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Zusammenfassung

Die Erkennung und Identifizierung von Zielen sind entscheidende Schritte in der Kette
der Radarsignalverarbeitung. Aufgrund der hohen Auflésung sind abbildende Radare
fiir diese Aufgaben gut geeignet. In dieser Arbeit wird ein Verfahren vorgestellt, das
auf der Zerlegung von Radarbildern in verschiedene Streumechanismen basiert. Das
Ziel dieses Verfahrens ist die Identifizierung von spezifischen Streuzentren bestimmter
Ziele. Diese spezifischen Streuzentren kénnen in weiteren Schritten der Identifizierung
genutzt werden um z.B. die Menge der moglichen Ziele einzuschranken.

Als Anwendungsbeispiel wird in dieser Arbeit die Trennung der Echos von Strahltrieb-
werken sowie von isotropen Streuzentren genutzt. Zur Modellierung der Echos von
Strahltriebwerken wird ein Wellenleitermodell genutzt, welches sehr verbreitet in der
Modellierung von Radarechos ist. Die zum Verstdndnis des Modells notwendigen
Grundlagen der Ausbreitung elektromagnetischer Wellen in Wellenleitern werden im
Rahmen dieser Arbeit erlautert. Abschliefend steht ein universelles Modell zur Verfii-
gung, das mit beliebigen Wellenformen kombiniert werden kann. Beispielhaft wird die
Verdnderung des Zeit-Frequenz-Verhaltens einer Chirp-Wellenform dargestellt.

Die Trennung der Echos selbst erfolgt mit einem Algorithmus aus dem Bereich der
diinnbesetzten Gleichungssysteme. Aus diesem Bereich der Mathematik werden einige
grundlegende Zusammenhange sowie elementare Losungsverfahren vorgestellt. Das
Verfahren das hier zum Einsatz kommt, wird als morphologische Komponentenanalyse
bezeichnet, und wurde entwickelt um Signale in Komponenten mit unterschiedlicher
Struktur zu zerlegen. Aufgrund dieser Historie erscheint dieses Verfahren als besonders
geeignet, das zugrundeliegende Problem zu l6sen, und wird daher im Detail vorgestellt.

Das grundsatzliche Vorgehen des Verfahrens wird anschliefend durch eine Simulation
mit verschiedenen kanonischen Formen, d.h. Punkten, Quadraten, Kreisen, Kreuzen
und Linien, dargestellt. Um die Fahigkeit des Algorithmus zur Trennung von Trieb-
werksechos und isotropen Punktstreuern zu bewerten wird eine Simulation mit diesen
beiden Arten von Echos durchgefithrt. AbschlieBend wird ein realer Datensatz des
Tracking and Imaging Radars (TTRA) des Fraunhofer FHR verwendet, um Ergebnisse
mit einem realen Radarsystem zu zeigen.
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Abstract

Recognition and Identification of targets are crucial steps in the radar signal processing
chain. Due to their high resolution, imaging radars are a well suitable choice for
these tasks. This thesis presents a framework, which is based on sparse decomposition
of radar images, to identify different kinds of scattering mechanisms. The aim of
this framework is the identification of specific parts of certain targets. These specific
scattering centers can be used in further steps of identification, e.g. to limit the number
of possible targets.

As application example, the separation of echoes from jet engines and isotropic scat-
tering centers is used in this thesis. To model the echoes from jet engines a waveguide
model is used, which is common in the modeling of radar echoes. The basic principles
of electromagnetic wave propagation in waveguides, which are necessary to understand
the model, are explained in this thesis. Finally, a universal model is available, which
can be combined with arbitrary waveforms. As an example the change of the time-
frequency behavior of a chirp waveform is shown.

The separation of the echoes themselves is done with an algorithm from the domain
of solving sparse systems of equations. From this area of mathematics, some basic
relationships and elementary solution methods are presented. The method used in this
thesis is called morphological component analysis and was developed to decompose
signals into components with different structures. Based on this history, this method
seems to be particularly suitable to solve the underlying problem and is therefore
presented in detail.

The basic procedure of the method is then illustrated by a simulation with different
canonical forms, i.e. points, squares, circles, crosses and lines. To evaluate the ability
of the algorithm to separate engine echoes and isotropic point scatterers, a simulation
with these two types of echoes is performed. Finally, a real data set of the Tracking
and Imaging Radar (TIRA) of Fraunhofer FHR is used to show results with a real
radar system.
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Chapter 1

Introduction

Within the big field of radar there exist many research fields, one of the most basic is
the detection of targets, but after the detection of a target an open question remains:
"What has been detected?". The task of classification and identification of radar targets
is the research field in which this work is placed.

1.1 The need for Classification Systems

The use of surveillance systems, like air traffic control or driver assistance to avoid
collisions on the street, has become part of everyday life. In all of these systems
it is necessary to know the number and types of other traffic participants to decide
how to act next. In tracking systems, classifiers can be used to support the tracker
in ambiguous situations [NKOWO02] and by that enhance the safety of transport and
navigation systems [Neb95].

In modern air traffic the use of transponders has become standard, and in many
airspaces mandatory, as identification method. These transponders are used to com-
municate with so-called secondary radar systems and are therefore communication
rather than radar systems. First the airplane is detected by the primary radar, the
actual radar system, and after that the secondary radar identifies the target. These
transponders are a sort of Identification Friend or Foe (IFF) system, which are used
in civil and military airplanes [Bow85]. Unfortunately, there are some examples in his-
tory where the IFF system was not working properly and caused disastrous accidents.
One example is the shoot-down of Iran Air 655 in 1988 [Fis13|, where according to the
official statement, the Airbus was mistaken as an F-14 fighter aircraft due to a wrong
identification [Neb95]. More recent examples for accidental downings are the Malaysia
Airlines flight MH17 over the Ukraine in 2014 [Dut15] and the Ukraine International
Airlines flight PS752 from Tehran, Iran to Ukraine in January 2020, which has been
mistaken as a cruise missile [BBC20].

These examples show that the IFF system is not completely secure and that further
methods, which do not rely on a communication between the radar and the target, are
necessary. These methods are called noncooperative methods, and a recent example,
where this kind of system would have been helpful is the Malaysia Airlines flight MH370.
In that case the IFF system was switched off on purpose and the aircraft could not be
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identified anymore by the secondary radar. It is assumed, but not confirmed, that the
aircraft was detected heading towards the Indian Ocean by a military radar [MBK16].
If this radar would have been capable of noncooperative identification, the search area
could have been specified earlier.

1.2 State-of-the-Art in Target Classification and
Scattering Identification

Radar target recognition has been studied for a long time already. In this section, a
review of a part of the corresponding literature is given and no claims to completeness
are made. The basic application of the algorithms presented in Section 1.2.1 is the
comparison of a measured radar signature with a database of known targets. There are
mainly two groups of systems, the feature-based systems and the signature comparison
systems. Both need a database of known targets to perform a comparison of the entries
of the database with the measured data. The difference between both systems is the
representation of the data. The feature-based systems transform the measured data
into a feature space and perform the comparison with the known data in this feature
space, which is normally much faster than the direct comparison of the measured
radar signatures. The drawback of the feature-based methods is that the design of
appropriate features either requires a training using a machine learning algorithm or a
human expert that designs the feature extraction and classification manually.

The algorithms presented in Section 1.2.2 are aiming at the identification of different
scattering mechanisms and not at the identification of specific targets. The results of
these algorithms can be used as part of a feature-based identification, but the presented
literature is not focused on that topic. Therefore, the overview is split into these two
parts. These scattering identification methods are closer related to the topic of this
thesis than the methods of Section 1.2.1, but the target classification remains the goal
of the presented algorithm and therefore a short overview of available methods is given
below.

1.2.1 Target Classification

The most obvious way of classification with radar signatures is a nearest neighbor
approach, which is for example used in [HP93, RS95, Dom96] for air targets. While
[HP93] and [Dom96] use High Range Resolution (HRR) profiles for classification, [RS95]
uses Inverse Synthetic Aperture Radar (ISAR) images as input. The implementation
of the classifiers is comparable, except that [HP93] uses correlation filters, which are
designed as an average HRR profile over a certain aspect angle interval and [RS95,
Dom96] compare unknown test data with all stored reference data around the estimated
aspect angle. Additionally to the correlation filter, a majority voting over a sequence
of HRR profiles is used in [HP93] to achieve a more robust result.
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The benefit of using sequences of HRR profiles is also shown in [JO00] and [Bie08§].
The latter uses a classifier similar to the one in [Dom96], but the results of consecutive
HRR profiles are fused to improve the results. As fusing methods, a Bayes approach,
majority voting and a Dempster-Shafer decision support method are used. In [JO00] a
combination of a tracking and a classification system is presented, which uses a Bayes
approach for classification. The initial estimate of target type and orientation is either
established or rejected using the classification results of the following HRR profiles.
The combination of tracking and classification is also exploited in [NKOWO02], which
uses a HRR-based template matching classifier comparable to [HP93] in ambiguous
ground target tracking situations. For example if two or more vehicles merge to a
single track on the road, a classifier can be used when these targets split again to
reconstruct the track of each target.

Examples for feature-based methods can also be found in the literature. A prominent
example is the extraction of strong peaks and their relative position along the HRR
profile. This is done for example in [MW99] and [HWS10]. Both use a statistical clas-
sifier based on the peak location probability function and the peak amplitude probability
density function, which are estimated from a training set of known targets.

A feature-based approach that is not aiming at a reduced dimension can be found in
[KSKO05], which is focusing on a classifier with rotational invariance instead of a reduced
complexity. In this work, radar images are transformed into a polar coordinate system
with the center of the target as the origin and radius and angle as axes of the system.
As features, the projection of the target on each axis, i.e radius and angle, and the
twenty largest elements of a principal component analysis (PCA) of the transformed
images are used.

A completely different approach that is not based on high range resolution, but on
high Doppler resolution is the classification with micro-Doppler features. For aircrafts,
the most prominent feature of this kind is the Jet Engine Modulation (JEM) [Tai05],
which uses the modulation of the radar echo caused by the blades of jet engines.
With these modulation features, the number of blades and the rotational speed can be
estimated, which can be used to limit the number of possible engines and with that the
number of possible targets. This means that identification of the target is generally
not possible, but a list of candidates can be produced.

These modulation features can also be used for rotor engines of helicopters or drones.
In these cases, also the size of the blades can be estimated from the covered Doppler
spectrum. An example for this approach can be found in [dWHM14], which uses a
singular value decomposition of measured spectrograms to extract rotational speed
and size of the blades. A combination of these modulation features with HRR profiles
can be found in [MEA™14], which uses these features to identify three different drones
from simulated data.

These classical methods are studied already for many years and many applications
can be found in the literature. In [CWO07] the target classification using JEM was
described as the most mature, since it is already applied for many years. One of the first
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reports is [Gar61], which was published in 1961. Nevertheless, over the last years, since
2014, an increased interest in image-based classification can be seen in the literature.
This increased interest is related to the popularity of Deep Learning methods, which
give today’s state-of-the-art results for almost all available datasets. To the knowledge
of the author, the first publication on deep learning related to radar target recognition
is [Wagl14], which uses a convolutional neural network to identify ten different targets in
SAR images. Over the last years a vast amount of papers related to target recognition
using deep learning were published, some examples are [CWXJ16, OKCL16, Wagl6,
KS18, BABT20]. The success of these methods is based on the intrinsic structure of
the used networks, which use convolutional filters to extract an internal representation
of the input data. This internal representation should contain all relevant information
about the input data and should be sufficient for the classification. Therefore, these
methods can be seen as feature-based methods, but the extraction of the features
is done automatically using the input data, which is normally two-dimensional, i.e.
radar images. Omne reason for the efficiency of this internal representation are the
nonlinearities in the convolutional part of the network. These nonlinearities allow the
network to represent far more complicated functions than for example a PCA, which
can be modeled as a single layer linear neural network.

1.2.2 Scattering Identification

In this thesis, the focus is on scattering identification in high resolution radar images
rater than the actual target identification. Therefore, a part of literature focusing on
this topic is given here separately, as it was already mentioned above. Yet the use of
scattering properties is not limited to high resolution imaging, resonance effects that
appear in the lower frequency bands can also be used for identification. An example
is given in [CdBS10], which itself includes a short review on this field. The general
idea is to use a radar with a wavelength in the region of the size of the air-intake of an
aircraft, since this will cause resonances that can be detected in the echo signal. These
resonances can be sufficient to identify targets from a list of potential targets using a
matching process between the measured data and a database.

In the field of imaging radar, the oldest and thus most mature technique to identify
scattering mechanisms is the use of polarimetric data with an appropriate decompo-
sition [CP96]. To use these decomposition theorems, fully polarimetric measurements
are necessary, i.e. two coherent transmitters and two receivers with vertical and hori-
zontal polarization of the antenna. With this constellation, a 2 x 2 scattering matrix
consisting of the echos in co-polarized and cross-polarized combinations can be defined
for each pixel in the radar image. For this scattering matrix, several coherent de-
composition theorems exist that allow the identification of single, double and multiple
bounce scattering centers. An example with two different decompositions is given in
[KLBAOG], which presents the decomposition of the measurements of a bridge during
construction and after completion. In the given examples, the difference between the
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cables, the deck and the supporting structures is clearly visible and shows the potential
of fully polarimetric measurements.

Nevertheless, the use of fully polarimetric systems is still not very widespread due
to the high cost and the demanding calibration needed for these systems. Therefore,
most research related to scattering identification over the last years was focused on
single channel radar systems.

One of the first works pointing in this direction is [PM97] that introduced a paramet-
ric signal model for attributed scattering centers. These scattering centers are namely
corners, edges, flat plates and curved surfaces and the response of them is derived by
the geometric theory of diffraction. Additionally to these models also a feature extrac-
tion method was introduced and some examples with SAR images are shown to validate
the derived models. The application of these parametric scattering center models for
target recognition can be found for example in [CMPO00], which uses a SAR dataset
consisting of ten targets to perform a classification. For the presented algorithm, a
target is modeled as a collection of attributed scattering centers, whose position and
type are extracted from the measurements and afterwards matched with the predicted
features based on a target hypothesis. The application of attributed scattering centers
can also be found in more recent publications like [DWH*17] or [DWMY17]. A three-
dimensional extension of these models, also for bistatic observations, was published in
[Jac09], which also gives a maximum likelihood estimator to identify these scattering
centers in 3-D radar images.

An application that is using sparse decomposition of radar measurements to identify
different scattering targets is presented in [dWvR16]. In this publication, a through-
the-wall radar is used to perform stand-off measurements of a house, and a sparse
decomposition algorithm is used to identify corners and planar areas of the walls inside
the house. The model of these scattering centers does not only rely on the magnitude,
rather the phase is exploited as well. A planar wall should produce a linear phase,
while a corner is modeled with a quadratic phase term. A comparable approach is
chosen in [ES17], which uses the method of stationary phase to create models for
different geometric structures and a sparse reconstruction algorithm to locate these
models in measured ISAR images. The data used is from a car on a turntable and the
models are curvature structures on a car. Additionally to the decomposition of a single
image, the recorded data from 360° is split into several parts and the aspect angle
dependent behavior of scattering centers is exploited for recognition. This separation
of the measured data is one possibility to process data from large observation angles
for scattering identification. Other examples to model and identify aspect dependent
scattering centers is given in [(SOT14] and the references therein.

Another example that uses sparse representation of radar images is [SCMs11], which
presents a framework that is able to handle several different scattering models in the
complex measurement domain. This work is, although it focuses on the improvement
of the imaging result and is limited to wavelets and point scattering centers together
with [dWvR16], one of the closest to the work presented in this thesis.
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1.3 Motivation and Contribution

In Section 1.1 was already shown that reliable classification methods are needed to avoid
tragic accidents and support decision making in surveillance systems. Therefore, the
main motivation of this thesis is to develop an intermediate step between the detection
of targets and the classification methods presented in the overview of Section 1.2.1.
This overview showed that most classifiers that are able to identify targets rely on a
list of potential targets that can be discriminated. This list of potential targets is either
created by operational constraints or by the data that is available.

One application of the framework presented in this thesis is a feature extraction
algorithm that can be used to create a list of potential targets if only a small amount
of a priori information is available. The presented method is able to gather information
about the number and position of jet engines and can thus distinguish between a two-
engine and a four-engine airplane, or between an aircraft with engines mounted under
the wing and one with engines at the fuselage. The number and position of engines
is thus a feature that can be used for the classification of the aircraft itself. The
presented algorithm relies on the dispersion effect that occurs inside jet engines while
the electromagnetic wave of the radar is propagating inside the air intake of engines.
The relevance of this kind of scattering was already mentioned for example in [RH96],
but so far this effect is considered mostly as imaging artifact [Bor99].

In this thesis, the effect is modeled in the frequency domain and is used additionally
to the standard point scatterer model in a sparse decomposition framework, which is
capable of using several models at the same time and decompose the ISAR image into
the corresponding parts. To the knowledge of the author, this is the first time that an
approach like this is presented with a physically motivated model and used in a target
recognition context. In the literature, only frameworks with dictionaries!, which are
known to give an efficient representation in the image domain, e.g. wavelets, can be
found [SCMs11].

The validation of the presented algorithm will be done with ISAR images, which are
measured with the Tracking and Imaging Radar (TTRA) of the Fraunhofer Institute
for High Frequency Physics and Radar Techniques (FHR).

The main contributions of this thesis are summarized as follows.

1. Design of an algorithm that can be used as intermediate step in an air target
recognition scenario to create a list of potential targets.

2. Design of a complex valued dictionary for air intakes and jet engines based on a
waveguide scattering model to localize these in ISAR images.

3. Extension of a sparse decomposition algorithm called morphological component
analysis to the complex valued radar raw data domain.

!The term dictionary will be explained in Section 4.1.
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4. Validation of the presented algorithm with simulations and real ISAR images
measured with the TIRA system of the Fraunhofer FHR.

Parts of this thesis have been published before. In [Wagl5] a variation of the mor-
phological component analysis, which will be presented in Section 4.3, was used with
real valued SAR data to separate targets and clutter. The algorithm was applied in
this case with a wavelet and a cosine transform to represent targets and clutter, respec-
tively. The detection of jet engines using a waveguide model was presented for the first
time in [WDE16] by the author. In this work, the decomposition was also applied in
the image domain with an image domain approximation of the model presented in Sec-
tion 3.2 and the decomposition was performed by a greedy approach called matching
pursuit, which will be shown in Section 4.2.1. The work in [WE17] was an extension
of the work in [WDE16], giving more details about the model and the decomposition,
but without new results compared to [WDE16].

Actual results of this thesis were pubished for the first time in [WE21] with a de-
tailed derivation of the model, which is comparable to Chapter 3. As results, parts
of the content from Sections 5.1 and 5.3 are presented in [WE21]. The latest results,
including the results from Section 5.2, were presented in [WE22| together with the
latest development of the sparse decomposition framework.

1.4 Outline

The remainder of this dissertation is organized as follows. In Chapter 2 to 4, the
background material for this dissertation is covered. From these chapters, Chapter 2
gives the basics on radar and Inverse Synthetic Aperture Radar (ISAR) imaging. In
Chapter 3, first a review of the propagation of electromagnetic waves in waveguides
is given and afterwards the model that is used in this dissertation for the jet engine
scattering is formulated. The foundations and methods of sparse representation are
described in Chapter 4 together with the framework that is used for the discrimination
of the different scattering mechanisms. The results of this framework and the main
contribution of this thesis are given in Chapter 5. Finally Chapter 6 concludes this
thesis and shows some possible directions for future work using the obtained results.






Chapter 2

Radar and ISAR Imaging Principles

The purpose of this chapter is to present the fundamentals of radar in general and of
ISAR imaging as detailed as necessary to understand the context and application of
the later presented algorithm. For this reason, the basic elements of radar with an
emphasis on high resolution radar will be presented in Section 2.1. The core concepts
of ISAR imaging are shown in Section 2.2.

2.1 High Range Resolution Radar

The most important part of high resolution radar are the range compression wave-
forms, but to understand the motivation for these waveforms some knowledge of the
fundamental radar elements is required. These fundamentals are limited here to the
basic elements of radar transmitter and receiver and are described in Section 2.1.1 from
a signal processing perspective without considering hardware constraints. This way is
chosen, since this thesis introduces a new signal processing method that works inde-
pendently from the chosen hardware implementation, and a detailed understanding of
the radar hardware is not necessary to understand radar imaging theory.

Section 2.1.2 describes the range determination of a target with a basic pulsed rect-
angular waveform. The already mentioned range compression waveforms, especially
the method that is used in the TIRA data, are described in Section 2.1.3. These meth-
ods are necessary to achieve range resolutions below the typical sizes of aircrafts, which
means that these methods are mandatory to produce images of air targets.

2.1.1 Fundamentals of the Radar Transmitter and Receiver

The principal function of a radar is to determine the location of targets by transmitting
a signal and receiving echos of this signal. The sources of these echos can have various
origins, it might be man-made targets, like airplanes, but also birds can cause echos
strong enough that a radar can detect it. Also natural objects, like trees or the ground
cause sometimes strong reflections that are visible in the processed radar output. These
unwanted echos are normally referred to as ’clutter’ and several methods have been
presented in the past to suppress this stationary clutter [Sko01]. For this thesis, clutter
is not relevant, since the produced images are from in flight targets, which means that
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there is no clutter near the targets. The principal operation of a radar, transmitting a
signal and receiving an echo, is depicted in Figure 2.1.1

source of airplane and radar graphics:
https.//openclipart.org

Figure 2.1.1: Basic radar principle

The graphic in Figure 2.1.1 shows that the radar transmits a signal sgp(t) through
the air, thus this signal has to follow the boundary conditions given by Maxwell’s
equations (see Section 3.1 or for example [Geo97]). These boundary conditions require
a real valued signal and the common form that is used in radar is [CB09]

sar(t) = R{s(t)e> "}
= R{s(t)} cos(2m fot) — I{s(t)} sin(27 fot), (2.1.1)

where s(t) is the complex envelope, i.e. the waveform of the transmitted signal. The
frequency fy is the carrier frequency of the radar signal and the typical range for radar
operations is the range of 1 GHz to 100 GHz. The generation of sgr(t) is done by the
so called quadrature modulator (QM), which basic structure is shown in Figure 2.1.2.
With this structure any arbitrary complex waveform can be converted to a real valued
bandpass signal that can be transmitted via an antenna. The choice for this modulation
scheme becomes clear in combination with the receiver structure shown below.

The main function of the receiver is to remove the carrier frequency of the echo
signals and to extract the complex envelope. These steps are done since the processing
of the data is performed in the baseband, which is located in the spectrum around the
frequency of zero and defined by the bandwidth of the waveform. This transformation
is done to reduce the requirements on the processing hardware, since processing of the
transmitted signal directly would be very demanding and there would be no benefit
from a signal processing perspective, since the information is completely contained in
the modulation of the signal.

Graphically speaking, this transformation from the carrier frequency to the baseband
represents a shifting in the spectrum of the frequencies around fy to the area around
the frequency f = 0 in the center of the spectrum. But if the carrier frequency
is simply removed from the spectrum, the frequencies around f, will overlap with the

10
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Figure 2.1.2: Basic structure of a quadrature modulator

frequencies around — fj, therefore this operation cannot be realized by simply removing
the fo term from (2.1.1). The solution is the so called equivalent low-pass signal, which
is the result of a two-step procedure. First the spectrum of the signal is changed into a
single sided spectrum that only contains positive frequencies and afterwards the single
sided spectrum is shifted towards the negative frequencies by the amount of fy.

The first step of creating a single sided spectrum requires an analytic time signal,
which means that the real and imaginary parts must form a Hilbert transform pair

SAnalytic(t) = SRF(t) + ]H{SRF(t)} (212)

The imaginary part of (2.1.2) is called the quadrature (Q)-) component and the model
is called quadrature model [Bor99]. The real part of the analytic signal is called in-phase
(I-) component. A general problem of the Hilbert transform for practical applications
is that it cannot be implemented in real time and therefore an approximation must be
used.

For narrow-band signals, which are used in the radar applications considered here,
the standard method to approximate the Hilbert transform and the shifting to base-
band is the quadrature demodulator (QDM) [OL07]. The QDM realizes the two steps
mentioned above, creating a single sided spectrum and removing the carrier frequency.

The basic structure of a QDM is shown in Figure 2.1.3, which shows a multiplication
of the received signal with cos(-) and sin(+) functions. To understand why this structure
extracts the transmitted waveform of the QM, some trigonometric identities are needed,
precisely

11
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cos?(2m fof) = ;(1 + cos(dm fot)) (2.1.3)

sin?(2m fot) = ;(1 — cos(4m fot)) (2.1.4)

sin(2m fot) - cos(2m fot) = ; sin(4m fot). (2.1.5)
2cos(2mfyt)

T _Rels(v)

Srr(t)

I RLEC),

-2sin(2mfyt)
Figure 2.1.3: Basic structure of a quadrature demodulator

The output of the multiplications in the QDM give again the real and imaginary
part of the complex envelope

spr(t)2cos(2mfot) = 2R{s(t)} cos®( 27 fot) — 23{s(t)} sin(27 fot) cos(27 fot)
R{s(t)}(1 + cos(4m fot)) — S{s(t)} sin(4~ fot)
= R{s(t)} + R{s(t)} cos(dm fot) — I{s(t)} sin(4r fot)

(2.1.6)
and
spr(t)(=2sin(2mfot)) = —2R{s(t)} cos(27 fot) sin (27 fot) + 23{s(t)} sin® (27 fot)
= —R{s(t)}sin(4n fot) + S{s(t) }(1 — cos(4n fot))
S{s(t)} — I{s(t)} cos(4r fot) — R{s(t)} sin(4x fot).
(2.1.7)

The unwanted terms at +2f; are removed with the low-pass filters shown in Fig-
ure 2.1.3. The output of the QDM corresponds thus to the input of the QM if the
modulated signal is fed directly into the QDM.

12
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Since the first step of the QM and QDM is the creation of an analytic signal with
the I- and Q-components, common alternative names for the QM and QDM are 1Q
modulator and demodulator, respectively.

2.1.2 Range Determination with a Pulsed Waveform
2.1.2.1 Waveform Description and Properties

As shown above, an IQ modulator can be used to submit any arbitrary waveform over
the air. In this section the most basic waveform, a rectangular pulse of duration 7p
and amplitude A

s(t) = A-rect (t) : (2.1.8)

P
will be used as an example to illustrate the basic relations in range determination of
targets'. An illustration of a pulse train with this waveform is shown in Figure 2.1.4.

Power A _,.|i|<_

A

Yy

PRI
[e—

Figure 2.1.4: Train of rectangular pulses

The pulses in Figure 2.1.4 are submitted with a fixed period, which is called pulse
repetition interval (PRI) and the inverse of the PRI is the pulse repetition frequency
(PRF). According to the basic radar principle described in Figure 2.1.1, the radar is
waiting for an echo of the target and the distance to the target is determined by the
time delay At between the transmitted and the received pulse. The distance R to the
target is calculated by

cAt

R = 5

where c is the propagation speed of electromagnetic waves, i.e. the speed of light. The
factor of two is needed to compensate the round trip delay. From this formula, the
range resolution AR of this basic waveform follows as the minimum distance between
two targets that produces two separable echos in the received signal. The value of the

range resolution is given by

(2.1.9)

!The rectangular function rect(t/7p) is defined as 1 from —7p/2 to 7p/2 and zero elsewhere.

13
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CTp

and the reason for this value is shown in Figure 2.1.5. In plot (a) two closely spaced
targets produce an overlap in the echo signal, and in plot (b) the separation of the
targets produces two exactly successive echo pulses and is thus the minimum distance
that should be present between two targets. It is assumed in both cases that the
reflection appears only at the nose of the depicted aircraft.
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source of airplane graphic:
https://openclipartorg

(b) Separable targets

Figure 2.1.5: Range resolution of a rectangular waveform

Since the spectrum of a rectangular function is given by a sinc-function and if the
bandwidth B of the waveform is interpreted as the frequencies up to the first zero of
the sinc, which is given by 1/7p, the range resolution can also be written in terms of
the bandwidth of the waveform by

CTp C
AR = 5 = 55"

It will shown in Section 2.1.3 that the dependency of the range resolution on the
bandwidth holds for any waveform and thus the range resolution is improved by in-
creasing the bandwidth of the waveform.

(2.1.11)

14



2.1 High Range Resolution Radar

Another point that should be mentioned is the unambiguous range of a radar. Fig-
ure 2.1.4 shows that a radar is transmitting a series of pulses with a fixed interval
and normally an echo is assigned to the pulse that was transmitted before the echo
arrives. Therefore, the maximum range R,,., that can be determined unambiguously
by a radar is limited by the PRF and is given by

c
2. PRF’

To detect targets up to the given maximum range, the signal must be sampled
continuously. However, in Section 2.1.3.2, a method will be described that reduces the
unambiguous range to a small window, but keeps the range resolution with a sampling
frequency much smaller than the bandwidth of the radar waveform. This processing
scheme is also applied to create the data that is used later in this thesis. However,
before this method will be explained, a general filtering algorithm to improve the target
detection in noisy signals will be shown in the next part.

Roar = (2.1.12)

2.1.2.2 Matched Filter

The visualization of the range resolution in Figure 2.1.5 shows the ideal case that the
echo is the exact reversed copy of the transmitted signal without any noise in the
signal. The assumption that the echo has the same shape as the transmitted signal is
a common assumption in radar and assumes non-dispersive scattering, which is true
for most types of scattering. An exception of this model and the consequences for the
radar signal will be shown in Chapter 3.

In this section the optimal and commonly used filtering method to improve the
signal to noise ratio (SNR) of the radar signal is presented. This filtering method is
very widespread since it gives the optimal SNR for known signals in white noise, which
is the task in radar signal processing using the common assumptions.

The SNR of a radar system can be calculated with the so called radar equation,
which relates the parameters of the system to the range R and the strength of the
target. The strength of the target is given by the radar cross section (RCS) oges,
which is defined as the projected area of a sphere that would lead to the same echo.
One of the results of the radar equation is that the received energy is decreasing with
the factor R*, i.e. a doubling of the target range would lead to a reduction of 12dB
in the signal power. With the very high ranges that appear in air surveillance systems
and the unavoidable system noise, a filtering method to optimize the SNR is necessary.

The presented method is called matched filter and improves the detectability of a
target by maximizing the output peak-SNR of the radar receiver [SkoO1]. The use of
the peak-SNR indicates already that the energy of the received waveform is compressed
into a single value at a certain time t¢y; a point that will be used again in Section 2.1.3.1.

For the derivation of the matched filter, it is assumed that the received signal z(t) is
the sum of the transmitted signal s(t), which is scaled in amplitude by the factor o due
to target strength and range, and independent white Gaussian noise N (t) to represent

15
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the system noise. Furthermore, it is assumed that the received signal has been digitized
and is organized in an N-dimensional vector x. This vector is the sum of the digitized
transmitted signal s and the noise vector N, which remains to be Gaussian white noise
bandlimited according to the sampling frequency, i.e.

x =as+ N. (2.1.13)

The noise is assumed to have a mean value of zero, which leads to a covariance matrix
Ry of the form o%Iy. The aim is to find an optimal weight vector w that maximizes
the output SNR, which is given by

Hg|2 2w H |2 2w H |2
S S S
SNR(w) = |O‘WH S U I|{ _ ol I|{ . (2.1.14)
E{|wiN[]?2} E{wINN"w} wIE{NN"}w

The expectation in the denominator of (2.1.14) is the above mentioned covariance

matrix of the additive noise, thus the expression can be simplified as

2 H|2 2 H|2
SNR(w) = [AIWTSE_ Jalwes]® (2.1.15)

wHo?Iyw a?||wl||?

The output of (2.1.15) can be expanded with the expression ||s||?/|[s||?, which results

in
_ el w s (Isl® Jaf?lls]]*

SNR(w) = = Ip(w,s)|?, (2.1.16)

a?l[wl[z|[s[]” o

where p(w,s) is the correlation coefficient of the weight vector and the transmitted
signal

whs
p(w,s) = ————. (2.1.17)
[l [[sl]

The correlation coefficient ranges between —1 and 1 and the magnitude squared
correlation coefficient in (2.1.16) reaches its maximum if s and w are collinear [BV18].
Therefore, the solution for the optimal weight vector is given as

Wopr = argmaz{SNR(w) : w € C} = ws. (2.1.18)

This means that the filter coefficients of the matched filter are a scaled version of
the transmitted signal, since this will give the maximum correlation output. The filter
operation is formally given for a transmitted signal with a finite length K as

y[n] = kz_: x*[n — k]s[k], (2.1.19)

where x is the received signal, s is the known transmitted waveform and y is the filter
output. The operation principle is qualitatively shown in Figure 2.1.6.

16
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Received Signal x[n]

Matched Filter Output y[n]

Figure 2.1.6: Matched filter principle

The visualization shows that the matched filter has a strong denoising effect and
compresses the lengthy rectangular time signal into a single point with a maximum
SNR. This point is reached at the end of the waveform in the received signal when the
maximum overlay between filter and received pulse is present. This compression effect
will be the basis for the techniques presented in the next section.

2.1.3 Range Compression Techniques

Up to this point, the signal processing to determine the range of a target with a pulsed
waveform has been described. The major problem of this kind of waveform is the
range resolution, since it was shown in (2.1.11) that the range resolution of the system
is proportional to the length of the pulse. This leads to the conclusion that a very short
pulse should be used to achieve a very high resolution. This is done for example in
near range systems like ground penetrating radar with a typical pulse duration between
200 ps and 20 ns [RLNP11]. In high resolution air surveillance systems, this rectangular
waveform is not very common, since the R* range dependency of the received energy
would require a very high peak power of the pulse to operate at appropriate distances.
Therefore, the use of wideband waveforms became popular, which transmit a longer
pulse with a modulation to achieve a high bandwidth. This high bandwidth is used
in the receiver to achieve the range resolution of an equivalent rectangular waveform
according to (2.1.11).

Two kind of waveforms are commonly used in high range resolution (HRR) radars,
the linear frequency modulated (LFM) and the stepped frequency waveform. The latter

17
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synthesizes a high bandwidth by submitting a train of narrowband pulses with shifted
carrier frequencies, which puts some requirements on the stationarity of the observed
target. The LFM waveform transmits the used bandwidth in a single pulse using
frequency modulation and since this is the waveform that is used in the TIRA system,
the description in this thesis is limited to this waveform. A detailed description of the
signal processing for stepped frequency waveforms can be found for example in [Weh95]
or [Mah05].

The LFM waveform is also called chirp and in the notation of (2.1.1), this waveform
is written as

t .
s(t) = A-rect () 2ot 51 (2.1.20)
TP
where g is the so called chirp rate and fy is the carrier frequency. The chirp rate
defines the slope of the frequency modulation, which becomes visible by calculating

the instantaneous frequency of the transmitted chirp from its phase term by

£(t) = 17TQ7r(f0t e ot (2.1.21)

In (2.1.21) the waveform and the carrier frequency have been combined to a single
expression. The chirp rate is related to the time bandwidth product of the waveform
and is calculated by the ratio of the covered frequencies? B and the pulse length 7p

== 2.1.22
He=— (2.1.22)

In the following sections, the two common methods used in the receiver to produce
HRR profiles with the chirp waveform are presented.

2.1.3.1 Matched Filtering

As it was already shown in Section 2.1.2.2, the matched filter is the optimal filter with
regard to the SNR and compresses the presence of a target to a single point in the
output signal. Furthermore, the derivation of the matched filter was independent of
the waveform and therefore gives the optimum SNR for any waveform, also the chirp
waveform. A point not considered specifically before is the point spread function (PSF)
of a certain waveform. In the example of Figure 2.1.6, it is visible that the matched
filter output of a rectangular pulse is a triangular function. Generally, the output of the
matched filter is determined by the autocorrelation of the transmitted signal [CM14],
which follows directly from the derivation of the matched filter.

The derivation of the matched filter in Section 2.1.2.2 was shown with discrete sam-
ples of the signal to simplify the result with the correlation coefficient. The notation

’In general, the range of covered frequencies does not coincide with the bandwidth of a signal.
However, for a chirp waveform it can be shown that this is the case, for example with the use of
Fresnel integrals [Bor99].
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of the chirp in (2.1.20) is in continuous time domain and also the result of the matched
filter here will be shown in a continuous time notation. The transfer from the discrete
to the continuous domain is done via the Cauchy-Schwarz inequality, which is given
here without proof for two vectors & and y of the same dimension®. In the discrete

domain the inequality is written as

[ < Iy (2.1.23)

where (-, -) represents the inner product of two vectors. The result of this equation
was already used indirectly in the correlation coefficient to obtain the general result of
the matched filter. The equality of (2.1.23) holds, if both vectors are collinear. In the
continuous time domain, the Cauchy-Schwarz inequality is written for square-integrable
functions* z(¢) and y(t) as [Unb02]

/abﬂff’(ff)y”‘(lt)dt‘2 < /ab | (t)[*dt /: ly(t)|*dt. (2.1.24)

The equality in the continuous case also holds for proportional functions x(t) and y(t)
and the implication for the continuous matched filter is that the complex conjugated
of the transmitted waveform must be used, which is in the discrete case implicit due
to the definition of the inner product. Under the assumption that the target does not
change the waveform, it follows that the output yy;r of the matched filter gives the
PSF of the chirp by the autocorrelation

o0

yarp(t) = / s* (1 — t)s(r)dr. (2.1.25)

—00

With the definition of the chirp in (2.1.20) follows®

ymr(t) = /OO rect <T — t) rect (T) 2ot + 5 (TP —(T=0) g (2.1.26)
—o0 P P
Since the autocorrelation is symmetric, (2.1.26) can be solved for t > 0 and extended
to the negative time domain. The two rectangular functions limit the signal to [t| < 7,
and the output of the matched filter vanishes for |t| > 7,. Therefore, the limits of the
integral can be changed to the remaining interval and the simplified equation is given
by

| iz
yaip(l) = eF2mUot=50) / Y ezt g (2.1.27)
t—1p/2

The solution of the integration in (2.1.27) is given as [KPDA60]

3A formal proof can be found in textbooks on linear algebra, e.g. [BV18].
4A function is called square-integrable if the integral of the square of the absolute value is finite.
5The amplitude A of the waveform is ignored here, since it will not change the shape of the PSF.
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) = 6j27rfotsm (mu(Tpt — t2))

t) = 2.1.28
yMF( 7T,ut ) ( )
which possesses in baseband the envelope
in (7(Blt]| — pt?

> TBlt| ’
which is simplified with the definition of x in (2.1.22) and extended to negative times.
Normally the output of the matched filter is given in an approximated version as a

sinc function, where the 7ut? term in the argument of the sine function is ignored and
therefore, the output can be written as

sin (m(B|t| — ut?)) sin(wB|t])
AT
7 B|t| P Bt

ymr(t) =1, = Tpsinc(Bt). (2.1.30)

Beside the scaling with the pulse length, the main result is that the matched fil-
ter will produce a sinc-like output and the width of the main lobe depends only on
the bandwidth of the chirp. To achieve a definition of resolution that fits the range
resolution of the rectangular pulse in (2.1.11), the 3dB point of the sinc main lobe is
used as the reference point that two targets can be distinguished. This means that two
targets must be separated by at least the distance that is produced by a matched filter
with neighboring sinc functions that intersect at the corresponding 3dB points. This
distance AR is given by

&
AR = . (2.1.31)

which corresponds to the range resolution AR of the rectangular function. The appli-
cation of the matched filter is equivalent to a submission of a rectangular pulse with a
length defined by the bandwidth of the chirp. Therefore, the input of the matched fil-
ter is sometimes called uncompressed range profile and the output is called compressed
range profile, since the matched filter acts like a filter that compresses all frequencies
of the chirp into a pulse of equivalent length.

The matched filter gives the theoretical optimum SNR for an isotropic point target
and white noise, but a drawback is that the signal must be sampled according to
the Nyquist rate with at least the bandwidth of the signal, which can be very high
in modern radar systems. A technique to avoid these high sampling rates but still
achieves the high range resolution is presented in the next section.

2.1.3.2 Deramping

The matched filter processing described in the previous section requires a continuous
recording of the incoming data with at least the bandwidth of the radar signal. In
this way, the radar data can be recorded over the unambiguous range interval given in
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2.1 High Range Resolution Radar

(2.1.12), but has the drawback of the high sampling rate and additionally produces a
lot of data that eventually must be stored. An alternative method to achieve the high
resolution of a chirp waveform with reduced sampling requirements is the deramping
method. This processing scheme reduces the required sampling frequency enormously
with the cost of a reduced observable range interval. Its basic steps are shown in
Figure 2.1.7.

Amplitude

%}i\% Demodulator I——-»{ LP Filter I——-»{ ADC |——->| FFT I——-»
\_)

f % 3

f
5 Feho 3
fz Echo 2
f fcho 1
-T t > > t source of radar graphic:

Trer https://openclipart.org

Figure 2.1.7: Deramping procedure

The core idea is that a complex conjugated replica r(t) of the transmitted chirp is
used in the analog demodulation of the received echo and therefore, the reception of a
chirp will result in a constant frequency. For a chirp waveform with carrier frequency
fo, see (2.1.20), the replica, which is started with a delay tg, is given by

r(t) = a2 (folt—t0)+5(=t0)?) (2.1.32)

In principle, the replica is not restricted in time and can have a higher bandwidth
than the transmitted chirp, but always the same chirp rate. The mixing, i.e. multi-
plication, of this replica with the time delayed echo s(t — At) of the transmitted LFM
pulse® caused by a point target at range R

s(t — At) = rect <t_At> 12 (foli=An)+5 (1-20)%) (2.1.33)

Tp

gives the result

6The amplitude of the echo is ignored, since it is not important for the understanding of the der-
amping.
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r(t)s(t — At) = rect (t_TAt> 12 (Jolto— A0+ 5 (AR ~18)) pj2mpu(to—A0)E, (2.1.34)
P

The product of (2.1.34) can be split into three parts, the first one is the rect function,
which limits the output in time. The second factor is an exponential term that is inde-
pendent of time and thus represents a phase factor. The important part is the second
exponential term, which depends on ¢ and is thus a constant frequency proportional to
the difference (ty — At). If the time delay ¢, is considered as the delay to a reference
point Ry, given by tqg = 2Ry /co, the frequency of the output signal can be written as

flt) = 217r387527w<t0 — At)t = p(ty — At) = ZL(RO — R). (2.1.35)
Equation 2.1.35 shows that the frequency of the output signal is proportional to the
relative distance of the actual scatterer, which has caused the echo, and the reference
point defined by the starting time of the reference chirp. Therefore, the bandwidth
of the deramping output depends on the range window that should be covered and is
normally much smaller than the bandwidth of the waveform itself. This reduces the
demands on the analog to digital conversion hardware compared to a matched filter. A
further benefit of this technique is that the range resolution calculated above as ¢q/2B
is still valid; the drawback of this method is that the areas outside the range window
are lost. To convert the output signal into an HRR profile only a Fourier transform is
necessary. A HRR profile measured with the TIRA system, which uses the deramping
method, is shown in Figure 2.1.8. The profile belongs to the data that is used in this
thesis. It was measured while the target was flying more than 100 km away, but the
range axis shows only around 40 m. It should be mentioned that the original profile
measured by the TIRA system is around 200 m [Meh96] and the example is cropped
to the significant part containing the target.

To achieve a more handy signal model for the later application, some steps are neces-
sary. The first one is the introduction of the k-space notation that uses the wavenumber
k, which is defined by 27 f /¢y and known from the propagation of electromagnetic waves
[Orf16]. For the chirp, or any other waveform, the wavenumber k, of the propagating
wave can be split into two parts, the first one ky represents the contribution of the
carrier frequency fy and the second one k; the baseband contribution ut. Therefore,
the wavenumber can be written as

27

0
which corresponds to the multiplication of the instantaneous chirp frequency of (2.1.21)
with the constant factor 2m/¢g. Using this definition, the output (2.1.34) of the der-

amping process can be idealized in k-space as
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Figure 2.1.8: Example of a TIRA HRR profile

s(ky, R) = e /%R, (2.1.37)

which is a normalized signal model for a point scatterer at range R [End10] and is
called normal form from here on. The quadratic phase term of (2.1.34) is ignored in
(2.1.37) and since the range variable R is used directly, the reference range Ry is set to
zero. In this case a chirp with an infinite duration would be needed, but this expression
is the most general form and can be used for any waveform. For the deramping process,
a normal form with relative range AR = R — Ry can be introduced as

s(ky, R) = e J2knAR, (2.1.38)

Nevertheless, in the remainder of this thesis, the general expression of (2.1.37) is
used and for the later application in Chapter 5, the range is converted to the relative
range.

The benefit of the normal form is that the temporal signal of (2.1.34) is converted
to a spatial signal and thus a spatial Fourier transform can be used to create the HRR
profile. This step introduces the range directly in the signal model and therefore,
this model will also be used in the next section on ISAR imaging. The extension of
this model to two dimensions gives as result the model that will be used later in the
decomposition framework.
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Chapter 2 Radar and ISAR Imaging Principles

2.2 Basics of ISAR Imaging

In this section the fundamentals of ISAR imaging are introduced as far as necessary to
understand the basic signal processing. As a starting point, the basic turntable imaging
will be introduced in Section 2.2.1, since the aim of ISAR imaging is to reproduce
this situation in in-flight measurements of an aircraft. The basic elements of aircraft
imaging will be presented in Section 2.2.2 without giving details of some necessary
steps to reproduce the turntable measurement.

2.2.1 Turntable Imaging

Turntable imaging is used as a reference for ISAR imaging, since the processing is the
same, although the situation in ISAR is far more complicated as will be shown later.
The turntable is used to induce a motion of the target, since for any synthetic aperture
radar imaging system some sort of motion is necessary. In ISAR imaging the target is
moving, while the radar is stationary, which is shown in Figure 2.2.1 for a turntable
measurement. This situation is contrary to the situation in the more familiar SAR
imaging, where a moving platform is used to image a certain static region of interest.
This reversed situation was also the motivation for the name Inverse SAR.

source of girplane and radar graphics:
hitps:dfapenciipartong

Figure 2.2.1: Turntable measurement

The situation on a turntable is simplified in many ways compared to in-flight mea-
surements. The most obvious one is the known movement of the target with a fixed
rotational speed w and the rotation is limited to the x-y plane and no z-component of
the motion is present. To derive the resulting radar signal of the turntable situation, it
is assumed that the radar works in far-field condition and the distance Rq to the radar
is much larger than the extent of the target. The center of the x-y coordinate system
lies in the geometric center of the target and the x-axis corresponds to the line of sight
(LOS) of the radar for an azimuth angle ¢ = 0.

For the derivation of a signal model, a scatterer at position (x,y) in the local coor-
dinate system is assumed. For Ry > z,y, the distance from the radar to the scatterer
r can be approximated as
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2.2 Basics of ISAR Imaging

(g e,y) = \/(Rocose+ )2+ (Rysin g + y)?
~ Ry+ xcosy+ ysin p, (2.2.1)

which can be included in the normal form of (2.1.37). To get a signal model in the
local coordinates x and y, the distance Ry is assumed to be known and subtracted from
the scatterer range. The normal form for a scatterer in x-y-coordinates is thus given
as

s(kp, 0,2, y) = € IHer @) =R0) oy o=i2ke(wcosptysing). (2.2.2)

To calculate the received signal from the model, the target is assumed to be repre-
sented by the reflectivity distribution a(z,y). With this distribution, the received noise
free signal can be written as

y(kr, ) = // e_jzk"(wcos‘”ysm“’)a(w,y)d:zcdy. (2.2.3)

The next step is a variable substitution introducing the variables k, and k, that is
known as polar reformatting and is realized by

k., = 2k.cosp (2.2.4)
k, = 2k.sinep. (2.2.5)

With the definitions of (2.2.4) and (2.2.5), the variables k, and ¢ can be expressed
as

1
ko= SRR (2.2.6)
1 (ke
p = cot ) (2.2.7)
y

Using this variable substitution, the received signal of (2.2.3) can be written as

y(ks, ky) = // e It g (1, y)dady, (2.2.8)

which corresponds to the spatial Fourier transform of a(x,y) in the variables k, and
k,. Therefore, an estimate a(z,y) of the target reflectivity, i.e. an image of the target,
is calculated by an inverse 2-d Fourier transform of the received data collected over a
certain range of aspect angles ¢.

The resolution of the estimate a(x,y) is defined by the spatial sampling theorem and
is given by (2.1.31) for the down-range direction. The resolution of the cross range
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Chapter 2 Radar and ISAR Imaging Principles

dimension ACR, i.e. the dimension perpendicular to the line of sight is given by

Ao
290int ’
where )\g is the wavelength of the carrier frequency and ;,; is the integration angle,
i.e. the covered range of aspect angles.

For the practical implementation normally a Fast Fourier Transform (FFT) is ap-
plied. Since the measurements described above are sampled on a circular ring segment,
a direct application of the FFT, which works in rectangular coordinates, will give blur-
ring effects in the image, especially for large spans of . To achieve an image without
these blurring effects, the standard procedure is to perform an interpolation from polar
coordinates to a rectangular grid. Nevertheless, the direct application of the FFT is
also very widespread, since the errors that occur due to the wrong grid are negligi-
ble compared to errors due to imperfect knowledge of the target motion. The direct
application of the FFT without interpolation is known as range-Doppler-imaging and
the ISAR images measured by the TIRA system shown in this thesis are generated
with this technique without interpolation. The reasons why this simplified processing
is used are discussed in the next section, which shows some problems that arise for
in-flight ISAR imaging of aircrafts.

ACR = (2.2.9)

2.2.2 Imaging of an Aircraft

Compared to the situation of turntable imaging, the situation of in-flight measurements
is far more complicated. The first difference is of course the unknown movement of the
target. The rotation of the turntable experiment can also be described by a rotational
vector £2,which points in the direction of the z-coordinate and is of constant length,
since the rotation is around the z-axis with a constant rotational velocity. An aircraft
can principally rotate around each axis during the flight, which gives three rotation
vectors. The movements around the different axes of an airplane are called roll, pitch
and yaw and are depicted in Figure 2.2.2 together with the overall rotation vector
Q Ang, Which is the vector sum of the three rotation vectors”.

Another important difference to turntable imaging is the varying range Ry between
the radar and the center of the target. This range history must be estimated during
the measurement and compensated as shown in (2.2.2). This range estimation can be
done for example from the tracking information of the target, but is not considered
further here. Details about range tracking can be found in literature focusing on ISAR,
e.g. [CM14]. Another effect of the varying range is that the aspect angle of the target
is changing, as long as the target is not flying along the LOS of the radar or an exact

“Roll, pitch and yaw have an intrinsic dependency on the maneuver the target is flying, which is
ignored here. For the derivation here, only the fact that all three have a contribution to the
resulting rotational vector is important. Furthermore, the depicted movement is not supposed to
be realistic for an airliner.
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source of airplane graphic:
https.//openclipart.org

Figure 2.2.2: Aircraft with rotation vector due to its own motion

circle around it. In these two cases the aspect angle will remain constant during the
measurement. The changing aspect angle due to the translational motion of the target
can also be modeled as a rotation, which is represented by the rotation vector Q7,qps.
This rotation vector is shown in Figure 2.2.3 together with the rotation vector from
Figure 2.2.2. The vector sum of both rotation vectors gives the actual rotation vector
Q... of the target. The changing aspect angle due to the varying range allows ISAR
imaging even if no roll, pitch or yaw movement is present. In fact, the estimation
of the rotation vector becomes easier if the target is flying a straight line and is not
performing any maneuvers.

In (2.2.3) the target was modeled as the two-dimensional reflectivity distribution
a(x,y), but a real target is a three-dimensional object with a corresponding 3-d re-
flectivity distribution. In case of ISAR imaging a projection of the true reflectivity
distribution on two dimensions is measured. The image projection plane (IPP) is given
here without proof, further details can be found for example in [CM14] or [Weh95].

The IPP is defined by the so-called effective rotation vector, which is itself the result
of a projection of the true rotation vector of the target on the plane that is perpen-
dicular to the LOS of the radar. This projection is shown as an intermediate step in
Figure 2.2.4, which uses the true rotation vector from Figure 2.2.3.

This effective rotation vector is the decisive vector that defines the scaling and pro-
jection of the resulting ISAR image. It was shown in (2.2.8) that the coverage of the
aspect angle during the measurement defines the resolution of the cross-range dimen-
sion. It is known from the theory of Fourier transform that the span of the covered
frequencies defines the resolution in the spatial domain [OL07] and it was shown in
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source of airplane and radar graphics:
. https://openclipartorg

Figure 2.2.3: Aircraft with real rotation vector

/\ source of airplane and radar graphics:
. https://openclipart.org

Figure 2.2.4: Projection of the real rotation vector on the plane perpendicular to the
LOS
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(2.2.4) and (2.2.4) that the aspect angle is directly related to k, and k,, which define
the domain of the spatial Fourier transform in (2.2.8). Therefore, the resolution and
the scaling of the cross-range axis in the resulting image is given by the covered span of
aspect angles, since the image is processed by an inverse Fourier transform. This means
that the knowledge of the effective rotation vector is necessary to scale the cross-range
axis and to estimate the width of the target. With a monostatic radar like the TIRA
system only the magnitude of the effective rotation vector can be estimated, the direc-
tion of the effective rotation vector is ambiguous in that case, since it is always possible
to find more than one effective rotation vector that can cause the changes of the data
during the measurement [Bril6]. One way to support the estimation of the effective
rotation vector is the use of tracking data, which can be used with assumptions on the
flight mechanics to give a reasonable estimate. Nevertheless, the problem of motion
estimation of targets is an ongoing research topic, e.g. [Bril6], which is not covered
here in detail.

The main reason why the direction of the effective rotation vector is so important is
the IPP of the ISAR image. The IPP is given as the plane that is perpendicular to the
effective rotation vector. This principle is visualized in Figure 2.2.5, which shows that
knowledge about the orientation of the IPP is necessary to estimate the dimensions of
the target, since the projected length of the target is inverse proportional to the cosine
of the angle between the target axis and the IPP.

A point that has not been questioned so far is the validity of the model that the
echo produced by the target looks exactly like the transmitted waveform. Although
this common assumption of isotropic scattering is the basis of most ISAR processing
algorithms, there are types of scattering that change the waveform as will be shown in
the next chapter.
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source of airplane and radar graphics:
https://openclipart.org

Figure 2.2.5: Aircraft with projection on the image projection plane
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Chapter 3

Waveguide Scattering Model

In this chapter the signal model for jet engines is derived. Since this model is physically
motivated, the fundamentals of the propagation of electromagnetic waves in waveguides
are described in Section 3.1. The actual model that will be used later is shown in
Section 3.2 and an example for a scattered chirp waveform is given in Section 3.3.

3.1 Propagation of Electromagnetic Waves in
Waveguides

Before the special case of an electromagnetic wave inside a waveguide, which is con-
fined by conducting walls and thus creates certain boundary conditions is described in
Section 3.1.2, some basic electromagnetic theory is given in Section 3.1.1. The content
of these two sections can also be found in textbooks like [Orf16], [Strdl] or [Geo97],
therefore citations for certain formulas or statements are only given if they are out-
side of the basic content. The description is given for completeness and is reduced
and tailored to the elements that are necessary for the signal propagation model of
Section 3.1.3.

3.1.1 The Electromagnetic Field in Free Space

Since the waveguide model is derived for jet engines, which are filled with air, the
simplified Mazwell equations for the source-free case!

0B
E = —— 1.1
V X 5 (3.1.1)
oD
H = — 1.2
V X 5 (3.1.2)
V-D = 0 (3.1.3)
V.B = 0 (3.1.4)

'The nabla operator V is a vector that contains the partial derivative operators of the corresponding

T
components, i.e. V = (%, %, %)
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Chapter 3 Waveguide Scattering Model

are used for further derivations.

Equation (3.1.1) is called Faraday’s law of induction, Equation (3.1.2) is known as
Ampere’s law and Equations (3.1.3) and (3.1.4) are called Gauss’ laws of the electric
and magnetic field, respectively. The quantities E and H denote the electric and
magnetic fields, while D and B describe the electric and magnetic fluz densities.

The electric and magnetic flux densities D and B are related to the electric and
magnetic field by the permittivity e and permeability p of the medium via

D = ¢E
B = uH

Since only free space propagation is considered here, the values €, and jy of vacuum
are used throughout the thesis. This approximation is done since dry air has similar
electromagnetic properties as vacuum [CB09]. Performing a curl operation in (3.1.1)
and using the result of (3.1.2) together with the relations in (3.1.5) and (3.1.6) shows
that the electric field satisfies

O’E
v X v X E = —MOEOﬁ, (317)
which can be written as
V’E OE (3.1.8)
= [g€)—— 1.
Ho€o o2

using the vector identity V x (V x E) = V(V - E) — V?E and V - E = 0, which
follows from (3.1.3) and (3.1.5). Equation (3.1.8) is a wave equation [Far93] with the
propagation speed ¢ given by

1
c= . 3.1.9
V€olto ( )
With (3.1.9), the wave equation (3.1.8) can be written in the known form
1 O’°E
‘E— ——, =0. 3.1.10
v c? ot? ( )

In the same way, Equation (3.1.2) can be changed with the result of (3.1.1) to a
wave equation for the magnetic field

V?H — — = 0. (3.1.11)

Therefore, each component of the electric and magnetic field satisfies a scalar wave
equation in cartesian coordinates. Furthermore, the electric and the magnetic field is
perpendicular to each other, which follows directly from the first two Maxwell equa-
tions. This perpendicularity together witch the wave equations give the basic form of
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3.1 Propagation of Electromagnetic Waves in Waveguides

an electromagnetic wave, which is depicted in Figure 3.1.1.

A

d o

Magnetic Field H#
Electric Field £

xy-plane

z

(Direction of propagation)

H

Figure 3.1.1: Electromagnetic wave in free space

Figure 3.1.1 also shows the principle of a plane wave. In free space it is assumed
that the value of E and H depend only on the direction of propagation, which is z
throughout this section on waveguides. This means that all over the xy-plane E and
H have constant values and E, = H, = 0. The full space-time forms of E and H of
the free space propagating wave are given by

E(z,t) = E(0,0)e’@% =2 H(z,t) = H(0,0)el @k, (3.1.12)

where w denotes the angular frequency and k, is the z-component of the wavenumber,
which is defined by

2T w
= — = —, 3.1.13
= ( )

In Equation 3.1.13, A is the wavelength and every cut along the z-axis in Figure 3.1.1
parallel to the xy-plane in the distance of A will result in the same values for E and H.
These cuts are called phase fronts and are the reason for the name plane waves, since
at every constant z value, a plane with constant E and H can be found.

k.

Free space waves are called transversal electromagnetic waves (TEM-waves), which
refers to the components that are transversal, i.e. perpendicular, to the direction of
propagation. E and H are perpendicular to the direction of propagation, since there are
no components in z-direction, i.e. H, = E, = 0. In the next section, it will be shown
that TEM-waves are not possible inside waveguides due to the boundary conditions.

3.1.2 The Electromagnetic Field inside a Waveguide

The derivation of the electromagnetic field is shown for rectangular waveguides in carte-
sian coordinates, since this notation is more intuitive than the notation in cylindrical
coordinates. All results from the cartesian coordinates can be transferred to cylindrical
waveguides, which is shown at the end of this part. The coordinate systems for both
kinds of waveguides are shown in Figure 3.1.2.
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b Y
(a) Rectangular (b) Cylindrical

Figure 3.1.2: Waveguide shapes and the corresponding coordinate systems

The confining walls in the cartesian system are assumed to coincide with the z- and
the y-axis of the coordinate system. These confining walls posses an inner diameter of
a on the z-axis and b on the y-axis, whereas in the cylindrical system, the waveguide
has a certain circular opening diameter d. As mentioned already in Section 3.1.1, the
direction of propagation is the z-axis and the waveguide is filled with air, i.e. pu = ug
and € = €.

Furthermore, the material of the waveguides is assumed to be a perfect electric
conductor (PEC), which means a lossless material. From this assumption follows that
the electric field is perpendicular and the magnetic field is parallel to these walls at
their surface [Orf16]. The existence of these walls implies also that the assumption of
plane waves, as in free space, is not possible here. Since the PEC walls must have the
same electric potential everywhere in a xy-plane, at least one component, either E or
H, must vary somehow between these walls, otherwise there will be only a static field
and no wave. Due to this reason, a cut in the zy-plane must have different values in
at least one component and compared to the TEM-waves of Section 3.1.1 none of the
components of E and H can assumed to be zero.

Since the confining waveguide walls are only in the - and y-direction of the coor-
dinate system, there is no restriction on the wave propagation along the z-direction,
i.e. it is basically possible that a wave propagates with a wavenumber k, along the
z-direction. This last assumption is listed and numbered here for an overview and
reference to them in the later derivations together with the assumptions and boundary
conditions mentioned before:

1. The Waveguide is filled with air, u = ug and € = €.

2. Confining walls are PEC materials, i.e. electric field lines are perpendicular and
magnetic field lines are parallel to the conducting surface.

3. E and H do not only depend on the direction of propagation, -2 (%E # 0 and

) O
o 0
4. None of the components is assumed to be zero, E,, E,, E, # 0 and H,, H,, H, #
0.
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5. A lossless wave propagation along the z-direction is possible and represented by
the factor e 7*=2,

3.1.2.1 Solution inside a Rectangular Waveguide

The starting point for the derivation of the field inside a waveguide is the wave equation
in (3.1.10). The only time dependency of the waves considered here is a €' term, which
means that the derivative with respect to time can be replaced by jw and thus can
(3.1.10) also be written as

w2
V’E+ S E=0. (3.1.14)
c
The expression in (3.1.14) is a wave equation without time derivatives and is called
Helmholtz equation®. In the free space case with TEM waves, i.e. a%, %E =0, the only

spatial dependency is given by the e77*:* term and the Helmholtz equation is reduced
to

c2

(”2 - k2> E =0. (3.1.15)

With the definition (3.1.13) and (3.1.15) can be seen that (3.1.12) fulfills the wave
equation under free space conditions . To formulate the field inside waveguides, the
Laplacian operator in (3.1.14) can be separated into a longitudinal term, i.e. in the
direction of propagation, and a transversal term V. According to the above mentioned
conditions 3 and 5, the spatial dependency in z-direction is given by e~7*:* and thus
the Laplacian in this direction is reduced to —k?. With this condition, the Laplace
operator is written as

0? O? 52 92
o — _ — 2 o2 2
V= 922 2 To5s T Vi + 9.2 Vi — k. (3.1.16)
~—~—
transversal longitudinal

With this separation, the Helmholtz equation can be written as
2 2 w? 2 w? 2
VTE—ICZE—F?E:VTE‘I' g_kz E=0. (3.1.17)

Since the expression (‘2—22 — k:g) will be used very often in the following text, the

symbol x? is used for this expression

K2 = (w - k2> , (3.1.18)

2Generally, any differential equation for an arbitrary vector field A with the scalar value A of the
form VZA + AA = 0 is called Helmholtz equation [Far93]
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and thus the Helmholtz equation for waveguides can be shortly noted as

VZE + r2E = 0. (3.1.19)

Equation (3.1.19) specifies an eigenvalue problem for the transversal Laplace oper-
ator. The solution of this equation gives the eigenfunctions E with the eigenvalues
ke, which determine a field form that can propagate along the z-direction inside the
waveguide. To find a solution for this problem, the partial differential equation (PDE)
for the z-component of the electric field

O*E, N 0*E,
0x? 0y?

+ k2B, =0 (3.1.20)

must be solved and the approach of variable separation that is used here can only
justified by the later success. The component E, is decomposed into a part X(x)
that only depends on z and Y (y), which only depends on y. Using these terms, the
amplitude £ and the propagation factor e=7¥:*_ the field can be written as

E.(z,y,2) = EX(2)Y (y)e 7*==. (3.1.21)

Since the amplitude and the propagation factor are the same for all terms in (3.1.20),
they are not relevant for the determination of the possible field forms and can be
removed for simplicity. After this reduction, only X (z) and Y (y) remain and the PDE
(3.1.20) becomes

0?X (z)
ox?

Y(y) + X () + k2X (7)Y (y) = 0. (3.1.22)

By the multiplication of (3.1.22) with m, a PDE with terms that depend only
on a single variable is created

PX(z) 1 Y (y) 1 2
5 X@ T o T T (3.1.23)

Collecting terms, and the use of the variable substitution

82Y(y) 1 2

k2 = —— + K 3.1.24
9y* Y(y) ( )
*X(z) 1
2 2
ky = o X(x)—i—/ﬁc (3.1.25)
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yield the two ordinary differential equations (ODEs)

0?X (z) 9 B

P REX(@) = 0 (3.1.26)
02y

ayiy)—i—k;Y(y) ~ 0. (3.1.27)

These ODEs are oscillating ODEs and the solution must fulfill the boundary condi-
tion 2, which means that the tangential components of the electric field must be zero
along the surface of the waveguide

E,=E,=0 at z=0andz=a (3.1.28)
E,=FE,=0 at y=0andy=0. (3.1.29)

The solution of (3.1.26) and (3.1.27) can be given directly as a sin(k,x) and sin(k,y),
where k, and k, can be only discrete values that guarantee that the boundary conditions
(3.1.28) and (3.1.29) are fulfilled

X(z) =sin(k?™z)  with  kIM =m

Y(y) = sin(kgMy) with kgM =n

In case of m = 0 or n = 0 the expression in (3.1.21) will be zero and there will be
no propagating wave. The superscript T'M with k, and k, is used to distinguish this
solution for the E-modes from the later shown solution of the H-modes. The derivation
until here shows that a component of the electric field in direction of propagation is
possible, which is contrary to the TEM-wave in Section 3.1.1.

To solve the Helmholtz equation for the magnetic field H an expression for the
transversal components z and y that depends only on the z-component is necessary to
formulate the boundary conditions for the PDE. To get this formulation, (3.1.1) and
(3.1.2) are used together with % = jw and % = —jk,, which were already used to
create (3.1.19). The components of the first Maxwell equation (3.1.1) give

E. .

0 +jk.Ey = —jwpH, (3.1.32)
dy
, OF, ,

—jk.E, — Y —jwpH, (3.1.33)
0E, OE, .
Y _ = —jwuH.. 3.1.34
o oy Jwp ( )
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The second Maxwell equation can be written as

H
a@yz = jweE, (3.1.35)
—jk.H, _aa% = jwek, (3.1.36)
a;i a;; = jweE,. (3.1.37)

With (3.1.9) and (3.1.18), expressions for E,, E,, H, and H, can be found that only
depend on E, and H,

_ DI (08
o= 3 <k 820 y) (3.1.38)
i E.  0H.
E, = @( k:z @:1:) (3.1.39)
H o= 2 (w (3.1.40)
K2 Ox
H, = o2 <wu e —|—kz—ay . (3.1.41)

With these equations, the boundary conditions for the magnetic field can be formu-
lated and since the tangential components of the electric field must still vanish, the
boundary conditions (3.1.28) and (3.1.29) must still be fulfilled. From (3.1.28) follows
with (3.1.39) that

H,
881: =0 at z=0andz=a. (3.1.42)
In the same way follows from (3.1.29) and (3.1.38) that
H,
a@y =0 at y=0andy=0>0. (3.1.43)

To find the solution for the magnetic field, the steps from (3.1.14) to (3.1.27) are
repeated with H instead of E. The physical meaning of the different boundary condi-
tions is that not the longitudinal component itself must fulfill the condition, but the
derivative with respect to the transversal component. This means that the derivatives
must be sinus functions, i.e. the dependency of the z-component of H on z and y is
given by cosine functions

™

X(z) =cos(klFx)  with  EIF

m— m=0,1,2,... (3.1.44)

a
T
ni
b

Y(y) =cos(k,"y)  with k" n=0,1,2.... (3.1.45)
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In this case it is possible that either n or m is zero, but m = n = 0 is not possible,
since this would result in a static field and there would be no propagating wave. As
already mentioned above for the electric field, this derivation shows that a component
of the magnetic field in direction of propagation is possible in waveguides. The different
values of k; and k, define modes, which determine the field in  and y direction of the
z component of the propagating field as

Em™(z,y,z) = Esin(kIMz) sin(kigMy)e*jkzz

= Esin(mgx) sin(n%y)e‘jkzz (3.1.46)
H™ 2y, 2) = Hcos(kPx) cos(k, Py)e 7*=

= ]:Icos(mga:) cos(n%y)e_jkzz. (3.1.47)

Dependent on the components that are present in the direction of propagation, four
cases can be distinguished

E,.=0,H,=0 TEM-mode (3.1.48)
E,#0,H,=0 TM- or E-mode (3.1.49)
E,=0,H,#0 TE- or H-mode (3.1.50)
E,#0,H, #0 Hybrid mode. (3.1.51)

As already mentioned above, the existence of TEM-modes is not possible inside
of waveguides, since the solutions of the Helmholtz equations require a z-component
of at least one filed component, either E or H. The coexistence of F, and H, is
not considered in this thesis, since it require a model with finite conductivity of the
confining walls, which violates assumption 2 that was already used in the derivation
above. Due to this reasons, the only remaining modes for the model used here are TM-
and TE-modes. An example for a vectorial plot of E and H is shown in Figure 3.1.3;
the electric field has a component in z-direction and the vector of the magnetic field
lies within the xy-plane, thus it is a TM- or E-mode.

With the expressions (3.1.46) and (3.1.47), the = and y components of the field can
be calculated using (3.1.38) to (3.1.41). Since it is not possible to draw the complete
electrical field within a waveguide, a visualization of the E, component of an EGn)
mode for a certain y-value is depicted in Figure 3.1.4.

The order m = 3 in Figure 3.1.4 can be seen from the 1.5 full periods in z-direction.
The order in y-direction can not be seen from the picture and the shape of the £, will
be the same for all values of y, but the magnitude of this component will oscillate with
the spatial frequency defined by k:yT M
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Figure 3.1.3: Components of the electric field inside a waveguide

Figure 3.1.4: y component of the electric field inside a waveguide at a fixed value of y
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3.1 Propagation of Electromagnetic Waves in Waveguides

3.1.2.2 Physical Interpretation of the Solution

To give a physical interpretation of this mathematical solution, some more mathemat-
ical conclusions that follow directly from the derivation before are given. Since the
results are the same for E- and H-modes, the superscripts of k, and k, are removed
from here on and first it is shown that the term &2 +A? will result in . for the approach
chosen above. This can be seen for example from the definition of &2 in (3.1.24) and
the solution of Y (y) in (3.1.31). The second derivative of Y (y) is given as

9°Y (y)
0y?

which can be used in the definition of k2 and thus gives directly the already mentioned
result

= —kJ sin(kyy), (3.1.52)

ke =k2+ k. (3.1.53)

This result can also be obtained with all other combinations of the k2 and & def-
initions and solutions for X (z) and Y'(y) above. This result can be used to better
understand the wave propagation inside waveguides by inserting (3.1.53) in (3.1.18),

which results in
w? w?

as an expression for the propagation factor k.. The term w/c was defined in Section 3.1.1
as the wavenumber k, for TEM-waves in free space. Since the symbol k, will also be
used here for the propagation constant in z-direction, the expression w/c is redefined
here as the free space wavenumber ky

w
c
With these terms and the discrete values of k, and k,, k. can be written as

], mm 2 nm\ 2

k:z—\/ko ( . ) (b) (3.1.56)
for a certain kg. The expression in (3.1.56) gives the propagation factor k, for a certain
frequency w and has different values for the possible values of k, and k,. The term £,
is also called waveguide-wavenumber. It is also visible that k, can become imaginary if
ko is smaller than k., which means that the propagation term e /*:* becomes real and
will result in an exponential damping of the wave along the z-direction®. Due to this

connection, the value of k. gives a lower limit for the frequencies that can propagate
without losses inside a waveguide and is thus called cutoff-wavenumber. Modes with a

3Mathematically, also an exponential increase over the z-direction would be possible, but this will
result in infinite energy and is physically not relevant [Geo97]
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cutoff-wavenumber higher than kg are called evanescent modes, which means that for
every kg a limited number of propagating modes exist, but always an infinite number
of evanescent modes. Analogous to the cutoff-wavenumber, a cutoff-wavelength \. can

be defined as
_ 2

A (3.1.57)

Ke

To simplify notation in the upcoming part, a dimensionless factor A is defined here

A= 1 (ZO)Q =\ |1- GO)Q (3.1.58)

where )\ is the free space wavelength that belongs to ky. Above the cutoff-wavenumber,
the factor A is real-valued with a magnitude smaller than one. Below the cutoff, it
becomes imaginary and thus k., can also be written as

k. =/~ — k2 = koA. (3.1.59)

With this expression, a formula for the wavelength A, in the direction of propagation

can be given as

2 Ao
S 1.
L , (3.1.60)

which means that inside the waveguide the wavelength in the direction of propagation
differs from the one in free space for a given frequency. This indicates that the prop-
agation speed in z-direction differs from the speed of light ¢y and also depends on the
frequency since the factor A shows strong variations over frequency*. This difference
in the propagation speed is the main reason for the waveguide dispersion, which means
that different frequencies travel at different velocities and thus a bandpass signal gets
spread in time and the shape of the envelope gets distorted. In general these effects
are analyzed by the group velocity

~1
Ow k. \ " 0 [|w?
= — = ad — R — 2 —
Y6 = ok, <8w> (8w 2 Kc) o, (3.1.61)

which gives the propagation speed for the signal contained in the wave [Str41]®. From

Az

4Tt is important to notice the dependency on the coordinate z here, because waves will also travel
inside waveguides with the speed of light and only seemingly slower in the direction of propagation.
This becomes clearer when it is shown that the propagation in z-direction is a sum of two TEM-
waves that bounce between the walls of the waveguide. For more details on this topic the reader
is referred to the literature, e.g. [Geo97].

5The group velocity does not give the "signal velocity" in general, only in the cases of no or normal
dispersion, which means that the phase velocity is higher than the group velocity [Str41]. Since
this is the case for waveguides, this equivalence can be assumed. Inside waveguides, the phase
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3.1 Propagation of Electromagnetic Waves in Waveguides

(3.1.61) follows that information inside of waveguides propagates slower than the speed
of light and the actual velocity depends on the frequency. An exemplary plot of the
group velocity of a toy example, which will be used later again, is shown in Figure 3.1.5.
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Figure 3.1.5: Group velocity for a mode with a cutoff-frequency of 200 Hz

In this example, the group velocity for a mode with a cutoff-frequency of 200 Hz is
shown and it is visible that below the cutoff no graph is shown since a propagation is
not possible in this region. Exactly at the cutoff-frequency the velocity is zero, which
corresponds to a standing wave, and with increasing frequency, vg approaches the free
space velocity ¢ that is 1m/s in this example.

So far only one mode was considered during propagation, but from the solution of the
Helmholtz equation can be seen that with a growing dimension of the waveguide more
propagating modes are possible. If, for example, the frequency of the wave is higher
than the cutoff-frequency of the first two modes, the energy will be split between these
and the resulting wave is a sum of these two modes. For the electric field with two
TM-modes this is written as

j wf(l)z 1 wfg)z
E(z,t) = E(0,0) <S§p1]€4€]( =) +S§?}we]< ot >> . (3.1.62)

The terms 5%34 and 5%4 determine the energy spread between the two modes and
a formula to calculate these values will be given in Chapter 3.2. The waveguide-
wavenumbers k(") and k(®) characterize the propagation of the corresponding mode
and a wave is in general the sum of all modes with wavenumbers k(™™ which have

velocity v,, and the group velocity v are related by vynve = 3.
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Chapter 3 Waveguide Scattering Model

a cutoff frequency lower than the frequency of the propagating wave. In case of the
electric field for example, this dependency is given by

M _plmmn),
E(z,1) Z Simm e’ ) (1 ) (3.1.63)

where M and N(m) are given by the maximum cutoff-wavenumber below the propa-
gating free space wavenumber

”Ms

(M, N(m)) = max{(m, n)|r.(m,n) < “’“;”}. (3.1.64)

The selection of N depends on m due to the quadratic structure of k. in (3.1.53)
and the definitions of k, and k,, i.e. a small value of m and thus &, will allow a
high value of n, which defines k,. With high values of m, the situation is reversed,
only small values of n, i.e k,, are possible. This dependency of N on m is also valid
for other geometries, as will be shown in Section 3.1.2.3 for cylindrical waveguides,
although the definition of k. is different and the dependency is not quadratic anymore.
For rectangular waveguides, the maximum order M and N(m) are the same for E- and
H-modes and do not have to be discriminated.

Since all modes in (3.1.63) possess a different group velocity, a bandpass signal
with a high carrier frequency will show a strong dispersion while traveling through a
waveguide with a rather large geometry. To illustrate this difference in the propagation
speed of different modes, an example of a traveling wave is shown in Figure 3.1.6. In
this example, a wave with a certain frequency wy propagates as the sum of two distinct
modes. The example shows the z-component E, of the electric field E for fixed xy and
yo values along the z-direction, Figures 3.1.6 (a) and (b) show E, for the two modes
individually and Figure 3.1.6 (c¢) shows the modal sum. The individual plots show the
different wavelengths of the two modes along the z-direction. The first mode, the lower
mode, ends at z = 2m in the seventh "valley" of the wave and the second, the higher
mode, ends in the sixth valley at z = 2m. It is important to notice that these two
plots show the same frequency in the time domain, since the different wavelength are
compensated by the different propagation velocities.

From the modal sum of these two modes it becomes clear why the energy of the
wave is spread out in the frequency domain when the wave is going from the inside of
a waveguide back into free air, as is the case for the jet engine model in Section 3.2.
The plot in Figure 3.1.6 (c) is the sum of the field values of the individual plots and
thus the spatial wavenumber is also the sum of the two individual modes. Therefore
the single frequency at the entrance of the waveguide is shifted to two new frequencies,
which correspond to the wavelength of the propagating modes in z-direction, when this
field form begins to propagate in free space.

In the next part, the solution for circular waveguides is shown shortly, since common
jet engines mounted at airliners and small aircrafts have a circular dimension and
therefore these waveguides will be used for the model in Section 3.2.
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Figure 3.1.6: Example of a traveling wave as the sum of two modes

3.1.2.3 Transfer to Cylindrical Waveguides

The deviation of the solution for circular waveguides is similar to the solution of rect-
angular waveguides, the difference is the coordinate system. Instead of cartesian coor-
dinates, a cylindrical coordinate system is used and the starting point of the deviation

is again the Helmholtz equation (3.1.14)

2
VE+ 2 E=0
C

together with the boundary condition 2 for the electric and magnetic field above. These
boundary conditions must be fulfilled over the inner surface at r = R = D/2 and can

be written as

D
E,=E,=0 at r=R= B (3.1.65)
0H 0H D
H, = L = =0 t =R=—. 3.1.66
or or : " 2 ( )

In the cylindrical coordinate system, the Laplace operator V? is changed to [BSMMO0S]

0? 10 1 07 02
2 __
Vi=art o T rop 57 (3.1.67)
<~
transversal longitudinal

which allows to use again the approach of variable separation with the polar coordinates
¢ and r. The according functions are ®(¢) and R(r), which are used together with the
notation - = —jk, and the definition of . from (3.1.18) to achieve the PDE

<8£(27“) + ia];(f)) O(p) + (;ang)) R(r) + k2®(p)R(r) =0,  (3.1.68)
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where E, is replaced by ®(¢) - R(r). This expression is now multiplied with W;(r)
and terms are collected according to the independent variable

-2 (82}%(7‘) 10R(r) 1 82(1)(‘?)_ (3.1.69)

R(r) \ 0r? +7“ or +KCR(T)>:_<I>(<,0) 0p?

Since the left side of (3.1.69) is independent of ¢ it could be considered as constant
for the solution of ®(¢), therefore the term m? is used for the left side, what yields the
oscillating ODE

0°®(yp)
0p?
similar to (3.1.26) and (3.1.27) for rectangular waveguides. The difference to the rect-
angular system is that both sin(my) and cos(me) are solutions to this ODE for ® ()
since there is no boundary condition, which excludes one of the two. Although there
is the physical boundary condition that the values at ¢ = 0 and at all multiples of 27
must be the same, because they refer to the same point in the coordinate system and
the value of E, must be unambiguous. Therefore only integer values are allowed for m
and in the following the solution sin(mg) is ignored since it is the same as the cos(me)
solution with the reference angle shifted by /2.
To get the solution for R(r), the right side of (3.1.69) is abbreviated with m? and in
this way an ODE

+m*®(p) =0 (3.1.70)

9?R(r) 10R(r) , m? B
Or2 T or + (’i - r> R(r) =0, (3.1.71)

which is independent of ¢ is created. The general solution of (3.1.71) is given by [Far93]
as

R(r)=A- Jn(ker) + B - Y, (ker), (3.1.72)

with A and B as arbitrary magnitudes of the m-th order Bessel function of the first
kind J,,(-) and the m-th order Bessel function of the second kind Y,(-).

The Bessel function of the second kind can be ignored here, since they diverge for
r — 0 and this would lead again to a wave with infinite energy as before for the
negative solution of k. below the cutoff-frequency. Because of that, the Bessel function
of the first kind is the only relevant term in (3.1.72). Since m must be an integer value
according to the solution of (3.1.70), the zeros of the m-th order Bessel function define
the possible modes inside circular waveguides. By setting A = E;, and combining the
solutions of ®(¢) and R(r), the final form of E, is achieved

E.(r, ) = EJy (k) cos(mep)e 7%, (3.1.73)

The other field components can be calculated from the z-component, similar to
Equations (3.1.38) to (3.1.41), which also requires the z-component of the magnetic
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3.1 Propagation of Electromagnetic Waves in Waveguides

field that is determined below. First, the cutoff-frequencies for the E-modes are derived

from the boundary condition that E, must be zero at » = R, which implies that

Jm(Kk.R) must be zero and HZM is given as the quotient of P,,,, the n-th zero of the

m-th Bessel function, and the radius R of the waveguide

P
TM mn

= . 3.1.74
W = (3170
The first three Bessel functions of the first kind from order zero to two are shown in
Figure 3.1.7 and the zeros of these functions can be calculated numerically and in this
way the cutoff-frequencies of the E-modes can be determined. The first zero of J,,(z)

for m > 1 at x = 0 is not considered for this calculation.

Y =J0(X)

y= Jl(x)

y= Jz(X)

//’ It
/ >~
0 é /’ 8 9 2
B [ - < o R S
0.5

Figure 3.1.7: First three Bessel functions

For H-modes the solution of the Helmholtz equation is principally the same as before
and the solution can be given as

H,(r,p) = ﬁJm(KCT) cos(me)e 72, (3.1.75)

The difference to the E-modes can be found in the boundary conditions (3.1.66) that
require the derivative of H, with respect to r to be zero. Since the only dependency on
rin (3.1.75) can be found in the term J,,(k.r), the derivation of this term determines
the cutoff-frequencies for H-modes in cylindrical waveguides. The actual calculation is
done in the same way as above for the E-modes by dividing the zeros P, . of the Bessel
function derivative by the radius R of the waveguide

P/
KIE = gn. (3.1.76)
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The derivatives of the first three Bessel functions are shown in Figure 3.1.8.

£
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Y =JI2(X)

+05

Figure 3.1.8: Derivatives of the first three Bessel functions

Before the final jet engine model is derived in Section 3.2, a toy example summarizing
the results of this section and introducing the signal-theoretic model that will be used
later is given in the following part.

3.1.3 Example of Chirp Propagation inside a Waveguide

In Sections 3.1.1 and 3.1.2 all fields are given in the time domain, but since it is known
from signal processing that processing in the frequency domain is often faster and
easier, the Fourier transform E of the initial waveform E(z = 0,¢) is given as

E(0,0) = / Y0, e tdt, (3.1.77)

—00

The initial waveform E(z = 0,t) can be of arbitrary form, e.g. a chirp or a continuous
wave with a single frequency. If now a propagation factor e=7%+% is added to the
waveform, the Fourier transform at position z is calculated as

E(z,w) = / E(0, t)e—9@r+k=2) gy, (3.1.78)

Since the term e~#%+* in (3.1.78) does not depend on t it can be written in front of
the integral, what results in

E(z,w) = ¢k / E(0, )e7!dt = ¢ I**E(0, w). (3.1.79)

The expression in (3.1.79) can be considered as the output of a linear system with
the transfer function e=/*+* [Orf16]
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H(z,w) = e k=)= (3.1.80)

which allows to write the waveform after propagation to point z similar to linear time
invariant systems known from signal processing in the frequency domain as

E(z,w) = H(z,w)E(0,w). (3.1.81)

The expression for k. (w) is given in Section 3.1.2.2 for waveguides as \/ “;—22 — Ke(m,n)?
for mode (m,n). In the example at the end of Section 3.1.2.2 was already shown that
a the electric field is traveling inside a waveguide as a sum of the propagating modes

and, therefore, the general transfer H(z,w) function is a sum of E- and H-modes given
by

Mrg Nrp(m (m My N7 (m) ) (m
N gt SRR s (g )
m=0 n=0 m=0 n=1

TE—modes T M —modes

The upper bounds of the order of the modes Mrg, Nrg(m), My and Npy(m) are
the same for E- and H-modes in case of a rectangular waveguide, but differ in case
of a circular one. They are given in both cases by the mode with the highest cutoff-
frequency below the maximum frequency w,q, by (3.1.64).

With this transfer function, the output of a waveguide can be calculated for an ar-
bitrary waveform at the input. From a signal processing perspective, it is not useful
to have the expression separated for the electric and magnetic field components of the
traveling wave. Thus from now on, a signal s(t, z) is used instead of the field compo-
nents. This substitution is possible, since the components of the electric and magnetic
field follow the signal and thus the signal propagates as the sum of all possible TE- and
TM-modes. This sum of TE- and TM-modes is also the reason that the summing terms
in (3.1.82) start at zero and not at one, since for TM modes in rectangular waveguides
either m or n can be zero. For m = n = 0, the amplitude S is set to zero because it
defines a mode that is physically not possible. The dependency of N on m was already
explained in the context of (3.1.64).

To simplify the notation, a single index m is used from here on as index for the
different modes, which is running over all E- and H-modes. Using this notation, the
transfer function is written as

§m) =ik™z (3.1.83)

HM§

The calculation of the amplitudes of the different modes S is not considered here,
a way to calculate these values is given in Section 3.2.
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To show the effects of waveguide propagation, a toy example with a chirp waveform
is shown below. The chirp has a bandwidth of 800 Hz and runs from 100 Hz to 900 Hz,
the spectrogram of this chirp is shown in Figure 3.1.9 (a). It can be seen that the
duration of the chirp is 10 seconds. The free space velocity is 1 m/s and the waveguide
has a length of 5m. These values are picked to create a vivid, rather than a realistic
example. A realistic example will be given in Section 3.3.

In the first part of this example a single propagating mode is assumed with a cutoft-
frequency of 200 Hz. The group velocity for this mode was already depicted in Fig-
ure 3.1.5. The resulting spectrogram at the output of the waveguide in Figure 3.1.9
(b), which shows that frequencies below the cutoff are removed from the waveform.
The frequencies close, but above the cutoff, are extremely slowed down that they get
passed by the higher frequencies inside the waveguide.
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Figure 3.1.9: Time-frequency representation of a chirp before and after propagation
through a hypothetic waveguide with a single propagating mode

In the second part of this example, the waveform propagates as the sum of three
modes with different cutoff-frequencies, but with the same amplitudes S". In Fig-
ure 3.1.10 (a) a hypothetic waveguide with three possible modes close to each other is
assumed. In this plot, the low frequencies close the cutoff-frequencies show a strong
dispersion, while the straight line of the chirp is still visible at the higher frequencies.
In the spectrogram in Figure 3.1.10 (b), the cutoff-frequencies are more apart from
each other. This results in the appearance of three chirps at the output of the waveg-
uide, since the group velocity at the high frequencies differs also quite a lot. In fact,
the example in Figure 3.1.10 (a) also shows three chirps, but the difference at the high
frequencies is that small that they cannot be distinguished by the eye.

In this example and also in the later applications a simplification regarding the
velocity of propagation is done. In reality, there will always be a small part of the energy
of the wave travel with the speed of light, which is called the wavefront. The velocity

50



3.2 Jet Engine Scattering Model

0

a

20

Frequency in Hz
>
Frequency in Hz

-20

5 10 15 20 5 10 15 20
Timeins Timeins
(a) Spectrogram output signal with f.; = (b) Spectrogram output signal with f.; =
200 Hz, f.o — 230 Hz and f.3 = 260 Hz 200 Hz, f.o — 300 Hz and f,3 = 600 Hz

Figure 3.1.10: Time-frequency representation of a chirp before and after propagation
through a hypothetic waveguide with three propagating modes

of this wave front is limited by the speed of light and is called wave front velocity.
This means that after t = = already a part of the waveform appears at the output of
the waveguide, followed actually by other so called precursors or forerunners [Str4l].
These forerunners are ignored in this work, since the amplitude of these forerunners is
relatively low compared the remaining signal.

For a waveform traveling with light speed, as in the radar case, already very small
differences in the group velocity will cause visible differences at the output of the radar.
To show this effect, an example with a realistic waveform and a realistic target will be
shown in Section 3.3. But before this example is given, the final jet engine scattering
model will be shown in the next section.

3.2 Jet Engine Scattering Model

Modeling jet engines as waveguides and using modal decompositions of the incident
wave is a common way to determine the RCS of engines and aircrafts [Ana03]. Some
applications that use this kind of model in the imaging domain can be found in the
literature, for example in [Bor97], where it was used to remove the range extended
returns from an ISAR image and increase the matching score of a template matching
target recognition system. Another example can be found in [TL96], which uses a
time-frequency transformation based ISAR imaging algorithm to produce several ISAR
images that differ in the used frequency. Furthermore, parts that are unstable across
the chosen frequency range are removed from the image. In this way, an image that
only consists of stable point scatterers is created and it was also shown that the parts
that were removed from the image show the highest variation in frequencies that are
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very near to the theoretical modes of the inlet structure. The approach in this work is
different, since the range extended return is not considered as an artifact that should
be removed, but as a feature that should be used for classification.

The basic idea is to model the engine structure as a terminated waveguide and thus
allow a modal decomposition of the waveform inside the engine. Using this approach,
the modal sum is calculated only once for a given jet engine and can be stored for
the classification process. Further, an analytical model is available and therefore, the
computational demands are reduced. The termination of the waveguide is realized by
the fan or the first stage of the compressor, dependent on the engine. The modulation
due to the rotation of the blades, which was introduced in Section 1.2.1 as JEM, is
not considered here. Although JEM has an effect on ISAR images, the so called JEM
lines, it is not used in the model, since these JEM lines appear perpendicular to the
range dimension. The model used here is limited to the range dimension and the use
of the modulation effect in the model might be considered in the future as extension
of this work.

To keep the notation that is used for point scatterer, the normal form

s(kyp, R) = eIk R (3.2.1)
must be extended by the transfer function (3.1.83) of a waveguide with length L

(m)L
Y

M

H(L, kyy) = Y Stmeius (3.2.2)
m=1

where the term k. is replaced by kg4, since the direction of propagation is not z

anymore. Instead of z, the length L of the waveguide is used as the propagation

distance of the waveguide, the factor 2 stands for the two way propagation inside the

engine. Combining the terms above gives the normal form of waveguide scatterers

M
S(krv kwg, R, L) = Z S(m)e—j(kTR_;'_le(Ung)L)

m=1

ik R l 2k
e dkr BN glm) g =iZkug L (3.2.3)
m=1

The first term in the exponent of (3.2.3) represents the distance of the radar to
the entrance of the engine, where the opening structure also gives a strong point-
like scattering effect. The different scattering effects of an engine are depicted in
Figure 3.2.1, which shows three different types of scattering for an incident electric
field E™ [MW93]. The first one is the point-like scattering at the opening structure
E’;,, the second one is the waveguide scattering from the fan Ej ~and the third one
is the point-like scattering from the exterior of the engine E; ;.

The first two of the scattering mechanisms above are relevant for the model used here,
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Figure 3.2.1: Scattering mechanisms of a jet engine

the scattering from the exterior is ignored, since this scattering can be very diffuse and
might not contribute in the backscattering direction. The scattering of the outer rim
and the cavity should always be present for this kind of engine. An example of a real
ISAR image with a zoomed plot of the jet engine is shown in Figure 3.2.2. The data was
measured with the TIRA system of Fraunhofer FHR, the bandwidth is 800 MHz and
the processing interval was selected to achieve a corresponding cross-range resolution.

Range in m
Range in m

2 3 4
Cross Range inm Cross Range inm

(a) Shape of target (b) ISAR image (¢) Magnification of right engine

Figure 3.2.2: Example of a real ISAR image with range extended returns

In the zoomed image in Figure 3.2.2 two strong point-like scattering centers can be
seen close to each other in the down-range direction. The first one corresponds to the
opening of the jet engine, the second one is the result of the fast propagating modes
that generate an echo from the fan. The higher modes with a slower group velocity
produce the ponytail behind the physical position of the engine. Since the matched
filter in the processing chain is fitted to a wave that is propagating with the speed of
light, the slow group velocity of the higher modes inside a waveguide has the same
effect as a longer distance of a wave traveling with the speed of light.

A point that was not yet considered is the calculation of the weighting parameters
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S(mm) in the model and one method to calculate these is given in the next part.

3.2.1 Calculation of the Mode Distribution

To calculate the amplitudes of the different modes, the modes that are possible for
a given frequency and a certain waveguide opening must be calculated. This is done
by using (3.1.74) and (3.1.76) and for the examples we use here openings of 60 and
90 cm are assumed for the engine and as frequency 10 GHz (X-Band) and 16.7 GHz
(Ku-Band) are chosen. The possible modes are given graphically in Figure 3.2.3. The
yellow areas in the plots represent the possible modes, while the blue areas possess a
cutoff-frequency higher than the propagating frequency and thus represent evanescent
modes, which are ignored in this model. The axes of the plots correspond to m and n
in (3.1.74) and (3.1.76) and it can be seen that the number of possible modes grows
with frequency and dimension of the waveguide.

To calculate an approximation of the amplitudes of the different modes for a cylin-
drical waveguide, the result of [Hua83] is presented here. For a detailed derivation of
the following formulas, the reader is referred to the original paper and the references
therein. The main parameters for the calculation are the free space wavenumber kg of
the transmitted signal, the radius R of the engine and the angle © between the main
axis of the engine and the incident wave. This means that an illumination from exactly
nose on results in an angle of 0° and from broadside in 90°. The given results should
hold within the region 0° < © < 80°.

The amplitudes are calculated differently for TE- and TM-modes, for TE-modes by

(m.m) J, (koRsin(©))\”
(mn) _ 5. [y 14 w9 n A0 2.4
S j (] (mm)n( + e COS(@)) Sn(0) ) (3.2.4)
and for TM-modes by
(m,n) ’
. 1 Fag™ Jn(koRsin(O))
(mn) — 5. | n N7 wg LASA . 2.
S J ) Nmm) sin(©) ( ko +COS(@)> L ( P )2 (3.2.5)
ko R sin(©)

J,, and J), denote the the n-th order Bessel function of the first kind and its derivative
with the zeros P, and P/  as given at the end of Section 3.1.2.3. The normalization
terms Ny ) and N(,, , are given by

1
Nimp) =
VKD e (P2, — n2)

(3.2.6)

and
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Figure 3.2.3: Possible E- and H-modes for different examples; (a) E-modes for 10 GHz
and 60 cm opening; (b) H-modes for 10 GHz and 60 cm opening; (c¢) E-
modes for 10 GHz and 90 cm opening; (d) H-modes for 10 GHz and 90 cm
opening; (e) E-modes for 16.7 GHz and 60 cm opening; (f) H-modes for
16.7 GHz and 60 cm opening; (g) E-modes for 16.7 GHz and 90 cm open-
ing; (h) H-modes for 16.7 GHz and 90 cm opening
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1
N/ = (3.2.7)
(m,n) [ omn)
]'{fll(l)g7 )EOn
with
2 . n=0
€on = { 1 - A0 (3.2.8)

Using these equations, the amplitudes of the different modes can be calculated. An
example for this mode distribution is depicted in Figure 3.2.4, where the values for the
frequency and opening geometry are picked from the example before as f = 16.7 GHz
and an opening diameter of 90 cm.

From the plots in Figure 3.2.4 can be seen that a higher aspect angle will lead to
higher modes, which can be explained by the method of mode matching [Wex67]. This
principle can be explained graphically by a wave, which travels along the opening of
a waveguide. If the aspect angle is high, which means that the wave travels almost
perpendicular to the opening of the waveguide, the maximum number of minima and
maxima of the electric field for example can be found along the opening geometry. This
number of minima and maxima matches the field structure of a certain mode that will
therefore start to propagate.

The results presented above can principally be used to determine the coefficients of
the jet engine scattering model, but this method has a major drawback, since it is based
on the assumption of a perfect waveguide structure, which is not true for jet engines.
It is known from waveguide theory that any discontinuity along the inner surface of a
waveguide will excite all modes, also the evanescent ones [Wex67, Coo71]|. From this
point of view, it is very likely that inside a jet engine the propagating modes are equally
distributed, since a large number of discontinuities can be found inside the air intake
of engines, e.g. small things like screws or large ones like the air bypass. Therefore,
the method to calculate the coefficients S™™ which was presented for completeness,
will not be used in the further presented work. Instead an equal distribution of the
propagating modes is assumed and evanescent modes are ignored. To validate the
model and the given assumptions, a comparison of the example in Figure 3.2.2 and the
model produced with the TIRA parameters is given in the next section.

3.3 Scattering of a Chirp Waveform

An example of an ISAR image that was measured with the TIRA system can be seen
in Figure 3.2.2 in the previous section. In this section, a comparison between this
example and the output of the model with TIRA parameters is given. The parameter
of the TIRA system are repeated here, as they are given in [Meh96]:

e« Bandwidth B = 800 MHz
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(c) © = 70°
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(d) © = 10° (e) © = 40° (f) © = 70°

Figure 3.2.4: E- (upper row) and H-mode (lower row) distribution for 16.7 GHz and
90 cm opening with different aspect angles
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Pulse duration 7, = 256 us

Carrier frequency fy = 16.7 GHz

Sampling frequency fs = 4 MHz

1024 samples per range profile

These numbers give an unambiguous range of 192m and a range resolution of
18.75cm. The parameter of the opening geometry, i.e. the diameter of the jet en-
gine, is the same as in the example in Figure 3.2.4, i.e. 90cm opening. Since no
ground truth for this target is available, a waveguide length of 40cm is used here,
which gives a total propagation distance of 80 cm.

To simulate the scattering from a jet engine, an additional point scatterer is added,
which represents the scattering from the opening rim. The signal model for this point
scatterer is the normal form (2.1.37), which is combined with the waveguide model
(3.2.3). To balance the energy between these two parts, a normalization constant  that
guarantees the same peak value in both components is used. The final one-dimensional
model is formulated as

. 1 M
$(ky, R, Rug, L) = ¢ /¥R (C + 3 ek )L> : (3.3.1)
m=1

where A is the dimensionless factor from (3.1.58), which also contains the implicit
dependency on the waveguide radius R,,. L is the length of the waveguide and R
is the distance from the radar to the opening of the engine. The contribution of the
M propagating modes in this example are, as it was already mentioned at the end of
Section 3.2, equally distributed. The parameter ( is chosen to give the same peak value
at the opening of the engine and at the first reflection, as it was mentioned above.

A visualization of this model and thus the PSF for this kind of scattering is shown
in Figure 3.3.1. The plot on the left side shows the complete unambiguous range and
on the right a zoom in on the engine position shows the decay of the amplitude over
range. The maximum amplitude is normalized to 0 dB in both plots and is reached at
two points, which mark the position of the point scatterer and the first return of the
waveguide scattering.

The values of the plot in Figure 3.3.1 (b) show that roughly 2.5 m behind the physical
entrance, the amplitude is 20 dB below the maximum. The entrance of the engine is
placed at —4.5m in range. Since most of the propagating modes are close to the
velocity of light, the amplitudes close to the entrance of the engine are the highest
ones along the PSF. The slower propagating modes result in the smaller amplitudes
behind the physical position of the engine. Approximately 5m behind the entrance, a
cancellation effect appears for this constellation of parameters.

For the two-dimensional PSF, the model in (2.2.8) is extended by the waveguide
propagation transfer function (3.2.3). This results in the duct delayed returns in range
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Figure 3.3.1: Calculated PSF for jet engine scattering

and a sinc-function in the cross-range domain, which is defined by the movement of the
target (see Section 2.2). Additionally to the waveguide scattering, a point scatterer at
the position of the entrance of the waveguide is used in the model. This corresponds
to the rim reflection shown in Figure 3.2.1 and was also done in (3.3.1). To formulate
the model, the point scatterer model

ke by, 2, ) = eI+ (332)
from Section 2.2.1 is used as a starting point. This model is then extended with the

waveguide model (3.2.3) in z-direction, which corresponds to the LOS. The waveguide
model at position (z,y) is thus given as

—j(katkyy+2k5) cos(p) L)

M=

S(kxakyax7yangaL) = €

3
Il

—j(kpr+kyy+2k-cos(o)A™ L)

I
M=

e

3
I

—j (ke (z+A™ L) +kyy)

I
M=

e

3
1§

M
= eitkeathy) o Ike AL (3.3.3)

m=1

This shows that the waveguide echo is similar to the standard point scatterer model in
(3.3.2) corrected by the sum that contains all propagating modes along the waveguides.
For the final model that will be used later, a point scatterer at the position of the

59



Chapter 3 Waveguide Scattering Model

inlet is added to the waveguide propagation, which is modified in magnitude by the
normalization constant ¢ similar to the one-dimensional case above

A 1 M o
$(ka, ky, 2, Y, Rug, L) = eI Eewthay) ( + Y eIk )L> . (3.3.4)

m=1
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(a) Real ISAR image (b) Jet engine PSF

Figure 3.3.2: Comparison of an ISAR image and a 2D-PSF of a jet engine

Although the ponytail effect seems to be shorter in the calculated jet engine PSF, the
similarity between it and the real ISAR image is clearly visible in Figure 3.3.2. With
this model, the next step for an automatic recognition of this kind of scattering is an
algorithm that is able to distinguish these scatterers from ordinary point scatterers.
The theoretical background for this algorithm will be presented in the next chapter
and the application to radar data will be shown in Chapter 5.
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Chapter 4

Sparse Representation

Over the last years, the topic of sparse representation (SR) became very popular since
many applications showed that this technique can be used in wide variety of areas.
Together with these applications, a lot of attention was given to the theoretical foun-
dations and therefore, a well understood framework is now available. In the first part
of this chapter the basics of SR will be described as far as they are necessary for the
decomposition framework used later in this chapter. As a first step, the basic terms
and notations will be given in Section 4.1. In Section 4.2 an overview of the available
algorithms is given and in Section 4.3 the algorithm that is chosen for the applications
in the upcoming chapter is described in detail.

4.1 Terminology and Problem Description

The aim of the SR framework is to represent an input signal by a linear combination
of elementary signals. This input signal is limited here to a finite dimensional vector
x € CV, representing a complex valued sampled signal. The elementary signals that
are used to approximate the signal are collected as columns of a Matrix & € CNV*M,
which is called dictionary. The weighting of these elementary signals are represented
by the coefficients of the vector a« € CM

x = Pa. (4.1.1)

The single columns ¢, of the dictionary are called atoms and to represent any arbi-
trary signal, these atoms must span the C?, i.e. the dictionary ® must be a full rank
matrix. If the number of atoms M is the same as the dimension N, the dictionary is a
basis of the signal space. If M > N, the matrix ® is called an overcomplete dictionary.
These overcomplete dictionaries introduce the problem of linear dependency in (4.1.1),
but hopefully allow a representation of the input signal with less elements.

If the input signal @ can be exactly reproduced with s < N atoms of the dictionary,
the coefficient vector a of this representation is called s-sparse. In most practical
applications, this ideal case of an exactly s-sparse coefficient vector is not possible due
to noise and model imperfections and therefore, an error n between the input signal
and the sparse approximation is allowed, i.e.
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|z — Pallz <. (4.1.2)

With this error term, the expression ®a is strictly speaking not a sparse represen-
tation anymore, since the signal is not exactly represented, it is only approximated.
The approximation with the minimum 7 for a given s, i.e. the number of used atoms,
is called best s-term approzimation. For this approximation problem, the expression
compressible representation is introduced and the vector & € C is called compressible
if its best s-term approximation decays quickly in s [FR13]. Although the expression
sparse representation is strictly speaking not correct for the mentioned best s-term
approximation that is calculated in most cases, it is mostly used synonymously in the
literature and also in this thesis the terms SR and best s-term approximation are used
equivalently.

To formulate the mathematical optimization problem that must be solved to find the
best s-term approximation, a common mathematical tool, namely the ¢, norm || - |,
is introduced here. In (4.1.2) the ¢; norm || - ||2, which is also known as the Euclidean

norm, was already used. This norm is a special case of the more general ¢, norm,
which is defined for p € [1, 00] as [DDEK12]

(S0 fanl?)” for p € [1,00)
el = (4.1.3)

max |o,| for p = oo

with the Euclidean norm as a special case for p = 2. The £, norm can also be extended
to the case 0 < p < 1, which leads to a violation of the triangle inequality and thus to
a quasinorm. For the SR framework, the p-th power of the £, norm for the case p — 0
is very important, since it can be shown that this case gives the number of nonzero
elements of the vector a.

The index of the nonzero elements in « is called support of a and is written as
supp(a). As already mentioned, it can be shown that [FR13]

N N
e[} = 2o lanl” —2 > L{anz0) = |supp(a)]; (4.1.4)
n=1

n=1
where 1y, 20 is a so called indicator function that gives a value of one for a;, # 0 and
zero for o, = 0, i.e.

L 1 for a,, # 0 (4.15)
tans0} == 0 for a,, =0 o
Therefore, the notation ||al|p := |[supp()| is used to calculate the cardinality of the

support of a. Although this is not even a quasinorm and the notation ||e||) would be
more appropriate [FR13], it is common to use the expression o norm for the number
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of nonzero elements of a. In Figure 4.1.1 a visualization for different values of p in
(4.1.3) is shown. These images show unit circles in different norms and it can be seen
that for the case p — oo the maximum norm is achieved and that for p — 0 the unit
circle changes to a cross that indicates the presence of a single value.

(a) £o.5 — norm (b) ¢1 — norm (¢c) ba —norm (d) 10000 — norm

Figure 4.1.1: Unit circles in different £,-norms

Therefore, the mathematical problem that must be solved to determine the sparsest
solution of (4.1.1) can be written as

minimize llallo st. =P (4.1.6)

and for (4.1.2), which is the more relevant case from a practical point of view, the
corresponding problem is

minimize [lofly st |jz — @allz <. (4.1.7)

Both problems, i.e. (4.1.6) and (4.1.7), are generally intractable, since both problems
are NP-hard [FR13]. An alternative formulation for the problem in (4.1.7) can be found
by combining the ¢, term and the constraint using a multiplicative Lagrange factor A
to

1
o’ = argmin )\||a||0—{—§||ac—<1>a||§, (4.1.8)

where a* is the optimal solution. This notation will, for some choice of the parameter
A, yield the same result as (4.1.7), but since these values of A are generally unknown,
the notation of (4.1.7) is a more natural parameterization and in most applications the
more appropriate using for example an estimated noise level for the parameter 1. The
second term in (4.1.8), i.e. the squared ¢, norm of the difference between  and ®«,
is called data fidelity term, while the first term, i.e the ¢, norm with the weight A, is
called penalty term.

Several algorithms have been presented over the last years to solve the problems
above approximately and in some cases exactly. The success of these algorithms de-
pends heavily on the structure of the dictionary ®. Therefore, several different char-
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acterizations of the dictionary that should assess the success of the SR algorithm in
advance were introduced over the last years, for example the restricted isometry prop-
erty and the null space property. These different characteristics are used to derive
sparsity levels that are guaranteed to be recovered from an arbitrary vector & with
a given dictionary ® and most results are actually related to the convex relaxation
that will be presented in Section 4.2.2 together with one example of these theoretical
bounds. The drawback is that these theoretical bounds cannot be calculated for an ar-
bitrary dictionary, they can only be shown for dictionaries that are designed according
to certain rules [DDEK12]|. Furthermore, these bounds are very pessimistic compared
to empirical results [Elal0] and therefore, the characteristics mentioned above are not
used for the dictionary design in this thesis. Other than these theoretical properties,
there exist characteristics like the spark or the mutual coherence that can be directly
calculated from a given dictionary. However, the only dictionary characteristic that is
used within this chapter is the mutual coherence p(®), which is more intuitive than
the other mentioned so far. It is defined by

H
AK@)::max‘JfljﬁLf,
i#i||pill2lle;]l2

which gives a maximum value of 1 if the dictionary contains at least two linear depen-
dent atoms ¢; and ¢; and a minimum value of

(4.1.9)

M—N
N(M=1)

where M and N are the dimensions of the dictionary.

pu(®) > (4.1.10)

The mutual coherence characterizes the dependence between the columns of the
dictionary @ and in the design process of a dictionary a small value is desired, since
a lower value guarantees a better result of the SR [Elal0]. Precisely, if the sparsity s
of &, which represents the output of an arbitrary algorithm, is below an upper bound
given by

1 1
s<2<1+u@®>, (4.1.11)

it is necessarily the unique solution of (4.1.6). This means that a dictionary with a
low coherence allows a less sparse signal to be recovered exactly [SMF10]. This is one
example of a theoretical convergence guarantee and although many of these results
exist, most of them are still too pessimistic compared to empirical results [Elal0] and
are therefore not considered in this thesis.

In the next section, some prototype algorithms are presented, which are used regu-
larly to solve (4.1.6) and (4.1.7).
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4.2 Algorithmic Principles

Over the last years, many algorithms were introduced to solve the problem of finding
the sparsest representation using an overcomplete dictionary, as it was presented in
Section 4.1. The purpose of this chapter is not to give a full overview of all available
algorithms, but to show the principles of three different groups of algorithms. These
groups are namely the greedy algorithms, the optimization-based algorithms and the
iterative shrinkage algorithms. A more extensive review of SR algorithms can be found
for example in [ZXYT15]. Only the method that is chosen in the later presented
applications is described in detail in Section 4.3.

For the description of the algorithms, the following notation is used. The common
output of all algorithms is an estimate & of the true sparse vector a. If this estimate
is build up in an iterative way, a superscript with square brackets is used to determine
the estimate of the current iteration, i.e. & is the estimate of the sparse vector «
at iteration v. The difference between the signal & and the reconstruction using the
dictionary ® at iteration v is given by the current residual

r =2 — ®al. (4.2.1)

Finally, the support of the estimated sparse coefficient vector at iteration v is written
as supp(a).

4.2.1 Greedy Methods

The methods of this section are iterative methods that build up an estimate & of the
true sparse vector o using locally optimal decisions at each step. These algorithms,
which are also called greedy pursuits, give the weakest theoretical performance bounds
compared to the other methods of Section 4.2.2 and 4.2.3, but are very fast and appli-
cable to very large datasets and are therefore widely used [BDR12].

The general framework of these greedy methods consists of two steps at each itera-
tion, first one or more atoms of the dictionary are selected and secondly, the current
estimated coefficient vector is updated. The selection of the atoms is solely based on the
magnitude of the projection gi*! of the current residual on all atoms of the dictionary

gl = Hyl, (4.2.2)

From this projection, the maximum magnitudes are used and the corresponding
atoms are added to the support of the estimate & The number of elements that are
added to the support at each iteration depends on the specific algorithm. The update
of the coefficient vector is done in a way that decreases the cost function

F@M) =[P = ||lo — @&, (123

which consists only of the data fidelity term, i.e. the squared ¢5-norm of the residual.
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This basic structure is summarized in Algorithm 4.1, which also uses a parameter S
that determines the maximum number of iterations.

Algorithm 4.1: Greedy pursuit framework
Input: x, ®, 7, S

Init: &% =0, vl =z, v = 1;
while stopping criteria is not met do

g[u] — (I)H,r[y—l];

Update & based on gi"!;

rV =g — <I>d[”];

if ||r||2 <5 or v =S then
‘ stop pursuit;

else
‘ v=v+41;

end

end

Output: &,

In the following, two concrete examples of greedy pursuit algorithm are presented.
The first one is matching pursuit (MP), which was the first pursuit algorithm presented
for signal approximation [MZ93]. In this algorithm only one atom ¢, of the dictionary
is selected at each iteration and added to the current support. In the coefficient vector
all, only the element «; that belongs to the selected atom is updated. The selection
of ¢, is based on the magnitude of (4.2.2) normalized by the ¢s-norm of the atoms.
This normalization is done to select the dictionary element that removes the highest
amount of energy from the current residual term. In most practical applications this
normalization step is included in the design of the dictionary, i.e. all atoms posses an

ly-norm of one. An algorithmic description of MP is given in Algorithm 4.2.

The second algorithm that is presented here is an extension of the MP, known as
orthogonal matching pursuit (OMP). The structure is very similar to the one of the
standard MP, but with the difference that at the end of each iteration step the signal
x is projected orthogonally on the columns of ® associated with the current support
supp(&[”]), which is denoted here by the set Q. In this way the approximation
is optimized with respect to the support selected up to the current iteration [Tro04].
This optimization is realized by a multiplication of the signal & with the pseudo-inverse
of the support restricted dictionary ®qu, which consists only of the columns ¢, with
i€ Q= supp(dz[”]). In this way all nonzero elements of & are allowed to change to
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Algorithm 4.2: Matching pursuit (MP)
Input: =, &, 7, S

Init: &% =0, 70 = ¢, v = 1;

while stopping criteria is not met do
gl = eHplv-1l,

i = argmaxl-Igl[V”/H%H%

~lv Alv—1 v

aE[jJ = O‘EM V4 gz[lv]l‘/H(’Di[”]H%;
v — gl /el

if ||r]|2 <7 orv =S then
stop pursuit;
else
‘ v=v+1;
end

P — pl

end

Output: &, r

solve the least squares minimization problem

&, = argmin ||z — B g |[3. (4.2.4)

Agv]

This additional minimization problem guarantees that the residual is always orthog-
onal to all currently selected atoms and therefore, no atom is selected twice by the
OMP algorithm. The OMP is summarized in Algorithm 4.3.

These two basic structures form the basis for many other greedy algorithms that
are not shown here. For further details the reader is referred to the literature, e.g.
[BDR12] or [ZXY"15]. In the following part of this thesis, the algorithms that are
based on mathematical optimization are shortly introduced.

4.2.2 Convex Optimization Methods

It was already mentioned at the end of Section 4.1 that the /y-norm minimization prob-
lems are NP-hard and thus intractable in practice. The first approaches in Section 4.2.1
used locally optimal heuristic measures to build the support of the underlying problem.
In this chapter, no specific algorithm will be shown, but the mathematical principles to
find the optimal solution will be introduced. For this principle the initial formulations
of (4.1.6) and (4.1.7) are replaced by
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Algorithm 4.3: Orthogonal matching pursuit (OMP)
Input: =, ®, 7, S

Init: &% =0, rl% = 2, QO = supp(a®) =0, v = 1;

while stopping criteria is not met do
gl = eHplv-1l

i = argmax;|g/”| /|| el

QW = Q-1 U il;

A v
&g

rl =z — ®al

_ & .
v = Py

1/]’

if [|r]|2 <75 orv =S then
‘ stop pursuit;

else
‘ v=v+1;

end

end

Output: &,

& = argmin ||a||; st =P« (4.2.5)

and

& = argmin ||a||; st ||z — Palls < 7. (4.2.6)
[e%

The particular choice of p = 1 in the minimization problem has been done on purpose,
since this is the so called convex relazation of (4.1.6) and (4.1.7). It can be shown that
this choice will lead to the sparsest solutions under certain conditions, of which only
one is given here without proof to show the basic relationships.

This condition is related to the null space property mentioned in Section 4.1. The
null space NV (®) of a matrix @ is given by the vectors u that create a vector of zeros
0 when multiplied with the matrix, i.e.

N(®) = {u cCV: du= O} : (4.2.7)

With the vectors creating the null space, a sufficient condition can be given that
guarantees that the solution calculated with (4.2.5) or (4.2.6) is the same as the solution
of (4.1.6) or (4.1.7). This condition gives an upper bound of the sparsity of the solution
& that guarantees the equivalence of the /- and ¢;-minimization
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1)y
2] ull

| &lfo < min{ ue N(®)\ {0}} . (4.2.8)

This and other conditions can be found in the literature, e.g. in [Hag20] and the
references therein.

For values of p > 1 even 1-sparse vectors will not be found by a specific algorithm and
for p < 1, the problem is not convex and also NP-hard in general. The convexity of the
problem is a necessary condition to guarantee a unique solution of (4.2.5) and (4.2.6),
which allows the application of convex optimization tools [BV04]. The special case of
the ¢ norm allows for example the use of linear programming techniques [Elal0]. The
principle of ¢;-minimization for signal decomposition is also known as basis pursuit for
(4.2.5) and as basis pursuit denoising for (4.2.6) [Che95]. For both principles several
algorithms are available to solve this problem and an overview can be found for example
in [ZXY™"15].

An alternate version of (4.2.6) that should be mentioned is the combination of the
l1-term and the data fidelity term in a single equation using a multiplicative parameter

1
& = argmin )\|]a||1+§||93—<1>a||§, (4.2.9)

which is comparable to (4.1.8). Both formulations of (4.1.8) and (4.2.9) have in common
that the parameter A is generally unknown, but both formulations posses a closed form
solution if ® is a unitary matrix, i.e. a orthonormal basis, which will be utilized in the
next section.

In this thesis, methods based on convex optimization, e.g. interior point methods or
the simplex algorithm, will not be used in the application and therefore, they are not
further investigated. The main reason for this are the high computational demands
and the fact that the application aims at a decomposition of a signal into parts that
originate from different sources. For this decomposition task, a tailored algorithm is
available that uses an iterative thresholding scheme, which will be described generally
in the following section.

4.2.3 Iterative Thresholding Methods

In this section, iterative thresholding methods will be presented, which are between
the two previous algorithm types. They can be seen as greedy methods, since they
principally follow the basic scheme of Algorithm 4.1. However, the algorithms can
reach global convergence if the step size is chosen properly, but not necessarily to the
global optimum, since one of the algorithms uses the non-convex ¢, norm in its cost
function. The algorithms mentioned in Section 4.2.2 use always the convex relaxation
with the /1 norm and if the given problems fulfills the conditions on the sparsity level for
certain dictionaries, the convex optimization algorithms will give the optimal solution.
Therefore, the iterative thresholding algorithms are presented separately because of
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Chapter 4 Sparse Representation

their improved recovery guarantees and stronger theoretical foundations compared to
the greedy algorithms in Section 4.2.1, although one of the algorithms uses a non-convex
cost function. Furthermore,the chosen algorithm that will be presented in Section 4.3
and used in the applications of Chapter 5 is of this type, which justifies a closer look
at these methods.

Before the algorithms are shown, two basic thresholding operations will be intro-
duced. The first one Hr(x) is called hard thresholding and keeps the argument z
unchanged if the magnitude is above a certain threshold T

Hp(z) = (4.2.10)

x for |[x| > T

0 for |z| < T.

The second thresholding operation Sy(x) is called soft thresholding or shrinkage and
is defined by

(4.2.11)
0 for |z| < T.

Z(|x| = T) for |z| > T
Sp(x) = { =

Both thresholding operations can be applied to real-valued and complex-valued num-

bers. In case of complex numbers, the thresholding operation is applied on the magni-

tude while the phase is kept unchanged. Further can both operations also be applied

to vectors, in this case each element of the vector is treated independently. A visual-

ization of both thresholding methods is shown in Figure 4.2.1 for real numbers. The

output on the y-axis of Figure 4.2.1 (b) clearly shows the shrinkage effect of the soft
thresholding operation.

(a) Hard thresholding (b) Soft thresholding

Figure 4.2.1: Hard and soft thresholding

These thresholding operations possess a relation to SR that will be shown for or-
thonormal dictionaries before the algorithms that actually solve SR problems with
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overcomplete dictionaries are formulated. It was already mentioned in Section 4.2.2
that closed form solutions for (4.1.8) and (4.2.9) exist if the dictionary is a unitary
matrix. In this case follows with the definition & = ® 'x a reduced form of both
problems given as

1
a” = argmin h(a) = argmin \||a||, + 5“& —alf; (4.2.12)

with p = 0 or p = 1!. This problem can also be seen as a data approximation with £,
or {1 penalty. In case of the ¢, penalty, the problem can also be written as

1
o = argmin h(a) = argmin A||al|o + §||6z —all;

N
1
= el gl el (4219
which uses the definition of the ¢y norm in (4.1.4) and gives N independent problems
that can be optimized separately [SED04]. To find a solution to this problem, the
formulation of (4.2.13) is split into two parts hi(a,) = lim, 0 Aoy, |P and ho(ay,) =
2|, — a,|? and thus (4.2.13) can also be written as

N
o = argmin h(a) = argmin Y hi(a,) + ho(oy). (4.2.14)
a a1,02,.,0N

To find the optimal solution a* for (4.2.14), the minimal values for h(cq,,) and
ho(ay,) are used. hj(a,) can also be substituted by the indicator function given in
(4.1.5) multiplied with A and this will give a minimum of zero for «,, = 0, otherwise a
constant cost of A is created. hs(a,) is a quadratic function with a minimum of zero
for o, = @,,, otherwise costs of %|dn — a,|? are created. In the optimal case of hy(a,),
i.e. a;,, =0, the second term produces costs of %|dn\2. The choice of a* is determined
by the point where %|5¢n|2 reaches a value of A, since from this point on, the choice
o = &, would produce lower costs. This point is given by

1
*|O~‘n|2 = A
2
6] = V2X (4.2.15)
and thus the optimal solution a* for (4.2.14) is given by

. { &, for |a,| > V22X

4.2.16
0 for |a,| < V2A, ( )

LA solution for the interval 0 < p < 1 can be found in [SMF10] and the references therein.
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which is the hard thresholding operation with the threshold v/2\. This equivalence is
used for example in image denoising with wavelets [SED04], which assumes that the
signal energy can be represented by a few coefficients and the remainder contains only
noise.

A comparable approach is chosen to find the optimal solution a* of (4.2.9). This
problem can also be separated into N independent optimization problems and for the
special case of a unitary dictionary with & = ® 'x, the reduced form is

1
o = argmin h(a) = argmin )\||a||1+§||d—a||§
[e% «

N N
1
= argmin »_ Aa,|+ > §|&n — . (4.2.17)

1,02, ,ON 1 n=1

To find the optimal solution, the problem is further simplified to a single component
written as the sum of a real and imaginary part ag + jag

1
R, af = at;%r’glin h(ag,ar) = aZ%IEIm Aok +aod + B ((&R —ag)® + (ar — aI)Q) :
(4.2.18)

If af and «af are the optimal solution of (4.2.17) and if (a%)? + (af)? > 0, the
derivative of real and imaginary part must be zero, i.e.

Oh(ag, ar) QR ~
) g \R_ 0p—an
darg Vo + a3
oh
Oharar) g\ L g, (4.2.19)
Doy Vo + a?
With ¢ := y/a% + a3, it follows that
ar = 0= ;‘fc. (4.2.20)

If the last two equations are added, it follows

(& ~ ~
c=\/ar+ar= 1T a% + a3, (4.2.21)
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and therefore
Vah+ao =|al =yakh+a?— = |a| -\ (4.2.22)

The solution is thus a reduction of the magnitude by A and the argument is kept
unchanged for |&| > A. For |&] < A the output must be zero, since the magnitude can-
not be negative. This solution corresponds to the definition of the shrinkage operator
in (4.2.11) with the threshold A, i.e.

g(lal=x)  forfal > A
af = @ (4.2.23)

0 for |a| < A.

To formulate iterative thresholding algorithms, the problems given in (4.1.8) and
(4.2.9) must be changed to the form of (4.2.13) and (4.2.17). Since the /,-constraint is
kept in both problems, the data fidelity term must be changed to a formulation in the
image domain, which is shown below.

For the following derivation, the dictionary ®, which was defined as a complex-
valued matrix of size N x M, is changed to real-valued matrix of size 2N x 2M with
independent real and imaginary parts. Further are the real and imaginary parts of the
vectors & and a decoupled and combined to vectors of the size 2N and 2M respectively.
The real-valued matrix and vectors are given by [End10]

‘I)RV:<E§‘{{${ _RI:E‘%}), va=<gﬁg>, aRVZGI{E}ZD. (4.2.24)

These definitions will give the same results for real and imaginary parts as the
complex multiplication and are necessary to allow a Taylor expansion of f(a) = 3||x —
®al|3 at a point a’. The index RV is omitted since the result can be applied directly
with complex-valued vectors and dictionary [HGT06]. The first three coefficients of
the Taylor series are

fla) = f(a') + (a — ")V f(a!) + ;(a — o' )Y"H(a")(a — al), (4.2.25)

where V f(a') is the gradient and H f(a') is the Hessian matrix. Both terms can be
calculated as

Vi(a)=—-®'(x - ®a) (4.2.26)

and

H;(a)=%"d. (4.2.27)

With these terms and the definition of f(a), the Taylor series becomes
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fla) = ;||w — &5~ (a— )P (x — Pa) + ;(a —a) T ®(a— '), (4.2.28)

The next step is an approximation of the Hessian matrix, which guarantees that f(a)
is strictly convex. A sufficient condition is that the Hessian matrix must be positive-
definite, which is fulfilled for a positive multiple of the identity matrix I?. Therefore,
the expression ®7 ® is replaced by %I and the Taylor approximation becomes

1 1
fl@) ~ Sl —Ball} (@ - )" (@ - da) + —(a - a')(a - a)
T
1 1
= Sllz— @l - (a—a')8" (@ - Ba) + ol — o'}

= Qia,af). (4.2.29)

Since the dictionary ® is overcomplete, the identity matrix is actually not possible for
the term ®7®. For this reason, the parameter 7 is introduced to control the iterative
algorithm below. An adequate choice for 7 with the given dictionary ® is an upper

bound of

1
T <

< @) (4.2.30)

where Aq.(A) is the largest eigenvalue of the matrix A [Elal0]. With the approxi-
mation of f(a) in (4.2.29), the cost function (4.2.12) that should be minimized can be
written as

&' = argmin M |a|, + Q:(a, &), (4.2.31)

where the iterative behavior is already indicated by the superscripts ¢ + 1 and ¢. But

to achieve a structure comparable to the one in (4.2.17), a reformulation of Q;(c, &")
Is necessary.

1 1
Q&) = Jllz— B4/}~ (a— 61" (z — Ba) + —_||a — &
1 1
= Sl = @&+ ol — &'+ T (z — a3 - 1|87 (@ — 24|

1
= o (&' + 78" (z - &) — a3 + B(&) (4.2.32)

2A matrix A is called positive-definite if the result of 7 Ax is always positive, except for z; = zo =
-+« =x, = 0. A necessary condition that must be fulfilled for a positive-definite matrix A is that
all elements on the main diagonal must be positive, i.e. a; > 0,7 = {1,2,...,n}. A sufficient
condition is that all eigenvalues of A are positive [BSMMO08|
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with

B(&") = 5||m — ®&|3 - §||‘I>T(a: — ®aY)||3. (4.2.33)

The term B(&') in (4.2.32) is constant with respect to o and can be omitted in the
minimization problem. Therefore the final minimization problem is given by

1
&'t = argmin Alall, + || (& + 787 (z — 24)) — af5 (4.2.34)

which is of the form of (4.2.17) with the variable substitution

(&) = & + 787 (x — ®&H). (4.2.35)

To achieve a solution for (4.2.34), either the hard thresholding or shrinkage operation
is applied iteratively to the term @(&") with a threshold according to the choice of p.
This can be seen as a shift of the Taylor approximation until convergence and the
minimum are reached. This basic step of the algorithm is actually an optimization in
itself with the closed form solution given in (4.2.16) and (4.2.23). The basic iterative
thresholding is summarized in Algorithm 4.4, where the index ¢ of the incremental
Taylor approximation is replaced by the variable v to have the same notation as above.

Algorithm 4.4: Iterative thresholding
Input: «, &, 7, S, T

1

ite A0 — [0] — — — .
Init: & = 0,7 =@, v = 1, 7 = Ty

while stopping criteria is not met do
& = Thresholdy (a[”_l] + T(I)Hr[”_l]);
rll =g — ‘IJ&M;
if ||r||2 <5 orv =S then
stop thresholding;
else
‘ v=v+1;

end

end

Output: &,

The operation Thresholds in Algorithm 4.4 represents either the hard thresholding
Hrp(-) or the shrinkage operation Sp(-) dependent on the choice of p. In case of hard
thresholding (p = 0), the algorithm is called iterative hard thresholding (IHT) and with
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soft thresholding (p = 1) it is called iterative shrinkage thresholding (IST).

A variation of the IST that improves the convergence properties of the algorithm
is the fast iterative shrinkage thresholding algorithm (FISTA), which is given without
proof here. A detailed description of this algorithm can be found in [BT09], here only
the core idea is sketched. The main element of FISTA is a refinement of the coefficient
vector &) by linear backtracking research via a linear combination of the previous two

v—

iteration points & and a1 given by
M1
NCPEPNT IS Al -1l
& = &+ 2 (&M —al1) . (4.2.36)

The parameter £ must be a positive sequence that satisfies ¢# > (v + 1)/2, which is
guaranteed by the update rule

1+ /1 +4(eW)2

v+1] —
¢ 2

(4.2.37)

and the initialization £ = 1.

To change the IST algorithm to the FISTA, the update (4.2.36) is included between
the calculation of & and the residual in Algorithm 4.4, which requires the calculation
of (4.2.37) beforehand. Although this scheme is only proven to work with the IST, it
will be also used with the IHT in the algorithm presented in the next section. This
step can only be justified here with the success in the results that will be presented
below and in the next chapter.

As it was already mentioned above, both the IHT and IST with the FISTA variation
reach global convergence if the step size size 7 is chosen in the given way. However,
for the IHT it is only proven that the algorithm can reach a critical point, i.e. a point
with a gradient of zero, of the cost function (4.1.8) [ABS13], which is non-convex.
Therefore, it is not guaranteed that the algorithm will reach the global optimum. In
case of FISTA, the global optimum can be reached [ZXY*15], since the cost function
is convex and if the conditions on the sparsity mentioned in Section 4.2.2 are fulfilled,
the global optimum of the convex relaxation coincides with the optimum of (4.1.8).
A point that distinguishes FISTA from the convex optimization methods mentioned
in Section 4.2.2 is the non-monotonicity of its convergence. It is possible that FISTA
exceeds the optimum value and a rippling behavior occurs towards the end of the
algorithm around the true optimum [CAD18].

4.3 Morphological Component Analysis

In this section, an algorithm that is specifically designed to decompose signals into
different components is introduced. The algorithm is called morphological component
analysis (MCA) and will be introduced in Section 4.3.1 together with the principle
of morphological diversity. These theoretical foundations will be visualized by a basic
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image processing example in Section 4.3.2.

4.3.1 Model Assumptions and Algorithm Description

The starting point of this algorithm is also (4.1.1), which can be extended by a noise
term n to

x=Pa+n. (4.3.1)

This noise term is the reason that normally (4.1.2) is used to find the sparse repre-
sentation of the input data x. The model of morphological diversity assumes that the
input data can be modeled as the sum of K different components ) [SMF10], i.e.

K
x =) xp. (4.3.2)
k=1

Each ;) is called a morphological component and should be sparsely represented by
a given dictionary @) with the coefficient vector ;). Up to this point, the dictionary
was assumed to be one large matrix ®, which is still valid here, but this matrix can
now be divided into several subdictionaries ® ;) and each component is represented as

i = Pmow Vke{l,. ... K} (4.3.3)

Each subdictionary ®) must provide a sparse representation of the component it
is serving, while being inefficient representing the other contents. One possibility to
ensure this behavior is to use dictionaries, which are mutually incoherent, i.e. the
combined dictionary possesses a low mutual coherence. The choice of the components
depends on the given problem. In a radar context, the vector x is given by the recorded
radar data and in Chapter 5 it will be pointed out that these components can be differ-
ent scattering mechanisms. The vectors é ) estimate the scene, i.e. the coordinates,
of the specific scattering mechanisms and the sum over all ®)é ) gives the noise
free radar data as sum of the different scattering mechanisms in the ideal case. The
different subdictionaries @) do not have to be overcomplete, in fact undercomplete
subdictionaries are also possible. The concatenation of all subdictionaries creates an
overcomplete dictionary and thus an underdetermined problem.

The idea of the presented algorithm, which is called morphological component anal-
ysis (MCA) is the estimation of the components o) by solving the constraint opti-
mization

K K
Q- - ,d(K) = argmin Z ||a(k)||p s.t. ||m — Z <I>(k)a(k)||g <n. (434)
k=1

A1) K) =1

The parameter 7 in the constraint function is used to take noise into account.
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Assumed that each dictionary gives a sparse representation of its specific content,
Equation 4.3.4 gives the coefficient vectors ) of the different components, which are
concatenated to the overall coefficient vector e in (4.3.1). It should be mentioned that
this algorithm should not be mistaken with the morphological operations known from
image processing [Pra07]. Although MCA was also introduced in the context of im-
age processing [SED04], the term morphology refers to the general study of structures
underlying measured data in this case.

A solution of 4.3.4 can be achieved by iterative hard thresholding (p = 0) or iter-
ative soft thresholding (p = 1) [SMF10], which were presented in Section 4.2.3. The
difference compared to the general scheme of the algorithms presented above is the
now given structure of the dictionary. In Section 4.2.3, the dictionary was assumed
to be one large matrix, which is still valid here, but this matrix can now be divided
into several subdictionaries ®). To solve this problem, the so called block coordi-
nate relazation (BCR) method is exploited. This method was introduced for unitary
subdictionaries, i.e. orthonormal transformations as in the derivations of the optimal
solutions of (4.2.12) in Section 4.2.3, and the method is applied iteratively with all but
one oy fixed [BSTI8]. In this case, (4.3.4) can be written for p =1 as

2

<n,  (4.35)

a
(O] 9

Gy = argmin ||a||1 st Do | — oy
k=1 k;ﬁl

Wthh is of the same type as (4.2.17) that is known to possess the closed form solution

in (4.2.23). The iterative apphcatlon of (4.3.5) will converge to the optimum of (4.3.4)
for p = 1 if the dictionary ® is built of unitary subdictionaries ® ), which guaran-
tees a unique reconstruction for each subdictionary [SED04]. Although a convergence
guarantee cannot be given for overcomplete subdictionaries, the careful design of them
considering a low mutual coherence between the subdictionaries gives an intuitive justi-
fication that the algorithm should pick only salient features for the current component
in each iteration [SMF10].

To realize that the algorithm picks only salient features in each iteration, it is ap-
plied with a decreasing threshold from one iteration to the next. This scheme using
a decreasing threshold results in the desired coarse to fine behavior of the decomposi-
tion. Therefore, an initial maximum and a minimal threshold must be determined and
the actual threshold is varied between these two points. The two standard schemes
are either a linear or an exponential decrease determined by the predefined maximum
number of iterations. To determine the initial threshold, a common strategy is to set
it to a certain value that only coefficients from a single subdictionary are chosen at
the first iteration. The algorithm can also be stopped early if the targeted error bound
is achieved before the minimal threshold is reached. Additionally to these standard
schemes, adaptive methods can be used to determine the threshold in each iteration
[BSFT07]. The structure of MCA is shown in Algorithm 4.5 using the shrinkage oper-
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ation.

Algorithm 4.5: Morphological component analysis
Input: €T, P = [(I)(l), @(2), ceey ‘I’(K)}, n, S

. A [0
Init: aE,j) =0Vk, rl =g M=1v=1 1= 7/\771”(1@*’@);
let k* = m]?xucbgﬁ)zcnoo, then 71 = max D002 |oo;

while stopping criteria is not met do

5[’”“1] _ 1+4/1+4(£0)2
2

I

for k=1 to K do

A ll*l v— .
&) = Sr(afy !+ refyr1);

N M1 (Al alv—1]\.
by = Gy + (a(k> — Oy )
end
rll =2 - T5, ®3af);

if [|r]|2 <75 orv =S then

stop MCA;
else
v=v+1;
Set T according to chosen updating scheme;
end
end
Output: &[(q]), . ,&El}](), rl

This iterative behavior with a decreasing threshold also allows to correct separations
from early iterations, i.e. content of the data «x is allowed to change from one morpho-
logical component to another during the iterations. This is a result of the block-wise
application of the thresholding for each subdictionary with the residual of the previous
iteration. Further, the algorithm can also be used with the hard instead of the soft
thresholding, which would lead to the minimization of the ¢y norm in (4.3.4). Also
a combination of both thresholding methods is possible, in [SED04] it is mentioned
that the best results are often reached if the soft thresholding is replaced by hard
thresholding towards the end of the decomposition.

It should be mentioned that the MCA in Algorithm 4.5 differs from many MCA
descriptions in the literature, for example in [FSED10], since these notations are of-
ten limited to image processing applications and assume dictionaries, which can be
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replaced by a fast transform, e.g. undecimated wavelet transform. In this case a faster
implementation is possible that is applied in the image domain and is not minimiz-
ing the £, norm of the coefficient vector. Furthermore, the references above use an
MCA implementation without the FISTA iteration scheme. To visualize the MCA
decomposition a basic image processing example is shown below.

Another point that should be mentioned is the difference of this algorithm to so
called group sparsity algorithms, like the group Least Absolute Shrinkage and Selection
Operator (LASSO) [YLO06]

(4.3.6)

N A 1
Ay, -, OK) = aargnam -
(1) (K

2 K

+ )\kzl \/M(k) Ha(k)‘
9 -
where M) is the number of atoms in the k-th subdictionary. The penalty term in
this equation is the sum of the ¢5 norm of the groups in the decomposition. If the
group size is reduced to one element, this penalty will be the same as the ¢; penalty
before. Therefore it can be seen as a sparse approximation for coefficient groups, i.e.
the algorithm handles a whole group as one element in the sparsity penalty. As a
result of this formulation, the number of groups is minimized, but all coefficients in the
selected groups are allowed to be nonzero [SFHT13].

K
- Pryo
k=1

2 )

Recalling that the aim of this thesis is the detection of jet engines in ISAR using the
waveguide model from Chapter 3 and their separation from point scattering centers,
a coefficient vector with only nonzero elements would detect jet engines in the whole
ISAR image. Therefore, this algorithm seems to be not appropriate for the given task.
A possible solution to this problem is the sparse group LASSO [SFHT13]

A A 3 1
a),..., ) = argmin ———
a(l),...,a(K) 2N

2 K
2+(1—B)Ak21 VM |||+ el
(4.3.7)
where N is the dimension of @, a is the concatenation of the a) and 5 € [0, 1] is an
additional optimization parameter to create a convex combination of the two penalties.
For 3 = 0, the expression is reduced to the group LASSO and for § = 1, the Lagrangian
form of (4.3.4) for p =1 is created. The additional ¢; penalty is used to create sparse
coefficients in the sparse groups. This would solve the problem of equally distributed
detection over the whole ISAR image, but the penalty of sparse groups might removes
certain scattering mechanisms completely. Since the aim is to design a dictionary only
with scattering mechanisms that are expected in the data, this variation of the group
LASSO, and group sparsity algorithms in general, are also not appropriate for the task
of this thesis.

K
- P
k=1
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4.3.2 An Image Processing Example

To visualize the decomposition task of the MCA, an image with different shapes is
created and decomposed according to these shapes. The test image is depicted in
Figure 4.3.1 (a), which is a binary image with a value of zero for the background and
one for the shapes. It is visible that the image is a composition of dots, sqares, crosses,
circles, horizontal lines, and vertical lines. For the actual decomposition example a
noisy version of this image is used, which is shown in Figure 4.3.1 (b). The noise is
equally distributed noise in the interval [0, 0.3] and was added to the original image.

0
10 20 30 40 50 60 10 20 30 40 50 60

(a) Original (b) With noise

Figure 4.3.1: Test image

In this example, six different subdictionaries are designed, one for each shape. The
columns of these subdictionaries, i.e. the atoms, are scaled to give a value of one if
the atom matches the object in the image. To perform the multiplication @g)m with
the image as vector @, the image is vectorized by column stacking. Since the data in
this example is real-valued, the Hermitian of the dictionary can be replaced by the
transposed. Three of these six subdictionaries are visualized in Figure 4.3.2, which
shows the atoms without column stacking.

For the implementation of this example, the minimum threshold was set to 0.1,
which is inside the noise level. The maximum threshold was determined in the way
given in Algorithm 4.5, and 100 iterations with an exponential decrease are used. The
stopping criteria using n was not implemented to show the influence of a threshold value
within the noise level. The thresholding operation itself was realized by the shrinkage
operator.

For the visualization of the decomposition, the reconstructions in the image domain
® )Gy are shown in Figures 4.3.3 to 4.3.5 (b) to (d) and (f) to (h) together with
the remaining residual in plot (a) and the sum of the components $9_, ® )by in
plot (e). The decomposition is shown after 20, 60 and 100 iterations, which is the final
result. All plots are in the same dynamic range,which is matched to the maximum
value in the noisy input image, to allow a comparison between the different Figures.
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]
g

O, P, O, On circle ¢, ¢, O, O crosses ¢, ¢, O, O vertical tines
(a) Circles (b) Crosses (c) Vertical lines

Figure 4.3.2: Visualization of three subdictionaries
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Figure 4.3.3: MCA Example after 20 Iterations
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Figure 4.3.4: MCA Example after 60 Iterations
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Chapter 4 Sparse Representation

It can be seen that the contribution of the single shapes is increasing constantly
during the decomposition algorithm. The color intensity in the plots of the single
components and the components sum of the current iteration is increasing, while the
components are removed from the residual. The influence of the noise can be seen in the
images of Figure 4.3.5, which is the final result. Since the threshold is reduced towards
the end of the algorithm to values within the noise level, noisy elements become visible
in the reconstruction of the different shapes. Especially the dictionary of the dots,
which are produced of 2 x 2 pixel areas, is prone to noise due to the high similarity
with the canonical single pixel basis. The other elements posses a higher averaging
effect, although some artifacts are visible in all components.

The next step is to apply the MCA algorithm to radar data, which is done in the
experiments of the following chapter.
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Chapter 5

Decomposition of Radar Images

This chapter presents the results obtained with the methods and models of the previous
chapters and is split into three parts. The first one is a simulation with scatterers of
different shapes with the aim to decompose the complex-valued raw data according to
the scattering centers. This simulation is comparable to the example in Section 4.3.2,
which was applied in the real-valued image domain. Results for this simulation are
presented in Section 5.1.

The second part in Section 5.2 presents a simulation using the model of Chapter 3
together with the standard isotropic point scattering model. This simulation aims at
validating the model and showing the capabilities of the algorithm to separate both
kinds of scattering. Further, the sensitivity of different models and algorithmic param-
eters is investigated.

In the last experiment, in Section 5.3, the MCA is applied to in-flight ISAR images
with the purpose to recognize and localize jet engines in these images. This experiment
is done with data measured by the Fraunhofer TTRA system.

5.1 Simulation of Objects with Different Shapes

The first experiment of this chapter is comparable to the image processing example
in Section 4.3.2. The main difference is the data domain in which the decomposition
is applied. The example of Section 4.3.2 has used real-valued image data, while the
decomposition here is applied to complex-valued data in the k,-k,-domain that was
introduced in Section 2.2.1. Therefore, the example given here is closer to a radar
signal processing application. The simulated data is created with a discretized version
of (2.2.8), which is defined by the discrete sampling times ¢; of the radar receiver and
the observation angles y; of the measurement.

The radar parameters used in this section are the same as in Section 3.3 and are
chosen accordingly to the TIRA parameters given in [Meh96]. These parameters are a
center frequency of 16.7 GHz, a bandwidth of 800 MHz and a chirp duration of 256 us.
The integration angle was chosen with (2.2.9) to achieve the same resolution in cross-
range as in range. The center integration angle is set to zero degrees and in both
dimensions 64 bins are used, i.e. the simulated data is given as a complex-valued
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Chapter 5 Decomposition of Radar Images

64 x 64 matrix. A plot of the scene that is used for the simulations is shown in
Figure 5.1.1.

Cross-Range inm

Range in m

Figure 5.1.1: Plot of the scene used for the simulation

This plot shows two circles, two crosses, two vertical lines, two horizontal lines and
three point scatterers, which are marked by the * sign. For this simulation these targets
are modeled as a collection of point scatterers with a difference in range and cross-
range that fits the size of the corresponding resolution cells. For a more challenging
decomposition a small random shift value is added to the position to create an off-grid
problem. It should be mentioned that the on-grid simulation is of limited use to verify
the robustness of the decomposition, since the algorithm performs the inverse operation
with the same model as the forward operation that is used to create the data. In this
case the added noise is the only factor that limits the performance of the algorithm.
In general, the decomposition is a so called inverse problem, i.e. the aim is to find
the sources that cause the noisy observations. The effect that the same model is used
to synthesize the data as for the inversion is also called the inverse crime [Wir04].
Therefore, the off-grid simulation is added, since in this case, it is almost impossible
that an element of the dictionary matches the forward model exactly and the inverse
crime is avoided. Results will be presented for both cases, i.e. scattering centers on
the grid and off-grid.

The basic formula for this simulation is (2.2.8), which is repeated here for convenience

Y(kz, ky) = // eI ke thuy) o (1 o)) dady. (5.1.1)

For the implementation of the algorithm, a discrete approximation of this formula is
necessary to create the entries of the different dictionaries and vectors. Therefore, the
discrete version [CSOT14]
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5.1 Simulation of Objects with Different Shapes

M N
y(ky, ky) = Z Z e*j(k”mwyyn)a(xm,yn). (5.1.2)
m=1n=1

is used here with real valued amplitudes, i.e. a(x,,,y,), of the scattering centers. To
calculate the discrete k, and &, values, the integration angle y;,; must be determined.
For this calculation, equation 2.2.9 is used with the cross-range resolution ACR set to
the range resolution defined by the bandwidth. With this choice, the integration angle
is calculated using the wavelength )y of the center frequency as

— /\0
7t T 9ACR
The integration angle is represented by a vector with 64 entries bounded by £v;,;/2
and centered around zero that represent the measurement angles of the simulation.
The vector k, is given by the center frequency fy and the bandwidth B by

(5.1.3)

_27T

k, =

[—32,-31,...31]
Co (fO + B 64
where [—32,—31,...31] is a vector with integer values from —32 to 31 representing the
sampling in time and ¢g is the speed of light. The length of this vector is predefined by
the dimension of the problem. This formulation is possible since the simulation time
t of (2.1.36) corresponds to the pulse length 7p here and therefore, the pulse length is
canceled in the equation.

With the values of k, and ¢y, the values for k, and k, can be calculated as two-
dimensional fields with one specific p-value for each row. A visualization of the covered
k-space is shown in Figure 5.1.2, which shows a slight curvature of a ring segment due
to the polar format of the simulated data. The actual integration angle that is needed
to achieve the same resolution in cross-range as in range is calculated as 2.78°. Since
this angle is rather small, the depicted ring segment looks almost square.

The k-domain data is calculated for each of the shapes in Figure 5.1.1 and stored
for later comparison with the decomposition results. The overall received signal is
calculated as the sum of all shapes and a noise term is added to achieve a predefined
SNR!, which is varied here between —10 and 20 dB. A detailed model of the simulated
data for the different shapes will be given below in Section 5.1.1, where the dictionary
design for the different shapes is described.

Since the modeled signal represents the complex-valued data of a radar receiver,
it cannot be plotted directly. For this reason the real part of the signal is shown in
Figure 5.1.3 for three different SNR levels together with the magnitude plots of the
scene. These scene plots are calculated by a matrix-vector multiplication of the stacked
data in the upper row with the standard signal model, i.e. a matched filter designed

), (5.1.4)

'For the SNR, the ratio between the average magnitude A in the raw data domain and the noise
standard deviation o is used here. To reach a specific SNR in db (SNRgp), the noise standard
deviation is calculated by o = A/105NFas/10,
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Figure 5.1.2: k-domain covered within this simulation

with (5.1.1) and the parameters that have been used for the simulation. This matched
filter will be also used as the point scatterer dictionary, and more details on the design
of it can be found in Section 5.1.1. To create a vector from the data in the upper row,
the columns of the matrices are stacked over each other. There are also other options
to create vectors from the data, the only point is that the dictionary elements must be
vectorized in the same way. Details on the dictionary design will be also given below.

Compared to the positions shown in Figure 5.1.1, the positions of the targets in the
examples of Figure 5.1.3 are slightly shifted to move the targets to arbitrary positions
between the sampling grid. This shift is the reason for the several visible sidelobes in
the reconstructed images.

5.1.1 Dictionary Design

The MCA decomposition of Section 4.3 is applied here with six different subdictionaries,
i.e. one for each scatterer type that is present in the scene plus an additional dictionary
of squares, which is used to verify the robustness of the decomposition. The coefficient
vector of the latter dictionary should still be zero at the end of the decomposition,
since no square shapes are present in the scene.

The basic signal model is the exponential term in (5.1.1) with the fields of k, and
k, multiplied with specific values of 2 and y given as multiples of the range and cross-
range resolution. The overall received signal of a specific scatterer shape is given by
the coherent sum of several independent point scatterers, e.g. one scattering center for
a point scatterer and five scattering centers for the horizontal lines in Figure 5.1.1.

In this way, the dictionary atoms are modeled with x and y values set according

88



5.1 Simulation of Objects with Different Shapes
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Figure 5.1.3: Simulated k-domain data and reconstruction with different SNR values

to the relative point scatterer position of the different target shapes starting at every
possible grid position. These positions are given in multiples of the resolution cells,
i.e. they are placed on the measurement grid, and an atom is only constructed if the
shape fits completely into the image. To convert the problem to the structure of a
matrix-vector multiplication, the received signal is changed from a matrix to a vector
by column-stacking and the same method is applied to the dictionaries by stacking the
columns to create an atom of the dictionary.

As it was already mentioned, the simulation is performed with the scatterers on the
sampling grid as well as off the grid. To consider scatterers that are between sampling
points of the grid, the dictionaries are extended by a factor of two or four in each
dimension by including additional atoms to the dictionary that represent scatterers at
points between the resolution cells. This grid oversampling is depicted in Figure 5.1.4
for an oversampling factor of two in each dimension. The black circles indicate the
original sampling points on the grid with values for z and y according to the resolu-
tion of the radar. The blue circles indicate atoms with z and y values finer than the
radar resolution, i.e with these atoms, the dictionary possesses super-resolution capa-
bilities and the relative position between targets can be determined more accurately.
It should be mentioned that the oversampling refers only to the starting point of an
atom, the relative distances between the scattering centers of an atom are the same for
all elements.
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Figure 5.1.4: Schematic representation of the sampling grid with oversampling

Another option to take the off-grid problen into account is the multiplication with
arbitrary range and cross range values in the frequency domain. This would require
another search step during the decomposition to find the best matching x,, and y,
values in (5.1.2). This search would increase the complexity of the algorithm and is
not considered in this thesis, but should be mentioned as an option to improve the
results in a future work.

All atoms are calculated with (5.1.2), i.e. the discretised version of (5.1.1). In case of
the oversampled dictionary, the values of x and y are positions between the theoretical
sampling points given by the bandwidth of k, and k,. The distribution a(z,, y») of the
scattering centers corresponds to the already mentioned collection of point scattering
centers for each shape. With this model it is not possible to scale the different shapes
during the decomposition. If shapes appear in different scales, a new dictionary must
be designed for each scale. The design of the different dictionaries is described next,
starting with the elementary point scatterer dictionary.

5.1.1.1 Point Scatterer Dictionary

The basic function for an atom of a point scatterer %(PS’ at position (x;,y;) is given as
P79 = emithomithyy:), (5.1.5)

To fit this function into the point scatterer dictionary ®(pg it is vectorized by column
stacking in the same way as the simulated received signal of the scene?. With the grid
values for (x;,y;), the basic dictionary is built, while for the oversampled dictionaries
@ (ps sr2) and ®(pg gray With two- and fourfold oversampling in each dimension, respec-
tively, additional points are added accordingly to the principle shown in Figure 5.1.4.

2In principle any vectorization is possible as long as it is applied consistently for all matrices that
occur in the decomposition problem.
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5.1 Simulation of Objects with Different Shapes

The size of the dictionary scales with the squared value of the oversampling factor.
This means that the dictionary ®(pg sge) is roughly four times the size of the standard
one and ®pg gra) is around 16 times larger.

The matched filter results a(z, y) above are created by a matrix-vector multiplication
f)f the simulated raw data y(k,, k,) with the conjugate transpose of the dictionary @{} )
ie.

a(z,y) = P(pg)y(ka, ky)- (5.1.6)

In the same way, the data is projected on the dictionary during the decomposition
in Section 5.1.2. An example of the real part of a dictionary function and the corre-
sponding image domain is shown in Figure 5.1.5. In this case the matched filter of

(5.1.6) was applied to one of its own functions.
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Figure 5.1.5: Example of a point scattering dictionary function

5.1.1.2 Vertical and Horizontal Lines Dictionaries

Since the different shapes are simulated as a collection of independent point scatterers,
the dictionaries ®(yr) and gy of vertical and horizontal lines use a sum of several
point atoms calculated by (5.1.5) as their basic atom structure. In case of the vertical
lines sixteen point scatterers are used, while the horizontal lines only use five scattering

centers. Therefore, the atoms 905“) and gpl(-VL) are calculated as
D 24: e~ d (ks (@itvAR)Thyy:) (5.1.7)
and B
AVD S gilherbh v ACR), (5.1.8)
v=0
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To create the oversampled line dictionaries, the procedure is the same as for the
point scatterer dictionary, i.e. the staring point of the shape is shifted by a fraction
of a resolution cell according to the scheme of Figure 5.1.4. The number of atoms
in the line dictionaries is smaller than in ®pg), since the atom is only calculated if
the whole shape fits in the image. This means that there are no starting points of the
vertical lines in the last fifteen rows and no starting points of horizontal lines in the last
four columns of the discretized scene. Examples of both dictionaries are depicted in
Figures 5.1.6 and 5.1.7. The differences in the numerical values between the different
dictionaries is a result of the normalization of the ¢, norm of the atoms.
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Figure 5.1.6: Example of a horizontal line dictionary function
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Figure 5.1.7: Example of a vertical line dictionary function
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5.1 Simulation of Objects with Different Shapes

5.1.1.3 Squares and Crosses Dictionaries

The dictionaries for crosses and squares are calculated by adding the models of hori-
zontal and vertical lines. For squares the echo of two vertical and two horizontal lines
are added and for crosses the echoes of one horizontal and two vertical lines are added.
The split of one of both lines of the cross into two parts is necessary to avoid a scat-
tering center with the doubled amplitude in the center of the cross. In Figures 5.1.8
and 5.1.9 example atoms of both dictionaries are shown.
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Figure 5.1.8: Example of a squares dictionary function
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Figure 5.1.9: Example of a crosses dictionary function

5.1.1.4 Circle Dictionary

In case of the circle dictionary, the collection of point scatterers depends on the distance
of (z;,y;) to the center of the circle. The k-domain data for this scattering shape is a
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conditional sum over the set ; based on the distance of the grid point (Z,7) to the
center of the circle. The radius rg... is given as a multiple of the resolution cell size
AR and it is assumed that range and cross-range posses the same resolution, which is
the case in this simulation. Therefore, the set of points belonging to the circle around
(x;, ;) is given as

Qi:{(j;;g) | [\/(f—xi)‘|‘(?—yi)

AR

_ Tcircle
= } (5.1.9)

Circle) .
(Circle) is

i

where [-] is the rounding operator. The k-domain data of the circle atom ¢

calculated as , L

gOl(C’zrcle) _ Z e*j(kzl”rkyy). (5110)
Q;

To create the oversampled dictionaries, the complete set €); is shifted by the ap-
propriate size in each dimension, e.g. adding half of a resolution cell to each z-value
to create a circle centered between two range cells. An example of this dictionary is
depicted in Figure 5.1.10.
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Figure 5.1.10: Example of a circle dictionary function

5.1.2 Results

The aim of this simulation is the decomposition of the data shown in Figure 5.1.3 using
the MCA algorithm of Section 4.3.1 with the dictionaries presented in Section 5.1.1. In
this simulation, the main parameters of the algorithm are an exponential decrease of the
threshold 7" within 100 iterations, which is the same as in the example of Section 4.3.2.
The minimal threshold is calculated as three times the noise standard deviation, which
is known in this simulation. The chosen lower thresholding bound was chosen to avoid
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5.1 Simulation of Objects with Different Shapes

noise in the output components of the algorithm. However, for high SNR values,
the numerical value will be very low and the lower bound must be adapted in these
cases. This phenomenon of a erroneous reconstruction for signals with low noise will
be discussed below. Further, the scene is simulated first on the grid and second with a
random shift in the range of £0.5 range cells for each object, i.e. each object is shifted
by a certain amount within one range cell. Three different dictionary sizes are utilized,
i.e. without oversampling and with oversampling factors of two and four. This gives
6 different combinations for the simulation, which is performed for each combination
with fifteen different SNR values from —10 to 20dB in steps of 2dB. Therefore, only
some exemplary results can be shown here.

The first example shows the intermediate steps of the decomposition of the off-grid
scene using dictionaries with an oversampling factor of two and an SNR of 0dB. The
calculated raw data and the matched filter imaging result are shown in Figure 5.1.11.
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Figure 5.1.11: Input of the MCA decomposition and corresponding image

The decomposition is shown from Figure 5.1.12 to 5.1.14 for 20, 60 and 100 itera-
tions,respectively. This visualization is comparable to the presentation in Section 4.3.2
with the difference that the residual in plot(a) and the component sum in plot (e) are
now in the complex-valued k-domain. Therefore, only the real part is depicted for these
two plots.

This example shows already that this decomposition has a strong denoising effect and
that the images of the individual shapes contain mainly the corresponding shapes from
the simulation. The image related to the squares dictionary does not show any signif-
icant content. Although the amplitude of the scattering centers is not reconstructed
perfectly, the result clearly indicates the recognition of the different shapes. The dif-
ference in the amplitude of the, for example, cross shape scatterers is probably due to
the off-grid simulation. The cross in the upper part of the image is more clearly visible
than the cross in the lower part, this indicates that the physical position of the upper
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Figure 5.1.12: MCA of radar simulation after 20 Iterations. Residual and component
sum in k-domain, the components itself are plotted in the image domain.
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Figure 5.1.13: MCA of radar simulation after 60 Iterations. Residual and component
sum in k-domain, the components itself are plotted in the image domain.
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Figure 5.1.14: MCA of radar simulation after 100 Iterations. Residual and component
sum in k-domain, the components itself are plotted in the image domain.

cross was closer to a dictionary function, i.e. the z,, and y, in (5.1.2), than the lower
one. The denoising effect is also visible in the k-domain data of the decomposition. A
comparison of the simulated raw data in Figure 5.1.11 (a) and the component sum in
Figure 5.1.14 (e) clearly shows less noise in the k-domain data after the decomposition.
Furthermore, the underlying structure is not visible anymore in the final residual in
Figure 5.1.14 (a), which seems to contain only noise. The detected objects are of the
same size as the objects in the input data because the atoms are matched to the data.

Since it is impractical to show the decomposition in this way for all mentioned combi-
nations, the final decomposition result is shown for two more examples in Figures 5.1.15
and 5.1.16. The example in Figure 5.1.15 is simulated with the targets on the grid,
without dictionary oversampling and with an SNR of 8 db. The results in Figure 5.1.16
are obtained for an off-grid simulation with an dictionary oversampling factor of four

and an SNR of 14 dB.

The decomposition results of Figure 5.1.15 show the almost ideal decomposition and
denoising if the model is known perfectly. The input and the residual data are shown
in both figures in the image domain to get a better impression of the decomposition
and the residual is shown in a different dynamic, which can be seen from the colorbar.
This was done to visualize that only noise is contained in the residual.

The results of Figure 5.1.16 are comparable to the results of Figure 5.1.14, since the
data is also off-grid and oversampling is used. Compared to the visualization above,
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Figure 5.1.15: MCA of on-grid simulation with 8dB SNR, and without oversampling.
All plots are shown in the image domain.
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Figure 5.1.16: MCA of off-grid simulation with 14 dB SNR and fourfold dictionary over-
sampling. All plots are shown in the image domain.
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5.1 Simulation of Objects with Different Shapes

the residual in the image domain shows that it still contains some image content. Nev-
ertheless, the different shapes have all been recognized by the specific dictionaries and
the dictionary of squares did not create confusion between the different components.
For a more compact presentation of the remaining results, the mean square error
(MSE) of the reconstructed k-domain data compared to the stored reference values is
depicted in Figure 5.1.17 for the different oversampling factors with on-grid and off-
grid targets. For this figure, the sum of all reconstructed components is compared to
the sum of the reference data in k-domain. The upper row shows the results for the
on-grid simulation of the targets and the lower row shows the results of the off-grid
simulations. Each plot shows the results over the SNR range from —10dB to 20dB.
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Figure 5.1.17: MSE in the raw data domain over SNR

The results in the upper row of Figure 5.1.17 show that the use of oversampling leads
to worse results if the model is perfectly matched to the targets on the grid. This effect
is probably due to the increased coherence in the dictionaries if oversampling is used.
In this case, it happens that several neighboring atoms are selected, although one of
them perfectly matches the target in the scene.

The results in the lower row of Figure 5.1.17 on the other hand show the benefit of
oversampling in the more realistic case of off-grid targets. From Figure 5.1.17 (d) can be
seen that without oversampling, for this choice of the thresholding bound, the algorithm

99



Chapter 5 Decomposition of Radar Images

diverges for an SNR of more than 10dB. This divergence does not happen with the
oversampled dictionaries and the overall best result is achieved with an oversampling
factor of two. Although the increase of the MSE with the SR4 dictionary is small,
which is probably due to the effect that more neighboring atoms are selected in this
dictionary.

The divergence without oversampling can be explained by the selection of neigh-
boring on-grid atoms for a target between these grid points. These on-grid atoms are
selected at the same iteration with a comparable magnitude, which leads to a feedback
in the residual and thus to an exponential increase of the magnitude of these atoms
in the decomposition. Alternatively to the use of oversampling would be an increase
of the minimal threshold in the algorithm to avoid the divergence effect. This change
would avoid the selection of the neighboring atoms at a certain iteration, which hap-
pened to be one of the last in these experiments. The experimental determination of
a minimal threshold is part of the simulations in the next section.

5.2 Jet Engine Recognition in Simulated ISAR
Images

The application in this and the following section is related to the preparation of a
list of potential targets in an air surveillance scenario. Therefore, the aim is not the
identification of a specific target, but to find features that can be used to limit the
number of possible targets. The feature that is chosen here is the presence of jet
engines in an ISAR image of a potential target. To find these engines, the model
of Chapter 3 is used together with a standard point scatterer model to design two
distinct subdictionaries and apply the MCA for the decomposition of the target. The
decomposition is performed in the k-domain, but results are shown only in the image
domain for better interpretability.

5.2.1 Dictionary Design

For the application here, two subdictionaries must be designed. The first one is the
same point scattering dictionary as it was described in Section 5.1.1.1 above. This dic-
tionary is used to describe the standard isotropic nondispersive scattering mechanisms
in the image.

The second dictionary is the waveguide dictionary that uses model (3.3.4), which
was presented in Chapter 3. With this model, a dictionary atom at position (x;,y;) is
given by

. 1M
PO = gilkaithym) << + ) e )L) : (5.2.1)
m=1
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5.2 Jet Engine Recognition in Simulated ISAR Images

which can be interpreted as a point scattering atom that is corrected by the term in
brackets.

The variable A" is a dimensionless factor describing the dispersion for each mode
and L is the length of the waveguide. In the correcting term of the waveguide model
only the wavenumber in range direction k, appears, since the dispersion shows only
effects in range dimension. The variable  balances the magnitude of the point scat-
tering effect at the entrance of the engine and the waveguide scattering. The value of
¢ was set to achieve the same peak value in the point scattering and the waveguide
scattering of the atom. M is the number of propagating modes inside the engine. Both
dictionaries are implemented with an oversampling factor of two.

Since the PSF of this waveguide model produces a ponytail-like shape in the ISAR
image, atoms are only calculated for positions that allow that this ponytail is visible
in the resulting image. Therefore an offset of 15 range cells is used within the simu-
lations in this section, i.e. within the last 15 range cells of the image no waveguide
scattering can be detected. This number was chosen arbitrarily by a visual comparison
in an appropriate dynamic range of the jet engine PSF. In principle, the PSF contains
scattering centers to the end of the image independent of its position.

5.2.2 Simulation Results

To evaluate whether the MCA algorithm is able to separate these two dictionaries,
a simulation with the presented models is done. For this simulation, an aircraft is
modeled as a mixture of point targets and waveguide scattering at the opening of the
jet engines. The arrangement of the scattering centers of the model together with the
ISAR image is shown in Figure 5.2.1. The given physical dimension of the aircraft
follow from the bandwidth and number of range cells used in this simulation and are
not supposed to be realistic for this kind of target.
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(a) 2D target model (b) Image domain

Figure 5.2.1: Aircraft target model and ISAR image
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Chapter 5 Decomposition of Radar Images

The red markers in Figure 5.2.1 (a) show the position of the waveguide scattering
centers, but it should be mentioned that at these positions, a further point scattering
center is added to the model. Therefore, the magnitude at these positions is comparably
high and the scattering centers are much closer together along the entrance of the jet
engine. These actions are done to get closer to the common assumption that the engines
have a very high impact on the full RCS of the target [FDST*15].

To measure the quality of the decomposition result of this simulation, reference
images for point and waveguide scatterers are computed for this aircraft model. This
method was also used in the simulations of Section 5.1 and two exemplary reference
images are shown in Figure 5.2.2 for an aspect angle of 30°.
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(a) Point scatterer (b) Waveguide scatterer

Figure 5.2.2: Reference images to evaluate simulation results

The images in Figure 5.2.1 and 5.2.2 are processed with the standard tomographic
model of (2.2.8) and a Taylor weighting in the raw data domain. This means that
the image is produced via a matrix-vector multiplication using the point scatterer
dictionary without oversampling and the vectorized form of the raw data. The Taylor
weighting is applied before the raw data is stacked into a vector via a multiplication with
a two-dimensional Taylor window. Since the simulation below is performed with four
different aspect angles, the aspect angle of the reference images are changed accordingly.

5.2.2.1 Simulation with Matching Models

The first simulation that is shown here uses the same model parameters for both
dictionary and aircraft model, i.e the model is perfectly matched to the target. This
experiment is done with four different aspect angles, varying from 0° to 60° in steps
of 15°. Each of these four scenarios is simulated with sixteen different SNR values
from —10dB to 20dB in steps of 2dB, which are the same SNRs as for the simulation
in Section 5.1.2. The presentation of the decomposition results is also comparable to
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5.2 Jet Engine Recognition in Simulated ISAR Images

the presentation in Section 5.1.2, i.e. two examples with results from intermediate
iterations are shown and the remainder is summarized in plots of the MSE of the
recovered raw date over the SNR. It should be mentioned that independent of the
matching between model and target, the problem is still an off-grid problem due to
the off-grid positions of the scattering centers. Therefore, the inverse crime that was
mentioned in Section 5.1 is already avoided here and also below in the results using
the mismatched models.

The first results, given as scattering components in the image domain, are shown in
Figure 5.2.3 with an SNR of 12dB and for an aspect angle of 0°. In this figure, the
final result after 100 iterations is depicted with two intermediate results after 20 and

60 iterations.
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Figure 5.2.3: Simulation results at 0° aspect and 12dB SNR

The results in Figure 5.2.3 show that the engine scattering mechanism can be sep-
arated, but some confusion with isotropic scattering along straight lines in range di-
rection appears. However, it is also visible that the false alarms at the left and right
wingtips are reduced from the center image at 60 iterations to the final result. This
shows the correcting behavior of the algorithm and for this SNR level, the target is
clearly visible in the point scattering image.

The MCA parameters of this and the following simulation are the same as in Section 5.1.2,
i.e. an exponential decay of the threshold and the shrinkage operation. The depicted
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Chapter 5 Decomposition of Radar Images

examples are created with a minimal threshold of three times the noise standard devi-
ation. This definition is possible, since the exact noise standard deviation is known in
this simulation.

The second example with matching dictionary and target models is shown in Fig-
ure 5.2.4. It is simulated with an aspect angle of 30° and an SNR of 2dB, which is a
more challenging setting than the first example.
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Figure 5.2.4: Simulation results at 30° aspect and 2dB SNR

It is visible that the higher amount of noise in Figure 5.2.4 leads to a larger amount
of false alarms compared to the previous example. Further, the magnitude of some of
the false alarms is comparable to the magnitude of the correct positions. One option
to reduce the number of false alarms, especially in the waveguide image, is the use of
a higher value for the minimal threshold. This can be seen by comparing Figures 5.2.4
(e) and 5.2.4 (f), which show the waveguide images at 60 and 100 iterations. In the
intermediate result, which belongs to a larger threshold, the number of false alarms is
smaller than in the final result. Nevertheless, the high magnitude false alarm will not
be effected from this change and already shows a limitation of this application in low
SNR scenarios.

Another reason to increase the minimal threshold is observed in high SNR simulations
with aspect angles of 15° and 30°. In these cases, the algorithm becomes numerically
unstable towards the end of the decomposition and diverges. The same effect appeared
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5.2 Jet Engine Recognition in Simulated ISAR Images

already in the simulations of Section 5.1.2 for off-grid targets with high SNR and
without oversampling in the dictionaries. To assess this divergence problem, the 20 dB
SNR simulations with 15° and 30° aspect angle are repeated with different minimal
thresholding values. This bound is varied from one to ten times the noise standard
deviation and a divergence rate is calculated as the ratio of the trials that failed and the
total number of trials, which is 100 for each minimal thresholding bound. The results
of this simulation are summarized in Figure 5.2.5. A trial is counted as divergence
trial if the MSE of the reconstruction is at the end at least ten times higher than the
minimum MSE value during the decomposition.
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Figure 5.2.5: Divergence rate of the 15° and 30° aspect angle simulation over the lower
thresholding bound

The plots in Figure 5.2.5 show that the problem is present for both aspect angles,
but in case of the 30° aspect angle, a minimal threshold value of nine times the noise
standard deviation is necessary to achieve a convergence rate of 100%, while in the other
case a factor of six is enough. For comparison with the 0° and 45° cases, the analysis
is repeated with the lower bound varied from one to five times the noise standard
deviation. The results of this simulation are shown in Figure 5.2.6 and show that the
divergence rate is significantly lower in these cases. In case of 0° aspect angle, only
two out of 100 trials diverged for a minimal threshold of two times the noise standard
deviation and for a factor of three or larger, all trials converged. In case of 45° aspect
angle, one out of 100 trials failed with a lower thresholding bound of three times the
noise standard deviation and with a higher minimal threshold all trials converged.

Because of the convergence problems, the experiment using the varying SNR values
is repeated for the aspect angles of 15° and 30° with a minimal threshold of six and nine
times the noise standard deviation, respectively. Results of this simulation are shown
together with the results of the 0° and 45° aspect angle simulation in Figure 5.2.7. The
difference in the minimal threshold has the highest influence in the simulations using a
low SNR. The flat segment in this part of the curve indicates that no reconstruction is
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Figure 5.2.6: Divergence rate of the 0° and 45° aspect angle simulation over the lower
thresholding bound

done and therefore, no scatterers are detected at all. In the regions of relatively high
SNR, the MSE is comparable between the different aspect angles, although the MSE
reached for the aspect angles 15° and 30° is of course higher than the ones using the
lower minimal threshold.

The use of a higher value for the minimal threshold can thus be summarized as
follows: The number of false alarms is decreased with the cost that the waveguide
scattering centers are less accurately reconstructed in case of a sufficient SNR.

The simulation in this section was limited in the sense that data and model matched
perfectly, even if the scattering centers are placed at off-grid positions. This situation
is not realistic in an operational scenario with unknown targets and therefore, the
next step is an analysis of the sensitivity to the model parameters, i.e. the radius and
length of the modeled waveguide. To quantify the dependency on these parameters, a
simulation with a mismatch between them is presented next.

5.2.2.2 Simulation with Mismatched Models

For the simulation in this part, the same target model as above is used with an aspect
angle of 15°. The SNR is set to 10 dB and the soft thresholding operator is used with an
exponential decrease of the threshold. The minimal threshold is set to three times the
noise standard deviation, which is possible since the convergence problems described
above appeared only for higher SNR values. The parameters of the dictionary are
set to a radius of 0.45m and 0.4m for the length. The actual parameters that are
simulated in the scene are varied in steps of 0.0l m from 0.4m to 0.5m in case of the
radius and from 0.35m to 0.45m for the length. Both dictionaries, the isotropic and
the waveguide dictionary, are implemented with an oversampling factor of two.

The main results are shown in Figure 5.2.8 as a plot of the MSE of the waveguide
component. The plot of the isotropic scattering reconstruction is comparable and is
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not shown here.

Radius in m 04 035 Length in m

Figure 5.2.8: MSE of the waveguide component with a mismatch between model and
simulation

The surface of the plot in Figure 5.2.8 shows that the length has a much stronger
effect than the radius of the model. If the dictionary parameters match the model
parameters in the scene, the minimum value is reached and a small variation of 0.1 m
in the length of the model gives a significant increase in the MSE. If the length of the
model is matched to the scene, the mismatch of the radius also leads to an increase of
the MSE, but not as steep as in case of a mismatch in length. In fact, the increase of
the MSE in direction of the length is 5.98 and 7.57 times larger than in the direction
of the radius, depending on the direction of variation.

This simulation shows that is very important that the model is matched to the real
engine, otherwise a proper reconstruction is not possible. This is highly relevant for
the application to real data in the next section, since the true parameters of the target
in the real ISAR image are not known. It cannot be said at this point whether an
identification of different engines with this decomposition is possible. Even if different
parameters lead to different results in the reconstruction, the absolute amount of the
engine scattering is not known in practice and thus a criteria like the MSE cannot be
used for classification. For the application to real data, a heuristic will be used to find
the best matching parameters. This heuristic and the corresponding results are given
in the following section.
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5.3 Recognition of Jet Engines in Real ISAR Images

5.3 Recognition of Jet Engines in Real ISAR
Images

To verify the applicability of the algorithm to real data, ISAR images that were mea-
sured with the TIRA system of Fraunhofer FHR are used as input data for the decom-
position. One example of these images is shown in Figure 5.3.1 (a) with a schematic
drawing of the aircraft in Figure 5.3.1 (b).

-10 5 0 5 10
Cross Range inm

(a) ISAR image (b) Shape of target

Figure 5.3.1: Real ISAR image used for MCA decomposition

The schematic drawing of the target shows two engines mounted at the fuselage of
the aircraft with the openings above the wings. This constellation is also visible in
the image, which shows two strong reflections at these positions and range extended
returns from the engine to the end of the image. Therefore, the ideal output of the
decomposition framework would show components of the waveguide dictionary only at
these positions. The aircraft itself is a small business jet, but precise parameters of the
engine are not known to the author.

Since the TIRA system uses the deramping process described in Section 2.1.3.2,
scattering centers at different ranges are converted to constant frequencies. Therefore,
the output of the deramping process is interpreted as data in k-space as it was also
done in Section 2.1.3.2. It was also mentioned in Section 2.2.2 that the integration
angle is not known exactly in an in-flight ISAR measurement and the given cross range
scaling in the image is only an estimate of the true size of the target by the estimated
aspect angle. This angle is also used to create the dictionary elements in k-space. The
elevation angle is assumed to be constant during the measurement, since the distance to
the target of approximately 160 km is relatively large compared to the target altitude
of 7.5km. Therefore, only the azimuth aspect angle is used in the model, which is
~ 4.9° for the center angle in the image of Figure 5.3.1.

To calculate the atoms of the two subdictionaries, the parameters of the system are
repeated here for convenience:
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o Bandwidth B = 800 MHz

« Pulse duration 7, = 256 us

o Carrier frequency fo = 16.7 GHz
e Sampling frequency fs =4 MHz

e 1024 samples per range profile

The last two parameters, i.e. the sampling frequency and the number of samples
belong to the full covered range of the system. The image in Figure 5.3.1 (a) shows
only a reduced amount of 121 range cells, which is enough to include the whole target
and reduces the computational cost. To create the data to process the image, the
full range profile is cut to the range cells that actually contain the target. An inverse
Fourier transform of this reduced range profile creates the same output as a deramping
process tailored to this reduced range with a reduced sampling rate f,, which is given
in this case as

f s — f 5" 1102214

With these parameters, the dictionaries, which are the same as in the simulations
of the previous section, can be calculated. Similar to the simulations before, both
dictionaries are implemented with an oversampling factor of two. The main difference
between the dictionaries used for simulations and the real data is the size of the dictio-
nary. Using the real data, the dimension of both dictionaries is larger due to the larger
image dimension. The decomposition itself is also done in k-space, although results
are only shown in the image domain for better interpretability.

As Section 5.2.2.2 clearly demonstrated, the parameters of the model should be
known as exactly as possible to achieve the best results of the decomposition. Since
these parameters are not known, a grid search with several radius-length combinations
was performed to find the maximum correlation between these model parameters and
the image in Figure 5.3.1 (a). The search interval for the radius was set from 30 cm to
45 cm in steps of 0.5 cm and the length interval was from 40 cm to 70 cm, also in steps of
0.5 cm. For all combinations of this grid, a dictionary was designed and the maximum
correlation coefficient for each of these dictionaries was stored and the maximum of
all dictionaries determined the radius and length that were used in the decomposition.
This leads to a radius of 0.39m and a length of 0.675m. These parameters seem to
be realistic if they are compared to the spread of the engine scattering centers in the
image considering the dimension of one range cell®.

Beside the parameters of the model, the parameters of the algorithm must be deter-
mined. To determine the minimal threshold, the noise standard deviation is estimated

(5.3.1)

3The cross-range size of the range cells cannot be determined exactly due to the uncertainty in the
estimated integration angle during the ISAR imaging process, see Section 2.2.2.
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as the median absolute deviation (MAD) of the coefficients in the finest resolution
band of an arbitrary wavelet. Here a Daubechies wavelet with a filter length of four
is used. This estimation is based on the assumption that most of the image content is
represented by the low frequency bands and that the finest resolution band contains
only noise. The details of this method can be found for example in [SMF10]. However,
since most of the undesired echos in the image in Figure 5.3.1 (a) are not related to
noise, but to artifacts of the imaging process that also create coefficients in the lower
frequency bands, the estimated noise standard deviation must be arbitrarily multiplied
by 20 to achieve a satisfactory result. This factor was determined empirically by optical
comparison of decomposition results with different lower bounds. With lower values
for this factor, the number of false alarms starts to increase towards the end of the
decomposition. However, even with this high value compared to the simulations before,
more than 80% of the signal energy is covered by the decomposition, as will be shown
below.

Similar to the minimal threshold value, the remaining parameters of the algorithm
were also determined experimentally. The number of iterations is set to 400 and the
hard thresholding was chosen in the iterative algorithm. The hard thresholding was
beneficial, since the main goal was to find the position of the air intakes, which produce
a rather large echo in the data. Therefore, the algorithm can detect these scattering
centers in an early stage of the algorithm and the hard thresholding removes these
strong scattering centers as soon as they are detected. With this choice, it is harder
for the algorithm to correct its choice, but it was the superior method in this case.
A condition for the hard thresholding is the isolated strong scattering center, which
is fulfilled for this kind of aircraft with jet engines. If the algorithm is able to detect
the engines if these are covered and the air intake is part of the fuselage, e.g. a
fighter aircraft, cannot be said at this point. This situation might also require further
improvements of the model, since the air intake will be several meters long and change
its geometry from the intake to the engine.

The decomposition of the example in Figure 5.3.1 (a) is shown from Figure 5.3.2
to Figure 5.3.6 from an early stage after 10 iterations to the final result with three
intermediate steps after 50, 100 and 200 iterations. All of these figures are in the same
dynamic range for a better comparison of the components.

The components in Figures 5.3.2 and 5.3.3 at the beginning of the algorithm contain
only a few dominant scatterers and after 100 iterations, the added echoes in both
components are in the same area of the image, which contains most of the energy.
Nevertheless, the separation of the strong scattering centers into waveguides and point
scattering is already visible in these early iterations of the algorithm. In the middle
of the decomposition, at 200 iterations, some more small point scattering centers are
added to this component, while the waveguide scattering is still concentrated in the
area of the engine inlets. The errors in the decomposition towards the end of the
algorithm indicate that the real data shows the same confusion between waveguides
and straight lines in the image as it was observed in the simulations above. However,
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Figure 5.3.2: MCA of a real ISAR image after 10 Iterations
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Chapter 5 Decomposition of Radar Images

the results of this example show that it is possible to separate jet engines and isotropic
scattering in ISAR images using this approach, although the results are not perfect.

To evaluate how much of the energy is covered by the selected atoms, the ¢5 norm
of the vectorized residual during the decomposition is shown in Figure 5.3.7. The /5
norm corresponds to the square root of the signal energy and the dashed vertical lines
mark the iterations that belong to the intermediate images shown from Figure 5.3.2 to
5.3.5.
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Figure 5.3.7: Norm of the residual during the ISAR decomposition

The curve in Figure 5.3.7 shows that the /5 norm of the residual is reduced by almost
60% after 400 iterations, which corresponds to almost 84% of the energy, although
the amount of scattering centers is rather low in the component images. This is an
indicator for the common assumption that the main energy is concentrated in a few
scattering centers, which can be also seen from the marked iterations. After the first
steep decrease within the first ten iterations 9.05% of the f3 norm is already covered
by the decomposition. The next selection of scattering centers between ten and fifty
iterations reduces the norm of the residual by 6.84% and from there on, the decrease
of the /5 norm is approximately linear. After 100 iterations, the norm of the residual
is reduced to 79.01% of the initial value and after 200 iterations to 63.35%.

Finally, the decomposition is applied to three more ISAR images of this target. These
images are shown together with the final component images in Figure 5.3.8 to 5.3.10.
The center azimuth aspect angle of the different images are ~ 3°, ~ 6° and ~ 10°
respectively. The results are comparable to the example above, since the engines are
clearly visible in the waveguide images, but in all images a small number of false alarms
is visible. These results also indicate that the algorithm should be robust against cases
where no range extended returns are visible in the image, since the number of false
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alarms is small. This situation would be comparable to the simulation in Section 5.1.2,
where no target of the square shape was visible.
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Figure 5.3.8: MCA of a real ISAR image (Example 2)
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Figure 5.3.9: MCA of a real ISAR image (Example 3)

These additional examples differ in the amount of the signal energy that is covered
by the algorithm. The component images in Figure 5.3.8 reduce the ¢5-norm of the
residual to 26.06% of the initial value, while the residual of Figure 5.3.9 is reduced to
39.6%, which is comparable to the detailed example above. Finally, the /5 norm of the
residual of the example in Figure 5.3.10 is reduced to 45.11% of its initial value.

It should be mentioned that the parameters of the algorithm are optimized for each
of these examples. Although all of these results are achieved with hard thresholding
and 400 iterations of the algorithm, the minimal threshold value is changed in the last
example in Figure 5.3.10 to ten times the estimated noise standard deviation. This
value is closer to the values of the simulations in Section 5.2 and is most likely due to
the reduced imaging artifacts in this example.
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Figure 5.3.10: MCA of a real ISAR image (Example 4)

Further to the algorithm parameters, the parameters of the model, i.e. radius and
length, are optimized for each image with the same method as for the examples above.
The parameters are chosen to maximize the ratio of the response of the waveguide
model in the area of the engines to the central part of the aircraft. This optimization
gives for the radius three different values of 0.42m, 0.39 m and 0.3 m and for the length
0.53m, 0.56 m and 0.47m. These numbers show that radius and length of the model
in the examples are not the same, but in the same order of size. The reduced radius
and length in the example of Figure 5.3.10 might be also an effect due to the change of
the aspect angle compared to the other images. This indicates that the model should
be further improved in the future, but the results show that a decomposition of ISAR
images is possible.
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Chapter 6

Conclusion and Future Work

This thesis has leveraged previous work on jet engine models and sparse decomposition
to study the ability to detect this kind of scattering in ISAR images. The main con-
tribution of this work is the proof of principle that it is possible to detect jet engines
in ISAR images via the presence of range extended returns that are produced by duct
delays and a waveguide scattering model.

The fundamentals of the waveguide model are developed in Chapter 3, which presents
the propagation of electromagnetic waves inside waveguides. In Section 3.3, the devel-
oped model is applied to show the scattering of a chirp waveform, which is used in the
application of Chapter 5.

In Chapter 4, the sparse decomposition framework and the MCA algorithm are
presented. This algorithm needs a signal model for each component that should be part
of the decomposition. These models should be very efficient presenting the content in
the image related to them and very inefficient in presenting content related to the other
models. Efficiency refers in this case to the number of coefficients that are necessary
to represent the content. If this condition is met, a sparse decomposition of the image
is possible and the allocation of coefficient and dictionary allows the decomposition of
the image into different parts related to the different models.

The application of this framework to radar data is shown in Chapter 5, which is
separated into three parts. All of these parts apply the decomposition framework in
the complex-valued raw data domain. The first part in Section 5.1 presents a simulation
with scatterers of different shape to show the potential of the algorithm to separate
several kinds of scattering. The remaining two parts of that chapter are related to
the separation of point and waveguide scattering centers in ISAR images. First, a
simulation with the waveguide model of Chapter 3 and the standard isotropic point
scattering model is done to show that the separation of these two models is feasible.
After that, the decomposition is applied to real ISAR data that was measured with
the TIRA system of Fraunhofer FHR.

Both, the simulation and the application to real data, show comparable results, i.e.
the waveguide scattering can be separated from the point scattering if the SNR is
high enough and the model parameter match the data. The simulations show that a
low SNR leads to confusion between these two kind of scattering and that knowledge
of the model parameters, i.e. radius and length of the engine, are crucial for the
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decomposition. Especially, a mismatch of the length in the waveguide model and data
leads to errors in the reconstruction. Therefore, a heuristic is used with the real data
that maximizes the response of the waveguide scattering to find the optimal parameter
of the model. The waveguide components of the real data clearly show peaks at the
engine positions with some minor components along the fuselage of the aircraft.

The results show that a decomposition into different kind of scattering is possible, if
certain requirements are fulfilled. At the same time, it becomes clear that this thesis
can only be seen as a step in the direction of physically motivated model-based signal
processing. The sensitivity of the results to the model parameters reveals a lack of
robustness that should be investigated in the future. At the same time, the jet engine
model itself must be improved, since it is following the physics of a perfect waveguide.
Although the model matches the real data already in a good way, it is also clear that a
real jet engine is not an optimal waveguide. Furthermore, as it was already mentioned
in Section 3.2, the rotation of the fan is not considered here. A model including the
JEM effect is another option to improve the results of the presented algorithm. If the
JEM and other effects are considered in the model, an identification of a certain engine
type might be possible.

Another option to improve the results is the sparse decomposition algorithm. One
reason for the confusion between point and waveguide scattering might be the similarity
in the model, i.e. the coherence of the dictionaries. An algorithm with a high degree of
invariance against coherent dictionaries might lead to more robust results with these
dictionaries.

The engine dictionary, i.e. the variability of the model, is also a possibility to im-
prove the decomposition. With an improved model, the free parameters will probably
increase. In this thesis, the only free parameters during the decomposition were the x-
and y-coordinates of the scattering center. If, for example, the aspect angle is taken
into account, the mode distribution shown in Section 3.2.1 becomes more important
and the dictionary size must be increased since the aspect angle can only be estimated
during the imaging process. The use of further parameters, e.g. radius and length,
would further increase the size of the dictionary to a size that can probably not be
handled anymore in an efficient manner. In that case a dynamic dictionary design
during the decomposition is an option to compute a solution. In this thesis, the radius
and length used in the dictionary are determined in a heuristic way before the actual
decomposition algorithm is applied. With a dynamic dictionary approach, the deter-
mination of the model parameters become a part of the problem itself and would be
calculated during the decomposition.
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