julia> A_O_op = OppositeAlgebroid( A_O )
GAP: Algebroid( (Q * q_O_op) /

[ 1*(y1*x0) - 1*(y0*x1), 1*(y2*x0) - 1*(y0*x2), 1*(y2*x1) - 1*(y1*x2) ] )

julia> q_O_op = UnderlyingQuiver( A_O_op )
GAP: q_O_op(O0,O1,O2)[x0:O1->O0,x1:O1->O0,x2:O1->O0,y0:O2->O1,y1:O2->O1,y2:O2->
O1]

julia> SetLabelsAsLaTeXStrings(
q_O_op,
[ "\\mathcal{O}(0)", "\\mathcal{O}(1)", "\\mathcal{O}(2)" ],
[ "x_1", "x_2", "x_3", "y_0", "y_1", "y_2" ] )

julia> kmat = MatrixCategory( k )
GAP: Category of matrices over Q

julia> A_Omod = FunctorCategory( A_O_op, kmat )
GAP: FunctorCategory(

Algebroid( (Q * q_O_op) / [ 1*(y1*x0) - 1*(y0*x1), 1*(y2*x0) - 1*(y0*x2), 1*(y2*x1) -
1*(y1*x2) ] ) -> Category of matrices over Q )
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julia> InfoOfInstalledOperationsOfCategory( A_Omod )
103 primitive operations were used to derive 365 operations for this category which
* IsLinearCategoryOverCommutativeRing
* IsAbelianCategoryWithEnoughInjectives
* IsAbelianCategoryWithEnoughProjectives
* IsEquippedWithHomomorphismStructure

We denote by
Kb(AO) := Kb(AO-mod)

and
Db(AO) := Db(AO-mod)

the bounded homotopy resp. derived categories of AO-mod. Since the quiver is acyclic and
the relations are admissible, the category AO-mod has finite global dimension2. And because
AO-mod has enough projectives (and injectives) we can decide equality of morphisms3 in Db(AO).
We denote by

L : Kb(AO)→ Db(AO)
the natural localization functor which maps quasi-isomorphisms in Kb(AO) to isomorphisms in
Db(AO).
julia> KA_O = HomotopyCategoryByCochains( A_Omod )
GAP: Homotopy category( FunctorCategory( Algebroid( (Q * q_O_op) / [ 1*(y1*x0) - 1*(y0*

x1), 1*(y2*x0) - 1*(y0*x2), 1*(y2*x1) - 1*(y1*x2) ] ) -> Category of matrices over
Q ) )

julia> DA_O = DerivedCategoryByCochains( A_Omod )
GAP: Derived category( FunctorCategory( Algebroid( (Q * q_O_op) / [ 1*(y1*x0) - 1*(y0*

x1), 1*(y2*x0) - 1*(y0*x2), 1*(y2*x1) - 1*(y1*x2) ] ) -> Category of matrices over
Q ) )

julia> CanCompute( DA_O, "IsCongruentForMorphisms" )
true

julia> KnownFunctors( KA_O, DA_O )
1: The natural localization functor

julia> L = Functor( KA_O, DA_O, 1 )
GAP: Localization functor onto bounded derived category

Since AO is admissible4 the Yoneda embedding Y identifies AO with a skeletal model for
the full subcategory of AO-mod generated by the indecomposable projective objects. Hence, the
additive closure category A⊕O is equivalent to the additive full subcategory AO-proj of projective

2bounded by the number of vertices in the generating quiver.
3Referred to as IsCongruentForMorphisms in the code below.
4i.e., the relations of the quiver involve only paths of length at least two.
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objects in AO-mod. The objects in A⊕O are lists of objects5 in AO and morphisms are matrices
of morphisms in AO:
julia> A_Oadd = AdditiveClosure( A_O )
GAP: Additive closure( Algebroid( (Q * q_O) / [ -1*(x1*y0) + 1*(x0*y1), -1*(x2*y0) +

1*(x0*y2), -1*(x2*y1) + 1*(x1*y2) ] ) )

julia> A_Oproj = FullSubcategoryGeneratedByProjectiveObjects( A_Omod )
GAP: Full additive subcategory generated by projective objects( FunctorCategory(

Algebroid( (Q * q_O_op) / [ 1*(y1*x0) - 1*(y0*x1), 1*(y2*x0) - 1*(y0*x2), 1*(y2*x1)
- 1*(y1*x2) ] ) -> Category of matrices over Q ) )

julia> KnownFunctors( A_Oadd, A_Oproj )
1: Yoneda embedding

julia> Yadd = Functor( A_Oadd, A_Oproj, 1 )
GAP: Yoneda embedding

julia> KnownFunctors( A_Oproj, A_Oadd )
1: Decomposition of projective objects

julia> Dec = Functor( A_Oproj, A_Oadd, 1 )
GAP: Decomposition of projective objects

The above equivalences can be extended to the equivalences

Kb
(
A⊕O

)
' Kb(AO-proj).

julia> KA_Oadd = HomotopyCategoryByCochains( A_Oadd )
GAP: Homotopy category( Additive closure( Algebroid( (Q * q_O) / [ -1*(x1*y0) + 1*(x0*

y1), -1*(x2*y0) + 1*(x0*y2), -1*(x2*y1) + 1*(x1*y2) ] ) ) )

julia> InfoOfInstalledOperationsOfCategory( KA_Oadd )
61 primitive operations were used to derive 185 operations for this category which
* IsLinearCategoryOverCommutativeRing
* IsAdditiveCategory
* IsTriangulatedCategory
* IsEquippedWithHomomorphismStructure

julia> KA_Oproj = HomotopyCategoryByCochains( A_Oproj )
GAP: Homotopy category( Full additive subcategory generated by projective objects(

FunctorCategory( Algebroid( (Q * q_O_op) / [ 1*(y1*x0) - 1*(y0*x1), 1*(y2*x0) - 1*(
y0*x2), 1*(y2*x1) - 1*(y1*x2) ] ) -> Category of matrices over Q ) ) )

julia> KYadd = ExtendFunctorToHomotopyCategoriesByCochains( Yadd )
GAP: Extension of ( Yoneda embedding ) to homotopy categories

julia> KDec = ExtendFunctorToHomotopyCategoriesByCochains( Dec )

5The lists represent formal direct sums of objects in AO.
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GAP: Extension of ( Decomposition of projective objects ) to homotopy categories

Since AO-mod has a finite global dimension, the composition

Kb(AO-proj) ↪→ Kb(AO) L−→ Db(AO)
of the natural embedding functor with the standard localization functor defines an equivalence:

Kb(AO-proj) ' Db(AO).

julia> KnownFunctors( KA_Oproj, DA_O )
1: PreComposition of the following two functors:

* Apply ExtendFunctorToHomotopyCategoriesByCochains on ( The inclusion functor )
* The natural localization functor

julia> V = Functor( KA_Oproj, DA_O, 1 )
GAP: Composition of Extension of ( The inclusion functor ) to homotopy categories and

Localization functor in derived category

julia> KnownFunctors( DA_O, KA_Oproj )
1: Universal functor from derived category

julia> U = Functor( DA_O, KA_Oproj, 1 )
GAP: Universal functor from derived category onto a localization category

That is, we get an equivalence

J : Kb
(
A⊕O

) ∼−→ Db(AO).

julia> J = PreCompose( KYadd, V );

julia> Display( J )
Composition of Extension of ( Yoneda embedding ) to homotopy categories and Composition

of Extension of ( The inclusion functor ) to homotopy categories and Localization
functor in derived category:

Homotopy category( Additive closure( Algebroid( (Q * q_O) / [ -1*(x1*y0) + 1*(x0*y1),
-1*(x2*y0) + 1*(x0*y2), -1*(x2*y1) + 1*(x1*y2) ] ) ) )

|
V

Derived category( FunctorCategory( Algebroid( (Q * q_O_op) / [ 1*(y1*x0) - 1*(y0*x1),
1*(y2*x0) - 1*(y0*x2), 1*(y2*x1) - 1*(y1*x2) ] ) -> Category of matrices over Q ) )

We could have computed this equivalence as follows:
julia> J = EquivalenceOntoDerivedCategory( KA_Oadd )
GAP: Equivalence functor from homotopy category onto derived category
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Now consider the three objects Ω2(2),Ω1(1), and Ω0(0) in Kb
(
A⊕O

)
defined by

0 O(0)3 O(1)3 O(2) 0,Ω2(2) :=

(
x1 −x0 0
x2 0 −x0
0 x2 −x1

)
0

( y0
y1
y2

)

0 O(0)3 O(1) 0,Ω1(1) :=

( x0
x1
x2

)
0

0 O(0) 0Ω0(0) := 0

The labels of the objects reflect their geometric origin. They represent the twisted cotangent
bundles Ωi

P2
k
(i) = Ωi(i), i = 0, 1, 2 in CohP2

k (see, e.g., [Bĕı78]). Again, this interpretation is
irrelevant to the computations below.
julia> Ω2_0 = [ A_O."O0", A_O."O0", A_O."O0" ] / A_Oadd;

julia> Ω2_1 = [ A_O."O1", A_O."O1", A_O."O1" ] / A_Oadd;

julia> Ω2_2 = [ A_O."O2" ] / A_Oadd
GAP: <An object in Additive closure( Algebroid( (Q * q_O) / [ -1*(x1*y0) + 1*(x0*y1),

-1*(x2*y0) + 1*(x0*y2), -1*(x2*y1) + 1*(x1*y2) ] ) ) defined by 1 underlying
objects>

julia> ∂_0 = AdditiveClosureMorphism(
Ω2_0,
[ [ A_O."x1", -A_O."x0", ZeroMorphism(A_O."O0", A_O."O1") ],

[ A_O."x2", ZeroMorphism(A_O."O0", A_O."O1"), -A_O."x0" ],
[ ZeroMorphism(A_O."O0", A_O."O1"), A_O."x2", -A_O."x1" ] ],

Ω2_1 );

julia> ∂_1 = AdditiveClosureMorphism(
Ω2_1,
[ [ A_O."y0" ],

[ A_O."y1" ],
[ A_O."y2" ] ],

Ω2_2 )
GAP: <A morphism in Additive closure( Algebroid( (Q * q_O) / [ -1*(x1*y0) + 1*(x0*y1),

-1*(x2*y0) + 1*(x0*y2), -1*(x2*y1) + 1*(x1*y2) ] ) ) defined by a 3 x 1 matrix of
underlying morphisms>

julia> Ω2 = [ [ ∂_0, ∂_1 ], 0 ] / KA_Oadd
GAP: <An object in Homotopy category( Additive closure( Algebroid( (Q * q_O) / [ -1*(x1

*y0) + 1*(x0*y1), -1*(x2*y0) + 1*(x0*y2), -1*(x2*y1) + 1*(x1*y2) ] ) ) ) with
active lower bound 0 and active upper bound 2>

julia> Ω1_0 = [ A_O."O0", A_O."O0", A_O."O0" ] / A_Oadd;
julia> Ω1_1 = [ A_O."O1" ] / A_Oadd;
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julia> ∂_0 = AdditiveClosureMorphism(
Ω1_0,
[ [ A_O."x0" ],

[ A_O."x1" ],
[ A_O."x2" ] ],

Ω1_1 );

julia> Ω1 = [ [ ∂_0 ], 0 ] / KA_Oadd
GAP: <An object in Homotopy category( Additive closure( Algebroid( (Q * q_O) / [ -1*(x1

*y0) + 1*(x0*y1), -1*(x2*y0) + 1*(x0*y2), -1*(x2*y1) + 1*(x1*y2) ] ) ) ) with
active lower bound 0 and active upper bound 1>

julia> Ω0 = [ A_O."O0" ] / A_Oadd / KA_Oadd
GAP: <An object in Homotopy category( Additive closure( Algebroid( (Q * q_O) / [ -1*(x1

*y0) + 1*(x0*y1), -1*(x2*y0) + 1*(x0*y2), -1*(x2*y1) + 1*(x1*y2) ] ) ) ) with
active lower bound 0 and active upper bound 0>

In the following we use our software to perform the following computations:
• Verify that Ω :=

(
Ω2(2),Ω1(1),Ω0(0)

)
is a complete strong exceptional sequence in

Kb
(
A⊕O

)
(see Definition 6.14).

• Verify that not all objects in J(Ω) belong to the standard Abelian heart AO-mod of
Db(AO).
• Compute an abstract k-algebroid AΩ associated to Ω, i.e., a finite presentation (given
by a quiver with relations) of the k-linear full subcategory of Kb

(
A⊕O

)
generated by Ω.

• Construct the exact equivalences

Db(AO) ' Kb
(
A⊕O

)
' Kb

(
A⊕Ω

)
' Db(AΩ).

• Verify that the images of the objects (O(0),O(1),O(2)) in Db(AΩ) live in the standard
Abelian heart AΩ-mod.

We can now create the strong exceptional sequence Ω. The last two arguments are optional
and serve for a better accessibility and visibility as we will see later:
julia> Ω = CreateStrongExceptionalCollection(

[ Ω2, Ω1, Ω0 ],
[ "Ω2", "Ω1", "Ω0" ],
[ "\\Omega^2(2)", "\\Omega^1(1)", "\\Omega^0(0)" ] )

GAP: <A strong exceptional sequence defined by the objects of the full subcategory {Ω2,
Ω1, Ω0}>

julia> T_Ω = DirectSum( Ω2, Ω1, Ω0 )
GAP: <An object in Homotopy category( Additive closure( Algebroid( (Q * q_O) / [ -1*(x1

*y0) + 1*(x0*y1), -1*(x2*y0) + 1*(x0*y2), -1*(x2*y1) + 1*(x1*y2) ] ) ) ) with
active lower bound 0 and active upper bound 2>

julia> Show( T_Ω )
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O(2)
↑
y0
y1
y2
·


|1

O(1)⊕4

↑

x1 −x0 · ·
x2 · −x0 ·
· x2 −x1 ·
· · · x0
· · · x1
· · · x2
· · · ·


|0
O⊕7

By Definition 6.14, the sequence Ω =
(
Ω2(2),Ω1(1),Ω0(0)

)
is strong exceptional if

• Hom
(
Ωi(i),Ωi(i)

)
' k for i = 0, 1, 2.

• Hom
(
Ωi(i),Ωj(j)

)
= 0 for i < j.

• Hom(TΩ,Σr(TΩ)) = 0 for all r 6= 0 where Σ is the standard shift automorphism of
Kb
(
A⊕O

)
. Due to the lower and upper bounds of TΩ, it is sufficient to verify this

requirement only for r ∈ {−2,−1, 1, 2}:

julia> Dimension( HomStructure( Ω2, Ω2 ) ) == 1 &&
Dimension( HomStructure( Ω1, Ω1 ) ) == 1 &&
Dimension( HomStructure( Ω0, Ω0 ) ) == 1

true

julia> IsZero( HomStructure( Ω0, Ω1 ) ) &&
IsZero( HomStructure( Ω1, Ω2 ) ) &&
IsZero( HomStructure( Ω0, Ω2 ) )

true

julia> IsZero( HomStructure( T_Ω, Shift( T_Ω, -2 ) ) ) &&
IsZero( HomStructure( T_Ω, Shift( T_Ω, -1 ) ) ) &&
IsZero( HomStructure( T_Ω, Shift( T_Ω, 1 ) ) ) &&
IsZero( HomStructure( T_Ω, Shift( T_Ω, 2 ) ) )

true

Of course, we can use the same operation to compute the dimension of End TΩ:
julia> HomStructure( T_Ω, T_Ω )
GAP: <A vector space object over Q of dimension 12>
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By applying the equivalence J : Kb
(
A⊕O

) ∼−→ Db(AO) on the objects of Ω and computing
the cohomology support we can verify which of the images J(Ωi(i)), i = 0, 1, 2 belongs to the
standard Abelian heart of Db(AO) (cf. [GM03, §5]):

julia> JΩ2 = ApplyFunctor( J, Ω2 )
GAP: <An object in Derived category( FunctorCategory( Algebroid( (Q * q_O_op) / [ 1*(y1

*x0) - 1*(y0*x1), 1*(y2*x0) - 1*(y0*x2), 1*(y2*x1) - 1*(y1*x2) ] ) -> Category of
matrices over Q ) ) with active lower bound 0 and active upper bound 2>

julia> CohomologySupport( JΩ2 )
GAP: [ 2 ]

julia> H2 = CohomologyAt( JΩ2, 2 )
GAP: <(O0)->0, (O1)->0, (O2)->1; (x0)->0x0, (x1)->0x0, (x2)->0x0, (y0)->1x0, (y1)->1x0

, (y2)->1x0>

That is, J(Ω2(2)) does not belong to AO-mod ⊂ Db(AO).

julia> JΩ1 = ApplyFunctor( J, Ω1 )
GAP: <An object in Derived category( FunctorCategory( Algebroid( (Q * q_O_op) / [ 1*(y1

*x0) - 1*(y0*x1), 1*(y2*x0) - 1*(y0*x2), 1*(y2*x1) - 1*(y1*x2) ] ) -> Category of
matrices over Q ) ) with active lower bound 0 and active upper bound 1>

julia> H1 = CohomologySupport( JΩ1 )
GAP: [ 1 ]

julia> CohomologyAt( JΩ1, 1 )
GAP: <(O0)->0, (O1)->1, (O2)->0; (x0)->1x0, (x1)->1x0, (x2)->1x0, (y0)->0x1, (y1)->0x1

, (y2)->0x1>

That is, also J(Ω1(1)) does not belong to AO-mod ⊂ Db(AO).

julia> JΩ0 = ApplyFunctor( J, Ω0 )
GAP: <An object in Derived category( FunctorCategory( Algebroid( (Q * q_O_op) / [ 1*(y1

*x0) - 1*(y0*x1), 1*(y2*x0) - 1*(y0*x2), 1*(y2*x1) - 1*(y1*x2) ] ) -> Category of
matrices over Q ) ) with active lower bound 0 and active upper bound 0>

julia> CohomologySupport( JΩ0 )
GAP: [ 0 ]

julia> H0 = CohomologyAt( JΩ1, 0 )
GAP: <(O0)->1, (O1)->0, (O2)->0; (x0)->0x1, (x1)->0x1, (x2)->0x1, (y0)->0x0, (y1)->0x0

, (y2)->0x0>

That is, only J(Ω0(0)) belongs to AO-mod ⊂ Db(AO).
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As we will show later, the strong exceptional sequence Ω is even full. Since J is an equiv-
alence, the above computation shows that Db(AO) is generated by the three nonisomorphic
simple objects H(J(Ω)) := (H i(J(Ωi(i))) | i = 2, 1, 0) of AO-mod. However, H(J(Ω)) is not a
strong exceptional sequence in Db(AO). Still, the above computation shows that the sequence
(H i(J(Ωi(i)))[−i] | i = 2, 1, 0) ∼= J(Ω) in Db(AO) is strong exceptional.

One of the main constructions associated to a strong exceptional sequence is its abstraction
algebroid. The abstraction algebroid is a k-linear finitely presented category AΩ which is iso-
morphic to the full subcategory CΩ ⊂ Kb

(
A⊕O

)
generated by Ω. In particular, it exhibits the

structure of Ω in terms of a quiver qΩ and a set of relations ρΩ.
julia> A_Ω = Algebroid( Ω )
GAP: Algebroid( end( Ω2 ⊕ Ω1 ⊕ Ω0 ) )

julia> q_Ω = UnderlyingQuiver( A_Ω )
GAP: quiver(Ω2,Ω1,Ω0)[m1_2_1:Ω2->Ω1,m1_2_2:Ω2->Ω1,m1_2_3:Ω2->Ω1,m2_3_1:Ω1->Ω0,

m2_3_2:Ω1->Ω0,m2_3_3:Ω1->Ω0]

julia> ρ_Ω = RelationsOfAlgebroid( A_Ω )
GAP: [ (Ω2)-[1*(m1_2_1*m2_3_1)]->(Ω0),

(Ω2)-[1*(m1_2_2*m2_3_1) + 1*(m1_2_1*m2_3_2)]->(Ω0),
(Ω2)-[1*(m1_2_2*m2_3_2)]->(Ω0),
(Ω2)-[1*(m1_2_3*m2_3_1) + 1*(m1_2_1*m2_3_3)]->(Ω0),
(Ω2)-[1*(m1_2_3*m2_3_2) + 1*(m1_2_2*m2_3_3)]->(Ω0),
(Ω2)-[1*(m1_2_3*m2_3_3)]->(Ω0) ]

That is, the algebroid AΩ is defined by the following quiver

qΩ := Ω2(2) Ω1(1) Ω0(0)m2
12

m1
12

m3
12

m2
23

m1
23

m3
23

subject to the relations {mi
12m

i
23|i = 1, 2, 3}∪{mi

12m
j
23 +mj

12m
i
23|i, j = 1, 2, 3, i 6= j}. The arrows

of the quiver correspond to the irreducible morphisms of CΩ. We can translate back and forth
via the abstraction and relatization functors:

abs : CΩ � AΩ : rel

julia> C_Ω = FullSubcategory( Ω )
GAP: The full subcategory { Ω2, Ω1, Ω0 }

julia> abs = IsomorphismOntoAlgebroid( Ω )
GAP: Abstraction isomorphism

julia> rel = IsomorphismFromAlgebroid( Ω )
GAP: Realization isomorphism
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julia> m = A_Ω."m1_2_1"
GAP: (Ω2)-[{ 1*(m1_2_1) }]->(Ω1)

julia> rel_m = ApplyFunctor( rel, m )
GAP: A morphism in full subcategory given by: <A morphism in Homotopy category(

Additive closure( Algebroid( (Q * q_O) / [ -1*(x1*y0) + 1*(x0*y1), -1*(x2*y0) + 1*(
x0*y2), -1*(x2*y1) + 1*(x1*y2) ] ) ) ) with active lower bound 0 and active upper
bound 1>

julia> rel_m == IrreducibleMorphisms( Ω, 1, 2 )[ 1 ]
true

julia> Show( rel_m )

O(2) −
()
→ 0

↑ ↑y0
y1
y2

 ()
|1 |1

O(1)⊕3 −

O(1)
·
·

 → O(1)

↑ ↑x1 −x0 ·
x2 · −x0
· x2 −x1

 x0
x1
x2


|0 |0

O(0)⊕3 −

· O(0) ·
· · O(0)
· · ·

 → O(0)⊕3

The category Kb
(
A⊕O

)
is generated by O(0),O(1) and O(2), hence Ω is complete if and only

if O(0),O(1) and O(2) are contained in the triangulated subcategory TΩ := Ω4 ⊆ Kb
(
A⊕O

)
.

julia> TΩ = TriangulatedSubcategory( Ω )
GAP: The triangulated subcategory generated by {Ω2, Ω1, Ω0}

julia> O0 = [ A_O."O0" ] / A_Oadd / KA_Oadd
GAP: <An object in Homotopy category( Additive closure( Algebroid( (Q * q_O) / [ -1*(x1

*y0) + 1*(x0*y1), -1*(x2*y0) + 1*(x0*y2), -1*(x2*y1) + 1*(x1*y2) ] ) ) ) with
active lower bound 0 and active upper bound 0>

julia> IsWellDefined( O0 / TΩ )
true

julia> O1 = [ A_O."O1" ] / A_Oadd / KA_Oadd;
julia> IsWellDefined( O1 / TΩ )
true
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julia> O2 = [ A_O."O2" ] / A_Oadd / KA_Oadd;
julia> IsWellDefined( O2 / TΩ )
true

That is, O(0),O(1) and O(2) considered as objects in TΩ are well-defined, hence they belong to
TΩ and Ω is indeed a complete strong exceptional sequence in Kb

(
A⊕O

)
.

Since A⊕O is k-linear Hom-finite additive category, the complete strong exceptional sequence
Ω induces a pair of exact quasi-inverses

G : Kb
(
A⊕O

)
� Kb

(
C⊕Ω

)
: F

which we call exceptional replacement resp. convolution functors.
julia> G = ReplacementFunctor( Ω )
GAP: Replacement functor
julia> Display( G )
Replacement functor:

Homotopy category( Additive closure( Algebroid( (Q * q_O) / [ -1*(x1*y0) + 1*(x0*y1),
-1*(x2*y0) + 1*(x0*y2), -1*(x2*y1) + 1*(x1*y2) ] ) ) )

|
V

Homotopy category( Additive closure( The full subcategory {Ω2, Ω1, Ω0} ) )

julia> F = ConvolutionFunctor( Ω )
GAP: Convolution functor
julia> Display( F )
Convolution functor:

Homotopy category( Additive closure( The full subcategory {Ω2, Ω1, Ω0} ) )
|
V

Homotopy category( Additive closure( Algebroid( (Q * q_O) / [ -1*(x1*y0) + 1*(x0*y1),
-1*(x2*y0) + 1*(x0*y2), -1*(x2*y1) + 1*(x1*y2) ] ) ) )

Applying the functor G on the objects O,O(1),O(2) returns a representation of them in
Kb(Ω⊕):
julia> G_O0 = ApplyFunctor( G, O0 )
GAP: <An object in Homotopy category( Additive closure( The full subcategory {Ω2, Ω1,

Ω0} ) ) with active lower bound 0 and active upper bound 0>

julia> G_O1 = ApplyFunctor( G, O1 )
GAP: <An object in Homotopy category( Additive closure( The full subcategory {Ω2, Ω1,

Ω0} ) ) with active lower bound -1 and active upper bound 0>

julia> G_O2 = ApplyFunctor( G, O2 )
GAP: <An object in Homotopy category( Additive closure( The full subcategory {Ω2, Ω1,

Ω0} ) ) with active lower bound -2 and active upper bound 0>
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For a better visualization of G(O(0)), G(O(1)) and G(O(2)), we translate the results via the
extension of abs : CΩ

∼−→ AΩ to an isomorphism

Kb
(
C⊕Ω

) ∼−→ Kb(A⊕Ω
)
.

julia> abs = ExtendFunctorToAdditiveClosures( abs );
julia> abs = ExtendFunctorToHomotopyCategoriesByCochains( abs );
julia> Show( ApplyFunctor( abs, G_O0 ) )

Ω0(0)

julia> Show( ApplyFunctor( abs, G_O1 ) )

Ω0(0)⊕3

↑(
−m1

2,3 −m2
2,3 −m3

2,3
)

|−1
Ω1(1)

julia> Show( ApplyFunctor( abs, G_O2 ) )

Ω0(0)⊕6

↑−m1
2,3 −m2

2,3 −m3
2,3 · · ·

· −m1
2,3 · −m2

2,3 −m3
2,3 ·

· · −m1
2,3 · −m2

2,3 −m3
2,3


|−1

Ω1(1)⊕3

↑(
−m1

1,2 −m2
1,2 −m3

1,2
)

|−2
Ω2(2)

Let us apply the comonad F ◦G : Kb
(
A⊕O

) ∼−→ Kb(A⊕O
)
on the object O(2):

julia> FG_O2 = ApplyFunctor( F, G_O2 )
GAP: <An object in Homotopy category( Additive closure( Algebroid( (Q * q_O) / [ -1*(x1

*y0) + 1*(x0*y1), -1*(x2*y0) + 1*(x0*y2), -1*(x2*y1) + 1*(x1*y2) ] ) ) ) with
active lower bound -2 and active upper bound 1>

julia> Show( FG_O2 )
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0
↑()
|0

O(2)⊕O(1)⊕3 ⊕O(0)⊕6

↑

y0 O(1) · · · · · · · ·
y1 · O(1) · · · · · · ·
y2 · · O(1) · · · · · ·
· −x0 · · −O(0) · · · · ·
· −x1 · · · −O(0) · · · ·
· −x2 · · · · −O(0) · · ·
· · −x0 · · −O(0) · · · ·
· · −x1 · · · · −O(0) · ·
· · −x2 · · · · · −O(0) ·
· · · −x0 · · −O(0) · · ·
· · · −x1 · · · · −O(0) ·
· · · −x2 · · · · · −O(0)


|−1

O(1)⊕3 ⊕O(0)⊕9

↑x1 −x0 · · O(0) · −O(0) · · · · ·
x2 · −x0 · · O(0) · · · −O(0) · ·
· x2 −x1 · · · · · O(0) · −O(0) ·


|−2
O(0)⊕3

Since the comonad is an autoequivalence, the objects O(2) and (F ◦G)(O(2)) should be
isomorphic in Kb

(
A⊕O

)
. Such an isomorphism can be computed by applying the counit ε : F ◦G→

idKb(A⊕O) on O(2):

julia> ε = CounitOfConvolutionReplacementAdjunction( Ω )
GAP: F( G( - ) ) ⇒ Id
julia> ε_O2 = ε( O2 )
<A morphism in Homotopy category( Additive closure( Algebroid( (Q * q_O) / [ -1*(x1*y0)

+ 1*(x0*y1), -1*(x2*y0) + 1*(x0*y2), -1*(x2*y1) + 1*(x1*y2) ] ) ) ) with active
lower bound 0 and active upper bound 0>

julia> IsWellDefined( ε_O2 )
true
julia> Show( MorphismAt( ε_O2, 0 ) )
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O(2)⊕O(1)⊕3 ⊕O(0)⊕6



O(2)
−y0
−y1
−y2
x0y0
x0y1
x0y2
x1y1
x1y2
x2y2


−−−−−−→ O(2)

Let us check that ε(O(2)) is an isomorphism and then compute its inverse:
julia> IsIsomorphism( ε_O2 )
true
julia> inv_ε_O2 = InverseForMorphisms( ε_O2 )
<A morphism in Homotopy category( Additive closure( Algebroid( (Q * q_O) / [ -1*(x1*y0)

+ 1*(x0*y1), -1*(x2*y0) + 1*(x0*y2), -1*(x2*y1) + 1*(x1*y2) ] ) ) ) with active
lower bound 0 and active upper bound 0>

julia> Show( MorphismAt( inv_ε_O2, 0 ) )

O(2)
(
O(2) · · · · · · · · ·

)
−−−−−−−−−−−−−−−−−−−−−−−−→ O(2)⊕O(1)⊕3 ⊕O(0)⊕6

We can also verify that ε(O(2)) is an isomorphism by checking whether J(ε(O(2))) is an
isomorphism in Db(AO). In fact, this is usually faster because checking whether a morphism ϕ in
the derived category is isomorphism amounts to checking whether the numerator of its defining
roof is a quasi-isomorphism.
julia> J_ε_O2 = ApplyFunctor( J, ε_O2 )
GAP: <A morphism in Derived category( FunctorCategory( Algebroid( (Q * q_O_op) / [ 1*(

y1*x0) - 1*(y0*x1), 1*(y2*x0) - 1*(y0*x2), 1*(y2*x1) - 1*(y1*x2) ] ) -> Category of
matrices over Q ) )>

julia> IsIsomorphism( J_ε_O2 )
true

Since Kb
(
C⊕Ω

)
∼= Kb

(
A⊕Ω

)
via the abstraction functor and Kb

(
A⊕Ω

)
' Db(AΩ) via the

Yoneda embedding, we get an equivalence

I : Kb
(
C⊕Ω

) ∼−→ Db(AΩ).
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Kb
(
Kb
(
A⊕O

))
Kb
(
C⊕Ω

)
Kb
(
A⊕Ω

)

Kb(AΩ-proj)

Kb
(
A⊕O

)
Db(AΩ)

ι abs

F

rel
∼

∼

ι
G

Let us check that the images of O(0),O(1),O(2) under I ◦G belong to the standard Abelian
heart AΩ-mod ⊂ Db(AΩ).
julia> I = EquivalenceOntoDerivedCategory( Ω )
GAP: Equivalence functor onto derived category of endomorphism algebra

julia> Display( I )
Equivalence functor onto derived category of endomorphism algebra:
Homotopy category( Additive closure( The full subcategory {Ω2, Ω1, Ω0} ) )

|
V

Derived category( The category of functors: Algebroid( End( Ω2 ⊕ Ω1 ⊕ Ω0 ) ) ->
Category of matrices over Q )

julia> IG_O0 = ApplyFunctor( I, G_O0 )
GAP: <An object in Derived category( The category of functors: Algebroid( End( Ω2 ⊕ Ω1

⊕ Ω0 ) ) -> Category of matrices over Q ) with active lower bound 0 and active
upper bound 0>

julia> CohomologySupport( IG_O0 )
GAP: [ 0 ]

julia> IG_O1 = ApplyFunctor( I, G_O1 )
GAP: <An object in Derived category( The category of functors: Algebroid( End( Ω2 ⊕ Ω1

⊕ Ω0 ) ) -> Category of matrices over Q ) with active lower bound -1 and active
upper bound 0>

julia> CohomologySupport( IG_O1 )
GAP: [ 0 ]

julia> IG_O2 = ApplyFunctor( I, G_O2 )
GAP: <An object in Derived category( The category of functors: Algebroid( End( Ω2 ⊕ Ω1

⊕ Ω0 ) ) -> Category of matrices over Q ) with active lower bound -2 and active
upper bound 0>

julia> CohomologySupport( IG_O2 )
GAP: [ 0 ]
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Since the cohomology is concentrated in degree 0, the objects H0((I ◦G)(O(i))), i = 0, 1, 2 live
in the standard Abelian heart of Db(AΩ). In fact, their direct sum, say U , is a generalized tilting
object in AΩ-mod. By Happel’s theorem the derived functors

−⊗L U : Db(End U)� Db(AΩ) : RHom(U,−)
define an adjoint pair of exact equivalences. We refer to the Appendix E for a demonstration to
Happel’s theorem.



CHAPTER 2

Category Constructors

One of the main design features of Cap [GSP22] is its support for:
• defining categorical doctrines;
• building category constructors which create instances of such doctrines.

We use the term doctrine, as already mentioned in the introduction, in a loose sense to describe
categories with specified additional properties or structures, e.g., additive, Abelian, monoidal, or
closed monoidal categories (cf. Appendix A).

A category constructor, as the name suggests, is a procedure which outputs a category as a
particular instance of a specific doctrine. Further we distinguish between

• doctrine-based category constructors;
• primitive category constructors.

A doctrine-based category constructor takes as input one or several categories C1, . . . ,Cn of
specific doctrines D1, . . . ,Dn and outputs a category A as a particular instance of a specific
doctrine D according to the two following rules: The constructor

• specifies the data structure of the objects and morphisms in A in terms of objects and
morphisms of the input categories;
• expresses all defining categorical operations of the doctrine D (of its output category)
as algorithms written in terms of the categorical operations supported by the doctrines
D1, . . . ,Dn (of its input categories).

In particular, these algorithms do not depend on the instances C1, . . . ,Cn but only on their
doctrines D1, . . . ,Dn.

For example, the category constructor AdditiveClosure takes as input a preadditive category
C and returns the additive closure C⊕, along with an embedding of C in C⊕ which is universal
among all additive functors from C into an additive category (cf. Section 2.2.2). Another example
is the Freyd category constructor FreydCategory which takes as input an additive category C
and outputs another additive category A(C ) along with an embedding of C in A(C ) which is
universal among all functors from C into a category with cokernels. In fact, A(C ) is Abelian if
C admits weak-kernels (cf. Section 2.2.3).

We refer to category constructors that are not doctrine-based as primitive category con-
structors. For example, the constructor FreeCategory takes as input a quiver q and outputs
the free category Fq defined by q (cf. Section 2.1.1). Another example is the category construc-
tor RingAsCategory which takes as input a ring R and outputs the preadditive category C (R)
consisting of a single object, say ∗, whose endomorphisms are the elements of R (cf. Section 2.1.2).

The attempt to implement doctrine-based constructors has led us to the development of new
categorical concepts:

(1) Our desire to develop a doctrine-based constructor for certain stable categories which
are described as quotients by two-sided ideals led us to the concept of classes of lifting

35
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and colifting objects (cf. Section 2.2.6). The two-sided ideal of such a stable category
consists of the morphisms that factor through an object in the class of lifting (reps.
colifting) objects. The central point is that the membership in such a two-sided ideal is
algorithmically decidable: Checking the membership translates to a lift or colift prob-
lem. This is essential for equipping the stable categories with a decidable equality of
morphisms (cf. Lemma 2.53). We use this stability notion to provide a unified construc-
tion for stable module categories by projectives or injectives (cf. Example 2.60), stable
categories of Frobenius categories (cf. Section 5.3) and for bounded homotopy categories
(cf. Theorem 3.29)1.

(2) Another example is the emergence of the concept of a D-homomorphism structure of
a category C , which Posur proposed in his constructive approach to Freyd categories
[Pos21a]. Equipping a category C with a D-homomorphism structure enables us to
translate two-sided equations in C into lift problems (i.e., one-sided equations2) in D .
If C is preadditive, then a D-homomorphism structure enables us to reduce solving
arbitrary two-sided linear systems3 in C to computing lifts in D (cf. Theorem 4.17).

Solving two-sided linear systems is essential for several category constructors, pri-
marily to ensure that the output category has decidable equality of morphisms. For
instance, the equality of morphisms in the Freyd category A(C ) translates to a lift
problem in C (cf. Section 2.2.3); and the equality of morphisms in the bounded homo-
topy category Kb(C ) translates to solving two-sided linear systems in C , which finally
reduces to computing lifts in the range D of the homomorphism structure on C (cf. Sec-
tion 3.2). Teaching a category constructor how to equip its output category with a
D-homomorphism structure is essential for almost all of the proposed approaches in
this thesis. This topic is covered in details in Chapter 4.

Meanwhile, the Cap universe4 supports several categorical doctrines [CAP21b] and includes
various category constructors [CAP21c]. One can now compose the category constructors to
produce new instances of categories in which one can conduct the categorical operations supported
by their doctrines. A category that is created by composing two or more category constructors
will be referred to as a tower of categories. Such a tower necessarily starts by applying one or
more primitive category constructors on one or more data structures (e.g., sets, rings, quivers,
etc).

Let us illustrate the idea of towers by an explicit example: Let q a quiver (cf. Definition 2.1),
k be a field and k-mat the category of matrices over k (cf. Section 2.1.3). Then

(1) Fq := FreeCategory(q) outputs the universal free category Fq generated by q. That is,
this category constructor adds formal identity morphisms and enables us to compute
composition of morphisms (cf. Section 2.1.1).

(2) kFq := LinearClosure(k,Fq) outputs the universal k-linear closure kFq of Fq. That
is, this category constructor adds formal k-linear combinations of morphisms in Fq

(cf. Section 2.2.1).
Let ρ be finite set of morphisms in kFq. Then

1and even Freyd categories (cf. Corollary 2.65).
2Any lift morphism α : A→ C along β : B → C is a solution to the one-sided equation X •β = α.
3Hence, a D-homomorphism structure on a C can be used to derive methods for lifts and colifts

operations in C as they are special linear systems.
4That is, all of the packages that are based on CAP [CAP21d].
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(3) A := kFq/〈ρ〉 := Algebroid(kFq, ρ) outputs the k-linear finitely presented category
defined by q subject to the relations ρ, i.e., the quotient category of kFq modulo the
two-sided ideal of morphisms generated by ρ (cf. Section 2.2.5).

(4) mod-A := [A , k-mat] := FunctorCategory(A , k-mat) outputs the category of k-
linear functors from A to k-mat, which is k-linear Abelian and equipped with a
(k-mat)-homomorphism structure (cf. Sections 2.2.7 and 4.2).

We can perform homological algebra computations over mod-A . For instance,
(5) Cb(mod-A ) := ComplexCategoryByCochains(mod-A ) outputs the bounded cochain

complex category of mod-A , which is Abelian (cf. Section 3.1) and is equipped with a
(k-mat)-homomorphism structure (cf. Section 4.4).

(6) Kb(mod-A ) := HomotopyCategoryByCochains(mod-A ) outputs the bounded homo-
topy category of mod-A , which is triangulated (cf. Section 3.2), has decidable equality
of morphisms (cf. Corollary 3.26) and is equipped with a (k-mat)-homomorphism struc-
ture (cf. Section 4.5).

If A is admissible, then mod-A is Abelian with enough projective and injective objects (cf. Corol-
lary 2.96). If, furthermore, mod-A has finite global dimension5, then

(7) Db(mod-A ) := DerivedCategoryByCochains(mod-A ) outputs the bounded derived
category of mod-A , which is triangulated (cf. Section 3.4), has decidable equality of
morphisms (cf. Theorem 3.63) and is equipped with a (k-mat)-homomorphism structure
(cf. Section 4.5). In particular, given two objects A,B in mod-A , we can employ the
(k-mat)-homomorphism structure of Db(mod-A ) to compute a basis of

Extn(A,B) := HomDb(mod-A )(A,Σn(B)).
A categorical computation at the top category of a tower is usually accomplished by (1)

incrementally unwrapping portions of the passed arguments until they are represented in terms
of the algebraic or combinatorial data structure at the bottom of the tower, (2) performing the
computation, and then, (3) wrapping the results all the way up to the top category to obtain the
result. In almost all cases, the categorical operation must compute several intermediate values
before returning the final result6. In these cases, the frequent wrapping and unwrapping adds
overhead to the computations, slowing them down. This overhead can be avoided by reworking
the algorithms of the top category to interact directly with the given data structure, bypassing
the categories underneath. In other words, we “compile” the composition of category constructors
forming the tower to a primitive category constructor. For instance, if we compile the preceding
tower forming the category mod-A , we recover the category rep(q, ρ) of finite dimensional ρ-
bounded quiver representations of q (cf. Section 2.2.7). The QPA2 [Qt21] provides a primitive
category constructor7 which creates this category. Another example for this idea is discussed in
Section 2.2.3.

Reworking the algorithms of the top category allows us to take advantage of some of the
features of the low-level data structure that would be inaccessible by a rigid categorical im-
plementation. Yet, as category constructors get more complex, compiling them as primitive
constructors becomes more cumbersome and error-prone, not to mention that the mathematics

5For example, if q is acyclic (cf. Corollary 2.96).
6Especially if the operation has been derived from other basic operations (cf. [Gut17]).
7See CategoryOfQuiverRepresentations
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behind the code becomes increasingly difficult to grasp, hence, making it harder to maintain the
code.

The primary goal of the GAP package CompilerForCAP [Zic22] is to automate such conver-
sions of high-level algorithms to low-level algorithms that operate directly on the provided data
structures. Additionally, the user can assist the compiler by providing additional rewriting rules
to enhance the generated code’s quality. In other words, one may keep building doctrine-based
implementations while the compiler handles the conversion of their composite to primitive con-
structors.

2.1. Primitive Category Constructors
In this section we list the primitive category constructors that are relevant to this thesis.

2.1.1. Free Categories Defined by Quivers. Finite dimensional k-algebras over some
field k are often studied in terms of quivers (see e.g., [DW17] and [ASS06]). Quiver are essen-
tial for defining finitely presented categories (cf. Section 2.2.5) and their categories of functors
(cf. Section 2.2.7), and to visualize strong exceptional sequences in k-linear triangulated categories
(cf. Section 6.2).

Let us first state the definition of a quiver:
Definition 2.1. A right quiver8 q consists of the following data:
(1) A finite set q0 (vertices).
(2) A finite set q1 (arrows).
(3) Two maps s, r : q1 → q0, called the source resp. range maps.

A path p of length ` ≥ 1 in a right quiver q is a sequence p = r1r2 . . . r` of arrows in q1 such that
r(ri) = s(ri+1) for i = 1, . . . , ` − 1. We define s(p) by s(r1) and r(p) by r(r`). For each vertex
v ∈ q0, we define the trivial path ev of length 0 with s(ev) = r(ev) = v. The quiver q will be
called an acyclic if s(p) 6= r(p) for all nontrivial paths in q.

Given a quiver q, we can turn q into a category by formally equipping all objects with identity
morphisms and then defining the composition in term of a concatenation of paths:

Definition 2.2. Let q be quiver. The free category9 Fq generated by q is defined by the
following data:

(1) The object class is q0.
(2) For two objects u, v, we define HomFq(u, v) by the set of all paths from u to v.
(3) Composition of morphisms is defined by the concatenation of the underlying paths.
(4) The identity morphism of an object u is the trivial path eu.

2.1.2. (Graded) Ring as a Preadditive Category. Every ring can be interpreted as a
preadditive category:

Definition 2.3. Let R be unital ring. The ring category10 of R, denoted by C (R), is
defined by the following data:

(1) The object class consists of a single object, say ∗.
8The term right is adapted from the GAP package QPA2 [Qt21]. The distinction between right and left

quivers only affects the definition of a path in the quiver.
9The associated category constructor is FreeCategory(-) [BS21a].
10The associated category constructor is RingAsCategory [BP19a].
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(2) HomC (R)(∗, ∗) := R.
(3) The composition of two morphisms r • s is defined by their multiplication rs as ring

elements.
(4) The identity morphism of ∗ is defined by the unit of the ring.

Remark 2.4. The category C (R) has decidable equality of morphisms if and only if R is con-
structable, i.e., we have an algorithm to decide equality of elements in R.

Remark 2.5. With this interpretation in mind, we can think of a right (resp. left) R-module
as an additive covariant (resp. contravariant) functor from C (R) to the category Ab of Abelian
groups.

Remark 2.6. If R is k-algebra for some commutative ring k, then C (R) is a k-linear category.

The same can be done for graded rings:
Definition 2.7. Let G be an additively written Abelian group. A ring R is called G-graded

if there is a subring R0 ⊂ R and for every g ∈ G an R0-submodule Rg such that

R =
⊕
g∈G

Rg

and RgRh ⊆ Rg+h for all g, h ∈ G. A nonzero element x ∈ Rg is called homogeneous of degree
g and we write deg x = g.

Every graded ring defines a preadditive category:
Definition 2.8. Let R =

⊕
g∈GRg be G-graded ring. The graded ring category11 of R,

denoted by C (R,G), is defined by the following data:
(1) The object class of C (R,G) is given by G.
(2) For two objects g and h we define HomC (R,G)(g, h) := Rh−g.
(3) The identity morphism of an object h ∈ G is given by 1 ∈ R0.
(4) The composition is inherited from the ring multiplication.

Remark 2.9. C (R,G) has decidable equality of morphisms if and only if R is constructable.

Remark 2.10. If R0 is a commutative ring, then C (R,G) is an R0-linear category.

2.1.3. Category of (Graded) Rows of a (Graded) Ring. The category of rows over
a ring R provides a model for category of free row R-modules with finite rank. This category is
useful because its Freyd category provides a computer friendly model for the category R-fpmod
of finitely presented R-modules (cf. Section 2.2.3).

Definition 2.11. Let R be a ring. The category R-rows of rows12 over R is defined by the
following data:

(1) The object class is N0.
(2) For objects m and n, we define HomR-rows(m,n) := Rm×n.
(3) The composition is defined by the usual matrix multiplication.
(4) The identity morphism of an object n ∈ N0 is given by the identity matrix In over R.

11The associated category constructor is GradedRingAsCategory [BP19a].
12The associated category constructor is CategoryOfRows [BP19a].
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Remark 2.12. Similarly, we can define the category of columns R-cols. It is easy to check that
R-cols ∼= (R-rows)op.

Remark 2.13. Obviously, R-rows (resp. R-cols) has decidable equality of morphisms if and
only if R is constructable.

Remark 2.14. If R is a nonzero commutative ring, then it has the invariant basis number
property13. In this case, R-rows provides a skeletal model for the full subcategory of R-mod14

that is generated the free R-modules of finite rank.

Remark 2.15. For an arbitrary ring R, the category R-rows is additive. If R is a k-algebra for
a commutative ring k, then R-rows is a k-linear category.

Example 2.16. For a field k, the category k-rows is Abelian. The majority of the required
algorithms (cf. Definition A.44) can be derived from Gaussian algorithm. It is obvious that
k-rows is equivalent to the category veck of finite dimensional k-vector spaces via:

F :


k-rows → veck,
m 7→ k1×m,

m
A−→ n 7→

{
k1×m → k1×n,

x 7→ x ·A.
If we equip each object V in veck with an ordered basis B(V ), then a morphism f : V → W

in veck corresponds in k-rows to the morphism Af : dimk V → dimkW where Af is the matrix
of f with respect to B(V ) and B(W ).

Notation 2.17. For a field k, we might use the notation k-mat (stands for category of
matrices over k) instead of k-rows.

The category of graded rows R-grrows over a graded ring R provides a model for the full
subcategory of R-grmod15 that is generated by the graded free R-modules of finite rank.

Definition 2.18. Let R be a G-graded ring. The category R-grrows of graded rows16 over
R is defined by the following data:

(1) The object class is
⋃
n∈N0 G

n, i.e., the objects are the finite tuples of elements in G.
(2) A morphism from d = [d1, . . . , dn] ∈ Gn to e = [e1, . . . , et] ∈ Gt is a matrix F ∈

Rn×t such that F has homogeneous entries and Fi,j = 0 or deg Fi,j = ej − di for all
j = 1, . . . , t, i = 1, . . . , n. Two such morphisms F, G : d → e are considered equal in
R-grrows if they are equal as matrices.

(3) The identity morphism of an object d ∈ Gn is the identity matrix In.
(4) The composition is given by the usual matrix multiplication.

Remark 2.19. R-grrows has decidable equality of morphisms if and only if R is constructable.

Remark 2.20. The category R-grrows is additive. Furthermore, if R0 is commutative, then
R-grrows is R0-linear.

13A ring R has invariant basis number (IBN) if for all positive integers m and n, R1×m ∼= R1×n (as
left R-modules) only if m = n.

14R-mod denotes the category of finitely generated R-modules.
15R-grmod denotes the category of finitely generated graded R-modules (cf. Remark 2.36).
16The associated category constructor is CategoryOfGradedRows [BP19a].
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2.2. Doctrine-based Category Constructors
In this section we list the doctrine-based category constructors that can be applied on the

categories introduced in Section 2.1.

2.2.1. Linear Closure Categories. Every category C can be embedded in a k-linear cate-
gory for any commutative unital ring k.

Definition 2.21. Let k be a commutative unital ring. We define the k-linear closure17 kC
of a category C by the following data:

• The objects of kC are the objects of C .
• For a pair A,B of objects in kC we define HomkC (A,B) by the k-module freely gener-
ated by HomC (A,B), i.e., morphisms in kC are finite formal k-linear combinations of
morphisms in C . The identity morphisms are inherited from C .
• The composition is the k-bilinear extension of the composition in C to kC .

Remark 2.22. There exists a natural embedding of C in kC is defined by

ι :


C → kC ,

A 7→ A,

α : A→ B 7→ 1k · α.
Furthermore, this embedding ι is universal among the functors from C to a k-linear category.

Example 2.23. The main instance for C we have in mind is the free category Fq defined by
some quiver q (cf. Section 2.1.1).

2.2.2. Additive Closure Categories. Every preadditive category can be embedded in an
additive category.

Definition 2.24. Let C be a preadditive category. The additive closure18 C⊕ of C is
defined by the following data:

a. An object in C⊕ is given by an integer m ≥ 0 and a list (A1, . . . , Am) where Ai belongs
to C for all i = 1, . . . ,m.

b. A morphism from an object (A1, . . . , Am) to another object (B1, . . . , Bn) is given by a
matrix α11 . . . α1n

...
. . .

...
αm1 . . . αmn


consisting of morphisms αij : Ai → Bj in C .

(1) We define the composition by the usual formula for matrix multiplication.
(2) The identity morphism of an object (A1, . . . , Am) is given by the diagonal matrixidA1 0

. . .

0 idAm

 .
Equality for morphisms is checked entrywise.

17The associated category constructor is LinearClosure in [BP19a] resp. Algebroid in [BHP+21].
18The associated category constructor is AdditiveClosure(-) in [BS21a] resp. [BP19a].
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Remark 2.25. Clearly, C⊕ has decidable equality of morphisms if and only if C has decidable
equality of morphisms.
Remark 2.26. There exists a natural embedding functor

ι :

C → C⊕,

A
α−→ B 7→ (A) (α)−−→ (B).

Furthermore, this embedding is universal among the additive functors from C to an additive
category.

Example 2.27. The categories of rows and graded rows are equivalent to additive closure
categories:

• If R is a unital ring, then R-rows ∼= C (R)⊕ (cf. Sections 2.1.2 and 2.1.3).
• If R a G-graded ring for an Abelian group G, then R-grrows ' C (R,G)⊕ (cf. Sec-
tions 2.1.2 and 2.1.3).

2.2.3. Freyd Categories and Finitely Presented (Graded) R-Modules. The Freyd
category constructor takes as input an additive category C and outputs a new additive category
A(C ) that is equipped with cokernels in a universal way. The category A(C ) comes with a natural
functor C −→ A(C ) which is universal among all functors from C into a category admitting
cokernels. Freyd categories can be used to model the category of finitely presented (graded)
modules over coherent (graded) rings (cf. Definition 2.32). The original treatment can be found
in e.g., [Fre66] and [Bel00], while [Pos21a] and [Pos21b] offer a constructive approach to these
categories.

Let us first state the definition of Freyd categories:
Definition 2.28. Let C be an additive category. The Freyd category19 A(C ) consists of

the following data:
(1) An object in A(C ) is simply a morphism in C .
(2) A morphism inA(C ) from

(
A1

ϕ1−→ B1
)
to
(
A2

ϕ2−→ B2
)
is given by a morphism B1

β−→ B2

in C for which there exists a morphism A1
χ−→ A2 rendering the diagram

A1 B1

A2 B2

�

ϕ1

χ β

ϕ2

commutative. We call β the morphism datum and χ a morphism witness. Two
morphisms B1

β−→ B2, B1
β′−→ B2 from

(
A1

ϕ1−→ B1
)
to
(
A2

ϕ2−→ B2
)
are declared to be

equal in A(C ) if there exists a morphism λ : B1 → A2 such that β − β′ = λ •ϕ2.
(3) Composition and identities are directly inherited from C .

Remark 2.29. Clearly, A(C ) has decidable equality of morphisms if and only if C has decidable
lifts (cf. Definition A.8).

19The associated category constructor is FreydCategory in [BP19a].
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Freyd categories provide a universal way to equip an additive category with cokernels
(cf. [Pos21a]). In order to equip it with kernels, we need to require more assumptions on C .

Definition 2.30. Let ϕ : A→ B be a morphism in C . A weak-kernel20 of ϕ consists of the
following data:

(1) an object K in C (weak-kernel object),
(2) a morphism ι : K → A such that ι •ϕ = 0 (weak-kernel morphism) and
(3) for any morphism τ : T → A with τ •ϕ = 0, a lift morphism λ : T → K of τ along ι

(weak-kernel lift).
A category C is said to have weak-kernels if we have an algorithm which for a given morphism
ϕ computes a weak-kernel of ϕ.

The following is the fundamental theorem in Freyd categories (see e.g., [Fre66] and [Pos21a,
Corollary 3.16]).

Theorem 2.31. Let C be an additive category. Then A(C ) is Abelian if and only if C has
weak-kernels.

Freyd categories have a variety of applications (see e.g., [Pos21a] and [Pos21b]), but we
are mainly interested in using them to construct finitely presented (graded) categories over so-
called left/right computable rings. We will use Freyd categories in Section 5.3 to construct the
following two (Frobenius) categories:

• The category E-fpmod of finitely presented left E-modules over an exterior k-algebra
E = k[e0, . . . , en] for some field k,
• The category E-fpgrmod of finitely presented graded left E-modules over a Z-graded
exterior k-algebra E = k[e0, . . . , en] for some field k. If we assume deg e0 = deg e1 =
· · · = deg en = −1, then the stable category of E-fpgrmod modulo projectives is equiv-
alent to the bounded derived category Db(Pnk) via the BGG correspondence [BGG78],
[EFS03].

The following definition characterizes the rings whose categories of rows have weak-kernels.
Definition 2.32. Let R be a ring. Then
(1) R is called left coherent if for any matrix A over R, we can compute a matrix L such

that LA = 0 and for any matrix T with TA = 0, there exists a matrix U such that UL = T.
(2) R has decidable lifts if there is an algorithm to decide solvability and construct a

particular solution of linear systems XA = B for given matrices over R.
(3) R is called left computable if it is left coherent and has decidable lifts.
(4) R is called right computable if Rop is left computable.
(5) R is called computable21 if it is left and right computable.

The following rings are (left) computable:
Example 2.33. (1) A constructive field k with the Gaussian normal form algorithm,

i.e., an algorithm to compute the row reduced echelon form (RREF).
(2) An Euclidean ring with a Hermite normal form algorithm, e.g., R = Z or R = k[x],

where k is a constructive field.
20The dual notion is weak-cokernel.
21The original axiomatization of computable rings can be found in [BLH11].
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(3) Any ring R with a Gröbner basis notion and equipped with an algorithm to compute
reduced Gröbner bases, e.g., the polynomial ring R = k[x0, . . . , xn] or the exterior
k-algebra R = k[e0, . . . , en].

In particular, we get the following:
• A(R-rows) is Abelian if and only if R is left coherent.
• A(R-rows) is Abelian and has decidable equality of morphisms if and only if R is left
computable.
• Let R be commutative and computable. Then A(R-rows) is a closed monoidal Abelian
category with enough projectives. It is also equipped with an A(R-rows)-homomorphism
structure. In this case, the three functors

– the external Hom functor on A(R-rows),
– the internal Hom functor of the closed monoidal structure on A(R-rows) and
– the bifunctor of the A(R-rows)-homomorphism structure on A(R-rows)

are equivalent (see [Pos21a] and [BP19b]).
Example 2.34. Let R be a left computable ring and R-rows the category of rows over R

(cf. Definition 2.11). We can construct the Freyd category A(R-rows) as a tower of categories:
(1) R-rows := CategoryOfRows(R); (' AdditiveClosure(RingAsCategory(R)));
(2) A(R-rows) := FreydCategory(R-rows).

If we manually compile22 this tower we recover the definition of the category R-fpres of finite
left R-presentations23. This category is used in [hom22] to model the category R-fpmod
(cf. [BLH11], [Pos17] or [DL06]). In the following we state the definition of this category:

Definition 2.35. Let R be a ring. The category R-fpres is defined by the following data:
(1) An object is simply a finite dimensional matrix over R.
(2) A morphism from an object M ∈ Rm×n to N ∈ Rs×t is a matrix F ∈ Rn×t for which the

equation MF = XN is solvable for X. Two such morphisms F, G : M → N are considered
equal if the equation F− G = XN is solvable.

(3) The identity morphism of M ∈ Rm×n is the identity matrix In.
(4) The composition is given by the usual matrix multiplication.

For a left computable ring R, the category R-fpres is Abelian and has decidable equality
of morphisms. If, furthermore, R is commutative, then R-fpres is a closed symmetric monoidal
category. See [Gut17] and [Pos17] for details.

Let us illustrate this category by a concrete example. Let R := Q[x, y] and consider the
following two objects in R-fpres:

M =

 −2y −2x
x2 − 2y x
−y −y2

 , N =

 −x −x2 − x
−3x 2x

x2y − y −y

 .

Then the matrices

F =
(

4 4x+ 4
x x2 + x

)
, G =

(
32x4 + 4 32x5 + 32x4 + 4x+ 4
y4 + x xy4 + y4 + x2 + x

)
22I.e., turn it to a primitive category constructor.
23The associated primitive category constructor is LeftPresentations in [GP21b].
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define equal morphisms24 F, G : M→ N in R-fpres because F− G = XN for

X =
( 32x3 · ·

2
5xy

4 1
5x

2y4 + 1
5xy

4 − 1
5y

4 3
5xy

3 + y3

)
;

while the matrix
H =

(
x 1
y x− y

)
does not define a morphism H : M→ N in R-fpres because the equation MH = XN is not solvable25

for X over R.
Let us take a closer look at the equivalence R-fpmod ' R-fpres. For each module M in

R-fpmod there exists m,n ∈ Z, a matrix ρM ∈ Rm×n and an exact sequence

R1×m R1×n M.
ρM πM

The matrix ρM in the above sequence is called a presentation matrix of M . Let N be
another module in R-fpmod with a presentation matrix ρN ∈ Rs×t. Due to the fact that free
modules are projective, any R-homomorphism ϕ : M → N induces two morphisms µϕ and λϕ
which render the following diagram

R1×m R1×n M

� �

R1×s R1×t N

ρM πM

ρN πN

λϕ µϕ ϕ

commutative. On the other hand, every pair of morphisms λ, µ with ρM •µ = λ • ρN gives rise to
a morphism ϕµ : M → N defined by the cokernel colift of µ •πN along πM .

Denote by ΩM,N the set of all pairs (λ, µ) of morphisms with ρM •µ = λ • ρN . We define on
ΩM,N the equivalence relation ∼M,N as follows: (λ, µ) ∼M,N (λ′, µ′) if µ− µ′ lifts along ρN .

A straightforward verification shows that there exists a one-to-one correspondence between
HomR-fpmod(M,N) and ΩM,N/ ∼M,N . Furthermore, if (λ, µ) and (λ′, µ′) belong to ΩM,N and
µ = µ′, then (λ, µ) ∼M,N (λ′, µ′), i.e., the ∼M,N -equivalence class of (λ, µ) is independent of
the choice of λ. Hence, we can refine the above correspondence as follows: we define ΩM,N by
the set of all morphisms µ : R1×n → R1×t such that ρM •µ is liftable along ρN and declare two
such morphisms µ and µ′ as equivalent if µ− µ′ is liftable along ρN . Similarly, we can prove the
existence of a one-to-one correspondence between HomR-fpmod(M,N) and ΩM,N/ ∼M,N .

That is, the object

M =

 −2y −2x
x2 − 2y x
−y −y2


in R-fpres corresponds in R-fpmod to the R-module

coker(M) := coker
(
R1×3 M−→ R1×2

)
∼= R1×2/R1×3 M,

24They are syntactically different but semantically equal (cf. Remark A.5).
25This can be checked by the RightDivide operation in the GAP package RingsForHomalg

[BGK+21a].
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i.e., using the language of generators and relations, coker(M) has two generators m1,m2 subject
to three relations

{−2ym1 − 2xm2, (x2 − 2y)m1 + xm2, −ym1 − y2m2}.
Similarly, coker(N) has two generators n1, n2 subject to three relations

{−xn1 − (x2 + x)n2, −3xn1 + 2xn2, (x2y − y)n1 − yn2}.
Moreover, the morphisms F, G : M→ N correspond in R-fpmod to the R-homomorphisms

f :


coker(M) → coker(N)
m1 7→ 4n1 + (4x+ 4)n2

m2 7→ xn1 + (x2 + x)n2.
and

g :


coker(M) → coker(N)
m1 7→

(
32x4 + 4

)
n1 +

(
32x5 + 32x4 + 4x+ 4

)
n2

m2 7→
(
y4 + x

)
n1 +

(
xy4 + y4 + x2 + x

)
n2

which are equal since

F ·
(
n1
n2

)
= (G + XN) ·

(
n1
n2

)
= G ·

(
n1
n2

)
.

For an implementation of the above equivalent models for R-fpmod we refer to the GAP
packages [BP19a], [BS21c] or [GP21b]. For a software demonstration we refer to their manuals
and to Appendix C.

Remark 2.36. Let R be a G-graded ring. A left G-graded R-module M is a left R-module such
that

M =
⊕
h∈G

Mh

where every Mh is an additive subgroup of M , and for every g, h ∈ G we have
RgMh ⊆Mg+h.

Since R0Mh ⊆ Mh we see that every Mh is an R0-submodule of M . A nonzero element
x ∈Mh is called homogeneous of degree h and we write deg x = h.

Let M,N be two G-graded R-modules. An R-homomorphism ϕ : M → N in R-Mod is
called graded of degree d ∈ G if ϕ(Mh) ⊆ Nh+d for all h ∈ G. The set of all graded morphisms
of degree d ∈ G will be denoted by Homd(M,N). Obviously, Homd(M,N) is a subgroup of
HomR-Mod(M,N).

We define R-grmod by the subcategory of R-mod whose objects are the G-graded R-modules
and whose morphisms from an object M to N are the graded R-homomorphisms of degree 0, i.e.,
HomR-grmod(M,N) := Hom0(M,N).

LetM be an object in R-grmod and h ∈ G. We denote byM(h) the left G-graded R-module
whose homogeneous parts M(h)g := Mh+g for all g ∈ G. For instance, the element 1 ∈ R(h) is
homogeneous of degree −h; and if ϕ : R(g)→ R(h), r 7→ rx is a homomorphism of left G-graded
R-modules, then x is a homogeneous element with deg x = h− g or x = 0.
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For instance, if R is the Z-graded polynomial ring Q[x, y] with deg x = deg y = 1, then

ϕ : R(−2)⊕R(−4)⊕R(−3)

 x2

y4

xy2


−−−−−−−→ R(0)

is a homomorphism of left Z-graded R-modules. Furthermore, v = (xy 1 y) ∈ R(−2)⊕R(−4)⊕
R(−3) has degree 4 and ϕ(v) = x3y + y4 + xy3 has also degree 4 in R(0).

Example 2.37. Let R be a G-graded ring and R-grrows the category of graded rows over
R (cf. Definition 2.7). Analogously to the above example, the simplified version of A(R-grrows)
is called the category of finite graded left R-presentations and is denoted by R-grfpres. In
the following we state the definition of this category:

Definition 2.38. Let R be a G-graded ring. The category R-grfpres is defined by the
following data:

(1) An object is a tuple M := (M, d) ∈ Rm×n ×Gn for m,n ≥ 0 such that
(a) M is a matrix with homogeneous entries and
(b) d1 − deg Mi,1 = d2 − deg Mi,2 = · · · = dn − deg Mi,n for all i = 1, . . . ,m and Mi,j 6= 0.

(2) A morphism from (M, d) ∈ Rm×n ×Gn to (N, e) ∈ Rs×t ×Gt is a matrix F ∈ Rn×t such
that
(a) F is a matrix with homogeneous entries,
(b) the equation MF = XN is solvable for X and
(c) we have ej − deg Fi,j = di for all j = 1, . . . , t, i = 1, . . . , n and Fi,j 6= 0.

Two such morphisms F, G are considered equal in R-grfpres if F− G = XN is solvable for
X.

(3) The identity morphism of an object (M, d) ∈ Rm×n ×Gn is the identity matrix In.
(4) The composition is given by the usual matrix multiplication.

Similar to the nongraded case, if R is left computable, then R-grfpres is Abelian and has
decidable equality of morphisms. Furthermore, if R is commutative, then R-grfpres is a closed
symmetric monoidal category. See [Gut17] and [Pos17] for details. Similarly, we obtain the
equivalences

R-fpgrmod ' R-grfpres ∼= A(R-grrows)
where R-fpgrmod is the category of finitely presented graded R-modules, i.e., the full subcat-
egory of R-grmod generated by the cokernels of morphisms between graded free R-modules of
finite rank.

Let us illustrate the above model for the Z-graded polynomial ring R := Q[x, y] with deg x =
deg y = 1. The following tuples

(M, d) :=

 3xy + 5y2 −3x+ 5y
−2x2 3x
−x ·

 , [1, 0]

,
(N, e) :=

((
9x2 − 4xy −18x3 + 8x2y

14xy + 15y2 −28x2y − 30xy2

)
, [2, 3]

)
are well-defined objects in R-grfpres, and the matrix

F :=
(

−9x+ 4y 18x2 − 8xy
−3x2 − 8xy − 10y2 6x3 + 16x2y + 20xy2

)
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is a well-defined morphism from (M, d) to (N, e).
The object (M, d) corresponds in R-fpgrmod to

M := coker
(
R(−1)⊕2 ⊕R(0) M−−−−−→ R(1)⊕R(0)

)
i.e., to a graded R-module generated by two elements m1,m2 with degm1 = −1 and degm2 = 0,
subject to the relations

{(3xy + 5y2)m1 + (−3x+ 5y)m2, −2x2m1 + 3xm2, −xm1}.
Similarly, (N, e) corresponds to

N := coker
(
R(0)⊕2 N−−−−−→ R(2)⊕R(3)

)
which is generated by two elements n1, n2 with deg n1 = −2 and deg n2 = −3, subject to the
relations

{(9x2 − 4xy)n1 + (−18x3 + 8x2y)n2, (14xy + 15y2)n1 + (−28x2y − 30xy2)n2}.
The morphism F : (M, d)→ (N, e) corresponds in R-fpgrmod to the morphism

f :


M → N

m1 7→ (−9x+ 4y)n1 + (18x2 − 8xy)n2,

m2 7→ (−3x2 − 8xy − 10y2)n1 + (6x3 + 16x2y + 20xy2)n2.
An implementation of the above models of R-grmod can be found in the GAP packages

[BP19a], [BS21b] and [Gut21].

2.2.4. Quotient Categories. Analogous to quotient groups, rings and modules, a quotient
category can be obtained from a category by identifying sets of morphisms. Many important
category constructors can be recovered as quotient categories:

• The finitely presented categories defined by quivers with relations as we will see in
Definition 2.47;
• The (bounded) homotopy categories as we will see in Theorem 3.29;
• The Freyd categories as we will see in Corollary 2.65.

In the following we state the definition of quotient categories:
Definition 2.39. Let C be a category. A congruence relation ∼ on C is an equivalence

relation ∼ on morphisms of C such that
• α ∼ β implies that α and β have the same source and range.
• If α1 ∼ α2 and β1 ∼ β2, then α1 •β1 ∼ α2 •β2.

For two object A and B in C , we denote the restriction of ∼ to HomC (A,B) by ∼A,B. The
equivalence class of a morphism α : A → B will be denoted by [α]. We define the quotient
category C / ∼ by the following data:

(1) ObjC /∼ := ObjC .
(2) For two objects A and B in C / ∼ we define

HomC /∼(A,B) := HomC (A,B)/ ∼A,B,

i.e., the set of all equivalence classes in HomC (A,B) with respect to ∼A,B. Hence, a
morphism in HomC /∼(A,B) is of the form [α] for some α : A→ B in C .

(3) Composition and identity morphisms are directly inherited from C .
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Remark 2.40. The functor [ ] : C → C / ∼, α 7→ [α] will be called the quotient functor
associated to C / ∼. It can be shown that any functor Q : C → D for which ϕ ∼ ψ implies
Q(ϕ) = Q(ψ) for all ϕ,ψ in C colifts uniquely along [ ] : C → C / ∼ (see e.g., [ML98, Proposition
II.8.1]).

The following is an immediate consequence of the definition:

Remark 2.41. The category C / ∼ has decidable equality of morphisms if and only if we have
an algorithm which for a given pair of morphisms α, β : A→ B decides whether α ∼A,B β.

Remark 2.42. Suppose C is a (pre)additive category equipped with a congruence relation ∼. We
call ∼ additive if following holds: For given objects A,B in C , if α1 ∼A,B α2 and β1 ∼A,B β2,
then α1 + β1 ∼A,B α2 + β2. In this case, the quotient category C / ∼ is also a (pre)additive
category.

It turns out that the concept of additive congruence is equivalent to the concept of two-sided
ideal of morphisms in (pre)additive categories:

Definition 2.43. Let C be a preadditive category. A two sided ideal of morphisms I in
C is a set of morphisms in C such that

a. For a given pair of objects A,B in C the set IA,B := I ∩ HomC (A,B) is a subgroup of
HomC (A,B).

b. For a given pair of morphisms A α−→ B
β−→ C in C , if α ∈ I or β ∈ I then α •β ∈ I.

Remark 2.44. Let C be a (pre)additive category.
(1) Let ∼ is an additive congruence in C . Then the set of all morphisms α in C for which

[α] = 0 in C / ∼ defines a two sided ideal of morphisms.
(2) Let I a two sided ideal of morphisms in C . Then we can define the following additive

congruence: For two morphisms α, β in C , α ∼ β if α and β have the same source and
range and α − β ∈ I. The (pre)additive category C / ∼ will be called the quotient
category of C by I and will usually be denoted by C /I.

(3) By Remark 2.41, the category C /I has decidable equality of morphisms if and only if we
have an algorithm which decides for a given morphism α : A→ B in C whether α ∈ I.

Stable categories are special case of quotient categories:
Example 2.45. Let C be a (pre)additive category and L a class of objects in C . We denote

by I the two-sided ideal of morphisms that is generated by the identity morphisms of objects in L.
In this case, we call C /I the stable category of C modulo L (cf. Section 2.2.6). In particular,
a morphism α in C becomes zero in C /I if and only if α factors through some object in L.

2.2.5. Finitely Presented Categories Defined by Quivers with Relations. For a
quiver q, we can construct the free category Fq (cf. Section 2.1.1). For a field k, we can construct
the k-linear closure kFq of Fq (cf. Section 2.2.1). Sometimes we want to enforce equality between
certain paths in Fq, or more generally, we want to consider one or more k-linear combinations
of paths as zero morphisms in kFq. The right framework for achieving this goal is provided by
finitely presented categories. Finitely presented categories have many applications in this thesis:

• Their functor categories provide models for categories of left and right modules over
finite dimensional algebras (cf. Section 2.2.7).
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• They can be used to visualize k-linear subcategories with a finite number of objects. See
for example the abstraction k-algebroid of a strong exceptional sequences in Section 6.2.
• They can be used to test hypotheses which are based on a finite number of objects and
morphisms with relations. In certain cases, we can provide generic constructive proofs of
these hypotheses, particularly in the context of “equational proofs” that include checking
complicated equalities or solving two-sided inhomogeneous linear equations. See for
example Lemma 5.17. They can be even used to prove theorems in Abelian categories,
see for example [BK21] and [Pos22].

In the following we state the definition of finitely presented categories defined by “categorical
relations”:

Definition 2.46. Let q be a quiver and Fq the free category defined by q (cf. Definition 2.2).
If we want to identify two paths p = r1r2 . . . r`, p′ = r′1r

′
2 . . . r

′
t with s(p) = s(p′) and r(p) = r(p′),

we might take the quotient category Fq/ ∼ where ∼ is the smallest congruence relation on Fq for
which p ∼ p′. The same procedure can be used to identify more paths. Such quotient categories
are usually called finitely presented categories.

The following is the definition of k-linear finitely presented categories defined by k-linear
relations:

Definition 2.47. Let k be a commutative ring and kFq the k-linear closure of Fq. For a
finite set ρ of morphisms in kFq, we denote by 〈ρ〉 the two-sided ideal of morphisms generated by
ρ. The quotient category kFq/〈ρ〉 will be called the k-linear finitely presented category (or
the k-algebroid) defined by q subject to the set of k-relations ρ. The set ρ is called admissible
if there exists t ≥ 2 with mt ⊆ 〈ρ〉 ⊆ m2 where m is the two-sided ideal of kFq generated by the
arrows of q. In this case, we say kFq/〈ρ〉 is admissible as well.

Remark 2.48. If q is acyclic, then kFq/〈ρ〉 is admissible if and only if every element in ρ is a
formal k-linear combination of paths of length at least 2.

Remark 2.49. The GAP package QPA2 [Qt21] provides, among other things, the basic interfaces
to quivers, paths algebras and their quotient algebras. It has been used for implementing the
finitely presented linear categories in Algebroids [BHP+21].

Example 2.50. The endomorphism algebra End kFq of kFq is usually called the path k-
algebra of q. If ρ is a set of relations in kFq then

End(kFq/〈ρ〉) ∼= (End kFq)/〈ρ〉
where End(-) is defined in Definition A.29.

Remark 2.51. If the category kFq/〈ρ〉 is admissible, then it is Hom-finite. In this case, as the
endomorphism algebra End(kFq/〈ρ〉) is finite dimensional, we can use the theory of noncommuta-
tive Gröbner bases to decide the equality of morphisms in kFq/〈ρ〉 (see for example [DMR99,
Section 2.4] and [Gre99]).

2.2.6. Stable Categories Defined by Classes of (Co)Lifting Objects. Let C be a
preadditive category and let L be a class of objects in C . We have already seen in Example 2.45
that the stable category C /L is the quotient category of C modulo the two-sided ideal of all
morphisms that factor through an object in L. The class L might contain infinitely many objects,
hence the problem of deciding the equality of morphisms in C /L can not a priori be solved
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algorithmically. However, this changes if the class L is equipped with “extra properties”: For
example, if C is Abelian with enough projectives and L is the class of projective objects in C ,
then a morphism ϕ : A→ B in C factors through an object in L if and only if it is liftable along
some epimorphism `A : PA →→ A for an object PA ∈ L. In this section we introduce the concept of
classes of (co)lifting objects in preadditive categories as an abstraction of these “extra properties”.
Our approach provide the following two computational features:

• The decidability of the equality of morphisms in the stable category translates to a
(co)lift problem in C (cf. Remark 2.56).
• Under relatively simple assumptions, we will be able to elevate a D-homomorphism
structure from C to the stable category (cf. Theorem 4.23).

In Theorem 3.29 and Corollary 2.65 we prove that homotopy categories and Freyd categories can
be constructed as stable categories associated to certain classes of colifing objects. The concepts
introduced in this chapter has been implemented in the GAP package StableCategories [Sal21e].

In the following we state the definition of classes of lifting objects:
Definition 2.52. Let C be an additive category. A class of lifting objects on C consists

of the following data:
(1) A distinguished class of objects L in C .
(2) Every object A in C is assigned a distinguished morphism `A : LA → A with LA ∈ L.

Furthermore, if A belongs to L, we require `A to be a split-epimorphism.
(3) For every morphism ϕ : A → B, there exists a lifting morphism Lϕ : LA → LB that

renders the following diagram

LB

LA A

B

� ϕLϕ

`A

`B

commutative.
The following lemma is the key property of classes of lifting objects:
Lemma 2.53. Let C be an additive category equipped with a class of lifting objects L. A

morphism ϕ : A → B in C factors through an object in L if and only if it is liftable along
`B : LB → B.

Proof. Let P be an object in L and u : A → P, v : P → B be morphisms with ϕ = u • v.
We denote the section morphism of `P : LP → P by sP , i.e., sP • `P = idP . Hence, ϕ = u • v =
u • idP • v = u • sP • `P • v = u • sP •Lv • `B and the claim follows. The converse is trivial.
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A B
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u v

sP `P

`B

Lv

�

Lemma 2.54. Let C be an additive category. If L is class of lifting objects for C , then
IL := {ϕ : A→ B | ϕ is liftable along `B}

is a two-sided ideal of morphisms in C .

Proof. Suppose that ϕ : A → B is a morphism in IL. We need to show that for any
morphism ϕ′ : A → B in IL, the difference ϕ− ϕ′ also belongs to IL; and that any composition
of morphisms with ϕ from left or right is again a morphism in IL. Since ϕ and ϕ′ belong to
IL, there are two morphisms ψ,ψ′ : A → LB such that ϕ = ψ • `B and ϕ′ = ψ′ • `B. Hence,
ϕ − ϕ′ = (ψ − ψ′) • `B, i.e., ϕ − ϕ′ belongs to IL. Let f : A′ → A be any morphism with
range equals to A. Then f •ϕ = f •ψ • `B, i.e., the morphism f •ϕ : A′ → B factors through
`B, hence it belongs to IL. Let g : B → B′ be any morphism with source equals to B. Then
ϕ • g = ψ • `B • g = ψ •Lg • `B′ , i.e., the morphism ϕ • g : A → B′ factors through `B′ , hence it
belongs to IL. Hence IL is a two-sided ideal of morphisms in C . �

In the following we state the definition of the stable category associated to a class of lifting
objects:

Definition 2.55. Let C be an additive category and let L be a class of lifting objects for
C . The quotient category C /L will be called the stable category26 of C w.r.t. the class L. In
particular

(1) The objects class is the same as that of C .
(2) For two objects A,B in C we have

HomC /L(A,B) := HomC (A,B)/IL(A,B)
where IL(A,B) := IL ∩HomC (A,B).

Remark 2.56. The stable category C /L has decidable equality of morphisms if and only if we
have an algorithm which decides for a given morphism ϕ : A→ B in C whether ϕ lifts along `B.
In particular, if C has decidable lifts, then C /L has decidable equality of morphisms.

Remark 2.57. An object A in C /L is zero if and only if the morphism `A : LA → A in C is
split-epimorphism. Consequently, the class L collapses in C /L to only one object, precisely, to
the zero object.

26The associated category constructor is StableCategoryByClassOfLiftingObjects in [Sal21e].
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Remark 2.58. It follows immediately from the definition that C /L and the projection functor
[ ] : C → C /L are additive.

Example 2.59. Let C be an additive category.
(1) Let L := ObjC , and for every object A in C , set `A := idA : A → A. In this case, C /L

is equivalent to the full subcategory of C generated by the zero object.
(2) Let L := {0}, and for every object A in C , set `A to be the universal morphism from

the zero object to A. In this case, C /L ' C .
Example 2.60. Let C be an additive category with enough projectives. That is, for any

object A in C , there exists an epimorphism pA : PA →→ A from some projective object PA to A.
The class L of all projective objects in C together with the morphisms `A := pA : PA →→ A for all
A ∈ C define a class of lifting objects in C . Let P be the set of all morphisms in C that factor
through some projective object. A straight verification shows that IL = P, hence the stable
category C /L coincides with the classical stable category of C by projectives C := C /P.

In the following we define the dual concept of a class of lifting objects.
Definition 2.61. Let C be an additive category. A class of colifting objects on C consists

of the following data:
(1) A distinguished class of objects Q in C .
(2) Every object A in C is assigned a distinguished morphism qA : A → QA with QA ∈ Q.

Furthermore, if A belongs to Q, we require qA to be a split-monomorphism.
(3) For every morphism ϕ : A → B, there exists a colifting morphism Qϕ : QA → QB

that renders the following diagram

B

A QA

QB

� Qϕϕ

qA

qB

commutative.
Analogously to the categories with classs of lifting objects, we can prove that a morphism

ϕ : A → B in C factors through some object U in Q if and only if ϕ is coliftable along qA.
Furthermore, the set

IQ := {ϕ : A→ B | ϕ is coliftable along qA}
is a two-sided ideal of morphisms in C . The quotient category C /Q will be called the stable
category of C associated to the class Q.

Example 2.62. Let C be an additive category with enough injectives. That is, for any object
A in C , there exists a monomorphism ιA : A ↪−→ IA from A into some injective object IA. The
class Q of all injective objects in C together with the morphisms qA := ιA : A ↪−→ IA for all A ∈ C
define a class of colifting objects in C . Let I be the set of all morphisms in C that factor through
some injective object. A straight verification shows that IQ = I, hence the stable category C /L
coincides with the classical stable category of C by injectives C := C /I.
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Example 2.63. Let C be an additive category and let Arr(C ) be its arrow category. We
denote by QArr(C ) the class of all objects in Arr(C ) that are represented by split-epimorphisms
in C . For an object #—

A :=
(
A1

α−→ A2
)
in Arr(C ) set

Q #—
A

:=

A1 ⊕A2

(
α

idA2

)
−−−−−→ A2

 and q #—
A

:= #—

A
{( idA1 0 ), idA2}−−−−−−−−−−→ Q #—

A .

The morphism ( 0 idA2 ) : A2 → A1 ⊕ A2 is a section morphism for
(

α
idA2

)
: A1 ⊕ A2 → A2.

Hence, the later is a split-epimorphism and Q #—
A ∈ QArr(C ).

Let us prove that if #—

A :=
(
A1

α−→ A2
)
in QArr(C ), then q #—

A is a split-monomorphism. Since
A1

α−→ A2 is split-epimorphism in C , α has a section morphism A2
γ−→ A1. The morphism

r #—
A

:= Q #—
A

{
(

idA1
γ

)
, idA2}

−−−−−−−−−−→ #—

A

in Arr(C ) is well-defined and satisfies q #—
A
• r #—
A = id #—

A , i.e., r #—
A is a retraction of q #—

A and the claim
follows.

For a morphism {ϕ1, ϕ2} :
(
A1

α−→ A2
)
→
(
B1

β−→ B2

)
in Arr(C ), we define

Q{ϕ1,ϕ2} := Q #—
A

{
(
ϕ1 0
0 ϕ2

)
,ϕ2}

−−−−−−−−−→ Q #—
B .

The above data can be incorporated into the following commutative diagram:

A1 A2

B1 B2

�

A1 ⊕A2 A2

B1 ⊕B2 B2

�

( idB1 0 )
(

α
idA2

)

(
β

idB2

)
(
ϕ1 0
0 ϕ2

)
ϕ2

α

ϕ1 ϕ2

β

( idA1 0 )
idA2

idB2

Lemma 2.64. Let A be an additive category and Arr(C )/Q be the stable category of Arr(C )
w.r.t. the above class of colifting objects. For any two objects #—

A := A1
α−→ A2 and #—

B := B1
β−→ B2

in Arr(C ), a morphism
[

#—

A
{ϕ1,ϕ2}−−−−−→ #—

B

]
in Arr(C )/Q is zero if and only if ϕ2 is liftable along β.
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Proof. The morphism
[

#—

A
{ϕ1,ϕ2}−−−−−→ #—

B

]
is zero if and only if there exists a colift morphism

{( uv ), w} : Q #—
A →

#—

B of #—

A
{ϕ1,ϕ2}−−−−−→ #—

B along q #—
A :

A1 A2

B1 B2

�

A1 ⊕A2 A2(
α

idA2

)

α

ϕ1 ϕ2

β

( idA1 0 )
idA2

( uv )
w

i.e., if and only if u = ϕ1, w = ϕ2 and v •β = w = ϕ2. �

Corollary 2.65. Let C be an additive category and let Arr(C )/Q be the stable category of
Arr(C ) w.r.t. the above class of colifting objects. Then

Arr(C )/Q ∼= A(C )
where A(C ) is the Freyd category27 of C .

2.2.7. Functor Categories and Quiver Representations. The natural generalization
of rings are small28 preadditive categories. For instance, a ring R corresponds to the pread-
ditive category C (R) which has just one object, say ∗, and which has the morphism space
HomC (R)(∗, ∗) := R. Under this viewpoint, an R-module is nothing but an additive functor
C (R) −→ Ab. In other words, the natural generalization of modules are additive functors from
small preadditive categories to Ab.

Throughout this section, k is always a field.
Definition 2.66. Let A be a small k-linear category and D a k-linear category. The cat-

egory of k-linear functors29 from A to D , denoted by [A ,D ], is defined by the following
data:

(1) Obj[A ,D ] is defined by the set of all k-linear functors from A to D , i.e., every object in
[A ,D ] is determined by its values on the objects and the generating morphisms of A .

(2) For two objects F and G in [A ,D ] the morphisms from F to G are the natural trans-
formations30 from F to G, i.e., it is determined by its values on the objects of A .

(3) The composition of two morphisms is given by their vertical composition as natural
transformations.

(4) For a given object F in [A ,D ] we define idF by the identity natural transformation of
F , i.e., it assigns to each object v in A the identity morphism of F (v).

The category of functors inherits its fundamental properties from its range category D :
Theorem 2.67. Let [A ,D ] be a category of k-linear functors as in Definition 2.66.
27See Definition 2.28.
28A category is called small both the collection of objects and morphisms are sets.
29The associated category constructor is FunctorCategory in [BS21a].
30See Definition A.16.
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(1) If D is Abelian, then [A ,D ] is Abelian.
(2) If A has finitely many objects and D has decidable equality of morphisms, then [A ,D ]

has decidable equality of morphisms.

Proof. It is well known that if D has certain type of limits or colimits, then the category of
functors [A ,D ] has those limits or colimits and they can be computed “object-wise” in D . For
more details we refer to [Pre09, Theorem 10.1.3], [Rie16, Section 3.3] or [Fre64, Theorem 5.11].
On the other hand, two morphisms in [A ,D ] are equal if their values on the objects of A are
equal. The assertion follows because A has finitely many objects. �

In the following we state the definition of right modules over a k-linear finitely presented
category:

Definition 2.68. Let A be a small k-linear category. We call [A , k-mat] the category of
k-finite dimensional right A -modules and we denote it by mod-A . We denote the category
mod-A op by A -mod and call it the category of k-finite dimensional (left) A -modules31.

Notation 2.69. For a category C we denote by proj(C ) (resp. inj(C )) the full subcategory
of C generated by all projective (resp. injective) objects in C . If A is a small k-linear category, we
will denote proj(mod-A ) by proj-A and inj(mod-A ) by inj-A . Analogously, we will denote
proj(A -mod) by A -proj and inj(A -mod) by A -inj.

Let A be a k-algebra. The category of right A-modules will be denoted by Mod-A. The
full subcategory of Mod-A consisting of finitely generated right A-modules will be denoted by
mod-A. The full subcategory of mod-A consisting of finite dimensional right A-modules will be
denoted by fdmod-A. If A is a finite dimensional then fdmod-A = mod-A.

Theorem 2.70. Let A := kFq/〈ρ〉 be a k-linear finitely presented category defined by a
quiver q subject to a set of relations ρ ⊂ kFq. Then mod-A ' fdmod-End A .

Proof. For detailed proofs we refer to [ARS97, Proposition 1.7] or [ASS06, Theorem
III.1.6]. In the following, we sketch the construction of the asserted equivalences:

G : mod-A ∼−→ fdmod-End A : F .
For an object F : A → k-mat in mod-A , we define G(F ) :=

⊕
v∈A F (v). The endomorphism

algebra End A is generated by the morphisms of A (cp. Definition A.29). For a morphism a ∈ A
and a vector x ∈ F (v), v ∈ A , we define

x · a :=
{
x · F (a) if v = s(a),
0 otherwise.

This operation can be linearly extended to an action G(F ) × End A −→ G(F ) which equips
G(F ) with a structure of a k-finite dimensional right End A -module. For a morphism α : F → G
in mod-A , we define the morphism Gα :=

⊕
v∈A α(v) : G(F ) → G(G). It can be shown that Gα

is a morphism in fdmod-End A .
For a k-finite dimensional right End A -module M , we define the object F(M) : A → k-mat

in mod-A by mapping an object v in A to dimk(M · idv); and by mapping a morphism a : u→ v

31I.e., A can be embedded in A -mod by the Yoneda Lemma 2.86.
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to the matrix of the k-linear map {
M · idu −→M · idv,
x 7→ x · a

with respect to some throughout fixed bases B(M · idu) and B(M · idv).
For a morphism α : M → N in fdmod-End A we define F(α) : F(M)→ F(N) by mapping

an object v in A to the matrix of the k-linear map{
M · idv −→ N · idv,
x 7→ α(x)

with respect to some throughout fixed bases B(M · idv) and B(N · idv). �

Definition 2.71. Let C be an Abelian category. We say C has enough projective objects
if we have an algorithm which for a given object A in C computes a projective object PA and an
epimorphism πA : PA →→ A. Furthermore, we say C has computable projective lifts if we have
an algorithm which for a given projective object P , a morphism α : P → A and an epimorphism
τ : T →→ A, computes a lift morphism of α along τ , i.e., a morphism λ : P → T that renders the
following diagram commutative:

�

T

P

Aτ

α
∃ λ

Remark 2.72. Let C be a category with enough projectives and computable projective lifts.
We can derive an algorithm to decide whether an object A in C is projective. We compute an
epimorphism πA : PA → A from some projective object PA. An easy verification shows that A
is projective if and only if there exists a lift morphism λ : A → PA of idA along πA, i.e., with
λ •πA = idA.

Definition 2.73. Let C be an Abelian category and A an object in C . A projective object
P together with an epimorphism π : P →→ A will be called a projective cover of A if π is a
superfluous epimorphism32, i.e., epimorphisms to A can be lifted along π only via epimor-
phisms. In particular, for any morphism ` : T → P , if ` •π is an epimorphism, then ` is also an
epimorphism.

Lemma 2.74. Let k be field and Λ a finite dimensional k-algebra. Let M be an object in
mod-Λ and π : P →M be a projective cover of M . For any epimorphism q : Q→M where Q is
a projective object, we have dimk P ≤ dimkQ.

Proof. There exists a lift morphism λ of q along π. Since π is superfluous, λ is an epimor-
phism, i.e., dimk P ≤ dimkQ. �

Definition 2.75. Let C be an Abelian category. We say that C has enough injective
objects if we have an algorithm which for a given object A in C computes an injective object
IA and a monomorphism ιA : A ↪−→ IA. Furthermore, we say C has computable injective

32Some references call it coessential epimorphism.
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colifts if we have an algorithm which for a given injective object I, a morphism α : A→ I and a
monomorphism τ : A ↪−→ T , computes a colift morphism of α along τ , i.e., a morphism λ : T → I
that renders the following diagram commutative:

�

T

I

A

α

τ

∃ λ

Remark 2.76. Similar to Remark 2.72, if C is a category with enough injectives and computable
injective colifts, then we can decide whether an object A in C is injective.

Definition 2.77. Let C be an Abelian category and A an object in C . An injective object
I together with a monomorphism ι : A ↪−→ I will be called injective envelope for A if ι is
an essential monomorphism, i.e., monomorphisms from A can be colifted along ι only via
monomorphisms. In particular, for any morphism ` : I → T , if ι • ` is a monomorphism, then so
is `.

Definition 2.78. Let C be an additive category. A nonzero object A is said to be in-
decomposable if A has no nonzero direct summands. The full subcategory generated by all
indecomposable objects in C will be denoted by ind(C ). The skeleton category of ind(C ) will
be denoted by ind0(C ).

The following theorem enables us to classify the indecomposable projective and injective
objects in mod-A where A is a k-linear category defined by a quiver subject to an admissible
set of relations. Details can be found in [DW17, Section 3.1] or [ASS06, Section III.2.].

Theorem 2.79. Let A := kFq/〈ρ〉 be a k-linear finitely presented category defined by a
quiver q subject to an admissible set of relations ρ. Then

(1) The indecomposable projective objects in mod-End A ' mod-A are, up to isomor-
phism, exactly the cyclic right End A -modules P (v) := idv · End A , v ∈ A .

(2) The indecomposable injective objects in mod-End A are, up to isomorphism, exactly
the modules I(v) := Homk(End A · idv, k), v ∈ A where the right action of End A on
I(v) is given by

I(v)× End A −→ I(v)

(ϕ, a) 7−→ ϕ · a :
{

End A · idv → k,

x 7→ ϕ(a · x).

(3) The simple objects in mod-End A are, up to isomorphism, exactly S(v) := k1, v ∈ A
where the right action of End A on k1 is given by

x · a :=
{
λ · x if a = λ · idv for some λ ∈ k,
0 otherwise.

Remark 2.80. Let P (v) be the indecomposable projective object in mod-End A associated to
an object v ∈ A . For every u ∈ A , the k-vector space HomA (v, u) equals the k-vector space
P (v) · idu. Thus, we set

B(P (v) · idu) := B(HomA (v, u)).
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By Theorem 2.70, P (v) corresponds in mod-A to the object
Pv := F(P (v)) : A → k-mat

which maps an object u in A to
⊕

b∈B(HomA (v,u)) 1 = dimk HomA (v, u) and maps a morphism
a : u1 → u2 to the matrix of the k-linear map{

P (v) · idu1 −→ P (v) · idu2 ,

x 7→ x · a
with respect to the bases B(P (v) · idu1) and B(P (v) · idu2). That is, the full subcategory of
mod-A that is generated by the objects Pv, v ∈ A is a model for ind0(proj-A ).

Remark 2.81. Let P (u) and P (v) be the indecomposable projective objects in mod-End A
associated to objects u and v in A . Every element a ∈ End A defines a morphism

p(a) :
{
P (v) → P (u),
x 7→ a · x.

in mod-End A . By Theorem 2.70, the morphism p(a) corresponds in mod-A to the morphism
pa := F(p(a)) : Pv → Pu defined at object w in A by the matrix of the k-linear map{

P (v) · idw −→ P (u) · idw,
x 7→ a · x

with respect to the bases B(P (v) · idw) and B(P (u) · idw).

Remark 2.82. Let S(v) be the simple object in mod-End A associated to a vertex v ∈ A .
Then S(v) correspondence in mod-A to the object Sv := F(S(v)) : A → k-mat which maps the
object v in A to 1 and all other objects to 0; and maps all the generating morphisms of A to
the corresponding zero morphisms.

Lemma 2.83. Let A := kFq/〈ρ〉 be a k-linear finitely presented category defined by a quiver
q subject to an admissible set of relations ρ. Then for every object F : A → k-mat in mod-A
and every v ∈ q0 we have

Hommod-A (Pv, F ) ∼= Homk-mat(1, F (v)) ∼= F (v).

Proof. By Remark 2.80, Pv(v) =
⊕

b∈B(HomA (v,v)) 1. Let ξv : 1 → Pv(v) be the natural
injection of the direct summand that is indexed by the morphism idv : v → v ∈ B(HomA (v, v)).

A straightforward verification shows that the k-linear map

ϕ :
{

Hommod-A (Pv, F ) → Homk-mat(1, F (v)),
α 7→ ξv •α(v)

is an isomorphism and its inverse is given by
Homk-mat(1, F (v)) → Hommod-A (Pv, F ),

` 7→

Pv → F,

u 7→ Pv(u) =
⊕

b∈B(HomA (v,u)) 1
(` •F (b))b,1−−−−−−−→ F (u).

�
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Remark 2.84. The above proof is the categorical formulation of the fact that P (v) is the cyclic
right End A -module generated by idv ∈ End A ; which means that every morphism from P (v) is
uniquely determined by its value on idv.

Remark 2.85. With the same assumptions and notations of Lemma 2.83, let α : Pv → G and
τ : F →→ G be two morphisms in mod-A . Since Pv is a projective object, there exists a lift
morphism λ : Pv → F of α along τ . Lemma 2.83 provides an algorithm to compute such a λ.
Let s : G(v) → F (v) be a section morphism for τ(v) : F (v) → G(v), i.e., s • τ(v) = idG(v). Then
λ := ϕ−1(ξv •α(v) • s) : Pv → F is a lift morphism of α along τ .

Let mv, v ∈ q0 be a list of nonnegative integers, then the above trick, together with the
universal property of the direct sum object, can be used to compute a lift morphism of any
morphism

⊕
v∈q0 P

mv
v −→ G along τ : F →→ G.

The main Yoneda Lemma applies to local small categories and functors to Set. The following
lemma is the additive version of Yoneda Lemma which applies on a preadditive category C and
the category of additive functors from C to Ab. The Lemma still applies for R-linear categories
and the category of R-linear functors to R-Mod. For more details, see e.g., [Bor94b, Theorem
6.3.5].

Lemma 2.86 (Additive Yoneda lemma). Let C be a preadditive category and let A be an
object in C . Then for any additive functor F : C → Ab, there is an isomorphism of Abelian
groups

Φ:
{

Nat(HomC (V,−), F ) → F (V ),
α 7→ αV (idV ).

which is natural in both V and F .

Proof. It can be shown that the inverse of Φ is given by

Φ−1 :


F (V ) → Nat(HomC (V,−), F ),

x 7→ αx :


HomC (V,−) → F,

U 7→ αx,U :
{

HomC (V,U) → F (U),
f 7→ F (f)(x).

�

By substituting F in the previous lemma with the functor HomC (U,−) : C → Ab we get the
following corollary:

Corollary 2.87. Let C be a preadditive category. Then the functor

YC :


C op → [C ,Ab],
V 7→ HomC (V,−),

αop : V → U 7→ YC (αop) :
{
YC (V ) → YC (U),
W 7→ HomC (α,W ) = α • −

is a fully faithful embedding.

Remark 2.88 (Yoneda Embedding). We call the functor YC in Corollary 2.87 the “contravari-
ant” Yoneda embedding of C . The “covariant” Yoneda embedding of C is defined by

ZC := YC op : C → [C op,Ab].
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Corollary 2.89. With the same assumptions and notations in Corollary 2.87, a morphism
α in C is an isomorphism if and only if YC (αop) is a natural isomorphism if and only if ZC (α)
is a natural isomorphism.

We are mainly interested in constructing the following instance of the Yoneda embedding:
Corollary 2.90. Let A = kFq/〈ρ〉 be k-linear finitely presented category defined by a quiver

q subject to an admissible set of relations ρ. Then the Yoneda embedding

YA :


A op →mod-A ,

v 7→ HomA (v,−),

aop : v → u 7→ YA (aop) :
{
YA (v) → YA (u),
w 7→ HomA (a,w) = a • −

induces an isomorphism A op ∼= ind0(proj-A ). In particular, A op and ind(proj-A ) are equiv-
alent.

Proof. It follows from Remark 2.80 that YA (v) and Pv are equal for every object v ∈ A .
The assertion follows from Theorem 2.79.(1) and Corollary 2.87. �

Definition 2.91. Let k be a field, A a k-algebra and M a right A-module. The radical of
M , denoted by rad(M), is defined by the intersection of all maximal submodules in M . The top
of M , denoted by top(M), is defined by M/rad(M).

Example 2.92. Let P (v) be the projective indecomposable right End A -module associated
to the object v ∈ A as introduced in Theorem 2.79. According to [ASS06, Lemma III.2.4],
rad(P (v)) is the right End A -module generated by the set of all morphisms in A that are
represented by paths p in kFq with Source(p) = v and p 6= idv.

The following lemma is a reformulation of [ASS06, Lemma III.2.2.c] in categorical language:
Lemma 2.93. Let A = kFq/〈ρ〉 be k-linear finitely presented category defined by a quiver q

subject to an admissible set of relations ρ. Then
(1) For an object M in mod-End A , the radical rad(M) is given by M ·rad(End A ) where

rad(End A ) is the Jacobson radical of End A .
(2) For an object F : A → k-mat in mod-A , the radical rad(F ) is given by the object

rad(F ) :


A → k-mat,
v 7→ im(µv),

a : u→ v 7→ the unique lift of ιu •F (a) along ιv
where

µv :=
⊕

s∈Q1,s : w→v
F (w)

(F ([s]))s,1−−−−−−→ F (v)

and ιv : im(µv) ↪−→ F (v) is the image embedding of µv. Moreover, the collection (ιv)v∈q0
defines a monomorphism

ιF :
{

rad(F ) → F,

v 7→ ιv

in mod-A . The morphism iF will be called the radical embedding of F . Hence,
top(F ) is given by the cokernel object coker(ιF ).
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The following remark follows from [ASS06, Corollaries I.5.9 and I.5.17]:

Remark 2.94. Let Pv be the indecomposable projective object in mod-A associated to an
object v ∈ A and ιPv : rad(Pv) ↪−→ Pv the radical embedding of Pv. Then top(Pv) = Sv and the
cokernel projection sv : Pv →→ Sv of ιPv is a projective cover of Sv.

The following theorem states that the category mod-A = kFq/〈ρ〉 for an admissible set of
relations ρ ⊂ kFq admits projective covers.

Theorem 2.95. Let A = kFq/〈ρ〉 be k-linear finitely presented category defined by a quiver
q subject to an admissible set of relations ρ. For each object F in mod-A there exists, up to the
order of elements, a unique list of nonnegative integers mv, v ∈ A and a projective cover

λF :
⊕
v∈A

Pmvv →→ F

for F .

Proof. Let ιF : rad(F ) ↪−→ F be the radical embedding of F and πιF : F →→ coker(ιF ) its
cokernel projection. Then top(F ) := coker(ιF ) is semisimple (cf. [ASS06, Theorem I.5.8] or
[Zim14, Proposition 1.9.6]), i.e., it can be decomposed as a direct sum of simple objects in
mod-A . For a vertex v ∈ A , let mv be the multiplicity of Sv in such a decomposition. Hence,
top(F ) =

⊕
v∈q0 S

mv
v and the following direct sum of the projective covers sv : Pv → Sv, v ∈ A

introduced in Remark 2.94
sF :=

⊕
v∈A

smvv :
⊕
v∈q0

Pmvv →→
⊕
v∈q0

Smvv

defines a projective cover of top(F ). It can be shown that any lift morphism, say λF , of sF along
πιF :

�

rad(F ) F

⊕
v∈q0 P

mv
v

⊕
v∈q0 S

mv
v

ιF

sF

πιF

∃ λF

is a projective cover of F , see e.g., [ASS06, Theorem I.5.8] or [Zim14, Proposition 1.9.6]. Note
that Remark 2.85 can be used to compute λF . �

The following corollary is essential for performing homological algebra computations over the
Abelian category mod-A .

Corollary 2.96. Let A = kFq/〈ρ〉 be k-linear finitely presented category defined by a quiver
q subject to an admissible set of relations ρ ⊂ kFq. Then the Abelian category mod-A has enough
projective and injective objects and has computable projective lifts and injective colifts. Moreover,
if q is acyclic33 then gldim mod-A ≤ |q0|.

Proof. The assertion of having enough projectives and computable projective lifts follows
from Remark 2.85, Theorem 2.95 and [DW17, Proposition 3.1.7]. The assertion of having enough

33If q is not acyclic, then we can use its Kupisch series to decide whether the global dimension is finite.
For details we refer to [Ful68].
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injective objects and computable injective colifts follows by a dual argument (See e.g., [DW17,
Chapters 2 and 3]). �

Corollary 2.97. Let A = kFq/〈ρ〉 be k-linear finitely presented category defined by a quiver
q subject to an admissible set of relations ρ ⊂ kFq. Then the additive category A op,⊕ has weak
kernels. Consequently, the associated Freyd category A(A op,⊕) is Abelian. Furthermore, we
have

A
(
A op,⊕) ∼= mod-A ∼= mod-End A .

Proof. Let proj-A be the full subcategory of mod-A generated by the projective objects.
By Corollary 2.90, A op,⊕ ∼= proj-A , therefore, it is sufficient to prove that proj-A has weak
kernels.

Let ϕ : P → Q be a morphism in proj-A and let ιϕ : K ↪−→ P in mod-A be the kernel
embedding of ϕ. By Corollary 2.96, the category mod-A has enough projectives, i.e., there
exists an PK in proj-A and an epimorphism πK : PK →→ K.

We claim that PK together with πK • ιϕ : PK → P in proj-A defines a weak kernel for ϕ. Let
τ : T → P be a morphism in proj-A such that τ •ϕ = 0. By the universal property of the kernel
objectK, there exists a lift morphism λ : T → K of τ along ιϕ. Since T is a projective object, there
exists a lift morphism µ : T → PK of λ along the epimorphism πK . Hence, τ = λ • ιϕ = µ •πK • ιϕ
and by Theorem 2.31, the category A(A op,⊕) is Abelian. The equivalence of categories follows
from [Pos21a, Theorem 4.1] and Theorem 2.70. �

Remark 2.98. By replacing A with A op we get
A
(
A ⊕

) ∼= A -mod ∼= End A -mod.





CHAPTER 3

Category Constructors in Homological Algebra

This chapter provides an algorithmic approach to the basic homological computations on the
additive and Abelian categories already introduced in the Chapter 2. In Sections 3.1 and 3.2, we
content ourselves with the basic concepts and constructions related to complexes and homotopy
categories. We show that the class of contractible objects in the category of complexes Cb(C )
forms a class of colifting objects (cf. Remark 3.28) and use this class to construct the homotopy
category Kb(C ) as a stable category (Theorem 3.29). This enables us to reduce deciding the
equality of morphisms (and in the affirmative case, computing a chain homotopy witnessing the
equality) in Kb(C ) to a colift problem in Cb(C ) (cf. Corollary 3.26), which in turn reduces to
solving a system of inhomogeneous two-sided linear equations in C (cf. Corollary 3.26). As
a result, it will be vital to equip the category C with an appropriate homomorphism structure,
because, as we shall observe in Chapter 4, homomorphism structures provide the ideal categorical
framework for solving systems of inhomogeneous two-sided linear equations in categories.

In Section 3.3, we provide an explicit computation of projective and injective resolutions of
objects and morphisms in the bounded homotopy categories of Abelian categories with enough
projective resp. injective objects, and review their relations to quasi-isomorphisms and localiza-
tion functors.

In Section 3.4, we quickly review the definition of the bounded derived category Db(C ) of an
Abelian category C . The tricky definition of morphisms in the bounded derived categories makes
it very hard to algorithmically decide the equality of morphisms in Db(C ). However, we are
interested only in the case the provided Abelian category C has enough projective or injective
objects and finite global dimension, in which case we can employ the projective or injective
resolutions to model the bounded derived category Db(C ) in terms of a bounded homotopy
category Kb(proj(C )) or Kb(inj(C )), which then enables us to decide the equality of morphisms
in Db(C ). We review basic homological constructions such as the extension groups Extn(−,−)
and the computation of the left and right derived functors.

All the constructions presented in this chapter are implemented within the GAP meta-package
HigherHomologicalAlgebra [Sal21a]. The constructive approach to these categories provided
in this chapter will be extended further in Chapter 4, where we elevate homomorphism struc-
tures from a category C to Cb(C ), Kb(C ) and Db(C ); and in Chapter 5, where we discuss the
computability of Kb(C ) as a triangulated category.

The primary instances for C we have in mind are the following:
• C is the Abelian category mod-A (resp. A -mod) of functors from an (admissible)
k-linear finitely presented category A (resp. A op) to k-mat. In particular, if A is the
abstraction k-algebroid AE of a strong exceptional sequence E in a triangulated category
T, then AE -mod ' EndTE -mod where TE is the tilting object of E . Furthermore,
the categories AE -mod, Cb(AE -mod), Kb(AE -mod) and Db(AE -mod) have decidable
equality of morphisms and are equipped with a (k-mat)-homomorphism structure.

65
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• C is the additive closure category A ⊕ of a k-linear finitely presented category A , or
E ⊕ of a strong exceptional sequence in a triangulated category T (cf. Chapter 1).
• C is the Abelian Freyd category A(R-rows) ' R-fpmod for a computable commu-
tative ring R. The categories A(R-rows), Cb(A(R-rows)) and Kb(A(R-rows)) have
decidable equality of morphisms and are equipped with a A(R-rows)-homomorphism
structure. If, furthermore, R has finite global dimension, then Db(R-rows) has decid-
able equality of morphisms and is equipped with a A(R-rows)-homomorphism structure
(cf. Appendix C).

3.1. Complex Categories
Let C be an additive category. The cochain complex category1 C(C ) is defined by the

following data:
(1) An object A :=

(
Ai, ∂iA

)
i∈Z in C(C ) is a sequence of objects and morphisms in C

· · · Ai−1 Ai Ai+1 · · ·
∂i−1
A ∂iA

such that ∂iA • ∂i+1
A = 0 for all i ∈ Z.

(2) A morphism ϕ : A→ B in C(C ) is a family of morphisms
(
ϕi : Ai → Bi

)
i∈Z

· · · Ai−1 Ai Ai+1 · · ·

· · · Bi−1 Bi Bi+1 · · ·

	 	ϕi−1 ϕi ϕi+1

∂i−1
A ∂iA

∂i−1
B ∂iB

such that ∂iA •ϕi+1 = ϕi • ∂iB for all i ∈ Z. Composition of morphisms is defined by
degree-wise composition of morphisms and the identity morphism of an object A :=(
Ai, ∂iA

)
i∈Z is defined by the family (idAi)i∈Z.

Definition 3.1. Let C be an additive category and C(C ) its complex category and let A be
an object in C(C ).

(1) A is said to be bounded below if there exists `A ∈ Z with Ai = 0 for all i < `A.
(2) A is said to be bounded above if there exists uA ∈ Z with Ai = 0 for all i > uA.
(3) A is said to be bounded if its is bounded below and bounded above.

We define C+(C ), C−(C ) and Cb(C ) by the full subcategories of C(C ) generated by the objects
which are bounded below, bounded above, resp. bounded.

Definition 3.2. Let C be an additive category and C(C ) its complex category.
(1) Objects of C(C ) will be called cochain complexes over C .
(2) Morphisms of C(C ) will be called cochain morphisms over C .
(3) The support of a cochain complex A over C is defined by

SuppA := {i ∈ Z | Ai 6= 0}.
1The associated category constructor is ComplexCategoryByCohains(-) [Sal21b].
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(4) An nth-stalk cochain complex over C is an object A in C(C ) with Ai = 0 for all
i 6= n. In this case, we denote A by dAncn.

(5) An nth-stalk cochain morphism over C is a morphism ϕ in C(C ) with ϕi = 0 for all
i 6= n. If furthermore the source and range are also n-stalk complexes, then ϕ is denoted
by dϕncn. We define the n-stalk functor by

d−cn :


C → C(C ),
C 7→ dCcn,
` 7→ d`cn.

Definition 3.3. Let C be an Abelian category and C(C ) its complex category. We can define
the following functors:

(1) For every i ∈ Z, we define the ith-cycles functor2 by

Zi :


C(C ) → C ,

A 7→ ker
(
∂iA
)
,

A
ϕ−→ B 7→ the lift morphism of ι∂iA •ϕi along ι∂iB ,

where ι∂iA : ker
(
∂iA
)
↪−→ Ai and ι∂iB : ker

(
∂iB
)
↪−→ Bi are the kernel embeddings of ∂iA resp.

∂iB.
(2) For every i ∈ Z, we define the ith-boundaries functor3 by

Bi :


C(C ) → C ,

A 7→ im
(
∂i−1
A

)
,

A
ϕ−→ B 7→ the lift morphism of ε∂i−1

A

•ϕi along ε∂i−1
B

,

where ε∂i−1
A

: im
(
∂iA
)
↪−→ Ai and ε∂i−1

B
: im

(
∂iB
)
↪−→ Bi are the image embeddings of ∂i−1

A

resp. ∂i−1
B .

(3) Let A be an object in C . Since C is Abelian, there exists for every i ∈ Z a lift epimor-
phism µiA : Ai−1 → im

(
∂i−1
A

)
of ∂i−1

A along ε∂i−1
A

. Hence

µiA •

(
ε∂i−1
A

• ∂iA

)
= ∂i−1

A
• ∂iA = 0,

i.e., ε∂i−1
A

• ∂iA = 0, hence there exists a unique lift morphism κiA : im
(
∂i−1
A

)
→ ker

(
∂iA
)

of ε∂i−1
A

along ι∂iA . An easy verification shows that κiA is a monomorphism. We define
the ith-cohomology functor4 on C(C ) by

Hi :


C(C ) → C ,

A 7→ coker
(
κiA
)
,

ϕ : A→ B 7→ the colift morphism of Zi(ϕ) • ρiB along ρiA,

where ρiA : ker
(
∂iA
)
→→ Hi(A) and ρiB : ker

(
∂iB
)
→→ Hi(B) are the cokernel projections of

κiA and κiB.
2See CyclesAt(-) [Sal21b].
3See BoundariesAt(-) [Sal21b].
4See CohomologyAt(-) in [Sal21b].
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· · · Ai−1 Ai

im
(
∂i−1
A

)
ker
(
∂iA
)

Hi(A)

Ai+1 · · ·

· · · Bi−1 Bi

im
(
∂i−1
B

)
ker
(
∂iB
)

Hi(B)

Bi+1 · · ·

ϕi−1
ϕi

ϕi+1

∂i−1
A ∂iA

∂i−1
B ∂iB

ι∂iA
ε∂i−1
A

κiA ρiA

ι∂iB
ε∂i−1
B

κiB ρiB

Hi(ϕ)Bi(ϕ) Zi(ϕ)

µiA

µiB

(4) For every i ∈ Z we define the ith-boundaries-to-cycles natural transformation by

κi :
{

Bi → Zi,
A 7→ κiA : Bi(A) ↪−→ Zi(A)

and the ith-cycles-to-cohomology natural transformation by

ρi :
{

Zi → Hi,

A 7→ ρiA : Zi(A)→→ Hi(A).

Definition 3.4. Let C be an Abelian category. A morphism ϕ : A → B in C(C ) is called
quasi-isomorphism if Hi(ϕ) : Hi(A)→ Hi(B) is an isomorphism for all i ∈ Z.

Remark 3.5. We observe that in any expression τ = ϕ •ψ if two morphisms are quasi-isomorphisms,
then so is the third.

Definition 3.6. Let C be an Abelian category. An object A in C(C ) is called exact (or
acyclic) if κiA : Bi(A) ↪−→ Zi(A) is an isomorphism for all i ∈ Z; or equivalently, if Hi(A) = 0 for
all i ∈ Z.

Remark 3.7. An immediate observation from the above definition is that A is exact if and only
if ∂iA lifts along the kernel embedding of ∂i+1

A via an epimorphism for all i ∈ Z.

Definition 3.8. Let C be an additive category. An object A in C(C ) is called contractible
if there exists a family of morphisms

(
λiA : Ai → Ai−1)

i∈Z

· · · Ai−1 Ai Ai+1 · · ·
∂i−1
A

λiA

∂iA

λi+1
A

such that
∂iA •λi+1

A + λiA • ∂i−1
A = idAi

for all i ∈ Z.
Lemma 3.9. Let C be an Abelian category and A an object in C(C ). If A is contractible,

then A is exact.
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Proof. We use the same notations as in Definition 3.3. For all i ∈ Z, we have
ι∂iA

= ι∂iA
• idAi

= ι∂iA
•

(
∂iA •λi+1

A + λiA • ∂i−1
A

)
= ι∂iA

•λiA • ∂i−1
A

= ι∂iA
•λiA •µiA • ε∂i−1

A

= ι∂iA
•λiA •µiA •κiA • ι∂iA

;

and since ι∂iA is a monomorphism, we get idker(∂iA) = ι∂iA
•λiA •µiA •κiA, i.e., κiA is a split-epimorphism,

thus an epimorphism. This means κiA is an isomorphism for all i ∈ Z and A is exact. �

Corollary 3.10. Let C be an Abelian category. If a morphism ϕ : A → B in C(C ) factors
through some contractible object, then Hi(ϕ) = 0 for all i ∈ Z.

Lemma 3.11. Let C be an Abelian category and A an object in C−(C ). If A is exact and Ai
is a projective object for all i ∈ Z, then A is contractible.

Proof. We will iteratively construct a family of morphisms
(
λi : Ai → Ai−1)

i∈Z such that
∂iA •λi+1 + λi • ∂i−1

A = idAi for all i ∈ Z. Let uA be an upper bound for A. For each i > uA, we
define λi by Ai 0−→ Ai−1. Suppose we have already computed λi+1 and λi and let us compute
λi−1.

It follows from the assumption that(
idAi−1 − ∂i−1

A
•λi
)
• ∂i−1
A = ∂i−1

A − ∂i−1
A

•λi • ∂i−1
A

= ∂i−1
A − ∂i−1

A
•

(
idAi − ∂iA •λi+1

)
= ∂i−1

A − ∂i−1
A

= 0.

Let ρi−1 be the kernel lift of idAi−1 − ∂i−1
A

•λi along ι∂i−1
A

; and let λi−1 be a projective lift of
ρi−1 along ηi−1.

· · · Ai−2 Ai−1 Ai

ker
(
∂i−1
A

)
· · ·

	

∂i−2
A ∂i−1

A

λiλi−1

ι∂i−1
A

ρi−1

ηi−1
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It follows
∂i−1
A

•λi + λi−1 • ∂i−2
A = ∂i−1

A
•λi + λi−1 • ηi−1 • ι∂i−1

A

= ∂i−1
A

•λi + ρi−1 • ι∂i−1
A

= ∂i−1
A

•λi + idAi−1 − ∂i−1
A

•λi

= idAi−1

as desired. Hence A is indeed contractible. �

Theorem 3.12. Let C be an additive category.
(1) If C is additive (Abelian), then Cb(C ) is also additive (Abelian).
(2) If C has decidable equality of morphisms, then so does Cb(C ).

Proof. This first assertion is evident. Basically, the required computations can be performed
in Cb(C ) by computing them “index-wise” in C . For two morphism ϕ,ψ : A→ B in Cb(C ), ϕ = ψ
if and only if ϕi = ψi for i ∈ SuppA ∩ SuppB. The assertion follows because SuppA ∩ SuppB is a
finite set. �

The following constructions will be used later to construct homotopy categories as stable
categories. They are also essential in proving that homotopy categories are triangulated.

Definition 3.13. Let C be an additive category and C(C ) its complex category. The map-
ping cone of a morphism α : A → B in C(C ), denoted by Cone(α), is defined by the object in
C(C ) whose differential at index i ∈ Z is given by

Ai+1 ⊕Bi∂iCone(α) := Ai+2 ⊕Bi+1

(
−∂i+1

A αi+1

0 ∂iB

)

The mapping cone is well-defined because

∂iCone(α) • ∂
i+1
Cone(α) =

(
−∂i+1

A αi+1

0 ∂iB

)
·
(
−∂i+2

A αi+2

0 ∂i+1
B

)
=
(
∂i+1
A

• ∂i+2
A −∂i+1

A
•αi+2+αi+1 • ∂i+1

B

0 ∂iB • ∂
i+1
B

)
= 0.

Definition 3.14. Let C be an additive category and let α : A→ B be a morphism in C(C ).
• The natural injection in the mapping cone of α is the morphism

ι(α) : B → Cone(α)
whose component at index i ∈ Z is given by the matrix ( 0 idiB ).
• The natural projection from the mapping cone of α is the morphism

π(α) : Cone(α)→ Σ(A)
whose component at index i ∈ Z is given by the matrix ( idi+1

A 0 )tr, where Σ(A) is the
object whose differential at index i ∈ Z is ∂iΣ(A) := −∂i+1

A ; or equivalently, is equal to
Cone(A→ 0).
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Remark 3.15. The above constructions Cone(−),ι(−) and π(−) are functorial in α, that is, we
have three functors:

• Cone(−) : Arr(C(C ))→ C(C ),
• ι : Arr(C(C ))→ Arr(C(C )),
• π : Arr(C(C ))→ Arr(C(C )).

The above functors can be illustrated in the following commutative diagram

A1 B1 Cone(α1) Σ(A1)

A2 B2 Cone(α2) Σ(A2),

α1

α2

ι(α1)

ι(α2)

π(α1)

π(α2)

u v Coneα1,α2(u, v) Σ(u)

whose component at index i ∈ Z is given by the commutative diagram

Ai1 Bi
1 Ai+1

1 ⊕Bi
1 Ai+1

1

Ai2 Bi
2 Ai+1

2 ⊕Bi
2 Ai+1

2

αi1

αi2

( 0 idiB1 )

( 0 idiB2 )

(
idi+1
A1
0

)

(
idi+1
A2
0

)
un vn

(
ui+1 0

0 vn

)
un+1

Lemma 3.16. Let C be an Abelian category. A morphism ϕ : A → B in C(C ) is quasi-
isomorphism if and only if Cone(ϕ) is exact.

Proof. The assertion follows by inspecting the long exact sequence of cohomology associated
to the short exact sequence 0 −→ B

ι(ϕ)−−→ Cone(ϕ) π(ϕ)−−−→ Σ(A) −→ 0. �

Definition 3.17. Let C be an additive category and α : A→ B be a morphism in C(C ).
(1) α is called null-homotopic if there exists a family of morphisms

(
hi : Ai → Bi−1)

i∈Z
such that ∂iA •hi+1 + hi • ∂i−1

B = αi for all i ∈ Z. The family
(
hi
)
i∈Z will be called a

chain homotopy of α. This can be depicted as

· · · Ai−1 Ai Ai+1 · · ·

· · · Bi−1 Bi Bi+1 · · · .

∂i−1
A ∂iA

∂i−1
B ∂iB

hi hi+1
αi−1 αi αi+1

(2) α is called homotopy-equivalence if there exists a morphism β : B → A such that
α •β − idA and β •α − idB are both null-homotopic. In such a case, β is called a
homotopy-inverse of α, and we say A and B are homotopy-equivalent.

The following lemma allows us to translate the problem of deciding whether a morphism C(C )
is null-homotopic to a colift problem in C(C ).
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Lemma 3.18. Let C be an additive category. A morphism α : A → B in C(C ) is null-
homotopic if and only if there exists a colift morphism λ : Cone(idA)→ B of α along ι(idA) : A→
Cone(idA):

A B

Cone(idA)

	

α

λ
ι(idA)

Proof. Let λ be a colift morphism of α along ι(idA) and its component at i ∈ Z is defined
by

λi : Ai+1 ⊕Ai
(
ui

vi

)
−−−−→ Bi.

Since ι(idA) •λ = α, it follows that vi = αi for all i ∈ Z. Since λ is a morphism in C(C ), we
have ∂iCone(idA) •λ

i+1 = λi • ∂iB, i.e.,(
−∂i+1

A idiA
0 ∂iA

)
·
(
ui+1

αi+1

)
=
(
ui

αi

)
· ( ∂iB )

for all i ∈ Z. Hence, for all i ∈ Z, we have ∂i+1
A

•ui+1 +ui • ∂iB = αi+1 which implies that α is null-
homotopic and the collection

(
hi := ui−1 : Ai → Bi−1)

i∈Z defines a chain homotopy associated to
α.

Suppose that α is null-homotopic and let
(
hi : Ai → Bi−1)

i∈Z be a chain homotopy associated
to it. Then λ : Cone(idA)→ B whose component at i ∈ Z is

Ai+1 ⊕Ai
(
hi+1

αi

)
−−−−−→ Bi;

is a colift morphism of α along ι(idA). �

Remark 3.19. Let C be an additive category. A morphism α : A→ B in Cb(C ) is null-homotopic
if and only if there exists a family of morphisms

(
hi : Ai → Bi−1)

i∈Z with

∂iA •hi+1 + hi • ∂i−1
B = αi

for all i ∈ Z. Since A is a bounded complex, the question boils down to verifying the solvability
of a system of two-sided inhomogeneous linear equations in C :

{∂iA •χi+1 + χi • ∂i−1
B = αi | i ∈ SuppA}.

Our approach to solve such systems is based on the concept of homomorphism structures (cf. The-
orem 4.17). In particular, if we equip C with a D-homomorphism structure, then we can translate
solving the above system into a lift problem in D , which is usually much easier to perform.

Remark 3.20. Let C be an additive category and let α : A → B be an isomorphism in C(C ).
Then Cone(α) is contractible.

Proof. Let β : B → A denote the inverse of α. For each i ∈ Z, define hi : Ai+1 ⊕ Bi →
Ai ⊕ Bi−1 by the matrix

(
0 0
βi 0

)
. We have then hi • ∂i−1

Cone(α) + ∂iCone(α) •h
i+1 = idiCone(α) for each

i ∈ Z, thus Cone(α) is contractible. �
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3.2. Homotopy Categories
Definition 3.21. Let C be an additive category and let ∗ ∈ {+,−, b, }. The set of all

null-homotopic morphisms in C∗(C ) defines a two-sided ideal. The additive quotient category of
C∗(C ) by this ideal will be called the homotopy category of C and will be denoted by K∗(C ).

The associated additive quotient functor to K∗(C ) will be denoted by
[ ] : C∗(C )→ K∗(C ).

Remark 3.22. By Definition 3.8, an object A in C∗(C ) is contractible if and only if idA is null-
homotopic. In other words, the object A is contractible if and only if [A] in K∗(C ) is zero. This
means if a morphism α : A → B in C∗(C ) factors through any contractible object, then [α] = 0
and α is null-homotopic.

Remark 3.23. A morphism [α] in K∗(C ) is an isomorphism if and only if [Cone(α)] in K∗(C )
is zero (cf. Lemma B.22). In other words, α is a homotopy-equivalence if and only if Cone(α) is
contractible. If C is Abelian, then by Lemma 3.9, every contractible object is exact, hence the
mapping cone of any homotopy-equivalence is exact. Thus, by Lemma 3.16, every homotopy-
equivalence is a quasi-isomorphism.

Remark 3.24. Let C be an Abelian category and A, B are objects in C−(C ) where Ai, Bi are
projective objects for all i ∈ Z. Suppose α : A → B is a quasi-isomorphism. By Lemma 3.16,
Cone(α) is exact, and by Lemma 3.11, Cone(α) is contractible. Hence, by the previous Remark,
α is a homotopy-equivalence.

Remark 3.25. Let C be an Abelian category and let Hi : C(C ) → C be the ith-cohomology
functor. By Lemma 3.18, Remark 3.20 and Corollary 3.10, the functor Hi factors uniquely along
the quotient functor [ ] : C(C )→ K(C ). The colift functor of Hi along [ ] will as well be denoted
by Hi. Obviously, Hi is defined by

Hi :


K(C ) → C ,

[A] 7→ Hi(A),
[α] : [A]→ [B] 7→ Hi(α) : Hi(A)→ Hi(B).

Two morphisms [α], [β] : A → B in Kb(C ) are equal if α − β is null-homotopic. Hence,
Lemma 3.18, Remark 3.19 and Theorem 4.17 provide an algorithmic description5 for the equality
of morphisms in bounded homotopy categories:

Corollary 3.26. Let C be an additive category. If any of the following hold:
(1) The category Cb(C ) has decidable colifts;
(2) The category Cb(C ) is equipped with a D-homomorphism structure where D has decidable

lifts;
(3) The category C is equipped with a D-homomorphism structure where D has decidable

lifts;
then Kb(C ) has decidable equality of morphisms.

Example 3.27. Let R be a commutative left computable ring. Since R is left computable, it
follows that R-rows has decidable lifts; and by Example 4.6, the category R-rows can be equipped
with an (R-rows)-homomorphism structure. On the other hand, by [Pos21a, Corollary 6.17], the

5See IsNullHomotopic(-) and HomotopyMorphisms(-) operations in [Sal21b].
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category A(R-rows) has decidable lifts and can be equipped with an A(R-rows)-homomorphism
structure. By Corollary 3.26, both Kb(R-rows) and Kb(A(R-rows)) have decidable equality of
morphisms.

The following remark enables us to construct homotopy categories as stable categories asso-
ciated to a class of colifting objects:

Remark 3.28. Let C be an additive category and C∗(C ) be its complex category where ∗ ∈
{+,−, b, }. We denote by QC∗(C ) the set of all contractible objects in C∗(C ). We claim that
QC∗(C ) defines a class of colifting objects in C∗(C ). For an object A in C∗(C ) we define QA by
Cone(idA) and qA : A→ QA by the natural injection in the mapping cone (cf. Definition 3.14). It
follows by Remark 3.20 that QA is contractible. For a morphism ϕ : A→ B in C∗(C ), we define
Qϕ : QA → QB by ConeidA,idB (ϕ,ϕ) as introduced in Remark 3.15. It remains to show that if A
is contractible, then qA is a split-monomorphism. Since A is contractible, there exists a family of
morphisms

(
λiA : Ai → Ai−1)

i∈Z such that ∂iA •λi+1
A +λiA • ∂i−1

A = idAi for all i ∈ Z. The morphism
rA : QA → A which is defined at i ∈ Z by

bnA := Ai+1 ⊕Ai

(
λi+1
A

idAi

)
−−−−−−→ Ai.

is a retraction morphism of qA, hence qA is indeed a split-monomorphism.

Theorem 3.29. Let C be an additive category. Then there is an isomorphism
K∗(C ) ∼= C∗(C )/Q

where C∗(C )/Q is the stable category of C∗(C ) w.r.t. the above system of colifting objects.

Proof. The assertion follows by Lemma 3.18. �

3.3. Computing Projective and Injective Resolutions of Complexes
In this section we provide an algorithmic description for the following very useful constructions

in homological algebra:
• Let C be Abelian with enough projective objects and proj(C ) the full subcategory of

C generated by the projective objects of C . Construct the adjunction:
ι: K−(proj(C ))� K−(C ) :P

where ι is the inclusion functor and P is the projective resolution functor which maps
objects and morphisms of K−(C ) to their projective resolutions in K−(proj(C )).
• Analogously, let C be Abelian with enough injective objects and inj(C ) the full subcat-
egory of C generated by the injective objects of C . Construct the adjunction:

I : K+(C )� K+(inj(C )) :ι
where ι is the inclusion functor and I is the injective resolution functor which maps
objects and morphisms of K+(C ) to their injective resolutions in K+(inj(C )).

In Section 3.4 we employ these adjunctions to perform the following tasks:
(1) If C is Abelian with enough projectives, we use them to compute left derived functors

of right exact functors from C to another Abelian category E .
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(2) If C is Abelian with enough projectives, they induce an exact equivalences
K−(proj(C )) ' D−(C )

which restrict in case C has finite global dimension to
Kb(proj(C )) ' Db(C )

allowing us to translate computations from Db(C ) to Kb(proj(C )).
(3) If C is Abelian with enough injectives, we use them to compute the right derived functors

of left exact functors from C to another Abelian category E .
(4) If C is Abelian with enough injectives and finite global dimension, then these functors

induce an exact equivalence
D+(C ) ' K+(inj(C ))

which restrict in case C has finite global dimension to
Db(C ) ' Kb(inj(C ))

allowing us to translate computations from Db(C ) to Kb(inj(C )).
As already mentioned in the introduction of this chapter, our primary instances for the Abelian

category C are
• The Abelian category mod-A (resp. A -mod) of functors from an admissible k-linear
finitely presented category A (resp. A op) to k-mat. We use the techniques of this
section to render the Happel theorem constructive (cf. Corollary 6.7).
• The Abelian Freyd category A(R-rows) ' R-fpmod for a computable commutative
ring R with finite global dimension, e.g., the polynomial ring R = k[x0, . . . , xn]. Appen-
dix C provides a software demonstration for computing the extension groups ExtnC (−,−)
as

ExtnC (A,B) := HomDb(C )(A,Σn(B))
for C = A(Q[x, y]-rows) ' Q[x, y]-fpmod.

All the constructions presented in this section are implemented in ComplexesCategories
[Sal21b].

We start by defining projective resolutions of complexes.
Definition 3.30. Let C be an Abelian category and C(C ) be its complex category. A

projective resolution for an object A in C(C ) consists of the following data:
• An object PA such that P iA is projective for all i ∈ Z.
• A quasi-isomorphism qA : PA → A.

A projective resolution of an object in C is a projective resolution of the 0-stalk complex6 in C(C )
defined by that object.

The following theorem enables us to construct projective resolutions of bounded-above com-
plexes over Abelian categories with enough projective objects.

Theorem 3.31. Let C be an Abelian category with enough projectives and let C−(C ) be its
bounded-above complex category. Then each A in C−(C ) admits a projective resolution qA : PA →
A where PA belongs to C−(C ). Furthermore, if A is contractible, then so is PA.

6For the definition of a stalk complex, see Definition 3.2.
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Proof. Let uA be the upper bound of A. For all i > uA, define ∂iPA by 0 0−→ 0 and qiA by
0 0−→ Ai. Suppose

(
∂iPA , q

i
A

)
has been computed and let us compute

(
∂i−1
PA , qi−1

A

)
. Define the

morphism
τ i−1
A :=

(
−∂iPA qiA

0 ∂i−1
A

)
: P iA ⊕Ai−1 → P i+1

A ⊕Ai

and let κi−1
A = ( εi−1

A δi−1
A ) : Ki−1

A ↪−→ P iA ⊕ Ai−1 be its kernel embedding. Since C has enough
projectives, there exists an epimorphism λi−1

A : P i−1
A →→ Ki−1

A where P i−1
A is a projective object.

We set
∂i−1
PA := λi−1

A
• εi−1
A : P i−1

A → P iA
and

qi−1
A := −λi−1

A
• δi−1
A : P i−1

A → Ai−1.

An straight verification shows that for every i ∈ Z, the morphism −λi−1
A : P i−1

A →→ Ki−1
A is

the kernel lift morphism of
(
−∂i−1
PA

qi−1
A

)
: P i−1

A → P iA ⊕ Ai−1 along κi−1
A : Ki−1

A ↪−→ P iA ⊕ Ai−1. For
each i ∈ Z, denote by µi−1

A : Ai−2 →→ Ki−1
A the kernel lift morphism of ( 0 ∂i−2

A ) : Ai−2 → P iA⊕Ai−1

along κi−1
A : Ki−1

A ↪−→ P iA ⊕Ai−1.
The above data incorporates in the following diagram:

· · · P i−1
A ⊕Ai−2 P iA ⊕Ai−1 P i+1

A ⊕Ai

Ki−1
A Ki

A

· · ·
τ i−2
A =

(
−∂i−1
PA

qi−1
A

0 ∂i−2
A

)
τ i−1
A =

(
−∂iPA qiA

0 ∂i−1
A

)

κi−1
A = ( εi−1

A δi−1
A )(

−λi−1
A

µi−1
A

) κiA = ( εiA δiA )(
−λiA
µiA

)	 	

Since λi−1
A is an epimorphism, the kernel lift of τ i−2

A along κi−1
A is an epimorphism for all i ≤ uA.

Hence, the natural embedding im
(
τ i−2
A

)
↪−→ ker

(
τ i−1
A

)
is an epimorphism as well, consequently

an isomorphism for all i ≤ uA. Thus, by Remark 3.7, Cone(qA) is exact, and by Lemma 3.16, qA
is a quasi-isomorphism as desired.

If A is contractible, then by Lemma 3.9, A is exact. Since qA is a quasi-isomorphism, we have
Hi(PA) ∼= Hi(A) ∼= 0 for all i ∈ Z, i.e., PA is exact as well. It follows by Lemma 3.11 that PA is
contractible as asserted. �

Also morphisms between bounded-above complexes lift to morphisms between the correspond-
ing projective resolutions. Any two such morphisms coincide in the homotopy category.

Theorem 3.32. Let C be an Abelian category with enough projectives and let C−(C ) be its
bounded-above complex category. Let A and B be objects in C−(C ) and qA and qB their projective
resolutions as constructed in Theorem 3.31. Then any morphism ϕ : A → B lifts, uniquely up
to homotopy, to a morphism Pϕ : PA → PB. Moreover, if ϕ is a quasi-isomorphism, then Pϕ is a
homotopy-equivalence.

Proof. Let uϕ be a common upper bound for A and B. For all i > uϕ define P iϕ by 0 0−→ 0.
Suppose P iϕ and P i+1

ϕ has been computed and let us compute P i−1
ϕ . We have the following
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commutative diagram:

P i−1
A Ki−1

A P iA ⊕Ai−1 P i+1
A ⊕Ai

P i−1
B Ki−1

B P iB ⊕Bi−1 P i+1
B ⊕Bi

���

λi−1
A

λi−1
B

P i−1
ϕ `i−1

ϕ

κi−1
A = ( εi−1

A δi−1
A )

κi−1
B = ( εi−1

B δi−1
B )

τ i−1
A =

(
−∂iPA qiA

0 ∂i−1
A

)

τ i−1
B =

(
−∂iPB qiB

0 ∂i−1
B

)
τ i−1
ϕ :=

( Piϕ 0
0 ϕi−1

)
τ iϕ :=

(
Pi+1
ϕ 0
0 ϕi

)

where `i−1
ϕ is the kernel lift of κi−1

A
• τ i−1
ϕ along κi−1

B , and P i−1
ϕ is a projective lift of λi−1

A
• `i−1
ϕ

along λi−1
B .

The commutativity of the above diagram implies

λi−1
A

•

(
εi−1
A δi−1

A

)
•

(
P iϕ 0
0 ϕi−1

)
= P i−1

ϕ
•λi−1
B

•

(
εi−1
B δi−1

B

)
i.e., (

∂i−1
PA

• P iϕ −qi−1
A

•ϕi−1
)

=
(
P i−1
ϕ

• ∂i−1
PB −P i−1

ϕ
• qi−1
B

)
for all i ∈ Z. Hence, Pϕ : PA → PB is well-defined and qA •ϕ = Pϕ • qB as desired.

Let ρ, ζ : PA → PB be two morphisms with ρ • qB = ζ • qB = qA •ϕ. We want to prove that
ρ− ζ is null-homotopic. Using the notation of Remark 3.15, we define the morphism

ψ := ConeqA,qB (ρ, ϕ)− ConeqA,qB (ζ, ϕ) : Cone(qA)→ Cone(qB).
The component of ψ at index i ∈ Z is(

ρi+1 − ζi+1 0
0 0

)
: P i+1

A ⊕Ai → P i+1
B ⊕Bi.

We will prove that ψ is null-homotopic and then use the corresponding chain-homotopy to con-
struct a chain-homotopy for ρ− ζ. We need to construct a family

(
P i+1
A ⊕Ai `i−→ P iB ⊕Bi−1

)
i∈Z

such that ψi = τ iA • `i+1 + `i • τ i−1
B for all i ∈ Z.

For all i > uϕ we set

`i :=
(
hi+1 0

0 0

)
:=
(

0 0
0 0

)
: P i+1

A ⊕Ai → P iB ⊕Bi−1.

Suppose we have already computed `i and `i+1 and let us compute `i−1. The equality ψi =
τ iA • `i+1 + `i • τ i−1

B translates to(
ρi+1 − ζi+1 + ∂i+1

PA
•hi+2 + hi+1 • ∂iPB −hi+1 • qiB

0 0

)
=
(

0 0
0 0

)
.
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Let πiA :=
(
idPiA 0

)
: P iA → P iA ⊕Ai−1 be the natural injection of P iA in P iA ⊕Ai−1. We get the

following equality:

πiA •
(
ψi−1 − τ i−1

A
• `i
)
• τ i−1
B =

((
ρi − ζi 0

)
−
(
−∂iPA qiA

)
•

(
hi+1 0

0 0

))
•

(
−∂iPB qiB

0 ∂i−1
B

)
=
(
ρi − ζi + ∂iPA

•hi+1 0
)
•

(
−∂iPB qiB

0 ∂i−1
B

)
=
(
−ρi • ∂iPB + ζi • ∂iPB − ∂

i
PA

•hi+1 • ∂iPB ρi • qiB − ζi • qiB + ∂iPA
•hi+1 • qiB

)
=
(
−ρi • ∂iPB + ζi • ∂iPB − ∂

i
PA

•hi+1 • ∂iPB 0
)

=
(
−ρi • ∂iPB + ζi • ∂iPB − ∂

i
PA

•
(
−ρi+1 + ζi+1 − ∂i+1

PA
•hi+2) 0

)
=
(
−ρi • ∂iPB + ∂iPA

• ρi+1 + ζi • ∂iPB − ∂
i
PA

• ζi+1 0
)

=
(
0 0

)
.

Let µi : P iA → Ki−1
B be the kernel lift morphism of πiA •

(
ψi−1 − τ i−1

A
• `i
)

along κi−1
B and

γi : P iA → P
i−1
B a projective lift of µi along λi−1

B .

P iA P iA ⊕Ai−1 P i+1
A ⊕Ai

P i−1
B Ki−1

B P iB ⊕Bi−1 P i+1
B ⊕Bi

� �

λi−1
B

γi

µi `i =
(
hi+1 0

0 0

)
πiA =

( idPi
A

0 )

κi−1
B = ( εi−1

B δi−1
B )

τ i−1
A =

(
−∂iPA qiA

0 ∂i−1
A

)

τ i−1
B =

(
−∂iPB qiB

0 ∂i−1
B

)
ψi−1 =

(
ρi−ζi 0

0 0

)
ψi =

(
ρi+1−ζi+1 0

0 0

)

Define hi by −γi, then the equality γi •λi−1
B

•κi−1
B = πiA •

(
ψi−1 − τ i−1

A
• `i
)
translates to(

−hi • ∂i−1
PB hi • qi−1

B

)
=
(
ρi − ζi + ∂iPA

•hi+1 0
)
,

i.e., (
ρi − ζi + ∂iPA

•hi+1 + hi • ∂i−1
PB hi • qi−1

B

)
=
(
0 0

)
;

hence defining `i by
(
hi 0
0 0

)
implies ψi−1 = τ i−1

A
• `i + `i−1 • τ i−2

B as desired. Hence, ψ is indeed

null-homotopic. The family
(
hi : P iA → P

i−1
B

)
i∈Z

defines a chain homotopy for ζ − ρ.
Suppose ϕ is a quasi-isomorphism. It follows from the equality Pϕ • qB = qA •ϕ and Remark 3.5

that Pϕ is a quasi-isomorphism. Hence, by Remark 3.24, Pϕ is a homotopy-equivalence as desired.
�

Given a category C and a class W of morphisms in C . A localization of C byW is a category
C [W−1] and a “localization by W” functor Q : C → C [W−1] with the properties: Q(f) is an
isomorphism for all f ∈ W and any other such functor C −→ D factors uniquely along Q. Some
approaches for the construction of localization categories can be found in [GM03, Chapter 3] or
[DS95, Chapter 6]. The following theorem provides an example of a localization functor of the
the above-bounded complex category of an Abelian category with enough projectives where W
is the class of quasi-isomorphisms:
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Theorem 3.33. Let C be an Abelian category with enough projectives. Then

P :


C−(C ) → K−(proj(C )),
A 7→ [PA],

ϕ : A→ B 7→ [Pϕ] : [PA]→ [PB]

is a functor. Moreover, P factors along the quotient functor [ ] : C−(C )→ K−(C ) via

P :


K−(C ) → K−(proj(C )),

[A] 7→ [PA],
[ϕ] : [A]→ [B] 7→ [Pϕ] : [PA]→ [PB].

Proof. The functoriality follows by Theorems 3.31 and 3.32. By Theorem 3.31, if A is
contractible, then so is PA, i.e., [PA] = 0. Since every null-homotopic morphism factors along a
contractible object, the functor P maps null-homotopic morphisms to zero, and consequently P
factors along the quotient functor as asserted. �

Lemma 3.34. Let C be an Abelian category with enough projectives. Let A,Q be objects in
C−(C ) with Qi projective for all i ∈ Z; and let q : Q → A be some morphism in C−(C ), then
there exists a unique lift morphism [λq] : [Q] → [PA] of [q] along [qA]. Furthermore, if q is a
quasi-isomorphism, then [λq] is an isomorphism, and its inverse is the unique lift morphism of
[qA] along [q].

Proof. Let qA : PA → A, qQ : PQ → Q and Pq : PQ → PA be the morphisms asserted by
Theorems 3.31 and 3.32, It follows by Remark 3.24 that qQ is a homotopy-equivalence, i.e., [qQ]
is an isomorphism. Let q̂Q be representative of [qQ]−1 and define λq by q̂Q • Pq, then

[λq] • [qA] = [λq • qA]
= [q̂Q • Pq • qA]
= [q̂Q • qQ • q]
= [q̂Q] • [qQ] • [q]
= [qQ]−1 • [qQ] • [q]
= [idQ] • [q]
= [q],

i.e., [λq] is a lift morphism of [q] along [qA].

PQ PA

Q A,

[PQ] [PA]

[Q] [A]

	

	

Pq

q

qQq̂Q
λq

qA

[Pq]

[q]

∼
[qQ]∼

[qQ]−1 = [q̂Q]

[λq]
[qA]
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Suppose [µ] : [Q]→ [PA] is a lift morphism of q along qA, i.e., with [µ] • [qA] = [q], then µ • qA−q
is null-homotopic. It follows by Theorems 3.32 and 3.33 and the following computation

(qQ •µ− Pq) • qA = qQ •µ • qA − Pq • qA
= qQ •µ • qA − qQ • q

= qQ •(µ • qA − q),

that qQ •µ − Pq is also null-homotopic, hence [qQ] • [µ] = [Pq] and [µ] = [qQ]−1 • [Pq] = [q̂Q] • [Pq] =
[q̂Q • Pq] = [λq] as asserted.

Suppose now that q is a quasi-isomorphism. It follows by Theorem 3.32 that Pq is a homotopy-
equivalence, i.e., [Pq] is an isomorphism. Consequently, [λq] is an isomorphism as well. It is obvious
that [λq]−1 is a lift morphism of [qA] along [q]. Suppose [`] : [PA]→ [Q] is a another lift morphism
of [qA] along [q], i.e., with [`] • [q] = [qA]. Since q and qA are quasi-isomorphisms, it follows that ` is
a quasi-isomorphism as well. Hence, by Remark 3.24, [`] is an isomorphism, thus [q] = [`]−1 • [qA].
It follows by the first assertion of the Lemma that [`]−1 = [λq], i.e., [`] = [λq]−1; and [λq]−1 is
then, as desired, the unique lift morphism of [qA] along [q]. �

An immediate consequence from Theorem 3.32 and Lemma 3.34 are the following two lemmas:
Lemma 3.35. Let C be an Abelian category with enough projectives. Let A be an object in

C−(C ). For any two projective resolutions p : P → A, q : Q→ A in C−(C ) of A, the morphisms
[p] and [q] lift uniquely along each other via an isomorphism and its inverse.

Lemma 3.36. Let C be an Abelian category with enough projectives. Let ϕ : A → B be a
morphism in C−(C ) and let rA : QA → A and rB : QB → B in C−(C ) be projective resolutions of
A resp. B. Then there exists a unique morphism [Qϕ] : [QA]→ [QB] with [Qϕ] • [rB] = [rA] • [ϕ].

The following corollary enables us to detect equalities in homotopy categories, in a similar
way to monomorphisms and epimorphisms in general categories.

Corollary 3.37. Let C be an Abelian category with enough projectives. Let Q be an object in
C−(C ) with Qi projective for all i ∈ Z, and let p : P → A in C−(C ) be some projective resolution.
Then for any morphism s : Q→ P , [s] • [p] = 0 if and only if [s] = 0.

Proof. idQ : Q → Q is a projective resolution for Q and [s] • [p] = [idQ] • 0, hence, by
Lemma 3.36, [s] = 0. The converse is trivial. �

Corollary 3.38. Let C be an Abelian category with enough projectives and proj(C ) the full
subcategory generated by all projective objects in C . Then the projective resolution functor P is
a right adjoint to the inclusion functor:

ι: K−(proj(C ))� K−(C ) :P .

Proof. For a given pair of objects [A] in K−(C ) and [Q] in K−(proj(C )), we define the map

Φ[Q],[A] :
{

HomK−(proj(C ))([Q],P([A])) → HomK−(C )([Q], [A]),
[λ] 7→ [λ] • q[A].

where q[A] : P([A])→ [A] is a projective resolution of [A] asserted in Theorem 3.31.
By Lemma 3.34, Φ[Q],[A] is bijective. Let [ψ] : [Q′]→ [Q] in K−(proj(C )) and [ϕ] : [A]→ [A′]

in K−(C ) be two morphisms, then for any [λ] : [Q]→ P([A]) we have
[ψ] • [λ] • q[A] • [ϕ] = [ψ] • [λ] • P([ϕ]) • q[A′],
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which translates to the commutativity of the following diagram:

HomK−(proj(C ))([Q],P([A])) HomK−(C )([Q], [A])

HomK−(proj(C ))([Q′],P([A′])) HomK−(C )([Q′], [A′]),

	

− • q[A]

− • q[A′]

[ψ] • − • P([ϕ]) [ψ] • − • [ϕ]

i.e., the map Φ is natural. �

In fact, the components of aforementioned adjunction are both exact functors (cf. Defini-
tion B.24). It is obvious that the injection

ι : K−(proj(C ))→ K−(C )
is exact. The exactness of P follows by the following Lemma:

Lemma 3.39. Let C be Abelian category with enough projectives. The projective resolution
functor

P : K−(C )→ K−(proj(C ))
is exact.

Proof. We start by showing that P commutes with the shift functors up to a natural iso-
morphism µ : Σ • P → P •Σ, then we show that P is exact with respect to µ.

Let qΣ(A) and qΣ(B) be the projective resolutions of Σ(A) resp. Σ(B) as computed in The-
orem 3.31. Similarly, let qA and qB be projective resolutions of A resp. B. Applying Σ on a
morphism only shifts the induced morphisms on cohomology, hence Σ(qA) and Σ(qB) are both
quasi-isomorphisms, hence projective resolutions of Σ(A) resp. Σ(B). It follows from Lemma 3.34
that qΣ(A) and Σ(qA) lift uniquely along each other via an isomorphism and its inverse. The same
holds for qΣ(B) and Σ(qB).

Let µA be the unique lift isomorphism of qΣ(A) along Σ(qA). Analogously, we define µB.

P(Σ(A)) Σ(A) Σ(P(A))

P(Σ(B)) Σ(B) Σ(P(B))

	 	

	

	

qΣ(A)

∼
µA

∼
µB

qΣ(B)

P(Σ(ϕ))

Σ(qA)

Σ(qB)

Σ(ϕ) Σ(P(ϕ))

A simple diagram chase shows that
(µA •Σ(P(ϕ))− P(Σ(ϕ)) •µB) •Σ(qB) = 0,
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hence, by Corollary 3.37,
µA •Σ(P(ϕ)) = P(Σ(ϕ)) •µB,

i.e., the assignment

µ :
{

Σ • P → P •Σ,
A 7→ µA

defines a natural isomorphism.
We still need to show that for any morphism ϕ : A→ B in K−(C ), the triangle

P(A) P(ϕ)−−−→ P(B) P(ι(ϕ))−−−−→ P(Cone(ϕ)) P(π(ϕ)) •µA−−−−−−−−→ Σ(P(A))
is exact. Let qA and qB be projective resolutions of A resp. B, then P(ϕ) • qB = qA •ϕ. Let
δ : Cone(P(ϕ)) → Cone(ϕ) and ε : Cone(qA) → Cone(qB) be the morphisms resulted by the ax-
iom TR 4. Since qA and qB are quasi-isomorphisms, Cone(qA) and Cone(qB) are, by Lemma 3.16,
both exact; hence ε is a quasi-isomorphism. It follows by the same Lemma that Cone(ε) is ex-
act as well. By the 3×3 -Lemma (see e.g., [May01, Lemma 2.6]), Cone(ε) ∼= Cone(δ), thus
Cone(δ) is exact and δ is then a quasi-isomorphism, i.e., δ is a projective resolution for Cone(ϕ).
Let qCone(ϕ) : P(Cone(ϕ))→ Cone(ϕ) be the projective resolution of Cone(ϕ) asserted by Theo-
rem 3.32. By Lemma 3.34, δ lifts uniquely along qCone(ϕ) via an isomorphism, say λ.

We depict the above data by the following diagram whose upper and lower parts are commu-
tative:

P(Cone(ϕ))

Cone(P(ϕ))

∼ λ

P(A) P(B) Σ(P(A))

A B Cone(ϕ) Σ(A)

P(A) P(B) Σ(P(A))

	 	 	

	 	 	

P(ϕ) P(ι(ϕ)) P(π(ϕ)) •µA

ϕ ι(ϕ) π(ϕ)

P(ϕ) ι(P(ϕ)) π(P(ϕ))

qA qB qCone(ϕ) Σ(qA)

qA qB δ Σ(qA)

idP(A) idP(B) idΣ(P(A))

By a diagram chase we get the following two equalities:
(P(ι(ϕ))− ι(P(ϕ)) •λ) • qCone(ϕ) = 0

and
(λ • P(π(ϕ)) •µA − π(P(ϕ))) •Σ(qA) = 0,

hence, by Corollary 3.37, we have
P(ι(ϕ))− ι(P(ϕ)) •λ = 0

and
λ • P(π(ϕ)) •µA − π(P(ϕ)) = 0.

Hence, the top and bottom triangles are isomorphic; and since the bottom triangle is exact,
so is then the top. �
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Remark 3.40. All statements about projective resolutions can be dualized to a similar state-
ments for the existence of injective resolutions. An injective resolution for an object A in C(C )
is a quasi-isomorphism qA : A → IA such that IiA is injective for all i ∈ Z. If C is an Abelian
category with enough injectives, then each object A in C+(C ) admits an injective resolution, and
every morphism ϕ : A→ B can, up to homotopy, uniquely be lifted to a morphism Iϕ : IA → IB
with ϕ • qB = qA • Iϕ. We get a functor

I :


K+(C ) → K+(inj(C )),

[A] 7→ [IA],
[ϕ] 7→ [Iϕ].

which maps quasi-isomorphisms to isomorphisms. Furthermore, the functor I is a left adjoint to
the inclusion functor.

I : K+(C )� K+(inj(C )) :ι
and the bijection associated to a pair of objects [I] in K+(inj(C )) and [A] in K+(C ) is given by

Ψ[A],[I] :
{

HomK−(inj(C ))(I([A]), [I]) → HomK−(C )([A], [I]),
[λ] 7→ q[A] • [λ]

where q[A] := [qA] : [A]→ [IA].

3.4. Derived Categories and Derived Functors
This chapter provides an overview on derived categories and some of their associated concepts

like extension groups Extn(−,−) and the derived functors. Deciding the equality of morphisms in
the derived category directly is a priori extremely difficult. As a result, one seeks a more friendly
category that is equivalent to the derived category in question. For example, if C has enough
projective objects then we can use the equivalence

D−(C ) ∼= K−(proj(C )),
where proj(C ) is the full subcategory of C generated by all projective objects in C . Similarly, if
C has enough injective objects, then can use the equivalence

D+(C ) ∼= K+(inj(C ))
where inj(C ) is the full subcategory of C generated by all injective objects in C .

With these techniques we implement versions of derived equivalences on computer. Namely,
the Happel theorem where the tilting module is the direct some of objects of a complete strong
exceptional sequence (cf. Corollary 6.7 and Appendix E).

Definition 3.41. Let C be an Abelian category and ∗ ∈ {“ ”,+,−, b}. The derived cate-
gory D∗(C ) is defined by the following data:

(1) Obj(D∗(C )) := Obj(K∗(C )).
(2) For a given pair of objects A and B in D∗(C ), we define the HomD∗(C )(A,B) by the set

of all equivalence classes of roofs of the form A
q←− X r−→ B where q, r live in K∗(C ) and

q is a quasi-isomorphism; where two such roofs
A

q1←− X1
r1−→ B and A q2←− X2

r2−→ B
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are equivalent if there exists an object Z in K∗(C ) and two quasi-isomorphisms t1 : Z →
X1 and t2 : Z → X2 rendering the following diagram in K∗(C )

A B

X1

X2

Z	 	

t1

t2

q1 r1

q2 r2

commutative. A morphism that is represented by a roof A q←− X r−→ B is usually denoted
by r/q.

(3) The composition of two morphisms represented by the roofs

A
q1←− X r1−→ B and B q2←− Y r2−→ C

is the morphism represented by the roof A q←− Z
r−→ C where Z is the object in K∗(C )

whose differential at i ∈ Z is

∂iZ := Xi ⊕ Y i ⊕Bi−1

∂iX 0 −ri1
0 ∂iY −qi2
0 0 −∂i−1

B


−−−−−−−−−−−−−−−→ Xi+1 ⊕ Y i+1 ⊕Bi,

and q, r are the morphisms whose components at i ∈ Z are

qi := Xi ⊕ Y i ⊕Bi−1

−qi10
0


−−−−−−→ Ai

resp.

ri := Xi ⊕ Y i ⊕Bi−1

 0
ri2
0


−−−−→ Ci.

(4) The identity morphism of an object A is given by idA/idA.
The categories D−(C ),D+(C ) and Db(C ) are called the bounded above, bounded below resp.

bounded derived categories of C .
Remark 3.42. Let C be an Abelian category and let D∗(C ) be its derived category. We have
the following facts:

(1) If r/q : A→ B in D∗(C ) is represented by the roof A q←− X r−→ B, then
r/q = idX/q • r/idX = (q/idX)−1 • r/idX .

(2) There is a natural functor

Q :


K∗(C ) → D∗(C ),
A 7→ A,

r : A→ B 7→ r/idA : A→ B,
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which maps quasi-isomorphisms to isomorphisms. In particular, if r is a quasi-isomorphism,
thenQ(r)−1 = idA/r. Furthermore, Q is universal with this property, i.e., if U : K∗(C )→
E is a functor which maps quasi-isomorphisms to isomorphisms, then there exists, up
to a natural isomorphism, a unique functor Ũ : D∗(C )→ E such that U ∼= Q • Ũ . Since
each morphism r/q can be written as Q(q)−1 •Q(r), Ũ is given by

Ũ :


D∗(C ) → E,

A 7→ U(A),
r/q 7→ U(q)−1 •U(r).

(3) The cohomology functors Hi : K∗(C ) → C , i ∈ Z map quasi-isomorphisms to isomor-
phisms, hence they can be regarded as functors from D∗(C ). In particular, we define
the ith-cohomology functor by

Hi :


D∗(C ) → C ,

A 7→ Hi(A),
r/q 7→ Hi(q)−1 •Hi(r).

(4) A morphism r/q : A → B in D∗(C ) is an isomorphism if and only if Hi(r/q) is an
isomorphism for all i ∈ Z if and only if r is a quasi-isomorphism.

Remark 3.43. The category D∗(C ) is additive.
(1) An object A in D∗(C ) is zero if and only if Hi(A) = 0 for all i ∈ Z, i.e., if and only if A

is exact.
(2) The product and coproduct can be inherited from K∗(C ), for example if A and B are

two objects in D∗(C ) then the natural injection of A into A ⊕ B is represented by the
roof

A
idA←−− A ( idA 0 )−−−−−→ A⊕B

and the natural projection from A⊕B onto A is represented by the roof

A⊕B

(
idA 0
0 idB

)
←−−−−−−− A⊕B

(
idA
0

)
−−−−→ A.

(3) For a given pair of objects A,B in D∗(C ), the zero morphism from A to B is given by
0/idA; and the addition of morphisms r1/q1, r2/q2 : A → B is given, as can be done in
any additive category, by the composition of the triple

A
( idA idA )−−−−−−→ A⊕A

(
r1/q1 0

0 r2/q2

)
−−−−−−−−−→ B ⊕B

(
idB
idB

)
−−−−→ B.

Definition 3.44. The shift automorphism Σ̃ on D∗(C ) is the functor determined by the
relation Σ •Q = Q • Σ̃ where Q is the natural functor Q : K∗(C ) → D∗(C ) and Σ is the shift
automorphism on K∗(C ). A triangle

A
r−→ B

ι−→ C
π−→ Σ̃(A)

in D∗(C ) will be called exact if it is isomorphic to the image under Q of some exact triangle in
K∗(C ), i.e., to some triangle of the form

Q(X) Q(f)−−−→ Q(Y ) Q(ι(f))−−−−→ Q(Cone(f)) Q(π(f))−−−−−→ Q(Σ(X)) = Σ̃(Q(X)).
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It can be shown this class of exact triangles turns D∗(C ) into a triangulated category. Moreover,
the natural functor Q : K∗(C )→ D∗(C ) is exact (cf. [GM03]).

For ∗ ∈ {+,−, b}, we have natural embeddings D∗(C ) ↪−→ D(C ) defined by forgetting the
boundedness conditions.

Proposition 3.45. The natural embeddings D∗(C ) ↪−→ D(C ) for ∗ = +,− or b, define equiv-
alences of D∗(C ) with the full triangulated subcategories of D(C ) generated by all objects A with
Hi(A) = 0 for i� 0, i� 0 resp. |i| � 0.

The concept of K-projectives and K-injectives allows us to identify derived categories with
homotopy categories. For extensive treatment we refer to [Spa88], [Yek12] and [Yek20].

Definition 3.46. Let C be an Abelian category and let ∗ ∈ {+,−, b, “ ”}.
(1) An object P in K∗(C ) is called K-projective if for every acyclic object U in K∗(C ),

HomK∗(C )(P,U) = 0.
(2) A K-projective resolution of an object A in K∗(C ) is a quasi-isomorphism P −→ A

from some K-projective object P in K∗(C ).
(3) We say K∗(C ) has enough K-projectives if every A in K∗(C ) has a K-projective resolu-

tion.
(4) The full subcategory of K∗(C ) generated by K-projective objects will be denoted by
K∗proj(C ). It can be shown that K∗proj(C ) is a triangulated subcategory of K∗(C ).

Example 3.47. Let C be an Abelian category and P an object in K−(C ) where P i is a
projective object for all i ∈ Z, then P is K-projective.

Lemma 3.48. Let C be an Abelian category and let P be an object in K∗(C ). The following
statements are equivalent

(1) P is K-projective,
(2) For every quasi-isomorphism q : A→ B in K∗(C ), the map

HomK∗(C )(P,A) − • q−−→ HomK∗(C )(P,B)
is bijective,

(3) Every quasi-isomorphism q : A→ P in K∗(C ) is a split-epimorphism,
(4) For every B in K∗(C ) the map

QP,B :
{

HomK∗(C )(P,B) → HomD∗(C )(P,B),
ψ 7→ ψ/idP

is an isomorphism.
Corollary 3.49. Any quasi-isomorphism in K∗(C ) between two K-projective objects is an

isomorphism.
Theorem 3.50. Let C be an Abelian category. Then the natural functor

ζ : K∗proj(C )→ D∗(C )
is fully faithful. Moreover, if K∗(C ) has enough K-projectives, then ζ defines an exact equivalence.

Proof. ζ is exact because it is defined by the composition of the exact functors

K∗proj(C ) ↪−→ K∗(C ) Q−→ D∗(C ).
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Since Q maps quasi-isomorphisms to isomorphisms and K∗(C ) has enough K-projectives, ζ is
essentially surjective. �

Corollary 3.51. Let C be an Abelian category with enough projectives and proj(C ) the full
subcategory generated by projective objects. The natural functor

K−(proj(C )) −→ D−(C )
defines an exact equivalence.

Proof. By Theorem 3.31, Kb(C ) has enough K-projectives. By Corollary 3.49, the exact
natural embedding K−(proj(C )) ↪−→ K−proj(C ) is essentially surjective, hence an equivalence.
Hence, the assertion follows by Theorem 3.50. �

Definition 3.52. Let C be an Abelian category. For two objects A and B in C , we define
the ith-extension group of A and B by

ExtiC (A,B) := HomDb(C )

(
A,Σi(B)

)
where A and B are considered as objects in Db(C ).

Remark 3.53. Since Σ is an autoequivalence, we can identify the extension group ExtiC (A,B)
with HomDb(C )

(
Σk(A),Σk+i(B)

)
for all i, k ∈ Z. Hence, we can define a composition law of

extensions:

∗ :
{

ExtiC (A,B)× ExtjC (B,C) → Exti+jC (A,C),
(r, ψ) 7→ r •Σi(ψ).

Remark 3.54. ExtiC (A,B) = 0 for all i < 0 (cf. [GM03, III.5]).

Definition 3.55. Let A be an object in C . We define the homological projective dimen-
sion and injective dimension of A by

prodim(A) := sup{n | ∃B ∈ C ,ExtnC (A,B) 6= 0}
resp.

injdim(A) := sup{n | ∃B ∈ C ,ExtnC (B,A) 6= 0}.
The homological dimension of the category C is the maximum n such that there exists

two objects A,B in C with ExtnC (A,B) 6= 0 (or ∞ if no such d exists).
Lemma 3.56. The following properties of an object A in C are equivalent:
(1) prodim(A) = 0;
(2) Ext1

C (A,B) = 0 for all B in C ;
(3) A is a projective object.

Similarly, the following properties are equivalent:
(1) injdim(A) = 0;
(2) Ext1

C (B,A) = 0 for all B in C ;
(3) A is an injective object.

Proof. See [GM03, Lemma III.9.10]. �
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Lemma 3.57. Let
0 −→ B −→ P−(k−1) −→ · · · −→ P 0 −→ A −→ 0

be an acyclic object in Cb(C ) with all P i projective, then
prodim(B) = max{0, prodim(A)− k}.

Similarly, if
0 −→ A −→ I0 −→ · · · −→ Ik−1 −→ B −→ 0

is an acyclic object in Cb(C ) with all Ii injective, then
injdim(B) = max{0, injdim(A)− k}.

Proof. See [GM03, Lemma III.9.11]. �

Corollary 3.58. Let C be an Abelian category with enough projectives and A an object in
C . The following statements are equivalent:

(1) prodim(A) ≤ k;
(2) if the complex

0 −→ B −→ P−(k−1) −→ · · · −→ P 0 −→ A −→ 0
is acyclic and every P i is projective, then B is also projective.

(3) there exists an acyclic complex
0 −→ P−k −→ P−(k−1) −→ · · · −→ P 0 −→ A −→ 0

in which every P i projective.

Proof. (1)→ (2) follows from Lemmas 3.56 and 3.57. Now we show (2)→ (3): Since C has
enough projectves, we can compute a projective resolution, say PA, for A. Let ι : K ↪−→ P

−(k−1)
A

be the kernel embedding of ∂−(k−1)
PA

, then

0 −→ K ↪
ι−→ P−(k−1) −→ · · · −→ P 0 −→ A −→ 0

is acyclic, hence, by assumption, K is projective and the above complex is a projective resolution
of length ≤ k of A. Now we show (3) → (1): By Lemma 3.56, prodim

(
P−k

)
= 0 and by

Lemma 3.57, 0 = prodim(B) = max{0, prodim(A)− k}, i.e., prodim(A) ≤ k as desired. �

Remark 3.59. Let C be an Abelian category with enough projectives and a finite homological
dimension d ≥ 0. Then we have an algorithm which constructs for a given object A in C a finite
projective resolution of length at most d. We start by constructing some projective resolution P
of A, then we let P −→→ τ≥−d(P ) be the natural projection7 of P on the smart d-bellow truncation
of P , i.e., the morphism

. . . P−(d+1) P−d P−(d−1) . . . P 0 A 0

0 0 coker
(
∂
−(d+1)
P

)
P−(d−1) . . . P 0 A 0

∂
−(d+2)
P ∂

−(d+1)
P ∂−dP ∂

−(d−1)
P ∂−1

P

ι
∂
−(d−1)
P

∂−1
P

π

7It is a quasi-isomorphism (cf. [KS06, Definition 8.3.8]).
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where π is the cokerel projection of ∂−(d+1)
P and ι is the unique colift of ∂−dP along π. Since the

top row is acyclic and the truncation is smart, the bottom row is also acyclic. By Corollary 3.58,
coker

(
∂
−(d+1)
P

)
is projective. This means τ≥−d(P ) defines a finite projective resolution for A of

length at most d. Of course P and τ≥−d(P ) are homotopy-equivalent.

Lemma 3.60. Let C be an Abelian category with enough projectives and a finite homological
dimension d ≥ 0. Let P in K−(C ) be a complex of projectives such that Hi(P ) = 0 for i � 0,
then P is isomorphic to a bounded complex of projectives.

Proof. Let ` ∈ Z be a lower homological bound for P , i.e., Hi(P ) = 0 for all i < `. Let π
be the cokernel projection of ∂`−(d+1)

P and ι the unique colift of ∂`−dP along π. Then the natural
projection of P on the smart (`− d)-below truncation τ≥`−d(P )

. . . P `−(d+1) P `−d P `−(d−1) . . . P ` P `+1 . . .

0 0 coker
(
∂
`−(d+1)
P

)
P `−(d−1) . . . P ` P `+1 . . .

∂
`−(d+2)
P ∂

`−(d+1)
P ∂`−dP ∂

`−(d−1)
P ∂`−1

P

ι
∂
`−(d−1)
P

∂`−1
P

π

is a quasi-isomorphism. This means Hi
(
τ≥`−d(P )

)
= 0 for all i < `. Hence, the complex

0 −→ coker
(
∂
`−(d+1)
P

)
ι−→ P `−(d−1) −→ · · · −→ P ` −→→ coker

(
∂`−1
A

)
−→ 0

is acyclic, and by Corollary 3.58, coker
(
∂
`−(d+1)
P

)
is a projective object. If we define Q by

τ≥`−d(P ), then the assertion follows by Remark 3.24. �

Theorem 3.61. Let C be an Abelian category with enough projectives and finite homological
dimension d, then the natural functor

Kb(proj(C )) −→ Db(C )
defines an exact equivalence.

Proof. The functor is fully faithful and exact due to Corollary 3.51. By Theorem 3.31 and
Lemma 3.60 the functor Kb(proj(C )) −→ Db(C ) is essentially surjective. �

Theorem 3.62. Let C be an Abelian category with enough injectives and finite homological
dimension d ≥ 0, then the natural functor

Kb(inj(C )) −→ Db(C )
defines an exact equivalence.

Theorem 3.63. Let C be a Abelian category with enough projectives and finite homological
dimension. If Kb(C ) has decidable equality of morphisms, then so does Db(C ).

Definition 3.64. Let C be an Abelian category and T a triangulated category. Suppose
∗ ∈ {+,−, b, “ ”} and Q : K∗(C )→ D∗(C ) is the natural localization functor. Let F : K∗(C )→ T
be an exact functor. The left derived functor of F is an exact functor

LF : D∗(C )→ T,



90 3. CATEGORY CONSTRUCTORS IN HOMOLOGICAL ALGEBRA

together with a natural transformation
η : Q •LF → F

which is universal in the sense that if G : D∗(C ) → T is another exact functor equipped with a
natural transformation ζ : Q •G→ F , then there exists a unique natural transformation λ : G→
LF such ζA = λQ(A) • ηA for all A in K∗(A).

With the same assumptions as above, we have the following very useful lemma:
Lemma 3.65. If K∗(C ) has enough K-projectives, then F has a left derived functor (LF, η)

given by

LF :


D∗(C ) → T,

A 7→ F (PA),
r/q : A→ B 7→ F (Pq)−1 •F (Pr) : F (PA)→ F (PB)

and the natural transformation

η :
{
Q •LF → F,

A 7→ F (πA).
Definition 3.66. Let F : C → E be any functor between two Abelian categories, then F can

naturally be lifted to an exact functor K−(C ) −→ K−(E ) whose composition with the localization
functor of K−(E ) gives another exact functor F̃ : K−(C )→ D−(E ). If F̃ has a left derived functor(
LF̃ , η

)
, then we say F has a left derived functor LF := LF̃ ; and we define the ith-left derived

functor of F by
LiF := ιC •LF •Hi : C → E

where ιC is the natural embedding of C in D−(C ) and Hi is the ith-cohomology functor. The
natural transformation η induces a natural transformation L0F −→ F .

Example 3.67. Let C be an Abelian category with enough projectives. Then K−(C ) has
enough K-projectves (cf. Section 3.3). Hence, any exact functor K−(C ) −→ T has a left derived
functor.

Let F : C → E be a functor to an Abelian category E , then F has as well a left derived functor
LF : D−(C )→ D−(E ). Furthermore, the natural transformation L0F −→ F is an isomorphism if
and only if F is left exact.

Definition 3.68. Let C be an Abelian category and T a triangulated category. Suppose
∗ ∈ {+,−, b, “ ”} and Q : K∗(C )→ D∗(C ) is the natural localization functor. Let F : K∗(C )→ T
be an exact functor. The right derived functor of F is an exact functor

RF : D∗(C )→ T,

together with a natural transformation
η : F → Q •RF

which is universal in the sense that if G : D∗(C ) → T is another exact functor equipped with a
natural transformation ζ : F → Q •G, then there exists a unique natural transformation λ : RF →
G such ζA = ηA •λQ(A) for all A in K∗(A).

Definition 3.69. Let C be an Abelian category and T a triangulated category. Suppose
∗ ∈ {+,−, b, “ ”} and Q : K∗(C )→ D∗(C ) is the natural localization functor. Let F : K∗(C )→ T
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be an exact functor. If K∗(C ) has enough K-injectives, we define the right derived functor of
F by the pair (RF, η) consisting of the functor

RF :


D∗(C ) → T,

A 7→ F (IA),
r/q : A→ B 7→ F (Iq)−1 •F (Ir) : F (IA)→ F (IB)

and the natural transformation

η :
{
F → Q •RF,

A 7→ F (ιA).
Definition 3.70. Let F : C → E be any functor between two Abelian categories, then F can

naturally be lifted to an exact functor K+(C ) −→ K+(E ), whose composition with the localization
functor of K+(E ) gives another exact functor F̃ : K+(C ) → D+(E ). If F̃ has a right derived
functor

(
RF̃ , η

)
, then we say F has a right derived functor RF := RF̃ ; and we define the

ith-right derived functor of F by
RiF := ιC •RF •Hi : C → E

where ιC is the natural embedding of C in D+(C ) and Hi is the ith-cohomology functor. The
natural transformation η induces a natural transformation F −→ R0F .

Example 3.71. Let C be an Abelian category with enough injectives. Then K+(C ) has
enough K-injectives (cf. Section 3.3). Hence, any exact functor K+(C ) −→ T has a right derived
functor.

Let F : C → E be a functor to an Abelian category E , then F has as well a right derived
functor RF : D+(C ) → D+(E ). Furthermore, the induced natural transformation F −→ R0F is
an isomorphism if and only if F is right exact.





CHAPTER 4

Homomorphism Structures

We have already seen in Corollary 3.26 that solving two-sided inhomogeneous linear system
of equations in a category C is necessary to equip its bounded homotopy category Kb(C ) with
decidable equality of morphisms: Precisely, verifying the equality of two morphisms α, β : A→ B
in Kb(C ) amounts to verifying the solvability of the system

{∂iA •χi+1 + χi • ∂i−1
B = αi − βi | i ∈ SuppA},

for the given differentials ∂iA : Ai → Ai+1, ∂iB : Bi → Bi+1 and unknown morphisms χi : Ai →
Bi−1 for i ∈ SuppA. A particular solution (χi)i∈SuppA gives us a chain homotopy witnessing the
equality “α = β” in Kb(C ).

We will see later in Definition 5.3 that two-sided inhomogeneous linear system of equations
are necessary to render a triangulated category (T,Σ,4) computable: Precisely, verifying the
exactness of a triangle

A
α−→ B

ι−→ C
π−→ Σ(A)

over T amounts to (1) finding a particular solution of the system
ι •χ = ι(α), χ •π(α) = π,

where ι(α) and π(α) are taken from the standard exact triangle associated to α:

A
α−→ B

ι(α)−−→ Cone(α) π(α)−−−→ Σ(A)
(cf. Definition 5.1) and χ : C → Cone(α) is an unknown morphism; and then (2) verifying that
this particular solution χ is an isomorphism in T. Checking whether the particular solution χ is
an isomorphism also amounts to verifying the solvability of the system

χ • ξ = idC , ξ •χ = idCone(α)

for an unknown morphism ξ : Cone(α)→ C.
Solving two-sided linear systems is very usefull in functor categories: Let k be a commutative

ring and A a k-linear finitely presented category defined by a quiver q subject to a set of k-
relations ρ. Let [A ,E ] be the category of k-linear functors from A into a category E and
consider two objects F and G in [A ,E ]. Then computing the external Hom[A ,E ](F,G) amounts
to finding the solution set of a system of two-sided inhomogeneous linear equations in E (a linear
equation for each arrow in the quiver q). If E is the category R-rows for some commutative
ring R, then we can easily use the classical Kronecker product trick in solving matrix equations
[LT85]. However, to cover as many cases as possible, we will have to use a categorical approach
that is context-independent.

Which categorical constructions can help? For a locally small category C , the external Hom
bifunctor is defined as follows:

93
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HomC (−,−) :


C op × C → Set,
(A,D) 7→ HomC (A,D),

(αop, β) : (B,C)→ (A,D) 7→ HomC (α, β) :
{

HomC (B,C) → HomC (A,D),
χ 7→ α •χ •β.

Choosing an element in the set HomC (A,D) is similar to choosing a map in Set from some
singleton set, say {∗}, to HomC (A,D). This simple idea allows us to define a natural isomorphism

ν :


HomC (−,−) → HomSet({∗},HomC (−,−)),

(A,D) 7→ νA,D :


HomC (A,D) → HomSet({∗},HomC (A,D)),

γ 7→ νA,D(γ) :
{
{∗} → HomC (A,D),
∗ 7→ γ

where the naturality of ν translates to the equality1

νA,D(α •χ •β) = νB,C(χ) •HomC (α, β).

for all triples A α−→ B
χ−→ C

β−→ D of morphisms in C . This equality enables us to translate any
two-sided equation in C

α •χ •β = γ

for given morphisms α : A→ B, β : C → D and γ : A→ D and an unknown morphism χ : B → C
into a left-sided equation in Set

χ′ •HomC (α, β) = νA,D(γ)
where a solution χ can be recovered from χ′ as χ = ν−1

B,C(χ′).

{∗}

HomC (A,D)HomC (B,C)

νA,D(γ)

HomC (α, β)

χ′

If C is preadditive, the range of the external Hom bifunctor can be taken to be the category
Ab of abelian groups. In this case, we get a new natural isomorphism

ν :


HomC (−,−) → HomAb(Z,HomC (−,−)),

(A,D) 7→ νA,D :


HomC (A,D) → HomAb(Z,HomC (A,D)),

γ 7→ νA,D(γ) :
{
Z → HomC (A,D),
1 7→ γ

1This equality holds since νA,D(α •χ •β)(∗) = α •χ •β = HomC (α, β)(χ) = HomC (α, β)(νB,C(χ)(∗)).
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which also enables us to translate any two-sided equation α •χ •β = γ in C into a left-sided
equation χ′ •HomC (α, β) = νA,D(γ) in Ab.

Z

HomC (A,D)HomC (B,C)

νA,D(γ)

HomC (α, β)

χ′

Suppose now that C is a closed symmetric monoidal category whose tensor unit is 1, tensor
bifunctor is ⊗ : C × C → C and internal Hom bifunctor is Hom: C op × C → C (cf. [Pos17,
Section 3.2]). In this case, we can also construct a natural isomorphism

ν :


HomC (−,−) → HomC (1,Hom(−,−)),

(A,D) 7→ νA,D :
{

HomC (A,D) → HomC (1,Hom(A,D)),
γ 7→ δA,D(λA • γ)

where
λA : 1⊗A ∼−→ A

is the left unitor of A and
δA,D : HomC (1⊗A,D) ∼−→ HomC (1,Hom(A,D))

is the isomorphism induced by the adjunction (−)⊗ A a Hom(A,−). Again, the naturality of ν
translates to the equality

νA,D(α •χ •β) = νB,C(χ) •Hom(α, β)

for all triples A α−→ B
χ−→ C

β−→ D in C . This means that a closed symmetric monoidal structure
enables us to translate two-sided inhomogeneous equation α •χ •β = γ in C into a left-sided
equation χ′ •Hom(α, β) = νA,D(γ) in C .

1

Hom(A,D)Hom(B,C)

νA,D(γ)

Hom(α, β)

χ′

From a computer algebra viewpoint, this says that if the axioms of closed symmetric monoidal
categories are realized in C by algorithms and C has decidable lifts (cf. Definition A.8), then we
can automatically derive an algorithm to solve two-sided inhomogeneous equations α •χ •β = γ
in C .

The concept of a D-homomorphism structure on a category C was first formulated by Po-
sur in his constructive approach to Freyd categories [Pos21a]. This concept requires far less
prerequisites than those discussed previously while retaining the ability to transform two-sided
equations in a category C to left-sided equations in D .

A D-homomorphism structure (1, H(−,−), ν) on a category C consists of an object 1 in D ,
a bifunctor H : C op×C → D and a natural isomorphism ν : HomC (−,−) ∼−→ HomD(1, H(−,−))
(cf. Definition 4.2).
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The main advantage of the homomorphism structure is that it allows us to convert a two-sided
equation

α •χ •β = γ : A→ D

for with given morphisms α, β, γ and an unknown morphism χ : B → C in C into a left-sided
equation or a lifting problem

χ′ •H(α, β) = νA,D(γ)
in D , where χ can be recovered as χ = ν−1

B,C(χ′).
This can be extended in the additive case to solve two-sided inhomogeneous linear systems

(cf. Theorem 4.17). Solving two-sided inhomogeneous linear systems is indispensable for almost
all constructive approaches of thesis, for instance:

• In order to decided the exactness of a given triangle in a triangulated category T (and in
the affirmative case to compute an isomorphism witnessing the exactness), we need to
solve a two-sided inhomogeneous linear system of equations in T. So once T is equipped
with a D-homomorphism structure we can reduce this two-sided linear system to a
left-sided equation in D (cf. Lemma 5.4).
• Let P be an additive category with weak kernels and let A(P) be the Abelian Freyd
category of P. The class L of all projective objects in A(P) defines a class of lifting
objects in A(P). Deciding the equality of morphisms in the stable category A(P)/L
(and the affirmative case compute the so-called lift morphism witnessing the equality)
requires the ability to compute lifts in A(P). It is shown in [Pos21a, Section 6] that a
lift (i.e., a left-sided equation) in the Freyd category A(P) in turn requires solving a two-
sided inhomogeneous linear system in the underlying category P. So once P is equipped
with a D-homomorphism structure we can again reduce this two-sided inhomogeneous
linear system to a left-sided equation in D and hence compute the desired lift in A(P),
and finally decide the equality of morphisms in the stable category A(P)/L. (See
Remark 2.56 and Examples 2.60 and 5.37).
• In order to decide the equality of morphisms in the bounded homotopy category Kb(C )
(and in the affirmative case to compute a chain homotopy witnessing the equality), we
need to be able to solve two-sided inhomogeneous linear systems in the underlying ad-
ditive category C . So once C is equipped with a D-homomorphism structure, we can
again reduce this two-sided inhomogeneous linear system to a left-sided equation in D
and hence compute the desired chain homotopy witness (cf. Corollary 3.26). Further-
more, the computation of chain-homotopies witnessing the equality of morphisms in
Kb(C ) is essential for

– turning a bounded homotopy category into a computable triangulated category
(cf. Section 5.2),

– computing Postnikov systems and their associated convolutions and finally the
convolution functor (cf. Algorithms 4 and 5). The convolution functor is left adjoint
functor in the adjoint pair of exact equivalences induced by strong exceptional
sequences in bounded homotopy categories.

Remark 4.1. For some applications we need the homomorphism structure to be equivalent to
the external Hom bifunctor. For example to

• compute the Yoneda embedding of some finitely presented k-algebroid A into the functor
category A -mod := [A op, k-mat] (cf. Corollary 2.90).
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• compute the Ext-groups in the context of bounded derived categories, which is defined
by

ExtnC (A,B) := HomDb(C )(A,Σn(B))
(cf. Appendix C).
• compute the abstraction k-algebroid of a strong exceptional sequences E in a triangu-
lated category T (cf. Section 6.2).
• compute the functor

HomT(TE ,−) : T→ AE -mod
where T is a k-linear triangulated category, E is a strong exceptional sequence in T, TE

is the tilting object associated to E , AE is the abstraction k-algebroid of E and AE -mod
is the category of k-linear functors from Aop

E to the category k-mat of matrices over
k (Remark 6.36). This functor is essential for computing the replacement functor, the
latter being the right adjoint in adjoint pair of exact equivalences induced by strong
exceptional sequences in bounded homotopy categories (cf. Section 6.4).

It was, therefore, of fundamental importance to investigate ways to enhance the category con-
structors so that they automatically lift the homomorphism structures from the input categories
to the output category. In the first section, we summarize the key characteristics of homomor-
phism structures and demonstrate them with examples. The original treatment can be found in
[Pos21a] or [Pos21b]. The second section is devoted to the construction of new homomorphism
structures from existing ones.

4.1. Basics
The following is the formal definition of a D-homomorphism structure of a category C .
Definition 4.2. Let C and D . A D-homomorphism structure for C consists of the

following data:
(1) An object 1 ∈ D called the distinguished object.
(2) A bifunctor H(−,−) : C op × C → D . If C is an Ab-category then we require D to be

an Ab-category as well and H to be bilinear i.e., it acts linearly on morphisms in each
component.

(3) An isomorphism νB,C : HomC (B,C) ∼−→ HomD(1, H(B,C)) for each pair of objects
B,C ∈ C satisfying

νA,D(α •χ •β) = νB,C(χ) •H(α, β)

for all composable triples of morphisms A α−→ B
ϕ−→ C

β−→ D. In other words, the
following diagram commutes:

1

H(A,D)H(B,C)

	νB,C(χ) νA,D(α •χ •β)

H(α, β)

In the preadditive case we require νB,C to be an isomorphism of Abelian groups.
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Remark 4.3. The third axiom is equivalent to the existence of a natural isomorphism
ν : HomC (−,−) ∼−→ HomD(1, H(−,−)).

D

SetsC op × C

H(−,−) HomD(1,−)

HomC (−,−)

ν

In the preadditive case we replace Sets by Ab. The existence of the natural isomorphism ν
means that for any two morphisms α : A→ B and β : C → D we have the following commutative
diagram:

HomC (A,D)

HomC (B,C) HomD(1, H(B,C))

HomD(1, H(A,D))

� HomD(1, H(α, β))HomC (α, β)

∼
νB,C

∼
νA,D

which translates for any morphism χ : B → C to the equality
νA,D(α •χ •β) = νA,D(HomC (α, β)(χ))

= (HomC (α, β) • νA,D)(χ)
= (νB,C •HomD(1, H(α, β)))(χ)
= HomD(1, H(α, β))(νB,C(χ))
= νB,C(χ) •H(α, β);

i.e., to the third axiom.

Having a homomorphism structure enables us to reduce verifying the equality of morphisms
in C to verifying equality of morphisms in D .

Corollary 4.4. Suppose C is an Ab-category equipped with a D-homomorphism structure. If
D has decidable equality of morphisms, then so does C .

Proof. Two morphisms ϕ,ψ : B → C in C are equal if and only if νB,C(ϕ) = νB,C(ψ). �

Sometimes we may want to switch the range category of a D-homomorphism structure to
another category, say E . For example, when E provides more computational features than D .
The existence of a fully faithful functor F : D → E simplifies such transition. For instance, E
could be the Freyd category A(D).

Lemma 4.5. Let C be a preadditive category equipped with a D-homomorphism structure
(1, H(−,−), ν). If F : D → E is a fully faithful functor, then C can be equipped with an E -
homomorphism structure

(
F (1), H̃(−,−), ν̃

)
where H̃ := H •F and ν̃ is the vertical composition

of the natural transformations
HomC (−,−) ν−→ H(−,−) •HomD(1,−) ε−→ H̃(−,−) •HomE (F (1),−)
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where ε maps an object (B,C) in C op × C to the morphism

εB,C :

HomD(1, H(B,C)) → HomE

(
F (1), H̃(B,C)

)
,

` 7→ F (`).

Proof. It is sufficient to prove that ε is a natural isomorphism. Let (αop, β) : (B,C)→ (A,D)
be a morphism in C op×C . The assignment ε defines a natural transformation because for every
` : 1→ H(B,C), we have

εB,C(`) • H̃(α, β) = F (`) •F (H(α, β)) = F (` •H(α, β)) = εA,D(` •H(α, β)).
The morphism εB,C is an isomorphism because F is fully faithful; hence ε is indeed a natural

isomorphism, and consequently so is the vertical composition ν̃ := ν • ε. �

The following can be found in [Pos21a, Example 6.5].
Example 4.6. Let R be a commutative ring. Then R-rows is equipped with an R-rows-

homomorphism structure. The associated R-rows-homomorphism structure
(
R1×1, H(−,−), ν

)
is given by

H(−,−) :


R-rowsop ×R-rows → R-rows,(

R1×b, R1×c
)

7→ R1×bc,

(αop, β) :
(
R1×b, R1×c

)
→
(
R1×a, R1×d

)
7→ αtr ⊗ β : R1×bc (αj,i·β)i,j−−−−−−→ R1×ad

and

ν :

HomR-rows(−,−) → HomR-rows
(
R1×1, H(−,−)

)
,(

R1×b, R1×c
)

7→ νR1×b,R1×c

where νR1×b,R1×c is the assignment

νR1×b,R1×c :

HomR-rows
(
R1×b, R1×c

)
→ HomR-rows

(
R1×1, R1×bc

)
,

ϕ 7→ vec(ϕ)

and vec(ϕ) is the vectorization of ϕ, i.e., the row defined by the concatenation of all rows of ϕ.
The induced equality

vec(α •ϕ •β) = vec(ϕ) •
(
αtr ⊗ β

)
is the Kronecker product trick to solve matrix equations (cf. [LT85]).

The following three examples can be found in [Pos21a, Example 6.7], [Pos21b, Construction
1.27] and [Pos21a, Theorem 6.14].

Example 4.7. Let C be an additive closed symmetric monoidal category. Then the tensor
unit 1 ∈ C and the internal Hom-functor define a C -homomorphism structure for C . If the axioms
of a closed symmetric monoidal category are realized in C by algorithms, then C is equipped
with a C -homomorphism structure.

Example 4.8. Let C be a preadditive category and D an additive category. Then any D-
homomorphism structure of C can be lifted to a D-homomorphism structure of C⊕. In particular,
if C is equipped with a D-homomorphism structure, then so is C⊕.
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Example 4.9. Let C be an additive category equipped with a D-homomorphism structure
(1, H(−,−), ν). If D is Abelian and if 1 is a projective object, then A(C ) can be equipped with
a D-homomorphism structure.

Definition 4.10. Let C be equipped with a D-homomorphism structure (1, H(−,−), ν). We
say, the D-homomorphism structure of C is equivalent to the external Hom functor HomC (−,−)
if the functor HomD(1,−) is faithful and preserves all finite limits and colimits.

The following lemma enables us to derive a (k-mat)-homomorphism structure for Hom-finite
k-linear categories over a field k.

Lemma 4.11. Let k be a field, C a k-linear category and k-mat the category of matrices
over k introduced in Example 2.16. Suppose we have

(1) an algorithm which for a given pair of objects B,C in C , computes an ordered basis
B(HomC (B,C)) of HomC (B,C),

(2) an algorithm which for a given morphism ϕ : B → C, computes its k-linear coefficients
with respect to B(HomC (B,C)), i.e., the row λϕ ∈ k1×dimk HomC (B,C) with

λϕ · B(HomC (B,C)) = ϕ.
Then C can be equipped with a (k-mat)-homomorphism structure (which is equivalent to the
external Hom).

Proof. Define H : C op × C → k-mat by mapping an object (B,C) to dimk HomC (B,C)
and a given morphism (αop, β) : (B,C)→ (A,D) to the matrix of the k-linear map

HomC (α, β) :
{

HomC (B,C) → HomC (A,D),
ϕ 7→ α •ϕ •β

with respect to the bases B(HomC (B,C)) and B(HomC (A,D)). In other words,

H(α, β) =


...

λα • b •β
...


b∈B(B,C)

∈ kH(B,C)×H(A,D).

For each object (B,C) in C op × C , we define the bijection

νB,C :
{

HomC (B,C) → Homk-mat(1, H(B,C)),
ϕ 7→ λϕ.

For any triple A α−→ B
ϕ−→ C

β−→ D, we have
νA,D(α •ϕ •β) · B(HomC (A,D)) = λα •ϕ •β · B(HomC (A,D))

= α •ϕ •β

= HomC (α, β)(ϕ)
= λϕ ·H(α, β) · B(HomC (A,D))
= νB,C(ϕ) ·H(α, β) · B(HomC (A,D)).

Since B(HomC (A,D)) is a basis, it follows that νA,D(α •ϕ •β) = νB,C(ϕ) ·H(α, β). Consequently,
the assignment (B,C) 7→ νB,C is a natural isomorphism and the triple (1, H(−,−), ν) defines a
(k-mat)-homomorphism structure for C . �
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Remark 4.12. Let k be any field and C a k-linear category equipped with some (k-mat)-
homomorphism structure (1, H(−,−), ν). For a pair of objects B,C in C , applying the iso-
morphism ν−1

B,C on the elements of the canonical basis of HomD(1, H(B,C)) gives a basis of
HomC (B,C). In this case the k-linear coefficients of any ϕ : B → C with respect to the this basis
are the entries of the row ν(ϕ).

Example 4.13. Let k be a field and A = Fq/〈ρ〉 a finitely presented category defined by a
quiver q subject to an admissible set of relations ρ. Then A can be equipped with a (k-mat)-
homomorphism structure.

Remark 4.14. Let G be an additively written finitely presented Abelian group, R =
⊕

g∈GRg

a G-graded ring and let C
(⊕

g∈GRg
)

be the category associated to R introduced in Defini-
tion 2.7. If R0 is a field and for each g ∈ G the R0-vector space Rg is finite dimensional,
then C

(⊕
g∈GRg

)
can be equipped with an (R0-mat)-homomorphism structure. The fact that

R-grrows ∼= C
(⊕

g∈GRg
)⊕

implies that any homomorphism structure on C
(⊕

g∈GRg
)
can be

lifted to R-grrows.

Example 4.15. Let k be a commutative ring and R = k[x1, . . . , xn] be a Zt-graded polyno-
mial ring with deg x1 = m1, . . . , deg xn = mn. Then R =

⊕
m∈Zt Rm where k ⊆ R0 and each Rm

is a free k-module generated by the monomials of degree m. The monomials xs11 . . . xsnn of degree
m corresponds to the integral solutions2 of the equation m1y1 + · · · + mnyn = m which can be
rephrased as My = m with M ∈ Zt×n and y ∈ Zn.

The set of real solutions of My = m forms a polyhedron. By the the theory of convex
geometry, such a polyhedron can be written as Minkowski sum of a polytope and a cone where
the cone consists of the solutions of the equation My = 0 (see e.g., [Zie95] or [BG09]). That
is, if My = 0 has just the trivial solution 0 ∈ Zn, then My = m has a finite number of integral
solutions for every m ∈ Zt. In such a case, R0 = k and Rm is a finite dimensional k-vector space
for all m ∈ Zt. The same holds for the Zt graded exterior algebra Λ = k[e0, . . . , en].

Definition 4.16. Let C be an additive category. A linear system
(
(αij)ij , (βij)ij , (γi)i

)
in

C with m ∈ N equations and n ∈ N indeterminates is defined by the following data:
(1) Objects (Ai)i, (Di)i and (Bj)j , (Cj)j in C for i = 1, . . . ,m, j = 1, . . . , n.
(2) Morphisms (αij : Ai → Bj)ij and (βij : Cj → Di)ij in C for i = 1, . . . ,m, j = 1, . . . , n.
(3) Morphisms (γi : Ai → Di)i in C for i = 1, . . . ,m.

A1
α11−−−→ B1 C1

β11−−−→ D1 · · · A1
α1n−−−→ Bn Cn

β1n−−−→ D1 A1
γ1−→ D1

...
...

...
...

...
...

Am
αm1−−−→ B1 C1

βm1−−−→ Dm · · · Am
αmn−−−→ Bn Cn

βmn−−−→ Dm Am
γm−−→ Dm.

2See MonomialsWithGivenDegree in [BGK+21b].
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A solution for the system is given by morphisms (Xj : Bj → Cj) for j = 1, . . . , n, such that
the equations

α11 •X1 •β11 + · · ·+ α1n •Xn •β1n = γ1
...

...
...

...
αm1 •X1 •βm1 + · · ·+ αmn •Xn •βmn = γm

hold. We say C has decidable linear systems3 if we have an algorithm that constructs for a
given linear system a solution or disproves its existence.

The following theorem illustrates the use of homomorphism structure in solving linear systems.
The following is a replication of [Pos21a, Theorem 6.10].

Theorem 4.17. Let C be an additive category equipped with D-homomorphism structure
(1, H(−,−), ν). Given a linear system

(
(αij)ij , (βij)ij , (γi)i

)
with m equations and n indetermi-

nates in C , then there exists a solution for the linear system if and only if there exists a solution
in D to the lift problem:

1

⊕m
i=1H(Ai, Di)

⊕n
j=1H(Bj , Cj)

�

(H(αij , βij))ji

(νAi,Di(γi))1i
∃?

Proof. Suppose that (Xj)j is a solution for the linear system, hence
n∑
j=1

αij •Xj •βij = γi for i = 1, . . . ,m

It follows from the following computation(
νBj ,Cj (Xj)

)
1j
•(H(αij , βij))ji =

 n∑
j=1

νBj ,Cj (Xj) •H(αij , βij)


1i

=

 n∑
j=1

νAi,Di(αij •Xj •βij)


1i

=

νAi,Di
 n∑
j=1

αij •Xj •βij


1i

= (νAi,Di(γi))1i,

that ` :=
(
νBj ,Cj (Xj)

)
1j

: 1 →
⊕n

j=1H(Bj , Cj) is a solution to the above lift problem; which
proves the “only if ” part of the theorem.

Suppose now that we are given a lift ` = (`j)1j : 1→
⊕n

j=1H(Bj , Cj) for the above diagram.
Define Xj : Bj → Cj by ν−1

Bj ,Cj
(`j) for j = 1, . . . , n.

3See the operation SolveLinearSystemInAbCategory in [GSP22].
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Since all νAi,Di for i = 1, . . . , n are isomorphisms, we conclude by the following computation
(νAi,Di(γi))1i = (`j)1j •(H(αij , βij))ji

=

 n∑
j=1

`j •H(αij , βij)


1i

=

 n∑
j=1

νBj ,Cj (Xj) •H(αij , βij)


1i

=

 n∑
j=1

νAi,Di(αij •Xj •βij)


1i

=

νAi,Di
 n∑
j=1

αij •Xj •βij


1i

,

that γi =
∑n
j=1 αij •Xj •βij for i = 1, . . . ,m; which proves the “if ” part of the theorem. �

4.2. Homomorphism Structure on Functor Categories
Let q be a quiver and A = kFq/〈ρ〉 be a the k-linear finitely presented category defined

by q subject to the set ρ ⊂ kFq. By Theorem 2.67, the category of k-linear functors mod-A is
Abelian. Equipping mod-A with a (k-mat)-homomorphism structure enables us to solve systems
of two-sided inhomogeneous linear equations, which are vital for the decidability of equality of
morphisms in Kb(mod-A ), as well as for computing chain homotopy of null-homotopic morphisms
(cf. Corollary 3.26).

When q is acyclic and ρ is admissible, then mod-A is Abelian with enough projective and
injective objects and a finite global dimension (cf. Corollary 2.96). In this case, we obtain the
equivalences

Db(mod-A ) ∼= Kb(proj-A ) ∼= Kb(inj-A )
which turns Db(mod-A ) into a category with decidable equality of morphisms (cf. Section 3.4).

Theorem 4.18. Let q be a quiver and A = kFq/〈ρ〉 be the k-linear finitely presented category
defined by q subject to a set of relations ρ. For any category [A ,E ] of k-linear functors, if E is
equipped with a D-homomorphism structure and D is Abelian, then [A ,E ] can be equipped with a
D-homomorphism structure. In particular, the category mod-A := [A , k-mat] is equipped with
a (k-mat)-homomorphism structure.

Proof. We denote the data of the D-homomorphism structure of E by (1, H(−,−), ν). For
a pair of objects F and G in [A ,E ] we define the morphism

ΨF,G :
⊕
v∈q0

H(F (v), G(v))→
⊕
σ∈q1

H(F (sσ), G(rσ))
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by the matrix
. . . H(F (sσ), G(rσ)) . . .



... ∗ 0 ∗
H(F (sσ), G(sσ)) ∗ −H(F (sσ), G(σ)) ∗

... ∗ 0 ∗
H(F (rσ), G(rσ)) ∗ H(F (σ), G(rσ)) ∗

... ∗ 0 ∗

.

For a given pair of morphisms η : X → F and ζ : G→ Y we define the morphisms
Θη,ζ :=

⊕
v∈q0

H(η(v), ζ(v)) :
⊕
v∈q0

H(F (v), G(v))→
⊕
v∈q0

H(X(v), Y (v))

∆η,ζ :=
⊕
σ∈q1

H(η(sσ), ζ(rσ)) :
⊕
σ∈q1

H(F (sσ), G(rσ))→
⊕
σ∈q1

H(X(sσ), Y (rσ)).

For all σ ∈ q1 we have the following two equalities
H(F (sσ), G(σ)) •H(η(sσ), ζ(rσ)) = H(η(sσ), G(σ) • ζ(rσ))

= H(η(sσ), ζ(sσ) •Y (σ))
= H(η(sσ), ζ(sσ)) •H(X(sσ), Y (σ))

and
H(F (σ), G(rσ)) •H(η(sσ), ζ(rσ)) = H(η(sσ) •F (σ), ζ(rσ))

= H(X(σ) • η(rσ), ζ(rσ))
= H(η(rσ), ζ(rσ)) •H(X(σ), Y (rσ));

hence ΨF,G •∆η,ζ = Θη,ζ •ΨX,Y . This gives a bifunctor

Ĥ(−,−) :


[A ,E ] op × [A ,E ] → D ,

(F,G) 7→ ker(ΨF,G),
(ηop, ζ) : (F,G)→ (X,Y ) 7→ the kernel lift of ιF,G •Θη,ζ along ιX,Y

where ιF,G and ιX,Y are the kernel embeddings of ΨF,G resp. ΨX,Y .
Next, we construct the natural isomorphism

Hom[A ,E ](F,G) ' HomD(1, H(F,G)).
For a morphism ϕ : F → G we define λϕ : 1→

⊕
v∈q0 H(F (v), G(v)) by the matrix

. . . H(F (v), G(v)) . . .
( )1 . . . νF (v),G(v)(ϕ(v)) . . . .
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For all σ ∈ q1 we have
−νF (sσ),G(sσ)(ϕ(sσ)) •H(F (sσ), G(σ)) + νF (rσ),G(rσ)(ϕ(rσ)) •H(F (σ), G(rσ))

= −νF (sσ),G(rσ)(ϕ(sσ) •G(σ)) + νF (sσ),G(rσ)(F (σ) •ϕ(rσ))
= νF (sσ),G(rσ)(−ϕ(sσ) •G(σ) + F (σ) •ϕ(rσ))
= νF (sσ),G(rσ)(0)
= 0;

hence λϕ •ΨF,G = 0. This means for each object (F,G) in [A ,E ] op × [A ,E ] we can define the
map

ν̂F,G :

Hom[A ,E ](F,G) → HomD

(
1, Ĥ(F,G)

)
,

ϕ 7→ the kernel lift of λϕ along ιF,G,
i.e., ν̂F,G(ϕ) is the unique morphism for which ν̂F,G(ϕ) • ιF,G = λϕ. The uniqueness of ν̂F,G(ϕ) is
justified by the universal property of kernels, and it implies that ν̂F,G is injective.

We still need to show that ν̂F,G is surjective. For a given morphism ` : 1 → Ĥ(F,G), the
composition ` • ιF,G is uniquely determined by a matrix

. . . H(F (v), G(v)) . . .
( )1 . . . `v . . . .

For every v ∈ A , we set ϕ`,v := ν−1
F (v),G(v)(`v) : F (v) → G(v). Since ιF,G •ΘF,G = 0, we have

the equality
−`sσ •H(F (sσ), G(σ)) + `rσ •H(F (σ), G(rσ)) = 0

for every σ ∈ q1, i.e.,
−νF (sσ),G(sσ)(ϕ`,sσ) •H(F (sσ), G(σ)) + νF (rσ),G(rσ)(ϕ`,rσ) •H(F (σ), G(rσ)) = 0

which, due to the naturality of ν, is equivalent to
νF (sσ),G(rσ)(−ϕ`,sσ •G(σ) + F (σ) •ϕ`,rσ) = 0.

Since ν is a natural isomorphism, we have −ϕ`,sσ •G(σ) + F (σ) •ϕ`,rσ = 0. In particular, the
assignment

ϕ` :
{
F → G,

v 7→ ϕ`,v

defines a morphism in [A ,E ]. By construction that λϕ` = ` • ιF,G, hence ν̂F,G(ϕ`) = ` and ν̂F,G
is indeed surjective.

It remains to show that the assignment

ν̂ :
{

Hom[A ,E ](−,−) → H(−,−) •HomD(1,−),
(F,G) 7→ ν̂F,G
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defines a natural isomorphism. The data associated to the triple η, ζ and ϕ incorporate into the
following commutative diagram

�

� �

1

Ĥ(F,G)
⊕

v∈q0 H(F (v), G(v))
⊕

σ∈q1 H(F (sσ), G(rσ))

Ĥ(X,Y )
⊕

v∈q0 H(X(v), Y (v))
⊕

σ∈q1 H(X(sσ), Y (rσ))

λϕ
ν̂F,G(ϕ)

ιF,G ΨF,G

ιX,Y ΨX,Y

Ĥ(η, ζ) Θη,ζ ∆η,ζ

For every v ∈ q0, we have
νX(v),Y (v)((η •ϕ • ζ)(v)) = νX(v),Y (v)(η(v) •ϕ(v) • ζ(v)) = νF (v),G(v)(ϕ(v)) •H(η(v), ζ(v)),

hence λη •ϕ • ζ = λϕ •Θη,ζ . On the other hand, λϕ •Θη,ζ =
(
ν̂F,G(ϕ) • Ĥ(η, ζ)

)
• ιX,Y , conse-

quently λη •ϕ • ζ =
(
ν̂F,G(ϕ) • Ĥ(η, ζ)

)
• ιX,Y . By the definition of ν̂, we get ν̂X,Y (η •ϕ • ζ) =

ν̂F,G(ϕ) • Ĥ(η, ζ). In particular, the following diagram

�

Hom[A ,E ](F,G) HomD

(
1, Ĥ(F,G)

)

Hom[A ,E ](X,Y ) HomD

(
1, Ĥ(X,Y )

)

ν̂F,G

ν̂X,Y

η • − • ζ − • Ĥ(η, ζ)

is commutative and ν̂ is indeed a natural transformation. �

Remark 4.19. For an implementation of the above theorem we refer to the GAP package Functor-
Categories [BS21a]. A software-demo of the theorem can be found in Appendix E.

4.3. Homomorphism Structure on Stable Categories
Our aim in this section is to equip stable categories defined by classes of lifting or colifting

objects (cf. Definition 2.55) with homomorphism structures.
We start by the following construction:
Construction 4.20. Let C be an additive category equipped with a class of lifting objects

L. Suppose C is equipped with a D-homomorphism structure (1, H(−,−), ν) for some Abelian
category D . We define the bifunctor

HL(−,−) :


C op × C → D ,

(B,C) 7→ coker(H(B, `C)),
(αop, β) : (B,C)→ (A,D) 7→ the cokernel colift of πB,C along H(α, β) •πA,D

where πB,C and πA,D are the cokernel projections of H(B, `C) resp. H(A, `D):
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H(B,LC) H(B,C) HL(B,C)

H(A,LD) H(A,D) HL(A,D)

� �

H(B, `C) πB,C

H(A, `D) πA,D

H(α,Lβ) H(α, β) HL(α, β)

Lemma 4.21. Let C be an additive category equipped with a class of lifting objects L and a
D-homomorphism structure (1, H(−,−), ν) such that HomD(1,−) is a faithful functor 4. Then
H(Q, `A) is an epimorphism for all Q ∈ L and A ∈ C .

Proof. Since Q ∈ L, `Q : LQ → Q is a split-epimorphism. Let δQ : Q → LQ be a section
morphism for `Q. For any morphism ϕ : Q→ A, we have

ϕ = idQ •ϕ = δQ • `Q •ϕ = δQ •Lϕ • `A,

i.e., the homomorphism of Abelian groups HomC (Q, `A) is surjective, hence an epimorphism.
By applying the functor HomD(1,−) on H(Q, `A) and using the naturality of ν, we get the

following commutative diagram:

HomC (Q,LA) HomC (Q,A)

�

HomD(1, H(Q,LA)) HomD(1, H(Q,A))

HomC (Q, `A)

HomD(1, H(Q, `A))

∼νQ,LA ∼ νQ,A

It follows that HomD(1, H(Q, `A)) is an epimorphism as well. The assertion follows from the
fact that faithful functors reflect epimorphisms (cf. Lemma A.14). �

Lemma 4.22. Let C be an additive category equipped with a class of lifting objects L and
with a D-homomorphism structure (1, H(−,−), ν) with

(1) D is Abelian,
(2) H(Q, `C) is an epimorphism for all Q ∈ L and C ∈ C .

Then, for any pair of objects B,C in C , if either B or C lives in L, then HL(B,C) = 0.
Consequently, HL(−,−) factors through C /L op × C /L.

Proof. By construction HL(B,C) := coker(H(B, `C)), hence HL(B,C) = 0 if and only if
H(B, `C) is an epimorphism.

If B ∈ L then, by the assumption, we have H(B, `C) is as desired an epimorphism. If C ∈ L,
then `C is a split-epimorphism, i.e., there exists a morphism δC with δC • `C = idC . This means

idH(B,C) = H(B, idC) = H(B, δC • `C) = H(B, δC) •H(B, `C),
i.e., H(B, `C) is a split-epimorphism, hence an epimorphism.

Let (αop, β) : (B,C) → (A,D) be a morphism in C op × C . If α belongs to IL, then there
exists a lift morphism, say τα : A → LB, of α along `B. In this case, HL(α, β) can be written
as HL(`B, β) •HL(τα, idD), i.e., HL(α, β) factors through HL(LB, D) = 0, i.e., HL(α, β) = 0. On

4This assumption is fulfilled for all examples of this thesis.
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the other hand, if β belongs to IL, then there exists a lift, say τβ : C → LD, of β along `D.
In this case, HL(α, β) can be written as HL(idB, τβ) •HL(α, `D), i.e., HL(α, β) factors through
HL(B,LD) = 0, i.e., HL(α, β) = 0.

Hence, we can define the bifunctor

HL(−,−) :


C /L op × C /L → D ,

([B], [C]) 7→ HL(B,C),
([α]op, [β]) : ([B], [C])→ ([A], [D]) 7→ H(α, β) : H(B,C)→ H(A,D),

which is a colift of HL(−,−) : C op × C → D along the functor

[ ](−,−) :


C op × C → C /L op × C /L,
(B,C) 7→ ([B], [C]),

(αop, β) : (B,C)→ (A,D) 7→ ([α]op, [β]) : ([B], [C])→ ([A], [D]).
�

The following is the main theorem in this section:
Theorem 4.23. Let C be an additive category equipped with a class of lifting objects L and

with a D-homomorphism structure (1, H(−,−), ν) such that
(1) D is Abelian,
(2) 1 is a projective object,
(3) HomD(1,−) is a faithful functor 5.

Then C /L can be equipped with a D-homomorphism structure.

Proof. Since HomD(1,−) is faithful, H(Q, `C) is an epimorphism for all Q ∈ L and C ∈ C
(cf. Lemma 4.21). Let HL(−,−) be the bifunctor asserted in Lemma 4.22. We claim that

HomC /L(−,−) ∼= HomD(1, HL(−,−)).
Since 1 is a projective object in D , the functor HomD(1,−) is exact. Hence, applying it on

the exact sequence

H(B,LC) H(B,C) HL([B], [C]),
H(B, `C) πB,C

yields another exact sequence

HomD(1, H(B,LC)) HomD(1, H(B,C)) HomD(1, HL([B], [C]))
HomD(1, H(B, `C)) HomD(1, πB,C)

By the naturality of ν we can create the following commutative diagram:

HomC (B,LC) HomC (B,C) HomC /L([B], [C])

� �

HomD(1, H(B,LC)) HomD(1, H(B,C)) HomD(1, HL([B], [C])),

HomC (B, `C) [ ]B,C

HomD(1, H(B, `C)) HomD(1, πB,C)

∼ νB,LC ∼ νB,C ζ[B],[C]

5If D is a module category R-mod then 1 is called a generator (see e.g., [Jac89, Theorem 3.21]).
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where ζ[B],[C] is the cokernel colift of [ ]B,C along νB,C •HomD(1, πB,C). That is, for any morphism
[ϕ] : [B] → [C], we have ζ[B],[C]([ϕ]) = νB,C(ϕ) •πB,C . It follows from the 5-Lemma [Wei94, Ex.
1.3.3] that ζ[B],[C] is an isomorphism. Its inverse is given by

ζ−1
B,C :

HomD(1, HL([B], [C])) → HomC /L([B], [C]),
` 7→

[
ν−1
B,C(λ`)

]
where λ` : 1→ H(B,C) is a projective-lift of ` along πB,C .

The following computation(
ζ[B],[C] •HomD(1, HL([α], [β]))

)
([ϕ]) = HomD(1, HL([α], [β]))

(
ζ[B],[C]([ϕ])

)
= νB,C(ϕ) •πB,C •HL([α], [β])
= νB,C(ϕ) •H(α, β) •πA,D
= νA,D(α •ϕ •β) •πA,D
= ζ[A],[D]([α •ϕ •β])

= ζ[A],[D]
(
HomC /L([α], [β])([ϕ])

)
=
(
HomC /L([α], [β]) • ζ[A],[D]

)
([ϕ])

translates to the commutativity of the following diagram:

HomC /L([B], [C]) HomD(1, HL([B], [C]))

HomC /L([A], [D]) HomD(1, HL([A], [D]))

�

ζ[B],[C]

ζ[A],[D]

HomC /L([α], [β]) HomD(1, HL([α], [β]))

Hence, the assignment

ζ :


HomC /L(−,−) → HomD(1, HL(−,−)),

([B], [C]) 7→ ζ[B],[C] :
{

HomC /L([B], [C]) → HomD(1, HL([B], [C])),
[ϕ] 7→ νB,C(ϕ) •πB,C

is a natural isomorphism. That is, (1, HL(−,−), ζ) is a D-homomorphism structure of C /L. �

The same statement holds for stable categories defined by classes of colifting objects:
Corollary 4.24. Let C be an additive category equipped with a class of colifting objects Q

and with a D-homomorphism structure (1, H(−,−), ν) such that
(1) D is Abelian,
(2) 1 is a projective object,
(3) HomD(1,−) is a faithful functor.

Then C /Q can be equipped with a D-homomorphism structure.
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Proof. If a category is equipped with a D-homomorphism structure, then so is its opposite
category. On the other hand, the class of colifting objects in C defines a class of lifting objects
in C op. Thus, the assertion follows by Theorem 4.23. �

Remark 4.25. A software-demo for the homomorphism structure can be found in Appendix D
or in the manual of the GAP package StableCategories [Sal21e].

4.4. Homomorphism Structure on Categories of Bounded Complexes
In this section we discuss how to elevate a D-homomorphism structures on an additive or

Abelian category C to the category of bounded complexes Cb(C ).
Theorem 4.26. Let C be an additive category equipped with a D-homomorphism structure

where D is also additive. Then Cb(C ) can be equipped with a Cb(D)-homomorphism structure.

Proof. Let
H : Cb(C ) op × Cb(C )→ Cb(D)

be the bifunctor defined as follows:
(1) An object (B,C) in Cb(C ) op×Cb(C ) is mapped to the totalisation of the double complex

...
...

j + 1 . . . H
(
B−i, Cj+1) H

(
B−i−1, Cj+1) . . .

j . . . H
(
B−i, Cj

)
H
(
B−i−1, Cj

)
. . .

...
...

i i+ 1,

(−1)i+j+2H
(
∂−i−1
B , Cj+1

)

(−1)i+j+1H
(
∂−i−1
B , Cj

)
H
(
B−i, ∂jC

)
H
(
B−i−1, ∂jC

)

i.e., to the complex H(B,C) in Cb(D) whose object at index n ∈ Z is

H(B,C)n :=
⊕
j∈Z

H
(
Bj−n, Cj

)
and whose differential ∂nH(B,C) at n ∈ Z is given by the matrix

. . . H
(
Bj−1−n, Cj

)
H
(
Bj−n, Cj+1) H

(
Bj+1−n, Cj+2) . . .



... ∗ ∗ 0 0 0
H
(
Bj−n, Cj

)
0 (−1)n+1H

(
∂j−1−n
B , Cj

)
H
(
Bj−n, ∂jC

)
0 0

H
(
Bj+1−n, Cj+1) 0 0 (−1)n+1H

(
∂j−nB , Cj+1

)
H
(
Bj+1−n, ∂j+1

C

)
0

... 0 0 0 ∗ ∗

.
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In particular, the differential ∂0
H(B,C) is given by the matrix

. . . H
(
Bj−1, Cj

)
H
(
Bj , Cj+1) H

(
Bj+1, Cj+2) . . .



... ∗ ∗ 0 0 0
H
(
Bj , Cj

)
0 −H

(
∂j−1
B , Cj

)
H
(
Bj , ∂jC

)
0 0

H
(
Bj+1, Cj+1) 0 0 −H

(
∂jB, C

j+1
)

H
(
Bj+1, ∂j+1

C

)
0

... 0 0 0 ∗ ∗

.

(2) A morphism (αop, β) : (B,C)→ (A,D) in Cb(C ) op×Cb(C ) is mapped to the morphism
H(α, β) : H(B,C) → H(A,D) defined by the totalisation of the morphism of double
complexes whose component at index (i, j) ∈ Z2 is given by H

(
α−i, βj

)
: H

(
B−i, Cj

)
→

H
(
A−i, Dj

)
. This means the component of H(α, β) at index n ∈ Z is given by the

matrix
. . . H

(
Aj−n, Dj

)
H
(
Aj+1−n, Dj+1) . . .


... ∗ 0 0 0

H
(
Bj−n, Cj

)
0 H

(
αj−n, βj

)
0 0

H
(
Bj+1−n, Cj+1) 0 0 H

(
αj+1−n, βj+1) 0

... 0 0 0 ∗

.

Let d1c0 denote the 0-stalk complex in Cb(D) defined by 1. We define the natural transfor-
mation

ν :
{

HomCb(C )(−,−) → HomCb(D)(d1c0, H(−,−)),
(B,C) 7→ νB,C : HomCb(C )(B,C)→ HomCb(D)(d1c0, H(B,C))

where νB,C is defined by mapping a morphism ϕ : B → C to the 0-stalk morphism
νB,C(ϕ) : d1c0 → H(B,C)

defined by the morphism 1 −→
⊕

j∈ZH
(
Bj , Cj

)
whose matrix is

. . . H
(
Bj , Cj

)
H
(
Bj+1, Cj+1) . . .

( )1 . . . νBj ,Cj
(
ϕj
)

νBj+1,Cj+1
(
ϕj+1) . . . .

For all j ∈ Z, the column of νB,C(ϕ)0 • ∂0
H(B,C) that is indexed by H

(
Bj , Cj+1) is given by

νBj ,Cj
(
ϕj
)
•H
(
Bj , ∂jC

)
− νBj+1,Cj+1

(
ϕj+1

)
•H
(
∂jB, C

j+1
)

= νBj ,Cj+1

(
ϕj • ∂jC

)
− νBj ,Cj+1

(
∂jB •ϕj+1

)
= νBj ,Cj+1

(
ϕj • ∂jC − ∂

j
B
•ϕj+1

)
= νBj ,Cj+1(0)
= 0,

i.e., νB,C(ϕ)0 • ∂0
H(B,C) = 0, and consequently νB,C(ϕ) is indeed a complex morphism in Cb(D)

and νB,C is well-defined. Moreover, νB,C is an isomorphism and its inverse

ν−1
B,C : HomCb(D)(d1c0, H(B,C))→ HomCb(C )(B,C)
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is defined by mapping the 0-stalk morphism ` : d1c0 → H(B,C) defined by `0 : 1→
⊕

j∈ZH
(
Bj , Cj

)
with matrix

. . . H
(
Bj , Cj

)
H
(
Bj+1, Cj+1) . . .

( )1 . . . `0j `0j+1 . . .

to the morphism ν−1
B,C(`) : B → C whose component at index j ∈ Z is given by ν−1

Bj ,Cj

(
`0j

)
: Bj →

Cj . For all j ∈ Z, we have

νBj ,Cj+1

(
ν−1
Bj ,Cj

(
`0j

)
• ∂jC − ∂

j
B
• ν−1
Bj+1,Cj+1

(
`0j+1

))
= `0j •H

(
Bj , ∂jC

)
− `0j+1 •H

(
∂jB, C

j+1
)

= 0,

i.e., ν−1
Bj ,Cj

(
`0j

)
• ∂jC − ∂jB • ν−1

Bj+1,Cj+1

(
`0j+1

)
= 0 because νBj ,Bj+1 is an isomorphism. Hence,

ν−1
B,C(`) : B → C is indeed a morphism in Cb(C ), i.e., ν−1

B,C is well-defined. The naturality of ν
follows from the naturality of ν. �

Corollary 4.27. Let C be an additive category equipped with a D-homomorphism structure
where D is Abelian. Then Cb(C ) can be equipped with a D-homomorphism structure.

Proof. The category Cb(C ) has a D-homomorphism structure
(
1, H̃(−,−), ν̃

)
, where H̃(−,−)

is defined by the composition6

Cb(C ) op × Cb(C ) H(−,−)−−−−−→ Cb(D) Z0
−→ D ,

and ν̃ is defined by the vertical composition

HomCb(D)(−,−) ν−→ HomCb(D)(d1c0, H(−,−)) ζ−→ HomD

(
1, H̃(−,−)

)
,

where ζB,C is defined by

ζB,C :

HomCb(D)(d1c0, H(B,C)) → HomD

(
1, H̃(B,C)

)
,

` 7→ Z0(`).

For an object (B,C) in Cb(C ) op × Cb(C ), let ιB,C : H̃(B,C) ↪−→ H(B,C)0 be the kernel
embedding of ∂0

H(B,C). For any morphism ` : d1c0 → H(B,C) the morphism ζB,C(`) is the lift of
`0 : 1→ H(B,C)0 along ιB,C .

6The functor Z0 is introduced in Definition 3.3.
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It is sufficient to prove that ζ is indeed a natural isomorphism. For any morphism (αop, β) : (B,C)→
(A,D) and any morphism ` : d1c0 → H(B,C), we can create the following commutative diagram:

�

� �

1

H̃(B,C) H(B,C)0 H(B,C)1

H̃(A,D) H(A,D)0 H(A,D)1

`0
ζB,C(`)

ιB,C ∂0
H(B,C)

ιA,D ∂0
H(A,D)

H̃(α, β) H(α, β)0 H(α, β)1

from which we conclude the equality ζB,C(`) • H̃(α, β) • ιA,D = `0 •H(α, β)0. Hence, by the defini-
tion of ζ, we have ζA,D(` •H(α, β)) = ζB,C(`) • H̃(α, β); which translates into the commutativity
of the following diagram

�

HomCb(D)(d1c0, H(B,C)) HomD

(
1, H̃(B,C)

)

HomCb(D)(d1c0, H(A,D)) HomD

(
1, H̃(A,D)

)
,

ζB,C

ζA,D

− •H(α, β) − • H̃(α, β)

i.e., ζ is indeed a natural transformation. Moreover, the component ζB,C is an isomorphism and
its inverse ζ−1

B,C maps a morphism τ : 1→ H̃(B,C) to the 0-stalk complex morphism `τ : d1c0 →
H(B,C) defined by τ • ιB,C . This means ζ is a natural isomorphism, hence, so is the vertical
composition ν̃ := ν • δ. �

Corollary 4.28. Let C be an additive category equipped with a D-homomorphism structure
(1, H(−,−), ν) where D is an additive category with weak kernels. Then the category Cb(C ) has
an A(D)-homomorphism structure, where A(D) is the Freyd category of D .

Proof. By Theorem 2.31 the category D has weak kernels if and only if its Freyd cate-
gory A(D) is Abelian. Moreover, the natural embedding D

ι−→ A(D) is always fully faithful.
Hence, by Lemma 4.5, C can be equipped by an A(D)-homomorphism structure; consequently
by Corollary 4.27, Cb(C ) can also be equipped by an A(D)-homomorphism structure. �

Example 4.29. Let R be a commutative left coherent ring. In Example 4.6, we found that
R-rows is equipped with a (R-rows)-homomorphism structure. By Section 2.1.1, A(R-rows)
is an Abelian category. Hence, by Corollaries 4.27 and 4.28, the category Cb(R-rows) can be
equipped with an A(R-rows)-homomorphism structure.

Example 4.30. Let R be a commutative left coherent ring. Then A(R-rows) can be
equipped with an A(R-rows)-homomorphism structure [Pos21a]. Hence, Cb(A(R-rows)) can
be equipped with an A(R-rows)-homomorphism structure.
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Example 4.31. Let q be a quiver and A = kFq/〈ρ〉 be the k-linear finitely presented category
defined by q subject to a set of relations ρ. According to Theorem 4.18, the category mod-A
can be equipped with a (k-mat)-homomorphism structure. Hence, Cb(mod-A ) can be equipped
with a (k-mat)-homomorphism structure.

4.5. Homomorphism Structure on Bounded Homotopy and Derived
Categories

In this section we discuss how to elevate a D-homomorphism structures on an additive or
Abelian category C to the bounded homotopy category Kb(C ).

Corollary 4.32. With the same assumptions and notations as in Theorem 4.26, if B,C are
objects in Cb(C ) and either of which is contractible, then H(B,C) is also contractible.

Proof. In the case where B is contractible, let
(
λnB : Bn → Bn−1)

n∈Z be a family of mor-
phisms satisfying ∂nB •λn+1

B + λnB • ∂n−1
B = idBn for all n ∈ Z. For each n ∈ Z, we define the

morphism
λnH(B,C) : H(B,C)n → H(B,C)n−1

by the matrix
. . . H

(
Bj+1−n, Cj

)
H
(
Bj+2−n, Cj+1) . . .



... ∗ 0 0 0
H
(
Bj−n, Cj

)
0 (−1)nH

(
λj+1−n
B , Cj

)
0 0

H
(
Bj+1−n, Cj+1) 0 0 (−1)nH

(
λj+2−n
B , Cj+1

)
0

... 0 0 0 ∗

.

A direct computation shows that ∂nH(B,C) •λ
n+1
H(B,C) + λnH(B,C) • ∂

n−1
H(B,C) is given by the matrix

. . . H
(
Bj−n, Cj

)
. . .


... ∗ 0 0
H
(
Bj−n, Cj

)
0 H

(
∂j−nB

•λj+1−n
B , Cj

)
+H

(
λj−nB

• ∂j−1−n
B , Cj

)
0

... 0 0 ∗

,

which, by the functoriality of H(−,−), is equal to idH(B,C)n .
In the case where C is contractible, let

(
λnC : Cn → Cn−1)

n∈Z be a family of morphisms
statisfying ∂nC •λn+1

C + λnC • ∂n−1
C = idCn for all n ∈ Z. For each n ∈ Z, we define the morphism

λnH(B,C) : H(B,C)n → H(B,C)n−1

by the matrix
. . . H

(
Bj−n, Cj−1) H

(
Bj+1−n, Cj

)
. . .



... ∗ 0 0 0
H
(
Bj−n, Cj

)
0 H

(
Bj−n, λjC

)
0 0

H
(
Bj+1−n, Cj+1) 0 0 H

(
Bj+1−n, λj+1

C

)
0

... 0 0 0 ∗

.
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A direct computation shows that ∂nH(B,C) •λ
n+1
H(B,C) + λnH(B,C) • ∂

n−1
H(B,C) is given by the matrix

. . . H
(
Bj−n, Cj

)
. . .


... ∗ 0 0
H
(
Bj−n, Cj

)
0 H

(
Bj−n, ∂jC •λj+1

C

)
+H

(
Bj−n, λjC • ∂j−1

C

)
0

... 0 0 ∗

,

which, by the functoriality of H(−,−), is equal to idH(B,C)n . This means, in either case, the
object H(B,C) is contractible. �

Theorem 4.33. Let C be an additive category equipped with D-homomorphism structure
(1, H(−,−), ν). Then Kb(C ) can be equipped with a Kb(D)-homomorphism structure.

Proof. By Theorem 4.26, Cb(C ) can be equipped with a Cb(D)-homomorphism structure
(d1c0, H(−,−), ν). Let (αop, β) : (B,C) → (A,D) be a morphism in Cb(C ) op × Cb(C ). If α
is null-homotopic, then α factors through Cone(idA), hence H(α, β) factors through the object
H(Cone(idA), C). Analogously, if β is null-homotopic, then H(α, β) factors through the object
H(A,Cone(idC)). By Corollary 4.32, if either α or β is null-homotopic then H(α, β) factors
through a contractible object, i.e., by Remark 3.22, H(α, β) is then null-homotopic.

The component of the natural isomorphism ν at some object (B,C) in Cb(C ) op × Cb(C ) is
given by an isomorphism

νB,C : HomCb(C )(B,C) ∼−→ HomCb(D)(d1c0, H(B,C)).
We claim that a morphism α : A → B is null homotopic if and only if νB,C(ϕ) is null-

homotopic: Suppose that ϕ is null-homotopic and let
(
hi : Ai → Bi−1)

i∈Z is a chain homotopy of
ϕ. Let j0 : 1D → H(B,C)−1 be the morphism defined by the matrix

. . . H
(
Bj , Cj−1) H

(
Bj+1, Cj

)
. . .

( )1 . . . νBj ,Cj−1
(
hj
)

νBj+1,Cj
(
hj+1) . . . .

whose composition with ∂−1
H(B,C) is given by the matrix

. . . H
(
Bj , Cj

)
. . .( )

1 . . . νBj ,Cj−1
(
hj
)
•H
(
Bj , ∂j−1

C

)
+ νBj+1,Cj

(
hj+1) •H(∂jB, Cj) . . .

which, by the naturality of ν, can be simplified to
. . . H

(
Bj , Cj

)
. . .( )

1 . . . νBj ,Cj
(
hj • ∂j−1

C + ∂jB •hj+1
)

. . . =
. . . H

(
Bj , Cj

)
. . .

( )1 . . . νBj ,Cj
(
ϕj
)

. . . ;

hence j0 • ∂−1
H(B,C) = νB,C(ϕ)0 and νB,C(ϕ) is then null-homotopic. Conversely, suppose νB,C(ϕ)

is null-homotopic and let `0 : 1 → H(B,C)−1 be a morphism such that `0 • ∂−1
H(B,C) = νB,C(ϕ)0.

Thus, if `0 is defined by the matrix
. . . H

(
Bj , Cj−1) H

(
Bj+1, Cj

)
. . .

( )1 . . . `0j `0j+1 . . . ,
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then `0j •H
(
Bj , ∂j−1

C

)
+ `0j+1 •H

(
∂jB, C

j
)

= νBj ,Cj
(
ϕj
)
for all j ∈ Z. We define the family(

hj := ν−1
Bj ,Cj−1

(
`0j

)
: Bj → Cj−1

)
j∈Z

, then

νBj ,Cj−1

(
hj
)
•H
(
Bj , ∂j−1

C

)
+ νBj+1,Cj

(
hj+1

)
•H
(
∂jB, C

j
)

= νBj ,Cj
(
ϕj
)

for all j ∈ Z. Because of the naturality of ν, we have

νBj ,Cj
(
hj • ∂j−1

C + ∂jB •hj+1
)

= νBj ,Cj
(
ϕj
)

for all j ∈ Z. Since ν is natural isomorphism, we have the equalities
hj • ∂j−1

C + ∂jB •hj+1 = ϕj

for all j ∈ Z, hence ϕ is null-homotopic.
Hence, we can define the functor

Ĥ(−,−) :


Kb(C ) op ×Kb(C ) → Kb(D),

([B], [C]) 7→ [H(B,C)],
([α]op, [β]) : ([B], [C])→ ([A], [D]) 7→ [H(α, β)];

and the natural isomorphism

ν̂ :

HomKb(C )(−,−) → HomKb(D)

(
[d1c0], Ĥ(−,−)

)
,

([B], [C]) 7→ ν̂[B],[C]

where ν̂B,C is defined by

ν̂[B],[C] :

HomKb(C )([B], [C]) → HomKb(D)

(
[d1c0], Ĥ([B], [C])

)
,

[ϕ] 7→
[
νB,C(ϕ)

]
.

�

Theorem 4.34. Let C be an additive category equipped with D-homomorphism structure
(1, H(−,−), ν). If D is Abelian and 1 is a projective object, then Kb(C ) can be equipped with a
D-homomorphism structure.

Proof. In the previous theorem, we found that Kb(C ) can be equipped with a Kb(D)-
homomorphism structure

(
[d1c0], Ĥ(−,−), ν̂

)
.

Define the bifunctor H̃(−,−) by the composition

Kb(C ) op ×Kb(C ) Ĥ(−,−)−−−−−→ Kb(D) H0
−−→ D ,

and the natural transformation ν̃ by vertical composition

HomKb(D)(−,−) ν̂−→ HomKb(D)

(
[d1c0], Ĥ(−,−)

)
ζ−→ HomD

(
1, H̃(−,−)

)
,

where ζ is defined by

ζ :

HomKb(D)

(
[d1c0], Ĥ(−,−)

)
→ HomD

(
1, H̃(−,−)

)
,

([B], [C]) 7→ ζ[B],[C]
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and ζ[B],[C] is the map

ζ[B],[C] :

HomKb(D)

(
[d1c0], Ĥ([B], [C])

)
→ HomD

(
1, H̃([B], [C])

)
,

[`] 7→ H0([`]).

It is sufficient to prove that ζ is indeed a natural isomorphism. In the following we show how
ζ can be computed, then use the procedure in proving the naturality of ζ.

For an object ([B], [C]) in Kb(C ) op ×Kb(C ), we define the morphisms:
• ιB,C by the kernel embedding of ∂0

Ĥ([B],[C])
,

• εB,C by the image embedding of ∂−1
Ĥ([B],[C])

,

• κB,C by the lift of εB,C along ιB,C ,

• ρB,C by the cokernel projection of κB,C and

• µB,C by the lift of ∂−1
Ĥ([B],[C])

along εB,C .

For every morphism [`] : [d1c0] → Ĥ([B], [C]), there exists a unique lift, say δ`, of `0 along
ιB,C , and ζ[B],[C]([`]) = δ` • ρB,C .

For a morphism ([α]op, [β]) : ([B], [C]) → ([A], [D]) in Kb(C ) op × Kb(C ), we define the mor-
phisms:

• zα,β by the lift of ιB,C • Ĥ([α], [β])0 along ιA,C and
• bα,β by the lift of εB,C • Ĥ([α], [β])0 along εA,C .

For given morphisms ([α]op, [β]) : ([B], [C]) → ([A], [D]) and [`] : [d1c0] → Ĥ(B,C), we get
the following commutative diagram:

1

Ĥ([B], [C])−1 Ĥ([B], [C])0

im
(
∂−1
Ĥ([B],[C])

)
ker
(
∂0
Ĥ([B],[C])

)
H̃([B], [C])

Ĥ([B], [C])1

Ĥ([A], [D])−1 Ĥ([A], [D])0

im
(
∂−1
Ĥ([A],[D])

)
ker
(
∂0
Ĥ([A],[D])

)
H̃([A], [D])

Ĥ([A], [D])1

`0

Ĥ([α], [β])−1 Ĥ([α], [β])0 Ĥ([α], [β])1

∂−1
Ĥ([B],[C])

∂0
Ĥ([B],[C])

ζ[B],[C]([`])

δ`

∂−1
Ĥ(A,D)

∂0
Ĥ(A,D)

ιB,CεB,C

κB,C ρB,C

ιA,DεA,D

κA,D ρA,D

H̃([α], [β])bα,β zα,β

µB,C

µA,D



118 4. HOMOMORPHISM STRUCTURES

from which we conclude the equality δ` • zα,β • ιA,D = `0 • Ĥ([α], [β])0. Hence, δ(` •H(α,β)) = δ` • zα,β .
The following computation

ζ[A],[D]
(
[`] • Ĥ([α], [β])

)
= ζ[A],[D]([` •H(α, β)])
= δ(` •H(α,β)) • ρA,D

= δ` • zα,β • ρA,D

= δ` • ρB,C • H̃([α], [β])

= ζ[B],[C]([`]) • H̃([α], [β])
translates into the commutativity of the following diagram:

�

HomKb(D)

(
[d1c0], Ĥ([B], [C])

)
HomD

(
1, H̃([B], [C])

)

HomKb(D)

(
[d1c0], Ĥ([A], [D])

)
HomD

(
1, H̃([A], [D])

)
,

ζ[B],[C]

ζ[A],[D]

− • Ĥ([α], [β]) − • H̃([α], [β])

i.e., ζ is indeed a natural transformation.
ζ is a natural isomorphism if for every object ([B], [C]) in Kb(C ) op ×Kb(C ), the component

ζ[B],[C] is an isomorphism.
We start by showing the ζ[B],[C] is injective. Let [`] : [1] → Ĥ([B], [C]) be a morphism with

ζ[B],[C]([`]) = 0. This means δ` • ρB,C = 0. Since, D is Abelian, every monomorphism is a kernel
embedding of its cokernel projection, i.e., κB,C is a kernel embedding for ρB,C , hence, there exists
a lift, say λ`, of δ` along κB,C . Since 1 is projective and µB,C is an epimorphism, there exists a
lift hB,C of λB,C along µB,C . Hence

hB,C • ∂−1
Ĥ([B],[C])

= hB,C •µB,C • εB,C

= λB,C •κB,C • ιB,C

= δ` • ιB,C

= `0,

which, since ` is concentrated in degree 0, implies [`] = 0. Consequently, ζ[B],[C] is injective.
It remains to show that ζ[B],[C] is surjective. Let τ : 1→ H̃([B], [C]) be a morphism. Since 1

is projective and ρB,C is an epimorphism, there exists a lift dτ : 1 → ker
(
∂0
Ĥ([B],[C])

)
of τ along

ρB,C . We define [`τ ] : [d1c0]→ Ĥ([B], [C]) by the 0-stalk morphism defined by dτ • ιB,C . It follows
δ`τ = dτ and ζ[B],[C]([`τ ]) = dτ • ρB,C = τ . Consequently, ζ[B],[C] is surjective.

This means ζ is a natural isomorphism and so is then the vertical composition ν̃ = ν̂ • ζ as
desired. �

Corollary 4.35. Let C be a Abelian category with enough projectives and finite global dimen-
sion. If C is equipped with a D-homomorphism structure (1, H(−,−), ν) where D is an Abelian
category and 1 is a projective object, then Db(C ) can be equipped with a D-homomorphism struc-
ture.
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Proof. It follows from Theorems 3.61 and 4.33. �

Corollary 4.36. Let C be an additive category equipped with a D-homomorphism structure
(1, H(−,−), ν) where D is an additive category with weak kernels. Then the category Kb(C ) can
be equipped with an A(D)-homomorphism structure, where A(D) is the Freyd category of D .

Proof. By Theorem 2.31 the category D has weak kernels if and only if its Freyd cate-
gory A(D) is Abelian. Moreover, the natural embedding D

ι−→ A(D) is always fully faithful.
Hence, by Lemma 4.5, C can be equipped by an A(D)-homomorphism structure; consequently
by Theorem 4.34, Kb(C ) can also be equipped by an A(D)-homomorphism structure. �

Example 4.37. Let R be a commutative left coherent ring. In Example 4.6, we found that
R-rows is equipped with a (R-rows)-homomorphism structure. By Section 2.1.1, A(R-rows) is
an Abelian category. Hence, by Theorem 4.34 and Corollary 4.28, the category Kb(R-rows) can
be equipped with an A(R-rows)-homomorphism structure.

Example 4.38. Let R be a commutative left coherent ring. Then A(R-rows) can be
equipped with an A(R-rows)-homomorphism structure [Pos21a]. Hence, Kb(A(R-rows)) can
be equipped with an A(R-rows)-homomorphism structure.

Example 4.39. Let q be a quiver and A = kFq/〈ρ〉 be the k-linear finitely presented category
defined by q subject to a set of relations ρ. According to Theorem 4.18, the category mod-A
can be equipped with a (k-mat)-homomorphism structure. Hence, Kb(mod-A ) can be equipped
with a (k-mat)-homomorphism structure.





CHAPTER 5

Computable Triangulated Categories

The Appendix B provides a brief review of the basic definitions and facts in triangulated cate-
gories which need in the next chapters. In this section we provide the constructive interpretation
of the axioms in the definition of triangulated categories. We start the section by introducing the
notion of a (pre)computable triangulated categories, and afterwards, we provide two examples:
The bounded homotopy category of an additive category (cf. Section 5.2) and the stable category
of a Frobenius category1 (cf. Section 5.3).

5.1. Computable Triangulated Categories
In the following we state the definition of precomputable triangulated categories (cf. Defini-

tion B.1):
Definition 5.1. A precomputable triangulated category is a computable additive cate-

gory together with an autoequivalence Σ and a class 4 of exact triangles subject to the following
axioms:
TR′ 0. The functors Σ and Σ−1 and the associated natural isomorphisms2 are realized by algo-

rithms.
TR′ 1. The following requirements are satisfied:

(a) There is an algorithm which for a given morphism α : A → B in T constructs an
object Cone(α) and two morphisms ι(α) and π(α) such that

A
α−→ B

ι(α)−−→ Cone(α) π(α)−−−→ Σ(A)
belongs to the class 4.

(b) For any object A in T, we have Cone(idA) ∼= 0.
(c) A triangle

A
α−→ B

ι−→ C
π−→ Σ(A)

1In fact, homotopy categories can be constructed as stable categories of Frobenius categories; however,
for performance reasons, we describe their triangulated structure directly.

2Depending on the use case, it might be desirable to choose the unit η : idT ⇒ Σ−1 •Σ and counit
ε : Σ •Σ−1 ⇒ idT of the adjunction Σ−1 a Σ.

121
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is exact if and only if there exists an isomorphism λ : C → Cone(α) with ι •λ = ι(α)
and λ •π(α) = π:

A B C Σ(A)

Cone(α).

	 	

α ι

ι(α)

π

π(α)
∼λ

TR′ 2. We have an algorithm which for a given morphism α : A→ B in T computes an isomor-
phism λ : Σ(A) ∼−→ Cone(ι(α)) such that π(α) •λ = ι(ι(α)) and λ •π(ι(α)) = −Σ(α). In
other words, λ induces an isomorphism of triangles

B Cone(α) Σ(A) Σ(B)

B Cone(α) Cone(ι(α)) Σ(B)

	 	 	∃λ

ι(α) π(α) −Σ(α)

ι(α) ι(ι(α)) π(ι(α))

TR′ 3. We have an algorithm which for a given quadruple of morphisms α1, u, v and α2 with
α1 • v = u •α2, computes a morphism w : Cone(α1)→ Cone(α2) (not necessarily unique)
that renders the following diagram

A1 B1 Cone(α1) Σ(A1)

A2 B2 Cone(α2) Σ(A2)

	 	 	u v ∃w Σ(u)

α1

α2

ι(α1)

ι(α2)

π(α1)

π(α2)

commutative.
TR′ 4. We have an algorithm which for a given triple of morphisms α, β and γ with γ = α •β

computes another triple of morphisms
Cone(α) u−→ Cone(γ) v−→ Cone(β) w−→ Σ(Cone(α))
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which renders the following diagram

A B Cone(α) Σ(A)

C Cone(γ) Σ(A)

Σ(B)Cone(β) Cone(β)

Σ(B) Σ(Cone(α))

	

	

	 	

	

	

γ

α

β

ι(α) π(α)

ι(β)

π(β)

Σ(α)

π(β)

ι(γ) π(γ)

Σ(ι(α))

u

v

w

commutative; and computes an isomorphism λ : Cone(β) ∼−→ Cone(u) with v •λ = ι(u)
and λ •π(u) = w.

Remark 5.2. Let T be a precomputable triangulated category. Then T satisfies TR 1. Since
every exact triangle in T is isomorphic to a standard exact triangle, T satisfies TR 2,TR 3
and TR 4. In particular, every precomputable triangulated category is triangulated in the sense
of Definition B.1. By Remark B.20, the converse is true if all existential quantifiers in the
Definition B.1 are realized by algorithms.

Definition 5.3. A precomputable triangulated category T will be called computable tri-
angulated if there is an algorithm which computes the isomorphism in TR′ 1.c or disproves its
existence. In other words, there is an algorithm which decides whether a given triangle is exact.

Lemma 5.4. Let T be a precomputable triangulated category. If T is equipped with a D-
homomorphism structure and D has decidable lifts, then T is computable triangulated.

Proof. Suppose, we are given a triangle
A

α−→ B
ι−→ C

π−→ Σ(A).
By Theorem 4.17, T has decidable linear systems. We check the solvability of the two-sided linear
system

ι •χ = ι(α), χ •π(α) = π,

and in the affirmative case, we compute a solution χ and check whether it is an isomorphism3.
If the system is solvable and χ is an isomorphism, then the triangle is exact by TR′ 1.c.

Otherwise, by Lemma B.11, the triangle is not exact. �

Lemma 5.5. Let T be an additive category which satisfies TR′ 0,1.a,1.b,2,3,4. Then, the
following two axioms are equivalent

3The morphism χ is an isomorphism if and only if the two-sided linear system χ •χ′ = idC , χ′ •χ =
idCone(α) is solvable.
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• TR′ 1.c.
• TR′′ 1.c : A triangle

A
α−→ B

ι−→ C
π−→ Σ(A)

is exact if and only if it is isomorphic to some standard exact triangle.

Proof. The direct implication is obvious. For the converse, let (u, v, w) be an isomorphism
of triangles:

A B C Σ(A)

X Y Cone(f) Σ(X)

	 	 	

α ι π

f ι(f) π(f)

∼u ∼v ∼w ∼ Σ(u)

By TR′ 3, there exists a morphism µ : Cone(f) → Cone(α) which induces a morphism of
exact triangles

X Y Cone(f) Σ(X)

A B Cone(α) Σ(A)

	 	 	

f ι(f) π(f)

α ι(α) π(α)

∼u−1 ∼v−1 µ ∼ Σ
(
u−1)

Analogously to the proof of Lemma B.11, µ is an isomorphism. Hence the isomorphism
λ := w •µ : C ∼−→ Cone(α) satisfies ι •λ = ι(α) and λ •π(α) = π. �

5.2. Homotopy Categories are Triangulated
It is a well-known fact that homotopy categories are triangulated. However, due to the

algorithmic requirements, they can be computable only if they are bounded. Hence, we consider
in this section only the bounded homotopy categories of additive categories.

We start by specifying the shift automorphism:
Definition 5.6. Let C be an additive category and Kb(C ) its bounded homotopy category.

The shift automorphism on Kb(C ) is defined by

Σ:


Kb(C ) → Kb(C ),

A =
(
∂iA
)
i∈Z 7→ Σ(A) :=

(
−∂i+1

A

)
i∈Z

,

ϕ =
(
ϕi
)
i∈Z : A→ B 7→ Σ(ϕ) =

(
ϕi+1)

i∈Z : Σ(A)→ Σ(B)

and we denote its inverse by Σ−1. It is obvious that Σ •Σ−1 = idKb(C ) = Σ •Σ−1 “on the nose”.

Definition 5.7. For a morphism α : A→ B in Kb(C ), we define
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(1) the mapping cone Cone(α) by the object in Kb(C ) whose differential at i ∈ Z is given
by

∂iCone(α) := Ai+1 ⊕Bi

(
−∂i+1

A αi+1

0 ∂iB

)
−−−−−−−−−−→ Ai+2 ⊕Bi+1.

(2) the natural injection to the mapping cone ι(α) by the morphism
ι(α) : B → Cone(α)

whose component at i ∈ Z is

Bi ( 0 idBi )−−−−−→ Ai+1 ⊕Bi.
(3) the natural projection from the mapping cone π(α) by the morphism

π(α) : Cone(α)→ Σ(A)
whose component at i ∈ Z is given by

Ai+1 ⊕Bi

(
idAi+1

0

)
−−−−−−→ Ai+1.

(4) the mapping cone triangle Trst(α) by the triangle

A
α−−→ B

ι(α)−−→ Cone(α) π(α)−−−→ Σ(A).

Definition 5.8. A triangle A α−→ B
ι−→ C

π−→ Σ(A) in Kb(C ) will be called exact if it is
isomorphic to some mapping cone triangle. The class of all exact triangles in C will be denoted
by 4.

Theorem 5.9. Let C be a computable additive category. Suppose C is equipped with a D-
homomorphism structure where D is Abelian and has decidable lifts, then

(
Kb(C ),Σ,4

)
is a

computable triangulated category.

Proof. By Theorem 4.34, Kb(C ) can be equipped with a D-homomorphism structure, hence
has decidable linear systems by Theorem 4.17. According to Lemma 5.4, it is sufficient to prove
that Kb(C ) is a precomputable triangulated category. In the following we show that the axioms
of Definition 5.1 are satisfied:

TR′ 0 The shift functor Σ, its inverse Σ−1 and the associated natural transformations are
already introduced in Definition 5.6.

TR′ 1 (a) For a given morphism α : A → B in Kb(C ), we can compute Cone(α), ι(α) and
π(α) as introduced in Definition 5.7. In particular, the standard exact triangles
are the mapping cone triangles.

(b) Let A be an object in Kb(C ). By Remark 3.20, the mapping cone Cone(idA) is
contractible, hence is isomorphic to the zero object by Remark 3.22.

(c) Any exact triangle
A

α−→ B
ι−→ C

π−→ Σ(A)
in Kb(C ) is by definition isomorphic to a mapping cone triangle. By Lemma 5.5,
TR′ 1.c follows.
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TR′ 2 For a given morphism α : A → B, we define λ : Σ(A) → Cone(ι(α)) by the morphism
whose component at i ∈ Z is

λi := Ai+1 (αi+1 idAi+1 0 )
−−−−−−−−−−→ Bi+1 ⊕Ai+1 ⊕Bi.

A direct verification shows that π(α) •λ = ι(ι(α)), −Σ(α) = λ •π(ι(α)). Further-
more, λ is an isomorphism and its inverse µ : Cone(ι(α)) → Σ(A) is given at i ∈ Z
by

Ai+1

(
0

idAi+1
0

)
−−−−−−−→ Bi+1 ⊕Ai+1 ⊕Bi.

TR′ 3 We should prove that any commutative square

A1 B1

A2 B2

	

α1

α2

u v

can be completed into a morphism between the standard exact triangles associated to
α1 and α2. We start by computing a chain homotopy

(
hi : Ai1 → Bi−1

2

)
i∈Z

associated
to α1 • v − u •α2. Then w : Cone(α1)→ Cone(α2) whose component at i ∈ Z is

wi := Ai+1
1 ⊕Bi

1

(
ui+1 hi+1

0 vi

)
−−−−−−−−→ Ai+1

2 ⊕Bi
2

renders the diagram

A1 B1 Cone(α1) Σ(A1)

A2 B2 Cone(α2) Σ(A2)

	 	 	

α1 ι(α1) π(α1)

α2 ι(α2) π(α2)

u v w Σ(u)

commutative. The set of all morphisms of this form will be called standard morphisms
between the standard cone objects and will be denoted by ConeMorsstα1,α2(u, v).
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TR′ 4 We should prove that any triple of morphisms α : A→ B, β : B → C and γ = α •β can
be completed to the following diagram

A B Cone(α) Σ(A)

C Cone(γ) Σ(A)

Σ(B)Cone(β) Cone(β)

Σ(B) Σ(Cone(α)),

	

	

γ

α

π(β)

Σ(α)

ι(α) π(α)

ι(β)

π(β)

ι(γ) π(γ)

idΣ(A)β

Σ(ι(α))

idCone(β)

u

v

w

	 	

	

	

where the middle column is an exact triangle. Let
(
hi : Ai → Ci−1)

i∈Z be a chain homo-
topy associated to α •β − γ. A straightforward verification shows that the morphisms:
• u : Cone(α)→ Cone(γ) whose component at i ∈ Z is

ui := Ai+1 ⊕Bi

(
idAi+1 hi+1

0 βi

)
−−−−−−−−−−→ Ai+1 ⊕ Ci,

• v : Cone(γ)→ Cone(β) whose component at i ∈ Z is

vi := Ai+1 ⊕ Ci
(
αi+1 −hi+1

0 idCi

)
−−−−−−−−−−→ Bi+1 ⊕ Ci,

• w : Cone(β)→ Σ(Cone(α)) whose component at i ∈ Z is

wi := Bi+1 ⊕ Ci
(

0 idBi+1
0 0

)
−−−−−−−−→ Ai+2 ⊕Bi+1

render the above diagram commutative. Moreover, the triangle
Cone(α) u−→ Cone(γ) v−→ Cone(β) w−→ Σ(Cone(α))

is isomorphic to the standard cone triangle Trst(u) via the isomorphism
p : Cone(β)→ Cone(u)

defined at i ∈ Z by

pi := Bi+1 ⊕ Ci
( 0 idBi+1 0 0

0 0 0 idCi

)
−−−−−−−−−−−−→ Ai+2 ⊕Bi+1 ⊕Ai+1 ⊕ Ci;
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whose inverse q : Cone(u)→ Cone(β) is given at i ∈ Z by

qi := Bi+1 ⊕ Ci

 0 0
idBi+1 0
αi+1 −hi+1

0 idCi


−−−−−−−−−−−−→ Ai+2 ⊕Bi+1 ⊕Ai+1 ⊕ Ci.

�

Remark 5.10. Let α : A→ B be a morphism in Kb(C ) and

A
α−→ B

ι(α)−−→ Cone(α) π(α)−−−→ Σ(A)
the associated standard exact triangle. The inverse rotation4

Σ−1(Cone(α)) −Σ−1(π(α))−−−−−−−→ A
α−→ B

ι(α)−−→ Cone(α)
is isomorphic to the standard exact triangle associated to −Σ−1(π(α)) via the isomorphism
λ : B → Cone

(
−Σ−1(π(α))

)
given at i ∈ Z by

λi := Bi ( 0 idBi 0 )−−−−−−→ Ai+1 ⊕Bi ⊕Ai;
and whose inverse µ := λ−1 : Cone

(
−Σ−1(π(α))

)
→ B is given at i ∈ Z by

µi := Ai+1 ⊕Bi ⊕Ai

( 0
idBi
αi

)
−−−−−→ Bi.

The object Σ−1(Cone(α)) will be called the standard cocone object of α, and will be
denoted by Cocone(α).

Remark 5.11. By the previous Remark and Lemma B.5, every morphism α : A→ B in Kb(C )
can be completed to an exact triangle:

Cocone(α) Σ−1(π(α))−−−−−−→ A
α−→ B

−ι(α)−−−→ Cone(α).
Suppose α1, u, v, α2 are morphismsKb(C ) as in TR′ 3, then each morphism w ∈ ConeMorsstα1,α2(u, v)

gives rise to a morphism of exact triangles

Cocone(α1) A1 A2 Cone(α1)

Cocone(α2) B1 B2 Cone(α2)

	 	 	

Σ−1(π(α1)) α1 −ι(α1)

Σ−1(π(α2)) α2 −ι(α2)

Σ−1(w) u v w

The set {Σ−1(w), w ∈ ConeMorsstα1,α2(u, v)} will be denoted by CoconeMorsstα1,α2(u, v). We
will refer to the elements of CoconeMorsstα1,α2(u, v) as the standard morphisms between the
standard cocone objects.

4See Corollary B.15.
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Lemma 5.12. Let C be an additive category and Kb(C ) be its homotopy category. Then for
any commutative diagram

A1 B1

A2 B2

A3 B3;

	

	

α1

α2

α3

u1 v1

u2 v2

if w1 ∈ ConeMorsstα1,α2(u1, v1) and w2 ∈ ConeMorsstα2,α3(u2, v2), then

w1 •w2 ∈ ConeMorsstα1,α3(u1 •u2, v1 • v2).

Proof. Suppose w1 and w2 have been constructed by using chain-homotopies
(
hi1 : Ai1 → Bi−1

2

)
i∈Z

resp.
(
hi2 : Ai2 → Bi−1

3

)
i∈Z

. In other words, we have

αi1 • v
i
1 − ui1 •αi2 = ∂iA1

•hi+1
1 + hi1 • ∂

i−1
B2

and
αi2 • v

i
2 − ui2 •αi3 = ∂iA2

•hi+1
2 + hi2 • ∂

i−1
B3

for all i ∈ Z. Then, by the following computation

αi1 •
(
vi1 • v

i
2

)
−
(
ui1 •u

i
2

)
•αi3 =

(
αi1 • v

i
1

)
• vi2 − ui1 •

(
ui2 •α

i
3

)
=
(
ui1 •α

i
2 + ∂iA1

•hi+1
1 + hi1 • ∂

i−1
B2

)
• vi2

− ui1 •
(
αi2 • v

i
2 − ∂iA2

•hi+1
2 − hi2 • ∂i−1

B3

)
=ui1 •αi2 • vi2 + ∂iA1

•hi+1
1 • vi2 + hi1 • ∂

i−1
B2

• vi2

− ui1 •αi2 • vi2 + ui1 • ∂
i
A2

•hi+1
2 + ui1 •h

i
2 • ∂

i−1
B3

=∂iA1
•hi+1

1 • vi2 + hi1 • v
i−1
2 • ∂i−1

B3
+ ∂iA1

•ui+1
1 •hi+1

2 + ui1 •h
i
2 • ∂

i−1
B3

=∂iA1
•

(
hi+1

1 • vi2 + ui+1
1 •hi+1

2

)
+
(
hi1 • v

i−1
2 + ui1 •h

i
2

)
• ∂i−1
B3

;

the family
(
hi1 • v

i−1
2 + ui1 •h

i
2

)
i∈Z

is a chain homotopy for α1 • v1 • v2 − u1 •u2 •α3. Hence, the
morphism w1 •w2 : Cone(α1)→ Cone(α3), whose component at i ∈ Z is(

ui+1
1 hi+1

1
0 vi1

)
·
(
ui+1

2 hi+1
2

0 vi2

)
=
(
ui+1

1 •ui+1
2 hi+1

1 • vi2+ui+1
1 •hi+1

2
0 vi1 • v

i
2

)
,

belongs to ConeMorsstα1,α3(u1 •u2, v1 • v2). �

In a similar way, we can prove the following lemma:
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Lemma 5.13. Let C be an additive category and Kb(C ) be its homotopy category. Then for
any commutative diagram

A1 B1

A2 B2

	

α1

α2

u2u1 v2v1

if w1 ∈ ConeMorsstα1,α2(u1, v1) and w2 ∈ ConeMorsstα1,α2(u2, v2), then
• w1 + w2 ∈ ConeMorsstα1,α2(u1 + u2, v1 + v2),
• −w1 ∈ ConeMorsstα1,α2(−u1,−v1).

Proof. If
(
hi1 : Ai1 → Bi−1

2

)
i∈Z

and
(
hi2 : Ai1 → Bi−1

2

)
i∈Z

are chain-homotopies of α1 • v1 −

u1 •α2 resp. α1 • v2 − u2 •α2, then
(
hi1 + hi2 : Ai1 → Bi−1

2

)
i∈Z

is a chain homotopy associated to

α1 •(v1 − v2)− (u1 − u2) •α2. Similarly,
(
−hi1 : Ai1 → Bi−1

2

)
i∈Z

is a chain homotopy associated to
w1. �

Lemma 5.14. Let C be an additive category and Kb(C ) be its homotopy category. For any
morphism α : A→ B and any ` ∈ Z, we have

Σ`(Cone(α)) = Cone
(
Σ`
(
(−1)` · α

))
= Cone

(
(−1)` · Σ`(α)

)
.

Proof. The differential at i ∈ Z of the above complexes is given by

Ai+1+` ⊕Bi+`

(
(−1)`+1·∂i+1+`

A (−1)`·αi+1+`

0 (−1)`·∂i+`B

)
−−−−−−−−−−−−−−−−−−−−−→ Ai+2+` ⊕Bi+1+`.

�

Lemma 5.15. Let C be an additive category and Kb(C ) be its homotopy category. Then for
any commutative diagram

A1 B1

A2 B2

	

α1

α2

u v

if w ∈ ConeMorsstα1,α2(u, v) then Σ`(w) ∈ ConeMorsst(−1)`·Σ`(α1),(−1)`·Σ`(α2)

(
Σ`(u),Σ`(v)

)
.

Proof. It follows from Lemma 5.14 that Σ`(Cone(αi)) = Cone
(
(−1)` · Σ`(αi)

)
for i = 1, 2.

Let w : Cone(α1)→ Cone(α2) be a standard morphism whose component at i ∈ Z is given by

wi = Ai+1
1 ⊕Bi

1

(
ui+1 hi+1

0 vi

)
−−−−−−−−→ Ai+1

2 ⊕Bi
2,



5.2. HOMOTOPY CATEGORIES ARE TRIANGULATED 131

where
(
hi : Ai1 → Bi−1

2

)
i∈Z

is a chain homotopy associated to α1 • v− u •α2. A direct verification

shows that
(
h`+i : A`+i1 → B`+i−1

2

)
i∈Z

is a chain homotopy associated to(
(−1)` · Σ`(α1)

)
•Σ`(v)− Σ`(u) •

(
(−1)` · Σ`(α2)

)
,

i.e., the associated standard morphism

t : Cone
(
(−1)` · Σ`(α1)

)
→ Cone

(
(−1)` · Σ`(α2)

)
is given at i ∈ Z by

ti = A`+i+1
1 ⊕B`+i

1

(
u`+i+1 h`+i+1

0 v`+i

)
−−−−−−−−−−−→ A`+i+1

2 ⊕B`+i
2 ,

i.e., t = Σ`(w) and the assertion follows. �

Example 5.16. Let k be a field and A be the finitely presented category defined by the
right quiver

B D,

A C
r

s

g0 f0 f1 g1vu

subject to the relations
{rf1 − f0s, rg1 − g0s, f0 − g0 − ru, f1 − g1 − vs}.

The following commutative square

A

0

0

C

0

0

B

0

0

D

0

0

r

s

f0 f1

in Kb(A ⊕) can be completed into a morphism of exact triangles in two different ways:



132 5. COMPUTABLE TRIANGULATED CATEGORIES

A

0

0

C

0

0

B

0

0

D

0

0

C

A

0

0

D

B

0

0

0

A

0

0

B

0

f0

f1

r

idC

idA

sidD

idB

r

s

f0 f1

f0

and

A

0

0

C

0

0

B

0

0

D

0

0

C

A

0

0

D

B

0

0

0

A

0

0

B

0

f0

g1

r

idC

idA

sidD

idB

r

s

f0 f1

g0

The first morphism is standard, i.e., it belongs to ConeMorsstdrc0,dsc0(df0c0, df1c0). However,
the second morphism is not standard.

Lemma 5.17. Let C be an additive category and Kb(C ) be its homotopy category. Let Ai, Bi
for i = 1, 2 be objects in Kb(C ) such that HomKb(C )(Σ(A1), B2) = 0. Then for any commutative
diagram

A1 B1

A2 B2,

	

α1

α2

u1 v1

the set ConeMorsstα1,α2(u1, v1) is a singleton set.

Proof. We will prove that the morphism resulted TR′ 3 in Theorem 5.9 does not depend on
the choice of representatives for u1 and v1. Precisely, given u2 and v2 with u1 = u2 and v1 = v2
we will prove that ConeMorsstα1,α2(u1, v1) = ConeMorsstα1,α2(u2, v2).

Since α1 • v1 − u1 •α2 = 0, there exists a family of morphisms
(
hi : Ai1 → Bi−1

2

)
i∈Z

with

αi1 • v
i
1 − ui1 •αi2 = ∂iA1

•hi+1 + hi • ∂i−1
B2
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for all i ∈ Z. Hence, TR′ 3 induces the morphism w1 : Cone(α1)→ Cone(α2) defined by

. . . Ai1 ⊕Bi−1
1 Ai+1

1 ⊕Bi
1

. . .

. . . Ai2 ⊕Bi−1
2 Ai+1

2 ⊕Bi
2

. . .

(
−∂iA1

αi1

0 ∂i−1
B1

)

(
−∂iA2

αi2

0 ∂i−1
B2

)
wi−1

1 :=
(
ui1 hi

0 vi−1
1

) (
ui+1

1 hi+1

0 vi1

)

Similarly, there exists a family of morphisms
(
`i : Ai1 → Bi−1

2

)
i∈Z

with

αi1 • v
i
2 − ui2 •αi2 = ∂iA1

• `i+1 + `i • ∂i−1
B2

for all i ∈ Z; and w2 : Cone(α1)→ Cone(α2) is given by

. . . Ai1 ⊕Bi−1
1 Ai+1

1 ⊕Bi
1

. . .

. . . Ai2 ⊕Bi−1
2 Ai+1

2 ⊕Bi
2

. . .

(
−∂iA1

αi1

0 ∂i−1
B1

)

(
−∂iA2

αi2

0 ∂i−1
B2

)
wi−1

2 :=
(
ui2 `i

0 vi−1
2

) (
ui+1

2 `i+1

0 vi2

)

On the other hand, since u1 = u2 and v1 = v2, there exists two families of morphisms(
hiu : Ai1 → Ai−1

2

)
i∈Z

and
(
hiv : Bi

1 → Bi−1
2

)
i∈Z

with

ui1 − ui2 = ∂iA1
•hi+1
u + hiu • ∂

i−1
A2

and
vi1 − vi2 = ∂iB1

•hi+1
v + hiv • ∂

i−1
B2

for all i ∈ Z.
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Ai1 Bi
1

Ai2 Bi
2

Ai+1
1

Ai+1
2

Bi+1
1

Bi+1
2

. .
.

. .
.

. .
.

. .
.

Ai−1
2

. .
.

Bi−1
2

αi2

αi+1
2

∂iA2

ui+1
1

ti

`i+1

hi+1ui+1
2

hi+1
u

hiu

hi+1
v

hiv

αi1

αi−1
2

ui1ui2 vi1vi2
`i

hi

vi+1
1vi+1

2

αi+1
1

∂iA1

∂i−1
A2

∂iB1

∂iB2

∂i−1
B2

For each i ∈ Z, we define ϕi : Ai+1
1 → Bi

2 by hi+1 − `i+1 + hi+1
u

•αi2 − αi+1
1 •hi+1

v . By the
following computation

−∂iA1
•ϕi =− ∂iA1

•

(
hi+1 − `i+1 + hi+1

u
•αi2 − αi+1

1 •hi+1
v

)
=
(
hi • ∂i−1

B2
+ ui1 •α

i
2 − αi1 • vi1

)
+
(
−`i • ∂i−1

B2
− ui2 •αi2 + αi1 • v

i
2

)
+
(
−ui1 + ui2 + hiu • ∂

i−1
A2

)
•αi2 + αi1 • ∂

i
B1

•hi+1
v

=hi • ∂i−1
B2

+ ui1 •α
i
2 − αi1 • vi1 − `i • ∂i−1

B2
− ui2 •αi2 + αi1 • v

i
2

− ui1 •αi2 + ui2 •α
i
2 − hiu • ∂i−1

A2
•αi2 + αi1 •

(
vi1 − vi2 − hiv • ∂i−1

B2

)
=hi • ∂i−1

B2
+ ui1 •α

i
2 − αi1 • vi1 − `i • ∂i−1

B2
− ui2 •αi2 + αi1 • v

i
2

− ui1 •αi2 + ui2 •α
i
2 − hiu •αi−1

2 • ∂i−1
B2

+ αi1 • v
i
1 − αi1 • vi2 − αi1 •hiv • ∂i−1

B2

=hi • ∂i−1
B2
− `i • ∂i−1

B2
+ hiu •α

i−1
2 • ∂i−1

B2
− αi1 •hiv • ∂i−1

B2

=
(
hi − `i + hiu •α

i−1
2 − αi1 •hiv

)
• ∂i−1
B2

=ϕi−1 • ∂i−1
B2

;

the family
(
ϕi
)
i∈Z defines a morphism ϕ : Σ(A1)→ B2, which should then be zero by the assump-

tion HomKb(C )(Σ(A1), B2) = 0. Hence, there exists a family of morphisms
(
ti : Ai+1

1 → Bi−1
2

)
i∈Z

with ϕi = ti • ∂i−1
B2
− ∂i+1

A1
• ti+1 for all i ∈ Z.



5.3. STABLE CATEGORIES OF FROBENIUS CATEGORIES ARE TRIANGULATED 135

For each i ∈ Z, we define ri : Ai+1
1 ⊕Bi

1 → Ai2⊕Bi−1
2 by the matrix

(
−hi+1

u ti

0 hiv

)
. The following

computation

∂iCone(α1) • r
i+1 + ri • ∂i−1

Cone(α2) =
(
−∂i+1

A1
αi+1

1

0 ∂iB1

)
·
(
−hi+2

u ti+1

0 hi+1
v

)
+
(
−hi+1

u ti

0 hiv

)
·
(
−∂iA2

αi2

0 ∂i−1
B2

)
=
(
∂i+1
A1

•hi+2
u +hi+1

u • ∂iA2
−∂i+1

A1
• ti+1+αi+1

1 •hi+1
v −hi+1

u •αi2+ti • ∂i−1
B2

0 ∂iB1
•hi+1
v +hiv • ∂

i−1
B2

)
=
(
ui+1

1 −ui+1
2 ϕi+αi+1

1 •hi+1
v −hi+1

u •αi2
0 vi1−v

i
2

)
=
(
ui+1

1 −ui+1
2 hi+1−`i+1

0 vi1−v
i
2

)
=
(
ui+1

1 hi+1

0 vi1

)
−
(
ui+1

2 `i+1

0 vi2

)
=wi1 − wi2,

proves that w1 = w2, which is the desired conclusion. �

Corollary 5.18. With the same assumptions as in Lemma 5.17, the set CoconeMorsstα1,α2(u, v)
is a singleton set.

Proof. By Remark 5.11
CoconeMorsstα1,α2(u1, v1) := {Σ−1w | w ∈ ConeMorsstα1,α2(u1, v1)}.

�

Corollary 5.19. Let C be an additive category and Kb(C ) be its bounded homotopy category.
Let S be a class of objects such that HomKb(C )(Σ(A), B) = 0 for all pairs of objects A,B in S.
Then, the standard cone object defines a functor

Cone:


Arr(S) → Kb(C ),(

A1
α1−→ B1

)
7→ Cone(α1),(

A1
α1−→ B1

) {u,v}−−−→
(
A2

α2−→ B2
)
7→ the unique element in ConeMorsstα1,α2(u, v);

where Arr(S) is the category of arrows of the full subcategory generated by S.

Proof. Follows from Lemma 5.12 and Lemma 5.17. �

5.3. Stable Categories of Frobenius Categories are Triangulated
In this section we give an algorithmic description of the triangulated structure on the stable

categories of Frobenius categories (cf. Theorem 5.29). We reproduce the related proofs and
constructions in [Hap88, Chapter 1] so that they can be directly implemented on the computer.
Our primary example of a Frobenius category is the category of finitely presented (graded) left
modules over the exterior algebra E = k[e0, . . . , en] for some field k (cf. Example 5.37). If E is
equipped with a Z-graded with deg e0 = deg e1 = · · · = deg en = −1 then the stable category
of the Frobenius category E-fpgrmod provides a model for the bounded derived category of
coherent sheaves over the projective space Pnk (cf. [BGG78] and [EFS03]).

We start by defining exact categories:
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Definition 5.20. Let C be an additive category and let E be a class of short exact sequences5

in C . An element (ι, π) in E will be called conflation. The components ι and π of a conflation
(ι, π) will be called inflation resp. deflation6. The pair (C , E) will be called exact if the following
axioms hold:

EX 1. The class E is closed under taking isomorphisms.
EX 2. Inflations and deflations are closed under composition.
EX 3. For any pair of objects A,B in C the canonical sequence

A ↪
infA−−→ A⊕B defB−−−→→ B

is a conflation.
EX 4. If π : A→→ C is a deflation, then for any morphism α : B → C the fiber product

Fπ,α A

B C

p
π

α

pB

pA

exists in which pB is a deflation.
EX 5. If ι : C ↪−→ A is an inflation, then for any morphism α : C → B the pushout

Pι,αA

BC

y

qA

qB

α

ι

exists in which qB is an inflation.
EX 6. Let α be a morphism which has a kernel. Then for any morphism β, if β •α is a deflation

then so is α.
EX 7. Let α be a morphism which has a cokernel. Then for any morphism β, if α •β is an

inflation then so is α.
Definition 5.21. An additive category C together with a class E of short exact sequences

in C is called computable exact if the following holds:
(1) The axioms EX 1,2,3,4,5,6,7 are satisfied and all their existential quantifiers are

realized by algorithms.
(2) We have an algorithm which for a given pair of morphisms (ι, π) decides whether the

pair is a conflation.
(3) We have an algorithm which for a given inflation ι computes a cokernel projection def(ι)

of ι, i.e., such that (ι, def(ι)) is a conflation.
(4) We have an algorithm which for a given deflation π computes a kernel embedding inf(π)

of π, i.e., such that (inf(π), π) is a conflation.
5A short exact sequence in C is a bounded cochain complex 0 → A

ι−→ B
π−→ C → 0 with a vanishing

cohomology in each degree.
6Since every conflation froms a short exact sequence, every inflation is a monomorphism and every

deflation is an epimorphism.
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The concept of E-projective and E-injective objects in an exact category (C , E) generalizes
the concept of projective and injective objects in Abelian categories:

Definition 5.22. Let (C , E) be an exact category.
(1) An object P in C is called E-projective if for all deflations π : B →→ C and all morphisms

τ : P → C, there exists a lift morphism of τ along π.
(2) An object I in C is called E-injective if for all inflations ι : A ↪−→ I and all morphisms

τ : A→ B, there exists a colift morphism of ι along τ .
(3) (C , E) is said to have enough E-projectives if for each object A in C there exists a

deflation defA : PA →→ A from some E-projective object PA.
(4) (C , E) is said to have enough E-injectives if for each object A in C there exists an

inflation infA : A ↪−→ IA into some E-injective object IA.
Example 5.23. If C is an Abelian category and E is the class of all short exact sequences,

then (C , E) defines an exact category. Since every epimorphism is a cokernel of its kernel, every
epimorphism is a deflation; and since every monomorphism is a kernel of its cokernel, every
monomorphism is an inflation. Furthermore, if C has enough projective or injective objects,
then (C , E) also has enough E-projective resp. E-injective objects. In particular, an object in C
is E-projective resp. E-injective if and only if it is projective resp. injective in the usual sense
(cf. Definition 2.71).

A Frobenius category is an exact category with extra structure:
Definition 5.24. An exact category (C , E) is called a Frobenius category if it has enough

E-projectives and E-injectives and the classes of E-projective and E-injective objects in C coincide.
Furthermore, if (C , E) is computable exact and the axioms in Definition 5.22 are realized by
algorithms, then (C , E) is called computable Frobenius.

Lemma 5.25. Let (C , E) be an exact category.
(1) If (C , E) has enough E-projective objects, then the class L of all E-projective objects is

a class of lifting objects in C .
(2) If (C , E) has enough E-injective objects, then the class Q of all E-injective objects is a

class of colifting objects in C .

Proof. The proof is analogous to Examples 2.60 and 2.62. �

This means if (C , E) is a Frobenius category, then the stable categories associated to the
above classes of lifting and colifting object coincide. In particular, a morphism [ϕ] : [A] → [B]
in C /L ∼= C /Q is zero if and only if ϕ factors through some E-projective object if and only if
ϕ is liftable along the deflation defB : PB →→ B if and only if ϕ is coliftable along the inflation
infA : A ↪−→ IA.

The Schanuels lemma characterizes isomorphisms in stable categories of exact categories:
Lemma 5.26 (Schanuels Lemma). Let (C , E) be an exact category. Given two conflations

A ↪
i−→ I

i′−→→ Ti, A ↪
j−→ J

j′−→→ Tj where I and J are E-injective objects, then Ti and Tj are isomorphic
in C /Q. Furthermore, for any morphism α : A→ X in C , the pushout objects Pi,α and Pj,α are
isomorphic in C /Q as well.

Proof. Let λ, µ be the E-injective colifts of i and j along each other and tλ, tµ the induced
cokernel colifts along the cokernel projections i′ resp. j′. In the following we show that the residue
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class [tλ] in C /Q does not depend on the choice of λ. Let λ′ : I → J be another E-injective colift
of j along i and let tλ′ be the cokernel colift of λ′ • j′ along i′. Since i •(λ− λ′) = j − j = 0,
there exists the unique morphism ζ : Ti → J with i′ • ζ = λ − λ′. It follows that i′ •(tλ − tλ′) =
(λ− λ′) • j′ = i′ • ζ • j′. Since i′ is an epimorphism, tλ − tλ′ = ζ • j′, hence [tλ] = [tλ′ ] as desired.
Similarly, [tµ] in C /Q does not depend on the choice of µ.

We get the following commutative diagram:
A

I J

Ti Tj

i j

i′ j′

λ

µ

tλ

tµ

We have i •(λ •µ− idI) = i •λ •µ− i = j •µ− i = i− i = 0, hence there exists a cokernel colift
h : B → I of λ •µ− idI along i′, i.e., with i′ •h = λ •µ− idI . Therefore, i′ •h • i′ = (λ •µ− idI) • i′ =
λ •µ • i′ − i′ = λ • j′ • tµ − i′ = i′ • tλ • tµ − i′ = i′ •(tλ • tµ − idB). Since i′ is an epimorphism, we
get h • i′ = tλ • tµ − idB, hence [tλ] • [tµ] = [idB]. Similarly, [tµ] • [tλ] = [idC ]. This proves the first
assertion.

By the universal property of pushout objects, λ induces a morphism uλ : Pi,α → Pj,α with
mi •uλ = λ •mj and ni •uλ = nj . Similarly, µ induces a morphism uµ : Pj,α → Pi,α with mj •uµ =
µ •mi and nj •uµ = ni.

A

X

ITi J Tj

Pi,α Pj,α
yx

i j

i′ j′

α

ni nj

mi mj
qi qj

λ

µ

uλ

uµ

Since i •(λ •µ− idI) = 0, there exists a unique morphism ` : Pi,α → I with mi • ` = λ •µ− idI
and ni • ` = 0.

It follows from the assumption that Pi,α is a pushout object of (i, α) and the following two
equalities

(1) mi •
(
uλ •uµ − idPi,α

)
= mi •uλ •uµ − mi = λ •mj •uµ − mi = λ •µ •mi − mi =

(λ •µ− idI) •mi = mi • ` •mi = mi •(` •mi) and
(2) ni •

(
uλ •uµ − idPi,α

)
= ni •uλ •uµ − ni = nj •uµ − ni = ni − ni = 0 = ni •(` •mi)
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that uλ •uµ − idPi,α = ` •mi, hence [uλ] • [uµ] =
[
idPi,α

]
. Similarly, we can show that [uµ] • [uλ] =[

idPj,α
]
. �

Remark 5.27. By the universal property of pushout objects, there exist two morphisms qi : Pi,α →
B with mi • qi = i′, ni • qi = 0; and qj : Pj,α → C with v • qj = rj , u • qj = 0.

The following computation
(1) mi •(qi • tλ) = i′ • tλ = λ • j′ = λ • v • qj = mi •uλ • qj = mi •(uλ • qj),
(2) ni •(qi • tλ) = 0 • tλ = 0 = nj • qj = ni •uλ • qj = ni •(uλ • qj).

shows that qi • tλ = uλ • qj . Similarly, qj • tµ = uµ • qi. In particular, we get the following commu-
tative diagram in C /Q:

A X Pi,α Ti

A X Pj,α Tj

[α]

[α]

[ni]

[nj ]

[qi]

[qj ]

∼
[uλ] = [uµ]−1∼

[uµ] ∼

[tλ] = [tµ]−1∼

[tµ]

The following is the dual statement:

Lemma 5.28. Let (C , E) be an exact category. Given two conflations Sr ↪
ir−→ P

r−→→ A,
St ↪

it−→ Q
t−→→ A where P and Q are E-projective objects, then Sr and St are isomorphic in C /L.

Furthermore, for any morphism α : X → A in C , the pullback objects Fr,α and Ft,α are isomorphic
in C /L as well.

We refer the reader to [Hap88, Chapter 1] for the original proof of the following theorem:
Theorem 5.29. Let (C , E) be a computable Frobenius category, then the stable category

C /Q is a precomputable triangulated category.

Proof. We start by constructing the auto-equivalence Σ: C /Q → C /Q and its quasi-inverse.
For each object A in C , we fix an inflation infA : A ↪−→ IA into some E-injective object IA. We will
refer to the associated deflation of infA by def(infA) : IA →→ TA. That is, def(infA) is a cokernel
projection of infA. Each morphism α : A→ B can be colifted into a morphism Iα : IA → IB which
in turn can be colifted to a morphism Tα : TA → TB. In the following we show that the residue
class [Tα] depends only on [α]. Let β : A→ B be another representative of [α], i.e., [α] = [β]. We
need to prove that [Tα] = [Tβ ]. Since [α] = [β], there exists a morphism ζ : IA → B such that
α−β = infA • ζ. We have infA •(Iα − Iβ − ζ • infB) = α • infB −β • infB −(α− β) • infB = 0. Hence,
there exists a uniquely determined morphism τ : TA → IB such that def(infA) • τ = Iα − Iβ −
ζ • infB. We get def(infA) •(Tα − Tβ) = (Iα − Iβ) • def(infB) = (Iα − Iβ − ζ • infB) • def(infB) =
def(infA) • τ • def(infB). Since def(infA) is an epimorphism, Tα − Tβ = τ • def(infB). Hence,
[Tα] = [Tβ ]. In particular, the map

ΣA,B :
{

Hom(A,B) → Hom(TA, TB),
[α] 7→ [Tα]

is well-defined. In fact ΣA,B is a bijection. We first prove it is surjective. Let µ : TA → TB
be a morphism in C . Since IA is projective and def(infB) is an epimorphism, there exists a
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lift morphism δ : IA → IB of def(infA) •µ along def(infB). Since infB is a kernel embedding of
def(inflB), there exists a uniquely determined lift morphism γ : A→ B of infA • δ along infB. It
follows that ΣA,B([γ]) = [µ] hence ΣA,B is surjective. Next, we show ΣA,B is injective. Let α, β be
two morphisms in C such that [Tα] = [Tβ ]. Since [Tα] = [Tβ ] there exists a morphism τ : TA → IB
such that Tα − Tβ = τ • def(infB). It follows that (Iα − Iβ − def(infA) • τ) • def(infB) = 0, hence
there exists a uniquely determined morphism ζ : IA → B such that Iα−Iβ−def(infA) • τ = ζ • infB.
It follows that (α− β − infA • ζ) • infB = infA • Iα − infA • Iβ − infA •(Iα − Iβ − def(infA) • τ) = 0.
Since infB is a monomorphism, α− β − infA • ζ = 0, thus, [α] = [β] as desired.

Analogously, for each object A in C , we fix a deflation defA : PA →→ A from some E-projective
object PA. The associated inflation of defA will be denoted by inf(defA) : SA ↪−→ PA. A morphism
α : A → B can be lifted to morphisms Pα : PA → PB and Sα : SA → SB where the residue class
[Sα] does not depend on the choice of Pα.

SA PA A IA TA

SB PB B IB TB.

	 	 	 	

inf(defA) defA infA def(infA)

inf(defB) defB infB def(infB)

Sα Pα α Iα Tα

This enables us to define two fully faithful functors:

Σ:


C /Q → C /Q,
A 7→ TA,

[α] 7→ [Tα]
and

Σ−1 :


C /Q → C /Q,
A 7→ SA,

[α] 7→ [Sα].
In the following we show that these functors define an adjunction Σ−1 a Σ. Let R, A be two

objects in C . For any morphism x : SR → A in C there exists an E-injective colift, hx, of x • infA
along inf(defR) and a cokernel colift uR,A,x : R → TA of hx • def(infA) along defR as depicted in
the following commutative diagram:

SR PR R

A IA TA.

	 	

inf(defR) defR

infA def(infA)

x hx uR,A,x

Similar to the above discussion, [uR,A,x] in C /Q depends only on [x]. Hence, we can define a map

ΦR,A :
{

HomC /Q
(
Σ−1(R), A

)
→ HomC /Q(R,Σ(A)),

[x] 7→ [uR,A,x].
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For a given triple of morphisms α : A→ B, f : Q→ R and x : SR → A, we can construct the
following commutative diagram:

SR PR R

SQ PQ Q

A IA TA

B IB TB.

hx uR,A,x

inf(defR) defR

inf(defQ) defQ

infA def(infA)

infB def(infB)

x

α
Iα

Tα

f
Pf

Sf

Let y = Sf •x •α, then y • infB can be colifted along inf(defQ) via hy := Pf •hx • Iα and
hy • def(infB) can uniquely be colifted along defQ via uQ,B,y := f •uR,A,x •Tα. Hence,

ΦQ,B

(
Σ−1([f ]) • [x] • [α]

)
= [f ] •ΦR,A([x]) •Σ([α]).

That is, the assignment

Φ:
{

HomC /Q
(
Σ−1(−),−

)
→ HomC /Q(−,Σ(−)),

(R,A) 7→ ΦR,A

defines a natural transformation. By Lemma A.22, the associated unit η and counit ε of the
adjunction are natural isomorphisms.

Let [α] : A → B be a morphism in C /Q. As discussed above, the object A can be used to
construct a conflation

A ↪
infA−−→ IA

def(infA)−−−−−→→ TA
in C where Σ(A) := TA as object in C /Q.

Since the axiom EX 5 is realized by algorithms, we can construct the following commutative
diagram:

A

B

IA TA

Cα

y

infA def(infA)

α

∃ ια

∃ mα ∃1 πα

0

By setting Cone([α]) := Cα, ι([α]) := [ια] and π([α]) := [πα], we get a triangle

A
[α]−→ B

ι([α])−−−→ Cone([α]) π([α])−−−→ Σ(A)
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in C /Q. A triangle
A

[α]−→ B
[ι]−→ C

[π]−→ Σ(A)
will be called exact if it is isomorphic to

A
[α]−→ B

ι([α])−−−→ Cone([α]) π([α])−−−→ Σ(A).
The class of all exact triangles will be denoted by 4. In the following we prove that (C /Q,4,Σ)
satisfies the axioms of a precomputable triangulated category.
TR′ 0. The computation of the auto-equivalences Σ, Σ−1 and the natural isomorphisms η and

ε can be achieved in any computable Frobenius category.
TR′ 1. a. A given morphism [α] : A→ B can be completed into the exact triangle

A
[α]−→ B

ι([α])−−−→ Cone([α]) π([α])−−−→ Σ(A).
It is called the standard exact triangle associated to [α].

b. For any object A in C , Cone([idA]) := CidA = IA, hence Cone([idA]) ∼= 0.
c. It is satisfied by Lemma 5.5.

TR′ 2. For a given morphism [α] : A → B, we need to construct a morphism λ : TA → Cια
which induces an isomorphism of triangles

B Cone([α]) Σ(A) Σ(B)

B Cone([α]) Cone(ι([α])) Σ(B)

	 	 	[λ]

ι([α]) π([α]) −Σ([α])

ι([α]) ι(ι([α])) π(ι([α]))

Let Iα : IA → IB be a colift morphism of α • infB along infA and Tα the cokernel
colift of Iα • def(infB) along def(infA), i.e., Σ([α]) = [Tα].

Since infA • Iα = α • infB, there exists a unique morphism θ : Cα → IB such that
ια • θ = infB and mα • θ = Iα.

In the following, we prove that ( θ πα ) : Cα → IB ⊕ TA and ( idIB 0 ) : IB → IB ⊕ TA
define a pushout diagram of (ια, infB). Suppose x : Cα → W and y : IB → W are two
morphisms with ια •x = infB • y. The following equality

infA •mα •(x− θ • y) = infA •mα •x− infA •mα • θ • y

= α • ια •x− infA • Iα • y

= α • ια •x− α • infB • y

= α •(ια •x− infB • y)
= 0
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implies the existence a cokernel colift hx,y : TA →W of mα •(x− θ • y) along def(infA).

A IA TA

B

IB

TB

IB ⊕ TA

W

Cα

y

infA

infB

def(infA)

def(infB)

α Iα

ια

x

mα

( idIB 0 )

πα

( θ πα )

(
def(infB)
−Tα

) (
y

hx,y

)
y

hx,yθ

Set ux,y :=
(

y
hx,y

)
: IB ⊕ TA → W . Then, ( idIB 0 ) •ux,y = y. By the assumption

that Cα is a pushout object and the two equalities
1. ια •( θ πα ) •

(
y

hx,y

)
= ια • θ • y + ια •πα •hx,y = infB • y + 0 = ια •x,

2. mα •( θ πα ) •
(

y
hx,y

)
= mα • θ • y+mα •πα •hx,y = mα • θ • y+ def(infA) •hx,y = mα •x;

we get ( θ πα ) •ux,y = x.
Any other solution to the linear system

( idIB 0 ) •χ = y, ( θ πα ) •χ = x

would consist necessarily of y and a cokernel colift of mα •(x− θ • y) along def(infA). By
the universal property of cokernel objects we conclude that ux,y is the only solution to the
above system. This means, the pair ( θ πα ) : Cα → IB ⊕ TA and ( idIB 0 ) : IB → IB ⊕ TA
is a pushout diagram of (ια, infB).

By the universal property a pushout diagrams there exists a unique solution U : IB⊕
TA → TB to the linear system ( idIB 0 ) •U = def(infB) and ( θ πα ) •U = 0. We claim that
this solution is given by U :=

(
def(infB)
−Tα

)
. The first equality is evident and the second

equality follows by the universal property of the pushout object Cα and the following
two equalities:
1. ια •( θ πα ) •

(
def(infB)
−Tα

)
= ια • θ • def(infB) = infB • def(infB) = 0 and

2. mα •( θ πα ) •
(

def(infB)
−Tα

)
=mα • θ • def(infB)−mα •πα •Tα = Iα • def(infB)− def(infA) •Tα = 0.

Set W := Cια , x := ιια and y := mια , then ux,y : IB ⊕ TA → Cια is an isomorphism.
If we denote hx,y : TA → Cια by λ, then [λ] induces the desired isomorphism7 of triangles

7Note that IB ⊕ TA ∼= TA in C /Q.
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B Cα TA TB

B Cα Cια TB

	 	 	[λ]

[ια] [πα] [−Tα]

[ια] [ιια ] [πια ]

The inverse morphism of [λ] can be computed again by the universal property of
the pushout object Cια . I.e., since ια •πα = 0 = infB • 0, there exists a unique morphism
µ : Cα → TA with ιια •µ = πα and mια

•µ = 0. We have then [λ]−1 = [µ].
TR′ 3. For a given quadruple of morphisms [α1], [u], [v] and [α2] with [α1] • [v] = [u] • [α2], we

need to compute a morphism [w] : Cone([α1]) → Cone([α2]) which induces a morphism
of exact triangles

A1 B1 Cone([α1]) Σ(A1)

A2 B2 Cone([α2]) Σ(A2)

	 	 	[u] [v] ∃[w] Σ([u])

[α1]

[α2]

ι([α1])

ι([α2])

π([α1])

π([α2])

Let λ : IA1 → IA2 be an E-injective colift of u • infA2 along infA1 . The equality
[α1] • [v] − [u] • [α2] = 0 implies the existence of a morphism h : IA1 → B2 with α1 • v −
u •α2 = infA1

•h. A direct verification shows that
infA1

•(λ •mα2 + h • ια2) = α1 • v • ια2 ,

hence there exists a unique morphism uλ : Cα1 → Cα2 with
mα1

•uλ = λ •mα2 + h • ια2 and ια1
•uλ = v • ια2 .

A1

B1

A2

B2

IA1TA1 IA2 TA2

Cα1 Cα2

yx

infA1 infA2

def(infA1) def(infA2)

α1

u

h α2

v
ια1 ια2

mα1 mα2πα1 πα2

λ

uλ

Furthermore, πα1
•Tu = uλ •πα2 by the universal property of the pushout object Cα1

and the following two equalities:
1. mα1

•πα1
•Tu = def(infA1) •Tu = λ • def(infA2) = λ •mα2

•πα2
= (mα1

•uλ − h • ια2) •πα2 = mα1
•uλ •πα2 and
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2. ια1
•πα1

•Tu = 0 •Tu = 0 = v • 0 = v • ια2
•πα2 = ια1

•uλ •πα2 .
The morphism [w] := [uλ] : Cα1 → Cα2 induces the desired morphism of exact trian-

gles.
TR′ 4. Let [α] : A → B, [β] : B → C and [γ] : A → C be a triple of morphisms with [α] • [β] =

[γ]. Without loss of generality we can assume γ = α •β. Let infA : A ↪−→ IA be an
inflation into some E-injective object IA and let def(infA) be the associated deflation.
By the axiom EX 3, we can complete the cospan IA

infA←−− A
α−→ B via an object Cα

and two morphisms iα : B → Cα and mα : IA → Cα into a pushout diagram. Since
infA • def(infA) = 0, there exists a unique morphism pα : Cα → TA with mα • pα =
def(infA) and ια • pα = 0. By a similar discussion for the cospan IA

infA←−− A γ−→ C we get
a pushout object Cγ and a triple of morphisms iγ , mγ and pγ with γ • ιγ = infA •mγ ,
mγ • pγ = def(infA) and ιγ • pγ = 0.

Since ια and infCα are inflations, their composition ια • infCα is an inflation as
well. Its associated deflation will be denoted by def(ια • infCα). Again, the cospan
ICα

ια • infCα←−−−−−− B
β−→ C gives rise to a pushout object C ′β and a triple of morphisms ι,m

and p where β • ι = ια • infCα •m, m • p = def(ια • infCα) and ι • p = 0.
We denote by t : T ′B → TCα the cokernel colift of def(infCα) along def(ια • infCα) and

by r : TA → T ′B the cokernel colift of mα • infCα • def(ια • infCα) along def(infA).
Since α •(β • ιγ) = γ • ιγ = infA •(mγ), there exists a unique morphism u : Cα →

Cγ with ια •u = β • ιγ and mα •u = mγ . On the other hand, γ •(ι) = α •β • ι =
α • ια • infCα •m = infA •(mα • infCα •m), hence there exists a unique morphism v′ : Cγ →
C ′β with ιγ • v′ = ι and mγ • v

′ = mα • infCα •m.

A

IA

TA

Cα

C ′β

ICα T ′B

ICα TCα

Cγ B

C

α

infA

infCα

ια • infCα def(ια • infCα)

def(infA)

def(infCα)

γ
β

ια

mα

pα

ιγ

mγ

pγ

ι

m

p

t

r

u

v′

We claim that u • v′ = infCα •m. The equality follows by the universal property of
the pushout object Cα and the following two equalities:
1. ια •(u • v′) = β • ιγ • v

′ = β • ι = ια •(infCα •m) and
2. mα •(u • v′) = mγ • v

′ = mα •(infCα •m).
The equality u • v′ = infCα •m implies [u] • [v′] = [u • v′] = 0.
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By a similar argument, we get the following equalities v′ • p = pγ • r, u • pγ = pα and
v′ • p • t = 0.

The above morphisms induce the following commutative diagram

A IA

B Cα ICα TCα

C Cγ C ′β

Cu

infA

α

mu

ιu

pu

β u m

mα

p • t

ια infCα

v′

def(infCα)

ιγ

The pair (mα, ια) defines a pushout diagram of the cospan (infA, α) and (mγ =
mα •u, ιγ) defines a pushout diagram of the cospan (infA, γ = α •β), hence (u, ιγ) defines
a pushout diagram of the cospan (ια, β). On the other hand, the pair (m, ι = ιγ • v

′)
defines a pushout diagram of the cospan (ια • infCα , β), hence the pair (m, v′) defines
a pushout diagram of the cospan (infCα , u). Furthermore, v′ • p • t = 0 and m • p • t =
def(ια • infCα) • t = def(infCα), hence the triangle

Cα
[u]−→ Cγ

[v′]−−→ C ′β
[p • t]−−−→ TCα

is exact. The isomorphism between Cu and C ′β can be computed by the universal
property of the pushout object Cu.

Suppose λ : IB → ICα and µ : ICα → IB are E-injective colifts of infB and ια • infCα
along each other. By Remark 5.27, there exist unique morphisms tλ, uλ, tµ and tλ which
render the following diagram

B

C

IBTB ICα T ′B

Cβ C ′β

yx

infB ια • infCα

def(infB) def(ια • infCα)

β

ιβ ι

mβ m
pβ p

λ

µ

tλ

tµ

uλ

uµ



5.3. STABLE CATEGORIES OF FROBENIUS CATEGORIES ARE TRIANGULATED 147

commutative and satisfy [tµ] = [tλ]−1 and [uµ] = [uλ]−1. In particular, the triangle

Cα
[u]−→ Cγ

[v′ •uµ]−−−−→ Cβ
[uλ • p • t]−−−−−→ TCα

is exact. The above data gives rise to the following commutative diagram:

A B Cα TA

C Cγ TA

TBCβ Cβ

TB TCα

γ

α

β

ια pα

ιβ = ι •uµ

pβ

r • tµ

pβ

ιγ pγ

tλ • t

u

v := v′ •uµ

w := uλ • p • t

A simple diagram chase shows that mα • infCα •µ : IA → IB is an E-injective colift of
α • infB : A→ IB along infA : A→ IA; and r • tµ is the cokernel colift ofmα • infCα •µ • def(infB) : IA →
TB along def(infA) : IA → TA, hence [r • tµ] = Σ([α]). By a similar argument, we can
show that [tλ • t] = Σ([ια]). The octahedral axiom follows by considering the above
commutative diagram in the stable category C /Q.

�

Corollary 5.30. Let (C , E) be a computable Frobenius category equipped with a D-homomorphism
structure (1, H(−,−), ν) such that

• D is Abelian and has decidable lifts,
• 1 is a projective object,
• HomD(1,−) is a faithful functor,

then the stable category C /Q is a computable triangulated category.

Proof. Follows by Lemma 5.4 and Corollary 4.24. �

In the rest of this section we discuss our primary example of a Frobenius category: The
category of finitely presented (graded) modules over the exterior algebra E = k[e0, . . . , en].

Definition 5.31. An involution on a ring R is an anti-isomorphism Θ: R→ R with Θ2 =
idR , i.e., Θ is an isomorphism of the underlying Abelian group (R,+) and Θ(1) = 1, Θ(Θ(a)) = a,
and Θ(ab) = Θ(b)Θ(a) for all a, b ∈ R.

Definition 5.32. Let R be a ring with involution Θ: R → R. For a given matrix M ∈ Rs×t
we denote by Θ(M) the matrix (Θ(aji))ij ∈ R

t×s. For a given compatible pair of matrices8 (M, N),
we have Θ(MN) = Θ(N)Θ(M) and Θ(Θ(M)) = M.

8I.e., the number of columns of M equals the number of rows of N.
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Remark 5.33. Let R be a ring with involution Θ: R → R. Any right R-module M can be
turned to a left R-module via rm := mΘ(r).

Example 5.34. The identity mapping of any commutative ring defines an involution. In
this case, the involution of a matrix is simply its transposed matrix.

Remark 5.35. Let R be a G-graded ring and M,N objects in R-grmod, then9

HomR-mod(M,N) ∼=
⊕
d∈G

Homd(M,N).

Remark 5.36. Let R,S,Q be three rings. If M is an R-S-bimodule and N is a R-Q-bimodule
then HomR(M,N) is an S-Q-bimodule via (sϕq)(m) = ϕ(ms)q. If we take N := R as an R-R-
bimodule, we get, according to Remark 5.35, that HomR-mod(M,R) is a G-graded right R-module
whose d-homogeneous part for d ∈ G is Homd(M,R).

Example 5.37. Let k be a field. The exterior algebra E = k[e0, . . . , en] can be equipped
with the involution

Θ:
{
E → E,

ei1ei2 . . . eim 7→ eim . . . ei2ei1 .
For instance, Θ(e0e2) = e2e0 = −e0e2 and Θ(e0e2e1) = e1e2e0 = e0e1e2. For every left

E-module M , the Abelian group HomE-mod(M,E) carries a right E-module structure via
HomE-mod(M,E)× E → HomE-mod(M,E),

(f, q) 7→ fq :
{
M → E,

m 7→ f(m)q.

By Remark 5.33, HomE-mod(M,E) can be turned into a left E-module via
E ×HomE-mod(M,E) → HomE-mod(M,E),

(r, f) 7→ rf :
{
M → E,

m 7→ f(m)Θ(r).

The duality functor (−)∗ is defined by

(−)∗ :


(E-mod)op → E-mod,

M 7→M∗ := HomE-mod(M,E),

ϕop : N →M 7→ ϕ∗ :
{
N∗ →M∗,

f 7→ ϕ • f .

For p ∈ E, we define the morphism ϕp : E1×1 → E1×1, r 7→ rp. Of course, ϕp corresponds in
E-rows to the morphism E1×1 (p)−−→ E1×1.

The left E-module
(
E1×1)∗ = {ϕp | p ∈ E} is generated by ϕ1. In particular, ϕp = Θ(p)ϕ1

for all p ∈ E. Furthermore,
(
E1×1)∗ ∼= E1×1 via ϕ1 ↔ 1.

For any morphism ϕp : E1×1 → E1×1, we have(
ϕ∗p(ϕ1)

)
(r) = (ϕp •ϕ1)(r) = ϕ1(ϕp(r)) = ϕ1(rp) = (Θ(p)ϕ1)(r),

9For a proof, see [NVO04, Section 2.4].
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hence ϕ∗p corresponds in E-rows to the morphism E1×1 (Θ(p))−−−−→ E1×1. Since (−)∗ is additive, we
can explicitly construct it on E-rows.

(−)∗ :


(E-rows)op → E-rows,
E1×m 7→ E1×m,(

E1×m F−→ E1×n
)op

7→ E1×n Θ(F)−−−→ E1×m.

Any finitely presented left E-module M fits into an exact sequence

E1×m M−→ E1×n π−→M −→ 0;
and since (−)∗ is left exact, we get another exact sequence

E1×m Θ(M)←−−− E1×n π∗←−M∗ ←− 0.
Because of the universal property of kernels, (−)∗ can be extended toA(E-rows) ∼= E-fpres ∼=

E-fpmod as follows:

(−)∗ :


(A(E-rows))op → A(E-rows),

M :=
(
E1×m M−→ E1×n

)
A
7→M∗ := ker

((
0→ E1×n)

A
Θ(M)−−−→

(
0→ E1×m)

A

)
,(

M
F−→ N

)op
7→ the induced kernel lift from N∗ to M∗.

The exterior algebra is quasi-Frobenius [Die58], hence an E-module is projective if and only
if it is injective. In particular, E is injective, hence the functor (−)∗ = Hommod-E(−, E) is exact.
This means applying it on the above exact sequence yields again another exact sequence

E1×m M−→ E1×n π∗∗−−→M∗∗ −→ 0.
In particular, we get a natural isomorphism

ν :
{

idE-mod → (−)∗∗,
M 7→ the cokernel colift of π along π∗∗.

This enables us to compute for each M in E-fpmod a monomorphism infM : M ↪−→ IM
where IM is an injective E-module: We compute an epimorphism E1×t τ−→→ M∗ from some free
E-module, then take the composition M ν(M)−−−→M∗∗ ↪

τ∗−→ E1×t.
To sum up, the category E-fpmod ∼= A(E-rows) ∼= E-fpres is computable Abelian with

enough projectives and injectives. By Example 2.60, the class L of all projective objects defines
a system of lifting objects. Analogously, by Example 2.62, the class Q of all injective objects
defines a system of colifting objects. Since L = Q, the associated stable categories coincide:
C /L ∼= C /Q. This means, for a morphism ϕ : M → N in E-fpmod, [ϕ] = 0 if and only if ϕ lifts
along `N : LN →→ N if and only if ϕ colifts along qM : M ↪−→ QM .

This whole discussion can be lifted to the graded case up to minor issues. Let E be a G-graded
exterior algebra and M an object in E-grmod, then10

M∗ := HomE-mod(M,E(0)) ∼=
⊕
d∈G

Homd(M,E(0)),

10See Definition 2.7.
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hence, M∗ still belongs to E-grmod and for every d ∈ G the homogeneous part (M∗)d consists
of the graded morphisms M → E(0) in E-mod of degree d. In particular, E(d)∗ is generated
as a G-graded left E-module by the map ϕ1 : E(d) → E(0), r 7→ r whose degree is d and
E(d)∗ ∼= E(−d) via ϕ1 ↔ 1. Moreover, the dual of a morphism E(d) (p)−−→ E(h) in E-grrows
is the morphism E(−h) (θ(p))−−−→ E(−d) in E-grrows. Analogously, this can be extended to
A(E-grrows) ∼= E-fpgrmod ∼= E-grfpres and can be used to compute injective resolutions
in these categories.

The category E-fpmod is Abelian, hence exact. Since E is a quasi-Frobenius algebra, the
classes of projective and injective objects coincide, it is a Frobenius category. Consequently,
the associated stable category E-fpmod/Q is triangulated (cf. [HJR10]). See Appendix D for
a software demonstration of this category.



CHAPTER 6

Tilting Equivalences via Strong Exceptional Sequences

6.1. Overview of Tilting Theory between Algebras
Tilting theory is a mathematical tool introduced in the early seventies to characterize the

existence of equivalences between module categories over finite dimensional algebras by means
of a class of bimodules and the standard operations of Hom and ⊗ functors (see e.g., [BGfP73]
and [BB80]). The derived version of the tilting theory has been initiated in [Hap88], [Bon81]
and [CPS86] via the notion of generalized tilting modules which enables the construction of
exact equivalences between derived categories of modules in terms of derived functors − ⊗L T
and RHom(T,−). Soon after, Rickard introduced the notion of a tilting complex in his work to
characterize the existence of exact equivalences between derived categories of modules (cf. [Ric89]
and [Ric91]).

Remark 6.1. Let S,R,Q be three rings. Then
(1) If M is an S-R-bimodule and N is an S-Q-bimodule then HomS(M,N) is an R-Q-

bimodule via (rϕq)(m) = ϕ(mr)q.
(2) If M is an S-R-bimodule and N is a Q-R-bimodule then HomR(M,N) is an Q-S-

bimodule via (qϕs)(m) = qϕ(sm).
(3) If M is an S-R-bimodule and N is an R-Q-bimodule then M ⊗RN is an S-Q-bimodule

via s(m⊗ n)q = (sm)⊗ (nq).

Remark 6.2. Let C be an additive category and let M be an object in C , then the Abelian
group EndC M := HomC (M,M) can be turned into a ring in two different ways:

(1) We define the multiplication of two elements f, g : M → M by their pre-composition,
i.e., f · g := f • g. This will be the default choice for considering EndC M as a ring.

(2) We define the multiplication of two elements f, g : M → M by their post-composition,
i.e., f · g := f ◦ g. The resulted ring is isomorphic to Endop

C M .

Remark 6.3. Any Abelian group M is a right EndRM -module via m · f := f(m).

Let R and S be associative unital k-algebras and T an S-R-bimodule1. Then we have adjoint
functors2

−⊗S T : Mod-S �Mod-R :HomR(T,−).
One variant of Morita’s theorems states that these functors are quasi-inverse equivalences if

and only if
(1) T is a finitely generated projective right R-module,

1An S-R-bimodule is by definition a left S-module and right R-module.
2Each pair of adjoint functors between module categories is of this form [Kel07].
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(2) the canonical map 
S → Endop

R T,

s 7→ ϕs :
{
T → T,

t 7→ s · t
is an isomorphism, and

(3) the free right R-module of rank one R is a direct summand of a finite direct sum of
copies of T .

In this case, we call T a tilting R-module and we say R and S are Morita equivalent.
Example 6.4. Let k be a field and A a finite dimensional k-algebra. Suppose P1, . . . , Pn

are the isomorphism classes of indecomposable direct summands of AA which are necessarily
projective right A-modules. The A-module T =

⊕n
i=1 Pi is an Endop

A T -A-bimodule and satisfies
the above assumptions, hence it is a tilting A-module. Since Pi’s are pairwise non-isomorphic the
algebra Endop

A T is basic. In particular, any finite dimensional k-algebra is Morita equivalent to
a basic algebra. If k is algebraically closed, then Endop

A T is isomorphic to an admissible quiver
k-algebra (see, e.g., [ARS97], [DW17] or [ASS06]).

The following is the derived version of Morita’s equivalence. For the proof we refer to [Hap88,
Theorem 2.10], [Kel07, Section 4] and [CPS86].

Theorem 6.5 (Happel’s theorem). Let R and S be associative unital k-algebras and T an
S-R-bimodule. The derived functors(

−⊗LS T
)

: D(Mod-S)� D(Mod-R) :RHomR(T,−)

are quasi-inverse equivalences if and only if
(1) As a right R-module, T admits a finite resolution

0 −→ P−n −→ · · · −→ P 0 −→ T −→ 0
by finitely generated projective right R-modules P i,

(2) The canonical map 
S → Endop

R T,

s 7→ ϕs :
{
T → T,

t 7→ s · t
is an isomorphism and for each i > 0, we have ExtiR(T, T ) = 0, and

(3) There exists an acyclic complex
0 −→ R −→ T 0 −→ T 1 −→ · · · −→ Tm −→ 0

where R is considered as a right R-module over itself and the T i are direct summands
of finite direct sums of copies of T .

If these conditions hold and, moreover, S and R are right noetherian, then the derived functors
restrict to quasi-inverse equivalences(

−⊗LS T
)

: Db(mod-S)� Db(mod-R) :RHomR(T,−).

where mod-S and mod-R denote the category of finitely generated right S-modules resp. R-
modules.
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Definition 6.6. Let R be a ring. A right R-module T will be called a generalized tilting
right R-module if

(1) T admits a finite resolution
0 −→ P−n −→ · · · −→ P 0 −→ T −→ 0

by finitely generated projective right R-modules P i,
(2) T has no higher extensions, i.e., Exti(T, T ) = 0 for all i > 0,
(3) There is an acyclic complex

0 −→ R −→ T 0 −→ T 1 −→ · · · −→ Tm −→ 0
where R is considered as a right R-module over itself and the T i are direct summands
of finite direct sums of copies of T .

Corollary 6.7. Let T be a generalized tilting right R-module, then the derived functors
−⊗LEndop T T : D(Mod-Endop T )� D(Mod-R) :RHomR(T,−).

are quasi-inverse. If in addition, Endop T and R are right noetherian, then the derived functors
restrict to quasi-inverse equivalences

−⊗LEndop T T : Db(mod-Endop T )� Db(mod-R) :RHomR(T,−).
Remark 6.8. Let k be a field and A be a finite dimensional k-algebra. According to [Miy86]
and [Bae88, Definition 8.1], Axiom 3 in Definition 6.6 can be replaced by the following condition:

(3′) R belongs to the smallest thick triangulated subcategory of Db(mod-R) containing T .
This means, instead of verifying 3, we can now verify 3′ by, e.g., checking whether the counit
component

εR : RHomR(T,R)⊗LEndop T T → R

is an isomorphism (cf. Appendix E).
Remark 6.9. Let k be a field and A be a finite dimensional k-algebra. Then the category mod-A
of finitely generated A-modules coincide with the category fdmod-A of finite dimensional A-
modules. Any generalized tilting right A-module T can be resolved by finitely generated projective
right A-modules, hence T belongs to fdmod-A. In particular, End T is also a finite dimensional
k-algebra. If the indecomposable direct summands of T form a strong exceptional sequence in
fdmod-A (cf. Definition 6.19), then Endop T has finite global dimension (cf. Corollary 6.37).

The adjunction
−⊗Endop T T : mod-Endop T �mod-A :HomA(T,−)

can naturally be extended to the bounded homotopy categories
−⊗Endop T T : Kb(mod-Endop T )� Kb(mod-A) :HomA(T,−).

If A has finite global dimension, then by Corollary 3.38 and Remark 3.40, the localization
functors are adjoint to the natural embedding functors:

ι: Kb(proj-Endop T )� Kb(mod-Endop T ) :P
and

I : Kb(mod-A)� Kb(inj-A) :ι.
The composition of the above three adjunctions defines a pair of adjoint exact equivalences:

ι •
(
−⊗Endop T

)
• I : Kb(proj-Endop T )� Kb(inj-A) :ι •HomA(T,−) • P .
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Example 6.10. Let q be the right quiver:
v2

v1 v4

v3

ba

c d

and let A be the k-algebra Qq/〈ρ〉 where Qq is the path Q-algebra of q and 〈ρ〉 � Qq is the
two-sided admissible ideal generated by the relation ρ = {ab− cd}. According to Theorem 2.70,
mod-QFq/〈ρ〉 'mod-A. The object T

Q1

Q3

Q3

Q4

( · · 1 )
( 1 · · ·
· · −1 ·
· · · 1

)

( · · 1 ) ( · 1 · ·
· · 1 ·
· · · 1

)
in mod-QFq/〈ρ〉 is a generalized tilting object, hence induces a derived equivalences

Db(mod-Endop T ) ' Db(mod-QFq/〈ρ〉).
The indecomposable direct summands of T form a strong exceptional sequence. For details

we refer to Appendix E.

6.2. The Abstraction Algebroid of a Strong Exceptional Sequence
This section is devoted to review the definition of strong exceptional sequences in k-linear

triangulated categories. We develop algorithms to compute some of their invariants. For example,
an algorithm to compute an isomorphism between a strong exceptional sequence E and a k-linear
finitely presented category AE defined by an acyclic quiver qE subject to an admissible set of
relations ρ ⊂ kFq. For detailed background we refer to [BvdB03], [Bon89] and [Huy06].

Definition 6.11. Let T be a triangulated category and let {Ti}i∈I be a family of objects in
T. The triangulated hull of the family {Ti}i∈I , denoted by 〈Ti〉i∈I , is the smallest triangulated
subcategory of T containing all objects of the family.

Remark 6.12. The triangulated hull of the family {Ti}i∈I can be obtained as the full additive
subcategory whose objects belong to the smallest collection with the following properties:

(1) It contains the family {Ti}i∈I .
(2) For any object T in the collection, Σi(T ) belongs to the collection for all i ∈ Z.
(3) If A α−→ B

ι−→ C
π−→ Σ(A) is an exact triangle in T and A,B are in the collection, then C

is also in the collection.

Definition 6.13. Let T be a triangulated category and let {Ti}i∈I be a family of objects in
T. We say that the family {Ti}i∈I generates T if its triangulated hull is T.

Definition 6.14. Let k be a field and T a k-linear Hom-finite triangulated category.
• A full subcategory E ⊂ T is called strong exceptional if the following hold:

(1) It is skeletal and has finitely many objects.
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(2) HomT(E,Σ`(E′)) = 0 for all E,E′ ∈ E and 0 6= ` ∈ Z.
(3) EndTE ∼= k for all E ∈ E .
(4) There exists a total ordering 4 on the objects of E such that E 6= E′ and E 4 E′

implies HomT(E′, E) = 0.
• A strong exceptional subcategory E ⊂ T is called complete (or full) if its objects
generate T.
• A sequence of objects (E1, . . . , En) is called strong exceptional sequence in T if the
full subcategory generated by these objects is strong exceptional in T and E1 4 · · · 4 En.

Definition 6.15. Let T a triangulated category and T in T. For n ≥ 1, we define 〈T 〉n
by the full subcategory of objects in T which, up to isomorphism, can be obtained from T by
taking finite direct sums, direct summands, shifts and at most n− 1 cones. It can be shown that⋃
n≥1〈T 〉n is the smallest thick triangulated subcategory of T containing T . We call T a

(1) classical generator for T if
⋃
n≥1〈T 〉n = T,

(2) strong generator for T if there exists an integer n ≥ 1 such that 〈T 〉n = T,
(3) weak generator for T if HomT

(
T,Σi(U)

)
= 0 for all i ∈ Z implies U ∼= 0.

Lemma 6.16. Let T be a triangulated category. Let T, U be objects in T. The following
statements are equivalent:

(1) HomT

(
T,Σi(U)

)
= 0 for all i ∈ Z,

(2) HomT

(
E,Σi(U)

)
= 0 for all i ∈ Z and E ∈

⋃
n≥1〈T 〉n.

Proof. We will prove the assertion by induction on n. Let E ∈ 〈T 〉n for some n ∈ Z. If
E ∈ 〈T 〉1, then the assertion is obvious. If E ∈ 〈T 〉n for some n > 1, then by the definition of
〈T 〉n, there exist two objects E1 ∈ 〈T 〉n1 , E2 ∈ 〈T 〉n2 with n1, n2 < n and a morphism α : E1 → E2
that can be completed to an exact triangle

E1
α−→ E2

ι−→ E
π−→ Σ(E1).

Suppose there exists i ∈ Z such that HomT

(
E,Σi(U)

)
6= 0 and let ϕ : E → Σi(U) be a nonzero

morphism. It follows by the induction hypothesis that ι •ϕ = 0. By TR 3, the pair E2 −→ 0 and
E

ϕ−→ Σi(U) can be extended via a morphism ψ : E1 → Σi−1(U) to a morphism of exact triangles
from

E1 E2 E Σ(E1)

Σi−1(U) 0 Σi(U) Σi(U)

	 	 	ψ ϕ Σ(ψ)

α ι π

idΣi(U)

By the induction hypothesis ψ = 0, hence ϕ = ϕ • idΣi(U) = π •Σ(ψ) = π • 0 = 0, which is the
desired conclusion. The converse follows since T ∈ 〈T 〉1. �

The following is an immediate consequence of the above lemma.
Corollary 6.17. Every classical generator is weak.
Example 6.18. Let E = (Ei | i = 1, . . . , n) be a strong exceptional sequence in T. We refer

to the object TE :=
⊕n

i=1Ei as the tilting object associated to E . If E is complete, then TE is a
classical generator to T.
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Definition 6.19. Let C be an Abelian category. A full subcategory E in C is called (com-
plete) strong exceptional in C if its embedding in Db(C ) is (complete) strong exceptional.

Example 6.20. Let k be a field and q an acyclic quiver. Let A := kFq/〈ρ〉 be a k-linear
finitely presented category defined by q subject to an admissible set of relations ρ. The image
of the Yoneda embedding A ↪−→ A-mod is complete strong exceptional. Details can be found in
[Bon89, Lemma 5.5].

Example 6.21. Let k = Q and q be the quiver
v1

v2

v3 v4

x

y

z

and let Aq be the Q-linear finitely presented category defined by q. Consider in Kb
(
A⊕q

)
∼=

Db(Aq-mod) the following objects

0 v1 ⊕ v2 v3 0,V0 :=
( xy )

0

V1 := dv1c0, V2 := dv2c0, V3 := dv3c0, V4 := dv4c0,
then E1 = (V1,V2,V3,V4) and E2 = (V0,V1,V2,V4) are both complete strong exceptional sequences
(cf. Appendix E).

Example 6.22. Let O be the quiver

v1 v2 v3,

x0

x1

x2

y0

y1

y2

and let AO be the Q-linear finitely presented category defined by O subject to the admissible
relations ρ = {xiyj − xjyi | 0 ≤ i, j ≤ 2}. Let A⊕O be the additive closure of AO and Kb

(
A⊕O

)
its

bounded homotopy category. The Yoneda embedding
AO ↪−→ AO-proj ⊂ AO-mod

can be extended to an exact equivalence

Kb
(
A⊕O

) ∼−→ Kb(AO-proj) ∼−→ Db(AO-mod).

Consider in Kb
(
A⊕O

)
the following six objects:

0 v3
1 v3

2 v3 0,O−1 :=

(
x1 −x0 0
x2 0 −x0
0 x2 −x1

)
0

( y0
y1
y2

)
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0 v3
1 v2 0,Ω1 :=

( x0
x1
x2

)
0

O0 := dv1c0, O1 := dv2c0, O2 := dv3c0,

0 v1 v⊕3
2 v⊕3

3 0.O3 :=

( 0 y2 −y1
y2 0 −y0
y1 −y0 0

)
(−x0 x1 −x2 )

−2

Then E1 := (O−1,O0,O1), E2 := (O−1,Ω1,O0), E3 := (O0,O1,O2) and E4 := (O1,O2,O3) are
complete strong exceptional sequences. The objects O1,O2,O3 andO4 as objects in Db(AO-mod)
are isomorphic to their cohomologies at index 0, hence E3 and E4 live in the Abelian heart
AO-mod ⊂ Db(AO-mod).

Definition 6.23. Let T be a Hom-finite k-linear triangulated category and E = (Ei | i = 1, . . . , n)
be a strong exceptional sequence in T. For indices 1 ≤ i ≤ ` ≤ j ≤ n, we denote by Ei`j the
k-vector subspace of HomT(Ei, Ej) generated by all morphisms that factor through E`.

Example 6.24. Let E = (Ei | i = 1, . . . , n) be a strong exceptional sequence. Then
(1) Eiij = Eijj = HomT(Ei, Ej).
(2) If j < i, ` < i or j < ` then Ei`j = 0 (cf. Definition 6.14).

Remark 6.25. Any strong exceptional sequence E = (Ei | i = 1, . . . , n) is locular (cf. Defini-
tion A.34). Furthermore, for all 1 ≤ i, j ≤ n we have

radE (Ei, Ej) =
{

HomE (Ei, Ej) if i 6= j

0 if i = j

and

rad2
E (Ei, Ej) =

{
Σj−1
`=i+1Ei`j if i 6= j

0 if i = j.

Notation 6.26. For a pair of indices 1 ≤ i 6= j ≤ n we denote by B2
ij a basis of rad2

E (Ei, Ej)
and by Bij a basis of a complementary k-vector space of rad2

E (Ei, Ej) in radE (Ei, Ej). In par-
ticular, the set {b+ rad2

E (Ei, Ej) | b ∈ Bij} forms a basis for the space of irreducible morphisms
irrE (Ei, Ej) := radE (Ei, Ej)/ rad2

E (Ei, Ej) (cf. Definition A.34).
The identity morphisms in E will be called the paths of length 0 in E . For i 6= j, we call the

elements of Bij the paths of length 1 or arrows in E . Compositions of arrows are called paths
of length greater than one in E . Since the quiver of ε is acyclic, there is a finite number of
paths in E . It is obvious that Bij ∪ B2

ij forms a basis for HomE (Ei, Ej) for all 1 ≤ i 6= j ≤ n.
The following lemma implies that the compositions of elements of Bij , i ≤ j completely

determine the morphism spaces of E :
Lemma 6.27. For all 1 ≤ i 6= j ≤ n, the k-vector space rad2

E (Ei, Ej) is generated by the set
of all paths of length greater than one from Ei to Ej.
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Proof. A path of length greater than one from Ei to Ej factors through some object E`
with i < ` < j, hence lies in Ei`j ⊆ rad2

E (Ei, Ej). That is, all paths of length greater than one
already belong to rad2

E (Ei, Ej).
We prove the assertion by induction on j− i. In the case j− i = 1 there is no paths of length

greater than one from Ei to Ej , hence the assertion holds since rad2
E (Ei, Ej) = 0. For j − i > 1,

we have rad2
E (Ei, Ej) = Σj−1

`=i+1Ei`j , i.e., it is sufficient to prove that each of Ei`j , i < ` < j is
generated by a set of paths of length greater than one from Ei to Ej . Let ϕ : Ei → Ej ∈ Ei`j and
ϕ = ϕi` •ϕ`j for ϕi` ∈ Homk(Ei, E`) and ϕ`j ∈ HomE (E`, Ej). Since `− i < j− i and j−` < j− i,
it follows by the induction hypothesis that B2

i` and B2
`j can be chosen to be sets of paths of length

greater than one. This means HomE (Ei, E`) and HomE (E`, Ej) are generated by paths of length
one or greater. Consequently, ϕ can be written as a linear combination of paths of length greater
than one. �

The proof of the above lemma translates to the following algorithms for computing Bij and
B2
ij :

Algorithm 1: Computing the set of arrows Bij
Input: A strong exceptional sequence E = (Ei | i = 1, . . . , n) and two indices

1 ≤ i < j ≤ n
Output: Bij
if j − i = 1 then

return a basis for HomE (Ei, Ej) // e.g., via BasisOfExternalHom(Ei, Ej)

else
Perform the next algorithm to compute B2

ij

Compute a set B such that B ∪ B2
ij is a basis of HomT(Ei, Ej)

return B

Algorithm 2: Computing the set of paths of length greater than one B2
ij

Input: A strong exceptional sequence E = (Ei | i = 1, . . . , n) and two indices
1 ≤ i < j ≤ n

Output: B2
ij

if j − i = 1 then
return ∅

else
Compute Bi`, B`j and B2

`j for all i < ` < j; // inductively

Compute a generating set for rad2
E (Ei, Ej) by B :=

⋃j−1
`=i+1 Bi` •

(
B`j ∪ B2

`j

)
;

// U •V = {u • v|u ∈ U, v ∈ V }
Compute a maximal set of independent elements B in B; // e.g., via

RelationsBetweenMorphisms(-)
return B
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Remark 6.28. If T (or E ) is equipped with a k-mat-homomorphism structure via (1, H(−,−), ν),
then we can deduce the k-linear relations between morphisms f1, f2, . . . , fm : Ei → Ej in E from
the kernel of the map

1⊕m

(
ν(f1)
...

ν(fm)

)
−−−−−−−→ H(Ei, Ej).

Notation 6.29. In the following TE denotes the object
⊕n

i=1Ei, εEi denotes the natural
injection Ei ↪−→ TE , and πEi denotes the natural projection TE −→→ Ei.

Remark 6.30. Any endomorphism ϕ : TE → TE is given by a matrix

ϕ =


ϕ11 ϕ12 ϕ13 · · · ϕ1n
0 ϕ22 ϕ23 · · · ϕ2n
0 0 ϕ33 · · · ϕ3n
...

...
...

. . .
...

0 0 0 · · · ϕnn

,

where ϕij ∈ HomT(Ei, Ej) for i, j = 1, . . . , n. Therefore, any morphism ϕij : Ei → Ej can be
identified with the element πEi •ϕij • εEj in End TE ;

From now on, we will consider the bases Bij and B2
ij for 1 ≤ i 6= j ≤ n as subsets of End TE .

The previous identification justifies the following lemma:
Lemma 6.31. The set

{idE1 , . . . , idEn} ∪
⋃
i≤j

(
Bij ∪ B2

ij

)
is a basis for the endomorphism algebra End TE . Consequently, End TE is generated as k-algebra
by the set of all paths of length zero or one.

Proof. Since E is strong exceptional
End TE =

⊕
1≤i,j≤n

HomT(Ei, Ej) =
⊕

1≤i≤j≤n
HomT(Ei, Ej).

The assertion follows from the fact that the basis of HomT(Ei, Ej) is {idEi} if i = j and
Bij ∪ B2

ij if i < j. The second assertion follows from Lemma 6.27. �

Notation 6.32. Let qE be the quiver associated to some strong exceptional sequence E .
The vertex which corresponds to Ei will be labeled by vi and the arrow from vi to vj which
corresponds to the `’th element of Bij will be labeled by αij`.

Lemma 6.33. Every strong exceptional sequence E = (Ei|i = 1, . . . , n) is isomorphic to a
k-linear finitely presented category kFqE /〈ρ〉 for an admissible set of relations ρ in kFqE .

Proof. By the universal property of k-linear closure categories, there exists a k-linear functor
F : kFqE → E which maps the i’th arrow from vi to vj to the i’th arrow from Ei to Ej , i.e., the
i’th element of Bij .

It follows from Lemma 6.31 that the k-linear maps
Fi,j : HomkFqE

(vi, vj)→→ HomE (Ei, Ej)
are surjective for all 1 ≤ i, j ≤ n.
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We define ρ :=
⋃
i≤j B(ker(Fi,j)) where B(ker(Fi,j)) is a basis for the k-vector space ker(Fi,j).

Since the quiver is acyclic, kFqE is Hom-finite, hence ρ is a finite set. To show that ρ is admissible,
it is sufficient to prove that any element in ρ is a k-linear combination of paths of length greater
than one.

We prove the claim by induction on j − i. If j − i ∈ {0, 1}, then Fi,j is an isomorphism,
consequently ker(Fi,j) = 0 and the claim holds. Suppose now that j−i > 1 and let p be an element
in ker(Fi,j). Since p ∈ HomkFqE

(vi, vj), it can be written as a sum p1 +p2 where p1 = Σnij
`=1c`αij`,

ni,j = |Bij | and p2 is a k-linear combination of paths of length greater than one. By the definition
of Fi,j , we have Fi,j(p1) = 〈Bij〉 and Fi,j(p2) ∈ 〈B2

ij〉. Since HomT(Ei, Ej) = 〈Bij〉 ⊕ 〈B2
ij〉 and

Fi,j(p) = 0, we have Fi,j(p1) = 0 and Fi,j(p2) = 0; which implies that c` = 0 for all 1 ≤ ` ≤ ni,j .
Therefore, p is a k-linear combination of paths of length greater than one. That is, every element
of ρ is a linear combination of paths of length greater than one and the lemma follows. �

Notation 6.34. The k-algebroid kFqE /〈ρ〉 will be called the abstraction k-algebroid of
E and will be denoted by AE .

The proof of the above lemma translates to the following algorithm to compute ρ:
Algorithm 3: The abstraction k-algebroid of a strong exceptional sequence
Input: A strong exceptional sequence E = (Ei | i = 1, . . . , n)
Output: An admissible set of relations ρ ⊂ kFqE with E ∼= AE := kFqE /〈ρ〉
Compute qE

ρ← ∅
for i = 1, . . . , n− 2 do

for j = i+ 2, . . . , n do
Compute a basis Sij for HomkFqE

(vi, vj) // i.e., all paths from vi to vj

Apply Fij on Sij to compute a generating set Gij for im(Fij)
Compute the set of k-linear relations ρij between the elements of Gij

// e.g., via RelationsBetweenMorphisms(-)
ρ← ρ ∪ ρij

return ρ

Lemma 6.35. Let E = (Ei|i = 1, . . . , n) be a strong exceptional sequence and let TE =⊕n
i=1Ei. Then HomT(TE ,−) : T→ Ab factors along the embedding

AE -mod ' End TE -mod ↪−→ Ab.
Furthermore, the restriction of the functor on E defines an isomorphism

HomT(TE ,−) : E
∼−→ ind0(AE -proj)

where ind0(AE -proj) is the skeletal full subcategory generated by the indecomposable projective
objects in AE -mod.

Proof. The equivalence AE -mod ' End TE -mod follows from Lemma 6.33 and Theo-
rem 2.70. For any object U in T, HomT(TE , U) is a left End TE -module via f · m := f •m.
An easy verification shows that for any morphism ϕ : U → V the map

HomT(TE , ϕ) :
{

HomT(TE , U) → HomT(TE , V ),
ψ 7→ ψ •ϕ
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is a left End TE -module homomorphism. Hence,
HomT(TE ,−) : T→ End TE -mod

is indeed well-defined.
Since End TE

∼= kqE /〈ρ〉, it follows from Theorem 2.79 that the indecomposable projective left
End TE -modules are, up to isomorphism, the cyclic modules End TE · (πEi • εEi) ∼= HomT(TE , Ei)
for i = 1, . . . , n where εEi : Ei ↪−→ TE is the natural injection of Ei in the direct sum TE and
πEi : TE →→ Ei is the natural projection from the direct sum TE on Ei.

It remains to show that the restriction of HomT(TE ,−) to E induces a fully faithful functor
HomT(TE ,−) : E → End TE -mod.

Let ϕij : Ei → Ej be a morphism with HomT(TE , ϕij) = 0, then

0 = HomT(TE , ϕij)(πEi) = πEi •ϕij =


...
0
ϕij
0
...

,
i.e., ϕij = 0. This shows that the restriction of HomT(TE ,−) to E is faithful.

Let λ : HomT(TE , Ei) → HomT(TE , Ej) be a homomorphism of End TE -modules. We claim
that HomT(TE , εEi •λ(πEi)) = λ where εEi be the natural injection Ei ↪−→ TE . For any ψ ∈
HomT(TE , Ei), we have

λ(ψ) = λ(ψ • εEi •πEi)
= λ((ψ • εEi) · πEi)
= (ψ • εEi) · λ(πEi)
= ψ • εEi •λ(πEi)
= HomT(TE , εEi •λ(πEi))(ψ);

i.e., λ = HomT(TE , εEi •λ(πEi)). This shows that the restriction of HomT(TE ,−) on E is full. �

Remark 6.36. Analogously to Theorem 2.70 the explicit construction of HomT(TE ,−) is given
by

HomT(TE ,−) :



T → AE -mod,

U 7→ HomT(TE , U) :



Aop
E → k-mat,

vop
i 7→ dimk HomT(Ei, U),

αop
ij` 7→

the matrix of the map{
HomT(Ej , U) → HomT(Ei, U),

g 7→ αE
ij`

• g

w.r.t. B(HomT(Ej , U)), B(HomT(Ei, U)).

ϕ : U → V 7→ HomT(TE , ϕ) :



HomT(TE , U) → HomT(TE , V ),

vop
i 7→

the matrix of the map{
HomT(Ei, U) → HomT(Ei, V ),

g 7→ g •ϕ

w.r.t. B(HomT(Ei, U)), B(HomT(Ei, V ))

where αE
ij` denotes the `’th element of Bij and B(HomT(Ei, U)) denotes a particular choice of a

basis for HomT(Ei, U).
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Corollary 6.37. Let E = (Ei | i = 1, . . . , n) be a strong exceptional sequence in T. We have
the following equivalences

Kb
(
E ⊕
) ∼= Kb(A⊕E

)
' Kb(AE -proj) ' Db(AE -mod) ' Db(End TE -mod).

Proof. The first isomorphism follows by extending the isomorphism in Lemma 6.33 to addi-
tive closures then to bounded homotopy categories. The second equivalence follows by extending
the Yoneda isomorphism in Corollary 2.90 to additive closures then to bounded homotopy cat-
egories. The third equivalence follows by Theorem 3.61 and the fact that AE -mod has a finite
global dimension (cf. Corollary 2.96). The last equivalence follows by Theorem 2.70. �

6.3. The Convolution Functor F
Let T be a triangulated category and E a strong exceptional sequence in T. The induced

exact equivalences in Corollary 6.37 can be depicted in the right side of following diagram:

T

Kb(T) Kb(E ⊕) Kb
(
A⊕E

)

Kb(AE -proj)

Db(AE -mod)

∼

∼

∼

where the left side is merely the natural embedding functor. In fact, E is a complete strong
exceptional sequence in Kb(E ⊕). This follows from the fact that any object in Kb(E ⊕) with lower
bound ` is a standard cone object of a morphism between objects with common lower bound `+1
(cf. Construction 6.62).

Suppose T := Db(mod-A) for some finite dimensional k-algebra A and T is a generalized
tilting object in mod-A whose direct summands E1, . . . , En form a complete strong exceptional
sequence E . Let TE :=

⊕n
i=1Ei

∼= T . Then Happel’s theorem states that the derived functors
−⊗L TE : Db(mod-Endop TE )� Db(mod-A) : RHommod-A(TE ,−).

are exact quasi-inverses. In particular, the composition

Kb
(
E ⊕
)
↪−→ Kb(mod-A) Q−→ Db(mod-A)

defines an exact equivalence of categories where Q is the natural localization functor (cf. Re-
mark 3.42).

For arbitrary triangulated category T finding a functor from Kb(E ⊕) to T is a tricky task.
The convolution construction (cf. [GM03], [Orl97], [BBHR09]) associates to an object

T := · · · → T−1 → T 0 → T 1 → · · ·
in Cb(T) a set tot(T ) of “totalizations” for T all of which belong to the triangulated hull {T i|i ∈
Z}4 ⊆ T. In general, the set tot(T ) might be empty or might contain one or several non-
isomorphic objects.
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However, if all T i, i ∈ Z live in the image of the natural embedding E ⊕ ⊂ T, then T has, up
to a non-canonical isomorphism, only one convolution in T (cf. [GM03] and [BBHR09]). If S
is another complex whose components also belong to the image of the embedding E ⊕ ⊂ T, then
every morphism from T to S lifts to a morphism between the corresponding convolutions.

As we will see later, computing the convolution is based on an iterative computation of
(co)cone objects. The non-functoriality of the (co)cone construction in triangulated categories
prevents the convolution construction from being functorial.

In this section, we introduce an approach to rectify this limitation in the case where T is the
bounded homotopy category Kb(C ) of a k-linear additive category C . Achieving the functoriality
is based on extending complexes over Kb(C ) and their morphisms to what we call standard
objects and morphisms in the category of Postnikov systems over T. We call them standard
because their construction depends on an iterative computation of chain homotopies. Let us first
state the theorem

Theorem 6.38. Let k be a field and C a Hom-finite k-linear additive category. Then any
strong exceptional sequence E ⊂ Kb(C ) induces a fully faithful exact functor

F : Kb
(
E ⊕
)
→ Kb(C )

whose essential image is the triangulated hull E4 of E in Kb(C ).
The asserted functor will be called the standard convolution functor. This means, if E is

complete, then F becomes an exact equivalence of triangulated categories. The next two sections
are devoted to the proof of the above theorem. For an implementation of the presented con-
cepts we refer to the GAP packages TriangulatedCategories [Sal21f] and HomotopyCategories
[Sal21d].

Throughout this section T will be a triangulated category equipped with a shift automorphism
(cf. Remark B.4). We start by defining the category of Postnikov systems over T:

Definition 6.39. Let T be a triangulated category. A Postnikov system P over T is a
family of exact triangles

P =
(
Ci

κi−→ T i
µi−→ Ci+1 ρi−→ Σ

(
Ci
))

i∈Z
depicted in the following diagram:

· · ·

Ci−1

T i−1

4

Ci

T i

4

Ci+1

T i+1 · · ·

κi+1κiκi−1 µiµi−1

ΣΣ

We say P is bounded below if there exists ` ∈ Z with T i = 0 for all i < `. Similarly, P is
bounded above if there exists u ∈ Z with T i = 0 for all i > u.

Remark 6.40. The cone and cocone3 objects of any morphism are unique up to (non-canonical)
isomorphism, hence

Cone
(
κi−1

)
∼= Ci ∼= Cocone

(
µi
)
.

3For a morphism ϕ, we have Cocone(ϕ) := Σ−1(Cone(ϕ)) (cf. Remark 5.10).
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Remark 6.41. Suppose ` is a lower bound of P . We can extend the morphism 0 → C` to the
exact triangle

Σ−1
(
C`
)
−→ 0 −→ C` −→ C`.

Hence C`−i ∼= Σ−i
(
C`
)
for all i ≥ 0. Similarly, if u is an upper bound for P , then we can extend

Cu+1 → 0 to the exact triangle

Cu+1 −→ 0 −→ Σ
(
Cu+1

)
−→ Σ

(
Cu+1

)
.

Hence Cu+1+i ∼= Σi
(
Cu+1) for all i ≥ 0.

Remark 6.42. The composition of any two consecutive morphisms of an exact triangle is zero,
thus the family

(
∂iT := µi •κi+1)

i∈Z defines a complex over T:

. . .T := T i−1 T i T i+1 . . .
∂`T ∂`+1

T

We call T the underlying complex of P .

In the following we define the category of Postnikov systems:
Definition 6.43. Let T be a triangulated category. The category of Postnikov systems over

T consists of the following data:
(1) The objects are the Postnikov systems over T.
(2) A morphism from P1 to P2 is defined by a pair of families:

ϕ =
(
ϕi : T i1 → T i2

)
i∈Z

and ϕC =
(
ϕiC : Ci1 → Ci2

)
i∈Z

which induce morphisms of exact triangles:

Ci1 T i1 Ci+1
1 Σ

(
Ci1
)

Ci2 T i2 Ci+1
2 Σ

(
Ci2
)	 	 	

κi1 µi1

κi2 µi2

ϕiC ϕi ϕi+1
C Σ

(
ϕiC
)

for all i ∈ Z.
(3) The identity morphisms and the composition are inherited from T.

Remark 6.44. Let [ϕ,ϕC ] : P1 → P2 be a morphism of Postnikov systems and T1 and T2 the
underlying complexes of P1 resp. P2. Since ∂iT1

= µi1 •κ
i+1
1 and ∂iT2

= µi2 •κ
i+1
2 for all i ∈ Z, the

family ϕ =
(
ϕi : T i1 → T i2

)
i∈Z defines a morphism from T1 to T2 in Cb(T). We call ϕ : T1 → T2 the

underlying complex morphism of [ϕ,ϕC ] : P1 → P2.

Definition 6.45. Let P be a Postnikov system bounded below by `. We define the convolu-
tion object F(P ) of P by Σ−`

(
C`
)
. Similarly, let [ϕ,ϕC ] : P1 → P2 be a morphism of bounded

below Postnikov systems. We define the convolution morphism F([ϕ,ϕC ]) by Σ−`
(
ϕ`
)
where

` is a common lower bound of P1 and P2.
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Definition 6.46. Let T be an object in Cb(T) with an upper bound u. A Postnikov system
PT over T: (

CiT
κiT−−→ T i

µiT−−→ CiT
ρiT−→ Σ

(
CiT

))
i∈Z

is called extension of T to a Postnikov system if
(1) µiT •κi+1

T = ∂iT for i ∈ Z and
(2) κiT = idT i for i ≥ u.

· · ·

Cu−2

T u−2

4 4

Cu−1

T u−1

Cu = T u

T u 0
	 	

κuT := idTuκu−1
Tκu−2

T µu−1
Tµu−2

T

∂u−3
T ∂u−2

T ∂u−1
T

ΣΣ

We define the set of convolutions associated to T by the set of convolutions of all extensions
of T to Postnikov systems.

By axioms TR 1 and TR 2 in Definition B.1, Lemma B.5, and Corollary B.15, any morphism
α : T → B in T can be extended to the exact triangle

Cocone(α) Σ−1(π(α))−−−−−−→ T
α−→ B

−ι(α)−−−→ Cone(α).
The equality κuT = idTu in the above definition implies µu−1

T = ∂u−1
T . We can take κu−1

T

to be Σ−1
(
π
(
µu−1
T

))
. If we do so, the next step toward computing a Postnikov system is the

computation of µu−2
T , which is equivalent to solving the two-sided linear system

χ •κu−1
T = ∂u−2

T , ∂u−3
T

•χ = 0
where the first equation is justified by Definition 6.46 and the second equation is justified by the
fact that the composition of any two consecutive morphisms in an exact triangle is trivial.

If such solution exists, we might continue with same procedure. The number of convolutions
associated to T depends on how many solutions we get in each iteration.

Definition 6.47. Let T and S be objects in Cb(T). Let PT and PS extensions of T resp. S
to Postnikov systems. An extension of a morphism ϕ : T → S to a morphism from PT to PS is
a morphism [ϕ,ϕC ] : PT → PS whose underlying morphism of complexes is ϕ.

We define the set of convolutions associated to ϕ by the set of convolutions of all such
extensions of ϕ.

Remark 6.48. Let [ϕ,ϕC ] : PT → PS be an extension of morphism ϕ : T → S in Cb(T). Due to
Lemma B.11, we can use induction to prove that ϕ is an isomorphism if and only [ϕ,ϕC ] is.

Definition 6.49. Let C be an additive category and T = Kb(C ) its bounded homotopy
category.

(1) An extension PT of an object T in Cb(T) to a Postnikov system is called standard
if CiT := Coconest

(
µiT
)
and κiT := Σ−1(π(µiT )) for all i ∈ Z (cf. Definition 5.7 and
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Remark 5.10). The set of standard convolutions associated to T is defined by the set
of all non-isomorphic convolutions of all standard extensions of T to Postnikov systems4.

(2) An extension [ϕ,ϕC ] : PT → PS of a morphism ϕ : T → S in Cb(T) to a morphism from
PT to PS is called standard if PT and PS are standard and

ϕiC ∈ CoconeMorsstµiT ,µiS
(
ϕi, ϕi+1

C

)
for all n ∈ Z. The set of standard convolutions associated to ϕ, PT and PS is defined
by the set of convolutions of all standard extensions of ϕ to morphisms from PT to PS .

An object or morphism in Cb(T) may have no associated standard convolutions or may have
one or several non-isomorphic associated standard convolutions:

Example 6.50. Let k be a field and q the following right quiver

T 0
1 T 0

2 T 0
3 T 0

4

T 1
1 T 1

2 T 1
3 T 1

4

T 2
1 T 2

2 T 2
3 T 2

4

∂0
0 ∂0

1 ∂0
2 ∂0

3

∂1
0 ∂1

1 ∂1
2 ∂1

3

α0
1

α1
1

α2
1

α0
2

α1
2

α2
2 α2

3

α0
3

α1
3

h1
1

h2
1

h1
2

h2
2

Let A the k-linear finitely presented category defined by q subject to the relations:
{∂0

j · ∂1
j | 1 ≤ j ≤ 4} ∪ {∂ij · αi+1

j − αij · ∂ij+1 | 0 ≤ i ≤ 1, 1 ≤ j ≤ 3}

∪{∂0
j · h1

j − α0
j · α0

j+1 | 1 ≤ j ≤ 2} ∪ {h2
j · ∂1

j+2 − α2
j · α2

j+1 | 1 ≤ j ≤ 2}

∪{∂1
j · h2

j + h1
j · ∂0

j+2 − α1
j · α1

j+1 | 1 ≤ j ≤ 2}

i.e., the sets defined by taking the sum of all paths between vertices T ij and T i+j−l+2
l after

replacing each αij in each path by (−1)i+j−1αij . Let A ⊕ be the additive closure of A and
Kb(A ⊕) be the bounded homotopy category of A ⊕. For every j with 0 ≤ j ≤ 3, define Tj by the
object of Kb(A ⊕) whose differential at index 0 ≤ i ≤ 1 is ∂ij . For every j with 0 ≤ j ≤ 2, define
αj : Tj → Tj+1 by the morphism whose component at index i is αij .

Let T be the object in Cb
(
Kb(A ⊕)

)
defined by the sequence

0 −→ T1
α1−→ T2

α2−→ T3
α3−→ T4 −→ 0

where T1 is concentrated at index 1.
There exists a unique lift morphism of α2 along κ3

T = Σ−1(π(α3)) : Coconest(α3) → T3, say
µ2
T : T2 → Coconest(α3). However, α1 •µ

2
T 6= 0; hence T can not be extended to a standard

4All convolutions of a standard extension PT of T are equal, regardless of which lower bound we use.
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Postnikov system. In particular, the set of associated standard convolutions of T is empty5. The
computations in this example can be performed analog to the example in Appendix F.

To rectify the situation in Example 6.50 we must add an extra arrow and impose more
relations:

Example 6.51. Let k be a field and q be the following quiver

T 0
1 T 0

2 T 0
3 T 0

4

T 1
1 T 1

2 T 1
3 T 1

4

T 2
1 T 2

2 T 2
3 T 2

4

∂0
1 ∂0

2 ∂0
3 ∂0

4

∂1
1 ∂1

2 ∂1
3 ∂1

4

α0
1

α1
1

α2
1

α0
2

α1
2

α2
2 α2

3

α0
3

α1
3

h1
1 h1

2

h2
1 h2

2

t21

Let A the k-linear finitely presented category defined by q subject to the relations
{∂0

j · ∂1
j | 1 ≤ j ≤ 4} ∪ {∂ij · αi+1

j − αij · ∂ij+1 | 0 ≤ i ≤ 1, 1 ≤ j ≤ 3}

∪{∂0
j · h1

j − α0
j · α0

j+1 | 1 ≤ j ≤ 2} ∪ {h2
j · ∂1

j+2 − α2
j · α2

j+1 | 1 ≤ j ≤ 2}

∪{∂1
j · h2

j + h1
j · ∂0

j+2 − α1
j · α1

j+1 | 1 ≤ j ≤ 2}

∪{∂1
1 · t21 + h1

1 · α0
3 − α1

1 · h1
2} ∪ {α2

1 · h2
2 + t21 · ∂0

4 − h2
1 · α1

3};
and let T be defined as in Example 6.50. Then T can be extended to a standard Postnikov
system. In fact, this trick enables us to construct as many non-isomorphic standard convolu-
tions associated to T as we want: we simply add similar arrows and relations. For a software
demonstration of this example we refer to Appendix F.

Example 6.52. Example 5.16 can be used to construct a morphism with two associated
convolutions only one of which is standard.

Lemma 6.53. Let T be a triangulated category. Let Ti, i = 1, 2, 3, 4 be objects in T and
αi : Ti → Ti+1, i = 1, 2, 3 morphisms with αi •αi+1 = 0. If HomT(Σ(T2), T4) = 0, then for every
diagram

T1 T2 T3 T4
4

Cocone(α3)

α1 α2 α3

κT ρT

5By the end of this section, we will see that this occurs because HomKb(A ⊕)(Σ(T1), T4) 6= 0.
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there exists a unique morphism µT : T2 → Cocone(α3) such that µT •κT = α2. Furthermore, if
HomT(Σ(T1), T4) = 0, then α1 •µT = 0.

Proof. Since the triangle
Cocone(α3) κT−−→ T3

α3−→ T4
ρT−→ Cone(α3)

is exact and the functor HomT(−, T3) is a cohomological, we get the long exact sequence

HomT(T2,Cocone(α3)) HomT(T2, T3) HomT(T2, T4) . . .

. . . HomT

(
T2,Σ−1(T3)

) =0︷ ︸︸ ︷
HomT

(
T2,Σ−1(T4)

)

− •κT

− •
(
−Σ−1(κT )

)

− •α3

− •
(
−Σ−1(α3)

)
− •
(
−Σ−1(ρT )

)

from which we can easily deduce that − •κT is a monomorphism. Since α2 ∈ ker(− •α3) =
im(− •κT ), there exists a unique morphism µT : T2 → Cocone(α3) such that µT •κT = α2.

The morphism µT can be constructed by applying axiom TR 4 on the following diagram:

T2 T2 0 Σ(T2)

Cocone(α3) T3 T4 Cone(α3)

	

idT2

κT α3 ρT

α2

It remains to verify that α1 •µT = 0. Again by TR 4, there exists a morphism λ : Σ(T1)→ T4
that renders the following diagram

T1 0 Σ(T1) Σ(T1)

Cocone(α3) T3 T4 Cone(α3)

	 	 	

idΣ(T1)

κT α3 ρT

α1 •µT λ Σ(α1 •µT )

commutative, i.e., λ • ρT = Σ(α1 •µT ). It follows from the assumption HomT(Σ(T1), T4) = 0 that
λ = 0, hence Σ(α1 •µT ) = 0; and consequently α1 •µT = 0 as desired. �

Lemma 6.54. Let T be a triangulated category. Let Ti, Si, i = 1, 2, 3, 4 be objects in T and
αi : Ti → Ti+1, βi : Si → Si+1 be morphisms with αi •αi+1 = 0 and βi •βi+1 = 0 for i = 1, 2, 3.
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Furthermore, let ϕ : Ti → Si, i = 1, 2, 3, 4 be four morphisms that render the following diagram

T1 T2 T3 T4

S1 S2 S3 S4

	 	 	

α1 α2 α3

β1 β2 β3

ϕ1 ϕ2 ϕ3 ϕ4

commutative. For a given pair of commutative diagrams

T1 T2 T3 T4
4

Cocone(α3)

	 	

α1 α2 α3

κT0 ρT

µT

S1 S2 S3 S4
4

Cocone(β3)

	 	
β1 β2 β3

κS0 ρS

µS

there exists a morphism τ : Cocone(α3) → Cocone(β3) giving rise to a morphism of exact trian-
gles:

Cocone(α3)

Cocone(β3)

T3

S3

T4

S4

Σ(Cocone(α3))

Σ(Cocone(β3))

	 	 	

κT α3 ρT

κS β3 ρS

τ ϕ3 ϕ4 Σ(τ)

Furthermore, if HomT(Σ(T2), S4) = 0, then any such τ renders the following square

T2

S2

Cocone(α3)

Cocone(β3)

	 τϕ2

µT

µS

commutative.

Proof. By axiom TR 2 we get two exact triangles:

T3
α3−→ T4

ρT−→ Cone(α3) −Σ(κT )−−−−−→ Σ(T3)
and

S3
β3−→ S4

ρS−→ Cone(β3) −Σ(κS)−−−−−→ Σ(S3).
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By TR 3, there exists a morphism s : Cone(α3) → Cone(β3) inducing a morphism a exact
triangles:

T3

S3

T4

S4

Cone(α3)

Cone(β3)

Σ(T3)

Σ(S3)

	 	 	

α3 ρT −Σ(κT )

β3 ρS −Σ(κS)

ϕ3 ϕ4 s Σ(ϕ3)

The morphism τ := Σ−1(s) satisfies the required assertions.
Now suppose HomT(Σ(T2), S4) = 0. The computation

(µT • τ − ϕ2 •µS) •κS = µT • τ •κS − ϕ2 •µS •κS

= µT •κT •ϕ3 − ϕ2 •µS •κS

= α2 •ϕ3 − ϕ2 •β2

= 0
implies the existence of a morphism λ : Σ(T2)→ S4 that renders the following diagram

T2 0 Σ(T2) Σ(T2)

Cocone(β3) S3 S4 Cone(β3)

	 	 	

idΣ(T2)

κS β3 ρS

µT • τ − ϕ2 •µS λ Σ(µT • τ − ϕ2 •µS)

commutative, i.e., Σ(µT • τ − ϕ2 •µS) = λ • ρS . Since HomT(Σ(T2), S4) = 0, it follows that λ = 0,
i.e., Σ(µT • τ − ϕ2 •µS) = 0; which holds if and only if µT • τ − ϕ2 •µS = 0. �

The following lemma implies that our iterative construction of the convolution respects null-
homotopic morphisms.

Lemma 6.55. Let T be a triangulated category. Let Ti, Si, i = 1, 2, 3, 4, αi : Ti → Ti+1, βi : Si →
Si+1, i = 1, 2, 3, ϕi : Ti → Si, i = 1, 2, 3, 4 and hi : Ti → Si−1, i = 2, 3, 4 be cells in T. Suppose
that αi •αi+1 = 0, βi •βi+1 = 0 for i = 1, 2, 3 and αi •ϕi+1 = ϕi •βi for i = 1, 2, 3.

T1 T2 T3 T4

S1 S2 S3 S4

	 	
h2 h3 h4

α1 α2 α3

β1 β2 β3

ϕ1 ϕ2 ϕ3 ϕ4

If ϕ2 = α2 •h3 + h2 •β1, ϕ3 = α3 •h4 + h3 •β2 and ϕ4 = h4 •β3, then the asserted morphism
τ : Cocone(α3)→ Cocone(β3)
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in Lemma 6.54 can be chosen together with a morphism r : Cocone(α3) → S2 such that ϕ2 =
µT • r + h2 •β1 and τ = r •µS.

T1 T2 Cocone(α3)

S1 S2 Cocone(β3)

	
h2 r

α1 µT

β1 µS

ϕ1 ϕ2 τ

Proof. An easy diagram chase shows that r := κT •h3 and τ := r •µS satisfy all the above
assertions. �

Lemma 6.56. Let C be an additive category and Kb(C ) its bounded homotopy category. Let
Ti, Si, i = 1, 2, 3, 4, αi : Ti → Ti+1, βi : Si → Si+1, i = 1, 2, 3, ϕi : Ti → Si, i = 1, 2, 3, 4 and
hi : Ti → Si−1, i = 2, 3, 4 be cells in Kb(C ). Suppose that αi •αi+1 = 0, βi •βi+1 = 0 for i = 1, 2, 3
and αi •ϕi+1 = ϕi •βi for i = 1, 2, 3.

T1 T2 T3 T4

S1 S2 S3 S4

h2 h3 h4

α1 α2 α3

β1 β2 β3

ϕ1 ϕ2 ϕ3 ϕ4

If we have
(1) HomT(Σ(T1), T4) ∼= HomT(Σ(T2), T4) = 0,
(2) HomT(Σ(S1), S4) ∼= HomT(Σ(S2), S4) = 0,
(3) HomT(Σ(T2), S4) ∼= HomT(Σ(T3), S4) = 0,
(4) κT = Σ−1(π(α3)), ρT = −ι(α3), κS = Σ−1(π(β3)) and ρS = −ι(β3);

then the morphism τ : Cocone(α3) → Cocone(β3) asserted by Lemma 6.54 can always be chosen
to be the element of CoconeMorsstα3,β3(ϕ3, ϕ4). Furthermore, if we have ϕ2 = α2 •h3 + h2 •β1,
ϕ3 = α3 •h4 + h3 •β2 and ϕ4 = h4 •β3, then6 κT •h3 •µS = τ .

Proof. By Corollary 5.18, CoconeMorsstα3,β3(ϕ3, ϕ4) is a singleton set. By Remark 5.11, the
morphism τ : Cocone(α3)→ Cocone(β3) is given at index i ∈ Z by

T i3 ⊕ T i−1
4τ i := Si3 ⊕ Si−1

4

(
ϕi3 si3
0 ϕi−1

4

)

where
(
si3 : T i3 → Si−1

4

)
i∈Z

is a chain homotopy associated to α3 •ϕ4 − ϕ3 •β3.
According to the proof of Lemma 6.53, µS : S2 → Cocone(β3) is given at index i ∈ Z by

Si2µiS := Si3 ⊕ Si−1
4

( βi2 −hiS2 )

6I.e., this choice satisfies the assertion of Lemma 6.55.
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where
(
hiS2

: Si2 → Si−1
4

)
i∈Z

is a chain homotopy associated to β2 •β3.
Hence the morphism σ := κT •h3 •µS is given at index i ∈ Z by

T i3 ⊕ T i−1
4σi := Si3 ⊕ Si−1

4

(
hi3 •β

i
2 −h

i
3 •h

i
S2

0 0

)

Let
(
ti3 : T i3 → Si−1

3

)
i∈Z

and
(
ti4 : T i4 → Si−1

4

)
i∈Z

be chain homotopies of α3 •h4 + h3 •β2 − ϕ3

resp. h4 •β3 − ϕ4.
It can be shown that the family(

λi := ti+1
3 •βi3 − hi+1

3 •hi+1
S2
− αi+1

3 • ti+1
4 − si+1

3 : T i+1
3 → Si4

)
i∈Z

defines a morphism λ : Σ(T3) → S4. It follows from the assumption HomT(Σ(T3), S4) = 0 that
λ = 0. Let

(
yi : T i+1

3 → Si−1
4

)
i∈Z

be a chain homotopy associated to λ.
For i ∈ Z, we define

T i3 ⊕ T i−1
4hi := Si−1

3 ⊕ Si−2
4

(
ti3 −yi−1

−hi−1
4 ti−1

4

)

A straightforward verification shows that
∂iCocone(α3) •h

i+1 + hi • ∂i−1
Cocone(β3) = σi − τ i

for all i ∈ Z, hence σ = τ . �

Example 6.57. Let C be an additive category and let Kb(C ) be its bounded homotopy
category. Let

T1 T2

S1 S2

	 	

α

β

ϕ1 ϕ2h

be commutative square such that HomKb(C )(Σ(T1), S2) = 0. A direct consequence of Lemmas 6.55
and 6.56 is

CoconeMorsstα,β(ϕ1, ϕ2) = {Cocone(α) 0−→ Cocone(β)}.

Lemma 6.58. Let C be an additive category and let Kb(C ) be its bounded homotopy category.
Let T and S be objects in Cb

(
Kb(C )

)
with common lower and upper bounds ` resp. u such that

(1) HomKb(C )
(
Σr
(
T i
)
, T j

) ∼= HomKb(C )
(
Σr
(
Si
)
, Sj

)
= 0 for all r > 0 and i < j with (i, j) 6=

(u− 1, u),
(2) HomKb(C )

(
Σr
(
T i
)
, Sj

)
= 0 for all r > 0 and i < j.

Then
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(1) For any standard Postnikov systems PT and PS of T resp. S, any morphism ϕ : T → B
can be extended to exactly one standard 7 morphism of Postnikov systems from PT to
PS. Furthermore, if ϕ is null-homotopic, then the associated standard convolution of ϕ
is zero.

(2) The object T can be extended to a standard Postnikov system. Furthermore, any two
such extensions are isomorphic.

Proof. We use induction on u− ` ≥ 0.
(1) In the case u−` = 0, the morphism ϕ is an `-stalk morphism and its standard convolution

is Σ−`
(
ϕ`
)
. An `-stalk morphism is null-homotopic if and only if ϕ` = 0, which holds

if and only if Σ−`
(
ϕ`
)
is zero. Suppose now that u − ` > 0. By Lemma 6.56, there

exists a unique morphism τ : Cu−1
T → Cu−1

S in CoconeMorsst
∂u−1
T ,∂u−1

S

(
ϕu−1, ϕu

)
with

µu−2
T

•ϕ`+2 = τ •µu−2
S inducing a morphism ϕ′ : A′ → Y :

· · · T u−3 T u−2 Cocone
(
∂u−1
T

)
0

· · · Su−3 Su−2 Cocone
(
∂u−1
S

)
0

	 	ϕu−3 ϕu−2 τ

∂u−3
T

`+ 1

µu−2
T

∂u−3
S µu−2

S

If, in addition, ϕ is null-homotopic, then so is ϕ′ by Lemmas 6.55 and 6.56. By
Lemma B.10
• HomKb(C )

(
Σr
(
T i
)
,Cocone

(
∂u−1
T

))
∼= HomKb(C )

(
Σr
(
Si
)
,Cocone

(
∂u−1
S

))
= 0,

• HomKb(C )

(
Σr
(
T i
)
,Cocone

(
∂u−1
S

))
= 0

for all r > 0 and i ≤ u − 2, i.e., ϕ′ satisfies the assumptions of the lemma. Since τ is
uniquely determined, there is one-to-one correspondence between extensions of ϕ and
ϕ′ to morphisms of Postnikov systems. Hence, the assertion follows by the induction
hypothesis.

(2) Let `T and uT be lower resp. upper bounds of T . We will prove the existence by
induction on uT − `T . By the definition of a standard Postnikov system, µuT := T u −→ 0,
hence κuT := Σ−1(π(µuT )) = idTu and µu−1

T = ∂u−1
T : T u−1 → T u. If uT − `T = 0,

then we are done. Suppose now that uT − `T > 0. By Lemma 6.53, there exists a
unique morphism µu−2

T : T u−2 → Cocone
(
∂u−1
T

)
with µu−2

T
•Σ−1

(
π
(
µu−1
T

))
= ∂u−2

T and

∂u−3
T

•µu−2
T = 0. By Lemma B.10, we have HomKb(C )

(
Σr
(
T i
)
,Cocone

(
∂u−1
T

))
= 0 for

all r > 0 and i ≤ u− 2, i.e., the complex A′ defined by

. . . T u−3 T u−2 Cocone
(
∂u−1
T

)
0

∂u−3
T µu−2

T

u− 1

fulfils the assumption of the lemma. Hence, the existence follows by the induction
hypothesis. The morphism µu−2

T is uniquely determined, however it might be represented
7ϕ might be extended in different ways to morphisms from PT to PS , however only one of them is

standard.
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by different morphisms in Cb(C ), which leads to different (but isomorphic) cocone objects
in the next iteration, i.e., to different standard Postnikov systems. Suppose ζu−2

T is
another representative of µu−2

T . Then we still have the following morphism:

· · · T u−3 T u−2 Cocone
(
∂u−1
T

)
0

· · · T u−3 T u−2 Cocone
(
∂u−1
T

)
0

	 	

∂u−3
T

`+ 1

µu−2
T

∂u−3
T ζu−2

T

which, by (1), can be extended to a morphism between the corresponding different
Postnikov systems. The assertion follows now by Remarks 6.48 and B.12.

�

Let T be an object as in Lemma 6.58 and PT a standard Postnikov system of T . Since no
assumption has been made on HomKb(C )

(
Σ
(
T u−1), T u), the first assertion of the lemma does not

apply to the identity morphism of T . In other words, the set
CoconeMorsst

∂u−1
T ,∂u−1

T
(idTu−1 , idTu)

might contain more than one element. That is, idT might be extended to different standard
isomorphisms on PT which restricts the convolution construction from being functorial. We can
rectify this situation by imposing more assumptions:

Construction 6.59. Let C be an additive category and let D ⊆ Kb(C ) be an additive full
subcategory such that HomD(Σr(X), Y ) = 0 for all r > 0 and X,Y in D . Since the assumptions
of Lemma 6.58 hold on all objects and morphisms of Kb(D) ⊂ Kb

(
Kb(C )

)
, every morphism can

be extended to exactly one standard morphism between standard Postnikov systems. It follows
from Lemmas 5.12 and 5.13 that the composition, addition and additive inverses of standard
morphisms are also standard. Hence, the standard convolution construction becomes functorial.
We call the induced functor

F : Kb(D)→ Kb(C )
the convolution functor.

The consideration of Lemma 6.58 gives rise to the following two algorithms for computing
standard Postnikov systems and their convolutions. Both algorithms are implemented in the GAP
package HomotopyCategories [Sal21d].
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Algorithm 4: Standard convolution of an object
Input: An additive category C and an object T ∈ Kb

(
Kb(C )

)
with the assumptions as

in Lemma 6.58.
Output: The standard convolution F(T )
` := some lower bound of T
u := some upper bound of T
if u = ` then

return Σ−`
(
T `
)

else
• Compute a chain homotopy

(
hu−2,i
T : T u−2,i → T u,i−1

)
i∈Z

of ∂u−2
T

• ∂u−1
T

/* See Remark 3.19 */

• Define µu−2
T : T u−2 → Cocone

(
∂u−1
T

)
by the morphism whose component at i ∈ Z is

µu−2,i
T := T u−2,i ( ∂u−2,i

T −hu−2,i
T )

−−−−−−−−−−−→ T u−1,i ⊕ T u,i−1

/* According to Lemma 6.53, µu−2
T is the only morphism in Kb(C ) which satisfies */

/* ∂u−3
T

•µu−2
T = 0 and µu−2

T
•Σ−1(π(∂u−1

T

))
= ∂u−2

T */

• Redefine T by

P≤u−1
T := . . . T u−3 T u−2 Cocone

(
∂u−1
T

)
0

∂u−3
T µu−2

T

u− 1

• return F(T )
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Algorithm 5: Standard convolution of a morphism
Input: An additive category C and a morphism ϕ : T → S ∈ Kb

(
Kb(C )

)
with the same

assumptions in Lemma 6.58.
Output: the standard convolution of ϕ
• ` := Some common lower bound of T and S
• u := Some common upper bound of T and S
if u = ` then

return Σ−`
(
ϕ`
)

else
• Compute a chain homotopy

(
hu−1,i
ϕ : T u−1,i → Su,i−1

)
i∈Z

of ∂u−1
T

•ϕu − ϕu−1 • ∂u−1
S

/* See Remark 3.19 */
• Define ϕu−1

C : Cocone
(
∂u−1
T

)
→ Cocone

(
∂u−1
S

)
by the morphism whose component at i ∈ Z is

ϕu−1,i
C := T u−1,i ⊕ T u,i−1

(
ϕu−1,i hu−1,i

ϕ

0 ϕu,i−1

)
−−−−−−−−−−−→ Su−1,i ⊕ Su,i−1

/* By Lemma 6.56, ϕu−1
C is the unique element in CoconeMorsst

∂u−1
T

,∂u−1
S

(
ϕu−1, ϕu

)
*/

/* and µu−2
T

•ϕu−1
C = ϕu−2 •µu−2

S . */

• Redefine ϕ by

. . . T u−3 T u−2 Cocone
(
∂u−1
T

)
0

. . . Su−3 Su−2 Cocone
(
∂u−1
S

)
0

∂u−3
T µu−2

T

u− 1

∂u−3
S µu−2

S

ϕu−3 ϕu−2 ϕu−1
C

• return F(ϕ)
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Let C and D be defined as in Construction 6.59.
Lemma 6.60. The convolution functor F : Kb(D) → Kb(C ) commutes up to a natural iso-

morphism with the shift functors.

Proof. For an object T in Kb(D), we define T	 by the object in Kb(D) whose differential
at i ∈ Z is ∂iT	 := −∂iT . In fact, this construction is functorial: for a morphism ϕ : T → S,
ϕ	 : T	 → S	 is defined at i ∈ Z by ϕi. Of course, T ∼= T	 via the natural isomorphism
εT : T → T	 defined at i ∈ Z by εiT := (−1)i+1 · idT i . It follows that εT •ϕ	 = ϕ • εS and
ε−1
T = εT	 .

The morphisms ϕ and Σ(ϕ)	 consist of the same differentials and morphisms and differ only
in the lower and upper bounds, hence, F

(
(Σ(ϕ))	

)
= Σ(F(ϕ)).

Functors sends isomorphisms to isomorphisms, hence

ηT := F
(
εΣ(T )

)
: F(Σ(T ))→ F

(
Σ(T )	

)
= Σ(F(T ))

is an isomorphism. By applying F to the equation
εΣ(T ) •(Σ(ϕ))	 = Σ(ϕ) • εΣ(S)

we get a commutative diagram

F(Σ(T )) F
(
Σ(T )	

)
Σ(F(T ))

F(Σ(S)) F
(
Σ(S)	

)
Σ(F(S))

	 	

∼
ηT := F

(
εΣ(T )

)

∼
ηS := F

(
εΣ(S)

)
F(Σ(ϕ)) F

(
Σ(ϕ)	

)
Σ(F(ϕ))

which translates to the naturality of the following assignment:

η :

Σ •F → F •Σ,
T 7→ ηT := F

(
εΣ(T )

)
.

�

Lemma 6.61. Let C be an additive category and Kb(C ) its bounded homotopy category. Let
T and S be objects in Kb

(
Kb(C )

)
with a common upper bound u and the following properties:

(1) HomKb(C )
(
Σr
(
T i
)
, T j

) ∼= HomKb(C )
(
Σr
(
Si
)
, Sj

)
= 0 for all r > 0 and i < j,

(2) HomKb(C )
(
Σr
(
T i
)
, Sj

) ∼= HomKb(C )
(
Σr
(
Si
)
, T j

)
= 0 for all r > 0 and i ≤ j with (i, j) 6=

(u, u).
Then for any morphism ϕ : T → S, running Algorithm 5 on the sequence

T
ϕ−→ S

ι(ϕ)−−→ Cone(ϕ) π(ϕ)−−−→ Σ(T )
εΣ(T )−−−→
∼

Σ(T )	

yields a sequence of standard morphisms of Postnikov systems

PT
Pϕ−−→ PS

Pι(ϕ)−−−→ PCone(ϕ)
Pπ(ϕ)−−−→ PΣ(T )

PεΣ(T )−−−−→
∼

PΣ(T )	
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whose convolutions

F(T ) F(ϕ)−−−→ F(S) F(ι(ϕ))−−−−→ F(Cone(ϕ)) F(π(ϕ)) • ηT−−−−−−−→ F
(
Σ(T )	

)
= Σ(F(T ))

form an exact triangle in Kb(C ).

Proof. The sequence

T
ϕ−→ S

ι(ϕ)−−→ Cone(ϕ) π(ϕ)−−−→ Σ(T )
εΣ(T )−−−→ Σ(T )	

is depicted in the following diagram:

· · · T u−3 T u−2 T u−1 T u 0

· · · Su−3 Su−2 Su−1 Su 0

T u−2 ⊕Bu−3 T u−1 ⊕Bu−2 T u ⊕Bu−1 Su 0

· · · T u−2 T u−1 T u 0 0

· · · T u−2 T u−1 T u 0 0

∂u−3
T ∂u−2

T ∂u−1
T

u

∂u−3
S ∂u−2

S ∂u−1
S

(
−∂u−2

T ϕu−2

0 ∂u−3
S

) (
−∂u−1

T ϕu−1

0 ∂u−2
S

) (
ϕu

∂u−1
S

)

−∂u−2
T −∂u−1

T

∂u−2
T ∂u−1

T

ϕu−3 ϕu−2 ϕu−1 ϕu

( 0 idSu−3 ) ( 0 idSu−2 ) ( 0 idSu−1 ) idSu

(
idTu−2

0

) (
idTu−1

0

) (
idTu

0

)

(−1)u−2 · idTu−2 (−1)u−1 · idTu−1 (−1)u · idTu

from which we observe that ϕ, ι(ϕ), π(ϕ) and εΣ(T ) satisfy the assumptions of Lemma 6.58, hence
they can be extended to a sequence of standard morphisms

PT
Pϕ−−→ PS

Pι(ϕ)−−−→ PCone(ϕ)
Pπ(ϕ)−−−→ PΣ(T )

PεΣ(T )−−−−→
∼

PΣ(T )	 .

Computing the preceding sequence relies on computing chain homotopies of zero morphisms
in Kb(C ) which are usually not uniquely determined. Let

QT
Qϕ−−→ QS

Qι(ϕ)−−−→ QCone(ϕ)
Qπ(ϕ)−−−→ QΣ(T )

QεΣ(T )−−−−→
∼

QΣ(T )	 .

be another extension to standard morphisms of Postnikov systems where QT and QΣ(T )	 consist
of the same exact triangles8. By Lemma 6.58, the morphisms idT , idS , idΣ(T ) and idΣ(T )	 can
be extended uniquely to standard isomorphisms IT : PT

∼−→ QT , IS : PS
∼−→ QS , IΣ(T ) : PΣ(T )

∼−→
QΣ(T ) and IΣ(T )	 : PΣ(T )	

∼−→ QΣ(T )	 . However, since no assumptions have been made about
HomKb(C )(T u, Su), the morphism idCone(ϕ) may be extended in different ways to standard iso-
morphisms between PCone(ϕ) and QCone(ϕ). Let ζ : PCone(ϕ)

∼−→ QCone(ϕ) be one them. Due to

8The exact triangle in QΣ(T )	 at index i ∈ Z is identical to the exact triangle of QT at index i+ 1.
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the fact that standard morphisms are closed under composition, any such ζ renders the following
diagram

PT PS PCone(ϕ) PΣ(T ) PΣ(T )	

QT QS QCone(ϕ) QΣ(T ) QΣ(T )	

	 	 	 	∼ IT ∼ IS ∼ ζ ∼ IΣ(T ) ∼ IΣ(T )	

Pϕ Pι(ϕ) Pπ(ϕ)
∼

PεΣ(T )

Qϕ Qι(ϕ) Qπ(ϕ)

∼
QεΣ(T )

commutative. Therefore, the associated convolutions form isomorphic triangles (after composing
the last two morphisms in each sequence). In other words, while proving the assertion, we can
use arbitrary chain homotopies as long as the triangle formed by the convolutions is well-defined.

We will prove the lemma using induction on u− ` ≥ 0 where ` is a common lower bound for
both T and S. If u− ` = 0, then T = dT ucu and S = dSucu. The sequence

T
ϕ−→ S

ι(ϕ)−−→ Cone(ϕ) π(ϕ)−−−→ Σ(T )
εΣ(T )−−−→
∼

Σ(T )	

is illustrated in the following commutative diagram:

0 0 T u 0

0 0 Su 0

0 T u Su 0

0 T u 0 0

0 T u 0 0

u

ϕu

ϕu

idSu

idTu

(−1)u · idTu
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The first iteration of Algorithm 5 yields the following commutative diagram:

0 Σ−1(T u) 0 0

0 Σ−1(Su) 0 0

0 Cocone(ϕu) 0 0

0 T u 0 0

0 T u 0 0

u− 1

Σ−1(ϕu)

( 0 id
Su,i−1 )i∈Z

(
id
Tu,i

0

)
i∈Z

(−1)u · idTu

The associated convolutions form the following sequence:

Σ−(u−1)(Σ−1(T u)
) Σ−(u−1)(Σ−1(ϕu))
−−−−−−−−−−−−→ Σ−(u−1)(Σ−1(Su)

) ( 0 id
Su,i−1−(u−1) )

i∈Z−−−−−−−−−−−−−−→

Σ−(u−1)(Cocone(ϕu))

(
id
Tu,i−(u−1)

0

)
i∈Z−−−−−−−−−−−−→ Σ−(u−1)(T u)

(−1)uidΣ−(u−1)(Tu)−−−−−−−−−−−−→
∼

Σ−(u−1)(T u)

which can be simplified to

Σ−u(T u) Σ−u(ϕu)−−−−−→ Σ−u(Su) Σ−u(ι(ϕu))−−−−−−−→

Σ−u(Cone(ϕu)) Σ−u(π(ϕu))−−−−−−−→ Σ−u(Σ(T u))
(−1)uΣ−u(idΣ(Tu))−−−−−−−−−−−−→

∼
Σ−u(Σ(T u)) .

By composing the last two morphisms, we get an exact triangle according to Lemma B.18,
since

T u
ϕu−−→ Su

ι(ϕ)−−→ Cone(ϕ) π(ϕ)−−−→ Σ(T )
is exact.

Suppose that u − ` > 0. Let
(
hm,iT : Tm,i → Tm+2,i−1

)
i∈Z

,
(
hm,iS : Sm,i → Sm+2,i−1

)
i∈Z

and(
hm,iϕ : Tm,i → Sm+1,i−1

)
i∈Z

be chain homotopies of ∂mT • ∂m+1
T , ∂mS • ∂m+1

S resp. ∂mT •ϕm+1 −
ϕm • ∂mS for every m ∈ Z. We can use these chain homotopies to compute chain homotopies
of ∂mCone(ϕ) • ∂

m+1
Cone(ϕ) and ∂mΣ(T ) • ∂

m+1
Σ(T ) for every m ∈ Z. That is, they can be used to compute

standard Postnikov systems QCone(ϕ), QΣ(T ) and QΣ(T )	 of Cone(ϕ), Σ(T ) resp. Σ(T )	.
The first iteration of the Algorithm 5 on ϕ, ι(ϕ), π(ϕ) and εΣ(T ) (whose common upper

bound is u) yields four9 morphisms Q≤u−1
ϕ : Q≤u−1

T → Q≤u−1
S , Q≤u−1

ι(ϕ) : P≤u−1
S → Q≤u−1

Cone(ϕ),

9The morphism εΣ(T ) remains unaffected because its upper bound is u− 1.



6.3. THE CONVOLUTION FUNCTOR F 181

Q≤u−1
π(ϕ) : Q≤u−1

Cone(ϕ) → Q≤u−1
Σ(T ) with Q≤u−1

Σ(T ) = Σ(T ), and Q≤u−1
εΣ(T )

= εΣ(T ); depicted in the follow-
ing commutative diagram:

· · · T u−3 T u−2 Cocone
(
∂u−1
T

)

· · · Su−3 Su−2 Cocone
(
∂u−1
S

)

· · · T u−2 ⊕Bu−3 T u−1 ⊕Bu−2 Cocone
(
∂u−1

Cone(ϕ)

)

· · · T u−2 T u−1 T u

· · · T u−2 T u−1 T u

∂u−3
T

u− 2

µu−2
T = ( ∂u−2,i

T −hu−2,i
T )i∈Z

∂u−3
S µu−2

S = ( ∂u−2,i
S −hu−2,i

S )i∈Z

(
−∂u−2

T ϕu−2

· ∂u−3
S

)
µu−2

Cone(ϕ) =
(
−∂u−1,i

T ϕu−1,i hu−1,i
ϕ

· ∂u−2,i
S −hu−2,i

S

)
i∈Z

−∂u−2
T

µu−2
Σ(T ) = −∂u−1

T

∂u−2
T

µu−2
Σ(T )	 = ∂u−1

T

ϕu−3 ϕu−2 ϕu−1
C =

(
ϕu−1,i hu−1,i

ϕ

· ϕu,i−1

)
i∈Z

( · idSu−3 ) ( · idSu−2 )
ι(ϕ)u−1

C =
( · id

Su−1,i ·
· · id

Su,i−1

)
i∈Z

(
idTu−2
·

) (
idTu−1
·

)
π(ϕ)u−1

C =
(

id
Tu,i·
·

)
i∈Z

(−1)u−2 · idTu−2 (−1)u−1 · idTu−1

(
εΣ(T )

)u−1

C
= (−1)u · idTu

A straightforward verification shows that the families(
hu−3,i+1
T

• ∂u−1,i
T − ∂u−3,i+1

T
•hu−2,i
T : T u−3,i+1 → T u,i

)
i∈Z

and (
hu−3,i+1
S

• ∂u−1,i
S − ∂u−3,i+1

S
•hu−2,i
S : Su−3,i+1 → Su,i

)
i∈Z

define morphisms tT : Σ
(
T u−3) → T u resp. tS : Σ

(
Su−3) → Su. It follows from the assump-

tion HomKb(C )
(
Σ
(
T u−3), T u) ∼= HomKb(C )

(
Σ
(
Su−3), Su) = 0 that tT = 0 and tS = 0. Let

(su−3,i
T : T u−3,i+1 → T u,i−1)i∈Z and (su−3,i

S : Su−3,i+1 → Su,i−1)i∈Z be chain homotopies of tT
resp. tS . Similarly, the family(

hu−2,i+1
ϕ

• ∂u−1,i
S − hu−2,i+1

T
•ϕu,i + ϕu−2,i+1 •hu−2,i+1

S + ∂u−2,i+1
T

•hu−1,i+1
ϕ : T u−2,i+1 → Su,i

)
i∈Z

defines a morphism tϕ : Σ
(
T u−2) → Su which, due to HomKb(C )

(
T u−2, Su

)
= 0, should also be

zero. Let (su−2,i
ϕ : T u−2,i+1 → Su,i−1)i∈Z be a chain homotopy associated to tϕ.

The second iteration yields the morphisms Q≤u−2
ϕ : Q≤u−2

T → Q≤u−2
S , Q≤u−2

ι(ϕ) : Q≤u−2
S →

Q≤u−2
Cone(ϕ), Q

≤u−2
π(ϕ) : Q≤u−2

Cone(ϕ) → Q≤u−2
Σ(T ) and Q≤u−2

εΣ(T )
: Q≤u−2

Σ(T )
∼−→ Q≤u−2

Σ(T )	 depicted in the following
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commutative diagram:

· · · T u−3 Cocone
(
µu−2
T

)

· · · Su−3 Cocone
(
µu−2
S

)

· · · T u−2 ⊕Bu−3 Cocone
(
µu−2

Cone(ϕ)

)

· · · T u−2 Cocone
(
µu−2

Σ(T )

)
= Cocone

(
−∂u−1

T

)

· · · T u−2 Cocone
(
µu−2

Σ(T )	
)

= Cocone
(
∂u−1
T

)

u− 3

µu−3
T = ( ∂u−3,i

T −hu−3,i
T su−3,i−1

T )i∈Z

µu−3
S = ( ∂u−3,i

S −hu−3,i
S su−3,i−1

S )i∈Z

µu−3
Cone(ϕ) =

(
−∂u−2,i

T ϕu−2,i −hu−2,i
T hu−2,i

ϕ −su−2,i−1
ϕ

· ∂u−3,i
S · −hu−3,i

S su−3,i−1
S

)
i∈Z

µu−3
Σ(T ) = (−∂u−2,i

T −hu−2,i
T )i∈Z

µu−3
Σ(T )	 = ( ∂u−2,i

T −hu−2,i
T )i∈Z

ϕu−3 ϕu−2
C =

(
ϕu−2,i hu−2,i

ϕ −su−2,i−1
ϕ

· ϕu−1,i−1 hu−1,i−1
ϕ

· · ϕu,i−2

)
i∈Z

( · idSu−3 )
ι(ϕ)u−2

C =
(
· id

Su−2,i · · ·
· · · id

Su−1,i−1 ·
· · · · id

Su,i−2

)
i∈Z

(
idTu−2
·

)
π(ϕ)u−2

C =

 id
Tu−1,i ·
· ·
· id

Tu,i−1
· ·
· ·


i∈Z

(−1)u−2 · idTu−2

(
εΣ(T )

)u−2

C
= (−1)u−1 ·

( id
Tu−1,i ·
· −id

Tu,i−1

)
i∈Z

Set X := P≤u−1
T , Y := P≤u−1

S and ψ := P≤u−1
ϕ : X → Y . By Lemma B.10, X and Y satisfy

the assumptions:
(1) HomKb(C )

(
Σr
(
Xi
)
, Xj

) ∼= HomKb(C )
(
Σr
(
Y i
)
, Y j

)
= 0 for all r > 0 and i < j,

(2) HomKb(C )
(
Σr
(
Xi
)
, Y j

) ∼= HomKb(C )
(
Σr
(
Y i
)
, Xj

)
= 0 for all r > 0 and i ≤ j with

(i, j) 6= (u− 1, u− 1),
and since their common upper bound is u− 1, the induction hypothesis applies for ψ.

Applying Algorithm 5 on ψ, ι(ψ), π(ψ) and εΣ(X) yields the following four morphisms: Q≤u−2
ψ =

Q≤u−2
ϕ , Q≤u−2

ι(ψ) : Q≤u−2
Y → Q≤u−2

Cone(ψ), Q
≤u−2
π(ψ) : Q≤u−2

Cone(ψ) → Q≤u−2
Σ(X) , Q

≤u−2
εΣ(X)

: Q≤u−2
Σ(X)

∼−→ Q≤u−2
Σ(X)	 ; de-

picted in the following commutative diagram:
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T u−3 Cocone
(
∂u−2
X

)
= Cocone

(
µu−2
T

)

Su−3 Cocone
(
∂u−2
S

)
= Cocone

(
µu−2
S

)

T u−2 ⊕Bu−3 Cocone
(
∂u−2

Cone(ψ)

)

T u−2 Cocone
(
∂u−1
T

)

T u−2 Cocone
(
∂u−1
T

)

· · ·

· · ·

· · ·

· · ·

· · ·

u− 3

µu−3
X = µu−3

T = ( ∂u−3,i
T −hu−3,i

T su−3,i−1
T )i∈Z

µu−3
Y = µu−3

S = ( ∂u−3,i
S −hu−3,i

S su−3,i−1
S )i∈Z

µu−3
Cone(ψ) =

(
−∂u−2,i

T hu−2,i
T ϕu−2,i hu−2,i

ϕ −su−2,i−1
ϕ

· · ∂u−3,i
S −hu−3,i

S su−3,i−1
S

)
i∈Z

µu−3
Σ(X) = −µu−2

T = (−∂u−2,i
T hu−2,i

T )i∈Z

µu−3
(Σ(X))	 = µu−2

T = ( ∂u−2,i
T −hu−2,i

T )i∈Z

ϕu−3 ψu−2
C = ϕu−2

C =
(
ϕu−2,i hu−2,i

ϕ −su−2,i−1
ϕ

· ϕu−1,i−1 hu−1,i−1
ϕ

· · ϕu,i−2

)
i∈Z

( · idSu−3 )
ι(ψ)u−2

C =
(
· · id

Su−2,i · ·
· · · id

Su−1,i−1 ·
· · · · id

Su,i−2

)
i∈Z

(
idTu−2
·

)
π(ψ)u−2

C =

 id
Tu−1,i ·
· id

Tu,i−1
· ·
· ·
· ·


i∈Z

(−1)u−2 · idTu−2 εΣ(X)
u−2
C

= (−1)u−1 ·
( id

Tu−1,i ·
· id

Tu,i−1

)
i∈Z

When we compare the morphisms in the above two diagrams, we see that they are identical up
to the order of some objects, e.g., the difference between Cocone

(
µu−2

Cone(ϕ)

)
and Cocone

(
∂u−2

Cone(ψ)

)
;

or up to the multiplication of certain morphisms by −1 , e.g., the right-lower morphisms.
The following two isomorphisms: f : Q≤u−2

Cone(ϕ) → Q≤u−2
Cone(ψ)

· · · T u−2 ⊕Bu−3 Cocone
(
µu−2

Cone(ϕ)

)
0

· · · T u−2 ⊕Bu−3 Cocone
(
∂u−2

Cone(ψ)

)
0

	

µu−3
Cone(ϕ) =

(
−∂u−2,i

T ϕu−2,i −hu−2,i
T hu−2,i

ϕ −su−2,i−1
ϕ

· ∂u−3,i
S · −hu−3,i

S su−3,i−1
S

)
i∈Z

u− 2

µu−3
Cone(ψ) =

(
−∂u−2,i

T hu−2,i
T ϕu−2,i hu−2,i

ϕ −su−2,i−1
ϕ

· · ∂u−3,i
S −hu−3,i

S su−3,i−1
S

)
i∈Z

fu−2 =


id
Tu−1,i · · · ·
· · id

Su−2,i · ·
· −id

Tu,i−1 · · ·
· · · id

Su−1,i−1 ·
· · · · id

Su,i−2


i∈Z

fu−3 = idTu−2⊕Bu−3
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and g : Q≤u−2
Σ(T ) → Q≤u−2

Σ(X)

· · · T u−2 Cocone
(
µu−2

Σ(T )

)
0

· · · T u−2 Cocone
(
∂u−1
T

)
0

	

−∂u−3
T

µu−3
Σ(T ) = (−∂u−2,i

T −hu−2,i
T )i∈Z

−∂u−3
T µu−3

Σ(X) = −µu−2
T = (−∂u−2,i

T hu−2,i
T )i∈Z

gu−2 = idTu−2 gu−2 =
( id

Tu−1,i 0
0 −id

Tu,i−1

)
i∈Z

induce a commutative diagram:

Q≤u−2
T Q≤u−2

S
Q≤u−2

Cone(ϕ) Q≤u−2
Σ(T ) Q≤u−2

Σ(T )	

Q≤u−2
X Q≤u−2

Y
Q≤u−2

Cone(ψ) Q≤u−2
Σ(X) Q≤u−2

Σ(X)	

	 	 	 	∼ f ∼ g

Q≤u−2
ϕ

Q≤u−2
ι(ϕ) Q≤u−2

π(ϕ) Q≤u−2
εΣ(T )

Q≤u−2
ψ Q≤u−2

ι(ψ) Q≤u−2
π(ψ) Q≤u−2

εΣ(X)

Hence, by repeatedly applying Algorithms 4 and 5, we get a commutative diagram of standard
Postnikov systems:

QT QS QCone(ϕ) QΣ(T ) QΣ(T )	

QX QY QCone(ψ) QΣ(X) QΣ(X)	

	 	 	 	∼ Qf ∼ Qg

Qϕ Qι(ϕ) Qπ(ϕ) QεΣ(T )

Qψ Qι(ψ) Qπ(ψ) QεΣ(X)

By taking convolutions, we get isomorphic triangles one of which is exact by the induction
hypothesis, hence so is the other as desired. �

Construction 6.62. Let T be an object in Kb
(
Kb(C )

)
and let ` be a lower bound for T .

Let dT `c`+1 the (`+ 1)-stalk complex defined by T ` and let T≥`+1 be the brutal truncation of T
below `+ 1. We denote by τT,` the morphism

dT `c`+1 := 0 T ` 0 0 . . .

T≥`+1 := 0 T `+1 T `+2 T `+3 · · ·

∂`TτT,`

∂`+1
T ∂`+2

T

It follows immediately that Cone(τT,`) = T .

Theorem 6.63. Let C be an additive category and Kb(C ) its bounded homotopy category.
Let D be an additive full subcategory with HomD(Σr(X), Y ) = 0 for all r > 0 and X,Y in D .
Then

F : Kb(D)→ Kb(C )
is exact and fully faithful.
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Proof. The exactness follows by Lemma 6.61. The functor is fully faithful if and only if
F : HomKb(D)(T, S)→ HomKb(C )(F(T ),F(S))

is an isomorphism for all objects T and S in Kb(D). We proceed by induction on N = uT −
`T + uS − `S where `T , `S , uT and uS are lower resp. upper bounds for T and S. If N = 0, then
`T = uT and `S = uS . This means F(T ) = Σ−`T

(
T `T

)
and F(S) = Σ−`S

(
S`S

)
. In the case

`T = `S , the assertion follows by the fact that the shift functor Σ is an autoequivalence. Assume
`T 6= `S . Then HomKb(D)(T, S) = 0 because their common object-support is empty. On the other
hand, HomKb(C )(F(T ),F(S)) ∼= HomKb(C )

(
Σ`S−`T

(
T `T

)
, S`S

)
= 0, since T ` and B` belong to D .

Suppose that N > 0, then either uT − `T > 0 or uS − `S > 0. If uT − `T > 0, then by
Construction 6.62, we can create a standard exact triangle

T1
τ−→ T2

ι(τ)−−→ T
π(τ)−−→ Σ(T1)

such that uT1 − `T1 = 0 and uT2 − `T2 = uT − `T − 1. The rotation of the above exact triangle is

T2
ι(τ)−−→ T

π(τ)−−→ Σ(T1) −Σ(τ)−−−−→ Σ(T2),
hence the triangle

T2
ι(τ)−−→ T

π(τ) • εΣ(T1)−−−−−−−→ Σ(T1)	
ε−1
Σ(T1) •(−Σ(τ))
−−−−−−−−−→ Σ(T2)

is exact as well. These data incorporates into the following commutative diagram:

HomKb(D)(T1, S)

HomKb(D)(T2, S)

HomKb(D)(T, S)

HomKb(D)(Σ(T1), S)

HomKb(D)(Σ(T2), S)

HomKb(D)(T1, S)

HomKb(D)(T2, S)

HomKb(D)(T, S)

HomKb(D)

(
(Σ(T1))	, S

)

HomKb(D)

(
(Σ(T2))	, S

)

HomKb(C )(F(T1),F(S))

HomKb(C )(F(T2),F(S))

HomKb(C )(F(T ),F(S))

HomKb(C )

(
F
(
(Σ(T1))	

)
,F(S)

)

HomKb(C )

(
F
(
(Σ(T2))	

)
,F(S)

)

ϕ • −

ι(ϕ) • −

π(ϕ) • −

−Σ(ϕ) • −

ϕ • −

ι(ϕ) • −

π(ϕ) • εΣ(T1) • −

ε−1
Σ(T1) •(−Σ(ϕ)) • εΣ(T2) • −

F(ϕ) • −

F(ι(ϕ)) • −

F
(
π(ϕ) • εΣ(T1)

)
• −

F
(
ε−1
Σ(T1) •(−Σ(ϕ)) • εΣ(T2)

)
• −

∼
εΣ(T1) • −

∼
εΣ(T2) • −

∼
F

∼
F

F

∼
F

∼
F

Since HomKb(D)(−, S) is a cohomological functor, the left hand side column is exact; hence, so
is the isomorphic middle column. The right hand side column is exact as well because F is exact
by the first assertion. By the induction hypothesis, the right upper and lower two morphisms are
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isomorphisms. Hence, by the 5-Lemma, the right middle morphism is also an isomorphism. The
same trick can be used for the remaining case, i.e., when uT − `T = 0 and uS − `S > 0. �

Corollary 6.64. Let k be a field, C a k-linear Hom-finite additive category. Let E a strong
exceptional sequence in Kb(C ) and E ⊕ the additive closure of E . Then the convolution functor

F : Kb
(
E ⊕
)
→ Kb(C ).

is fully faithful and exact.

6.4. The Replacement Functor G
Let k be a field, C a k-linear additive Hom-finite category and E = (Ei | i = 1, . . . , n) a

(complete) strong exceptional sequence in Kb(C ). This section is devoted to constructing a right
adjoint G to the convolution functor F introduced in Theorem 6.63. The constructions and proofs
in this section are inspired by the theory of derived tilting equivalences [Ric89], [KZ98].

In order to construct this functor we need the concept of E -approximations of objects in
Kb(C ).

Definition 6.65. An E -approximation of an object A in Kb(C ) consists of an object PA,E
in the the image of the embedding E ⊕ ↪−→ Kb(C ) and a morphism πA,E : PA,E → A such that the
map

HomKb(C )
(
TE , πA,E

)
:
{

HomKb(C )
(
TE , PA,E

)
→ HomKb(C )(TE , A),

f 7→ f •πA,E

is surjective in the Abelian category AE -mod ' EndTE -mod. An E -approximation is called E -
cover if HomKb(C )

(
TE , πA,E

)
is a projective cover10 for the left EndTE -module HomKb(C )(TE , A)

(cf. Lemma 6.35).
A detailed construction of the functor

HomKb(C )(TE ,−) : Kb(C )→ AE -mod

is given in Remark 6.36. We prove in Remark 6.71 that computing E -covers in Kb(C ) amounts
to computing projective covers in AE -mod which is easy due to Theorem 2.95.

Example 6.66. Let A be an object in Kb(C ) and {f1, . . . , fm} a basis of of the k-vector
space HomKb(C )(TE , A). Then the morphism

TmE

(
f1
...
fm

)
−−−−−→ A

is an E -approximation of A.
We will see that computing G(A) for an object A inKb(C ) is based on an iterative construction

which starts with the input
A′ := ΣuA,E (A),

and each iteration returns an intermediate value
A′ := Σ−1(Cone

(
πA′,E

))
10By Lemma 6.35, HomKb(C )(TE , PA,E ) is a projective object in AE -mod ' EndTE -mod.
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for some E -cover πA′,E of A′. The iteration terminates as we eventually get an object A′ whose
set of E -exceptional shifts is empty (cf. Definition 6.67 and Construction 6.72).

It turns out that A belongs to E4 ⊆ Kb(C ) if and only if the last obtained A′ (while computing
G(A)) is zero, i.e., if and only if A′ is a contractible complex over C . This observation is
algorithmically very important, because if Kb(C ) is generated as a triangulated category by a
finite set of objects B = {B1, . . . , Bm}, then checking B ⊂ E4 enables us to decide whether E
is complete or not. Checking whether E is strong exceptional is also straightforward if C , and
consequently Kb(C ), is equipped with a (k-mat)-homomorphism structure (cf. Chapter 4).

Definition 6.67. The set of E -exceptional shifts of an object A in Kb(C ) is defined by

ΩA,E := {i ∈ Z | HomKb(C )

(
TE ,Σi(A)

)
6= 0}.

The maximal E -exceptional shift of A, denoted by uA,E , is defined by max ΩA,E if ΩA,E 6=
∅, and by −∞ otherwise. Analogously, the minimal E -exceptional shift of A, denoted by `A,E ,
is defined by min ΩA,E if ΩA,E 6= ∅, and by +∞ otherwise.

Example 6.68. (1) Since HomKb(C )(TE ,Σr(TE )) = 0 for all r 6= 0, we have uΣr(TE ),E =
`Σr(TE ),E = −r.

(2) Since HomKb(C )(TE ,Σr(0)) = 0 for all r ∈ Z, we have u0,E = −∞ and `0,E = +∞.
(3) For any object A, we have `Σr(A),E = `A,E − r and uΣr(A),E = uA,E − r for all r ∈ Z.

Lemma 6.69. Let A be an object in Kb(C ), `A a lower bound of A and uA an upper bound
of A. Then

`A − uTE
≤ i ≤ uA − `TE

for all i ∈ ΩA,E .

Proof. There exists a nonzero morphism between two objects in Kb(C ) only if their supports
overlap. Hence, for i ∈ Z, HomKb(C )

(
TE ,Σi(A)

)
6= 0 only if uTE

≥ `Σi(A) and `TE
≤ uΣi(A), i.e.,

uTE
≥ `A − i and `TE

≤ uA − i, hence `A − uTE
≤ i ≤ uA − `TE

. �

The following corollary highlights the relation between the exceptional shifts of an object in
E4 and the property of being isomorphic to the zero object.

Corollary 6.70. Let A be an object in the triangulated hull E4. Then the following state-
ments are equivalent:

(1) A � 0,
(2) uA,E 6= −∞,
(3) `A,E 6= +∞,
(4) `A − uTE

≤ `A,E ≤ uA,E ≤ uA − `TE
.

Proof. By Example 6.18, TE is a classical generator for E4, thus a weak generator by
Corollary 6.17. This implies that A � 0 if and only if there exists an integer i ∈ Z with
HomKb(C )

(
TE ,Σi(A)

)
6= 0. The assertions follow by Lemma 6.69. �

For each object Ei in E , we denote by πi the natural projection TE −→→ Ei. The following
remark enables us to compute better E -approximations:
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Remark 6.71. Let A be an object in Kb(C ) and

{fj : Eij → A, j = 1, . . . ,m} ⊂
n⋃
i=1

HomKb(C )(Ei, A)

a generating set of HomKb(C )(TE , A) ∼=
⊕n

i=1 HomKb(C )(Ei, A) as a left EndTE -module, i.e., for
every morphism g : TE → A, there exist endomorphisms λj : TE → TE , j = 1, . . . ,m such that
g =

∑m
j=1 λj ·

(
πij • fj

)
=
∑m
j=1 λj •πij • fj . Then applying the functor HomKb(C )(TE ,−) on the

composition

TmE

π :=

(πi1
. . .

πim

)
−−−−−−−−−−−−−→

m⊕
j=1

Eij

f :=

(
f1
...
fm

)
−−−−−−−→ A,

yields a surjection HomKb(C )(TE , π • f), i.e., π • f : TmE → A is an E -approximation of U . Since
π is a split-epimorphism, HomKb(C )(TE , π) is also a split-epimorphism, thus surjective. The sur-
jectivity of HomKb(C )(TE , π • f) and HomKb(C )(TE , π) implies the surjectivity of HomKb(C )(TE , f),
i.e., f is also an E -approximation.

The above discussion gives rise to an algorithm for computing an E -cover of the object A.
According to Lemma 6.35, F := HomKb(C )(TE , A) can be considered as an object in

EndTE -mod ' AE -mod := [Aop
E , k-mat]

which is Abelian and has computable projective covers (cf. Theorem 2.95). Let

λF :
n⊕
i=1

Pmivi →→ F

be a projective cover in AE -mod of F where vi’s are the objects of Aop
E . The morphism λF can

be used to obtain a minimal generating set of F by simply applying λF to the generator of each
Pvi that appears in

⊕n
i=1 P

mi
vi . In particular, for each object vi ∈ Aop

E , we get mi elements in
F (vi) ∼= HomKb(C )(Ei, A). This yields an E -approximation

f :
n⊕
i=1

Emii → A

of A. Applying the functor HomKb(C )(TE ,−) on f yields the epimorphism

HomKb(C )(TE , f) :
n⊕
i=1

Pmivi →→ F.

Since λF is a projective cover, the lift morphism, say τ ∈ End
⊕n

i=1 P
mi
vi , of HomKb(C )(TE , f)

along λF is an epimorphism. On the other hand, τ is an endomorphism of a finite dimensional
k-vector space, hence τ is an isomorphism. This means HomKb(C )(TE , f) is a projective cover,
hence f defines an E -cover of U .

Construction 6.72. For an object A inKb(C ), we recursively define the sequences
(
Xi
)
i≤uA,E

and
(
Ri
)
i≤uA,E of objects in Kb(C ), together with a sequence of exact triangles(

Xi−1 Σ−1(π(ri))
−−−−−−−→ Ri

ri−→ Xi
−ι(ri)
−−−−→ Σ

(
Xi−1

))
i∈Z
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according to the following steps:
(1) Compute the maximal E -exceptional shift uA,E ∈ Z ∪ {−∞}.
(2) For each i ∈ Z define ri : Ri → Xi as follows:

• if i > uA,E , then
– define Xi := Σi(A), Ri := 0 and ri := Ri

0−→ Xi

• if i ≤ uA,E , then
– define Xi := Cocone

(
ri+1),

– if ΩXi,E = ∅, then terminate the computation,
– otherwise, compute an E -approximation πXi,E : PXi,E → Xi for Xi,
– define Ri := PXi,E and ri := πXi,E .

We use these sequences to construct a complex R whose upper bound is uA,E and whose
differential at index i ∈ Z is ∂iR := ri •Σ−1(π(ri+1)). The complex R is called an E -replacement
of A (or E -resolution). It is called minimal E -replacement if ri is an E -cover of Xi for all
i ∈ Z. The computation steps can be depicted in the following diagram:

. . .

. . .

Ri−1

4 4

Xi−1

Ri

Xi

. . . RuA,E−1

. . . XuA,E−1

RuA,E

4

XuA,E

	 	 	

∂i−2
R

ri−1 ri ruA,E−1 ruA,EΣ−1(π(ri−1)) Σ−1(π(ri)) Σ−1(π(ruA,E ))

∂i−1
R ∂iR ∂

uA,E−1
R

Σ Σ Σ

The following lemma states that the maximal E -shifts of all Xi’s in an E -replacement of an
nonzero object A are non-positive.

Lemma 6.73. Let A � 0 be an object Kb(C ) and R an E -replacement of A. We have
uXi,E ≤ 0 for all i ≤ uA,E .

Proof. We will use backward induction on i ≤ uA,E . For i = uA,E , we have XuA,E :=
ΣuA,E (A), i.e., uXi,E = 0. Now, suppose the assertion holds for some i ≤ uA,E , and let us show
it holds for i− 1. By the construction of an E -replacement, we have an exact triangle

Xi−1 −→ Ri
ri−→ Xi −→ Σ

(
Xi−1

)
where ri is an E -approximation of Xi, i.e., HomKb(C )

(
TE , r

i
)

= − • ri is surjective.
Since HomKb(C )(TE ,−) is a cohomological functor, we get a long exact sequence:
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HomKb(C )(TE ,Σ1(Xi−1))

HomKb(C )(TE ,Σ2(Xi−1))

HomKb(C )(TE ,Σ1
(
Ri
)
)︸ ︷︷ ︸

=0

HomKb(C )(TE ,Σ2
(
Ri
)
)︸ ︷︷ ︸

=0

HomKb(C )(TE ,Σ1
(
Xi
)
)︸ ︷︷ ︸

=0

HomKb(C )(TE ,Σ2
(
Xi
)
)︸ ︷︷ ︸

=0

,

=0︷ ︸︸ ︷
HomKb(C )(TE ,Σ−1

(
Ri
)
)

HomKb(C )(TE , X
i−1) HomKb(C )(TE , R

i) HomKb(C )(TE , X
i)

· · · HomKb(C )(TE ,Σ−1(Xi
)
)

− •Σ2(ri)

− •
(
−Σ1(ri))

− • ri

− •
(
−Σ−1(ri))

in which the zeros in the right column are due to the induction hypothesis; and the zeros in
middle column are due to the fact that TE is the tilting object associated to a strong exceptional
sequence. Since the sequence is exact and − • ri is surjective, we get HomKb(C )

(
TE ,Σn

(
Xi−1)) = 0

for all n ≥ 1. Consequently uXi−1,E ≤ 0 as desired. �

While the previous lemma investigates the behavior of the maximal E -exceptional shifts of
Xi’s in an E -replacement of A, the following lemma investigates the behavior of their minimal
E -exceptional shifts. The lemma asserts that these shifts increase with each iteration until they
become 0 after a finite number of iterations. Of course, these shifts can not exceed 0 as long as
Xi 6∼= 0 (cf. Lemma 6.73).

Lemma 6.74. Let A � 0 be an object Kb(C ) and R an E -replacement of A. For all i ≤ uA,E ,
if `Xi,E < 0, then `Xi,E < `Xi−1,E .

Proof. Analogously to Lemma 6.73, we can create a long exact sequence:

HomKb(C )(TE ,Σ`Xi,E−1(Xi−1))

HomKb(C )(TE ,Σ`Xi,E
(
Xi−1))

HomKb(C )(TE ,Σ`Xi,E−1
(
Ri
)
)︸ ︷︷ ︸

=0

HomKb(C )(TE ,Σ`Xi,E
(
Ri
)
)︸ ︷︷ ︸

=0

HomKb(C )(TE ,Σ`Xi,E−1
(
Xi
)
)︸ ︷︷ ︸

=0

,
HomKb(C )(TE ,Σ`Xi,E

(
Xi
)
)︸ ︷︷ ︸

6=0

,

. . .

=0︷ ︸︸ ︷
HomKb(C )(TE ,Σ`Xi,E−2

(
Ri
)
)

=0︷ ︸︸ ︷
HomKb(C )(TE ,Σ`Xi,E−2

(
Xi
)
)
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in which the zeros in the right column are due to the assumption of the lemma; and the zeros in
the middle column are due to the fact that TE is a tilting object associated to a strong exceptional
sequence. Since the sequence is exact, it follows easily that HomKb(C )

(
TE ,Σn

(
Xi−1)) = 0 for all

n ≤ `Xi,E . Consequently, `Xi,E < `Xi−1,E as desired. �

Lemma 6.75. Let A � 0 be an object Kb(C ) and R an E -replacement of A. For all i ≤ uA,E ,
if `Xi,E = 0, then

(1) `Xi−1,E = 0 or `Xi−1,E = +∞.

(2) Applying the functor HomKb(C )(TE ,−) on Xi−1 Σ−1(π(ri))
−−−−−−−→ Ri

ri−→ Xi yields a short
exact sequence of left EndTE -modules

0→ HomKb(C )
(
TE , X

i−1) ↪− •Σ−1(π(ri))
−−−−−−−−−→ HomKb(C )

(
TE , R

i
) − • ri−−−→→ HomKb(C )

(
TE , X

i
)
→ 0.

(3) The morphism

. . . HomKb(C )
(
TE , R

i−2) HomKb(C )
(
TE , R

i−1) HomKb(C )
(
TE , R

i
)

0

. . . 0 HomKb(C )
(
TE , X

i
)

0

− • ∂i−3
R − • ∂i−2

R − • ∂i−1
R

− • ri

is a quasi-isomorphism, i.e., a projective resolution of HomKb(C )
(
TE , X

i
)
. Furthermore,

if R is a minimal E -resolution for A, then the above induced projective resolution is also
minimal.

Proof. Analogously to Lemma 6.73, we can create a long exact sequence:

. . .

HomKb(C )(TE , X
i−1) HomKb(C )(TE , R

i)︸ ︷︷ ︸
6=0

HomKb(C )(TE , X
i)︸ ︷︷ ︸

6=0

HomKb(C )(TE ,Σ
(
Xi−1)) HomKb(C )(TE ,Σ

(
Ri
)
)︸ ︷︷ ︸

=0

HomKb(C )(TE ,Σ
(
Xi
)
)︸ ︷︷ ︸

=0

=0︷ ︸︸ ︷
HomKb(C )(TE ,Σ−1

(
Ri
)
)

=0︷ ︸︸ ︷
HomKb(C )(TE ,Σ−1

(
Xi
)
)

− •Σ−1(π(ri)) − • ri

in which the zeros in the right column are due to the assumption `Xi,E = 0 and Lemma 6.73;
and the zeros in the middle column are due to the fact that TE is a tilting object associated to
a strong exceptional sequence. Hence, HomKb(C )

(
TE ,Σn

(
Xi−1)) = 0 for all n 6= 0, which implies

the assertions (1) and (2).
In order to prove the third assertion, we need to show that − • ri is a cokernel projection

for − • ∂i−1
R and for each j ≤ i − 2, the unique lift morphism of − • ∂jR along the kernel embed-

ding of − • ∂j+1
R is an epimorphism (See Remark 3.7). By definition ∂i−1

R = ri−1 •Σ−1(π(ri)),
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hence − • ∂i−1
R =

(
− • ri−1) •(− •Σ−1(π(ri))). It follows from the second assertion that − • ri−1 is

an epimorphism and − • ri is a cokernel projection for − •Σ−1(π(ri)), hence − • ri is a cokernel
projection of − • ∂i−1

R as well. Similarly, for each j ≤ i − 2, the morphism − •Σ−1(π(rj+2)) is a
monomorphism and − •Σ−1(π(rj+1)) is a kernel embedding of − • rj+1, hence − •Σ−1(π(rj+1))
is a kernel embedding for − • ∂j+1

R as well. This means − • ∂jR lifts along the kernel embedding
of − • ∂jR via the epimorphism − • rj , i.e., the morphism is indeed a quasi-isomorphism resp. a
projective resolution. If R is a minimal E -resolution of A, then each − • rj is a projective cover
for Xj , hence the induced projective resolution is minimal. �

The algorithmic content of the following lemma allows us to detect whether a given object A
lives in the triangulated hull E4 of E . In other words, computing an E -replacement of A can be
thought of as a kind of iterative reduction of A modulo E4, such that A belongs to E4 if and
only if the remainder is zero.

Lemma 6.76. Let A be an object in Kb(C ) and let R be a minimal E -resolution of A as
introduced in Construction 6.72. Then R is bounded, i.e., R belongs to Kb(E ⊕). Furthermore, if
` is a lower bound of R, then A belongs to E4 if and only if X`−1 ∼= 0.

Proof. Lemma 6.73 states that uXi,E ≤ 0 for all i ≤ uA,E , i.e., for all i ≤ uA,E either
`Xi,E = +∞ or `Xi,E ≤ uXi,E ≤ 0. On the other hand, by Lemma 6.74, we see that after at most
uA,E − `A,E iterations, we reach an integer i ∈ Z for which either `Xi,E = +∞ or `Xi,E = 0.

Now if `Xi,E = +∞, then the E -cover ri is given by 0 −→ Xi and Xi−1 = Cocone
(
ri
)

=
Σ−1(Xi

)
whose lower E -exceptional shift is again +∞, hence by induction we find that Rj = 0

and Xj−1 = Σ−1(Xj
)
for all j ≤ i. Hence, R is bounded below by i+ 1.

If `Xi,E = 0 then by Lemma 6.75, `Xj ,E ∈ {0,+∞} for all j ≤ i − 1 and we get a minimal
projective resolution

. . . HomKb(C )
(
TE , R

i−2) HomKb(C )
(
TE , R

i−1) HomKb(C )
(
TE , R

i
)

0

. . . 0 HomKb(C )
(
TE , X

i
)

0

− • ∂i−3
R − • ∂i−2

R − • ∂i−1
R

− • ri

of HomKb(C )
(
TE , X

i
)
. By Lemma 6.33 and Corollary 2.96, we see that the global dimension

of EndTE -fdmod is finite and is bounded by the number of vertices of the quiver qE of E ,
which is exactly the number of objects of E , i.e., n. By Corollary 3.58, HomKb(C )

(
TE , X

i−n) is
a projective object, hence isomorphic to the zero object because otherwise the above projective
resolution would not be minimal. It follows that `Xi−n,E = +∞, hence similar to the above
discussion we conclude that R is bounded below by i− n+ 1.

Suppose that A belongs to E4, then XuA,E = ΣuA,E (A) also belongs to E4. Since each Xj is
the cocone object of a morphism from Rj+1 to Xj+1, we can inductively prove that Xj belongs
to E4 for all j ≤ uA,E . Since ` is a lower bound of R, the E -cover r`−1 is given by 0 −→ X`−1 and
`X`−1,E = +∞, hence X`−1 ∼= 0 by Corollary 6.70. The converse statment follows by induction
since X`−1 ∼= 0 and each Xj is the cone object of a morphism from Xj−1 to Rj . �

Lemma 6.77. Let A be an object Kb(C ) and R in Kb(E ⊕) be an E -resolution of A. Then A
belongs to E4 if and only if F(R) ∼= A.
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Proof. Suppose that A belongs to E4. By Lemma 6.60, we can assume without loss of
generality that uA,E = 0. We denote the brutal truncation of R below some integer i ∈ Z

. . . 0 Ri Ri+1 . . .
i

∂iR ∂i+1
R

by R≥i. We can depict the computation of R and F(R) by the following diagram:

. . . Σn−1(F(R≥i−1)) Σi
(
F
(
R≥i

))
Σi+1(F(R≥i+1)) . . .

. . . Ri−1 Ri Ri+1 . . .

. . . Xi−1 Xi Xi+1 . . .

4 4

4 4

	 	

	 	

ji−1
jiΣ−1(π(ji−1)) Σ−1(π(ji)) Σ−1(π(ji+1))

ri−1 ri ri+1Σ−1(π(ri)) Σ−1(π(ri+1))

∂i−1
R ∂iR

Σ
−ι
(
ji−1)

Σ
−ι
(
ji
)

Σ
−ι
(
ji+1)

Σ
−ι
(
ri
) Σ

−ι
(
ri+1) Σ

−ι
(
ri+2)

It follows from Construction 6.72 that X0 = A, and if ` is a lower bound of R, then X`−1 ∼= 0
by Lemma 6.76. By definition j0 is given by the zero morphism R0 −→ 0, hence π

(
j0) = idΣ(R0).

We will prove the lemma by constructing a morphism F
(
R≥i

) vi−→ A for each i ≤ −1, then proving
that these morphisms will eventually become isomorphisms.

We claim the existence of a family of exact triangles(
Σ−i−1

(
Xi
)

ui−→ F
(
R≥i+1

)
vi+1
−−−→ A

wi+1
−−−→ Σ−i

(
Xi
))

i≤−1

that fit together into a commutative diagram:
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. . . A A A . . .

. . . F
(
R≥i−1) F

(
R≥i

)
F
(
R≥i+1) . . .

. . . Σ−i
(
Xi−1) Σ−i−1(Xi

)
Σ−i−2(Xi+1) . . .

. . . Σ−i
(
Ri−1) Σ−i−1(Ri) Σ−i−2(Ri+1) . . .

4 4

4 4

4 4

	 	 	 	

	 	

Σ−i
(
ι
(
ji−1)) Σ−i−1(ι(ji))

wi wi+1

(−1)−iΣ−i
(
π
(
ji−1)) (−1)−i−1Σ−i−1(π(ji)) (−1)−i−2Σ−i−2(π(ji+1))

Σ−i
(
ji−1) Σ−i−1(ji)

Σ−i
(
ri−1) Σ−i−1(ri) Σ−i−2(ri+1)

Σ−i−1(ι(ri)) Σ−i−2(ι(ri+1))

(−1)−i−1Σ−i−1(π(ri)) (−1)−i−2Σ−i−2(π(ri+1))
ui−1 ui

vi−1 vi vi+1

We will construct the family by a backward induction on i ≤ −1. For i = −1, we define u−1

by X−1 Σ−1(π(r0))
−−−−−−−→ R0, v0 by R0 r0

−→ A and w0 by A
−ι(r0)
−−−−→ Σ

(
X−1), hence

X−1 u−1
−−→ R0 v0

−→ A
w0
−−→ Σ

(
X−1

)
is exact triangle by the rotation axiom. Moreover, the asserted equalities

1. Σ−i−1(ri) •ui = Σ−i−1(ji) and
2. ui •

(
(−1)−i−2Σ−i−2(π(ji+1))) = (−1)−i−2Σ−i−2(π(ri+1)),

for i = −1 hold because Σ−1(π(j0)) = idR0 and r−1 •Σ−1(π(r0)) = ∂−1
R = j−1.

Now, suppose we have computed the asserted exact triangle

Σ−i−1
(
Xi
)

ui−→ F
(
R≥i+1

)
vi+1
−−−→ A

wi+1
−−−→ Σ−i

(
Xi
)
,

for some i < −1 and let us compute the asserted exact triangle for i− 1.
Applying Lemma B.18 on the standard exact triangles

Ri
ri−→ Xi

ι(ri)
−−−→ Σ

(
Xi−1

) π(ri)
−−−→ Σ

(
Ri
)

and
Ri

ji−→ Σi+1
(
F
(
R≥i+1

)) ι(ji)
−−−→ Σi+1

(
F
(
R≥i

)) π(ji)
−−−→ Σ

(
Ri
)

yields two exact triangles

Σ−i−1
(
Ri
) Σ−i−1(ri)
−−−−−−→ Σ−i−1

(
Xi
) Σ−i−1(ι(ri))
−−−−−−−−→ Σ−i

(
Xi−1

) (−1)−i−1Σ−i−1(π(ri))
−−−−−−−−−−−−−−−→ Σ−i−1

(
Ri
)
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and

Σ−i−1
(
Ri
) Σ−i−1(ji)
−−−−−−→ F

(
R≥i+1

) Σ−i−1(ι(ji))
−−−−−−−−→ F

(
R≥i

) (−1)−i−1Σ−i−1(π(ji))
−−−−−−−−−−−−−−−→ Σ−i

(
Ri
)
.

By the Octahedral Axiom TR 4, there exists an exact triangle

Σ−i
(
Xi−1

)
ui−1
−−−→ F

(
R≥i

)
vi−→ A

wi−→ Σ−i+1
(
Xi−1

)
rendering the diagram

Σ−i−1(Ri) Σ−i−1(Xi
)

Σ−i
(
Xi−1) Σ−i

(
Ri
)

F
(
R≥i+1) F

(
R≥i

)
Σ−i

(
Ri
)

A A Σ−i
(
Xi
)

Σ−i
(
Xi
)

Σ−i+1(Xi−1)

� � �

� �

�

Σ−i−1(ri) Σ−i−1(ι(ri))

Σ−i
(
ι
(
ri
))

Σ−i−1(ι(ji))

(−1)−i−1Σ−i−1(π(ri))

(−1)−i−1Σ−i−1(π(ji))

wi+1

ui

vi+1

wi+1

∃ui−1

∃vi

∃wi

Σ−i−1(ji)

Σ−i
(
ri
)

commutative. All claimed equalities can easily be read from the diagram except for

Σ−i
(
ri−1

)
•ui−1 = Σ−i

(
ji−1

)
.

The following computation

Σ−i
(
ri−1

)
•ui−1 •(−1)−i−1Σ−i−1

(
π
(
ji
))

=
(
Σ−i

(
ri−1

))
•(−1)−i−1Σ−i−1

(
π
(
ri
))

= (−1)−i−1Σ−i
((
ri−1 •Σ−1

(
π
(
ri
))))

= (−1)−i−1Σ−i
(
∂i−1
R

)
= (−1)−i−1Σ−i

((
ji−1 •Σ−1

(
π
(
ji
))))

=
(
Σ−i

(
ji−1

))
•(−1)−i−1Σ−i−1

(
π
(
ji
))

shows that Σ−i
(
ri−1) •ui−1 − Σ−i

(
ji−1) lies in the kernel of the morphism

HomKb(C )
(
Σ−i

(
Ri−1),F(R≥i)) − •(−1)−i−1Σ−i−1(π(ji))

−−−−−−−−−−−−−−−−→ HomKb(C )
(
Σ−i

(
Ri−1),Σ−i(Ri));

i.e., to prove the equality, it is sufficient to show − •(−1)−i−1Σ−i−1(π(ji)) is a monomorphism.
Let dRi−1ci be the i-stalk object in Kb(E ⊕) defined by Ri−1, then HomKb(E⊕)

(
dRi−1ci, R≥i+1) = 0
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because the object-supports of dRi−1ci and R≥n+1 do not overlap, hence by Theorem 6.63,
HomKb(C )

(
Σ−i

(
Ri−1),F(R≥i+1)) = HomKb(C )

(
F
(
dRi−1ci

)
,F
(
R≥i+1)) = 0.

Therefore, the claim that − •(−1)−i−1Σ−i−1(π(ji)) is a monomorphism follows easily from the
long exact sequence resulted by applying HomKb(C )

(
Σ−i

(
Ri−1),−) on the exact triangle

Σ−i−1
(
Ri
) Σ−i−1(ji)
−−−−−−→ F

(
R≥i+1

) Σ−i−1(ι(ji))
−−−−−−−−→ F

(
R≥i

) (−1)−i−1Σ−i−1(π(ji))
−−−−−−−−−−−−−−−→ Σ−i

(
Ri
)
.

Let ` be a lower bound of R. By Remark 6.41, F(R) = F
(
R≥`

)
. It follows from Lemma 6.76

that X`−1 ∼= 0, consequently F
(
R≥`

)
v`−→ A is an isomorphism by Lemma B.22.

Conversely, if A ∼= F(R), then A belongs to E4 because F(R) is constructed by iterated
computation of cocone objects of morphisms that already belong to E4 and by shifting the last
cocone according to its cohomological index. �

Corollary 6.78. Let A be an object in E4, then all E -resolutions in Kb(E ⊕) of A are iso-
morphic.

Proof. Let RA and R′A be two bounded E -resolutions for A. By the previous lemma, there
we have isomorphisms λA : F(RA) → A and λ′A : F(R′A) → A, hence F(RA) and F(R′A) are
isomorphic via ϕ := λA •(λ′A)−1. By Theorem 6.63, F is fully faithful, therefore, there are two
morphisms RA

i−→ R′A and R′A
j−→ RA such that ϕ = F(i) and ϕ−1 = F(j). Consequently,

F(i • j − idRA) = 0 and F
(
j • i− idR′A

)
= 0, i.e., i • j = idRA and j • i = idR′A . �

Lemma 6.79. Let E be a complete strong exceptional sequence in Kb(C ). Then the convo-
lution functor F : Kb(E ⊕)→ Kb(C ) has a right adjoint functor.

Proof. For each object B in Kb(C ), we fix a bounded E -resolution RB for B and an isomor-
phism λB : F(RB) → B; and for each object Q in Kb(E ⊕), we denote by ΦQ,B the composition
of the two isomorphisms

HomKb(C )(F(Q), B) ∼−→ HomKb(C )(F(Q),F(RB)) ∼−→ HomKb(E⊕)(Q,RB),

where the first isomorphism is given by − •λ−1
B and the second follows from the fact that F is

fully faithful; hence, ΦQ,B(ϕ) = ψ if and only if F(ψ) = ϕ •λ−1
B .

We define the Replacement functor
G : Kb(C )→ Kb

(
E ⊕
)

as follows
• an object A is mapped to some bounded E -resolution RA for A.
• a morphism α : A → B is mapped to ΦRA,B(λA •α), i.e., to the unique morphism

G(α) : G(A)→ G(B) whose convolution renders the following diagram
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AF(G(A))

BF(G(B))

	 αF(G(α))

λA

λB

commutative.
We still need to show that for any morphism α : A→ B in Kb(C ) and any morphism f : Q→ P

in Kb(E ⊕), the following diagram

HomKb(C )(F(P ), A)

HomKb(C )(F(Q), B)

HomKb(E⊕)(P,G(A))

HomKb(E⊕)(Q,G(B))

F(f) • − •α f • − •G(α)

ΦP,A

ΦQ,B

is commutative. Let ϕ be any morphism in HomKb(C )(F(P ), A), then
F(f •ΦP,A(ϕ) •G(α)) = F(f) •F(ΦP,A(ϕ)) •F(G(α))

= F(f) •ϕ •λ−1
A

•F(G(α))
= F(f) •ϕ •λ−1

A
•λA •α •λ−1

B

= F(f) •ϕ •α •λ−1
B ;

i.e., ΦQ,B(F(f) •ϕ •α) = f •ΦP,A(ϕ) •G(α), consequently, the above diagram is commutative as
desired. �

Remark 6.80. By Definition A.20, the unit of the adjunction F a G is the natural transformation

η :

idKb(E⊕) → F •G,

Q 7→ ηQ := ΦQ,F(Q)
(
idF(Q)

)
: Q→ G(F(Q)),

i.e., Q is mapped to the unique morphism ηQ for which F(ηQ) = λ−1
F(Q). By Lemma A.15, F is

conservative, hence ηQ is an isomorphism.
The counit is the natural transformation

ε :

G •F → idKb(C ),

A 7→ εA := Φ−1
G(A),A

(
idG(A)

)
: F(G(A))→ A

i.e., ΦG(A),A(εA) = idG(A), hence F
(
idG(A)

)
= εA •λ−1

A and εA = λA.

This implies the following:
Corollary 6.81. The functors F and G are quasi-inverse.
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Corollary 6.82. The replacement functor
G : Kb(C )→ Kb

(
E ⊕
)

defined in Lemma 6.79 is fully faithful and exact.

Proof. Since the counit ε of the adjunction F a G is a natural isomorphism, it follows by
Lemma A.22 that G is fully faithful. According to Lemma 6.61, F is an exact functor; and to
Lemma B.30, any right adjoint of an exact functor is also exact. Hence G is exact. �



APPENDIX A

First Steps Toward Constructive Category Theory in Cap

The stringent interpretation of the phrase “there exists” as “we can construct” distinguishes
constructive mathematics from the classical mathematics. In classical mathematics, one can
demonstrate the existence of a mathematical object without explicitly “constructing” it by as-
suming its non-existence and then deriving a contradiction from that assumption. Following a
constructive approach to verify a mathematical statement means we must reinterpret not just
the existential quantifiers, but also all the logical disjunctions utilized in proving the statement
[BP18]. For example, to prove the statement “∃xP (x)” we must construct an object x and prove
that P (x) holds, and to prove that P ∨Q we must either have a proof of P or a proof of Q. In
particular, the law of excluded middle: “For every statement P , either P or ¬P holds” is not an
axiom from the viewpoint of constructive mathematics. The constructiveness concept is usually
exemplified by the following proposition:

“There exists a pair of irrational numbers a, b such that ab is rational”.

Consider the following argument: Either
√

2
√

2 is rational, in which case a =
√

2 and b =
√

2
satisfy the desired property; or

√
2
√

2 is irrational, in which case a =
√

2
√

2 and b =
√

2 satisfy
the property. However, as written, this argument does not enable us to determine which of the
pairs satisfies the property, hence the argument is not correct from the point view of constructive
mathematics. A constructive proof can be established by providing an instance of such pair,
e.g., a =

√
2 and b = 2log2(3). Further details about constructive mathematics can be found in

[BP18], [MRR88] and [nLa20].
Following a constructive approach to category theory was the primary motivation behind

Cap [GSP22]. Cap stands for Categories, Algorithms, Programming, is an open source software
project for constructive category theory written in the computer algebra system GAP [GAP21].
The development of Cap started in December 2013 by Sebastian Gutsche and Sebastian Posur
followed by major contributions of Øystein Skartsæterhagen in 2015 and Fabian Zickgraf since
2018. Cap was developed to facilitate the implementation of categories and categorical algorithms
on the computer.

From the constructive viewpoint of Cap, a category C which belongs to a doctrine1 D is
determined

(1) by data structures for the objects ObjC and the morphisms in HomC (A,B), along with
operations for associatively composing morphisms, deciding their mathematical equality
and constructing the identity morphisms idA ∈ HomC (A,A), where A,B ∈ ObjC ;

1We use the term “doctrine” to describe a class of categories with specified additional properties or
structures, e.g., additive, Abelian, monoidal, etc.

199
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(2) a collection of categorical algorithms realizing the defining axioms of the doctrine D.
This is accomplished by formulating all the existential quantifiers and disjunctions of
the doctrine’s axioms in terms of explicit algorithms2.

Let us illustrate the concept of formulating quantifiers and disjunctions in terms of operations
with a concrete example:

The standard category theory textbooks define kernels of morphisms3 in preadditive categories
as follows: A kernel4 of a morphism α : A→ B in a category C is an objectK in C and a morphism
ι : K → A such that ι •α = 0 with the following universal property: Given any τ : T → A such
that τ •α = 0, there exists a unique5 morphism λ : T → K such that λ • ι = τ . The definition can
be depicted in the diagram:

A B

K

T

� α

0

ι

τ

0

∃1λ

The constructive interpretation of the preceding definition demands algorithms to perform
the following categorical operations:

(1) Given α : A→ B, compute an object KernelObject(α) in ObjC .
(2) Given α : A→ B, compute a morphism

KernelEmbedding(α) : KernelObject(α)→ A

such that KernelEmbedding(α) •α = 0.
(3) Given α : A → B and τ : T → A such that τ •α = 0, compute a uniquely determined

morphism
KernelLift(α, τ) : T → KernelObject(α)

such that KernelLift(α, τ) • KernelEmbedding(α) = τ .
2This procedure is usually called a skolemization of the axioms [RV01].
3The existence of (co)kernels of morphisms is required in the doctrine of Abelian categories (cf. Defi-

nition A.44).
4The dual concept of the kernel is the cokernel.
5This assumption implies that ι is a monomorphism.



A. FIRST STEPS TOWARD CONSTRUCTIVE CATEGORY THEORY IN CAP 201

A B

KernelObject(α)

T

� α

0

KernelEmbedding(α)

τ

0

Ke
rn

el
Li

ft
(α
,τ

)
Let us perform the above operations in a concrete category. The category Q-mat of matrices6

over (the field of rational numbers) Q consists of the following data:
(1) ObjQ-mat := N0.
(2) For two objects m,n in Q-mat, we define HomQ-mat(m,n) by Qm×n.
(3) The composition of morphisms is just matrix multiplication and the identity morphism

of an object m is the m×m identity matrix over Q.
In the following we use the Julia package CapAndHomalg [CAP21a] to compute the kernel

data of the morphism:

α := 3

 1
2
3


−−−−−→ 1

julia> using CapAndHomalg
CapAndHomalg v1.1.8
Imported OSCAR's components GAP and Singular_jll
Type: ?CapAndHomalg for more information

julia> LoadPackage( "LinearAlgebraForCAP" )

julia> Q = HomalgFieldOfRationals( )
Q

julia> Qmat = MatrixCategory( Q )
Category of matrices over Q

julia> α = HomalgMatrix( "[ [ 1 ], [ 2 ], [ 3 ] ]", 3, 1, Q ) / Qmat
<A morphism in category of matrices over Q>

julia> K = KernelObject( α )
<A vector space object over Q of dimension 2>

julia> ι = KernelEmbedding( α )
<A split monomorphism in category of matrices over Q>

6This category is equivalent to the category vecQ of finite dimensional Q-vector spaces (cf. Exam-
ple 2.16). More precisely, an object m ∈ N0 in Q-mat corresponds to the Q-vector space Qm in vecQ.
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julia> Display( ι )
[ [ -2, 1, 0 ],

[ -3, 0, 1 ] ]

A split monomorphism in category of matrices over Q

The morphism

τ := 1
(
· 12 −8

)
−−−−−−−−−−−→ 3

satisfies τ •α = 0, hence τ is uniquely liftable along ι. Let us compute the induced kernel lift:
julia> τ = HomalgMatrix( "[ [ 0, 12, -8 ] ]", 1, 3, Q ) / Qmat
<A morphism in category of matrices over Q>

julia> IsZeroForMorphisms( PreCompose( τ, α ) )
true

julia> λ = KernelLift( α, τ )
<A morphism in category of matrices over Q>

julia> Display( λ )
[ [ 12, -8 ] ]

A morphism in category of matrices over Q

We depict the outputs by the following diagram:

3 1

2

1

�
 1

2
3



0(
−2 1 0
−3 0 1

)

(
0 12 −8

)
0

(
12 −8

)

The kernel object K = 2 encodes the dimension of the space of row-syzygies7 of α and the rows
of the kernel embedding ι encodes an actual basis of this space. The kernel lift expresses every
matrix (in this case τ) containing row-syzygies of α as Q-linear combinations of the basis given
by the rows of ι.

One of Cap’s most distinguishing features is its derivation mechanism, which facilitates de-
riving categorical algorithms from other existing algorithms by utilizing the constructive proofs
in the standard text books. We illustrate this concept by deriving an algorithm to compute
the images of morphisms in Abelian categories, then using this “derived algorithm” to derive an
algorithm to compute the homology objects of differential pairs.

Let us first state the categorical definition of the image objects:
7I.e., the Q-relations between the rows of α.
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Example A.1 (The computation of images in Abelian categories). The image8 of a mor-
phism α : A→ B consists of an object I and two morphisms ε : A→ I and ι : I → B such that κ
is a monomorphism and ε •κ = α with the following universal property: Given any other triple
(T, δ : A→ T, τ : T → B) with τ a monomorphism and δ • τ = α, there exists a unique morphism
u : I → T such that ε •u = δ and u • τ = κ.

A B

I

T

�

��

∃1u

α

ε κ

δ τ

The constructive interpretation of the definition of the image is depicted in the diagram:

A B

ImageObject(α)

T

�

��

UniversalMorphismFromImage(α, [δ, τ ])

α

CoastrictionToImage(α) ImageEmbedding(α)

δ τ

The constructive proof of Lemma A.2 enables us to compute the image data as follows:
(1) The image object can be computed by the Cap formula:

I := KernelObject(CokernelProjection(α)),
(2) The image embedding can be computed by the Cap formula:

κ := KernelEmbedding(CokernelProjection(α)).
(3) The coastriction morphism ε : A→ I can be computed by the Cap formula:

ε := KernelLift(CokernelProjection(α), α)
(4) Consider a triple (T, δ : A→ T, τ : T → B) with τ a monomorphism and δ • τ = α. The

universal morphism u : I → T with ε •u = δ and u • τ = κ can be computed by the Cap
formula:

u := ColiftAlongEpimorphism(ε, δ).
where ColiftAlongEpimorphism is the operation which corresponds to the second axiom
in the definition of Abelian categories (cf. Definition A.44).

8The dual concept of the image is called the coimage.
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Let us illustrate this by computing the image data of the morphism

α := 3

 2 2 1
1 1 2
1 1 1


−−−−−−−−−−→ 3

in Q-mat:
julia> α = HomalgMatrix( "[[ 2, 2, 1 ], [ 1, 1, 2 ], [ 1, 1, 1 ]]", 3, 3, Q ) / matQ
<A morphism in category of matrices over Q>

julia> ι = ImageEmbedding( α )
<A split monomorphism in category of matrices over Q>

julia> Display( ι )
[ [ 1, 1, 0 ],

[ 0, 0, 1 ] ]

A split monomorphism in Category of matrices over Q

julia> ε = CoastrictionToImage( α )
<A morphism in Category of matrices over Q>

julia> Display( ε )
[ [ 2, 1 ],

[ 1, 2 ],
[ 1, 1 ] ]

A morphism in Category of matrices over Q

We depict the outputs in the following diagram:

3 3

2

�

 2 2 1
1 1 2
1 1 1

 2 1
1 2
1 1

 (
1 1 ·
· · 1

)

The image object I = 2 encodes the dimension of the row-space of α and the image embedding
ι outputs an actual basis for this space while the coastriction morphism expresses the rows of α
as Q-linear combinations of the basis given by the rows of ι.

Example A.2 (The computation of homology in Abelian categories). Let C be an Abelian
category and A α−→ B

β−→ C a differential pair of morphisms, i.e., with α •β = 0. The homology
object of this pair is defined by the cokernel object of the canonical embedding of the image
object of α in the kernel object of β (cf. Definition A.51). Hence, it can be computed by the Cap
formula

CokernelObject(KernelLift(β, ImageEmbedding(α))).
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Let us illustrate this by computing the homology object of the differential pair

2

( 7
4 −1

2 −1 1 1
−5 2 −1 · −1

)
−−−−−−−−−−−−−−−−−−−−−→ 5


−2 2
−5 3

1 −2
3 −2
−1 −2


−−−−−−−−−−−→ 2

in Q-mat:
julia> α = HomalgMatrix( "[ [7/4, -1/2, -1, 1, 1 ],

[ -5, 2, -1, 0, -1 ] ]", 2, 5, Q ) / Qmat
<A morphism in category of matrices over Q>

julia> β = HomalgMatrix( "[ [ -2, 2 ],
[ -5, 3 ],
[ 1, -2 ],
[ 3, -2 ],
[ -1, -2 ] ]" , 5, 2, Q ) / Qmat

<A morphism in category of matrices over Q>

julia> HomologyObject( α, β )
<A vector space object over Q of dimension 1>

julia> CokernelObject( KernelLift( β, ImageEmbedding( α ) ) )
<A vector space object over Q of dimension 1>

The current implementation of the category Q-mat is accomplished by directly implementing
methods for 66 categorical operations9, and a total of 329 operations become available thanks to
the derivation mechanism (cf. [BP19a] or [GP21a]).
julia> InfoOfInstalledOperationsOfCategory( Qmat )
66 primitive operations were used to derive 329 operations for this category which
* IsEquippedWithHomomorphismStructure
* IsLinearCategoryOverCommutativeRing
* IsAbelianCategoryWithEnoughInjectives
* IsRigidSymmetricClosedMonoidalCategory
* IsClosedMonoidalCategory
* IsAbelianCategoryWithEnoughProjectives

A.1. Categories, Functors and Natural Transformations
In our constructive setting, we are going to work with categories with Hom-setoids. Before

defining this type of categories, let us first review the classical definition of a category.
Definition A.3 (Category, classical definition). A (locally small) category C consists of

the following data:
9The majority of them are expressed in terms of algorithms afforded by computable rings (cf. Defini-

tion 2.32), which in the case of fields are ultimately based on the Gaussian algorithm.
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(1) A class ObjC (objects).
(2) Depending on A,B ∈ ObjC a set HomC (A,B) (morphisms).
(3) Each object A ∈ ObjC has a specified morphism idA (identity morphisms).
(4) For any pair of morphisms α ∈ HomC (A,B), and β ∈ HomC (B,C), there exists a

specified morphism α •β ∈ HomC (A,C) (composition).
These data are subject to the following two axioms:

(1) For any morphism α ∈ HomC (A,B), the compositions idA •α and α • idB are both equal
to α.

(2) For any triple of morphisms A α−→ B
β−→ C

γ−→ D the composites α •(β • γ) and (α •β) • γ
are equal10.

The mathematical equality of a pair α, β ∈ HomC (A,B) of morphisms is implicitly inherited in
the preceding definition by the assumption that HomC (A,B) is a set. However, in the constructive
setting of Cap the mathematical equality of morphisms is provided as an additional algorithm
which acts on pairs of morphisms. In other words, the classical tautology “For any two morphisms
α, β ∈ HomC (A,B), either (α = β) or (α 6= β) holds” should be interpreted constructively. To
this end, Cap adopts a slightly more general notion of a category: The homomorphism sets
HomC (A,B) are not just sets; they are setoids, i.e., a set with an equivalence relation as an
additional datum. The following is the formal definition of this type of categories (cf. [Gut17]
and [Pos17]):

Definition A.4 (Category with Hom-setoids). A (locally small) category (with Hom-
setoids) C consists of the following data:

(1) A class ObjC (objects).
(2) Depending on A,B ∈ ObjC a set HomC (A,B) (morphisms), equipped with an equiv-

alence relation “=A,B” (congruence of morphisms). If α =A,B β for two morphisms
α, β in HomC (A,B), we say they are congruent.

(3) An algorithm that computes for given A,B and C in ObjC , α ∈ HomC (A,B), and
β ∈ HomC (B,C) a morphism α •β ∈ HomC (A,C) (composition) such that
(a) The composition is compatible with the congruence relation, i.e., if α, α′ ∈ HomC (A,B),

β, β′ ∈ HomC (B,C) with α =A,B α′ and β =B,C β
′ , then α •β =A,C α

′ •β′.
(b) For any triple of morphisms A α−→ B

β−→ C
γ−→ D, we require

α •(β • γ) =A,D (α •β) • γ (associativity).
(4) An algorithm that constructs for given B ∈ ObjC a morphism idB ∈ HomC (B,B)

(identities). Furthermore, for any pair of morphisms A α−→ B
β−→ C, we require

α • idB =A,B α and idB •β =B,C β.

Remark A.5. The above definition encompasses two notions of morphism equality:
• The “syntactic equality” or “naive equality” which signifies that the two morphisms
are treated identically as elements in the morphism sets. This is often accomplished
by checking that the two morphisms are defined by the same data, i.e., that they are
represented similarly on the computer. Due to its simplicity, this syntactic equality is
usually easily verified and is mostly utilized for compatibility purposes. Because any

10Thus denoted by α •β • γ.
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form of comparison between morphisms needs comparing their sources and ranges, this
naive equality necessitates establishing another naive equality on the objects, which is
also often accomplished by checking that the two objects are defined by the same data.
• The “semantic equality” or “mathematical equality” signifies that the two morphisms
are congruent in the sense of the above definition. That is, in Cap, a morphism might
have (syntactically) different representations on the computer. That is, the classical
mathematical interpretation of the set HomC (A,B) can be recovered as the factor set
HomC (A,B)/=A,B (see [Pos17, The Cap Project]). Implementing the mathematical
equality (i.e., verifying the congruence of morphisms) is typically the first obstacle we
encounter when implementing a new category on the computer, as it typically requires
a non-trivial computation that produces an additional datum11, commonly referred to
as a witness for morphism equality. When determining morphism congruence, we utilize
naive equality of objects to determine if they have the same source and range. In
other words, we make no effort to introduce mathematical equality on objects. All
categorical invariants and properties can be transmitted from one object to another
once an isomorphism exists between them. As a result, there is no “categorical need”
to verify any kind of mathematical equality on objects.

Convention. Unless otherwise specified, whenever we use the term “equality of morphisms”
or the notation “α = β” (for two morphisms α and β), we mean the mathematical equality.

Flipping all the morphisms in a category C defines another category:
Definition A.6. The opposite category C op of a category C consists of the same objects

and morphisms as C after interchanging the source and range of every morphism.
Typically, categories may be enriched with additional structure, transforming them into in-

stances of various doctrines, for example, additive, Abelian, triangulated, and so on. (see Defini-
tions A.24, A.38 and A.44).

Definition A.7. A category C is said to have decidable equality of morphisms (alter-
natively, C is computable) if we can algorithmically decide the congruence between morphisms
with the same source and range. A category C is called computable as instance of a doctrine
D if all the existential quantifiers and disjunctions in the defining axioms of D are realized by
algorithms.

Lift and colift morphisms are ubiquitous in category theory. They are essential ingredients
for defining many categorical concepts such as kernels, cokernels12, projective objects, injective
objects, etc.

Definition A.8. Let C be a category.
(1) C is said to have decidable lifts if we have an algorithm which for a cospan

A
α−→ B

γ←− C
11See e.g., the equality of morphisms in the Freyd categories and bounded homotopy categories

(cf. Section 2.1.1 resp. Section 3.2).
12And more generally, limits and colimits.
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decides the solvability of the equation χ • γ = α, and in affirmative case computes a
particular solution χ : A→ C. If such χ exists, we say that α is liftable along13 γ and
we call χ a lift morphism14. of α along γ.

(2) C is said to have decidable colifts if we have an algorithm which for a span

A
α←− B γ−→ C

decides the solvability of the equation γ •χ = α, and in affirmative case computes a
particular solution χ : C → A. If such χ exists, we say that α is coliftable along15 γ;
and we call χ a colift morphism16 of α along γ.

A functor between two categories is a mapping on objects and morphisms which respects
composition and identity morphisms.

Definition A.9. A (covariant) functor F from a category C to a category D consists of the
following data:

(1) An algorithm that computes for a given A in C an object F (A) in D .
(2) An algorithm that computes for a given morphism α : A → B in C a morphism

F (α) : F (A)→ F (B).
(3) For a given object A in C , we have F (idA) = idF (A).
(4) For given objects A,B,C and a pair of morphisms A α−→ B

β−→ C, we have
F (α •β) = F (α) •F (β).

Remark A.10. A contravariant functor F from C to D is a functor F : C op → D .

Similar to the notions of injections, surjections, and bijections between sets, functors between
categories carry analogous notions.

Definition A.11. Let F : C → D be a functor.
(1) F is called faithful (resp. full, fully faithful) if

FA,B : HomC (A,B)→ HomD(F (A), F (B))
is injective (resp. surjective, bijective) for all objects A,B in C .

(2) F is called essentially surjective on objects if for each B in D , there exist an object
A in C and an isomorphism F (A) ∼−→ B.

(3) F is called conservative if for any morphism f in C , F (f) being an isomorphism
implies that f is an isomorphism.

(4) F is called embedding if it is faithful and injective on objects, i.e., F is injective on
morphisms. In this case F identifies C with a subcategory of D .

(5) F is called isomorphism if it is fully faithful and bijective on objects.

Remark A.12. The properties in the previous definition are closed under composition of func-
tors. In other words, if two composable functors satisfy one of the previous properties, then so
does their composition.

13See the Cap operation IsLiftable.
14See the Cap operation Lift
15See the Cap operation IsColiftable.
16See the Cap operation Colift.
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Example A.13. (1) The embedding functor Ab ↪→ Grp from the category of Abelian
groups in the category of groups is fully faithful, but it is not essentially surjective on
objects.

(2) The forgetful functor Ring→ Ab from the category of rings to the category of Abelian
groups is faithful, but neither full nor essentially surjective on objects.

Lemma A.14. Let F : C → D be a faithful functor and f : A → B a morphism in C . If
F (f) is an epimorphism (resp. monomorphism), then f is also an epimorphism (resp. monomor-
phism).

Proof. Suppose that F (f) is an epimorphism and let g, h : B → C be a pair of morphisms
such that f • g = f •h. Then F (f) •F (g) = F (f) •F (h). Since F (f) is epimorphism, it follows
that F (g) = F (h). Since F is faithful, it follows that g = h. The case of monomorphism is
treated similarly. �

Lemma A.15. Let F : C → D be a fully faithful functor. Then F is conservative.

Proof. Let f : A → B be a morphism such that F (f) is an isomorphism. Since F is full,
there exists a morphism g : B → A with F (g) = F (f)−1. It follows that F (f • g) = F (idA) and
F (g • f) = F (idB). Since F is faithful, we have f • g = idA and g • f = idB. �

There are also “maps” between functors:
Definition A.16. Given categories C and D and functors F,G : C → D , a natural trans-

formation η : F → G consists of an algorithm that computes for a given object A in C a
morphism ηA : F (A) → G(A) so that for any morphism ϕ : A → B in C induces the following
commutative diagram:

F (A) G(A)

F (B) G(B)

	

ηA

ηB

F (ϕ) G(ϕ)

The morphisms ηA are called the components of η. A natural transformation η is called natural
isomorphism if all its components are isomorphisms. In this case, we depict η as η : F ∼= G.

In the following we define the equivalence of categories:
Definition A.17. Let C and D be two categories.
• An equivalence between C and D consists of the following data:

(1) A functor F : C → D ,
(2) A functor G : D → C ,
(3) A natural isomorphism η : idC

∼−→ F •G,
(4) A natural isomorphism ε : G •F

∼−→ idD .
In this case, we write F : C

∼−→ D , and we say that F and G are quasi-inverse.
• An isomorphism between C and D is an equivalence for which all components of η
and ε are identity morphisms.
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When two categories are equivalent, then all categorical information available in one of them
can be realized unchanged in the other category. In other words, they are categorically identical.
The only difference that could happen, is that they could contain different numbers of isomorphic
“copies” of the same objects.

Equivalences of categories can be characterized as follows:
Proposition A.18. Any equivalence of categories is fully faithful and essentially surjective

on objects. Assuming the axiom of choice, any functor with these properties defines an equivalence
of categories.

Proof. See [Rie16, Theorem 1.5.9]. �

Definition A.19. A category C is called skeletal if isomorphic objects in C are equal. The
skeleton category sk(C ) of a category C is the unique (up to a natural isomorphism) skeletal
category that is equivalent to C .

An adjunction consists of a pair of functors that are related to each other in a particular way.
They are ubiquitous in mathematics and often arise from constructions which enjoy universal
properties. For instance taking the free groups over sets or the free categories over quivers are
adjoint to the corresponding forgetful functors.

Definition A.20. An adjunction from a category C to a category D is a pair of functors
F : C � D : G

and, for all P in C and A in D , a bijection
ΦP,A : HomD(F (P ), A)→ HomC (P,G(A)),

which is natural in the sense that for every α : A→ B and f : Q→ P , the following diagram

HomD(F (P ), A) HomC (P,G(A))

HomD(F (Q), B) HomC (Q,G(B))

	

ΦP,A

ΦQ,B

F (f) • − •α f • − •G(α)

is commutative. The above adjunction is denoted by F a G; and F is called the left adjoint
of G, while G is called the right adjoint of F . The unit of the adjunction is the natural
transformation η : idC → F •G whose component at an object P in C is

ηP := ΦP,F (P )
(
idF (P )

)
: P → G(F (P ));

and the counit is the natural transformation ε : G •F → idD whose component at object A in D
is

εA := Φ−1
G(A),A

(
idG(A)

)
: F (G(A))→ A.

Even though the unit and counit of an adjunction are images of identity morphisms under
the adjunction bijection and its inverse, they completely determine the adjunction:

Lemma A.21. Let F a G be an adjunction, with unit η and counit ε. Then
ΦP,A(α) = ηP •G(α)
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for any morphism α : F (P )→ A, and
Φ−1
P,A(f) = F (f) • εA

for any morphism f : P → G(A).
The following Lemma highlights a very useful relation between adjoint pairs and the associated

unit and counit (see e.g., [Rie16, Lemma 4.5.13]).
Lemma A.22. Let F a G be an adjunction. Then
(1) F is fully faithful if and only if the unit η is a natural isomorphism.
(2) G is fully faithful if and only if the counit ε is a natural isomorphism.

Example A.23. Let F : Set → Grp be the functor assigning to each set Y the free group
generated by the elements of Y , and let G : Grp → Set be the forgetful functor, which assigns
to each group X its underlying set. Then F is left adjoint to G.

A.2. From (pre)Additive Categories to (pre)Abelian Categories
This section provides an constructive approach to the preadditive, linear, additive, pre-

Abelian and Abelian categories. In this section we formulate the existential quantifiers and
disjunctions in the classical definitions of these concepts in terms of explicit algorithms. We refer
to [Gut17] and [Pos17] for a more in-depth constructive treatment of these concepts.

A category is preadditive if it is enriched over the category Ab of Abelian groups.
Definition A.24. A category C is called preadditive or Ab-category if we have
(1) An algorithm that computes for a given pair of morphisms α, β : A→ B in C a morphism

α+ β : A→ B (addition).
(2) An algorithm that constructs for a given pair of objects A,B in C a morphism 0: A→ B

(zero morphism).
(3) An algorithm that constructs for a given morphism α : A→ B a morphism −α : A→ B

(additive inverse).
(4) For all objects A,B in C , the given algorithms turn HomC (A,B) into an Abelian group.
(5) The composition of morphisms is bilinear, i.e., we have

a. (α+ α′) •β = α •β + α′ •β,
b. α •(β + β′) = α •β + α •β′ and

for all α, α′ : A→ B, β, β′ : B → C.
A functor F : C → D between two preadditive categories is called additive if for any two

objects A,B in C the induced map

FA,B :
{

HomC (A,B) → HomD(F (A), F (B)),
α 7→ F (α)

defines a group homomorphism.
Example A.25. Every ring R can be interpreted as a preadditive category C (R) consisting

of only one object, say ∗, whose endomorphisms are the elements of R (cf. Section 2.1.2).
Linear categories are preadditive categories which are enriched over a category of modules.
Definition A.26. Let k be a commutative ring. A preadditive category C will be called

k-linear category if we have
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(1) An algorithm that constructs for a given element r ∈ k and morphism α : A → B a
morphism r · α : A → B (ring action on morphisms). Furthermore, the ring action
turns HomC (A,B) into a k-module.

(2) For all r ∈ k, α : A → B, β : B → C we have r · (α •β) = (r · α) •β = α •(r · β) (k-
bilinearity of the composition).

A functor F : C → D between two k-linear categories is called k-linear if for all pairs A,B
in C the induced map

FA,B :
{

HomC (A,B) → HomD(F (A), F (B)),
α 7→ F (α)

is a k-module homomorphism.
Example A.27. If the ring R is a k-algebra for some commutative ring k, then C (R) in

Example A.25 is k-linear.
Example A.28. For any commutative ring k and any preadditive category C , there exists

a k-linear category kC and an embedding C
ι−→ kC such that any additive functor from C to a

k-linear category factors uniquely along ι (cf. Section 2.2.1).
Definition A.29. The endomorphism k-algebra17 of a k-linear category C is the (possibly

nonunital) associative k-algebra

End C :=
⊕

A,B∈C

HomC (A,B)

whose multiplication is defined by the bilinear extension of the following product

α · β :=
{
α •β if Range(α) = Source(β)
0 otherwise.

Remark A.30. Any morphism α : A → B in C can be interpreted as an element in End C .
Precisely, we identify α with iA,B(α) where iA,B is the natural injection of HomC (A,B) in End C .

Remark A.31. If C has finitely many objects then End C is a unital algebra whose unit is given
by 1 := ⊕A∈C idA.

Example A.32. The path k-algebra of a quiver q is the endomorphism k-algebra of the
k-linear closure category kFq of the free category Fq defined by q (cf. Example 2.50).

Definition A.33. A k-linear category C is called Hom-finite if HomC (A,B) is finitely gen-
erated as a k-module for all objects A,B in C .

The notion of a locular k-linear category C allows us to visualize C in terms of quiver qC .
For the original treatment we refer to [GR92, §3], [ARS97, Ch. 9] or [Kel07].

Definition A.34. A k-linear category C is called locular if it is small, skeletal and the
endomorphism algebra of every object is local18. It can be shown that in a locular category the
set of non-invertible morphisms forms a two-sided ideal of morphisms in C , which we call the
radical ideal of C and denote by radC . More precisely, radC (A,B) = HomC (A,B) if A 6= B,

17The name is justified by the fact that if C has finitely many objects then End C ∼= EndC ⊕
⊕

A∈C A

where C⊕ is the additive closure of C (cf. Definition 2.24).
18A ring is called local if the non-invertible elements form an ideal.
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whereas radC (A,A) is the maximal ideal19 of the local algebra EndC A. For n > 1, we denote by
radnC the two-sided ideal of morphisms generated the compositions of n morphisms in radC . For
two objects A,B in C , the space of irreducible morphisms is defined by

irrC (A,B) := radC (A,B)/ rad2
C (A,B).

Definition A.35. Let k be a field and C a locular k-linear category. The generating quiver
qC of C consists of the following data:

• The vertices of qC are labeled by the objects of C .
• The number of arrows from a vertex vA to vB is given by dim irrC (A,B) where irrC (A,B)
is the k-vector space of irreducible morphisms from A to B.

Example A.36. Any strong exceptional sequence E in a k-linear triangulated category T is
locular (cf. Definition 6.14).

Example A.37. Let k be a field and C a k-linear category. Suppose C is multilocular,
i.e., each object is a finite direct sum of indecomposables20 with local endomorphism algebras.
Then the skeleton of the full subcategory of C generated by indecomposable objects is locu-
lar (cf. [GR92, §3]). Examples include the category of finite-dimensional modules over finite-
dimensional algebras (cf. [GR92]) and the category of coherent sheaves on a projective variety
X (cf. [Ser55]). Furthermore, their bounded derived categories are also multilocular.

An additive category is a preadditive category which admits all finitary biproducts.
Definition A.38. A preadditive category C is additive if it is equipped with an algorithm

which for a given finite (possibly empty) list of objects A1, . . . , An in C computes their direct
sum, i.e., an object

⊕n
i=1Ai in C together with pairs of morphisms

Aj
ιj−→

n⊕
i=1

Ai
πj−→ Aj

for each j ∈ {1, . . . , n}, such that the identities
a.
∑n
i=1 πi • ιi = id⊕n

i=1 Ai
,

b. ιi •πi = idAi and
c. ιi •πj = 0

hold for all i, j = 1, . . . , n and i 6= j.

Remark A.39. By [Bor94a, Proposition 1.3.4], a functor F : C → D between additive categories
is additive if and only if it preserves finite direct sums.

Example A.40. Let R be a ring. The full subcategory of R-mod generated by the free
R-modules of finite rank is additive (cf. Section 2.1.3).

Example A.41. For any preadditive category C , there exists an additive category C⊕ and
an embedding functor C ↪

ι−→ C⊕ such that any additive functor from C to some additive category
factors uniquely along ι (cf. Section 2.2.2).

19The maximal ideal of a local ring is formed by the non-invertible elements of the ring (see, e.g.,
[AM69]).

20An object in a linear category is called indecomposable if it is not a direct sum of two non-trivial
objects.
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The primary doctrine over which homological algebra can be developed is the doctrine of
Abelian categories. Mac Lane proposed the concept and the term in [Mac50], while Grothendieck
is credited with the modern axiomatization in [Gro57].

In our constructive setting we adopt the following definitions of pre-Abelian resp. Abelian
categories.

Definition A.42. An additive category C is called pre-Abelian if
(1) We have an algorithm that computes for a given morphism α : A→ B

(a) an object ker(α) in C (kernel object),
(b) a monomorphism ια : ker(α)→ A such that ια •α = 0 (kernel embedding) and
(c) for any morphism τ : T → A with τ •α = 0, the algorithm computes a lift for τ

along ια, i.e., a morphism λ : T → ker(α) such that λ • ια = τ (kernel lift)

� �

T

ker(α) A B,ια

τ∃1 λ

α

0

and furthermore, the morphism λ is uniquely determined (up to the equality =)
by this property.

(2) We have an algorithm that computes for a given morphism α : A→ B
(a) an object coker(α) in C (cokernel object),
(b) an epimorphism πα : B → coker(α) such that α •πα = 0 (cokernel projection)

and
(c) for any morphism τ : B → T with α • τ = 0, the algorithm computes a colift for τ

along πα, i.e., a morphism λ : coker(α)→ T such that πα •λ = τ (cokernel colift)

��

A B

T,

coker(α)α πα

τ ∃1 λ0

and furthermore, the morphism λ is uniquely determined (up to the equality =)
by this property.

The following proposition is an immediate consequence of the preceding definition.
Proposition A.43. Every morphism α : A → B in a pre-Abelian category has a canonical

decomposition
A

πια−−→→ coker(ια) α−→ ker(πα) ↪ιπα−−→ B

where πια is the cokernel projection of the kernel embedding ια of α and ιπα is the kernel embedding
of the cokernel projection πα of α.

Usually, an Abelian category is defined as a pre-Abelian category satisfying the following
equivalent conditions:
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• For every morphism ϕ : A → B, the canonical morphism α : coker(ια) → ker(πα) in
Proposition A.43 is an isomorphism.
• Every monomorphism is a kernel embedding of its cokernel projection and every epi-
morphism is a cokernel projection of its kernel embedding.

By unwrapping the second condition and using the same notations as in Definition A.42, we
get the following definition of Abelian categories.

Definition A.44. A pre-Abelian category C is called Abelian if the following holds:
(1) We have an algorithm21 which computes for a given monomorphism α : A ↪−→ B and

given morphism τ : T → B with τ •πα = 0 a lift of τ along α, i.e., a morphism λ : T → A
with λ •α = τ :

� �

T

A B coker(α)α

τ
∃1 λ

πα

0

The lift morphism λ is then uniquely determined because α is a monomorphism.
(2) We have an algorithm22 which computes for a given epimorphism α : A→→ B and given

morphism τ : A → T with ια • τ = 0 a colift of τ along α, i.e., a morphism λ : B → T
with α •λ = τ :

��

ker(α) A

T

B
ια α

τ ∃1 λ
0

The colift morphism λ is then uniquely determined because α is an epimorphism.
The following is an immediate consequence of the definition.
Corollary A.45. Let C be an Abelian category.
(1) A morphism τ : T → B is liftable along a monomorphism α : A ↪−→ B if and only if

τ •πα = 0 where πα : B →→ coker(α) is the cokernel projection of α.
(2) A morphism τ : A → T is coliftable along an epimorphism α : A →→ B if and only if

ια • τ = 0 where ια : ker(α) ↪−→ A is the kernel embedding of α.
Remark A.46. The preceding corollary enables us to enhance the derivation mechanism in Cap
with a derivation rule in Abelian categories for the operation IsLiftableAlongMonomorphism
from the two operations CokernelProjection and IsZeroForMorphisms. This kind of deriva-
tions is called doctrine-based derivation.

In the following we briefly sketch the construction of images in Abelian categories. Images and
their dual notion coimages are essential for many homological computations, e.g., the homology
objects of differential pairs and left and right derived functors.

21See the Cap operation LiftAlongMonomorphism.
22See the Cap operation ColiftAlongEpimorphism.
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Definition A.47. We say a category C has images if we have an algorithm that computes
for a given morphism α : A→ B in C

(1) an object im(α) in C (image object),
(2) a monomorphism κα : im(α) ↪−→ B (image embedding) and a morphism εα : A→ im(α)

(coastriction morphism) such that εα •κα = α.
(3) Given any triple (T, δ : A → T, τ : T → B) with τ a monomorphism and δ • τ = ϕ, the

algorithm computes a morphism u : im(α) → T such that εα •u = δ and u • τ = κα
(universal morphism from image object).

A B

im(α)

T

�

��

∃1u

α

εα κα

δ τ

The dual concept of images is called coimages.
The constructive proof of the following lemma can easily be turned to algorithms (cf. Exam-

ple A.1).
Lemma A.48. Let C be an abelian category. Then C has images and coimages.

Proof. Define im(α) := ker(πα) where πα : B →→ coker(α) is the cokernel projection of α,
and set κα := ιπα : im(α) ↪−→ B where ιπα is the kernel embedding of πα.

We set the coastriction morphism εα : A → im(α) to the composition of the first two com-
ponents of the canonical decomposition of α (cf. Proposition A.43), hence, ε is an epimorphism
(since C is Abelian). In fact, since α •πα = 0, εα is the kernel lift of α along ιπα : im(α) ↪−→ B.

Consider a triple (T, δ : A→ T, τ : T → B) with τ a monomorphism and δ • τ = α. We need to
compute a morphism u : im(α)→ T with εα •u = δ and u • τ = κα. The coastriction morphism εα
is an epimorphism, thus, a cokernel projection of its kernel embedding. Let ιεα be the kernel em-
bedding of εα. Then, ιεα • δ • τ = ιεα •α = ιεα • εα •κα = 0 •κα = 0, and since τ is a monomorphism,
ιεα • δ = 0 as well, i.e., there exists a unique colift morphism u : im(α)→ T of δ along εα, i.e., with
εα •u = δ (cf. Definition A.44). That is, εα •(κα − u • τ) = εα •κα−εα •u • τ = α−δ • τ = α−α = 0,
i.e., κα = u • τ because εα is an epimorphism. The existence of coimages follows by a similar
argument. �

Remark A.49. In fact, any category with universal epi-mono factorization has images and
coimages (cf. [Pos17, Lemma 1.36]).

Remark A.50. For any morphism α in an Abelian category the objects im(α) and coim(α) are
isomorphic.

The following definition can also be turned into an algorithm (cf. Example A.2).

Definition A.51. Let C be an Abelian category and let A α−→ B
β−→ C be a differential pair

of morphisms, i.e., they satisfy α •β = 0. Let A εα−→→ im(α) ↪κα−→ B be an image factorization of α
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and let ιβ : ker(β) ↪−→ B be a kernel embedding of β. Since α •β = 0 and εα is an epimorphism,
we get κα •β = 0, i.e., there exists a unique kernel lift, say ξα,β : im(α)→ ker(β), of κα along ιβ .
Since ξα,β • ιβ = κα and both ιβ and κα are monomorphisms, ξα,β is a monomorphism as well.
We call ξα,β the canonical embedding of im(α) in ker(β). The homology object or defect of
exactness of the differential pair (α, β) is defined by coker(ξα,β).

The following two examples are the primary examples of Abelian categories in this thesis.
Example A.52. Let R be a left coherent ring (cf. Definition 2.32). Then, the category

R-fpmod of finitely presented left R-modules is Abelian. We model this category on the computer
using Freyd categories (cf. Section 2.2.3).

Example A.53. Let k be a commutative ring and A a k-linear category. The category
[A ,C ] of k-linear functors from A into an Abelian category C is also Abelian (cf. Section 2.2.7).





APPENDIX B

Background from Triangulated Categories

In this chapter we give a compressed account of the triangulated categories and their prop-
erties. For a more extensive treatment we refer to the standard sources, for example [HJR10],
[Hap88], [May01], [GM03] and [Nee01].

Definition B.1. Let T be an additive category. A structure of a triangulated category
(T,4,Σ) on T is given by the following data:

(1) An additive autoequivalence Σ: T→ T, called the shift autoequivalence of T,
(2) A class 4 of exact triangles

A
α−→ B

ι−→ C
π−→ Σ(A),

subject to the following axioms:
TR 1. The following holds:

(a) Any morphism α : A → B can be completed by an object Cone(α) in T and two
morphisms ι(α) and π(α) to an exact triangle

A
α−→ B

ι(α)−−→ Cone(α) π(α)−−−→ Σ(A),
called the standard exact triangle associated to α. The object Cone(α) is called
the standard cone object associated to α.

(b) Any triangle of the form A
idA−−→ A −→ 0 −→ Σ(A) is exact.

(c) Any triangle isomorphic to an exact triangle is itself exact.
TR 2. For any exact triangle

A
α−→ B

ι−→ C
π−→ Σ(A),

the triple
B

ι−→ C
π−→ Σ(A) −Σ(α)−−−−→ Σ(B).

defines an exact triangle. We refer to this axiom as the rotation axiom.
TR 3. If the rows of the following diagram are exact triangles and u, v are morphisms with

α1 • v = u •α2, then there exists a morphism w (not necessarily unique) that renders the
following diagram

A1 B1 C1 Σ(A1)

A2 B2 C2 Σ(A2)

	 	 	u v ∃w Σ(u)

α1 ι1 π1

α2 ι2 π2

commutative.

219
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TR 4. Any triple of exact triangles
A

α−→ B
ι−→ U

π−→ Σ(A),

B
β−→ C

ξ−→ V
τ−→ Σ(B)

and
A

γ−→ C
ε−→ V

λ−→ Σ(A)
with γ = α •β can be completed via an exact triangle

U
u−→ V

v−→W
w−→ Σ(U)

into a commutative diagram:

A B U Σ(A)

C V Σ(A)

Σ(B)W W

Σ(B) Σ(U)

	

	

	 	

	

	

γ

α

β

ι π

ξ

τ

id

Σ(α)

τ

ε λ

id

Σ(ι)

u

v

w

Remark B.2. Since Σ: T→ T is an autoequivalence, there is an endofunctor Σ−1 : T→ T and
an adjunction Σ−1 a Σ whose unit η : idT ⇒ Σ−1 •Σ and counit ε : Σ •Σ−1 ⇒ idT are natural
isomorphisms.

Remark B.3. By the unit-counit triangle identities, we have for each object A in T the equalities
idΣ−1(A) =

(
Σ−1(ηA)

)
• εΣ−1(A) and idΣ(A) = ηΣ(A) •Σ(εA). In other words Σ−1(ηA) = ε−1

Σ−1(A) and
Σ(εA) = η−1

Σ(A).

Remark B.4. Every triangulated category is equivalent to a triangulated category whose shift
functor is an automorphism, i.e., Σ and Σ−1 are inverses to each other “on the nose”. For details
we refer the reader to [Ver96].

Lemma B.5. Let T be a triangulated category and let
A

α−→ B
ι−→ C

π−→ Σ(A)
be an exact triangle in T. Then the following triangles

A
−α−−→ B

−ι−→ C
π−→ Σ(A),

A
α−→ B

−ι−→ C
−π−−→ Σ(A)
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and
A
−α−−→ B

ι−→ C
−π−−→ Σ(A)

are also exact.

Proof. It is easy to prove that each of the given three triangles is isomorphic to
A

α−→ B
ι−→ C

π−→ Σ(A).
For instance, the isomorphism from

A
−α−−→ B

ι−→ C
−π−−→ Σ(A),

is given by the triple (idA,−idB,−idC). �

Lemma B.6. Let T be a triangulated category and let
A

α−→ B
ι−→ C

π−→ Σ(A)
be an exact triangle in T. Then, for any object U in T, the two sequences

HomT(U,A) − •α−−−→ HomT(U,B) − • ι−−→ HomT(U,C)
and

HomT(A,U) α •−←−−− HomT(B,U) ι •−←−− HomT(C,U)
are exact.

Proof. Since HomT(U,−) is an additive functor and α • ι = 0, it follows that im(− •α) ⊆
ker(− • ι). Let u be some morphism in ker(− • ι), i.e., u • ι = 0, then by TR 2 and TR 3, there
exists a morphism w : Σ(U)→ Σ(A) inducing a morphism of exact triangles:

U 0 Σ(U) Σ(U)

B C Σ(A) Σ(B)

	 	 	u ∃w Σ(u)

−idΣ(U)

ι π −Σ(α)

If we take χ : U → A to be the1 morphism which satisfies Σ(χ) = w, then u = χ •α and
u ∈ im(− •α). Hence, ker(− • ι) ⊆ im(− •α) and the first sequence is exact. The exactness of the
second sequence follows by a similar argument. �

Definition B.7. Let T be a triangulated category and A an Abelian category. An additive
functor H : T→ A is called homological functor if for every exact triangle

A
α−→ B

ι−→ C
π−→ Σ(A)

the sequence
H(A) H(α)−−−→ H(B) H(ι)−−−→ H(C)

is exact. Similarly, a contravariant functor L : T → A is called cohomological functor if for
every exact triangle

A
α−→ B

ι−→ C
π−→ Σ(A)

1It can be computed using the unit of the adjunction Σ−1 a Σ.
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the sequence
L(A) L(α)←−−− L(B) L(ι)←−− L(C)

is exact. In other words, a cohomological functor from T to A is a homological functor from T
to A op.

Example B.8. Let U be an object in a triangulated category T, then the functor HomT(U,−) : T→
Ab is a homological functor, while HomT(−, U) : T→ Ab is a cohomological functor. This is an
immediate consequence of Lemma B.6.

Example B.9. Let C be an Abelian category. Then its homotopy category K(C ) is trian-
gulated and the 0-cohomology functor H0 : K(C )→ C is cohomological.

Lemma B.10. Let T be a triangulated category and let A,B,C be objects in T. If
HomT(Σr(C), A) ∼= HomT(Σr(C), B) = 0

for all r > 0, then
HomT(Σr(C),Cocone(α)) = 0

for all r > 0 and morphisms α : A→ B.

Proof. Since Σ is an autoequivalence, the assumption HomT(Σr(C), A) ∼= HomT(Σr(C), B) =
0 for all r > 0 is equivalent to HomT(C,Σr(A)) ∼= HomT(C,Σr(B)) = 0 for all r < 0. Since
HomT(C,−) is a homological functor, we get the following long exact sequence

HomT(C,A) HomT(C,B) . . .

HomT

(
C,Σ−1(A)

)
HomT

(
C,Σ−1(B)

)
HomT

(
C,Σ−1(Cone(α))

)

HomT

(
C,Σ−2(A)

)
HomT

(
C,Σ−2(B)

)
HomT

(
C,Σ−2(Cone(α))

)

. . . HomT

(
C,Σ−3(B)

)
HomT

(
C,Σ−3(Cone(α))

)

− •α

− •
(
−Σ−1(α)

)

− •Σ−2(α)

− •
(
−Σ−3(α)

)

− • ι

− •
(
−Σ−1(ι)

)

− •Σ−2(ι)

− •
(
−Σ−3(ι)

)
− •
(
−Σ−1(π)

)

− •π

− •
(
−Σ1(π)

)

from which we find out that HomT(C,Σr(Cone(α))) = 0 for all r < −1, which holds if and
only if HomT(C,Σr(Cocone(α))) = 0 for all r < 0, which is equivalent to the desired assertion:
HomT(Σr(C),Cocone(α)) = 0 for all r > 0. �

Lemma B.11. If the morphisms u, v in TR 3 are isomorphisms, then so is w.
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Proof. By the TR 2, we can extend the morphism of exact triangles in TR 3 to the fol-
lowing commutative diagram:

A1 B1 C1 Σ(A1) Σ(B1)

A2 B2 C2 Σ(A2) Σ(B2)

u v ∃w Σ(u) Σ(v)

α1 ι1 π1 −Σ(α1)

α2 ι2 π2 −Σ(α2)

For an arbitrary object U in T, applying HomT(U,−) gives rise to a commutative diagram
whose rows are exact sequences and whose first and last two columns are isomorphisms. Hence, by
the 5-lemma, the morphism − •w : HomT(U,C1)→ HomT(U,C2) is also an isomorphism. Hence,
by Corollary 2.89, w is also an isomorphism. �

Remark B.12. By repeatedly applying TR 2 and the fact that Σ is conservative (see Lemma A.15),
we can prove that if two out of u, v and w are isomorphisms, then so is the third.

Lemma B.13. Let T be a triangulated category. A triangle
A

α−→ B
ι−→ C

π−→ Σ(A)
is exact if and only if

B
ι−→ C

π−→ Σ(A) −Σ(α)−−−−→ Σ(B)
is.

Proof. The direct implication follows from TR 2. To prove the converse, we need to
construct an exactness witness, i.e., an isomorphism ψ : C ∼−→ Cone(α) with ι •ψ = ι(α) and
ψ •π(α) = π.

Applying TR 2 multiple times to
A

α−→ B
ι−→ C

π−→ Σ(A)
yields the following two exact triangles:

Σ(A) −Σ(α)−−−−→ Σ(B) −Σ(ι)−−−→ Σ(C) −Σ(π)−−−−→ Σ2(A)
and

Σ(A) −Σ(α)−−−−→ Σ(B) −Σ(ι(α))−−−−−→ Σ(Cone(α)) −Σ(π(α))−−−−−−→ Σ2(A).
By TR 3 and Lemma B.11, there exists an isomorphism w : Σ(C) → Σ(Cone(α)) with

Σ(ι) •w = Σ(ι(α)) and w •Σ(π(α)) = Σ(π). The functor Σ is fully faithful, hence by Lemma A.15,
it is also conservative, i.e., there exists a (unique) isomorphism ψ : C → Cone(α) with Σ(ψ) = w.
Since Σ is faithful, we have ι •ψ = ι(α) and ψ •π(α) = π as desired. �

Lemma B.14. Let T be a triangulated category. A triangle
A

α−→ B
ι−→ C

π−→ Σ(A)
is exact if and only if its inverse rotation triangle

Σ−1(C)
(−Σ−1(π)) • εA−−−−−−−−−→ A

α−→ B
ι • ηC−−−→ Σ

(
Σ−1(C)

)
is.
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Proof. The assertion follows by Lemma B.13 and by the fact that the rotation of the triangle

Σ−1(C)
(−Σ−1(π)) • εA−−−−−−−−−→ A

α−→ B
ι • ηC−−−→ Σ

(
Σ−1(C)

)
is isomorphic to the triangle

A
α−→ B

ι−→ C
π−→ Σ(A)

via the following isomorphism of triangles2:

A B Σ
(
Σ−1(C)

)
Σ(A)

A B C Σ(A)

	 	 	idA idB ηC idΣ(A)

α ι • ηC −Σ
(
−Σ−1(π)

)
•Σ(εA)

α ι π

�

Corollary B.15. Let T be a triangulated category with shift automorphism Σ. Then a triangle
A

α−→ B
ι−→ C

π−→ Σ(A)
is exact if and only if its inverse rotation

Σ−1(C) −Σ−1(π)−−−−−→ A
α−→ B

ι−→ C

is also exact.
Corollary B.16. Let T be a triangulated category with shift automorphism Σ and let

A
α−→ B

ι−→ C
π−→ Σ(A)

be an exact triangle in T. Then, for any object U in T, the following long sequences

. . . HomT

(
U,Σ−1(B)

)
HomT

(
U,Σ−1(C)

)

HomT(U,A) HomT(U,B) HomT(U,C)

HomT(U,Σ(A)) HomT(U,Σ(B)) . . .

− •
(
−Σ−1(α)

)
− •
(
−Σ−1(ι)

)

− •α − • ι

− •(−Σ(α)) − •(−Σ(ι))

− •
(
−Σ−1(π)

)

− •π

2See Remark B.3



B. BACKGROUND FROM TRIANGULATED CATEGORIES 225

and
. . . HomT

(
Σ−1(B), U

)
HomT

(
Σ−1(C), U

)

HomT(A,U) HomT(B,U) HomT(C,U)

HomT(Σ(A), U) HomT(Σ(B), U) . . .

(
−Σ−1(α)

)
• −

(
−Σ−1(ι)

)
• −

α • − ι • −

(−Σ(α)) • − (−Σ(ι)) • −

(
−Σ−1(π)

)
• −

π • −

are exact.

Proof. By repeatedly applying the axiom TR 2 and Corollary B.15, we can extend the
exact triangle

A
α−→ B

ι−→ C
π−→ Σ(A)

into a so called helix, i.e., an infinite sequence of morphisms in T where each three consecutive
morphisms form an exact triangle. Henceforth, the assertions follow by applying the functors
HomT(U,−) resp. HomT(−, U) on the morphisms of the helix, and then by Lemma B.6. �

Notation B.17. For any integer i > 0, we denote by
(1) Σi the i-fold composition of the autoequivalence Σ,
(2) Σ−i the i-fold composition of the autoequivalence Σ−1 and
(3) Σ0 the identity functor idT.

Lemma B.18. Let T be a triangulated category with shift automorphism Σ and let
A

α−→ B
ι−→ C

π−→ Σ(A)
be an exact triangle in T. Then for all i ∈ Z, the triangle

Σi(A) Σi(α)−−−→ Σi(B) Σi(ι)−−−→ Σi(C) (−1)iΣi(π)−−−−−−−→ Σi+1(A)
is also exact.

Proof. By applying the the rotation Axiom TR 2 three times on the given exact triangle,
we get the exact triangle:

Σ(A) −Σ(α)−−−−→ Σ(B) −Σ(ι)−−−→ Σ(C) −Σ(π)−−−−→ Σ2(A).
Hence, by Lemma B.5 the triangle

Σ(A) Σ(α)−−−→ Σ(B) Σ(ι)−−→ Σ(C) −Σ(π)−−−−→ Σ2(A)
is also exact. Similarly, by applying Corollary B.15 three times, we get the exact triangle:

Σ−1(A) −Σ−1(α)−−−−−−→ Σ−1(B) −Σ−1(ι)−−−−−→ Σ−1(C) −Σ−1(π)−−−−−→ A,

i.e., the triangle
Σ−1(A) Σ−1(α)−−−−→ Σ−1(B) Σ−1(ι)−−−−→ Σ−1(C) −Σ−1(π)−−−−−→ A
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is also exact. Therefore, the assertion follows by a forward resp. backward induction on the
values of i ≥ 0 resp. i ≤ 0. �

Corollary B.19. Let T be a triangulated category. Then any morphism α : A→ B in T can
be extended, up to isomorphism3, to only one exact triangle.

Proof. Any exact triangle of the form
A

α−→ B
ι−→ C

π−→ Σ(A).
is, by Lemma B.11, isomorphic to the standard exact triangle

A
α−→ B

ι(α)−−→ Cone(α) π(α)−−−→ Σ(A)
associated to α, simply by setting u resp. v to idA resp. idB. �

Remark B.20. By Corollary B.19, exact triangles with equal domains define an equivalence
relation on the set of all exact triangles and each equivalence class can be represented by a
standard exact triangle.

Definition B.21. A witness of exactness of a triangle
A

α−→ B
ι−→ C

π−→ Σ(A)
is defined by an isomorphism λ : C ∼−→ Cone(α) which satisfies ι •λ = ι(α) and λ •π(α) = π.

Lemma B.22. Let T be a triangulated category. Then a morphism α : A → B in T is an
isomorphism if and only if Cone(α) is zero.

Proof. If α is an isomorphism, then the assertion follows by TR 1,TR 3 and Lemma B.11:

A B Cone(α) Σ(A)

B B 0 Σ(B)

	 	 	α ∼ idB ∼ ∃w ∼ Σ(α)

α ι(α) π(α)

idB

On the other hand, if Cone(α) is zero, then the triangle A α−→ B −→ 0 −→ Σ(A) is exact and
so is then its inverse rotation 0 −→ A

α−→ B −→ 0. Hence, by TR 1,TR 3 and Lemma B.11 there
exists an isomorphism of exact triangles

0 A B 0

0 A A 0

	 	 	∼ idA ∼ ∃w ∼

α

idA

�

Furthermore, we find in [LH09, Exercise 1.4.2.1], [Nee01, pp. 42-45] or [Hap88, Lemma
1.4] the following equivalent statements.

3Not necessarily unique.
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Lemma B.23. Let T be a triangulated category and α : A→ B a morphism in T and

A
α−→ B

ι(α)−−→ Cone(α) π(α)−−−→ Σ(A)
the standard exact triangle associated to α; then the following statements are equivalent:

(1) α is a monomorphism,
(2) ι(α) is an epimorphism,
(3) π(α) : Cone(α)→ Σ(A) is zero,
(4) there exist morphisms A s←− B t←− Cone(α) such that

α • s = idA, s •α+ ι(α) • t = idB, t • ι(α) = idCone(α),

i.e., B ∼= A⊕ Cone(α).
In other words, every monomorphism in a triangulated category is split and every epimor-

phism is also split.
Definition B.24. Let F : T1 → T2 be an additive functor between triangulated categories.

Then F is called exact if
(1) There exists a natural isomorphism µ : Σ1 •F ⇒ F •Σ2.
(2) If A α−→ B

ι−→ C
π−→ Σ1A is an exact triangle, then the triangle

F (A) F (α)−−−→ F (B) F (ι)−−→ F (C) F (π) •µA−−−−−−→ Σ2F (A)
is as well.

Remark B.25. Let T1,T2 be two triangulated categories. For any exact functor F : T1 → T2,
there is a natural isomorphism Σ−1

1 •F =⇒ F •Σ−1
2 . This is a direct consequence of Lemma 2.86

and the following isomorphisms for any object A in T1 and U in T2

HomT2

(
U,F (Σ−1

1 (A))
)
∼= HomT2

(
Σ2(U),Σ2(F (Σ−1

1 (A)))
)

∼= HomT2

(
Σ2(U), F (Σ1(Σ−1

1 (A)))
)

∼= HomT2(Σ2(U), F (A))
∼= HomT2

(
U,Σ−1

2 (F (A))
)
.

Definition B.26. Let T be a triangulated category. A full replete4 additive subcategory D
of T is called triangulated subcategory of T if

(1) D is closed under the functors Σ and Σ−1.
(2) For any exact triangle A α−→ B

ι−→ C
π−→ Σ(A) in T, if A and B are in D, then C is also

in D.
A triangulated subcategory D is called thick if for any direct sum A ⊕ B in D, both A and B
are also in D. In other words, D is closed under taking direct summands.

Remark B.27. Since Σ is an autoequivalence and the triangulated subcategory D is closed
under Σ and Σ−1, we can restrict Σ to an autoequivalence on D. A triangle in D will be declared
as exact if it is exact in T. In this way, D is a triangulated category and the inclusion functor
D ↪−→ T is exact.

4A subcategory D ⊆ C is called replete if for any object A in D and any isomorphism α : A ∼−→ B in
C , both B and α are also in D .
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Remark B.28. For any triangulated subcategory D ⊆ T, the rotation axiom TR 2 implies that
for any exact triangle A α−→ B

ι−→ C
π−→ Σ(A) in T, if two out of the objects A,B or C are in D,

then so is the third.

Example B.29. Let F : T1 → T2 be an exact functor. Then the full subcategory generated
by ker(F ) := {A ∈ T1|F (A) = 0} is a triangulated subcategory of T1.

Lemma B.30. Let F : T1 → T2 be an exact functor between triangulated categories. If F
admits a right adjoint G : T2 → T1, then G is also exact.

Proof. In the following we will only construct the natural isomorphism µ : Σ2 •G → G •Σ1
that turns G into an exact functor. For a complete proof we refer the reader to [Nee01, Lemma
5.3.6] or [Huy06, Proposition 1.41]. Let A be an object in T2. Since F is exact we can construct
a natural isomorphism ξ : HomT1(−, G(Σ2(A))) ⇒ HomT1(−,Σ1(G(A))), whose component at
an object U in T1 is given by the isomorphism ξU : HomT1(U,G(Σ2(A)))→ HomT1(U,Σ1(G(A)))
defined by the following equalities:

HomT1(U,G(Σ2(A))) ∼= HomT2(F (U),Σ2(A))
∼= HomT2

(
Σ−1

2 (F (U)), A
)

∼= HomT2

(
F (Σ−1

1 (U)), A
)

∼= HomT1

(
Σ−1

1 (U), G(A)
)

∼= HomT1(U,Σ1(G(A))).
By Lemma 2.86, the natural isomorphism ξ corresponds to the canonical isomorphism µA :=

ξG(Σ2(A))
(
idG(Σ2(A))

)
: G(Σ2(A))→ Σ1(G(A)). This defines the natural isomorphism µ : Σ2 •G⇒

G •Σ1, A 7→ µA. �



APPENDIX C

A Demo for Computing Extn(A,B) as Hom(A,Σn(B)) in
Db(Q[x, y]-fpmod)

Let Q be the field of rationals and R the polynomial ring Q[x, y]. The category R-fpmod
of finitely presented left R-modules can be modeled by the Freyd category A(R-rows) where
R-rows is the category of rows over R. Since R is computable and commutative, the cat-
egory A(R-rows) is Abelian with enough projectives and is equipped with an A(R-rows)-
homomorphism structure that is equivalent to the external Hom bifunctor (cf. Section 2.2.3).

The R-module Q is presented by the matrix ( xy ). In the following we construct Q as an object
in A(R-rows) and compute Ext1(Q,Q) using two approaches.

We start by loading the Julia package CapAndHomalg [CAP21a] and the GAP packages
FreydCategoriesForCAP [BP19a] and DerivedCategories [Sal21c]:
julia> using CapAndHomalg
CapAndHomalg v1.1.8
Imported OSCAR's components GAP and Singular_jll
Type: ?CapAndHomalg for more information
julia> LoadPackage( "FreydCategoriesForCAP" )
julia> LoadPackage( "DerivedCategories" )

Next, we construct the ring R and the categories R-rows and A(R-rows):
julia> Q = HomalgFieldOfRationalsInDefaultCAS( )
GAP: Q

julia> R = Q["x,y"]
GAP: Q[x,y]

julia> Rrows = CategoryOfRows( R )
GAP: Rows( Q[x,y] )

julia> InfoOfInstalledOperationsOfCategory( Rrows )
59 primitive operations were used to derive 238 operations for this category which
* IsEquippedWithHomomorphismStructure
* IsLinearCategoryOverCommutativeRing
* IsRigidSymmetricClosedMonoidalCategory
* IsClosedMonoidalCategory
* IsAdditiveCategory

julia> Rmod = FreydCategory( Rrows )
GAP: Freyd( Rows( Q[x,y] ) )

229
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julia> InfoOfInstalledOperationsOfCategory( Rmod )
57 primitive operations were used to derive 324 operations for this category which
* IsEquippedWithHomomorphismStructure
* IsLinearCategoryOverCommutativeRing
* IsSymmetricClosedMonoidalCategory
* IsClosedMonoidalCategory
* IsAbelianCategoryWithEnoughProjectives

julia> m = HomalgMatrix( "[ [ x ], [ y ] ]", 2, 1, R )
GAP: <A 2 x 1 matrix over an external ring>

julia> m = m / Rrows
GAP: <A morphism in Rows( Q[x,y] )>

julia> Q = m / Rmod
GAP: <An object in Freyd( Rows( Q[x,y] ) )>

julia> Show( Q )

(
R1×2

(
x
y

)
−−−−−→ R1×1)

A

Next, we create the categories Cb(A(R-rows)),Kb(A(R-rows)) and Db(A(R-rows)); then
interpret Q as an object in Db(A(R-rows)):
julia> C_R = ComplexCategoryByCochains( Rmod )
GAP: Cochain complexes( Freyd( Rows( Q[x,y] ) ) )

julia> K_R = HomotopyCategoryByCochains( Rmod )
GAP: Homotopy category( Freyd( Rows( Q[x,y] ) ) )

julia> D_R = DerivedCategoryByCochains( Rmod )
GAP: Derived category( Freyd( Rows( Q[x,y] ) ) )

julia> Q = Q / C_R / K_R / D_R
GAP: <An object in Derived category( Freyd( Rows( Q[x,y] ) ) ) with active lower bound

0 and active upper bound 0>

The first approach toward computing Extn(Q,Q) depends on computing it as the n’th derived
functor of the external Hom functor

HomA(R-rows)(−,Q) : A(R-rows)op → A(R-rows) ⊂ Ab
i.e., we apply HomA(R-rows)(−,Q) “degreewise” on a projective resolution of Q and then we
compute the n’th cohomology object. The second approach depends on Definition 3.52, i.e., on
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computing a generating set for the external Hom group
Extn(Q,Q) := HomDb(A(R-rows))(Q,Σn(Q)).

The first approach yields only a presentation matrix of Extn(Q,Q) as an R-finitely presented
module, while the second approach yields an explicit generating set for Extn(Q,Q) as a group of
morphisms in the bounded derived category.

In the following we perform the first approach:
julia> Q = HomalgMatrix( "[ [ x ], [ y ] ]", 2, 1, R ) / Rrows / Rmod
GAP: <An object in Freyd( Rows( Q[x,y] ) )>

julia> PQ = ProjectiveCochainResolution( Q, true )
GAP: <An object in Cochain complexes( Freyd( Rows( Q[x,y] ) ) ) with active lower bound

-2 and active upper bound 0>

julia> Show( PQ ) (
R1×0 ()0×1−−−→ R1×1)

A
↑(
−x
−y

)
|−1(

R1×0 ()0×2−−−→ R1×2)
A

↑(
y −x

)
|−2(

R1×0 ()0×1−−−→ R1×1)
A

julia> Hom_PQ_Q = CochainComplex(
[ HomStructure( DifferentialAt( PQ, -1 ), Q ),

HomStructure( DifferentialAt( PQ, -2 ), Q ) ],
0

)
GAP: <An object in Cochain complexes( Freyd( Rows( Q[x,y] ) ) ) with active lower bound

0 and active upper bound 2>

julia> Show( Hom_PQ_Q )
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(
R1×2

(
x
y

)
−−−−−→ R1×1)

A
↑(
y
−x

)
|1

(
R1×4


x ·
y ·
· x
· y


−−−−−−−−→ R1×2)

A
↑(

−x −y
)

|0

(
R1×2

(
x
y

)
−−−−−→ R1×1)

A

julia> ext1 = CohomologyAt( Hom_PQ_Q, 1 )
GAP: <An object in Freyd( Rows( Q[x,y] ) )>

julia> Show( ext1 )

(
R1×8



· y
y ·
· x
x ·
· x
· y
x ·
y ·


−−−−−−−−→ R1×2)

A

julia> ext1 = SimplifyObject( ext1, infinity )
GAP: <An object in Freyd( Rows( Q[x,y] ) )>

julia> Show( ext1 )

(
R1×4


· y
y ·
· x
x ·


−−−−−−−−→ R1×2)

A

This says that Ext1(Q,Q) is presented by the above matrix, i.e., it is generated by two elements
subject to 4 relations.
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In the following we perform the second approach:

Ext1(Q,Q) := HomDb(A(R-rows))

(
Q,Σ1(Q)

)
.

By Corollary 4.35, Db(A(R-rows)) can be equipped with an A(R-rows)-homomorphism
structure. The generators of Ext1(Q,Q) can be computed via the isomorphism

HomDb(A(R-rows))

(
Q,Σ1(Q)

) νQ,Σ1(Q)−−−−−→ HomA(R-rows)
(
1, H

(
Q,Σ1(Q)

))
.

by first computing a generating set for

HomA(R-rows)
(
1, H

(
Q,Σ1(Q)

))
;

and then computing their pre-images under the isomorphism νQ,Σ1(Q).
We start by computing the distinguished object 1 of the A(R-rows)-homomorphism structure

of Db(A(R-rows)):
julia> 1 = DistinguishedObjectOfHomomorphismStructure( D_R )
GAP: <A projective object in Freyd( Rows( Q[x,y] ) )>

julia> Show( 1 ) (
R1×0 ()0×1−−−→ R1×1)

A

I.e., the distinguished object 1 corresponds under the equivalence A(R-rows) ∼= R-fpmod to the
finitely presented row R-module R1×1.

Next, we compute H
(
Q,Σ1(Q)

)
in A(R-rows):

julia> H_Q_shiftQ = HomomorphismStructureOnObjects( Q, Shift( Q, 1 ) )
GAP: <An object in Freyd( Rows( Q[x,y] ) )>

julia> Show( H_Q_shiftQ )

(
R1×5


−y x 1
· x 1
x · ·
· −y ·

−y · 1


−−−−−−−−−−−−−→ R1×3)

A

HomA(R-rows)
(
1, H

(
Q,Σ1(Q)

))
is generated as an R-module by the following three mor-

phisms:

g1 :=
(
R1×0 ()0×1−−−−→ R1×1)

A

(
1 · ·

)
−−−−−−−−→

(
R1×5


−y x 1
· x 1
x · ·
· −y ·

−y · 1


−−−−−−−−−−−−−−−−→ R1×3)

A,
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g2 :=
(
R1×0 ()0×1−−−−→ R1×1)

A

(
· 1 ·

)
−−−−−−−−→

(
R1×5


−y x 1
· x 1
x · ·
· −y ·

−y · 1


−−−−−−−−−−−−−−−−→ R1×3)

A,

g3 :=
(
R1×0 ()0×1−−−−→ R1×1)

A

(
· · 1

)
−−−−−−−−→

(
R1×5


−y x 1
· x 1
x · ·
· −y ·

−y · 1


−−−−−−−−−−−−−−−−→ R1×3)

A.

That is, HomDb(A(R-rows))
(
Q,Σ1(Q)

)
is generated (over R) by ϕi := ν−1

Q,Σ1(Q)(gi) for i = 1, 2, 3.
julia> m1 = HomalgMatrix( "[ [ 1, 0, 0 ] ]", 1, 3, R ) / Rrows
GAP: <A morphism in Rows( Q[x,y] )>

julia> g1 = FreydCategoryMorphism( 1, m1, H_Q_shiftQ )
GAP: <A morphism in Freyd( Rows( Q[x,y] ) )>

julia> ϕ1 = InterpretMorphismFromDistinguishedObjectToHomomorphismStructureAsMorphism(
Q, Shift( Q, 1 ), g1 )

GAP: <A morphism in Derived category( Freyd( Rows( Q[x,y] ) ) )>

julia> Show( ϕ1 ) # morphisms in Db(A(R-rows)) are defined by roofs over Kb(A(R-rows))

(
R1×2

(
x
y

)
−−−−−→ R1×1)

A ←
(
−1

)
−

(
R1×0 ()0×1−−−→ R1×1)

A − ()1×0 →
(
R1×0 ()0×0−−−→ R1×0)

A
↑ ↑ ↑

()0×1

(
y
x

)
()1×0

|−1 |−1 |−1

(
R1×0 ()0×0−−−→ R1×0)

A ← ()2×0 −
(
R1×0 ()0×2−−−→ R1×2)

A −
(
−1
·

)
→

(
R1×2

(
x
y

)
−−−−−→ R1×1)

A

↑ ↑ ↑
()0×0

(
x −y

)
()0×1

|−2 |−2 |−2(
R1×0 ()0×0−−−→ R1×0)

A ← ()1×0 −
(
R1×0 ()0×1−−−→ R1×1)

A − ()1×0 →
(
R1×0 ()0×0−−−→ R1×0)

A

julia> m2 = HomalgMatrix( "[ [ 0, 1, 0 ] ]", 1, 3, R ) / Rrows
GAP: <A morphism in Rows( Q[x,y] )>

julia> g2 = FreydCategoryMorphism( 1, m2, H_Q_shiftQ )
GAP: <A morphism in Freyd( Rows( Q[x,y] ) )>

julia> ϕ2 = InterpretMorphismFromDistinguishedObjectToHomomorphismStructureAsMorphism(
Q, Shift( Q, 1 ), g2 )

GAP: <A morphism in Derived category( Freyd( Rows( Q[x,y] ) ) )>
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julia> Show( ϕ2 )

(
R1×2

(
x
y

)
−−−−−→ R1×1)

A ←
(
−1

)
−

(
R1×0 ()0×1−−−→ R1×1)

A − ()1×0 →
(
R1×0 ()0×0−−−→ R1×0)

A
↑ ↑ ↑

()0×1

(
y
x

)
()1×0

|−1 |−1 |−1

(
R1×0 ()0×0−−−→ R1×0)

A ← ()2×0 −
(
R1×0 ()0×2−−−→ R1×2)

A −
(
·
1

)
→

(
R1×2

(
x
y

)
−−−−−→ R1×1)

A

↑ ↑ ↑
()0×0

(
x −y

)
()0×1

|−2 |−2 |−2(
R1×0 ()0×0−−−→ R1×0)

A ← ()1×0 −
(
R1×0 ()0×1−−−→ R1×1)

A − ()1×0 →
(
R1×0 ()0×0−−−→ R1×0)

A

julia> m3 = HomalgMatrix( "[ [ 0, 0, 1 ] ]", 1, 3, R ) / Rrows
GAP: <A morphism in Rows( Q[x,y] )>

julia> g3 = FreydCategoryMorphism( 1, m3, H_Q_shiftQ )
GAP: <A morphism in Freyd( Rows( Q[x,y] ) )>

julia> ϕ3 = InterpretMorphismFromDistinguishedObjectToHomomorphismStructureAsMorphism(
Q, Shift( Q, 1 ), g3 )

GAP: <A morphism in Derived category( Freyd( Rows( Q[x,y] ) ) )>

julia> Show( ϕ3 )

(
R1×2

(
x
y

)
−−−−−→ R1×1)

A ←
(
−1

)
−

(
R1×0 ()0×1−−−→ R1×1)

A − ()1×0 →
(
R1×0 ()0×0−−−→ R1×0)

A
↑ ↑ ↑

()0×1

(
y
x

)
()1×0

|−1 |−1 |−1

(
R1×0 ()0×0−−−→ R1×0)

A ← ()2×0 −
(
R1×0 ()0×2−−−→ R1×2)

A −
(
·
·

)
→

(
R1×2

(
x
y

)
−−−−−→ R1×1)

A

↑ ↑ ↑
()0×0

(
x −y

)
()0×1

|−2 |−2 |−2(
R1×0 ()0×0−−−→ R1×0)

A ← ()1×0 −
(
R1×0 ()0×1−−−→ R1×1)

A − ()1×0 →
(
R1×0 ()0×0−−−→ R1×0)

A

We notice that ϕ3 := ν−1(g3) = 0, hence g3 should also be zero:
julia> IsZero( g_3 )
true
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Hence, Ext1(Q,Q) is generated (over R) by {ϕ1, ϕ2}. This could have been detected if we
had first simplified H

(
Q,Σ1(Q)

)
:

julia> sH_Q_shiftQ = SimplifyObject( H_Q_shiftQ, infinity )
<An object in Freyd( Rows( Q[x,y] ) )>

julia> Show( sH_Q_sigmaQ )

(
R1×4


y ·
x ·
· −y
· −x


−−−−−−−−−→ R1×2)

A

julia> f = SimplifyObject_IsoToInputObject( H_Q_shiftQ, infinity )
GAP: <A morphism in Freyd( Rows( Q[x,y] ) )>

julia> IsIsomorphism( f )
true

julia> Show( f )

(
R1×4

 y ·
x ·
· −y
· −x


−−−−−−−−−−−→ R1×2)

A

(
1 · ·
· 1 ·

)
−−−−−−−−−→

(
R1×5


−y x 1
· x 1
x · ·
· −y ·

−y · 1


−−−−−−−−−−−−−−−−→ R1×3)

A
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A Demo for the Stable Category of a Frobenius Category

Let E := Q[e0, e1, e2] be the Z-graded exterior algebra with deg ei = −1, i = 0, 1, 2. In the
following, we will equip the category E-fpgrmod of finitely presented graded E-modules with the
class of lifting objects introduced in Example 2.60; then construct its associated stable category.

We start by constructing the Z-graded exterior Q-algebra E:
gap> LoadPackage( "FreydCategoriesForCAP" );
true
gap> LoadPackage( "StableCategories" );
true
gap> Q := HomalgFieldOfRationalsInDefaultCAS( );
Q
gap> S := GradedRing( Q["x,y,z"] );
Q[x,y,z]
(weights: yet unset)
gap> SetWeightsOfIndeterminates( S, [ 1, 1, 1 ] );
gap> E := KoszulDualRing( S );
Q{e0,e1,e2}
(weights: [ -1, -1, -1 ])

Let E-grrows be the category of graded rows over E and A(E-grrows) its Freyd cat-
egory. Then E-fpgrmod ∼= A(E-grrows) (cf. Example 2.37). It follows from Remark 4.14
and Example 4.9 and Corollary 4.28 that E-grrows and A(E-grrows) are equipped with a
Q-mat-homomorphism structures.
gap> E_GRows := CategoryOfGradedRows( E );
Graded rows( Q{e0,e1,e2} (with weights [ -1, -1, -1 ]) )
gap> InfoOfInstalledOperationsOfCategory( E_GRows );
45 primitive operations were used to derive 161 operations for this category which
* IsEquippedWithHomomorphismStructure
* IsLinearCategoryOverCommutativeRing
* IsAdditiveCategory
gap> RangeCategoryOfHomomorphismStructure( E_GRows );
Category of matrices over Q
gap> E_fpgrmod := FreydCategory( E_GRows : FinalizeCategory := false );
Category of f.p. graded left modules over Q{e0,e1,e2} (with weights [ -1, -1, -1 ])
gap> InfoOfInstalledOperationsOfCategory( E_fpgrmod );
40 primitive operations were used to derive 112 operations for this category which
* IsEquippedWithHomomorphismStructure
* IsLinearCategoryOverCommutativeRing
* IsAbelianCategoryWithEnoughProjectives
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gap> RangeCategoryOfHomomorphismStructure( E_fpgrmod )
Category of matrices over Q

Next, we equip A(E-grrows) with the class of lifting objects introduced in Example 2.60.
In order to do so, we need to “add” the corresponding categorical “primitive methods”1 to
A(E-grrows) (cf. [Sal21e]).
gap> AddIsLiftingObject( E_fpgrmod,

{cat, obj} -> IsProjective( obj )
);

gap> AddLiftingObject( E_fpgrmod,
{cat, obj} -> SomeProjectiveObject( obj )

);

gap> AddMorphismFromLiftingObject( E_fpgrmod,
{cat, obj} -> EpimorphismFromSomeProjectiveObject( obj )

);

gap> AddSectionOfMorphismFromLiftingObject( E_fpgrmod,
{cat, obj} -> ProjectiveLift(

IdentityMorphism( obj ),
MorphismFromLiftingObject( obj )

)
);

gap> AddLiftingMorphismWithGivenLiftingObjects( E_fpgrmod,
function( cat, L_S, alpha, L_R )

local S, R, ell_S, ell_R;
S := Source( alpha );
R := Range( alpha );
ell_S := MorphismFromLiftingObject( S );
ell_R := MorphismFromLiftingObject( R );
return ProjectiveLift( PreCompose( ell_S, alpha ), ell_R );

end
);

gap> Finalize( E_fpgrmod );
gap> InfoOfInstalledOperationsOfCategory( E_fpgrmod );
44 primitive operations were used to derive 283 operations for this category which
* IsEquippedWithHomomorphismStructure
* IsLinearCategoryOverCommutativeRing
* IsAbelianCategoryWithEnoughInjectives
* IsAbelianCategoryWithEnoughProjectives

1For the documentation of primitive methods we refer to [GSP22].
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Since A(E-grrows) is equipped with Q-mat-homomorphism structure, it has decidable linear
systems (cf. Theorem 4.17). In particular, it has decidable lifts. Hence, we can derive an algorithm
to decide whether a morphism ϕ : M → N lifts along `N : LN → N . That is, the associated stable
category has decidable equality of morphisms (cf. Remark 2.56).
gap> CanCompute( E_fpgrmod, "IsLiftable" );
true
gap> CanCompute( E_fpgrmod, "IsLiftableAlongMorphismFromLiftingObject" );
true
gap> stable_E_fpgrmod := StableCategoryByClassOfLiftingObjects( E_fpgrmod );
Stable category( Category of f.p. graded left modules over Q{e0,e1,e2} (with weights [

-1, -1, -1 ]) ) defined by a class of lifting objects
gap> InfoOfInstalledOperationsOfCategory( stable_E_fpgrmod );
40 primitive operations were used to derive 121 operations for this category which
* IsEquippedWithHomomorphismStructure
* IsLinearCategoryOverCommutativeRing
* IsAdditiveCategory
gap> RangeCategoryOfHomomorphismStructure( stable_E_fpgrmod )
Category of matrices over Q

Consider the following objects

M :=
(
E(1)

(
2e0 − 4e1 3e0e1 5e0e1

)
−−−−−−−−−−−−−−−−−−−−−−→ E(0) ⊕ E(−1)⊕2)

A
and

N :=
(
E(0)⊕3

 −e0 −2e0 −3e0
−3e0 e0 + 2e1 2e0 + 2e1

4e0 + 6e2 −3e0 + 3e1 e2


−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ E(−1)⊕3)

A
in A(E-grrows). In the following we construct the morphism

ϕ : M

 1
3e0 · ·
1 · ·
1 · ·


−−−−−−−−−−−→ N

in A(E-grrows) and check whether [ϕ] = 0.
gap> sM := GradedRow( [ [ [ 1 ], 1 ] ], E );
<A graded row of rank 1>
gap> rM := GradedRow( [ [ [ 0 ], 1 ], [ [ -1 ], 2 ] ], E );
<A graded row of rank 3>
gap> m := HomalgMatrix( "[ [ 2*e0-4*e1, 3*e0*e1, 5*e0*e1 ] ]", 1, 3, E );
<A 1 x 3 matrix over a graded ring>
gap> m := GradedRowOrColumnMorphism( sM, m, rM );
<A morphism in Category of graded rows over Q{e0,e1,e2} (with weights [ -1, -1, -1 ])>
gap> M := m / E_fpgrmod;
<An object in Category of f.p. graded left modules over Q{e0,e1,e2} (with weights [ -1,

-1, -1 ])>
gap> sN := GradedRow( [ [ [ 0 ], 3 ] ], E );
<A graded row of rank 3>
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gap> rN := GradedRow( [ [ [ -1 ], 3 ] ], E );
<A graded row of rank 3>
gap> n := HomalgMatrix( "[ [ -e0, -2*e0, -3*e0 ], \

[ -3*e0, e0+2*e1, 2*e0+2*e1 ], \
[ 4*e0+6*e2, -3*e0+3*e1, e2 ] ]", 3, 3, E );

<A 3 x 3 matrix over a graded ring>
gap> n := GradedRowOrColumnMorphism( sN, n, rN );
<A morphism in Category of graded rows over Q{e0,e1,e2} (with weights [ -1, -1, -1 ])>
gap> N := n / E_fpgrmod;
<An object in Category of f.p. graded left modules over Q{e0,e1,e2} (with weights [ -1,

-1, -1 ])>
gap> IsWellDefined( M ) and IsWellDefined( N );
true
gap> phi := HomalgMatrix( "[ [ 1/3*e0, 0, 0 ], \

[ 1, 0, 0 ], \
[ 1, 0, 0 ] ]", 3, 3, E );

<A 3 x 3 matrix over a graded ring>
gap> phi := GradedRowOrColumnMorphism( rM, phi, rN );
<A morphism in Category of graded rows over Q{e0,e1,e2} (with weights [ -1, -1, -1 ])>
gap> phi := FreydCategoryMorphism( M, phi, N );
<A morphism in Category of f.p. graded left modules over Q{e0,e1,e2} (with weights [

-1, -1, -1 ])>
gap> IsWellDefined( phi );
true
gap> IsZeroForMorphisms( phi );
false
gap> P := ProjectionFunctor( stable_E_fpgrmod );
Canonical projection onto stable category
gap> Display( P );
Canonical projection onto stable category:
Category of f.p. graded left modules over Q{e0,e1,e2} (with weights [ -1, -1, -1 ])

|
V

Stable category( Category of f.p. graded left modules over Q{e0,e1,e2} (with weights [
-1, -1, -1 ]) )

gap> P_phi := P( phi );
<A morphism in Stable category( Category of f.p. graded left modules over Q{e0,e1,e2} (

with weights [ -1, -1, -1 ]) ) defined by IsLiftableThroughLiftingObject>
gap> IsZeroForMorphisms( P_phi );
true

Since [ϕ] = 0, there exists a lift morphism E : M → LN of ϕ along `N : LN → N .
gap> L_N := LiftingObject( N );
<A projective object in Category of f.p. graded left modules over Q{e0,e1,e2} (with

weights [ -1, -1, -1 ])>
gap> Show( L_N ); (

0 ()0×3−−−→ E(−1)⊕3)
A
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gap> ell_N := MorphismFromLiftingObject( N );
<A morphism in Category of f.p. graded left modules over Q{e0,e1,e2} (with weights [

-1, -1, -1 ])>
gap> Show( ell_N );

(
0 ()0×3−−−−→ E(−1)⊕3)

A

 1 · ·
· 1 ·
· · 1


−−−−−−−−−−→

(
E(0)⊕3

(
−e0 −2e0 −3e0
−3e0 e0 + 2e1 2e0 + 2e1

4e0 + 6e2 −3e0 + 3e1 e2

)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ E(−1)⊕3)

A

gap> lambda := WitnessForBeingLiftableAlongMorphismFromLiftingObject( phi );
<A morphism in Category of f.p. graded left modules over Q{e0,e1,e2} (with weights [

-1, -1, -1 ])>
gap> Show( lambda );

(
E(1) ( 2e0 − 4e1 3e0e1 5e0e1 )

−−−−−−−−−−−−−−−−−−−−−−−−→ E(0) ⊕ E(−1)⊕2)
A

 −2e0 − 7
12e0 + 7

6e1 − 7
12e0 + 7

6e1
1 · ·
1 · ·


−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

(
0 ()0×3−−−−→ E(−1)⊕3)

A

gap> IsCongruentForMorphisms( PreCompose( lambda, ell_N ), phi );
true

Using Remark 4.12 we can compute bases of the Q-vector spaces HomA(E-grrows)(M,N) and
HomA(E-grrows)/L(P (M), P (N)):
gap> HomomorphismStructureOnObjects( M, N );
<A vector space object over Q of dimension 11>
gap> Hom_MN := BasisOfExternalHom( M, N );;
gap> Length( Hom_MN );
11

The morphism-datum matrices (cf. Definition 2.28) of the above 11 morphisms are given by:

{

 e0 · ·
· · ·
· · ·

 ,
 e1 · ·
· · ·
· · ·

 ,
 − 1

12e0 · −1
4e0

· · ·
· · ·

 ,
 −2e2

11
3 e0 4e0 − 1

3e2
· · ·
· · ·

 ,
 −210e2 11e2 ·

· · ·
· · ·

 ,
 · · ·1 · ·
· · ·

 ,
 · · ·· 1 ·
· · ·

 ,
 · · ·· · 1
· · ·

 ,
 · · ·· · ·

1 · ·

 ,
 · · ·· · ·
· 1 ·

 ,
 · · ·· · ·
· · 1

}.
gap> PM := P( M );;
gap> PN := P( N );;
gap> HomomorphismStructureOnObjects( PM, PN );
<A vector space object over Q of dimension 2>
gap> Hom_PM_PN := BasisOfExternalHom( PM, PN );;
gap> Length( Hom_PM_PN );
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2

The morphism-datum matrices of the above two morphisms are given by:

{

 −210e2 11e2 ·
· · ·
· · ·

 ,
 · · ·· · ·
· · 1

}.
The category A(E-grrows) is Abelian with enough projectives and injectives and since E is

a Frobenius algebra, the category A(E-grrows) is Frobenius (cf. Example 5.37).
Next, we compute the natural isomorphism ν(M) : M ∼−→M∗∗.

gap> nu_M := IsomorphismOntoDoubleDualOfFpModuleByFreyd( M );
<A morphism in Category of f.p. graded left modules over Q{e0,e1,e2} (with weights [

-1, -1, -1 ])>
gap> Show( nu_M );

(
R(1) ( 2e0 − 4e1 3e0e1 5e0e1 )

−−−−−−−−−−−−−−−−−−−−−−−−→ R(0) ⊕R(−1)⊕2)
A

 5e1 · 5
· 5 ·
−2 −3 ·


−−−−−−−−−−−−−→

(
R(1) ( · · e0 − 2e1 )

−−−−−−−−−−−−−−−−→ R(−1)⊕2 ⊕R(0)
)
A

In the following, we compute a monomorphism qM from M into some injective object QM .
gap> q_M := MonomorphismIntoSomeInjectiveObject( M );
<A morphism in Category of f.p. graded left modules over Q{e0,e1,e2} (with weights [

-1, -1, -1 ])>
gap> IsMonomorphism( q_M );
true
gap> IsInjective( Range( q_M ) );
true
gap> Show( q_M );

(
R(1) ( 2e0 − 4e1 3e0e1 5e0e1 )

−−−−−−−−−−−−−−−−−−−−−−−−→ R(0) ⊕R(−1)⊕2)
A

 · 5e1 5e0
5 · ·
−3 −2 −4


−−−−−−−−−−−−−−−→

(
0 ()0×3−−−−→ R(−1)⊕3)

A

Since [ϕ] = 0, there exists a colift morphism of ϕ along qM :
gap> lambda := Colift( q_M, phi );
<A morphism in Category of f.p. graded left modules over Q{e0,e1,e2} (with weights [

-1, -1, -1 ])>
gap> Show( lambda );

(
0 ()0×3−−−−→ R(−1)⊕3)

A


1
5 · ·
· 7

30
7
30

−2
5 −

7
60 −

7
60


−−−−−−−−−−−−−→

(
R(0)⊕3

 −e0 −2e0 −3e0
−3e0 e0 + 2e1 2e0 + 2e1

4e0 + 6e2 −3e0 + 3e1 e2


−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ R(−1)⊕3)

A
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gap> IsCongruentForMorphisms( PreCompose( q_M, lambda ), phi );
true





APPENDIX E

A Demo for the Happel Theorem

Let k be a field, q be a finite right quiver. In Section 2.2.5 we defined the free category Fq, its
linear closure kFq and the k-linear finitely presented category A := kFq/〈ρ〉 defined by q subject
to a set of relations ρ ⊆ kFq.

The category of k-linear functors Homk(A, k-mat) is denoted1 by mod-A and is called the
category of A-modules2. That is

(1) an object F in mod-A is a functor F : A → k-vec and its data structure is a pair of
lists. Namely, a list of vector spaces (represents the images of the objects of A under
F ) and a list of k-linear maps (represents the images of the generating morphisms of A
under F );

(2) a morphism ψ : F → G is a natural transformation and its data structure is a list of
morphisms (represents the images of the objects of A under ψ).

In this appendix we use the Julia package CapAndHomalg [CAP21a] to demonstrate the
following computations:

(1) Create a quiver q, the free category Fq, the k-linear closure kFq and the k-linear finitely
presented category defined by q subject to an admissible set of relations ρ ⊂ kFq.

(2) Construct the Abelian category mod-A of A-modules.
(3) Construct the Yoneda embedding Y : Aop ↪→ mod-A and the Yoneda equivalence Y :

Aop,⊕ ∼−→ proj-A and use it to compute the isomorphism classes of the indecomposable
projective objects in mod-A (cf. Corollary 2.90).

(4) Construct the categories Cb(mod-A), Kb(mod-A) and Db(mod-A) and use the Yoneda
equivalence to construct equivalences

Kb
(
Aop,⊕) ' Kb(proj-A) ' Db(mod-A).

(5) Create an object C in Kb(Aop,⊕) and compute its image in Db(mod-A).
(6) Use C to construct a complete strong exceptional sequence E = (E1, E2, E3, E4) in

mod-A where TE =
⊕4

1Ei is a generalized tilting object.
(7) Compute the quiver qE and the abstraction k-algebroid AE of E .
(8) Compute the isomorphism E ' AE and the equivalences

Kb
(
E ⊕
)
' Kb

(
A⊕E

)
' Kb(AE -proj) ' Db(AE ).

1Another widely used notation for mod-A is repsk(q, ρ) which stands for the ρ-bounded finite-
dimensional quiver k-representations of q.

2The notation is justified by the equivalence mod-A ' fdmod-A where A is the quotient k-algebra of
the path algebra kq subject to 〈ρ〉 (cf. Theorem 2.70) and fdmod-A is the category of finite-dimensional
right A-modules.
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where AE -proj is the full subcategory generated by projective objects of AE -mod and
Db(AE ) := Db(AE -mod).

(9) Construct the adjoint functors

−⊗ TE : AE -mod→mod-A : Hom(TE ,−)
(10) Construct the adjoint derived equivalences

−⊗L TE : Db(AE ) ∼−→ Db(mod-A) : RHom(TE ,−)
and use it to compute an E -replacement of an object Db(mod-A) (cf. Corollary 6.7).

Kb(E ⊕) Kb
(
A⊕E

)

Kb(inj-A) Kb(mod-A) Kb(AE ) Kb(AE -proj)

Db(mod-A) Db(AE )

Kb(proj-A)

Kb(Aop,⊕)

absι
ι·Linj

Y
Y

rel

ι
L

Linj

Hom(TE ,−)

Lproj

L
Lproj

−⊗TE ι

D

U

RHom(TE ,−)
U

−⊗LTE
U

ι·L

Y

Y

Y • ι •L

The Julia package CapAndHomalg mentioned above provides an interface to various GAP
packages most of which are based on

• homalg project [hom22],
• Cap project [GSP22] and
• HigherHomologicalAlgebra GAP meta-package [Sal21a].

The GAP package QPA [Qt21] provides the data structure of quivers and their associated
algebras and representations. In particular, it can be used to check equality of morphisms in A
via performing non-commutative Gröbner bases computations.

We start by loading CapAndHomalg and the GAP package DerivedCategories [Sal21c]:
julia> using CapAndHomalg
CapAndHomalg v1.1.8
Imported OSCAR's components GAP and Singular_jll
Type: ?CapAndHomalg for more information
julia> LoadPackage( "DerivedCategories" )

(1) Create a quiver q, the free category Fq, the k-linear closure kFq and a
k-linear finitely presented category defined by q subject to an admissible set

of relations ρ ⊂ kFq.
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Let q be the right quiver:
v2

v1 v4

v3

ba

c d

and let A := kFq/〈ρ〉 be the k-linear finitely presented category defined by q subject to the set
of relations ρ = {ab− cd}. The set ρ is admissible because q is acyclic and every relation in ρ is
a linear combination of paths of length at least 2.

We start by creating the quiver q:
julia> q = RightQuiver( "q(v1,v2,v3,v4)[a:v1->v2,b:v2->v4,c:v1->v3,d:v3->v4]" )
GAP: q(v1,v2,v3,v4)[a:v1->v2,b:v2->v4,c:v1->v3,d:v3->v4]

Next, we assign LATEX strings to the vertices and arrows of q and qop:
julia> SetLabelsAsLaTeXStrings( q,

[ "v_1", "v_2", "v_3", "v_4" ],
[ "a", "b", "c", "d" ]

);
julia> q_op = OppositeQuiver( q )
GAP: q_op(v1,v2,v3,v4)[a:v2->v1,b:v4->v2,c:v3->v1,d:v4->v3]
julia> SetLabelsAsLaTeXStrings( q_op,

[ "v_1", "v_2", "v_3", "v_4" ],
[ "a", "b", "c", "d" ]

);

julia> F_q = FreeCategory( q )
GAP: Category freely generated by the right quiver q(v1,v2,v3,v4)[a:v1->v2,b:v2->v4,c:

v1->v3,d:v3->v4]

julia> Q = HomalgFieldOfRationals( )
GAP: Q
julia> k = Q
GAP: Q

julia> kF_q = k[ F_q ]
GAP: Algebroid( Q * q )

julia> ρ = [ PreCompose( kF_q."a", kF_q."b" ) - PreCompose( kF_q."c", kF_q."d" ) ]
1-element Array{GapObj,1}:
GAP: (v1)-[-1*(c*d) + 1*(a*b)]->(v4)

julia> A = kF_q / ρ
GAP: Algebroid( (Q * q) / [ -1*(c*d) + 1*(a*b) ] )

julia> InfoOfInstalledOperationsOfCategory( A )
23 primitive operations were used to derive 63 operations for this category which
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* IsEquippedWithHomomorphismStructure
* IsLinearCategoryOverCommutativeRing

We can construct the objects of A by using their labels as vertices in q:
julia> v1 = A."v1"
GAP: <(v1)>
julia> v2 = A."v2"
GAP: <(v2)>
julia> v3 = A."v3"
GAP: <(v3)>
julia> v4 = A."v4"
GAP: <(v4)>

The list of all objects of A:
julia> SetOfObjects( A )
GAP: [ <(v1)>, <(v2)>, <(v3)>, <(v4)> ]

The category A is equipped with a homomorphism structure over k-mat (cp. Example 4.13):
julia> RangeCategoryOfHomomorphismStructure( A )
GAP: Category of matrices over Q
julia> HomomorphismStructureOnObjects( v1, v4 )
GAP: <A vector space object over Q of dimension 1>

So, HomA(v1, v4) is a 1 dimensional k-vector space. Its basis is given by:
julia> B_v1_v4 = BasisOfExternalHom( v1, v4 )
GAP: [ (v1)-[{ 1*(a*b) }]->(v4) ]

Morphisms can also be created by their labels as arrows in q:
julia> b = A."b"
GAP: (v2)-[{ 1*(b) }]->(v4)
julia> Show( b )

v2 − (b)→ v4

The list of all generating morphisms3 of A:
julia> SetOfGeneratingMorphisms( A )
GAP: [ (v1)-[{ 1*(a) }]->(v2), (v2)-[{ 1*(b) }]->(v4), (v1)-[{ 1*(c) }]->(v3), (v3)-[{

1*(d) }]->(v4) ]

3I.e., the morphisms that are represented by the arrows of q.
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(2) Construct the category mod-A

julia> k_vec = MatrixCategory( k )
GAP: Category of matrices over Q

The category mod-A can be constructed by using the GAP package FunctorCategories
[BS21a]:
julia> mod_A = Hom( A, k_vec )
GAP: The category of functors: Algebroid( (Q * q) / [ -1*(c*d) + 1*(a*b) ] ) ->

Category of matrices over Q
julia> InfoOfInstalledOperationsOfCategory( mod_A )
120 primitive operations were used to derive 312 operations for this category which
* IsEquippedWithHomomorphismStructure
* IsLinearCategoryOverCommutativeRing
* IsAbelianCategoryWithEnoughInjectives
* IsAbelianCategoryWithEnoughProjectives

Let us create the following morphism ψ : F → G:

F :=

k2

k4

k1

k2

G :=

k4

k1

k2

0

ψ

( · 1 · ·
· · · · )

( · ·
1 ·
· 1
· ·

)

( ·
1
·
·

)
( · 1
· · )

( · 1 )

( · 1 · · )

( 1 · )

()4×0

()2×0

( ·
1
·
·

)
( 1 · )

()2×0

As mentioned above, the data structure of an object in mod-A is a pair of lists: list of
k-vectors spaces and a list of k-linear maps:
julia> Fv1 = 4 / k_vec;
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julia> Fv2 = 2 / k_vec;
julia> Fv3 = 1 / k_vec;
julia> Fv4 = 2 / k_vec
GAP: <A vector space object over Q of dimension 2>
julia> Fa = HomalgMatrix(

"[ [ 0, 0 ], [ 1, 0 ], [ 0, 1 ], [ 0, 0 ] ]", 4, 2, k) / k_vec;
julia> Fb = HomalgMatrix( "[ [ 0, 1 ], [ 0, 0 ] ]", 2, 2, k ) / k_vec;
julia> Fc = HomalgMatrix( "[ [ 0 ], [ 1 ], [ 0 ], [ 0 ] ]", 4, 1, k ) / k_vec;
julia> Fd = HomalgMatrix( "[ [ 0, 1 ] ]", 1, 2, k ) / k_vec
GAP: <A morphism in Category of matrices over Q>
julia> F = AsObjectInFunctorCategory( A, [ Fv1, Fv2, Fv3, Fv4 ], [ Fa, Fb, Fc, Fd ] )
GAP: <(v1)->4, (v2)->2, (v3)->1, (v4)->2; (a)->4x2, (b)->2x2, (c)->4x1, (d)->1x2>
julia> Show( F )

v1 7→ k1×4

v2 7→ k1×2

v3 7→ k1×1

v4 7→ k1×2

a 7→


· ·
1 ·
· 1
· ·



b 7→
(
· 1
· ·

)

c 7→


·
1
·
·


d 7→

(
· 1

)
julia> IsWellDefined( F )
true

The object F is a functor, so we can apply it to morphisms of A:
julia> m = PreCompose( A."a", A."b" )
GAP: (v1)-[{ 1*(a*b) }]->(v4)
julia> Show( m )

v1 − (ab)→ v4

julia> F_m = F( m )
GAP: <A morphism in Category of matrices over Q>
julia> Show( F_m )
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k1×4


· ·
· 1
· ·
· ·


−−−−−−−→ k1×2

julia> Gv1 = 1 / k_vec;
julia> Gv2 = 4 / k_vec;
julia> Gv3 = 2 / k_vec;
julia> Gv4 = 0 / k_vec
GAP: <A vector space object over Q of dimension 0>
julia> Ga = HomalgMatrix( "[ [ 0, 1, 0, 0 ] ]", 1, 4, k ) / k_vec;
julia> Gb = HomalgZeroMatrix( 4, 0, k ) / k_vec;
julia> Gc = HomalgMatrix( "[ [ 1, 0 ] ]", 1, 2, k ) / k_vec;
julia> Gd = HomalgZeroMatrix( 2, 0, k ) / k_vec
GAP: <A morphism in Category of matrices over Q>
julia> G = AsObjectInFunctorCategory( A, [ Gv1, Gv2, Gv3, Gv4 ], [ Ga, Gb, Gc, Gd ] )
GAP: <(v1)->1, (v2)->4, (v3)->2, (v4)->0; (a)->1x4, (b)->4x0, (c)->1x2, (d)->2x0>
julia> Show( G )

v1 7→ k1×1

v2 7→ k1×4

v3 7→ k1×2

v4 7→ k1×0

a 7→
(
· 1 · ·

)
b 7→ ()4×0

c 7→
(

1 ·
)

d 7→ ()2×0

The data structure of a morphism in mod-A is a list of k-linear maps:
julia> ψ_v1 = HomalgMatrix( "[ [ 0 ], [ 1 ], [ 0 ], [ 0 ] ]", 4, 1, k ) / k_vec;
julia> ψ_v2 = HomalgMatrix( "[ [ 0, 1, 0, 0 ], [ 0, 0, 0, 0 ] ]", 2, 4, k ) / k_vec;
julia> ψ_v3 = HomalgMatrix( "[ [ 1, 0 ] ]", 1, 2, k ) / k_vec;
julia> ψ_v4 = HomalgZeroMatrix( 2, 0, k ) / k_vec
GAP: <A morphism in Category of matrices over Q>
julia> ψ = AsMorphismInFunctorCategory(

F,
[ ψ_v1, ψ_v2, ψ_v3, ψ_v4 ],
G

)
GAP: <(v1)->4x1, (v2)->2x4, (v3)->1x2, (v4)->2x0>
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julia> Show( ψ )

v1 7→


·
1
·
·



v2 7→
(
· 1 · ·
· · · ·

)

v3 7→
(

1 ·
)

v4 7→ ()2×0

julia> IsMonomorphism( ψ )
false
julia> IsEpimorphism( ψ )
false

Since q is acyclic and A is admissible, the category mod-A is Abelian with enough injectives
and projectives and its global dimension is bounded by the number of vertices of q. Let us
compute the kernel object and kernel embedding of ψ:
julia> K_ψ = KernelObject( ψ )
GAP: <(v1)->3, (v2)->1, (v3)->0, (v4)->2; (a)->3x1, (b)->1x2, (c)->3x0, (d)->0x2>
julia> Show( K_ψ )

v1 7→

 1 · · ·
· · 1 ·
· · · 1


v2 7→

(
· 1

)
v3 7→ ()0×1

v4 7→
(

1 ·
· 1

)

Furthermore, mod-A is has homomorphism structure over k-mat:
julia> RangeCategoryOfHomomorphismStructure( mod_A )
GAP: Category of matrices over Q
julia> HomStructure( F, G )
GAP: <A vector space object over Q of dimension 1>
julia> HomStructure( G, F )
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GAP: <A vector space object over Q of dimension 6>
julia> Hom_GF = BasisOfExternalHom( G, F );
julia> τ = -5 * Hom_GF[3] + 2 * Hom_GF[5] + 15 * Hom_GF[6]
GAP: <(v1)->1x4, (v2)->4x2, (v3)->2x1, (v4)->0x2>
julia> Show( τ )

v1 7→
(
· · · ·

)

v2 7→


· −5
· ·
· 2
· 15



v3 7→
(
·
·

)

v4 7→ ()0×2

julia> P_F = SomeProjectiveObject( F )
GAP: <(v1)->4, (v2)->4, (v3)->4, (v4)->5; (a)->4x4, (b)->4x5, (c)->4x4, (d)->4x5>
julia> IsProjective( P_F )
true
julia> Show( P_F )
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v1 7→ k1×4

v2 7→ k1×4

v3 7→ k1×4

v4 7→ k1×5

a 7→


1 · · ·
· 1 · ·
· · 1 ·
· · · 1



b 7→


1 · · · ·
· 1 · · ·
· · 1 · ·
· · · 1 ·



c 7→


1 · · ·
· 1 · ·
· · 1 ·
· · · 1



d 7→


1 · · · ·
· 1 · · ·
· · 1 · ·
· · · 1 ·



julia> π_F = EpimorphismFromSomeProjectiveObject( F )
GAP: <(v1)->4x4, (v2)->4x2, (v3)->4x1, (v4)->5x2>
julia> Show( π_F )
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v1 7→


1 · · ·
· 1 · ·
· · 1 ·
· · · 1



v2 7→


· ·
1 ·
· 1
· ·



v3 7→


·
1
·
·



v4 7→


· ·
· 1
· ·
· ·
1 ·


julia> I_F = SomeInjectiveObject( F )
GAP: <(v1)->5, (v2)->3, (v3)->2, (v4)->2; (a)->5x3, (b)->3x2, (c)->5x2, (d)->2x2>
julia> IsInjective( I_F )
true
julia> Show( I_F )
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v1 7→ k1×5

v2 7→ k1×3

v3 7→ k1×2

v4 7→ k1×2

a 7→


· · ·
· · ·
1 · ·
· 1 ·
· · 1



b 7→

 · ·
1 ·
· 1



c 7→


· ·
· ·
· ·
1 ·
· 1



d 7→
(

1 ·
· 1

)

julia> ι_F = MonomorphismIntoSomeInjectiveObject( F )
GAP: <(v1)->4x5, (v2)->2x3, (v3)->1x2, (v4)->2x2>
julia> Show( ι_F )
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v1 7→ k1×5

v2 7→ k1×3

v3 7→ k1×2

v4 7→ k1×2

a 7→


· · ·
· · ·
1 · ·
· 1 ·
· · 1



b 7→

 · ·
1 ·
· 1



c 7→


· ·
· ·
· ·
1 ·
· 1



d 7→
(

1 ·
· 1

)

(3) Construct the Yoneda embedding Y : Aop ↪→mod-A and the induced
Yoneda equivalence Y : Aop,⊕ ∼−→ proj-A.

The Yoneda embedding Y : Aop ↪→ mod-A maps an object v ∈ Aop to the functor Pv :=
Y (v) := HomA(v, -) : A → k-mat. It is well known that the images of the Yoneda embedding
are projective objects in mod-A. We start by creating the opposite algebroid Aop:
julia> A_op = OppositeAlgebroid( A )
GAP: Algebroid( (Q * q_op) / [ -1*(d*c) + 1*(b*a) ] )
julia> Y = YonedaEmbedding( A_op )
GAP: Yoneda embedding functor
julia> Display( Y )
Yoneda embedding functor:

Algebroid( (Q * q_op) / [ -1*(d*c) + 1*(b*a) ] )
|
V

The category of functors: Algebroid( (Q * q) / [ -1*(c*d) + 1*(a*b) ] ) -> Category of
matrices over Q

julia> IsIdenticalObj( RangeOfFunctor( Y ), mod_A )
true
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Since A is admissible, the images of the Y are, up to isomorphism, the indecomposable
projective objects of mod-A.

v2 P2

v1 v4 P1 P4

Aop v3 P3

a b

d

Y

c

mod-A

julia> P1 = Y( A_op."v1" )
GAP: <(v1)->1, (v2)->1, (v3)->1, (v4)->1; (a)->1x1, (b)->1x1, (c)->1x1, (d)->1x1>
julia> Show( P1 )

v1 7→ k1×1

v2 7→ k1×1

v3 7→ k1×1

v4 7→ k1×1

a 7→
(

1
)

b 7→
(

1
)

c 7→
(

1
)

d 7→
(

1
)

julia> P2 = Y( A_op."v2" )
GAP: <(v1)->0, (v2)->1, (v3)->0, (v4)->1; (a)->0x1, (b)->1x1, (c)->0x0, (d)->0x1>
julia> Show( P2 )

v1 7→ k1×0

v2 7→ k1×1

v3 7→ k1×0

v4 7→ k1×1

a 7→ ()0×1

b 7→
(

1
)

c 7→ ()0×0

d 7→ ()0×1
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julia> P3 = Y( A_op."v3" )
julia> Show( P3 )

v1 7→ k1×0

v2 7→ k1×0

v3 7→ k1×1

v4 7→ k1×1

a 7→ ()0×0

b 7→ ()0×1

c 7→ ()0×1

d 7→
(

1
)

julia> P4 = Y( A_op."v4" )
julia> Show( P4 )

v1 7→ k1×0

v2 7→ k1×0

v3 7→ k1×0

v4 7→ k1×1

a 7→ ()0×0

b 7→ ()0×1

c 7→ ()0×0

d 7→ ()0×1

In the following we apply Y to the morphism Aop 3 α = ba : v4 → v1

julia> α = PreCompose( A_op."b", A_op."a" )
GAP: (v4)-[{ 1*(b*a) }]->(v1)
julia> Show( α )

v4 − (ba)→ v1

julia> P_α = Y( α )
GAP: <(v1)->0x1, (v2)->0x1, (v3)->0x1, (v4)->1x1>
julia> Show( P_α )
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v1 7→ ()0×1

v2 7→ ()0×1

v3 7→ ()0×1

v4 7→
(

1
)

If we restrict the Yoneda embedding Y : Aop ↪→mod-A to its image, we get an isomorphism
Y : Aop ∼−→ ind0(proj-A)

where ind0(proj-A) is the skeletal of the full subcategory generated by the indecomposable
projective objects in mod-A. In the following we construct this isomorphism:
julia> ind0_proj_A = FullSubcategoryGeneratedByIndecProjectiveObjects( mod_A )
GAP: Full subcategory generated by the 4 indecomposable projective objects( The

category of functors: Algebroid( (Q * q) / [ -1*(c*d) + 1*(a*b) ] ) -> Category of
matrices over Q )

julia> ind0_proj_A[ 1 ]
GAP: An object in full subcategory given by: <(v1)->1, (v2)->1, (v3)->1, (v4)->1; (a

)->1x1, (b)->1x1, (c)->1x1, (d)->1x1>
julia> IsEqualForObjects( P1, UnderlyingCell( ind0_proj_A[ 1 ] ) )
true
julia> KnownFunctors( A_op, ind0_proj_A )
1: Yoneda isomorphism
julia> Y = Functor( A_op, ind0_proj_A, 1 )
GAP: Isomorphism functor from Algebroid onto full subcategory generated by

indecomposable projective objects
julia> Display( Y )
Isomorphism functor from Algebroid onto full subcategory generated by indecomposable

projective objects:

Algebroid( (Q * q_op) / [ -1*(d*c) + 1*(b*a) ] )
|
V

Full subcategory generated by the 4 indecomposable projective objects( The category of
functors: Algebroid( (Q * q) / [ -1*(c*d) + 1*(a*b) ] ) -> Category of matrices
over Q )

julia> Y( A_op."v1" )
GAP: An object in full subcategory given by: <(v1)->1, (v2)->1, (v3)->1, (v4)->1; (a

)->1x1, (b)->1x1, (c)->1x1, (d)->1x1>

If we extend the functor Y to the additive closures, we get an equivalence
Aop,⊕ ' ind⊕0 (proj-A) ' proj-A.

The forward equivalence is the extension of Yoneda isomorphism to additive closures and the
backward equivalence is the direct sum decomposition functor of projective objects.



E. A DEMO FOR THE HAPPEL THEOREM 261

julia> A_op_plus = AdditiveClosure( A_op )
GAP: Additive closure( Algebroid( (Q * q_op) / [ -1*(d*c) + 1*(b*a) ] ) )
julia> InfoOfInstalledOperationsOfCategory( A_op_plus )
23 primitive operations were used to derive 113 operations for this category which
* IsEquippedWithHomomorphismStructure
* IsLinearCategoryOverCommutativeRing
* IsAdditiveCategory
julia> proj_A = FullSubcategoryGeneratedByProjectiveObjects( mod_A )
GAP: Full additive subcategory generated by projective objects( The category of

functors: Algebroid( (Q * q) / [ -1*(c*d) + 1*(a*b) ] ) -> Category of matrices
over Q )

julia> InfoOfInstalledOperationsOfCategory( proj_A )
53 primitive operations were used to derive 119 operations for this category which
* IsEquippedWithHomomorphismStructure
* IsLinearCategoryOverCommutativeRing
* IsAdditiveCategory

The above categories are also equipped with k-mat-homomorphism structures:
julia> RangeCategoryOfHomomorphismStructure( A_op_plus )
GAP: Category of matrices over Q
julia> RangeCategoryOfHomomorphismStructure( proj_A )
GAP: Category of matrices over Q

In the following we create the equivalences between Aop,⊕ ' proj-A
julia> KnownFunctors( A_op_plus, proj_A )
1: Yoneda embedding
julia> Y = Functor( A_op_plus, proj_A, 1 )
GAP: Yoneda embedding
julia> Display( Y )
Yoneda embedding:

Additive closure( Algebroid( (Q * q_op) / [ -1*(d*c) + 1*(b*a) ] ) )
|
V

Full additive subcategory generated by projective objects( The category of functors:
Algebroid( (Q * q) / [ -1*(c*d) + 1*(a*b) ] ) -> Category of matrices over Q )

julia> KnownFunctors( proj_A, A_op_plus )
1: Decomposition of projective objects
julia> D = Functor( proj_A, A_op_plus, 1 )
GAP: Decomposition of projective objects
julia> Display( D )
Decomposition of projective objects:

Full additive subcategory generated by projective objects( The category of functors:
Algebroid( (Q * q) / [ -1*(c*d) + 1*(a*b) ] ) -> Category of matrices over Q )

|
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V
Additive closure( Algebroid( (Q * q_op) / [ -1*(d*c) + 1*(b*a) ] ) )

In the following we use D : proj-A ∼−→ Aop,⊕ to decompose a projective object P ∈ proj-A:
julia> K = DirectSum( KernelObject( ψ ), CokernelObject( ψ ) )
GAP: <(v1)->3, (v2)->4, (v3)->1, (v4)->2; (a)->3x4, (b)->4x2, (c)->3x1, (d)->1x2>
julia> IsProjective( K )
false
julia> P = SomeProjectiveObject( K )
GAP: <(v1)->3, (v2)->6, (v3)->4, (v4)->9; (a)->3x6, (b)->6x9, (c)->3x4, (d)->4x9>
julia> Show( P )

v1 7→ k1×3

v2 7→ k1×6

v3 7→ k1×4

v4 7→ k1×9

a 7→

 1 · · · · ·
· 1 · · · ·
· · 1 · · ·



b 7→



1 · · · · · · · ·
· 1 · · · · · · ·
· · 1 · · · · · ·
· · · 1 · · · · ·
· · · · 1 · · · ·
· · · · · 1 · · ·



c 7→

 1 · · ·
· 1 · ·
· · 1 ·



d 7→


1 · · · · · · · ·
· 1 · · · · · · ·
· · 1 · · · · · ·
· · · · · · 1 · ·



julia> P = P / proj_A
GAP: An object in full subcategory given by: <(v1)->3, (v2)->6, (v3)->4, (v4)->9; (a

)->3x6, (b)->6x9, (c)->3x4, (d)->4x9>
julia> DP = D( P )
GAP: <An object in Additive closure( Algebroid( (Q * q_op) / [ -1*(d*c) + 1*(b*a) ] ) )

defined by 9 underlying objects>
julia> Show( DP )

v1
⊕3 ⊕ v2

⊕3 ⊕ v3 ⊕ v4
⊕2
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In the following, we apply the Yoneda isomorphism to a morphism ϕ : D(P )→ D(P ):
julia> HomStructure( DP, DP )
GAP: <A vector space object over Q of dimension 49>
julia> ϕ = Sum( BasisOfExternalHom( DP, DP ) )
GAP: <A morphism in Additive closure( Algebroid( (Q * q_op) / [ -1*(d*c) + 1*(b*a) ] )

) defined by a 9 x 9 matrix of underlying morphisms>
julia> Show( ϕ )

v1
⊕3 ⊕ v2

⊕3 ⊕ v3 ⊕ v4
⊕2



v1 v1 v1 0 0 0 0 0 0
v1 v1 v1 0 0 0 0 0 0
v1 v1 v1 0 0 0 0 0 0
a a a v2 v2 v2 0 0 0
a a a v2 v2 v2 0 0 0
a a a v2 v2 v2 0 0 0
c c c 0 0 0 v3 0 0
ba ba ba b b b d v4 v4
ba ba ba b b b d v4 v4


−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ v1

⊕3 ⊕ v2
⊕3 ⊕ v3 ⊕ v4

⊕2

julia> Yϕ = Y( ϕ )
GAP: A morphism in full subcategory given by: <(v1)->3x3, (v2)->6x6, (v3)->4x4, (v4)->9

x9>
julia> Show( Yϕ )
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v1 7→

 1 1 1
1 1 1
1 1 1



v2 7→



1 1 1 · · ·
1 1 1 · · ·
1 1 1 · · ·
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1



v3 7→


1 1 1 ·
1 1 1 ·
1 1 1 ·
1 1 1 1



v4 7→



1 1 1 · · · · · ·
1 1 1 · · · · · ·
1 1 1 · · · · · ·
1 1 1 1 1 1 · · ·
1 1 1 1 1 1 · · ·
1 1 1 1 1 1 · · ·
1 1 1 · · · 1 · ·
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1



julia> D( Yϕ ) == ϕ

true

(4) Construct the equivalences Kb(Aop,⊕) ' Kb(proj-A) ' Db(mod-A)

The equivalence Aop,⊕ ' proj-A can be lifted to an equivalence between the (bounded)
complexes categories: Chb(Aop,⊕) ' Chb(proj-A) and the (bounded) homotopy categories:
Kb(Aop,⊕) ' Kb(proj-A).

Since q is acyclic, the global dimension of mod-A is finite and bounded above by the number
of vertices in q. In this example the global dimension of A is 2. Hence, we obtain an equivalence:
Kb(proj-A) ' Db(mod-A).

To sum up, we have the following equivalences:
Kb
(
Aop,⊕) ' Kb(proj-A) ' Db(mod-A).

The GAP package QPA can be used to compute the global dimension of mod-A. We compute
the endomorphism k-algebra A := Endk A ∼= Endk E ∼= Endk TE as a quotient of the path algebra
kq and compute the global dimension of A:
julia> A = UnderlyingQuiverAlgebra( A )
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GAP: (Q * q) / [ -1*(c*d) + 1*(a*b) ]
julia> Dimension( A )
9
julia> GlobalDimensionOfAlgebra( A, 1 )
false
julia> GlobalDimensionOfAlgebra( A, 2 )
2

We start by creating the homotopy categories Kb(Aop,⊕) and Kb(proj-A):
julia> KA_op_plus = HomotopyCategoryByCochains( A_op_plus )
GAP: Homotopy category( Additive closure( Algebroid( (Q * q_op) / [ -1*(d*c) + 1*(b*a)

] ) ) )
julia> Kproj_A = HomotopyCategoryByCochains( proj_A )
GAP: Homotopy category( Full additive subcategory generated by projective objects( The

category of functors: Algebroid( (Q * q) / [ -1*(c*d) + 1*(a*b) ] ) -> Category of
matrices over Q ) )

Of course both categories are equipped with Q-mat-equipped with a homomorphism struc-
tures:
julia> RangeCategoryOfHomomorphismStructure( KA_op_plus )
GAP: Category of matrices over Q
julia> RangeCategoryOfHomomorphismStructure( Kproj_A )
GAP: Category of matrices over Q
julia> Y = ExtendFunctorToHomotopyCategoriesByCochains( Y )
GAP: Extension of ( Yoneda embedding ) to homotopy categories
julia> Display( Y )
GAP: Extension of ( Yoneda embedding ) to homotopy categories:

Homotopy category( Additive closure( Algebroid( (Q * q_op) / [ -1*(d*c) + 1*(b*a) ] ) )
)

|
V

Homotopy category( Full additive subcategory generated by projective objects( The
category of functors: Algebroid( (Q * q) / [ -1*(c*d) + 1*(a*b) ] ) -> Category of
matrices over Q ) )

julia> IsIdenticalObj( SourceOfFunctor( Y ), KA_op_plus )
&& IsIdenticalObj( Kproj_A, RangeOfFunctor( Y ) )

true
julia> D = ExtendFunctorToHomotopyCategoriesByCochains( D )
GAP: Extension of ( Decomposition of projective objects ) to homotopy categories
julia> Display( D )
GAP: Extension of ( Decomposition of projective objects ) to homotopy categories

Homotopy category( Full additive subcategory generated by projective objects( The
category of functors: Algebroid( (Q * q) / [ -1*(c*d) + 1*(a*b) ] ) -> Category of
matrices over Q ) )

|
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V
Homotopy category( Additive closure( Algebroid( (Q * q_op) / [ -1*(d*c) + 1*(b*a) ] ) )

)
julia> IsIdenticalObj( SourceOfFunctor( D ), Kproj_A )

&& IsIdenticalObj( KA_op_plus, RangeOfFunctor( D ) )
true

The equivalence Kb(proj-A) ' Db(mod-A) is the composition:

Kb(proj-A) ↪→ Kb(mod-A) L−→ Db(mod-A)
where L is the natural localization functor. That is, L maps a morphism β : B → C in

Kb(mod-A) to the morphism in Db(mod-A)) represented by the roof4

(B idB←−− B β−→ C) : B → C.

julia> Cmod_A = CochainComplexCategory( mod_A )
GAP: Cochain complexes( The category of functors: Algebroid( (Q * q) / [ -1*(c*d) + 1*(

a*b) ] ) -> Category of matrices over Q )
julia> Kmod_A = HomotopyCategoryByCochains( mod_A )
GAP: Homotopy category( The category of functors: Algebroid( (Q * q) / [ -1*(c*d) + 1*(

a*b) ] ) -> Category of matrices over Q )
julia> Dmod_A = DerivedCategoryByCochains( mod_A )
GAP: Derived category( The category of functors: Algebroid( (Q * q) / [ -1*(c*d) + 1*(a

*b) ] ) -> Category of matrices over Q )
julia> IsIdenticalObj( mod_A, AmbientCategory( proj_A ) )
true
julia> I = InclusionFunctor( proj_A );
julia> I = ExtendFunctorToHomotopyCategoriesByCochains( I )
GAP: Extension of a functor to homotopy categories
julia> Display( I )
Extension of a functor to homotopy categories:

Homotopy category( Full additive subcategory generated by projective objects( The
category of functors: Algebroid( (Q * q) / [ -1*(c*d) + 1*(a*b) ] ) -> Category of
matrices over Q ) )

|
V

Homotopy category( The category of functors: Algebroid( (Q * q) / [ -1*(c*d) + 1*(a*b)
] ) -> Category of matrices over Q )

julia> IsIdenticalObj( Kmod_A, RangeOfFunctor( I ) )
true
julia> L = LocalizationFunctor( Kmod_A )
GAP: Localization functor in derived category
julia> Display( L )
Localization functor in derived category:

4A roof in Kb(mod-A)) is by definition a pair of morphisms (A α←− B
β−→ C) where α is a quasi-

isomorphism. Morphisms in the derived categories are equivalence classes of roofs Definition 3.41.
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Homotopy category( The category of functors: Algebroid( (Q * q) / [ -1*(c*d) + 1*(a*b)
] ) -> Category of matrices over Q )

|
V

Derived category( The category of functors: Algebroid( (Q * q) / [ -1*(c*d) + 1*(a*b) ]
) -> Category of matrices over Q )

julia> IsIdenticalObj( Dmod_A, RangeOfFunctor( L ) )
true

On the other hand, the equivalence

Db(mod-A) U−→ Kb(proj-A)
can be computed by the universal property of derived categories. More precisely, the functor

Kb(mod-A) Lproj−−−→ Kb(proj-A)
which maps cells in Kb(mod-A) to their projective replacements in Kb(proj-A) is a localization
functor with respects to quasi-isomorphisms, hence factors uniquely along L via the desired
functor U which maps a morphism in Db(mod-A) represented by a roof A α←− B

β−→ C to
(Lproj(α))−1 · Lproj(β) : Lproj(A) → Lproj(C) in Kb(proj-A). Note that α : B → A is by
definition a quasi-isomorphism in Kb(mod-A), hence its projective replacement is an isomorphism
in Kb(proj-A).
julia> L_proj = LocalizationFunctorByProjectiveObjects( Kmod_A )
GAP: Localization functor by projective objects
julia> Display( L_proj )
Localization functor by projective objects:

Homotopy category( The category of functors: Algebroid( (Q * q) / [ -1*(c*d) + 1*(a*b)
] ) -> Category of matrices over Q )

|
V

Homotopy category( Full additive subcategory generated by projective objects( The
category of functors: Algebroid( (Q * q) / [ -1*(c*d) + 1*(a*b) ] ) -> Category of
matrices over Q ) )

julia> U = UniversalFunctorFromDerivedCategory( L_proj )
GAP: Universal functor from derived category onto a localization category
julia> Display( U )
Universal functor from derived category onto a localization category:

Derived category( The category of functors: Algebroid( (Q * q) / [ -1*(c*d) + 1*(a*b) ]
) -> Category of matrices over Q )

|
V

Homotopy category( Full additive subcategory generated by projective objects( The
category of functors: Algebroid( (Q * q) / [ -1*(c*d) + 1*(a*b) ] ) -> Category of
matrices over Q ) )
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Now we can compute the composition

Db(mod-A) U−→ Kb(proj-A) KD−−→ Kb
(
Aop,⊕)

julia> UD = PreCompose( U, D );
julia> Display( UD )
Composition of Universal functor from derived category onto a localization category and

Extension of a functor to homotopy categories:

Derived category( The category of functors: Algebroid( (Q * q) / [ -1*(c*d) + 1*(a*b) ]
) -> Category of matrices over Q )

|
V

Homotopy category( Additive closure( Algebroid( (Q * q_op) / [ -1*(d*c) + 1*(b*a) ] ) )
)

and the other way around

Kb
(
Aop,⊕) Y−→ Kb(proj-A) ↪→ Kb(mod-A) L−→ Db(mod-A)

julia> YIL = PreCompose( [ Y, I, L ] );
julia> Display( YIL )
Composition of Composition of Extension of a functor to homotopy categories and

Extension of a functor to homotopy categories and Localization functor in derived
category:

Homotopy category( Additive closure( Algebroid( (Q * q_op) / [ -1*(d*c) + 1*(b*a) ] ) )
)

|
V

Derived category( The category of functors: Algebroid( (Q * q) / [ -1*(c*d) + 1*(a*b) ]
) -> Category of matrices over Q )

(5) Create an object in Kb(Aop,⊕) and compute its image in Db(mod-A).

In the following we want to apply the functor Y • I •L to the object C in Kb(Aop,⊕) defined
by

C := 0 v4 v2 ⊕ v3 0(b d)

where v4 is concentrated in the cohomological index −1.
julia> C_m1 = [ A_op."v4" ] / A_op_plus
julia> C_0 = [ A_op."v2", A_op."v3" ] / A_op_plus
GAP: <An object in Additive closure( Algebroid( (Q * q_op) / [ -1*(d*c) + 1*(b*a) ] ) )

defined by 2 underlying objects>
julia> ∂_m1 = AdditiveClosureMorphism( C_m1, [ [ A_op."b", A_op."d" ] ], C_0 )
GAP: <A morphism in Additive closure( Algebroid( (Q * q_op) / [ -1*(d*c) + 1*(b*a) ] )

) defined by a 1 x 2 matrix of underlying morphisms>
julia> Show( ∂_m1 )
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v1 7→ ()0×0

v2 7→ ()0×1

v3 7→ ()0×1

v4 7→
(

1 1
)

julia> C = [ [ ∂_m1 ], -1 ] / KA_op_plus
GAP: <An object in Homotopy category( Additive closure( Algebroid( (Q * q_op) / [ -1*(d

*c) + 1*(b*a) ] ) ) ) with active lower bound -1 and active upper bound 0>
julia> Show( C )

v2 ⊕ v3
↑(
b d

)
|−1
v4

julia> IsWellDefined( C )
true
julia> W = YIL( C )
GAP: <An object in Derived category( The category of functors: Algebroid( (Q * q) / [

-1*(c*d) + 1*(a*b) ] ) -> Category of matrices over Q ) with active lower bound -1
and active upper bound 0>

julia> IsWellDefined( W )
true

W−1 = P4 and W 0 = P2 ⊕ P3.
julia> ObjectAt( W, -1 )
GAP: <(v1)->0, (v2)->0, (v3)->0, (v4)->1; (a)->0x0, (b)->0x1, (c)->0x0, (d)->0x1>
julia> ObjectAt( W, 0 )
GAP: <(v1)->0, (v2)->1, (v3)->1, (v4)->2; (a)->0x1, (b)->1x2, (c)->0x1, (d)->1x2>
julia> ∂_m1 = DifferentialAt( W, -1 )
GAP: <(v1)->0x0, (v2)->0x1, (v3)->0x1, (v4)->1x2>
julia> Show( ∂_m1 )

v1 7→ ()0×0

v2 7→ ()0×1

v3 7→ ()0×1

v4 7→
(

1 1
)
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julia> CohomologySupport( W )
GAP: [ 0 ]

Since 0 is an upper bound ofW and its cohomology support5 is [0], we can create the following
acyclic complex

B := 0→W−1 ∂−1
−−→W 0 CokernelProjection(∂−1)−−−−−−−−−−−−−−−→ CokernelObject(∂−1) ' H0(W )→ 0

julia> H_0 = CohomologyAt( W, 0 )
GAP: <(v1)->0, (v2)->1, (v3)->1, (v4)->1; (a)->0x1, (b)->1x1, (c)->0x1, (d)->1x1>
julia> Show( H_0 )

v1 7→ k1×0

v2 7→ k1×1

v3 7→ k1×1

v4 7→ k1×1

a 7→ ()0×1

b 7→
(
−1

)
c 7→ ()0×1

d 7→
(

1
)

julia> ∂_0 = CokernelProjection( ∂_m1 )
GAP: <(v1)->0x0, (v2)->1x1, (v3)->1x1, (v4)->2x1>
julia> Show( ∂_0 )

v1 7→ ()0×0

v2 7→
(

1
)

v3 7→
(

1
)

v4 7→
(
−1

1

)

julia> IsEqualForObjects( H_0, Range( ∂_0 ) )
true
julia> B = DerivedCategoryObject( Dmod_A, [ ∂_m1, ∂_0 ], -1 )

5I.e., the cohomological indices where the cohomology object is not zero.
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GAP: <An object in Derived category( The category of functors: Algebroid( (Q * q) / [
-1*(c*d) + 1*(a*b) ] ) -> Category of matrices over Q ) with active lower bound -1
and active upper bound 1>

julia> IsWellDefined( B )
true
julia> CohomologySupport( B )
GAP: [ ]

Since B is an acyclic complex, it vanishes in the derived category. In the following, we check
that applying the equivalence U •D on B returns an object which also vanishes in Kb(Aop,⊕)
julia> IsZero( B )
true
julia> UD_B = UD( B )
GAP: <An object in Homotopy category( Additive closure( Algebroid( (Q * q_op) / [ -1*(d

*c) + 1*(b*a) ] ) ) ) with active lower bound -1 and active upper bound 1>
julia> Show( UD_B )

v2 ⊕ v3
↑v2 0

0 v3
−b −d


|0

v2 ⊕ v3 ⊕ v4
↑(

b d v4
)

|−1
v4

julia> IsZero( UD_B )
true

(6) Construct a complete strong exceptional sequence E = (E1, E2, E3, E4) in
mod-A 'mod-A

Consider the following objects E1 := P2, E2 := P3, E3 := H0(W ), E4 := P1 and let TE :=
E1 ⊕ E2 ⊕ E3 ⊕ E4:
julia> E1 = P2;
julia> E2 = P3;
julia> E3 = CohomologyAt( W, 0 );
julia> E4 = P1
GAP: <(v1)->1, (v2)->1, (v3)->1, (v4)->1; (a)->1x1, (b)->1x1, (c)->1x1, (d)->1x1>

Using the new notation, we can rewrite the acyclic complex B as follows:
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B := 0→ P4
∂−1
−−→ E1 ⊕ E2

CokernelProjection(∂−1)−−−−−−−−−−−−−−−→ E3 → 0
The above acyclic complex says that we can coresolve P4 in terms of direct sums of E1, E2, E3.

That is, the object P1 ⊕P2 ⊕P3 ⊕P4 (which correspondes to A as an object in mod-A) can also
be coresolved by direct sums of E1, E2, E3 and E4.
julia> T = DirectSum( E1, E2, E3, E4 )
GAP: <(v1)->1, (v2)->3, (v3)->3, (v4)->4; (a)->1x3, (b)->3x4, (c)->1x3, (d)->3x4>

v1 7→ k1×1

v2 7→ k1×3

v3 7→ k1×3

v4 7→ k1×4

a 7→
(
· · 1

)

b 7→

 1 · · ·
· · −1 ·
· · · 1


c 7→

(
· · 1

)

d 7→

 · 1 · ·
· · 1 ·
· · · 1



julia> HomStructure( T, T )
GAP: <A vector space object over Q of dimension 9>

That is dim Endk TE = 9. Next, we want to prove that Extn(TE , TE ) = 0 for all n ≥ 1. Since
the global dimension of mod-A is 2, we have Extn(TE , TE ) = 0 for all n ≥ 3. It remains to verify
that Ext1(TE , TE ) = 0 and Ext2(TE , TE ) = 0.

It is well known that
Extn(TE , TE ) ' HomDb(mod-A)(TE ,ΣnTE )

where Σ : Db(mod-A) ∼−→ Db(mod-A) is the shift autoequivalence on Db(mod-A).
julia> T = T / Cmod_A / Kmod_A / Dmod_A
GAP: <An object in Derived category( The category of functors: Algebroid( (Q * q) / [

-1*(c*d) + 1*(a*b) ] ) -> Category of matrices over Q ) with active lower bound 0
and active upper bound 0>

julia> Shift( T, 1 )
GAP: <An object in Derived category( The category of functors: Algebroid( (Q * q) / [

-1*(c*d) + 1*(a*b) ] ) -> Category of matrices over Q ) with active lower bound -1
and active upper bound -1>

julia> HomStructure( T, Shift( T, 0 ) )
GAP: <A vector space object over Q of dimension 9>
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julia> HomStructure( T, Shift( T, 1 ) )
GAP: <A vector space object over Q of dimension 0>
julia> HomStructure( T, Shift( T, 2 ) )
GAP: <A vector space object over Q of dimension 0>

To sum up,
• TE admits a finite projective resolution,
• TE has no higher extensions, i.e., Extn(TE , TE ) ' 0 for all n ≥ 1 and
• P1 ⊕ P2 ⊕ P3 ⊕ P4 can be coresolved by direct summands of direct sums of TE .

Hence, the object TE = E1⊕E2⊕E3⊕E4 is a generalized tilting object in mod-A 'mod-A.
Happel’s theorem states that the derived functors

−⊗L TE : Db(AE ) ∼−→ Db(mod-A) : RHom(TE ,−)
induce an adjoint equivalences where AE is the abstraction k-algebroid of E and Db(AE ) :=
Db(AE ) := Db

(
mod-Aop

E

)
.

In the following we create E . For a better readability, we label each object in E by its
dimension vector:
julia> E = CreateStrongExceptionalCollection(

[ E1, E2, E3, E4 ],
[ "[0101]", "[0011]", "[0111]", "[1111]" ]

)
GAP: <A strong exceptional sequence defined by the objects of the Full subcategory

generated by 4 objects in The category of functors: Algebroid( (Q * q) / [ -1*(c*d)
+ 1*(a*b) ] ) -> Category of matrices over Q>

(7) Compute the quiver qE and the abstraction k-algebroid AE .

The abstraction k-algebroid AE of E can be computed as follows:
julia> A_E = Algebroid( E )
GAP: Algebroid( End( [0101] ⊕ [0011] ⊕ [0111] ⊕ [1111] ) )
julia> q_E = UnderlyingQuiver( A_E )
GAP: quiver([0101],[0011],[0111],[1111])[m1_3_1:[0101]->[0111], m2_3_1:[0011]->[0111],

m3_4_1:[0111]->[1111]]
julia> relationsOfAlgebroid( A_E )
GAP: [ ]
julia> EndT = UnderlyingQuiverAlgebra( A_E )
GAP: End( [0101] ⊕ [0011] ⊕ [0111] ⊕ [1111] )
julia> Dimension( EndT )
9
julia> IsAdmissibleQuiverAlgebra( EndT )
true

That is, the quiver qE of E consists of 4 vertices and 3 arrows:
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[0101]

[0111] [1111]

[0011]

m1
1,3

m1
3,4

m1
2,3

The vertices are labeled by the strings we assigned to the objects of E and the arrows are
labeled by mk

i,j which means that the arrow is the k’th arrow from the vertex indexed by i to the
vertex indexed by j.
julia> u1 = Vertex( q_E , 1 )
GAP: ([0101])
julia> u1 == q_E ."[0101]"
true
julia> m1_3_1 = q_E ."m1_3_1"
GAP: (m1_3_1)

(8) Compute the isomorphism E ' AE and the equivalences

Kb
(
E ⊕
)
' Kb

(
A⊕E

)
' Kb(AE -proj) ' Db(AE ).

We call the isomorphism functors between E and AE the abstraction functor abs resp. the
realization functor rel

abs : E
∼−→ AE : rel

julia> abs = IsomorphismOntoAlgebroid( E )
GAP: Isomorphism functor from exceptional collection onto Algebroid
julia> abs( E [ 1 ] )
GAP: <([0101])>
julia> rel = IsomorphismFromAlgebroid( E )
GAP: Isomorphism functor from Algebroid onto exceptional collection
julia> rel( A_E ."[1111]" )
GAP: An object in full subcategory given by: <(v1)->1, (v2)->1, (v3)->1, (v4)->1; (a

)->1x1, (b)->1x1, (c)->1x1, (d)->1x1>
julia> rel( A_E ."[1111]" ) == E [ 4 ]
true
julia> m = rel( A_E ."m3_4_1" )
GAP: A morphism in full subcategory given by: <(v1)->0x1, (v2)->1x1, (v3)->1x1, (v4)->1

x1>
julia> Source( m ) == E [ 3 ] && Range( m ) == E [ 4 ]
true
julia> Show( UnderlyingCell( m ) )
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v1 7→ ()0×0

v2 7→
(
−1

)
v3 7→ ()0×1

v4 7→
(

1
)

julia> m = rel( A_E ."m2_3_1" )
GAP: A morphism in full subcategory given by: <(v1)->0x0, (v2)->0x1, (v3)->1x1, (v4)->1

x1>
julia> Source( m ) == E [ 2 ] && Range( m ) == E [ 3 ]
true
julia> Show( m )

v1 7→ ()0×0

v2 7→ ()0×1

v3 7→
(

1
)

v4 7→
(

1
)

julia> m = rel( A_E ."m1_3_1" )
GAP: A morphism in full subcategory given by: <(v1)->0x0, (v2)->1x1, (v3)->0x1, (v4)->1

x1>
julia> Source( m ) == E [ 1 ] && Range( m ) == E [ 3 ]
true
julia> Show( m )

v1 7→ ()0×0

v2 7→
(
−1

)
v3 7→ ()0×1

v4 7→
(

1
)

The above isomorphisms together with the Yoneda embedding induces equivalences:
E ⊕ ' A⊕E ' AE -proj.

julia> abs = ExtendFunctorToAdditiveClosures( abs )
GAP: Extension of Abstraction isomorphism to additive closures
julia> rel = ExtendFunctorToAdditiveClosures( rel )
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GAP: Extension of Realization isomorphism to additive closures
julia> A_E _op = OppositeAlgebroid( A_E )
GAP: Algebroid( End( [0101] ⊕ [0011] ⊕ [0111] ⊕ [1111] )^op )
julia> A_E _mod = Hom( A_E _op, k_vec )
GAP: The category of functors: Algebroid( End( [0101] ⊕ [0011] ⊕ [0111] ⊕ [1111] )^op

) -> Category of matrices over Q
julia> InfoOfInstalledOperationsOfCategory( A_E _mod )
120 primitive operations were used to derive 312 operations for this category which
* IsEquippedWithHomomorphismStructure
* IsLinearCategoryOverCommutativeRing
* IsAbelianCategoryWithEnoughInjectives
* IsAbelianCategoryWithEnoughProjectives
julia> A_E _proj = FullSubcategoryGeneratedByProjectiveObjects( A_E _mod )
GAP: Full additive subcategory generated by projective objects( The category of

functors: Algebroid( End( [0101] ⊕ [0011] ⊕ [0111] ⊕ [1111] )^op ) -> Category of
matrices over Q )

julia> A_E _plus = AdditiveClosure( A_E )
GAP: Additive closure( Algebroid( End( [0101] ⊕ [0011] ⊕ [0111] ⊕ [1111] ) ) )
julia> KnownFunctors( A_E _plus, A_E _proj )
1: Yoneda embedding
julia> KnownFunctors( A_E _proj, A_E _plus )
1: Decomposition of projective objects

The above isomorphisms can also be extended to equivalences of categories:

Kb
(
E ⊕
)
' Kb

(
A⊕E

)
' Kb(AE -proj) ' Db(AE ).

julia> abs = ExtendFunctorToHomotopyCategoriesByCochains( abs )
GAP: Extension of a functor to homotopy categories
julia> rel = ExtendFunctorToHomotopyCategoriesByCochains( rel )
GAP: Extension of a functor to homotopy categories

On the other hand, we have a natural embedding functor Kb(E ⊕) ↪→ Kb(mod-A):
julia> I = EmbeddingFunctorFromAdditiveClosure( E );
julia> I = ExtendFunctorToHomotopyCategoriesByCochains( I )
GAP: Extension of a functor to homotopy categories
julia> Display( I )
Embedding functor

Additive closure( Full subcategory generated by 4 objects in The category of functors:
Algebroid( (Q * q) / [ -1*(c*d) + 1*(a*b) ] ) -> Category of matrices over Q )

|
V

The category of functors: Algebroid( (Q * q) / [ -1*(c*d) + 1*(a*b) ] ) -> Category of
matrices over Q

julia> N = RandomObject( SourceOfFunctor( rel ), ConvertJuliaToGAP( [ -1, 1, 2 ] ) )
GAP: <An object in Homotopy category( Additive closure( Algebroid( End( [0101] ⊕ [0011]

⊕ [0111] ⊕ [1111] ) ) ) ) with active lower bound -1 and active upper bound 1>
julia> Show( N )
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[0101]⊕ [1111]
↑(0 3[1111]

0 3m1
3,4

)
|0

[1111]⊕ [0111]
↑(

−3m1
1,3m

1
3,4 3m1

1,3
−3m1

3,4 3[0111]

)
|−1

[0101]⊕ [0111]

julia> N = I( rel( N ) )
GAP: <An object in Homotopy category( The category of functors: Algebroid( (Q * q) / [

-1*(c*d) + 1*(a*b) ] ) -> Category of matrices over Q ) with active lower bound -1
and active upper bound 1>

julia> N[-1]
GAP: <(v1)->0, (v2)->2, (v3)->1, (v4)->2; (a)->0x2, (b)->2x2, (c)->0x1, (d)->1x2>
julia> N[0]
GAP: <(v1)->1, (v2)->2, (v3)->2, (v4)->2; (a)->1x2, (b)->2x2, (c)->1x2, (d)->2x2>
julia> N[1]
GAP: <(v1)->1, (v2)->2, (v3)->1, (v4)->2; (a)->1x2, (b)->2x2, (c)->1x1, (d)->1x2>

(9) Construct the adjoint functors
−⊗ TE : AE -mod→mod-A : Hom(TE ,−)

For every object F in mod-A we have Hommod-A(TE , F ) '
⊕4

i=1 Hommod-A(Ei, F ). This
enables us to interpret Hommod-A(TE , F ) as an object in AE -mod. The images of Ei ∈ E under
Hom(TE ,−) are, up to isomorphism, the indecomposable projective objects in AE -mod. Its
left adjoint − ⊗ TE is right exact and translates back the indecomposable projective objects to
corresponding Ei’s.
julia> mod_A
GAP: The category of functors: Algebroid( (Q * q) / [ -1*(c*d) + 1*(a*b) ] ) ->

Category of matrices over Q
julia> A_E _mod
GAP: The category of functors: Algebroid( End( [0101] ⊕ [0011] ⊕ [0111] ⊕ [1111] )^op

) -> Category of matrices over Q
julia> HomT = HomFunctorToCategoryOfFunctors( E )
GAP: Hom(T,-) functor
julia> Display( HomT )
Hom(T,-) functor:

The category of functors: Algebroid( (Q * q) / [ -1*(c*d) + 1*(a*b) ] ) -> Category of
matrices over Q

|
V
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The category of functors: Algebroid( End( [0101] ⊕ [0011] ⊕ [0111] ⊕ [1111] )^op ) ->
Category of matrices over Q

julia> tensorT = TensorFunctorFromCategoryOfFunctors( E )
GAP: -⊗T functor
julia> Display( tensorT )
-⊗T functor:

The category of functors: Algebroid( End( [0101] ⊕ [0011] ⊕ [0111] ⊕ [1111] )^op ) ->
Category of matrices over Q

|
V

The category of functors: Algebroid( (Q * q) / [ -1*(c*d) + 1*(a*b) ] ) -> Category of
matrices over Q

julia> ε = CounitOfTensorHomAdjunction( E, tensorT, HomT )
GAP: Hom(T,-) ⊗ T ⇒ Id
julia> η = UnitOfTensorHomAdjunction( E, tensorT, HomT )
GAP: Id ⇒ Hom( T, -⊗T )

Let us compute the component of εF : Hom(TE , F )⊗ TE → F :
julia> F
GAP: <(v1)->4, (v2)->2, (v3)->1, (v4)->2; (a)->4x2, (b)->2x2, (c)->4x1, (d)->1x2>
julia> tensorT_HomT_F = tensorT( HomT( F ) )
GAP: <(v1)->4, (v2)->2, (v3)->1, (v4)->1; (a)->4x2, (b)->2x1, (c)->4x1, (d)->1x1>
julia> Show( tensorT_HomT_F )

v1 7→ k1×4

v2 7→ k1×2

v3 7→ k1×1

v4 7→ k1×1

a 7→


· ·
· ·
1 ·
· 1



b 7→
(
·
1

)

c 7→


·
·
·
1


d 7→

(
1
)

julia> ε_F = ε( F )
GAP: <(v1)->4x4, (v2)->2x2, (v3)->1x1, (v4)->1x2>
julia> Source( ε_F ) == tensorT_HomT_F && Range( ε_F ) == F
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true
julia> Show( ε_F )

v1 7→


1 · · ·
· · · 1
· · 1 ·
· 1 · ·



v2 7→
(
· 1
1 ·

)

v3 7→
(

1
)

v4 7→
(
· 1

)
Since ε is a natural transformation, the following diagram commutes:

Hom(TE , F )⊗ TE Hom(TE , G)⊗ TE

F G

ε(F )

Hom(TE ,ψ)⊗TE

ε(G)

ψ

julia> PreCompose( ε( F ), ψ ) == PreCompose( tensorT( HomT( ψ ) ), ε( G ) )
true

(10) Construct the adjoint derived equivalences
−⊗L TE : Db(AE ) ∼−→ Db(mod-A) : RHom(TE ,−)

and use them to compute an E -replacement of an object Db(mod-A)

The right and left derived functors RHom(TE ,−) and −⊗LTE can be computed by extending
Hom(TE ,−) and −⊗ TE to the homotopy categories

−⊗ TE : Kb(AE ) ∼−→ Kb(mod-A) : Hom(TE ,−)
then applying them to injective resp. projective replacements (cf. Examples 3.67 and 3.71). To
demonstrate this, we will do all computations in the homotopy categories. Let N be an object
in Kb(mod-A) and ιN : N → IN a quasi-isomorphism to the injective replacement IN of N .
Suppose πHom(TE ,IN ) : PHom(TE ,IN ) → Hom(TE , IN ) is a quasi-isomorphism to Hom(TE , IN ) from
its projective replacement. The E -replacement of N is defined by PHom(TE ,IN ) ⊗ TE which lives
in the image of the full embedding of Kb(E ⊕) ↪→ Kb(mod-A). In particular, the cospan formed
by the quasi-isomorphisms

τN :=
(
πHom(TE ,IN ) ⊗ TE

)
• ε(IN ) : PHom(TE ,IN ) ⊗ TE → IN

and ιN : N → IN gives rise to an isomorphism N ∼= PHom(TE ,IN ) ⊗ TE in Db(mod-A).
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julia> HomT = ExtendFunctorToHomotopyCategoriesByCochains( HomT )
GAP: Extension of a functor to homotopy categories
julia> tensorT = ExtendFunctorToHomotopyCategoriesByCochains( tensorT )
GAP: Extension of a functor to homotopy categories
julia> ε = ExtendNaturalTransformationToHomotopyCategoriesByCochains( ε )
GAP: Extention of the natural transformation ( Hom(T,-) ⊗ T ⇒ Id ) to homotopy

categories
julia> N = P4 / Cmod_A / Kmod_A
GAP: <An object in Homotopy category( The category of functors: Algebroid( (Q * q) / [

-1*(c*d) + 1*(a*b) ] ) -> Category of matrices over Q ) with active lower bound 0
and active upper bound 0>

julia> IN = InjectiveResolution( N, true )
GAP: <An object in Homotopy category( The category of functors: Algebroid( (Q * q) / [

-1*(c*d) + 1*(a*b) ] ) -> Category of matrices over Q ) with active lower bound 0
and active upper bound 2>

julia> ForAll( ConvertJuliaToGAP( [ 0, 1, 2 ] ), i -> IsInjective( IN[ i ] ) )
true
julia> HomT_IN = HomT( IN )
GAP: <An object in Homotopy category( The category of functors: Algebroid( End( [0101]
⊕ [0011] ⊕ [0111] ⊕ [1111] )^op ) -> Category of matrices over Q ) with active
lower bound 0 and active upper bound 2>

julia> PHomT_IN = ProjectiveResolution( HomT_IN, true )
GAP: <An object in Homotopy category( The category of functors: Algebroid( End( [0101]
⊕ [0011] ⊕ [0111] ⊕ [1111] )^op ) -> Category of matrices over Q ) with active
lower bound 0 and active upper bound 2>

julia> qHomT_IN = QuasiIsomorphismFromProjectiveResolution( HomT_IN, true )
GAP: <A morphism in Homotopy category( The category of functors: Algebroid( End( [0101]

⊕ [0011] ⊕ [0111] ⊕ [1111] )^op ) -> Category of matrices over Q ) with active
lower bound 0 and active upper bound 2>

julia> IsWellDefined( qHomT_IN ) && IsQuasiIsomorphism( qHomT_IN )
true
julia> E _rep_N = tensorT( PHomT_IN )
GAP: <An object in Homotopy category( The category of functors: Algebroid( (Q * q) / [

-1*(c*d) + 1*(a*b) ] ) -> Category of matrices over Q ) with active lower bound 0
and active upper bound 2>

julia> E _rep_N[0]
GAP: <(v1)->1, (v2)->2, (v3)->2, (v4)->3; (a)->1x2, (b)->2x3, (c)->1x2, (d)->2x3>
julia> E _rep_N[0] == DirectSum( E1, E2, E4 )
true
julia> E _rep_N[1]
GAP: <(v1)->2, (v2)->3, (v3)->3, (v4)->3; (a)->2x3, (b)->3x3, (c)->2x3, (d)->3x3>
julia> E _rep_N[1] == DirectSum( E3, E4, E4 )
true
julia> E _rep_N[2]
GAP: <(v1)->1, (v2)->1, (v3)->1, (v4)->1; (a)->1x1, (b)->1x1, (c)->1x1, (d)->1x1>
julia> E _rep_N[2] == E4
true
julia> τN = PreCompose( tensorT( qHomT_IN ), ε( IN ) )
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GAP: <A morphism in Homotopy category( The category of functors: Algebroid( (Q * q) / [
-1*(c*d) + 1*(a*b) ] ) -> Category of matrices over Q ) with active lower bound 0

and active upper bound 2>
julia> ( Source( τN ) == E _rep_N ) && ( Range( τN ) == IN )
true
julia> IsWellDefined( τN )
true
julia> IsQuasiIsomorphism( τN )
true

In the following we compute the E -replacement of N := P4 as an object in Kb
(
A⊕E

)
:

julia> A_E _plus
GAP: Additive closure( Algebroid( End( [0101] ⊕ [0011] ⊕ [0111] ⊕ [1111] ) ) )
julia> KA_E _plus = HomotopyCategoryByCochains( A_E _plus )
GAP: Homotopy category( Additive closure( Algebroid( End( [0101] ⊕ [0011] ⊕ [0111] ⊕

[1111] ) ) ) )
julia> A_E _mod
GAP: The category of functors: Algebroid( End( [0101] ⊕ [0011] ⊕ [0111] ⊕ [1111] )^op

) -> Category of matrices over Q
julia> KA_E _mod = HomotopyCategoryByCochains( A_E _mod )
GAP: Homotopy category( The category of functors: Algebroid( End( [0101] ⊕ [0011] ⊕

[0111] ⊕ [1111] )^op ) -> Category of matrices over Q )
julia> L = LocalizationFunctorByProjectiveObjects( KA_E _mod )
GAP: Localization functor by projective objects
julia> KA_E _proj = RangeOfFunctor( L )
GAP: Homotopy category( Full additive subcategory generated by projective objects( The

category of functors: Algebroid( End( [0101] ⊕ [0011] ⊕ [0111] ⊕ [1111] )^op ) ->
Category of matrices over Q ) )

julia> KnownFunctors( KA_E _proj, KA_E _plus )
1: Apply ExtendFunctorToHomotopyCategoriesByCochains on ( Decomposition of projective

objects )
julia> D = Functor( KA_E _proj, KA_E _plus, 1 )
GAP: Extension of a functor to homotopy categories
julia> R = PreCompose( [ HomT, L, D ] );
julia> Display( R )
Composition of Composition of Extension of a functor to homotopy categories and

Localization functor by projective objects and Extension of a functor to homotopy
categories:

Homotopy category( The category of functors: Algebroid( (Q * q) / [ -1*(c*d) + 1*(a*b)
] ) -> Category of matrices over Q )

|
V

Homotopy category( Additive closure( Algebroid( End( [0101] ⊕ [0011] ⊕ [0111] ⊕ [1111]
) ) ) )

julia> R_IN = R( IN )
GAP: <An object in Homotopy category( Additive closure( Algebroid( End( [0101] ⊕ [0011]

⊕ [0111] ⊕ [1111] ) ) ) ) with active lower bound 0 and active upper bound 2>
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julia> Show( R_IN )

[1111]
↑ −m1

3,4
−[1111]
[1111]


|1

[0111]⊕ [1111]⊕2

↑−m1
1,3 0 −m1

1,3m
1
3,4

m1
2,3 −m1

2,3m
1
3,4 0

0 [1111] [1111]


|0

[0101]⊕ [0011]⊕ [1111]

julia> sR_IN = SimplifyObject( R_IN, infinity )
GAP: <An object in Homotopy category( Additive closure( Algebroid( End( [0101] ⊕ [0011]

⊕ [0111] ⊕ [1111] ) ) ) ) with active lower bound 0 and active upper bound 2>
julia> Show( sR_IN )

0
↑()
|1

[0111]
↑(
m1

1,3
−m1

2,3

)
|0

[0101]⊕ [0011]

julia> m = SimplifyObject_IsoToInputObject( R_IN, infinity )
GAP: <A morphism in Homotopy category( Additive closure( Algebroid( End( [0101] ⊕

[0011] ⊕ [0111] ⊕ [1111] ) ) ) ) with active lower bound 0 and active upper bound
2>

julia> IsWellDefined( m ) && IsIsomorphism( m )
julia> Show( m )
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0 − 0 → [1111]
↑ ↑()  −m1

3,4
−[1111]
[1111]


|1 |1

[0111] −
(
[0111] −m1

3,4 0
)
→ [0111]⊕ [1111]⊕2

↑ ↑(
m1

1,3
−m1

2,3

) −m1
1,3 0 −m1

1,3m
1
3,4

m1
2,3 −m1

2,3m
1
3,4 0

0 [1111] [1111]


|0 |0

[0101]⊕ [0011] −
(
−[0101] 0 −m1

1,3m
1
3,4

0 −[0011] 0

)
→ [0101]⊕ [0011]⊕ [1111]

julia> I_rel_m = I( rel( m ) )
GAP: <A morphism in Homotopy category( The category of functors: Algebroid( (Q * q) / [

-1*(c*d) + 1*(a*b) ] ) -> Category of matrices over Q ) with active lower bound 0
and active upper bound 2>

julia> IsIsomorphism( I_rel_m )
julia> Range( I_rel_m ) == E _rep_N
true
julia> im = InverseForMorphisms( m )
julia> Show( im )

[1111] −
()
→ 0

↑ ↑ −m1
3,4

−[1111]
[1111]

 ()
|1 |1

[0111]⊕ [1111]⊕2 −

[0111]
0
0

 → [0111]

↑ ↑−m1
1,3 0 −m1

1,3m
1
3,4

m1
2,3 −m1

2,3m
1
3,4 0

0 [1111] [1111]

 (
m1

1,3
−m1

2,3

)
|0 |0

[0101]⊕ [0011]⊕ [1111] −

−[0101] 0
0 −[0011]
0 0

 → [0101]⊕ [0011]





APPENDIX F

A Demo for Computing a Standard Postnikov System

Let k be a field and q be the following quiver

T 0
1 T 0

2 T 0
3 T 0

4

T 1
1 T 1

2 T 1
3 T 1

4

T 2
1 T 2

2 T 2
3 T 2

4

∂0
1 ∂0

2 ∂0
3 ∂0

4

∂1
1 ∂1

2 ∂1
3 ∂1

4

α0
1

α1
1

α2
1

α0
2

α1
2

α2
2 α2

3

α0
3

α1
3

h1
1 h1

2

h2
1 h2

2

t21

Let Aq the k-linear finitely presented category defined by q subject to the relations
{∂0

j · ∂1
j | 1 ≤ j ≤ 4} ∪ {∂ij · αi+1

j − αij · ∂ij+1 | 0 ≤ i ≤ 1, 1 ≤ j ≤ 3}

∪{∂0
j · h1

j − α0
j · α0

j+1 | 1 ≤ j ≤ 2} ∪ {h2
j · ∂1

j+2 − α2
j · α2

j+1 | 1 ≤ j ≤ 2}

∪{∂1
j · h2

j + h1
j · ∂0

j+2 − α1
j · α1

j+1 | 1 ≤ j ≤ 2}

∪{∂1
1 · t21 + h1

1 · α0
3 − α1

1 · h1
2} ∪ {α2

1 · h2
2 + t21 · ∂0

4 − h2
1 · α1

3}.

For every j with 1 ≤ j ≤ 4, define Tj by the object of Kb
(
A⊕q

)
whose differential at index

0 ≤ i ≤ 1 is ∂ij . For every j with 1 ≤ j ≤ 3, define αj : Tj → Tj+1 by the morphism whose
component at index i is αij .

Let T be the object in Cb
(
Kb
(
A⊕q

))
defined by the sequence

0 −→ T1
α1−→ T2

α2−→ T3
α3−→ T4 −→ 0

where T1 is concentrated at index 1. In this demonstration, we want to use Algorithm 4 to
compute an extension of T to a standard Postnikov system.

We start by loading the CapAndHomalg and loading QPA2 and HomotopyCategories:
julia> using CapAndHomalg
CapAndHomalg v1.1.8
Imported OSCAR's components GAP and Singular_jll
Type: ?CapAndHomalg for more information
julia> LoadPackage( "QPA" )

285
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julia> LoadPackage( "HomotopyCategories" )

Next, we define the right quiver q:
julia> q = RightQuiver(

"q(T10,T11,T12,T20,T21,T22,T30,T31,T32,T40,T41,T42)[" *
"d10:T10->T11,d11:T11->T12,d20:T20->T21,d21:T21->T22,d30:T30->T31,d31:T31->T32," *
"d40:T40->T41,d41:T41->T42,alpha10:T10->T20,alpha11:T11->T21,alpha12:T12->T22," *
"alpha20:T20->T30,alpha21:T21->T31,alpha22:T22->T32,alpha30:T30->T40," *
"alpha31:T31->T41,alpha32:T32->T42,h11:T11->T30,h12:T12->T31,h21:T21->T40," *
"h22:T22->T41,t12:T12->T40]" );

julia> SetLabelsAsLaTeXStrings( q,
[ "T_1^0", "T_1^1", "T_1^2", "T_2^0", "T_2^1", "T_2^2",

"T_3^0", "T_3^1", "T_3^2", "T_4^0", "T_4^1", "T_4^2" ],
[ "\\partial_1^0", "\\partial_1^1", "\\partial_2^0", "\\partial_2^1",

"\\partial_3^0", "\\partial_3^1", "\\partial_4^0", "\\partial_4^1",
"\\alpha_1^0", "\\alpha_1^1", "\\alpha_1^2", "\\alpha_2^0", "\\alpha_2^1",
"\\alpha_2^2", "\\alpha_3^0", "\\alpha_3^1", "\\alpha_3^2",
"h_1^1", "h_1^2", "h_2^1", "h_2^2", "t_1^2" ] );

The next task is to construct the category of bounded complexes Cb
(
Kb
(
A⊕q

))
. This can be

done in six steps:
(1) Construct the free category Fq generated by quiver q.
(2) Construct the k-linear closure category k[Fq] of Fq.
(3) Construct the quotient category Aq of k[Fq] modulo the two-sided ideal generated by

the relations ρ.
(4) Construct the additive closure category A⊕q of Aq.
(5) Construct the bounded homotopy category Kb

(
A⊕q

)
as a quotient category of Cb

(
A⊕q

)
modulo the two-sided ideal generated by all null-homotopic morphisms.

(6) Construct the category of bounded complexes Cb
(
Kb
(
A⊕q

))
.

julia> Fq = FreeCategory( q )
GAP: Category freely generated by the right quiver ...

julia> Q = HomalgFieldOfRationals( )
GAP: Q
julia> k = Q
GAP: Q

julia> kFq = k[ Fq ]
GAP: Algebroid( Q * q )

julia> ρ =
[ PreCompose( kFq."d10", kFq."d11" ), PreCompose( kFq."d20", kFq."d21" ),

PreCompose( kFq."d30", kFq."d31" ), PreCompose( kFq."d40", kFq."d41" ),
PreCompose( kFq."d10", kFq."alpha11" ) - PreCompose( kFq."alpha10", kFq."d20" ),
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PreCompose( kFq."d11", kFq."alpha12" ) - PreCompose( kFq."alpha11", kFq."d21" ),
PreCompose( kFq."d20", kFq."alpha21" ) - PreCompose( kFq."alpha20", kFq."d30" ),
PreCompose( kFq."d21", kFq."alpha22" ) - PreCompose( kFq."alpha21", kFq."d31" ),
PreCompose( kFq."d30", kFq."alpha31" ) - PreCompose( kFq."alpha30", kFq."d40" ),
PreCompose( kFq."d31", kFq."alpha32" ) - PreCompose( kFq."alpha31", kFq."d41" ),
PreCompose( kFq."d10", kFq."h11" ) - PreCompose( kFq."alpha10", kFq."alpha20" ),
PreCompose( kFq."d20", kFq."h21" ) - PreCompose( kFq."alpha20", kFq."alpha30" ),
PreCompose( kFq."h12", kFq."d31" ) - PreCompose( kFq."alpha12", kFq."alpha22" ),
PreCompose( kFq."h22", kFq."d41" ) - PreCompose( kFq."alpha22", kFq."alpha32" ),
PreCompose( kFq."d11", kFq."h12" ) + PreCompose( kFq."h11", kFq."d30" )

- PreCompose( kFq."alpha11", kFq."alpha21" ),
PreCompose( kFq."d21", kFq."h22" ) + PreCompose( kFq."h21", kFq."d40" )

- PreCompose( kFq."alpha21", kFq."alpha31" ),
PreCompose( kFq."d11", kFq."t12" ) + PreCompose( kFq."h11", kFq."alpha30" )

- PreCompose( kFq."alpha11", kFq."h21" ),
PreCompose( kFq."alpha12", kFq."h22" ) + PreCompose( kFq."t12", kFq."d40" )

- PreCompose( kFq."h12", kFq."alpha31" ) ];

julia> Aq = kFq / ρ;
GAP: Algebroid generated by the right quiver q(T10,T11,T12,T20,T21,T22,T30,T31,T32,T40,

T41,T42)[d10:T10->T11,d11:T11->T12,d20:T20->T21,d21:T21->T22,d30:T30->T31,d31:T31->
T32,d40:T40->T41,d41:T41->T42,alpha10:T10->T20,alpha11:T11->T21,alpha12:T12->T22,
alpha20:T20->T30,alpha21:T21->T31,alpha22:T22->T32,alpha30:T30->T40,alpha31:T31->
T41,alpha32:T32->T42,h11:T11->T30,h12:T12->T31,h21:T21->T40,h22:T22->T41,t12:T12->
T40]

julia> SetUnderlyingNameForCapCategory( Aq,
g"Algebroid defined by the right quiver q subject to 18 relations" )

julia> Aq
GAP: Algebroid defined by the right quiver q subject to 18 relations

julia> Aq_add = AdditiveClosure( Aq )
GAP: Additive closure( Algebroid defined by the right quiver q subject to 18 relations

)

julia> KAq_add = HomotopyCategoryByCochains( Aq_add )
GAP: Homotopy category( Additive closure( Algebroid defined by the right quiver q

subject to 18 relations ) )

julia> InfoOfInstalledOperationsOfCategory( KAq_add )
61 primitive operations were used to derive 152 operations for this category which

* IsEquippedWithHomomorphismStructure
* IsLinearCategoryOverCommutativeRing
* IsAdditiveCategory
* IsTriangulatedCategory

julia> CKAq_add = CochainComplexCategory( KAq_add )
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GAP: Cochain complexes( Homotopy category( Additive closure( Algebroid defined by the
right quiver q subject to 18 relations ) ) )

Now we can construct the objects T1, T2, T3 and T4 in Kb
(
A⊕q

)
:

julia> T1 = HomotopyCategoryObject(
KAq_add, [ Aq."d10" / Aq_add, Aq."d11" / Aq_add ], 0 );

julia> T2 = HomotopyCategoryObject(
KAq_add, [ Aq."d20" / Aq_add, Aq."d21" / Aq_add ], 0 );

julia> T3 = HomotopyCategoryObject(
KAq_add, [ Aq."d30" / Aq_add, Aq."d31" / Aq_add ], 0 );

julia> T4 = HomotopyCategoryObject(
KAq_add, [ Aq."d40" / Aq_add, Aq."d41" / Aq_add ], 0 )

GAP: <An object in Homotopy category( Additive closure( Algebroid defined by the right
quiver q subject to 18 relations ) ) with active lower bound 0 and active upper
bound 2>

Similarly, we can construct the morphisms α1 : T1 → T2, α2 : T2 → T3 and α3 : T3 → T4:
julia> α1 = HomotopyCategoryMorphism(

T1,
[ Aq."alpha10" / Aq_add,

Aq."alpha11" / Aq_add,
Aq."alpha12" / Aq_add ],

0,
T2 )

julia> α2 = HomotopyCategoryMorphism(
T2,
[ Aq."alpha20" / Aq_add,

Aq."alpha21" / Aq_add,
Aq."alpha22" / Aq_add ],

0,
T3 )

julia> α2 = HomotopyCategoryMorphism(
T3,
[ Aq."alpha30" / Aq_add,

Aq."alpha31" / Aq_add,
Aq."alpha32" / Aq_add ],

0,
T4 )

GAP: <A morphism in Homotopy category( Additive closure( Algebroid defined by the right
quiver q subject to 18 relations ) ) with active lower bound 0 and active upper

bound 2>
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julia> T = CochainComplex( [ α1, α2, α3 ], 1 )
GAP: <An object in Cochain complexes( Homotopy category( Additive closure( Algebroid

defined by the right quiver q subject to 18 relations ) ) ) with active lower bound
1 and active upper bound 4>

julia> IsEqualForMorphisms( DifferentialAt( T, 1 ), α1 )
true

The object T is bounded above by 4. Hence, in any extension PT of T to a standard Postnikov
system, we should have C4

T = T 4 and µ3
T : T3 → C4

T is equal to ∂3
T . In other words the truncation

P≤4
T = T .

julia> P4 = PostnikovSystemAt( T, 4 )
GAP: <An object in Cochain complexes( Homotopy category( Additive closure( Algebroid

defined by the right quiver q subject to 18 relations ) ) ) with active lower bound
1 and active upper bound 4>

julia> IsEqualForObjects( P4, T )
true

The next iteration computes C3
T = Coconest

(
µ3
T

)
and µ2

T : T2 → C3
T . We get the truncation

P≤3
T := 0→ T1

α1−→ T2
µ2
T−−→ C3

T → 0

julia> P3 = PostnikovSystemAt( T, 3 )
GAP: <An object in Cochain complexes( Homotopy category( Additive closure( Algebroid

defined by the right quiver q subject to 18 relations ) ) ) with active lower bound
1 and active upper bound 3>

julia> C3 = ObjectAt( P3, 3 )
GAP: <An object in Homotopy category( Additive closure( Algebroid defined by the right

quiver q subject to 18 relations ) ) with active lower bound 0 and active upper
bound 3>

julia> µ2 = DifferentialAt( P3, 2 );

julia> Show( µ2 )
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0 − 0 → T 2
4

↑ ↑() (
−α2

3
−∂1

4

)
|2 |2
T 2

2 −
(
α2

2 −h2
2
)
→ T 2

3 ⊕ T 1
4

↑ ↑(
∂1

2
) (

∂1
3 −α1

3
0 −∂0

4

)
|1 |1
T 1

2 −
(
α1

2 −h1
2
)
→ T 1

3 ⊕ T 0
4

↑ ↑(
∂0

2
) (

∂0
3 −α0

3
)

|0 |0
T 0

2 −
(
α0

2
)
→ T 0

3

The next iteration computes C2
T = Coconest

(
µ2
T

)
and µ1

T : T1 → C2
T . We get the truncation:

P≤2
T := 0→ T1

µ1
T−−→ C2

T → 0

julia> P2 = PostnikovSystemAt( T, 2 )
GAP: <An object in Cochain complexes( Homotopy category( Additive closure( Algebroid

defined by the right quiver q subject to 18 relations ) ) ) with active lower bound
1 and active upper bound 2>

julia> C2 = ObjectAt( P2, 2 )
GAP: <An object in Homotopy category( Additive closure( Algebroid defined by the right

quiver q subject to 18 relations ) ) with active lower bound 0 and active upper
bound 4>

julia> µ1 = DifferentialAt( P2, 1 );

julia> Show( µ1 )
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0 − 0 → T 2
4

↑ ↑

0
(
α2

3
∂1

4

)
|3 |3
0 − 0 → T 2

3 ⊕ T 1
4

↑ ↑() −α2
2 h2

2
−∂1

3 α1
3

0 ∂0
4


|2 |2
T 2

1 −
(
α2

1 −h2
1 t21

)
→ T 2

2 ⊕ T 1
3 ⊕ T 0

4
↑ ↑(
∂1

1
) (

∂1
2 −α1

2 h1
2

0 −∂0
3 α0

3

)
|1 |1
T 1

1 −
(
α1

1 −h1
1
)
→ T 1

2 ⊕ T 0
3

↑ ↑(
∂0

1
) (

∂0
2 −α0

2
)

|0 |0
T 0

1 −
(
α0

1
)
→ T 0

2

The next iteration computes C1
T = Coconest

(
µ1
T

)
and µ0

T : 0→ C1
T and the algorithm returns

the truncation
P≤1
T := 0→ C1

T → 0
and terminates.
julia> P1 = PostnikovSystemAt( T, 1 )
GAP: <An object in Cochain complexes( Homotopy category( Additive closure( Algebroid

defined by the right quiver q subject to 18 relations ) ) ) with active lower bound
1 and active upper bound 1>

julia> C1 = ObjectAt( P1, 1 )
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T 2
4
↑(
−α2

3
−∂1

4

)
|4

T 2
3 ⊕ T 1

4
↑α2

2 −h2
2

∂1
3 −α1

3
0 −∂0

4


|3

T 2
2 ⊕ T 1

3 ⊕ T 0
4

↑−α2
1 h2

1 −t21
−∂1

2 α1
2 −h1

2
0 ∂0

3 −α0
3


|2

T 2
1 ⊕ T 1

2 ⊕ T 0
3

↑(
∂1

1 −α1
1 h1

1
0 −∂0

2 α0
2

)
|1

T 1
1 ⊕ T 0

2
↑(

∂0
1 −α0

1
)

|0
T 0

1

The convolution of T is given by Σ−1(C1
T

)
:

julia> conv_T = Shift( C1, -1 )
GAP: <An object in Homotopy category( Additive closure( Algebroid defined by the right

quiver q subject to 18 relations ) ) with active lower bound 1 and active upper
bound 6>

julia> Show( conv_T )
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T 2
4
↑(
α2

3
∂1

4

)
|5

T 2
3 ⊕ T 1

4
↑−α2
2 h2

2
−∂1

3 α1
3

0 ∂0
4


|4

T 2
2 ⊕ T 1

3 ⊕ T 0
4

↑α2
1 −h2

1 t21
∂1

2 −α1
2 h1

2
0 −∂0

3 α0
3


|3

T 2
1 ⊕ T 1

2 ⊕ T 0
3

↑(
−∂1

1 α1
1 −h1

1
0 ∂0

2 −α0
2

)
|2

T 1
1 ⊕ T 0

2
↑(

−∂0
1 α0

1
)

|1
T 0

1

julia> IsEqualForObjects( conv_T, Convolution( T ) )
true
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Hom-finite, 212
E-injective, 137
E-projective, 137
K-projective, 86
E -replacement, 189
E -resolution, 189
k-algebroid, 50
k-finite dimensional (left) A -modules, 56
k-finite dimensional right A -modules, 56
k-linear finitely presented category, 50
k-linear functor, 212
(locally small) category, 205
(locally small) category (with Hom-setoids), 206

Ab-category, 211
Abelian, 215
abstraction k-algebroid, 160
acyclic, 38, 68
additive, 49, 213
additive closure, 41
additive functor, 211
adjunction, 210
admissible, 50
approximation, 186
arrows, 38, 157

boundaries functor, 67
boundaries-to-cycles, 68
bounded, 66
bounded above, 66, 163
bounded below, 66, 163

category of k-linear functors, 55
category of matrices over k, 40
chain homotopy, 71
class of colifting objects, 53
class of lifting objects, 51
classical generator, 155
coastriction morphism, 216

cochain complex category, 66
cochain complexes, 66
cochain morphisms, 66
coessential epimorphism, 57
cohomological functor, 221
cohomology functor, 67
coimages, 216
cokernel colift, 214
cokernel object, 214
cokernel projection, 214
colift morphism, 208
coliftable along, 208
colifting morphism, 53
complete, 155
composition, 206
computable, 43
computable as instance of a doctrine, 207
computable category, 207
computable exact, 136
computable Frobenius, 137
computable triangulated, 123
conflation, 136
congruence of morphisms, 206
congruence relation, 48
conservative, 208
constructable, 39
contractible, 68
contravariant functor, 208
convolution functor, 174
convolution morphism, 164
convolution object, 164
counit, 210
cover, 186
cycles functor, 67
cycles-to-cohomology, 68

decidable colifts, 208
decidable equality of morphisms, 207
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decidable lifts, 207
decidable linear systems, 102
defect of exactness, 217
deflation, 136
derived category, 83
direct sum, 213
distinguished object, 97
doctrine-based category constructor, 35
doctrine-based derivation, 215
duality functor, 148

embedding, 208
endomorphism k-algebra, 212
enough E-injectives, 137
enough E-projectives, 137
essential monomorphism, 58
essentially surjective on objects, 208
exact, 68, 125, 136, 219, 227
exceptional shifts, 187
extension, 165
extension group, 87

faithful, 208
finite, 212
finite graded left R-presentations, 47
finite left R-presentations, 44
finitely presented categories, 50
free category, 38
Freyd category, 42
Frobenius category, 137
full, 208
fully faithful, 208
functor, 208

generalized tilting right R-module, 153
generating quiver, 213
graded, 46
graded ring category, 39

has computable injective colifts, 58
has computable projective lifts, 57
has decidable lifts, 43
has enough injective objects, 57
has enough projective objects, 57
have weak-kernels, 43
helix, 225
homogeneous of degree, 39
homological dimension, 87
homological functor, 221
homology object, 217
homomorphism structure, 97

homotopy category, 73
homotopy-equivalence, 71
homotopy-equivalent, 71
homotopy-inverse, 71

identities, 206
image embedding, 216
image object, 216
indecomposable, 58
inflation, 136
injective dimension, 87
injective envelope, 58
injective resolution, 83
inverse rotation, 223
involution, 147
irreducible morphisms, 213
isomorphism, 208

kernel embedding, 214
kernel lift, 214
kernel object, 214

left adjoint, 210
left coherent, 43
left computable, 43
left derived functor, 89, 90
lift morphism, 208
liftable along, 208
lifting morphism, 51
linear category, 211
linear closure, 41
linear system, 101
locular, 212

mapping cone, 70, 125
mapping cone triangle, 125
maximal E -exceptional shift, 187
minimal E -exceptional shift, 187
minimal E -replacement, 189
Morita equivalent, 152
morphism datum, 42
morphism witness, 42
morphisms, 206
multilocular, 213

natural injection in the mapping cone, 70
natural injection to the mapping cone, 125
natural isomorphism, 209
natural projection from the mapping cone, 70,
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natural transformation, 209
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null-homotopic, 71

objects, 206
opposite category, 207

path, 38
paths of length 0, 157
paths of length 1, 157
paths of length greater than one, 157
Postnikov system, 163
pre-Abelian, 214
preadditive, 211
precomputable triangulated, 121
presentation matrix, 45
primitive category constructor, 35
projective cover, 57
projective dimension, 87
projective resolution, 75

quasi-isomorphism, 68
quotient category, 48, 49
quotient functor, 49

radical embedding, 61
radical ideal, 212
range, 38
Replacement functor, 196
replete, 227
right adjoint, 210
right computable, 43
right derived functor, 90, 91
right quiver, 38
ring category, 38
rotation axiom, 219

setoids, 206
shift autoequivalence, 219
shift automorphism, 124
skeletal, 210
skeleton, 210
solution, 102
source, 38
stable category, 49, 52, 53
stalk cochain complex, 67
stalk cochain morphism, 67
stalk functor, 67
standard cocone object, 128
standard cone object, 219
standard convolutions, 166
standard exact triangle, 219

standard morphisms between the standard
cocone objects, 128

standard morphisms between the standard cone
objects, 126

standard Postnikov system, 165
strong exceptional, 154
strong exceptional sequence, 155
strong generator, 155
superfluous epimorphism, 57
support, 66

thick, 227
triangulated category, 219
triangulated hull, 154
triangulated subcategory, 227
trivial path, 38
two sided ideal of morphisms, 49

unit, 210
universal morphism from image object, 216

vertices, 38

weak generator, 155
weak-kernel, 43
weak-kernel lift, 43
weak-kernel morphism, 43
weak-kernel object, 43
witness of exactness, 226
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