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Abstract

Contemporary automation systems require accurate models for analysis, design, and
control. Oftentimes, it is not possible to derive satisfactory models by first principles.
This is often the case in process engineering or in mechatronic systems, where the
overall process is just too complex, or the development of those first-principle models
would just be too expensive. Thus, there is a strong demand for data-driven mod-
eling approaches. Additionally, there are enormous successes in machine learning

concerning the generation of models solely by the use of data.

Driven by the need for accurate models as well as the successes and advances in
machine learning, a novel class of model structures and associated training algo-
rithms for building data-driven nonlinear dynamic models is developed. The new
identification procedure and the resulting model is called local model state space
network (LMSSN). It fuses nonlinear state space models with local model networks
(LMNs). The LMSSN is designed as a user-friendly and deterministic approach with
warm-start initialization (with a linear model), incrementally growing complexity, fa-
vorable and robust extrapolation behavior, easy interpretation, and straightforward

incorporation possibilities for prior knowledge.

Furthermore, recurrent neural networks (RNNs) and their similarities to nonlinear
state space models are elaborated on. Popular RNNs like the long short-term mem-
ory (LSTM) and gated recurrent unit (GRU) models are translated into controls
perspective and a comprehensive study comparing different RNN structures is car-

ried out.

The overall outstanding performance of the LMSSN is demonstrated on various ap-
plications. It is shown that the LMSSN can accurately model a wide variety of
processes by consistently computing expressive yet compact models. The LMSSN
is benchmarked against state-of-the-art nonlinear system identification algorithms
and achieves similar or superior results. The practical usefulness and applicability

of LMSSN are strikingly demonstrated on two real-world processes.






VII

Kurzfassung

Genaue Modelle sind die Voraussetzung fiir die Analyse, Auslegung und Regelung
von modernen Automatisierungssystemen. Allerdings konnen genaue Modelle oft
nicht durch physikalische Modellbildung entwickelt werden. Dies gestaltet sich ins-
besondere in der Verfahrenstechnik und fiir mechatronische Systeme als sehr her-
ausfordernd, da die Gesamtprozesse oft zu komplex oder die Entwicklung eines
physikalischen Modells oft zu teuer ist. Datengetriebene Modelle gewinnen deshalb
zunehmend an Bedeutung. Dieser Trend wird aulerdem durch Erfolge im Bereich

des maschinellen Lernens stark begiinstigt.

Aufgrund des starken Bedarfs an genauen Modellen und motiviert durch die Erfolge
des maschinellen Lernens wird eine neue Klasse von Modellstrukturen und dazuge-
horigen Trainingsalgorithmen fiir die datengetriebene Modellierung von nichtlinearen
dynamischen Prozessen entwickelt. Der neue Identifikationsalgorithmus und das re-
sultierende Modell heiflen Local Model State Space Network (LMSSN). Es vereint
nichtlineare Zustandsraummodelle mit lokalen Modellnetzen (LMNs). LMSSN ist
ein benutzerfreundlicher und deterministischer Algorithmus, der mit einem linearen
Modell initialisiert wird (Warmstart). LMSSN hat inkrementell steigende Komplex-
itdt, ein gewilinschtes und robustes Extrapolationsverhalten, eine einfache Interpre-

tierbarkeit und bietet unkomplizierte Moglichkeiten zur Einbringung von Vorwissen.

Auflerdem werden rekurrente neuronale Netze (RNNs) und deren Ahnlichkeit zu
nichtlinearen Zustandsraummodellen behandelt. Beliebte RNNs wie das Long Short-
Term Memory (LSTM) und Gated Recurrent Unit (GRU) Modell werden aus einer
regelungstechnischen Perspektive veranschaulicht und unterschiedliche RNN-

Strukturen werden umfassend in einer Simulationsstudie verglichen.

Die insgesamt herausragende Leistungsfahigkeit von LMSSN wird anhand einiger
Anwendungsbeispiele demonstriert. Eine Vielzahl unterschiedlicher Prozesse kénnen
mit LMSSN sehr gut modelliert werden, wobei stets aussagekraftige, aber dennoch
kompakte Modelle generiert werden. Die LMSSN-Methode wird mit anderen mod-
ernen Algorithmen zur nichtlinearen Systemidentifikation verglichen. Hier liefert
LMSSN gleichwertige, wenn nicht sogar bessere Ergebnisse. Die praktische Anwend-

barkeit wird eindrucksvoll an zwei industriellen Prozessen veranschaulicht.
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1 Introduction

Data-driven modeling is the research field of gathering knowledge about a system
by drawing conclusions from that system’s input and output data. A system in
this manner can be any kind of object in which variables of different kinds inter-
act [69]. The inputs can be external stimuli or disturbances, while the outputs are

the observable outcome of interest.

Another, more widespread, term for data-driven modeling is machine learning. Re-
cent successes in natural language processing [12] and computer vision [51, 22] have
led to a greatly expanded interest of academia and industry in this field. Since many
technical plants and processes can be described in a system-oriented framework, the
application of machine learning methods to build models (mathematical description)

of those processes is of great interest [70].

Another reason to use data-driven approaches is that there are many fields of engi-
neering in which it is difficult to obtain satisfactory models by first principles. This
is often the case in process engineering or in mechatronic systems, where the overall
process is just too complex. Thus, there is a strong demand for data-driven modeling

approaches.

1.1 Two Different Perspectives

Data-driven models can be distinguished by their behavior but also by their origin.

Model Behavior Perspective The behavior of data-driven approaches can be di-
vided into either being static or dynamic, and on the other hand, into being linear

or nonlinear (Fig. 1.1).

Static approaches may be employed whenever the process can be modeled without

temporal dependencies. The model of the process is, therefore, governed by algebraic



2 1.1 Two Different Perspectives

Machine Learning

Data-driven modeling linear nonlinear

-
- Neural Networks,

static // Local Model
/ Networks (LMNs)
|
state e.g. Best Linear ~ Local Model State
dynamic Approximation Space Network
space (BLA) (LMSSN)

Figure 1.1: Data-driven modeling

equations. Contrarily, if the process has temporal dependencies with respect to its
inputs and outputs, the process is described with a dynamic model. In terms of

physical modeling, this means that differential equations are employed.

The class of linear models encompasses only models which depend linearly on their
inputs. The class of nonlinear models comprises all models ezcept linear models.
Therefore, this class is much harder to grasp as an infinite variety of model architec-

tures exits.

The controls community developed over quite some time data-driven linear models
for dynamic systems, which is known by the term system identification. On the other
hand, the computer science and machine learning communities developed models
mostly for nonlinear static applications. Combining those two fields yields the field of
nonlinear system identification. It is pointed out in [68] that even though the general
field of system identification is quite a mature one, there are nevertheless some
open areas in system identification: among those maybe the most important one
being nonlinear system identification. This research field is becoming increasingly
important [130, 69, 89] to account for dominant nonlinear behavior in processes and

because of the need to fulfill increasing performance requirements.

Origin Perspective The machine learning community does not only deal with static
processes but also proposes structures for dynamic processes such as recurrent neu-
ral networks (RNNs). It turns out that those structures are, in their essence, an
equivalent structure to nonlinear state space models (see Fig. 1.2) which originate

from the system identification community.

However, the developments in both fields have been surprisingly isolated, with jour-

nals and conferences on their own [68]. This development has just recently been
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Figure 1.2: Data-driven modeling from different perspectives

broken, with more and more researchers trying to bring the two fields, machine
learning and system identification, together [70, 123]. This shows that both fields
intersect in nonlinear system identification in two ways. First, the static nonlinear
methods from the machine learning world can be combined with the nonlinear state
space model from the system identification community. Second, both fields have
worked on dynamics representations, but it is not always clear how specific methods

translate into the other world.

1.2 Objectives and Own Contribution

The objective of this thesis is the development of a novel nonlinear system iden-
tification algorithm that combines elements from the machine learning and system
identification field, see Fig. 1.1. It focuses from the dynamical perspective on non-
linear state space models (one possibility of a dynamics realization) and from the
static perspective on local model networks (LMNs) (modeling nonlinearities). We

call the novel identification procedure local model state space network (LMSSN).

Especially in engineering applications, it is important that methods stay as simple
as possible and allow for interpretability. Hence, divide-and-conquer strategies are
liked by engineers since a very complex problem can be tackled by dealing with
multiple simpler problems. Multiple model approaches with LMNs, which form one
fundamental building block of the LMSSN, follow exactly this line of thinking.

Originally, system identification only referred to black-box modeling which means no
prior knowledge is used for modeling. In contrast, white-box modeling is solely based
on physical insight and first-principle knowledge. One basic rule in estimation is not

to estimate what you already know [130]. Therefore, system identification nowadays



4 1.2 Objectives and Own Contribution

encompasses a whole palette of gray shades, depending on how much prior knowledge
is incorporated into the model [68, 117]. The LMSSN is a black-box model at its
core, which nevertheless allows for the incorporation of prior knowledge if available.
Thus, the shade of the model can be shifted from black to gray.

There is also a lot of research done in system identification in a stochastic framework
(141, 114, 7, 40]. This thesis nevertheless focuses solely on deterministic approaches
to make the derived methodologies more accessible. It has also been demonstrated
that errors due to an inaccurate description of the nonlinear functions surpasses the

error due to unsuitable noise models [118].

This thesis contains the following own original work:

Local Model State Space Network A novel class of model structures and asso-
ciated training algorithms for building data-driven nonlinear state space models is
developed. The LMSSN is designed as user-friendly and deterministic approach with
warm-start initialization (with a linear model), incrementally growing complexity, fa-
vorable and robust extrapolation behavior, easy interpretation, and straightforward
incorporation possibilities for prior knowledge. The following aspects shall be em-

phasized:

o Transformation of the state trajectory to make splits of LMNs within state

dimensions possible.

o Strategies for the incorporation of prior knowledge into the LMSSN structure.
Similarities of the LMSSN to piecewise affine (PWA) state space models and

block-oriented structures are analyzed.

» Numerical issues with normalized radial basis functions (NRBFs) in recurrent

structures.

o User-friendly object-oriented LMSSN toolbox with few necessary hyperpara-

meter choices.

e Demonstration of usefulness of the LMSSN on artificial test systems, bench-

mark problems, and real-world processes.

o Derivation of analytical gradients of the LMSSN with respect to the model

parameters.



Recurrent Neural Networks from Controls Perspective The similarities between
nonlinear state space models and RNNs are analyzed. Common RNN structures
like the long short-term memory (LSTM) and gated recurrent unit (GRU) model
are transferred into controls perspective. A comprehensive study regarding various

RNN structures is carried out.

Fundamentals Additionally, within Chap. 2 the following sections go beyond the
state of the art:

o Analysis and comparison of advantages and disadvantages of internal versus

external dynamics approaches.

o Influence of gradient updating frequency on optimization.

1.3 Structure of this Thesis

The structure of this thesis is as follows.

Chapter 2 provides the reader with the theoretical foundations of nonlinear system
identification. Different internal and external dynamics realizations, neural
network architectures and LMNs, nonlinear optimization strategies, as well as

different aspects regarding model complexity, are covered here.

Chapter 3 describes the LMSSN. It is a novel class of model structures and associ-
ated training algorithms for building data-driven nonlinear state space models.
First, the model structure and construction algorithm are explained. Then,
some pivotal steps in LMSSN identification are covered, followed by the char-
acteristics of the model. Finally, relationships to other model structures are

explained and some numerical and computational aspects are highlighted.

Chapter 4 presents deep recurrent neural networks. First, the relationship between
state space models and RNNs is explained, followed by a detailed description
of the building blocks of deep RNNs, including the LSTM and GRU model
explained from a controls perspective. The chapter closes with a case study of
different deep RNN structures.



6 1.3 Structure of this Thesis

Chapter 5 contains the application of LMSSN to artificial test processes, selected
benchmark problems, and real-world processes. The LMSSN and its perfor-

mance are studied and compared to other nonlinear system identification algo-

rithms.

Chapter 6 draws conclusions and gives an outlook on topics for further research.



2 Nonlinear System ldentification

The term system identification was coined in the 1950s by [147]. It originates from
the control community and is used to describe the problem of identifying a black-
box model solely by measurements of input and output data of a dynamical system.
Those models can be employed for tasks such as simulation, optimization, fault detec-
tion/diagnosis, model-based control, and more. Figure 2.1 illustrates the utilization

of models for four exemplary tasks.

The general problem of system identification is considered in Fig. 2.2. The in-
puts w(k) = [u1(k) ua(k) ... u,,(k)]" enter a process, which is possibly disturbed by
noise n(k). The output of the process is denoted by y(k). The same input wu(k)
that excites the process also enters a model, producing the model output §(k). The
difference between process and model output, the error e(k) = y(k) — §(k), is then

used to adapt the model so that it resembles the process in the “best possible way”.

a) simulation b) optimization
U i .
. g strategy » model » evaluation
— model — T |
¢) fault detection/diagnosis d) control
Yy 4 process l |

| model
"|(nominal)

design model |¢—
=
L controller |24 process Y

1

v

| model
"| (fault 1)

Figure 2.1: Utilization of models for a) simulation, b) optimization, c¢) fault detec-
tion/diagnosis, and d) control [89]. Here, u is the input signal, § the
model output signal, y the process output signal, e the error signal, and
r is the reference signal.
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Figure 2.2: Identification of an unknown system (see also [89])

Note that the variable k£ denotes the discrete time step. The link between the con-
tinuous time ¢ and discrete time k is t = kT, with the sampling time 75. The data
that is used for identification has usually been collected beforehand and is stored in
input-output tuples as {u(k), y(k)}r_,, where N is the total number of data points
or data samples. Note that the terms process and system are used interchangeably
throughout this thesis.

Only discrete-time models are considered here. This choice is motivated by the fact
that measurement data is collected by sampling, making relations between discrete-
time data and discrete-time models more straightforward [69]. Additionally, when
looking at control applications, discrete-time descriptions are more suitable since
control actions are usually taken at discrete points in time. Moreover, the estimation
of nonlinear continuous-time models is not a trivial task and can be computationally

highly complex [98].

Also, note that the depicted system and model have a multiple-input single-output
(MISO) form and not the most general multiple-input multiple-output (MIMO) form.
This is since MIMO systems and models are usually decomposed to n, different MISO
models. After all, they are easier to understand, handle, and validate than MIMO
models [89]. Thus, for simplicity, only MISO and single-input single-output (SISO)

systems and models are considered for this thesis.

When talking about nonlinear system identification, one challenge is the tremendous
scope of this class of models. It is like talking about non-elephant zoology — all
animals are considered except for elephants. Likewise, all models are nonlinear
models except for the linear ones. Therefore, we will focus our scope on models and
techniques, which are essential for understanding the here chosen approach, rather
than giving a comprehensive account of all existing nonlinear dynamic models that

have been developed throughout the years.



Nonlinear System Identification

Architecture

2.1 Dynamic Models 2.2 Neural Networks

(Hyper-) Parameter Estimation

2.4 Model
Complexity Selection

2.3 Optimization

Figure 2.3: Most important system identification topics to be covered in this chapter.

The covered topics of nonlinear system identification are shown in Fig. 2.3. Regard-
ing the architecture of the models, we will start with the topic of dynamic models
in Sect. 2.1. Here, different linear and nonlinear as well as external and internal
dynamics models will be covered. Then, Sect. 2.2 describes different neural network
structures, which can then be employed for nonlinear dynamic modeling. Once a
model architecture is chosen, the parameters of the models need to be optimized
and certain model complexity choices (hyperparameters) need to be made. Those

topics regarding parameter estimation will be dealt with in Sect. 2.3 and Sect. 2.4.

2.1 Dynamic Models

Dynamic models are needed for processes that are describable by differential equa-
tions. In the discrete-time context, differential equations can be translated into
difference equations, in which the dynamics become visible through the dependence
of the current output on past input and output values. If this dependency is modeled
explicitly, the arising models are called external dynamics models (or input-output
models). On the other hand, if an inner memory or state of the model is introduced,

those models are called internal dynamics models (or state space models).

2.1.1 External Dynamics Models

We will first cover external dynamics models. Here, we will start with linear external

dynamics models and then cover some nonlinear external dynamics models.
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2.1.1.1 Linear External Dynamics Models

In general, the linear modeling framework is well established [64, 69, 89, 101] and
therefore linear models are a prevalent choice in a vast range of applications [84,
99]. A general realization for deterministic linear external dynamics SISO models is
described by

J(k) = G(q)u(k) = = —u(k). (2.1)
The model output §(k) at the discrete time step k is computed by filtering the input

u(k) with a linear filter G(¢). Variable ¢ stands for the forward-shift operator in the

time domain, i.e., ¢ 'z(k) = z(k — 1).

In addition to the deterministic component, a stochastic part might influence the
system. This stochastic term can be modeled by filtering white Gaussian noise v(k)
with a linear filter H(q) to obtain

n(k) = H(q)v(k) = =—Sv(k). (2.2)

v(k). (2.3)

It is helpful to separate any possible common denominator dynamics A(q) from G(q)

and H(q) for further analysis. Thus, F(q)A(q) = A(q) and D(q)A(q) = D(q) lead

to
B(q) C(q)

oA " P Dlgaw

If the denominators do not share a common dynamic, A(q) turns to A(g) = 1. This

§(k) = u(k). (2.4)

general linear dynamic model is shown in Fig. 2.4.

v(k)
Cla)
D(q)
n(k)
u(k) | Blq) R R 1 y(k)‘
1 Fla) ] Al ]

Figure 2.4: General linear dynamic model (see also [89)])
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Figure 2.5: ARX model structure (see also [89])

This general model is not used in practice with all possible numerator and denom-
inator terms — widely applied dynamics realizations are obtained by simplification.

Two very important models will be explained in more detail.

ARX The probably most commonly used linear model is the autoregressive with
exogenous input (ARX) model (Fig. 2.5). It can be derived from the general model
equation (2.4) by setting the polynomials F(q), C(gq) and D(q) to 1, which leads
to

Alq)y(k) = B(q)u(k) +v(k). (2.5)

The term autoregressive refers to the shared denominator dynamics 1/A(q) for the
deterministic and stochastic part. With this term, previous output values are fed
back and an autoregressive structure arises. The X in ARX indicates the eXogenous
input u(k). This terminology originally comes from the time-series analysis, where
only the white noise v(k) enters the system, so the exogenous input u(k) extends the

solely (stochastic) autoregressive model, in which u(k) = 0.
The optimal predictor for an ARX model is
9(k) = bou(k) +byu(k—1)+...+bypu(k—m)—ay(k—1)—...—any(k—m). (2.6)

Here, m is the order of the model and has to be chosen quite carefully. For simplicity,

the order m determines the number of delayed inputs and outputs.®

The optimal predictor relation for (2.6) is found by setting G(q) = % and
H(q) = ﬁ in the optimal predictor equation (for its derivation see [69])
A G(q) ( 1 )
k) = —=u(k) + |1 — —— |y(k). 2.7
90 = g+ (1= g7 ) ) (2.7

I Note that in a more general case, the order of input and output could also be chosen separately.
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The ARX model is so popular because the model is linear in the parameters, which
leads to a linear optimization problem for parameter estimation. The optimal pa-
rameters é for an ARX model of order m are calculated in the following matrix-vector
form with N —m (where N is the number of data samples) equations for discrete

time steps k=m+1,..., N

0=X"X)"'X"y, (2.8)
with
é:[bg b1 bm a; ... am}T, (29)
uwim+1)  u(m) - u(l) —y(m) - —y(1)
X u(m'+ 2) u(m.Jr 1) --- u(2) —y(m +1)--- —y'(2) (2.10)
uw(N) w(N-—-1)-ulN-m)—yN—-1) - —y(N —m)
and

y=[ym+1) ym+2) ...y . (2.11)

The model output is computed by

= X0, (2.12)

NS

where ¢(k) is in the same form as y(k). The downside of the ARX model is its
equation error configuration (see Fig. 2.6). This means that during training (in series-
parallel configuration), noisy process outputs are used for parameter estimation,
which yields the model assumption that the noise v(k) enters the process before
the shared denominator dynamic ﬁ. In turn, this leads to a consistency problem,
meaning if the process does not follow this specific noise assumption, all estimated

parameters are biased and are not consistent.?

OE An output error (OE) model, in contrast, can be obtained by simplifying
the general model (2.4) by setting the polynomials A(q), C(¢) and D(q) to 1 (see

Fig. 2.7)
M@zi%%@+%@. (2.13)

2 Non-consistency means that the bias does not tend to zero for an increasing number of samples.
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v(k)
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B(q) > A(q)

€eq(k)

Figure 2.6: Equation error configuration (see also [89])

u(k) B(q) y(k)

Figure 2.7: OE model structure (see also [89])

The optimal predictor for an OE model is (with G(q) = % and H(q) = 1)
B(g)
y(k) = —=u(k). 2.14

The optimal predictor, therefore, represents a simulation. Previous outputs are not
used because through the white Gaussian noise assumption (no correlation in the

noise), no additional information would be available from previous process outputs

[89].

The advantage of an OE model is that there is no shared denominator dynamic, which
leads to a more realistic noise assumption. However, all OE models are nonlinear
in their parameters and, consequently, harder to estimate (nonlinear optimization
problem, see Sect. 2.3) than equation error models. The output error configuration

for the system and model can be seen in Fig. 2.8.

2.1.1.2 Nonlinear External Dynamics Models

The external dynamics approach for nonlinear modeling has been very popular
throughout the years [130, 107, 69, 89]. It is based on the nonlinear input-output

model

g(k) = f(e(k)). (2.15)
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l@(k)

Figure 2.9: Nonlinear external dynamics model (see also [89])

The regression vector (k) contains current and previous inputs and previous sys-
tem or model outputs. The problem in external dynamics modeling can be clearly
separated into selecting an appropriate regression vector ¢(k) and selecting a struc-
ture for the nonlinear mapping f(-). Figure 2.9 illustrates this nonlinear external

dynamics model, where the regression vector (also called dynamics filter bank) is a

tapped-delay line.

Choices for the regression vector We will first cover the most common choices

for the regression vector and, afterward, deal with the nonlinear static approximator

fE).

NARX Models For the well-known nonlinear autoregressive with exogenous input
(NARX) model [18], the regression vector ¢(k) of (2.15) becomes

o(k) = [ulk) u(k —1) ... u(k —m) y(k—1) ... y(k —m)]", (2.16)
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where m is the order of the model. This configuration leads to an input space
with 2m + 1 dimensions to the function f(-). This model is the nonlinear extension
of the ARX model as the actual process outputs y(k — 1),...,y(k — m) are fed
back. The NARX structure is attractive since the parameters can be estimated
under certain circumstances® by least squares. However, a NARX model has some
significant disadvantages, as the stability of the estimated model is not guaranteed
and the one-step prediction error is optimized instead of the simulation error [8].
NARX models are also of interest in recent machine learning research, as it has
been shown that temporal convolutional networks (TCNs) can be seen as several
NARX models stacked on top of each other [5]. TCNs can therefore be interpreted
as deep NARX models. For many layers, often, the outputs are neglected in the
regression vector, leading to nonlinear finite impulse response (NFIR) structures
(see next but one paragraph). Applications of NARX models with the local linear
model tree (LOLIMOT) or hierarchical local model tree (HILOMOT) can be found,
for example, in [80, 46, §].

NOE Models Nonlinear output error (NOE) models are estimated with the regres-

sion vector
pk) =[uk)uk =1) - wk—m) gk =1) --- (k- m)|”. (2.17)

As the model outputs §(-) are used, nonlinear optimization is the only way to es-
timate the model. NOE models are advantageous in comparison to NARX and
nonlinear autoregressive moving average with exogenous input (NARMAX) models
because NOE models yield the optimal simulation error, which is precisely the goal
of modeling [89]. It is common to initialize the nonlinear optimization with a NARX

model.

NFIR Models When solely current and past inputs are used in the regression vector
as
o(k) = [u(k) u(k = 1) - u(k —m)|", (2.18)

the NFIR model is obtained. The main advantage of this model structure is its
inherent stability. The price to pay for the missing feedback is that the dynamic order

m has to be chosen very large to describe the process dynamics adequately [89]. This

3 If the nonlinear approximator f(-) is linearly parameterized.
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high order m leads to a high-dimensional input space to the function approximator

f(+). Therefore, NFIR models are only found in a few applications [89].

Choices of Nonlinear Static Approximator Now we will consider the nonlinear
mapping f(-). Since ¢(k) is now set, principally, any static function approximator

may be used.

Basis Function Formulation A common choice is the basis function formulation

Nm

g(k) = f(p(k) = Zlejgpj (E(k;),gg,””> _ (2.19)
j=

A detailed explanation of the basis function formulation and neural networks is given
in Sect. 2.2. The output (k) is calculated as a weighted sum of n,, basis functions
@;(-). If f(-) is linear in its parameters, the estimation of a NARX or NFIR model can
be solved with least squares which is a huge advantage for those model structures. For
linearity in the parameters, structures like polynomials, radial basis function (RBF)
networks, or local model networks (LMNs) are used. If a function f(-) is chosen that
is nonlinear in the parameters (which is inevitably the case for NOE structures), this
advantage disappears and the model parameters need to be estimated by means of

nonlinear optimization.

Gaussian Processes Instead of choosing a parametric model for f(-), non-parametric
models can also be chosen. Here, Gaussian processes (GPs) play the most important
role [103]. The key idea is to place a so-called kernel on every data point in the
input space, which measures the closeness/similarity (usually in the form of a norm)
of one data point to all other data points in the input space. Then, the reasoning
is that if two data points are “close” in the input space, their output values should
also be somewhat similar (given the assumption of a smooth process). This is done
in a probabilistic framework and means that not a point estimate (k) = f(p(k))
is calculated, but a complete probability density function (PDF) is modeled. The

PDFs are Gaussians, hence the name Gaussian processes.

First, a prior over all admissible functions f(-) is assumed, representing the mod-
eler’s believes about the mapping [61], which usually incorporates some smoothness
assumptions. The prior is then updated by the information contained in the mea-
sured data (the likelihood) to form a posterior distribution. Modeling PDFs has the
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advantage to quantify uncertainty that deterministic models are not capable of [61].
A thorough account on GPs in general can be found in [103]. For a description of
NARX models with GPs, the reader is referred to [61].

2.1.2 Internal Dynamics Models

Models with internal dynamics are based on the extension of external dynamics
models with internal memory [89]. This internal memory is represented by the so-
called state vector Z(k). The space spanned by the state vector is called the state

space.

As for the external dynamics models, we will first cover the linear basics and then

turn to different nonlinear internal dynamics models.

2.1.2.1 Linear Internal Dynamics Models

An n,-th order SISO discrete-time linear state space model is represented by
(2.20)

The first equation is called the state (update) equation, whereas the second is called
the output equation. The state vector (k) = [#1(k) Z2(k) ... 2., (k)]T € R™ con-
tains n, state variables at the discrete time step k. The input and output are denoted
by u(k) and §(k), respectively. The parameters are stored in the matrix, vectors,
and scalar A € R phc R, ¢I' € R*" and feed-through d € R.

In Fig. 2.10, the block diagram of the linear state space model is depicted. Matrix A
maps a weighted sum of current states and b the current input to the updated state
vector Z(k + 1) at time step k + 1. This means that each updated state variable is
a linear combination of previous state variables and the previous input. All model

parameters are stored in a parameter matrix

4 b] : (2.21)

or in a parameter vector

0 = vec(09), (2.22)
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Figure 2.10: Block diagram of a SISO linear state space model (see also [72]). Thin
and bold lines are used for scalar and vectorial quantities, respectively.

where the vec(-) operator stacks all matrix entries column-wise.

Similarity Transformation of Linear State Space Models State space models
possess n? redundant parameters and are therefore a non-unique representation.

Consider the transformed state vector
(k) =T "'2(k), (2.23)

where T' € R™*" is an arbitrary non-singular matrix. This transformation leads to
an infinite number of model parameterizations, which all cause the model to have
the same input-output behavior. The class of all input-output-equivalent state space
models is described by [152]

T 0

0 1

A b

' d

T o

TTAT T7'b| 0
0

= 2.24
AT d (2.24)

Conversion of Linear Internal Dynamics Model to External Dynamics Model
Every linear state space model can be converted into a linear external dynamics

model with the relation

G(z)=c"(zl — A)~'b+d, (2.25)

where z is the time-shift operator ¢ in the frequency domain [152]. Vice versa, every
linear external dynamics model can be converted into the state space representation.
However, as shown previously, there is an infinite number of state space represen-
tations for one input-output model due to the non-uniqueness of the state space

representation.
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2.1.2.2 Best Linear Approximation

The best linear approximation (BLA) framework [29, 30, 101] will be used as starting
point for the local model state space network (LMSSN). An overview of practical
applications of the BLA and its usefulness is given in [64, 118]. As a criterion for the
BLA, [116] defined the best linear transfer function Gpra(g) to be the linear model
that minimizes a loss function between process and linear model output in a least

squares sense as

Gria(g) = argminE {ly(k) = Glo)u(k)} , (2.26)
q
where E {-} denotes the expected value operator. The BLA is obtained by the

following three steps.

1. Estimation of the Nonparametric BLA A system can be modeled as the sum
of a nonparametric linear system Gppa(jw,) and a transfer function Yg(jw,) for
the noise source y (k) (see Fig. 2.11). The noise source represents the part of the
output y(k) that the BLA cannot capture, i.e., noise and the nonlinear component

combined. Hence, the output can be written in the frequency domain as

Y (jwn) = Gura(jwn)U(jwn) + Ys(jwn) (2.27)

for the discrete frequencies w,,. The nonparametric BLA is then calculated (as shown
in [101]) by

Syu (jwn)
S (] wn) ’

where Sy, (jw,) is the cross-power spectrum between the output and the input and

Grra (Jwn) = (2.28)

Suu(jwn) is the auto-power spectrum of the input [96]. Equation (2.28) is obtained
by evaluating the Fourier transform of the Wiener-Hopf equation which follows from
(2.26), see [32].

lys(k‘)
u(h pah) §  y(h)

——— BLA >

>
>

Figure 2.11: Representation of BLA and noise source (see also [96])
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For periodic signals, (2.28) reduces to the average of the measured frequency response

functions (FRFs) for M experiments as
M
GBLA (Jwn) = Z jwn . (2.29)

Here, for every experiment m, the FRF estimate GI™ (jw,) is defined as

R Vil (e,
G () = L) (2.30)
Uml(jwn)
with
. 1 L
gl (Jwn) = 2 Z lm.p) (jwn) (2.31)
p=1
N 1 L
Y jun) = 5 32V (Gw) (2.32)

ki
L

where U™l (jw,) and YI™?(jw,) denote the discrete Fourier transforms (DFTs) of
the p-th period of experiment m in a periodic excitation setup. The total number of

periods is denoted by P.

For non-periodic input signals, one can estimate the BLA with the auto-power and
cross-power spectra. In this case, leakage errors will be present when calculating the
DFTs [96]. First, the input signal is split into M blocks. A Hanning or Diff window
can be applied to the signals to reduce the leakage effect. Next, the DFT spectra of
each block are estimated. From that, the sample cross-power spectrum between the
output and input Syy (jwn) and the auto-power spectrum of the input Suu (jwn) are
calculated using Welch’s method [142]:

. 1 M , .

Syv(jwn) = i Z y [l (jwn)U[m}H(jwn) , (2.33)
m=1

. 1 M

Syy(jwn) = i S UM (G, ) UM (ju,) . (2.34)

m=1

Here, (-)f denotes the conjugate transpose of a matrix. The nonparametric BLA is

then given by
A . S )W,
Gpra(jwn) = M

SuoUion) . (2.35)



21

2. Estimation of Linear Parametric Model based on BLA A parametric linear
state space model is estimated from the nonparametric BLA using frequency domain
subspace identification methods [78]. The frequency weighting by means of the
weighted least squares loss function is stated by [100]

Iwis = z:lgH(]Wn)éal(]wn)g(]wn) . (2.36)

Here, F' is the number of discrete frequencies, e(jw,) is the difference of the nonpara-
metric and parametric BLA at the discrete frequency w,, and the sample covariance
Ce(jwn) is given by [98]

A 1

Coliwn) = 3rar =) 2 16 (en) = Govaieon) . (2:37)

M(M m=1
The frequency weighting is only used when multiple realizations of the experiment
are available (M > 1). In this way, the initial parameters A, b, ¢, and d are

estimated for the parametric BLA.

3. Nonlinear Optimization of the Linear Parametric Model The initial parame-
ters are tuned by nonlinear optimization. The Levenberg-Marquardt algorithm (see
Sect. 2.3.2) is employed [98] to accomplish this. If multiple realizations are available,
the nonlinear optimization is also performed with a frequency weighting of the sam-
ple covariance matrix ég( jwp). For an in-depth analysis of the BLA, especially for

initialization of nonlinear models, refer to [96].

Case Study: Initialization Example on Silverbox Benchmark For demonstration
purposes, the second-order BLA for the Silverbox benchmark (Sect. 5.4) is shown in
Fig. 2.12. Here, the nonparametric BLA (blue dots), the fitted parametric second-
order BLA (yellow line), and the error at the discrete frequencies f (red dots) are
shown. Only odd frequencies were excited in a frequency range from 0 to 200 Hz (in
total 1342 frequency lines) and therefore the fitting was only done for odd frequencies,
since fitting on even frequencies would only contribute noise (no excitation). The
frequency weighting is used as the training input consists of M = 10 realizations
of a random odd multisine signal. One can see that the parametric model fits the

nonparametric BLA well and the error between those models is acceptably low.
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Figure 2.12: Demonstration of the BLA on Silverbox benchmark (M = 10 experi-
ments)

2.1.2.3 Nonlinear Internal Dynamics Models

Now we will take a closer look at nonlinear internal dynamics models. As for the lin-

ear case, we write a nonlinear internal dynamics models in state space representation

(SISO case) as

(2.38)

The functions h(-) and g(-) describe a general functional dependence of Z(k) and

u(k) in the state and output equation.

The identification task is to determine the functions A(-) for the n, state variable up-
dates and the function g(-). Due to the internal feedback, an optimization problem
formulated with a nonlinear state space representation leads to a nonlinear optimiza-

tion problem.

Similarity Transformation of Nonlinear State Space Models Just like for lin-
ear state space models, also nonlinear models can be transformed to yield an in-
finite number of models with the same input-output behavior [98]. The similarity
transform z(k) = T '2(k) with arbitrary nonsingular square matrix 7' yields in the
nonlinear case

L(k+1) =T WL x(k), u(k)) = h(Z(k),u(k)) (2.39)
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The transformation by T shows that there are n? redundant parameters. This prop-
erty can be extended by an offset ¢ which allows not just to scale but also to shift
the state vector as z(k) = T~ *(&(k) — t), which leads to

(2.40)

In the affine case, also the initial condition has to be transformed according to
To=T "2 —1t). (2.41)

The affine transformation will be used for the LMSSN to shift the state trajectory in
the desired operating regime (see Sect. 3.3.3 and Appx. B.2 for more detail). Note

that there are now n2 +n, redundant parameters in the affine transformation case.

PNLSS The polynomial nonlinear state space model (PNLSS) was developed by
Paduart (2008) [96]. It extends the linear state space model (2.20) by two additional
terms which add higher-order polynomials to the state and output equation. PNLSS
seems to be one of the most promising deterministic approaches that has been devel-
oped in recent years in nonlinear system identification. Further improvements have
been suggested for the PNLSS, e.g., the use of decoupling strategies to cope with
the curse of dimensionality for polynomials [34, 35, 33, 25, 115].

For SISO systems, the PNLSS model is depicted in Fig. 2.13. It can be written as
- (2.42)

The vectors ((Z(k),u(k)) and n(Z(k), u(k)) contain nonlinear monomials in Z(k) and
u(k) of degree two up to a chosen degree p. The coefficients associated with these
nonlinear terms are the matrix £ and the vector iT. Note that the monomials
of degree one are included in the linear part of the PNLSS model. For a second-
order SISO model, the monomials of degree p = 2 in the state equations are, for
example?,

C(z(k),u(k)) = [22 218 Tiu 23 dou u?]”. (2.43)

4 The argument k of £(k) and u(k) is left out for brevity.
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Figure 2.13: Block diagram of polynomial nonlinear state space model

The identification of the PNLSS model is as follows [98]:

1. Find the BLA [101] of the system under test as the nonparametric transfer

function Gppa.

2. Based on the nonparametric BLA, calculate the parametric BLA Ggra and
therefore the initial estimates of the linear parameters (all entries in A, b, c”
and d), using a linear subspace system identification procedure [100] followed

by a nonlinear optimization of the parameters.

3. Tune all parameters A,b, ¢!, d, E and iT by running a Levenberg-Marquardt

optimization. Matrices £ and iT are initially set to 0 [98].

The whole identification procedure can be found in [96] or [98]. The strengths of
the PNLSS model are its great flexibility and adaptability. The estimates of the
BLA can be used to initialize the system, which means that the PNLSS model is

performing equally well as the best linear model or better (on training data).

On the other hand, the PNLSS suffers from stability issues and explosive behavior in
extrapolation — in regions where they were not estimated [96, 35]. Those problems
are even more pronounced for a high order p, making it hard to estimate satisfac-
tory models if operated close to the training data boundaries and in extrapolation.
Therefore, usually low polynomial degrees of p = 2 or p = 3 are chosen. Complex
PNLSS models do easily get unstable in extrapolation, as shown in [125, 93]. For
the decoupled PNLSS [34, 35], the authors point out that the amplitudes of the
input signal for testing has to be chosen smaller than for training, as otherwise ex-
trapolation problems occur. This behavior constitutes a significant limitation to the

usefulness of those methods.
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Deep Probabilistic State Space Networks There is much research done in prob-
abilistic state space models [114]. Recent research has shown the usefulness of com-
bining recurrent neural networks (RNNs) (which can be transformed into state space
models, see Sect. 4.1) and variational autoencoders [60], especially as those have the
advantage of quantifying uncertainty [39]. The six different methods implemented
in [39] generally perform well but are interestingly outperformed by the BLA (a
linear model) on a Wiener-Hammerstein with process noise benchmark [121]. The
better performance of the BLA might be caused by the chosen double-sided satu-
ration nonlinearity for the benchmark, which might only exhibit slightly nonlinear

behavior.

Piecewise Affine State Space Models A piecewise affine (PWA) state space model
[38] is described by

L(k+1) = 0; + A; &(k) + bju(k)
y(k) = p; +c; 2(k) + dju(k)
if h’;;] EX;, =1, T,

u

(2.44)

where o; and p; are the offsets for state and output equation and n,, is the num-
ber of affine models. Depending on the operating point in the joint input space
(27 (k) u(k)]”, a single affine state space model governs the process dynamics. This
means that all model parameters in state and output equation switch simultane-
ously depending on the operating point, leading instantaneously to different model
behavior. This may be preferable for hybrid systems®, but is usually not desired for

processes, where a smooth and continuous function behavior is expected.

Multiple Affine State Space Models Multiple model approaches [86] can alle-
viate the “hard switching” problem of PWA state space models. Proposed model

structures in state space formulation are given by

Nm

B(k+1) = (0; + A;i(k) + byu(k)) &;(k)
Jn N (2.45)
> (pj - c (k) + dju(k:)) D,(k).

5 Those are processes that combine continuous (described by differential equations) and discrete
(described by finite state logic) dynamic behavior [10].
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Here, a number of n,, affine state space models is weighted to form an overall blended
model. It has been shown in [58] that this model is a universal approximator to the
system (2.38), as an arbitrarily small modeling error can be achieved for a sufficiently
large number of affine models n,, [139]. Like in the PWA case, all parameters in the
state and output equation are treated as a whole. Therefore, one can think of this
strategy to blend affine state space models as a whole and not just distinct parts of
them, which will be further elaborated on in Chap. 3. This will play a crucial role in
the LMSSN, where only dedicated parts of state space models can be blended over.
Model structures as in (2.45) are in detail elaborated on in [139] and [152].

Neural Network State Space Models In the nonlinear state space model (2.38),
the functions h(-) and g¢(-) can be approximated by neural networks [130]. For
example, single layer perceptrons have been studied in the 1990s [76, 150], while

mostly deep network architectures are investigated today [123].

2.1.3 Comparison of Internal versus External Dynamics

Realization

Internal (state space) models and external (input-output) models are two different
modeling approaches with various advantages and disadvantages. A non-compre-

hensive overview shall be given in the following.

« As argued by [106], state space models can describe a wider class of dynamical
systems than input-output models. It is always possible to write a nonlinear
input-output model in a state space representation, but not all state space

models can be formulated into input-output representation.

 Additionally argued by [106], even if an input-output representation exists of
the state space model, the state space model may require a lower order.
When comparing an input-output and state space model both of order n,, a
state space model has n? more parameters than an input-output model (due
to the non-uniqueness of the state space model). Those n? parameters are
redundant, which means that the effective number of parameters is the same
for the input-output and state space model. If now the same representational
capacity is achieved with a lower order state space model, then this might also

lead to a smaller effective number of parameters for state space models.
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« State space models can easily be extended to the MIMO case, which is more

cumbersome for input-output models.

e The number of regressors and, therefore, the dimensionality of the input space
is usually smaller in state space models than in input-output models. A n,-th
order SISO state space model possesses n, + 1 regressors
X = [21(k) ... Z,,(k) u(k)], while an input-output model of m-th order re-
quires 2m+1 regressors X = [u(k) u(k—1) ... u(k—m) y(k—1) ... y(k—m)].
This is especially important for nonlinear systems as the model complexity, the
computational demand, and the amount of data needed for the function ap-
proximation increases significantly with the input space dimensionality (curse

of dimensionality) [89].

e Modern control methods often require state space models instead of input-
output models [139].

o Training of input-output models can be done in a non-recurrent manner with
equation-error approaches. State space models instead are recurrent [91, 92],

making optimization a lot more involved.

« State space models are non-unique since an infinite number of similarity trans-
formations can be applied to the state space model, which all lead to the same

input-output behavior of the model (see Sect. 2.1.2.3).

» State space models are more abstract than input-output models.

2.1.4 Block-Oriented Models

As pointed out in [110], often pure black-box models are used for processes, where
partial insights have been gained by first principles. The belief might be that an
interpretable model could not possibly be as accurate as a black box for a complex
dataset. Black-box models do have their justification, but if a more interpretable,
more parsimonious model can be employed, it should be. Throughout the past 30
years, much attention has been given to the topic of block-oriented nonlinear system
identification [87, 41, 122]. Here, nonlinear systems are modeled only by linear time-
invariant (LTI) dynamic subsystems and static nonlinearities, making those models
readily understandable. Through different choices of interconnections, a multitude

of nonlinear models can be obtained.
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Figure 2.14: Considered single branch block-oriented structures. The LTI blocks
(G(q), H(q)) and static nonlinearity blocks (f(-), I(-)) are differently
combined to form the different models a) - d). Signals that exit an LTI
block are labeled as r(k) and signals exiting static nonlinearities are

labeled s(k).

Considering only single branch structures, the most popular and most studied block-
oriented structures are shown in Fig. 2.14. A Wiener system (Fig. 2.14 a) is a series
connection of an LTT block followed by a static nonlinearity. It is extended to a
Wiener-Hammerstein system (Fig. 2.14 ¢) by series-connecting another LTI block
after the static nonlinearity. A Hammerstein system (Fig. 2.14 b) is “the opposite”
of a Wiener system. First, the signal is passed through a static nonlinearity and
then passed through an LTI block. It can likewise be extended to a Hammerstein-
Wiener system (Fig. 2.14 d) by connecting another static nonlinearity to the output
of the LTI block of the Hammerstein system. A non-exhaustive overview of different
identification methods for the different model structures is given in [122]. Some
similarities of the LMSSN to block-oriented models are shown in Sect. 3.5.2.

2.2 Neural Networks

The simplest static model is a linear static model. The output g is, in this case, a
linear combination of the inputs. This can be written as the scalar product of an
input vector u with a parameter vector 6 as

j=0"u. (2.46)
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This equation simply resembles a straight line through the origin of the coordinate
system in the SISO case or a (hyper-)plane for the MISO case. Parameter vector 6

denotes the slopes in all n, input dimensions (entries in vector u).

In contrast, a nonlinear static model can generally be described by

§=r(w). (2.47)

The parameterization and estimation of function f(-) can be understood as system
identification for static applications. Since the class of nonlinear models is extensive,
many different parametrization approaches exist for f(-). Among those are more
classical RBF approaches [11], multilayer perceptron networks [108], or more recently
used deep neural network structures [44]. The basic concepts will be explained in

the subsequent sections.

2.2.1 Basis Function Formulation

Almost all possible realizations of function f(-) of practical interest can be written

in a basis function formulation [89]
§=">0;9; (u0") . (2.48)

The output § is calculated as a weighted sum of n,, basis functions @;(-). The
basis functions are weighted with the linear parameters ¢; and depend on the input
vector u and a set of nonlinear parameters Qg-n”. Figure 2.15 illustrates such a general

configuration.

All @;(-) can be, generally speaking, different basis functions. However, if all @;(-)
have the same structure and only differ in anl]7 the basis function network is called
a neural network. In Fig. 2.15, a neural network is shown with three so-called layers:
the input layer, a hidden layer, and the output layer. The representational capabili-
ties of a neural network can be increased in two ways. On the one hand, the number
of neurons (or nodes) n,, in the hidden layer can be increased. On the other hand,

the number of layers can be increased, leading to deep neural networks.

The general idea behind neural networks has been around for more than 75 years [77].

They have been employed fruitfully in system identification throughout the years
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Hidden Layer Output Layer

Figure 2.15: Network of basis functions. If all basis functions are of the same type,
this architecture is called a neural network.

[87, 17, 130] and still constitute a popular choice for nonlinear system identification
137, 75, 24, 63, 102, 5].

One of their most important properties is that they are universal approximators [57].
This means that they can approximate any arbitrary continuous function when the
number of neurons is large enough, even if all neurons are in only one hidden layer.
This property makes this class of models well suited for a large class of problems in
nonlinear system theory [87]. Some basic neural network structures are illustrated
in Appx. A.1.

2.2.2 Validity and Activation Functions

It is frequently desirable to have a local interpretability of each neuron. Therefore,
it might be helpful to consider different types of nonlinear functions that possess
locality. Thus, we will investigate normalized radial basis functions (NRBFs) and

hierarchical sigmoid functions in detail, as those will be employed for the LMSSN.

Normalized Radial Basis Functions A special case for a neural network is the
NRBF network with Gaussian basis functions. In this case, the nonlinear parameters
Qg-"l] of @;(-) become centers 1 and standard deviations o of RBFs. The NRBFs are
calculated by

;) = Yl 1 25) (2.49)

= B Z;nl Lps(@a H57Qs>
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with the RBFs (which in the fuzzy logic context are also called membership func-

tions)

; <@7vagj) = exp <_1 <(u1_2'u31)2_|_ +W>> ' (2.50)

2 o) T

The NRBFs have the special property of summing up at every point in the input
space to 1. This property is called partition of unity and it holds that

S a,()=1. (2.51)

An NRBF can be interpreted on the one hand the same way as in the basis function
formulation. A certain basis function is weighted with a linear parameter. On
the other hand, the typical interpretation is to understand the basis function as a
validity function. The validity function (or activation function) expresses in which
areas of the input space, which weight (which linear parameter) is valid (or active)
to what degree. The input space is thereby decomposed into smaller operating
regimes which hopefully facilitates decent approximations of the nonlinear system.
This interpretation is common because of the partition of unity which can also be
understood as some kind of proportion to which a weight is active in a certain
region of the input space. This second interpretation will also be used for all further

discussion.

The question arises, how the nonlinear parameters, namely centers and standard
deviations of the RBFs, are determined. This task can be solved by different means
such as grid partitioning, input space clustering, heuristic construction algorithms,
or others. One concept, which falls into the category of heuristic algorithms, is a
tree-construction algorithm that will be used in this thesis and is explained in more
detail in Sect. 3.2.1.

NRBF networks suffer from two problems. On the one hand, since the RBFs are ex-
ponentially decaying their normalization becomes increasingly harder with increasing
distance to their center coordinates. To avoid a division-by-zero, usually, the smallest
value that a chosen numeric data type can represent is added to the denominator.
This leads to imprecise calculations of the validity functions far from the center
coordinates. The second problem is reactivation [128]. This occurs if two RBFs
have different standard deviations. Both problems are discussed in more detail in
Sect. 3.6.1.
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Hierarchical Sigmoid Functions These two problems for NRBFs can be overcome
by choosing alternative validity functions. For example, hierarchical sigmoid func-

tions do not suffer from the previously stated problems.

The general idea is to construct validity functions ¢; by the multiplication of splitting
functions ¥; through a hierarchy [89]. Each splitting function is a (multidimensional)

sigmoid function

1 :
Ui(u) = T ep(—2) with  z; = K- (vjo + vjiur + ... 4 Vjn, Un, ) - (2.52)
The splitting  weights  v;1,...,v5,, are stored in the row vector
QJT = [Uj1,...,Vjn,]. They determine the direction of the nonlinearity and their

ratio with respect to vy determines the distance from the origin of the coordinate
system [47]. Parameter & is redundant but can be used to adjust the steepness of the
sigmoid function conveniently. The goal is to obtain similar behavior to the NRBF
case: A mneuron is active in a particular local region and inactive everywhere else

while guaranteeing that the sum of all validity functions sums up to one.

Figure 2.16 contrasts validity functions constructed by RBFs (left side) and sigmoid

Hierarchical
sigmoids
,/7: lj/_,
1
@ =W
(1 =)
0.5
0 L
0 0.5 1
Sigmoids
1 z
2 L=
S0 0.5 0.5
1] ‘ 0
0 0.5 1 0 0.5 1
u u

Figure 2.16: Construction of qualitatively equivalent NRBF validity functions (top
left) and hierarchical sigmoid validity functions (top right) constructed
by RBFs (bottom left) and sigmoids (bottom right), respectively.
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Figure 2.17: Hierarchical sigmoids of the given example. The validity functions
(leaves of the tree) are constructed by multiplying all sigmoids lead-
ing up to each leaf.

functions (right side). For example, qualitatively equivalent results can be achieved
in a given region (in this case for u € [0, 1]) for three validity functions. The NRBFs
validity functions are constructed by three RBFs, while for the construction of the

hierarchical sigmoids, only two sigmoid functions are needed.

Each sigmoid has a counterpart, which is for an arbitrary sigmoid ¥ defined as 1 —¥
which ensures the partition of unity. On the first hierarchical level, the input space
is governed by either ¥; (blue) or 1 —¥; (yellow), depending on whether the model is
left or right of 0.5. In the domain of 1—¥7, on a second hierarchical level, the sigmoid
U, and its counterpart 1 — ¥, are added. To obtain the final validity functions, all
hierarchically stacked sigmoids are multiplied by each other. The hierarchy of the
given example is shown in Fig. 2.17. The leaves of the tree (indicated by the squares)
correspond to the three constructed validity functions using different sigmoid nodes,
which are indicated by the circles. This idea of hierarchical sigmoids will be used for
the HILOMOT construction algorithm explained in Sect. 3.2.2.

2.2.3 Local Model Networks
Until now, all explained neural network structures take the form

g=>0,0; (u0") (2.53)
where the model output is computed by a weighted sum of activation or validity

functions. In the case of NRBFs or hierarchical sigmoids as validity functions, the

partition of unity holds. The neural network output can thus be seen as a smooth
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blending between the linear weights ¢;. Therefore, the output is piecewise constant
with the smoothness of the transitions determined by the standard deviation of the
RBFs or the x constant in the sigmoid case. To increase modeling capability, instead
of using constant weights 6;, one can choose local linear models (LLMs) L; (g, Qj)
to construct a neural network. In this case, piecewise linear models are blended
instead of constants. This architecture is called local model network (LMN). The

linear parameters ¢, are replaced by LLMs L; (g, Qj) so that (2.53) turns into

Nm

§=>"L; (u0;)®; (u6") . (2.54)

J=1

The LLMs depend on a set of linear parameters 6; and also on the location within
the input space u as
L (u,0;) = 0o, + 0 u. (2.55)

The term linear might be misleading, but it will be used in this thesis as it is the
established terminology in literature. More accurate, though, would be the word
affine local model as the local model includes an offset 6y;. An illustrative example
of a NRBF network in contrast to an LMN can be found in Appx. A.2.

Advantages of LLMs are:

o Higher flexibility in their respective regions of validity in contrast to a sin-
gle parameter, leading to a smaller number of operating regimes to obtain a
satisfactory model quality.

o They have an intuitive interpretation and are easy to understand. They can be
seen as linearizations of the nonlinear system in different operating points [139].
By making a weighted combination of these LLMs, one tries to accurately
describe the complete nonlinear behavior [86].

o Linear system theory is well developed.

« They are widely used by engineers [139].

Two-dimensional lllustration of an LMN An LMN in a 2-dimensional input space
(n, = 2) with three LLMs (n,, = 3) is considered. In Fig. 2.18, the RBFs ¥; of
the local models (upper left-hand side) and the LLMs L; (upper right-hand side)
are shown. After normalizing the RBFs ¥, one obtains the NRBFs (the validity
functions) @, (lower left-hand side). The last step is the multiplication of the validity

functions with their corresponding LLMs and then the summation of all weighted
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membership functions ¥; local models L;
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Figure 2.18: Membership functions ¥; (upper left), local linear models L; (upper
right), validity functions @; (lower left), and model output § (lower
right) for an LMN with n, = 2 and n,, = 3.

local models (WLMs) to finally obtain the model output § (lower right-hand side).

2.3 Nonlinear Optimization

Once a model structure (in our case usually a parametric model) is chosen, the
model parameters have to be estimated (also referred to as model training). In some
nonlinear input-output models, it may be possible to employ linear optimization.
For many nonlinear dynamic models, though, the arising optimization problem for

parameter estimation is nonlinear in its parameters (as is also true for the LMSSN).

Nonconvex and thus nonlinear optimization problems may have many local optima,
so it cannot be ensured that the global optimum is reached after optimization. An

analytical solution usually does not exist, making it necessary to employ an iterative
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algorithm. This also means that an initial guess for the parameter vector is necessary,
significantly affecting the local optimum the algorithm converges to [9]. For a few
parameters, a direct search algorithm might be used. In those cases, the loss function
is simply evaluated at different points of the parameter space, either in a grid-based
manner or randomly chosen. A significant disadvantage, though, is the exponentially
growing number of evaluation points with an increasing number of parameters [37].
This phenomenon, known as the curse of dimensionality, makes it infeasible to apply
those methods if the number of parameters is high. Probably the most successful
direct local method is the downhill simplex method [37]. A simplex is a set of
n, + 1 points in a n,-dimensional input space, which forms for example in n, = 2
dimensions, a triangle. The vertex with the highest loss function value is determined,
which is then reflected in the centroid of the other n, vertices, thus forming a new
simplex [37]. In this way, the simplex progresses towards a local optimum. Note
that some additional rules need to be established to prevent the algorithm from
being trapped. In general, direct methods have slow convergence and are popular

mainly because of their relative simplicity to understand and implement [89].

An alternative is gradient descent algorithms. This is the most common and impor-
tant class of nonlinear local optimization techniques [89] and by far the most popu-
lar optimization technique with neural networks [109] and other higher-dimensional
problems. Gradient-based algorithms calculate iteratively a new parameter vector
0(i + 1) based on the current parameter vector 0(i) corrected in the direction p(7)

scaled by a step size (i) as

0(i+1) =0(i) — n(i)p(). (2.56)

The index ¢ stands for the i-th parameter update, also called the i-th epoch®. The

direction p(7), in which the parameter vector is adjusted, is calculated by

p(i) = Ryg(i), (2.57)

where g(i) is the gradient of the loss function /((7)) regarding the parameter vec-

tor

o1(0(i))

g(i) = “o0(i) (2.58)

6 Note that the i-th parameter update and i-th epoch only coincide for training in batch mode,
which means that all data points are used for a single parameter update. This setup will be used
for ease of notation within Sect. 2.3.1-2.3.3. For sample adaption and mini batches (explained in
Sect. 2.3.4) a parameter update is performed on a subset of the training data, leading to multiple
parameter updates per epoch.



37

scaled and rotated by some matrix R(i). Loosely speaking, one follows the (cor-
rected) slope of the surface created by the loss function downhill until a valley is

reached.

The straightforward choice R(i) = I yields a parameter update in the steepest de-
scent direction (Sect. 2.3.1), which is opposite to the gradient g(i). There are many
further refinements that can be applied to the correction term for more robustness
and faster convergence. Among the most popular nonlinear optimization algorithms
are Newton’s method, Quasi-Newton methods, and the adaptive moment estimation
(ADAM) method. Those methods do not require any special structure for the loss
function an can thus be categorized as general nonlinear optimization algorithms
(for all three see Sect. 2.3.1). In case of a sum of squared errors loss function, the
Gauss-Newton method and the Levenberg-Marquardt method can be employed (see
Sect. 2.3.2). For an in-depth study of different nonlinear optimization algorithms,
see [112, 59].

2.3.1 General Nonlinear Optimization

We will first consider optimization methods that do not impose any special structure

on the loss function.

Steepest Descent As already mentioned, if R(i) = I is chosen in (2.57) for the
parameter update direction, this leads to the steepest descent parameter update
equation

0 +1) = 6(i) = n(i)g(7) - (2.59)

The parameter update is exactly opposite to the gradient, yielding for sufficiently

small n(7) the direction which gives the greatest loss function reduction.

The step size n(i) can either be fixed, varying over the number of epochs, or optimized
via line search. The first two alternatives have the advantage of being simple and that
no additional optimizations have to be done. The line search finds by a univariate
parameter optimization the optimal step size at each epoch ¢ in the search direction
of p(¢). Two subsequent problems need to be dealt with for line search: first, finding
the interval in which the optimum is located, and second, an interval reduction

mechanism. For further detail regarding those problems, refer to [112].
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The major advantages of the steepest descent method are listed here [89, 96]:

e casy to understand

e casy to implement

o large region of convergence to a (local) minimum
e no requirement of second-order derivatives

e linear computational complexity

e linear memory requirement complexity.
On the other hand, there are serious drawbacks [50, 89]:

 slow convergence
« affected by a linear transformation of parameters

« generally requires an infinite number of iterations to solve a linear optimization

problem.

Improvements to Steepest Descent There are many ways in which the steepest
descent method and the direction of the update step can be improved. Second-order
methods (like Newton’s method) incorporate information about the curvature of the
loss function besides the gradient into the parameter updates [3]. This requires the
computation of second-order derivatives (the Hessian matrix) and its inversion, which
is computationally very expensive. Quasi-Newton methods have been developed to
approximate the Hessian (or its inverse) with gradient information and alleviate the

computational demand while still providing fast convergence [112].

Another way to improve performance is by introducing so-called momentum terms.
The idea is to memorize past gradients and take a parameter update step as a
weighted combination of current and past gradients. As an analogy, one can think of a
ball rolling downhill the loss function surface. Since it gathered momentum downhill,
it will not stop right away at a pit (local optimum) but will use its momentum to
possibly overcome a neighboring small hill in the surface to reach an even deeper pit
(a better local optimum). Among the most popular optimization algorithms that

use the idea of momentum is the ADAM optimizer [59].

Newton’s method, the Quasi-Newton method, and ADAM are explained in more
detail in Appx. A.3.



39

2.3.2 Nonlinear Least Squares Optimization

Some optimization methods make use of the structure of the loss function. The by

far most commonly used loss function is the sum of squared errors

1(0) = i e*(k,0) (2.60)

where e(k, ) denotes the model error per data sample (or in the case of dynamical
modeling the time step) k, which is calculated by e(k, ) = y(k) —4(k, 8). The choice
of the squared errors loss function is optimal (in the maximum likelihood sense) if

the noise is Gaussian distributed [89].

If the model §(k, @) is linear in the parameters, (2.60) can be solved by linear least
squares. If §(k,d) has a more complicated (nonlinear) dependency on the parame-
ters, (2.60) is known as the nonlinear least squares problem. In the following, two
algorithms will be explained, which use such a nonlinear least squares problem formu-
lation. As the Levenberg-Marquardt algorithm will be commonly employed for the
optimization of the LMSSN, the nonlinear least squares methods will be explained

in some detail.

Before we start, some notation for the subsequent sections is introduced. Equation

(2.60) can be written in a matrix-vector form as

I0)=¢eTe  with e=][e(1,6),e(2,0),...,e(N,0)]" . (2.61)

The gradient g; of the loss function with respect to parameter ¢; is calculated by

0I(0) N de(k) T Oe
With the definition of the Jacobian
Oe(1,0) .. 0Oe(1,9)
90, 900,
J=1 S (2.63)
de(N.,9) de(N,0)

96, T 96,
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the gradient with respect to the whole parameter vector @ is calculated as

g=2J"e. (2.64)

The Hessian H contains all second-order derivatives of the loss function with respect

to the parameter vector 6. One element of the Hessian Hj; is calculated as

0%1(0) N k) de(k) 0?e(k)
it = 50,08, = ; ( a0, o0~ “Waa00, ) (2.65)
and the full Hessian as
N 92e(k)
_o91T 61T
H=2J 1+2;e(k)89j86l_21 J+2S. (2.66)
=S

Note that one part of the Hessian can be computed purely by information from the

Jacobian, while the second part (defined as S) consists of second-order information.

Gauss-Newton Algorithm If errors are small, the part JTJ of (2.66) is dominant
and S = 0. Therefore, a reasonable approximation of the Hessian can be made by
neglecting S and approximating the Hessian by

H~2J"J. (2.67)

Using a quadratic approximation of the loss function leads to the Gauss-Newton

update equation
0 +1) = 0(i) — (i) (L (2)L(0)) ™ L" (i)e(d) . (2.68)

The Gauss-Newton algorithm can be understood as the nonlinear least squares ver-
sion of Newton’s method. By exploiting the nonlinear least squares loss function
structure, it is possible to compute an approximate Hessian only by information of

first-order derivatives.

Note that the approximation of the Hessian is only reasonable if S — 0. This is
true if errors are small”, which is the case around a (local) optimum. This contrarily

means also that the approximation might not work well at the initial parameter

7 giving this class of algorithms the name small residual algorithms
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vector, where an optimum is far away. The second term of S (the second-order

derivatives) can also steer S — 0 if the loss function is only “slightly” nonlinear.

In practice, (2.68) is not solved directly in this formulation, but the linear system of

equations is solved
(L7(0)1(0)) pi) = ST (i)e(i) (2.69)

which is also called the normal equation. It can be solved in a numerically stable

fashion via the thin (or economy) singular value decomposition (SVD) [43] of J (i)

J(i) = UHZ@0) V' (i), (2.70)

with U(i) of size (N x ng), (i) is a diagonal matrix of size (ny x ng), and V(i) of

size (ng X ng). This leads to the update direction
p(i) = VOB (U (i)e(i) - (2.71)

If J(7) has not full rank (occurs for over-parametrized models such as a fully popu-
lated state space model), then > ! is singular and a truncated SVD can be used to
compute (2.71) [96].

Levenberg-Marquardt Algorithm The Levenberg-Marquardt algorithm [65, 74,

82] is an extension of the Gauss-Newton algorithm. It extends (2.68) to
0(i + 1) = 6(1) — () (T (0).2(0) + 1) LI (el (2.72)

where the term A%/ is added to the approximate Hessian J”(i).J(i). This term has
the same effect as employing regularization, like it can be done to the linear least
squares problem with ridge regression [89]. Possible problems due to ill-conditioned

JT(4)J (i) are hereby circumvented.

The interpretation is as follows. Let us first assume a very small A. In this case,
the update formula (2.72) approaches the Gauss-Newton update (2.68). Contrarily,
if X\ is chosen to be large, then the Levenberg-Marquardt update equation is steered

towards the steepest descent update equation (2.59) since

(N ' I (i)e(i) ~ (i) (2.73)

Since the initial parameter vector is likely to be far from the optimum, the Gauss-
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Newton method will yield no reliable parameter update because of the approximation
of the Hessian made in (2.67). Far away from the optimum, Gauss-Newton might
even diverge (for negative .JJ7(i).J(i)). Therefore, a larger value for A should be
chosen at the start of optimization. If the parameter update is successful, meaning
that I(6(i + 1)) < I(8), A can be reduced by some factor. If the parameter update
is unsuccessful (1(0(: + 1)) > 1(0)), A is increased by some factor until a search

direction is found, which yields a drop in the loss function value.

The actual computation of (2.72) is again done via the SVD like

p(i) = V(DAGUT ()eli). (2.74)
with
. . 01 02 Op
A(i) =d e ¢ ) 2.
A(i) = diag (a% + A2 05 + X 02+ A2> (2.75)
Here, 01,09,...,0,, are the singular values of J(i). See Appx. A.4 for a detailed

derivation and some implementation details of the Levenberg-Marquardt algorithm.

2.3.3 Backpropagation-Through-Time Algorithm

The nonlinear optimization approaches from the previous sections can be applied to
any data. In the case of dynamic data, some peculiarities arise in gradient calcu-
lations. In the state space framework, the model output §(k) is a function of the
output equation parameters 6%, the current input u(k), and the current state vector
(k)

g(k) = 90", 2(k), u(k)). (2.76)

The state vector Z(k), in turn, depends on the parameters of the state equations
9! previous input u(k — 1) and the previous state vector Z(k — 1) and is in itself

recurrent

2(k) = b0, &(k — 1), u(k — 1)) (2.77)

This can be seen, as the previous state vector Z(k — 1) depends, again, on the time
step before this
2k —1) = h(0", 2(k — 2), u(k — 2)) (2.78)

and so on. The unfolded recurrent state equation is depicted in Fig. 2.19.



. (k)
A i) A e
2k—2)| h() 262
u(1) L —
., KION 8(2) -
0 A h()) =2l
—>i0 B (1) | 20)

Figure 2.19: Demonstration of the unfolded state equation (see also [89])

Optimizing the state equation parameters 0! leads to the real time-recurrent-

learning algorithm, also known as simultaneous backpropagation [89].

This means that the gradient has to be computed by chain rule

dy(k)  9g(-) 0z(k)
59[81 N ag(k)' PYi0 (2.79)

with
0z(k) _ Oh(-) =~ Oh()  0&(k—1)

aQ[S] B ag[s} 0z(k —1) 3@[8}
——

static dynamic

(2.80)

Equation (2.80) shows that the gradient for the next time step always depends on
a static and a dynamic part, which depends on the previous time step. Therefore,
this dependence on the previous time steps makes the optimization a pretty complex

one.

2.3.4 Gradient Updating Frequency

Until now, we assume that a parameter update is carried out on the whole dataset.
This means that the gradient g is computed per epoch for the whole dataset
{u(k),y(k)}szl at once. For large N, this can be quite time-consuming. Instead,
parameter updates might as well be updated more frequently per epoch, for example,
after a specified portion of the dataset “has been seen”, or, in the extreme case, after

every data sample.

Batch Gradient Descent For batch gradient descent, the loss function is defined

over all data samples as
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N
10) = 3 (y(k) — 90, k)" (2.81)
and the gradient is calculated as

g(i) = E)g(e(éi))). (2.82)

Within one epoch ¢ of training, there is only a single gradient update. The batch
gradient descent is also known by the name vanilla gradient descent in the machine

learning community.

Stochastic Gradient Descent (or Sample Adaption) For non-dynamical data,
a parameter update might as well be carried out for each training sample. So for
each epoch of training, there are N gradient calculations and, in turn, N parameter
updates. This is called stochastic gradient descent (SGD), as all samples are shuffled
at the beginning of each epoch, leading to a highly fluctuating convergence behavior.
While SGD is possible for image classification or other static applications, it is not
feasible to rearrange the order of individual time steps in dynamic datasets. The
solution here is to view one training sample not literally as one time step but as
a sequence of N, consecutive time steps. This is what we will call from now on a

sequence (see Fig. 2.20). Sequences can be shuffled freely during optimization.

The parameter update is thus calculated for the n, sequences as

OI1(0(s), u®, y)

B +1) = (s) —n e . (2.83)
where
u® = [u(ky),u(ks +1),...,u(ks + N, — 1)], (2.84)
g(s) = ly(ks),ylks +1),...,y(ks + Ny — 1)], (2.85)

and ks = (s — 1) N, + 1 being the first time step per sequence. One epoch is over

N
~ ~
s=1 s =2 S = ng
——
Ny one sequence

Figure 2.20: Splitting of training data in n, sequences of length N,
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Figure 2.21: Splitting of training data in mini batches. N: total number of time steps
in training data, Ng: number of time steps per sequence, n,: number of
sequences, n,,: humber of sequences per mini batch, n,,,: number of
mini batches

when all s = 1, ..., n, sequences have been trained on once®. An advantage of SGD is
that it might jump to new and potentially better local optima due to the fluctuating
gradient updates.

Mini Batch Gradient Descent Now, the best from vanilla gradient descent and
SGD is taken to make a compromise between those two, called mini batch gradient
descent. In contrast to SGD, more data points are used per parameter update. This
generally leads to a reduction of variance of the parameter update direction which
can lead to more stable convergence. Highly optimized matrix computations may be

employed for computational efficiency.

Each mini batch ¢ = 1,...,n,, consists of n,, sequences, for which the model out-
put is computed simultaneously (see Fig. 2.21). The loss function is therefore not

calculated as in (2.81), but per mini batch ¢ by

100) = 3= S (k) — O (k)2 (2.56)

seM; k=1

8 Some notational remarks: note that the gradient calculations per sequence s are subroutines to
the gradient calculation per epoch i. The initial parameter vector (s = 1) = 0(i) and the last
parameter update (with the last sequence as input) yields 8(i + 1) = 8(ns + 1).
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a) fixed b) handover c) optimize
A
il l
—
|<' Ttrans k k
=0 optimize @(()S)

Figure 2.22: Different options for initial state vector @és) of each sequence s (illus-
trated for a scalar state). The initial state can either be a) chosen as
fixed (= 0), b) handed over from the last state of the preceding se-
quence, or ¢) optimized. The state of the process is shown as dashed
gray line.

where M, is a set of sequence indices for the ¢-th mini batch
Mt = {t, Nomp + t, 2nmb + t, ceey (npb - 1)nmb + t} . (287)

The sequences are obtained by partitioning the training data in sequences of
length N,. The superscript (-)*) indicates the process and model output in sequence
s. The mini batch sample size (samples summed over all sequences) is thus calculated

by Ny = Nsny,. Common mini batch sizes ny, range from 50 to 256 [109].

Initialization of States When the training data is split into multiple sequences, dif-
ferent options for the initialization of each initial state vector i(()s) arise (see Fig. 2.22).
The simplest choice is to a) fix it to a constant vector, usually 0. Sequences can be
shuffled freely and no care concerning the sequence order has to be taken during
optimization. This simple approach has the consequence that each sequence has its
own transient phase Ti,ans. This phase can be discarded for optimization (so that the
model does not fit the transient effects due to possibly unfavorable initialization),
but this means at the same time that valuable data points are lost. Alternatively, the
transient is assumed to be short and it is simply accepted that gradient calculations

are off during this initial phase.

The second choice is b) a handover of the final state vector of the preceding sequence
i(s_l)(ks,l + Ns_1 — 1) as the initial state of the current sequence @(()8) which is
sometimes referred to as cross-batch statefulness. This approach has the advantage

that initial data samples do not have to be left out from gradient calculations.® On

9 Only the sequences of the first mini batch cannot be treated in this way. Here, either option a)
or ¢) might be chosen.
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the other hand, sequences can no longer be shuffled freely, restricting the stochasticity

of the optimization.

The third choice is to ¢) optimize the initial state vector as free parameters. The ad-
vantage of this method is like for the handover that no data points are lost. However,

this comes at the cost that additional parameters need to be optimized.

Assessment of Different Gradient Update Strategies How much and in which
constellation the data is used per gradient update leads to different properties during
model training. Table 2.1 compares different gradient update strategies regarding
stochasticity, computational demand, the dimensionality of the optimization prob-
lem, and error-prone gradients due to transient effects. Since handover is never pos-
sible for the first mini batch, it is listed in combination with either fixed or optimized
initial states for the aforementioned first mini batch. Training with all data in one
batch is fully deterministic and computationally very demanding since no paralleliza-

tion is done. If the initial state is fixed, the transient has to fade only once, usually

Table 2.1: Assessment of different gradient update strategies. ++: very high,
+: high, o: neutral, —: low, ——: very low. Single sequence mini batch and
multiple sequence mini batch, see Fig. 2.20 and Fig. 2.21, respectively.
For initialization choices, see Fig. 2.22. If two initialization options are
listed, the first is for the first mini batch and the second is for all other
mini batches.

. Multiple
Single sequence
Batch .. sequence
mini batch .
mini batch

— —~

o] (<]

3 3
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z | 2 2 | &

=l = = =

o = =

~ ~
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Initial state ... = o = = o = = S
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Computational demand

for loss function evaluation
Additional dimensions
of optimization problem
Error-prone gradients

due to transient effects
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leading to robust gradient estimates. The initial states can be optimized, increasing
the dimensionality of the optimization problem. Single sequence mini batches with
fixed initial states grant a lot of stochasticity while having the same computational
demand as batch training. Since every sequence does now have a transient phase,
it is likely to possess error-prone gradients. This can be alleviated by introducing
the state handover, which reduces this error while also decreasing stochasticity. The
computational demand can be reduced most effectively through multiple sequences
per mini batch. When the state is transferred between mini batches, the gradients
are less error-prone. This goes again hand in hand with reduced stochasticity. If the
initial states of all sequences in the first mini batch are optimized, the dimensionality
of the optimization problem increases, making optimization computationally more

demanding.

2.3.5 Reflection on Nonlinear Optimization

The choices for nonlinear optimization methods are plentiful. Depending on the
problem type, available data, and the number of parameters, different strategies are
more favorable than others. A clear statement which algorithm is best in which case
is not possible. Discovering the optimal choices that need to be made is tedious
and time-consuming and more often reflect personal preferences than objective ar-
guments. It is even argued that local nonlinear optimization methods are more art

than technology [9)].

2.4 Model Complexity

How can it be assured that the estimated model does not only describe the training
data well but also generalizes well (that is, it performs well on unseen test data)? One
can tackle this problem in two ways. Either, on the level of model structure. Then
the process of selecting a model that performs best on test data is called complezity
selection [83]. Or, one can tackle the problem on the level of model parameters.
Reducing the complexity of a model by influencing the optimizable parameters is
called regularization. The notion of sensible model complexity is motivated by the

bias/variance tradeoff, which is explained in the following,.
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2.4.1 Bias/Variance Tradeoff

Let us consider a process with additive noise at the process output as
y(u) = yu(u) +n, (2.88)

where y, (1) is the undisturbed process and n denotes i.i.d. noise with mean zero and
variance o2. A model §(u) is trained to fit the process. For assessment of model
quality, the expectation of the squared error may be considered in a probabilistic

framework, which yields

E(e*) = E((y —9)*) = E((y. — 9)*) + 0*. (2.89)

Note that the cross-terms E((y, — 9)n) vanish because the noise is uncorrelated with
the process and model outputs. The dependency on the process input is left out for
readability. The first term describes the difference between true (but not measurable)
process output y, and model output ¢, while the second term is the noise variance.
The first term shall be further analyzed because it depends on the model, while the

second term, the noise variance, is inherent to the data and therefore not reducible.

Decomposing the first term yields [89, 68]

E((ya —9)%) = (yu — E@))* +E((§ — E(@))*) - (2.90)

bias? variance

One can see that the model error consists of two parts: a bias term and a variance
term. The bias term describes the discrepancy between the true (but unknown)
process and the best model available in the (possibly too simple) model class. The
variance error measures the distance between actually estimated model and the best
available model of the model class. It is a measure for the uncertainty associated
with parameter estimation [70]. Figure 2.23 illustrates the tradeoff that needs to be
made between bias and variance. For models with low complexity, the variance error
is low, while the bias error is high. With increasing complexity, the bias decreases
and the variance increases. The optimal model is found when the sum of bias and

variance error is minimal.
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error

variance

Complexitgf

Figure 2.23: Schematic illustration of the bias/variance tradeoff. The bias error de-
creases with increasing model complexity, but the variance error in-
creases.

2.4.2 Model Complexity Selection

For model complexity selection, three common strategies are introduced.

Train/Test Split A quite simple approach to ensure generalization and find a good
bias/variance tradeoff is to divide the dataset into training, validation, and test
datasets. The model parameters are fit on training data, model selection is performed
on validation data, while the final model quality is assessed on the held back test
dataset. This method is appealing due to its simplicity but comes at the cost that

not all data points can be used for model training.

Cross-validation An alternative is to split the dataset into S parts (also called
folds) and use S — 1 parts for training and one part for validation. This procedure
can be carried out with S different combinations of data folds. In this way, all
available data is employed and by adding all validation errors, a reliable estimate
for the performance on test data is found [89]. This method is called S-fold cross-
validation. If the number of folds is chosen equal to the number of samples N, then
the procedure is called leave-one-out cross-validation. Of course, now the training

procedure has to be carried out /N times.

Cross-validation techniques are feasible when model training is computationally not
too demanding. As parameters are usually optimized nonlinearly in this work, which

is computationally very demanding, cross-validation techniques are not employed.
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Information Criteria A third alternative for complexity selection is by means of
information criteria. Here, a complexity penalty on the training loss is introduced,
which gets larger with an increasing number of parameters. These information crite-
ria are derived from different statistical assumptions. Among the most popular are
the corrected Akaike information criterion (AIC.) and corrected Bayesian informa-
tion criterion (BIC,) [15].

2.4.3 Regularization

Regularization techniques reduce model complexity without changing the nominal
number of parameters. Therefore, the model might be less flexible than it appears
by considering the number of parameters alone [89]. Two common regularization

techniques are explained in the following.

Penalty Terms One way model parameters are regularized is through additional
penalty terms in the loss function. Those terms might penalize the non-smoothness of
the learned function. A common choice here is ridge regression [50], which penalizes

the magnitude of each individual parameter by extending the loss function to

16,0 = S (00) 5000 + 1367 (2.91)

The penalty term pushes parameters towards zero, reducing the effective number
of model parameters. The strength of the penalization is controlled by the hyper-
parameter A. In terms of Fig. 2.23, model complexity is reduced, decreasing the

variance error but increasing the bias error.

Early Stopping Early stopping can be applied in any iterative optimization scheme.
The parameters are not trained until convergence. Instead, the error on validation
data is monitored during training, and training is stopped when the validation error
reaches its minimum. At this point, the best bias/variance tradeoff is found. Typical
convergence curves are shown in Fig. 2.24. When the validation error is still decreas-
ing, the model is underfitting. When the validation error rises again, the model is
overfitting the training data. The intuition behind this is that the most important
parameters (with high sensitivity of the loss) converge faster than unimportant pa-

rameters. Therefore, at the best bias/variance tradeoff point, important parameters



52 2.4 Model Complexity
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Figure 2.24: Early stopping monitors the validation error during training. When the
validation error does not decrease further, training is stopped.

have converged or are close to convergence, while unimportant parameters remain

close to their initial value [89].
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3 Local Model State Space Network

Parts of the chapter have been published in [124, 125, 126].

In this chapter, the proposed local model state space network (LMSSN) is explained
in detail. Let us consider a single-input single-output (SISO)! deterministic nonlinear

time-discrete state space model
(3.1)

with the state vector Z(k) € R™, the input u(k) € R, the model output §(k) € R, the
state equation A(-) : R™T! — R™ and the output equation g(-) : R"™*1 — R at the
discrete time step k (see Fig. 3.1). There are, in general, many different approaches
for the parametrization and estimation of A(-) and g(-). As local model networks
(LMNs) have been proven to be an effective architecture for nonlinear function ap-
proximation, it seems reasonable to expect high performance also in the state space
context. Therefore, we will consider LMNs for state and output equation in different

configurations and study this novel approach’s characteristics and implications on

1 Note that we will consider SISO systems for ease of understanding and notation. The extension of
the LMSSN to the multiple-input multiple-output (MIMO) case is straightforward. Derivations
of transformations and gradient calculations are shown in full generality for the MIMO case in
the appendices.

u(k) Z(k+1)
———>f| () |[f—{g! | 9() |—>

?

Figure 3.1: SISO nonlinear state space model. Normal weight arrows indicate scalar
signal flows, while boldface arrows indicate vector signal flows.
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model training. The arising model structure, as well as the associated identification

algorithm, is called LMSSN.

The LMSSN is attractive for the following reasons:

o As a starting point for optimization, a linear state space model is employed.
This ensures that the worst nonlinear model is at least as good as the best
linear model (see Sect. 2.1.2.2).

o The LMSSN makes use of the advantages that come from the state space
dynamics realization in contrast to input-output dynamics realizations (see
Sect. 2.1.3).

o Imposing certain restrictions, the LMSSN resembles other model structures,
like a piecewise affine (PWA) state space model or block-oriented structures
like the Wiener or Hammerstein model (see Sect. 3.5).

e The order of the model is the only hyperparameter that has to be specified by
the user in a black-box setting. Further refinements can be made but are not
necessary.

« Each state variable might exhibit different dynamic behavior. The LMSSN can
model a unique state transition map for each state variable instead of oversim-
plifying to a linear model or choosing the complexity too high by describing
all state variables nonlinearly (example in Sect. 5.3).

o Prior knowledge can be incorporated in the LMSSN structure (example in

Sect. 5.3).

The structure of this chapter can be seen in Fig. 3.2. First, the model structure and
construction algorithms will be explained, followed by some pivotal steps during the
identification of an LMSSN model. Next, some characteristics and relations to other
model structures will be investigated. Numerical and computational aspects will be

examined at the end of the chapter.

3.1 Model Structure

The LMSSN model can be viewed from two different perspectives. On the one hand,
a perspective which we will call the neural network perspective. This perspective
interprets all mappings as a weighted superposition of local affine models. On the

other hand, one can interpret the LMSSN as a time-variant affine state space model
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Figure 3.2: Structure of this chapter

with a distinct scheduling vector @(k). We call this perspective the system identifi-
cation perspective. Depending on the analysis, the former or the latter perspective

will be taken.

3.1.1 Neural Network Perspective

The output §(k) of an LMN (detached from the context of state space models) is

calculated by
Validity Function

Nom N
N ~ ~ nl
g(k) = >_ L; (a(k).0;) 2; (a(k).6;") . (3.2)
J=1
Local Model
The difference to the previously introduced static LMN in Sect. 2.2.3 is that now the
LMN is applied to a dynamic setting, hence the dependence on the time step k. Here,
N is the number of local models (LMs). The LM L; depends on an extended input
vector (k) and the parameters of the LM Qj. The extended or inner input vector
4(k) is the input vector to the LMNs. In the context of state space models, this will

always be @(k) = [2" (k) u(k)]”. The extended or inner input vector is introduced to

distinguish it from the dynamic model input and process input u(k). In principle,
any local model structure can be chosen for L;, but only local linear models (LLMs)
are considered, for the given reasons from Sect. 2.2.3. The validity function &;
depends on the extended input vector @(k) and a set of nonlinear parameters QB””
(see Sect. 2.2.2). To shorten the notation in all further elaborations, we write L;(k)

and @;(k) instead of L;(a(k),8;) and @j(g(k;),ﬁg-nl]), respectively.
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For the incorporation of LMNs in the state and output equation of the nonlinear
state space model, a multitude of options arises, which make use of different com-
binations of (i) banks of multiple-input single-output (MISO) LMNs, (ii) MIMO
LMNs, and (iii) affine functions. All three options can, in principle, be employed in
state and output equations of a MIMO LMSSN. Since affine functions are not sensi-
ble in the state equation (the model would have affine instead of nonlinear dynamic
behavior) and a MIMO LMN is not sensible in the output equation (we will only
consider the single-output case), four main LMSSN setups arise which are shown in
Fig. 3.3 (a)-(d). Those four setups give a general idea and further extensions are
easier to grasp. In the end, options, where only part of the state vector is combined
in one LMN and other state variables are set as separate LMNs, are possible. We
will start with the most general structure (a) and, by restricting certain properties

of the LMNs, obtain the models (b)-(d).

State Equation In the state equation A(:), the updated state vector can be calcu-
lated by a bank of MISO LMNs (see Fig. 3.4). In this case, there exist n, LMNs,
therefore one LMN per state variable (one entry of the state vector). The i-th state

variable is calculated by

Z LEN (k)@ (k (3.3)

where the LMN is made up of n,,, LMs. The number of LMs for the state equation
sums up to n, = > n,y,,. The number of parameters in the state equation adds
up to ng = (n, +2) - n,. This approach makes it possible to define individually how
many LMs are needed for satisfactory model quality for each state variable. Those

equation structures will be used in models (a) and (b) of Fig. 3.3.

Another option is to model the state equation h(-) with a single MIMO LMN as

Zi(k+1) =3 LK) (k). (3.4)

j=1
The difference between (3.4) and (3.3) is that only one MIMO LMN is needed instead
of a bank of MISO LMNs. This means that n,,, = n,, and @ESJ](k) = égs](k) for all
state variables ¢ = 1,...,n,. The number of LMs equals n,, = n,, and the number

of parameters sums up to ng = (n, + 2) - n, - n,,. Those equation structures will be

used in models (c) and (d) of Fig. 3.3.
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Figure 3.3: LMSSN structures. Different combinations of LMNs in state and output
equation.
(a) Bank of MISO LMNs in state equation, MISO LMN in output eq.
(b) Bank of MISO LMNs in state equation, affine output equation
(¢) MIMO LMN in state equation, MISO LMN in output equation
(d) MIMO LMN in state equation, affine output equation
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Output Equation The output equation can be made up of one MISO LMN, leading

to the output equation

Gk) = 35 LMD (k) (3.5)

used in models (a) and (c) of Fig. 3.3. Or, by choosing n, = 1, which means that
@go}(k) =1forall k=1,..., N, one obtains the affine output equation

glk) = L¥ (k). (36)
used in models (b) and (d) of Fig. 3.3.

As already mentioned, it is also possible to separate the state vector into two parts
where one part is a set of state variables represented by a MIMO LMN and another
part is set by individual MISO LMNs. This choice grants the possibility to adjust

the model flexibility precisely to the user’s needs.

Decomposing the Network Structure We want to decompose the most general
type of LMSSN as is depicted in Fig. 3.3 (a). The state vector Z(k) and the dynamic

input u(k) are together the inner input vector a(k) = [2(k)T

u(k)]¥. This inner input
vector can be thought of as operating point variable [68] or scheduling variable [139].
It is the input to a set of n, LMNs (see Fig. 3.4). The updated state vector Z(k+1),
which consists of the state variables 2(k+1) = [21(k+1), Z2(k+1), ..., 2o, (k+1)]7,
is delayed by the time-shift operator ¢~! one time step to obtain 2(k). After that,
the state vector is, on the one hand, internally fed back to the input and, on the
other hand, used in the output equation. In the latter case, this means that (k) is
multiplied by the parameters ¢’ and added to the input weighted with d and added

to the offset p to finally obtain the output (k).

Next, the inside of LMNES] (yellow box in Fig. 3.4) is examined. The structure of
LMN! can be seen in Fig. 3.5. Here, the inner input u(k) enters n,,, different
weighted local models (WLMs). Each? WLMF; returns a LLM LESJ] multiplied by
a validity function @ESJ], which are then summed up to obtain the state variable
Zi(k+1).

The inside of a WLMESJ] (blue box) of Fig. 3.5 is shown in Fig. 3.6. Here, the inner
[s]

input @(k) enters a validity function and a respective LLM (in this case, LLM;;

2 Note that thin arrows indicate scalar quantities and bold arrows vectorial quantities.
3 Indices i, j are used if the j-th WLM is considered within the i-th LMN.
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Figure 3.4: LMSSN with MISO state and output equation. Each state variable is
modeled by a separate LMN.
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Figure 3.7: Block diagram of LLMEJ

returning L?j) The product LESJ]QDES; is the output of the j-th WLM of the i-th
LMN.

The inside of a LLMESJ] (green box in Fig. 3.6) is illustrated in Fig. 3.7. The following
quantities are added up within the local models: the offset parameter o; ;, the input

weighted by b; ;, and the state vector weighted by sz.

The LMSSN is therefore represented by the following state* and output equation

nmi

Bk +1) =) [0i + al 2 (k) + by ju(k)| )% (k) (3.7)
(k) = i_j [P + chi(k) + dyu(k)| BL)(K) . (3.8)

The parameters of the state equation LLMs are gathered in 0¥ which includes all
0i, bij, and ggj. The parameters of the output equation LLM will be gathered in
0°) which includes py,, d,,, and ¢!’ All optimizable parameters are stacked into the
overall parameter vector § = [Q[S}T, Q[O}T]T.

The state equation of a first-order LMSSN with three LLMs is shown in Fig. 3.8.
Note that the colors for LLMs, WLMs, and LMN are chosen the same way as for

the block diagrams from Fig. 3.4 - Fig. 3.7.

3.1.2 System Identification Perspective

The other perspective that can be taken on the LMSSN is from the side of system

identification. In this view, the LMSSN is perceived as a time-varying affine state

4 In (3.7) only the i-th state variable of all n, state variables is shown for better readability.
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Figure 3.8: Neural network perspective on state equation of a first-order LMSSN
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way as the block diagrams from Fig. 3.4 - Fig. 3.7.
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Figure 3.9: System identification perspective on LMSSN. It can be seen as a
parameter-varying affine state space model. FEach parameter depends
on the validity functions as scheduling variables.

space model as

2(k +1) = o(@¥ () + A@ (k)2 () + b(@" (k))u(k) (3.9)

G(k) = p(@°1(k)) + (@) (k))& (k) + d(@)())u(k), '
with the validity functions @1*/°/(k) as a scheduling variable (see Fig. 3.9). Only the
parameters of the model

o(@"(k))  A@(k))  b(@" (k)

@(@[S/O](k?)): p(Q[O](k?)) QT(Q[O]Ug)) d(@[o}(/ﬁ))

(3.10)

vary over time. The way ®1*/°(k) is chosen makes the LMSSN a new approach (see
Sect. 3.4).
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Decomposing the Parameter-varying Structure Let us consider the parameter
matrix ©(/?(k)) (from now on denoted as ©(k) for brevity) after model training
and how it is composed of different local model parameters by looking at an LMSSN

with n, = 3 state variables.

We will start with the parameter matrix ©(k) of a SISO LMSSN where each state and
output equation is modeled by a MISO LMN (model architecture from Fig. 3.3 a)).
The first LMN has two LLMs (n,,, = 2), the second LMN has three LLMs (n,,, = 3),
the third LMN has one LLM (n,,, = 1), and the output equation that is modeled by
the fourth LMN has two LLMs (n, = 2). An illustration of the time-varying ©(k)
can be seen in Fig. 3.10. At each time step, the matrix is built according to the
current values of the validity functions and their corresponding parameter values of
the LLMs. Every entry in ©(k) is a weighted sum of the corresponding parameters
from the different local models. Take, for example, parameter a; 5(k). It is calculated

as
a12(k) = a1,2,1<p[1ﬁ}1(/€) + 01,2,2@[1&:}2(@ 5 (3.11)

where the partition of unity states
& (k) + o (k) = 1. (3.12)

The same goes for the calculations of all other parameters of O(k), with the differ-
ence that the number of LLMs may vary, depending on the state or output equation
that the parameter lies in (depending on the row of the matrix). The feature that
nonlinearities can be learned separately for each state variable (with individual par-
titionings of the inner input space [ (k), u(k)]”) is unique to LMSSN and has, to
the author’s knowledge, not been done in any other system identification method

before.

Next, we want to consider the model architecture d) from Fig. 3.3. Again, a SISO
LMSSN with three state variables is considered, but this time all three state variables
are modeled with a single MIMO LMN and the output equation is an affine function.

The parameter matrix ©(k) can be seen in Fig. 3.11.

Lastly, an LMSSN with two inputs and one output (n, = 2 and n, = 1) is demon-
strated in Fig. 3.12. This setup has been chosen to demonstrate the LMSSN’s flex-
ibility regarding the arrangement of LMNs (which is here a combination of setup
a) and c¢) of Fig. 3.3 for the state equation) and the straightforward extension to
multiple dynamical inputs. State variables (k) and Z2(k) are together modeled by
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Figure 3.10:

local model
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(k) [

Composition of time-varying matrix ©(k) for model architecture a) from
Fig. 3.3. The three upper matrices are multiplied by the validity func-
tions to the right (all entries in one row are multiplied element-wise
with the validity function in the same row denoted by the Hadamard
product ®) and then added up to form ©(k) (matrix at the bottom).
Per matrix, all parameters in one row belong to the same state or out-
put equation and parameters in the same column belong to the same
inner input dimension. The third dimension indicates to which LLM
the parameter belongs.
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Figure 3.11: Composition of time-varying matrix ©(k) for model architecture d) of
Fig. 3.3. The three state equations are coupled as there is only one
validity function for all of them. There are no LLMs for the output
equation as it is an affine function.

LMN; (MIMO LMN), which has n,,, = 3 LLMs. LMN, has n,,, = 1 LLM, which
models state variable Z3(k) (MISO LMN). The output equation is also a MISO LMN
with n, = 2 LLMs. Note that the difference between a multiple-input and a single-
input LMSSN is the existence of the last column in ©(k), which corresponds to the
parameters for the second dynamical input. Likewise, the extension from the single-
output LMSSN to the multiple-output case would only require the expansion of © (k)

by one additional row.
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Figure 3.12: Composition of time-varying matrix ©(k) for a MISO LMSSN with a
mix of MIMO and MISO LMNs.

3.2 Construction Algorithms

In the previous section, we analyzed the LMSSN model structure without any in-
sight into how this structure comes about. One surely could simply guess or make a
physics-informed structure assumption and then learn the parameters of this model
structure. A more sophisticated and general strategy that we want to employ here
is the use of tree-construction algorithms, which estimate the structure in an incre-

mental manner purely from data.

3.2.1 Local Linear Model Tree

The local linear model tree (LOLIMOT) [90] is a tree-construction algorithm that
partitions the input space (in our case (k) = [ (k), u(k)]”) by axis-orthogonal

splits. Each resulting region of the input space is then modeled by a unique LM. The
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splits are performed by heuristic placement of the centers and standard deviations of
local radial basis functions (RBFs) (see Sect. 2.2.2) as they serve in their normalized
form as validity functions for the LMs. Each iteration, the input space of the LMN
is split once and one further LM is added, increasing the capability of the network

to capture nonlinearities.

Before the start of the tree construction, the input space is normalized to an operating
regime between 0 and 1 for all dimensions of the input space. For the whole tree-
construction algorithm to work, only one ’fiddle’ parameter has to be specified a
priori by the user. That is the proportionality factor between the operating regime
width and the standard deviation of the RBFs. The default value is chosen as

ke =04, (3.13)
as is recommended in [89]. The standard deviation is thus calculated as

Q:kaé

J j

(3.14)

where A; = [Aj1, Ajo, ..., Ajn.+1y]" includes the widths of the region of validity

of LM 7 in all input dimensions [ = 1,...,(n, + 1). In the LOLIMOT case, the

nonlinear parameters of the validity function in (3.2) are thus the centers p; and

o . . [nd] T
standard deviations o; of the RBF belonging to the j-th LM 6;" = [H;F, gﬂ )

The LOLIMOT algorithm adapted to construct the LMSSN model can be summa-

rized as follows:

1. Start with an initial model: Initialize the LMSSN with the best linear approx-
imation (BLA) [78] (see Sect. 2.1.2.2). Set n,,, for alli =1,...,n, (for MISO
state equations) or n,, (for MIMO state equations) to 1 and for the MISO
output equation n, = 1. This means that one LM is initialized for each state

and output equation.

2. Affine transformation of the state space: Scale the state trajectory into the
unit hypercube (see Sect. 3.3.3) which is necessary to properly place splits in
the inner input space in Step 4. The affine transformation leads to a global

affine model.

3. Find the worst LM (or LMs) over all state and output equations: Calculate a
local loss function for each LM in each LMN. For the MISO output equation,
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the local loss function can be computed by weighting the squared errors with

the validity of the corresponding LM according to

bl = i (k)DL (k) . (3.15)

For the state equation LMs, the error needs to be back-propagated, which is
achieved by weighting with the absolute values of the parameters ¢;,,. This

leads to the loss function
N n
1M =3 (k) (k) S B (k) |esml (3.16)

for the MISO output equation and simplifies to weighting with |¢;| in case of
the affine output equation. Now, the worst-performing LM can be determined
by considering the LM with the highest loss function value. It can be chosen
as (i) over all LMNs only one LM is selected, or (ii) for each LMN the worst
LM is selected. When enough computational power is available, also (iii) the

n worst LMs may be selected.

. Check all splits: The selected LMs from Step 3 are split by axis-orthogonal
splits. Divisions in all dimensions are compared. For all n, + 1 dimensions,

the following steps are carried out:

a) Determination of center coordinates and standard deviations for both

newly established (hyper)rectangles
b) Construction of all validity functions
c¢) Nonlinear optimization of all model parameters

d) Affine transformation of the state space (see Sect. 3.3.3)

. Find best split: The best (the one with the lowest normalized root mean squared
error (NRMSE) (5.2) on training data) of the split models from Step 4 becomes
the refined model.

. Test for convergence: The algorithm terminates if the model error of the cur-
rent split is worse than the error of the penultimate split on validation data.
Alternatively, a certain number of splits or the corrected Akaike information
criterion (AIC.) may be used as termination criteria. If the criterion is not

met, the algorithm starts over at Step 3.
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Figure 3.13 illustrates the algorithm’s operation for n, = 1 in the first five iterations
for one MISO state equation and an affine output equation. In this case, only one
LMN is constructed in the input space [ty te] = [Zu]. In the first iteration, the
global model is estimated. The input space is then divided by an axis-orthogonal
split, leading to two different split options. For both models, the parameters are
estimated. The better-performing model is selected for further splitting. The model
with the highest local error value is selected to be split further. This procedure is

continued until the desired model complexity is reached.

3.2.2 Hierarchical Local Model Tree

The hierarchical local model tree (HILOMOT) algorithm [88, 89] works in princi-
ple quite similar to LOLIMOT. Instead of ensuring the partition of unity by nor-
malization of RBFs, a hierarchical structure of sigmoid functions is employed (see

Sect. 2.2.2). The differences occurs in Step 4 of the identification procedure:
1. - 3. Equivalent to LOLIMOT

4. Check all splits: The selected LMs are split by an axis-oblique split. The splits
are initialized with n, + 1 different axis-orthogonal splits and with the oblique

split direction of the parent model (one hierarchy level up):

a) Determination of center coordinates of the parent local model by calcu-
lating the center of gravity of all data points weighted in their respective

region of validity as

N
o=

k=1

[

o)
S ) 817

b) Construction of all validity functions. The split is initialized so that it
passes through the center of gravity 1 and is either orthogonal to the

split dimension or in the same oblique direction as the parent model.

¢) Nonlinear optimization of all model parameters, i.e., © and the split di-

rection and position.

d) Affine transformation of the state space (see Sect. 3.3.3).

5. - 6. Equivalent to LOLIMOT
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Figure 3.13: Demonstration of the LOLIMOT algorithm (see also [89]). In each

iteration, the worst local model of the best performing model (yellow
boxes) are split by axis-orthogonal splits. The final model is obtained
when a termination criterion is reached.
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How the hierarchy is built can be seen in Fig. 3.14. Here, one LMN is shown, which
could also be the MISO LMN for the state equation of a first-order state space model
with [ty @e] = [Zu]. In the first iteration, the hierarchy is initialized with a single
validity function, which is valid in the whole input space. Since there is only one
LM, this is to be split. Splits are initialized with axis-orthogonal splits through the
center of gravity (3.17). After optimization of the parameters, the worst-performing
LM is again split. This time, splits are initialized with axis-orthogonal splits through
the center of gravity and the same split direction as of the parent node. For more

details on the validity function construction, compare to Fig. 2.17.

3.3 Pivotal Steps in LMSSN Identification

Applying tree-construction algorithms to nonlinear state space models seems straight-
forward, but care has to be taken at some pivotal points during identification. There-
fore, the model initialization, optimization, and transformation of the state space

shall be explained in more detail.

3.3.1 Model Initialization

For every nonlinear optimization problem, one needs good initial parameters if local
search methods shall be employed. In the case of nonlinear system identification, it

seems sensible to start with a linear dynamic model for the following reasons [129]:

o the performance is as least as good as the linear model, which is further im-
proved by nonlinear components (valid for nonlinear models which add non-

linear components on top of the linear model)

« problems of local optima are likely to be smaller when good initial linear esti-
mates are available

o one starts with a stable model, which would be troublesome to archive for

random initialization.

Therefore, we will use the BLA (see Sect. 2.1.2.2) as the starting point for the
LMSSN. It has been proven in different works that the BLA is a viable initialization

choice for nonlinear system identification [118, 64, 117].
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Figure 3.14: Demonstration of the HILOMOT algorithm (adapted from [47]). In
each iteration, the worst local model of the best performing model (yel-
low boxes) are split. Splits are initialized with axis-orthogonal splits
through the local model’s center and with the parent node’s split di-
rection. The final model is obtained when a termination criterion is
reached.
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3.3.2 Optimization

The local model parameters of the state equation 0" and the parameters of the out-
put equation ol are optimized after each split. If normalized radial basis functions
(NRBFs) are used and only axis-orthogonal splits are allowed, the parameters of the
validity functions (center coordinates and standard deviations) do not need to be op-
timized as they are independently set by the LOLIMOT algorithm. For HILOMOT,
when axis-oblique partitioning is wanted, besides the local model parameters, the
split parameters v; from (2.52) of all sigmoid functions (stored in V) are optimized
as well. Since usually for nonlinear black-box system identification no knowledge of
the physical interpretation of the state vector is available, also no physics-informed
initial values for the state vector z, are available. Since all signals are scaled before
identification in the interval 0 to 1, a reasonable choice for the initial state vector
is 2, = 0.5 - 1"=*! This choice nevertheless leads to a transient phase, yielding low
accuracy for the first time steps during optimization. This problem can be either
overcome by neglecting or ignoring (weighting with 0) the transient phase during
optimization® or by optimizing the initial state vector just like all other parameters

(as was already explained in Sect. 2.3.4).

All optimizable parameters are finally concatenated in the vector
0 = [0 gll" VT 1T (3.18)

The analytical gradients with respect to all parameters of § can be found in Appx. B.3.

As default, the sum-of-squared-errors loss function

1) =3 (k.6) (3.19)

k=1
is used. However, note that the generalization to other than Gaussian noise assump-
tions is easy and straightforward. The most prominent and important choice is to
pursue robust statistics by replacing e?(k, §) with |e(k,8)| in (3.19). This gives the
LMSSN a flexibility advantage over least squares based methods because various

error norms are possible.

5 which might not be a problem for large datasets, but can be quite restricting, if data collection
is expensive and not much data is generally available
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Restricting Behavior in Certain Dimensions Different properties can be restricted
within the tree construction in each LMN if additional knowledge about the process
is available. Let the input space for the construction of the validity functions be
denoted by z and the input space to the local models as s. Both z and s are subsets
of the inner input &. This decomposition is well-known for local linear neuro-fuzzy
models, where the z input space is called the rule premise input space and s the rule

consequents input space [89], leading to the LMN equation

n

3

Li(s),(2). (3.20)

1

<>
Il
.
Il

Choosing different subsets of the inner input @ for s and z leads to different model
characteristics, as is depicted for a two-dimensional example in Fig. 3.15. Input
dimension 4, is for all cases a)-d) set to be splittable (included in z) and local model
weights in dimension @, can have different slopes (included in s). The differences of
sub-figures a) - d) and their title names are all regarding dimension @s. In a), uy is
not to be split and parameters are set to be 0 regarding this dimension leading to
constant behavior in @y. In b), s is included in s so that all local model parameters
regarding s are equivalent. The way 45 is included in s and z is equivalent in c),
but local models are not forced to have the same slope in @y. For any fixed value for
U1, the behavior is linear, but with different slopes for different operating points in
1. This behavior can be compared to the behavior of a bilinear or linear parameter
varying (LPV) function, where the scheduling is done in dimension @;. The fully
nonlinear case is shown in d). Here, @y is included in both s and z. A case that is
not shown here but could also be constructed is a switching system. In this case,
i, would be included in z but not in s. Dimension 4, would then solely be used for

scheduling.

Imposing this kind of structure on different parts of the LMSSN can lead to other
well-known model structures such as block-oriented models. Some connections are
drawn in Sect. 3.5.2.

Dealing with the Non-uniqueness of Nonlinear State Space Models Due to the
similarity transformation (see Sect. 2.1.2.3), the nonlinear state space model has no
unique representation. The transformation of the state as 2(k) = T~ '2(k) leaves the
input-output behavior unaffected for infinitely many 7. The n? elements of T can be
chosen freely under the condition that T is non-singular [96]. This leads to the prob-

lem for gradient-based optimization that n? redundant parameters are optimized,
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Figure 3.15: Different options to restrict the behavior of an LMN along certain di-
mensions. In the example, it is allowed to split in dimension #; and
parameters in this dimension can vary from LM to LM (nonlinear be-
havior). The behavior for uy varies from a)-d) in the following way:
a) constant and no split permissible, b) linear and no splits permissible,
¢) quasi-linear (local models do not share same weight for %y, but global
behavior is still linear) and no splits permissible, d) nonlinear and splits
permissible.
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leading to infinitely many solutions with identical input-output behavior.

One way to cope with this problem is by choosing canonical parameterizations (or
their nonlinear counterparts). Unfortunately, it has been shown that those forms

may lead to numerically ill-conditioned estimation problems [79].

Another way to deal with the non-uniqueness is by the use of data-driven local
coordinates (DDLC) [79, 139]. The idea is to perform the optimization in a subspace
of the original parameter space, in which all redundancies disappear. This is done
by finding the class of all equivalent state space realizations and then constructing
the space, which is locally orthogonal to the tangent space of all equivalent state
space models. An illustration of how the method works on a linear first-order state
space model in principle is shown in Fig. 3.16. The method boils down to finding
a projection matrix P € Rnox(me—n3) quch that the Jacobian of the loss function is
calculated by

JDDLC@) = J(Q)B, (3-21)

with n2 columns less than the original J(6) and full rank [96].

A third alternative to deal with the non-uniqueness is the use of a truncated singular

value decomposition (SVD), for which it has been shown that it is equivalent to the

10

-10.
-10

0
10 10 0 10

a b

Figure 3.16: Construction of data-driven local coordinates of a linear first-order state
space model with (a,b, ¢, d) = (0.9,1.4, 71, 0), indicated by the red dot.
The blue lines show equivalent state space models by similarity trans-
formation for different values of T (which is a scalar for a first-order
system). The yellow line is the linearization of all equivalent state space
models at the point (a, b, ¢, d). The green plane is orthogonal to the lin-
earization of the equivalent state space models, which is the subspace

in which optimization shall be done (adapted from [152]).
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method of DDLC [145]. The advantage of the DDLC, though, is less computational
effort due to the ni fewer columns of the Jacobian. The derivation of P is for non-
linear state space approaches quite involved [96], which is why the third alternative
will be employed for the LMSSN. How the truncated SVD is implemented within
the Levenberg-Marquardt algorithm is explained in Appx. A.4.

Case Study: Effectiveness of Truncated SVD and DDLC The effectiveness of the trun-
cated SVD (which is equivalent to the DDLC method) shall be demonstrated in two

examples. First, the second-order nonlinear difference equation

y(k) = — 0.07289 [u(k — 1) — 0.2%(k — 1)]
+0.09394 [u(k — 2) — 0.2y (k — 2)] (3.22)
+1.68364y(k — 1) — 0.70469 y(k — 2)

will be identified with an LMSSN of second order. Training and validation data each
have N = 1024 data samples with an signal-to-noise ratio (SNR) of 40 dB. The test
dataset is undisturbed. For training, validation, and testing different realizations
of an amplitude-modulated pseudo random binary signal (APRBS) are used. For
nonlinear optimization, the Levenberg-Marquardt algorithm is run with and without
SVD truncation for 100 iterations. For this small example, both algorithms converge
to the exact same solution (within a tolerance of the final parameter values equal
to 1-107'%) with the same execution time (deviation of 1.2%). Within the first
split, the truncated SVD discards between 3-5 singular values. This is consistent
with the expected redundancy of n? = 4 parameters. In a second example, for the
modeling of NO, emissions (see Sect. 5.6) the global affine model was estimated
with and without SVD truncation of a second-order LMSSN. The training data has
N = 20700 data points. After running the Levenberg-Marquardt algorithm for
100 iterations, both global affine models produce approximately the same training
error (difference below 0.1 %), but the algorithm with the truncated SVD converged
13 % faster. The truncated SVD discarded 3-5 singular values, as is expected for a

second-order model (n? = 4 redundant parameters).

These two examples (and other carried out studies) indicate that a speed-up can be
expected from truncation, but a significant performance improvement might not be
observable in practice. An additional speed-up may be achieved by focusing on more
efficient implementations, which have not been elaborated on in this work. It can also

be expected that the speed-up through truncation fades with an increasing number of
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Figure 3.17: Percentage of redundant parameters in LMSSN SISO configuration for
ng = 3, np, = 1, and n, = 1 when the number of total splits increases
(adapted from [152]).

parameters within the state space model as the share of redundant parameters with

respect to all parameters decreases with increasing model complexity (see Fig. 3.17).

3.3.3 Transformation of State Space and Split Adaption

After each optimization step, the trajectory of the state vector changes within the
state space. This is caused by the recurrent nature of the model, which leads to
an altered distribution of data points in the state space. As the state space is part
of the inner input space @, the data point distribution in the input space changes
during optimization. Such a problem does not occur for models, where the input
space is spanned by current and previous process inputs (as for nonlinear finite im-
pulse response (NFIR) models) and possibly outputs of the process (as for nonlinear
autoregressive with exogenous input (NARX) models). Those data points do not

change their location in regressor space while changing the model’s parameters.

Exact Transformation For ease of notation for the transformation, we will use the
following notation for the SISO LMSSN

max(nm;,Mo)

k1) = Y (o + Aua(k) + byu(k)) 8@ k), u(k))
max(]n::i,no) (323)
gy = > (pj+clalk) + djulk)) DY (2(k), ulk)) .

Jj=1
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The parameters Qj,Aj,bj,pj,Q]T,dj stand for one “slice” in the third dimension of
Fig. 3.10 as

A b,
;= E I (3.24)
pj Qj dj

The first “slice” ©; is fully populated since we always start with an affine approx-
imation. In all other “slices” (j = 2,...,max(n,,,,)), some rows may contain
parameters, while others do not (entries set to 0), depending on the way each indi-
vidual state or output equation is split (e.g., Fig. 3.10 where for j = 2 the third row
has no entries and for j = 3 entries are missing in all rows except for the second).
Note that max(n,,, ,,) is used for ease of notation without loss of generality as not
all rows of each ©; may contain parameters. This makes all combinations of MIMO

and MISO LMNs and affine functions possible in state and output equation.

The state trajectory is transformed initially and after each optimization so that it
fits exactly in the unit hypercube [0, 1]"* (see Fig. 3.18). To accomplish this, for each

state variable Z;, an offset s¢ and range parameter s} is calculated according to
s7 = mkin z;(k) (3.25)

s; = max zi(k) — min zi(k) . (3.26)

Note that the minimum and the maximum within each state variable are found over

the evolution of the state trajectory and thus over the discrete time k.

Now, the transformed state vector Z(k) can be calculated by

E(k) =T "(&(k) — 1), (3.27)
59 S5
1 1
= . transt. © L]
& S1 mp S
0 0 >
0 0 Z(k) 1

Figure 3.18: Transformation of state trajectory and split position for a two-
dimensional example. The evolving state trajectory is transformed so
that it fits inside the square [0, 1]* without changing the input-output
behavior of the model.
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where
st 0 0 59
0 s 59
T=| _ S land t=| 7. (3.28)
0 Sna S

Using the relation (3.27) to transform (3.23) leads to

max(nmi Mo)

Bh+1)= > (o + AE(k) +byu(k)) & (T (k) + ¢, u(k))
max(]:l. no) (329)
gy = X (B + k) + dyu(h) 27 (TE(K) + L u(k) .
j=1
with the transformed scalars, vectors, and matrices
éj = Iile + I’ldjlt —1
A = I_IA]‘I
b == I_lbj
. (3.30)

pj=pi+¢Tt
& =cT
Czj = 4

The transformations of the validity functions (and thus the split location), initial
condition, and transformation of a MISO LMSSN can be found in Appx. B.2.

It shall be noted that the transformed model (3.29) yields exactly the same input-
output behavior as (3.23).

Alternative Approaches for State Trajectory Scaling In principle, other ways
to ensure that the state trajectory resides in [0,1]"* are possible. Either, (i) the
unconstrained parameter optimization problem can be extended to a constrained
optimization problem where violations of the element-wise condition 0 < Z(k) < 1
are penalized, e.g., by means of barrier functions. Alternatively, (ii) the state equa-

tion from (3.1) can be extended by a sigmoid function (applied element-wise) as

) 1
2k +1) = TG aam ) (3:31)
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Figure 3.19: Sigmoid transformation. Parameter m adjusts the slope of the sigmoid
and thus its sensitivity. The state trajectory should stay in the unit
(hyper-)cube ().

This sigmoid is centered around 0.5 - 1 and the slope can be adjusted by parameter

m, see Fig. 3.19.

Both alternative approaches make the optimization problem a lot harder to solve. In
(i), this is the case through the introduction of constraints. In contrast, introducing
a sigmoid nonlinearity in (ii) would only properly work for an autonomous system
(u(k) = 0) as the influence of the process input moves the state vector into the sat-
uration of the sigmoid and thus the vanishing gradient problem becomes dominant.
Therefore, the exact affine transformation is preferred and employed throughout this

thesis.

Transformation Embedded in Tree-Construction Algorithm How the optimiza-
tion, transformation, and split in each iteration work is shown in Fig. 3.20 for the
axis-orthogonal case®. The state space of different stages during the operation of the

LMSSN algorithm is shown for a model with two states.

First Optimization When optimizing the initial model, the global affine model is
estimated with the optimized parameters éll, shown in the upper left of the figure.
It can be seen that the trajectory of the state vector does not exclusively lie within
the unit hypercube. Therefore, the model extrapolates in those regions where the

trajectory leaves the square.

First Transformation In the first transformation, the state vector is adjusted so that
extrapolation does not occur anymore. The parameters become 6,;. As no split has
been done yet, the validity function stays the same (which is 1 for the global model

for all data points in the input space anyway).

6 Note that an extension to the axis-oblique case is straightforward and the implementation details
can likewise be found in Appx. B.2.
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Figure 3.20: Transformation of state space and split adaption. The state trajectory
changes its path in each optimization step within the state space. To
make splitting possible, the state trajectory is rescaled after each opti-
mization into the unit hypercube, which is in the interval [0, 1] for each
state dimension.

First Split  After that, the global model is split the first time. All possible splits are
carried out and the best split is chosen. The LM that is split (called the parent LM)
inherits the optimized parameters to both new LMs (called the children LMs)

Q21 = QQQ = én . (3-32>

The children’s center coordinates are inherited from the parent for the NRBF va-
lidity functions, except for the coordinate in the split dimension. In this dimension,
the center coordinate is placed in the middle of the validity region of the newly
established children LM. The same is done with the children’s standard deviation:
Its values are inherited from the parent LM, except for the split dimension. Here,
the value is set by a user-defined proportionality factor k,. For hierarchical sigmoid
functions, the center of gravity is estimated according to (3.17) and the initial split

is axis-orthogonal to the split dimension.
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Second Optimization 'The model with two LMs is now optimized. At this point, all
possible splits of the worst LMs are tried and the nonlinear optimization is carried
out for every model. The model with the lowest NRMSE (5.2) on training data

becomes the new parent model.

Second Transformation Besides the transformation of the parameters (é22 becoming
Q22), the split’s position also needs to be transformed, leading to transformed validity
functions. This is necessary to ensure that the data points still contribute to the
same LM for which they were trained. If the LM still spans in a given dimension the
whole input space (for axis-orthogonal splitting only), validity function parameters

are not adjusted in this dimension to minimize unwanted normalization effects.

Second Split  All unsplit LMs inherit all their properties, meaning their LM param-
eters and validity function parameters. The split LM (parent) passes the parameters

and validity function parameters just like it was done in the first split.

From here on, every future iteration is carried out just like the second one until the

termination criterion is reached.

3.4 Characteristics

Some properties and characteristics of the LMSSN will be highlighted. Among those
are the universal approximator property, the extrapolation behavior, and stability

assessment.

3.4.1 Universal Approximator Property

It has been shown by [58] that the multiple affine state space model

Nm

Bk+1) =" (0 + A; 2(k) + bju(k)) &, (k)
Jnml (3.33)
> (i + ] 2(k) + dy u(k)) (k)

is a universal approximator to the nonlinear state space model (3.1). Note that the

validity function @;(k) is the same for the state and output equation. This model
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is a special case of the LMSSN when one MIMO LMN is used for state and output

equations together. This makes the LMSSN a universal approximator as well.

3.4.2 Extrapolation

Extrapolation plays a crucial role in nonlinear system identification when the avail-
able training data does not cover the whole operating regime in which the model
operates during testing. This scenario should be circumvented as far as possible,
since generally speaking, it is never a good idea to extrapolate. There is only one
exception to the rule, that is if there exists an exact match between the process and
model structure [96]. Nevertheless, one can easily think of collected data for training,
in which some crucial regions of operation were not captured. It is a serious issue if
a model shows erratic behavior only because it has never encountered this operating

region before.

In those cases in which extrapolation cannot be avoided, the question arises, which

extrapolation behavior — constant, linear, polynomial, etc. —is the most desirable in
black-box modeling (see Fig. 3.21).

In LMSSNS, affine functions approximate different partitions in the input space, lead-
ing therefore to linear extrapolation. This property seems reasonable for nonlinear
dynamic models and suggests that the LMSSN is in extrapolation “well behaved”. In
contrast, other models use other function approximation methods such as polynomi-

als (see Sect. 2.1.2.3), consequently leading to polynomial extrapolation behavior. If

F polynomial =
1 dynamic often

|

1.

| ¢ unstable
I

- v affine = dynamic
+ " often stable
=
K L { 1(
*
] | >
extrapolation interpolation extrapolation 5 ( k?)

Figure 3.21: Tllustration of different extrapolation behaviors (adapted from [89])
where the slope corresponds to the pole of the linearized system.
(+) measurements, (===) polynomials of order n = 5 and n = 20,
(==) multiple affine models, (==) constant extrapolation.
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the degree of the polynomial model exceeds a reasonably small number, the model’s
output tends to be erratic near the interpolation boundaries and tends to +oo or
—oo very quickly, often yielding unstable behavior. Extrapolation can be, therefore,

quite dangerous for polynomial models [50].

Case Study: Extrapolation The extrapolation behavior of the LMSSN (with
NRBF and hierarchical sigmoid validity functions) will be investigated on a second-
order Hammerstein test process. For the static nonlinearity, a quadratic function is
used. For the linear system, a second-order oscillatory process with gain 1, damp-
ing 0.5, and a time constant of 5sec is chosen. With a sampling time of T = 1sec,

this process is described by the following nonlinear difference equation

y(k) = 0.01867 u?*(k — 1) + 0.01746 u*(k — 2)

(3.34)
+1.7826y(k — 1) — 0.8187 y(k — 2).

Models are trained with N = 2048 data samples of an odd multisine with a maximum
frequency of 0.4 Hz, while their model complexity is determined through a validation
dataset, also with N = 2048 data points of an odd multisine signal. The mean of
the signals is chosen to be 1, and the root mean squared (rms) value of the signal is
also 1.7 The training and validation output have output noise added with an SNR
of 40dB. The LMSSN algorithm terminates if the validation error of the current
split is worse than the validation error of the previous to last split. Two LMSSN
models are trained: the first with NRBF validity functions (LOLIMOT) and another
with hierarchical sigmoid functions (HILOMOT) with the restriction that only axis-
orthogonal splits are allowed. Therefore, both LMSSN models are similar in the way

the algorithms work and only differ in the validity function construction.

In comparison, the polynomial nonlinear state space model (PNLSS) is examined
(see Sect. 2.1.2.3). The MATLAB® toolbox PNLSS v1.0 [135] is used for training of
the models. The Levenberg-Marquardt optimization is carried out for 100 iterations.
Afterward, all iterations of the optimized model are compared on validation data and
the best performing one is chosen as the final model (early stopping). The model
order is chosen according to the order of the process, while for the monomials in
the state and output equation, all different combinations with a degree up to 5 are

evaluated. In total, 256 PNLSS models were evaluated. For example, a model with

7 A mean-free training signal is not chosen to obtain a BLA that is unequal to 0, which would
happen otherwise due to the quadratic nonlinearity.
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Figure 3.22: Multisine test signal with increasing maximum amplitude (left ordinate)
and the number of unstable PNLSS models (right ordinate). For am-
plitudes greater than |3|, extrapolation occurs. Only 33 of 256 PNLSS
models stay stable until the end of the increasing test signal.

monomial degrees 2 and 3 in the state equation and no polynomial extension in the
output equation will be denoted by O(() = [2 3] and O(n) = [ ]. Note that degree

one is always included in the linear model.

The severity of extrapolation with polynomial models is shown in Fig. 3.22. The
shown test input signal is an odd multisine with a maximum frequency of 0.4 Hz with
an increasing maximum amplitude up to an rms value of 4. The regions are indicated
for which interpolation and extrapolation occurs, depending on the test signal’s
amplitude. The amplitude of the input signal is after round about 2100 data points
the first time greater than |3| and therefore operates in extrapolation. The number
of unstable PNLSS models is plotted from the right side of the figure. In total, 223
PNLSS models get unstable and only 33 were stable until the maximum amplitude
of 13. Those are almost exclusively models that did not have any polynomials in
the state equation or only second-order polynomials®. This means that, in general,
only models with a linear state equation or a state equation that exactly fits the
process stays stable. This dramatically limits the PNLSS’s usefulness for black-box

modeling, where the underlying process is unknown.

Next, the steady-state characteristic curve is analyzed. Figure 3.23 shows the com-
parison of the static behavior of the BLA and four selected PNLSS models with
respect to the true processes static curve. The BLA is inherently unable to approxi-
mate a polynomial process. If the order in the state equation is chosen correctly and
the output order is low, PNLSS is able to identify the process correctly (Fig. 3.23
far left). On the other hand, if higher order terms are chose as well, PNLSS pro-
duces only reasonable results within the interpolation boundaries and quite erratic

behavior in extrapolation.

8 One single model with third-order and fourth-order monomials in the state equation stayed stable.
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Figure 3.23: Comparison of static behavior of the (—) Hammerstein process with
(==) BLA and (==) different PNLSS models of different degrees. The
light blue area () indicates the interpolation region. The end of the
lines within the plot indicate the threshold to instability.

Both estimated LMSSN models have in total 17 LMs. The LMSSN models approxi-
mate the process well in interpolation but with increasing input amplitudes diverge
continuously in extrapolation. In Fig. 3.24, the best models with one, three, nine,
and 14 splits are shown. Numerical issues occurred for the LMSSN models with
NRBF validity functions (too small values for the RBFs), indicated by the end of
the LMSSN lines. This problem is further investigated in Sect. 3.6.1. Also, for the
NRBEF case, reactivation is present in a few cases (Fig. 3.24 upper two middle plots).
This is due to different standard deviations of the RBFs in one dimension. Both
of these problems are overcome by choosing hierarchical sigmoid validity functions,
which produce qualitatively similar results without reactivation and numerical prob-
lems at the cost of higher computation times due to the more complicated validity

function construction.

Concluding the analysis of the Hammerstein model, only the correct choice in model
complexity leads to an accurate fit of the PNLSS model. In this case, the model works
perfectly in interpolation and extrapolation. Extensive prior process knowledge is
necessary to ensure that a good model fit is possible. The LMSSN can never match
the true process in extrapolation as LMSSN extrapolates linearly, while the process

is polynomial. Moreover, it extrapolates in a robust and reliable fashion.

Extrapolation Detection In cases when it cannot be ensured that extrapolation
will not happen, it might be useful if the model is capable of at least detecting ex-
trapolation. This information can be used to activate a base model in extrapolation,

ensuring stability and enforcing a desired extrapolation behavior. Alternatively, a
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Figure 3.24: Comparison of static behavior of the (—) Hammerstein process with
(==) BLA and (==) LMSSN models with different complexity. The
upper and lower row show LMSSNs with NRBF and hierarchical sigmoid
validity functions, respectively. The light blue area () indicates the
interpolation region. The end of the lines within the plot indicate the
threshold to instability.

warning can be issued that at least it is known that the model operates in a dangerous

operating regime.

For the above described second-order Hammerstein model, the state trajectory of
the final LMSSN with hierarchical sigmoid validity functions is shown for a test
input signal with increasing amplitude in Fig. 3.25. Here, the non-uniqueness of the
state space model and the rescaling of the state trajectory (see Sect. 3.3.3) provide
the LMSSN with the feature that extrapolation can be easily detected if the state

trajectory leaves the interval [0, 1] in any state dimension.

3.4.3 Stability

Unlike linear models, for nonlinear models, the concept of stability cannot be defined
as a generic property of the model but has to be evaluated in the proximity of possibly
multiple equilibria [2]. Since time recurrence only occurs in the state equation of a
state space model, only the state equation has to be analyzed. An equilibrium 2

for the state equation
L(k +1) = h(2(k), u(k)) (3.35)
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Figure 3.25: Extrapolation detection for the LMSSN model on the second-order
Hammerstein process. As soon as a state variable operates outside
the interval [0, 1] (light blue areas), extrapolation is detected. For this
example, this happens the first time after roughly k£ = 2900 time steps.
The changing color from blue to yellow indicates the progress in time.

is found as the point to which the model converges with a constant input signal u

as

Zp=h(ip,u). (3.36)

An equilibrium is called stable, loosely speaking, if all trajectories Z(k) for
k=0,...,N, that start in the neighborhood of Zj, converge with increasing time
eventually to this equilibrium. The term stability is also used in a weakened form
when the trajectory does not converge to the equilibrium but stays in a close neigh-
borhood.

For nonlinear systems, commonly, Lyapunov stability [73] of autonomous systems
(meaning that the input u(k) = 0) is used. Considering (3.35) with an equilibrium
Ty = 0, the equilibrium is called stable in the sense of Lyapunov, if for every e > 0
there exists a 0 > 0 such that, if ||£(0)|| < ¢, then for every & > 0 we have ||Z(k) < €|.
If it also holds that

lim (k) =0, (3.37)

k—oo

then the equilibrium is called asymptotically stable.
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Guaranteeing the stability of nonlinear dynamical systems in this way is not a
straightforward task. Especially when the validity functions #*) depend on the state
vector Z(k) (which is the default for the LMSSN), results are hard to derive [139].

Lyapunov’s direct method has been extended to local linear neuro-fuzzy models [134]
as
ATPA. —P <0 forj=1,2,...,0p, (3.38)

L5 L4
with matrices A; being the system matrices of the LLMs and P being positive
definite. If a matrix P is found that satisfies (3.38) for all LLMs simultaneously,
the model under test is guaranteed to be stable. This result, though, only holds for
local linear and not local affine models. For local affine models, the equilibrium is
not necessarily at 0, but multiple equilibria may exist. Also, (3.38) is only a sufficient
condition, which is known to be quite conservative [154]. If the LMSSN is set up
with a MIMO state equation and offsets are not used, this method is a way to check

or ensure stability.

Limit Cycles For nonlinear systems, steady oscillation may occur for constant input
signals u. The state vector repeats periodically for such oscillations and the state

trajectory is a closed curve. For the state vector sequence
5(0), 2(1), .., 2(0) (3.39)

it therefore occurs that

2(0) = Z(1). (3.40)

The limit cycle contains [ 4 1 steps. Therefore, one speaks of a limit cycle of length
[+ 1.

Case Study: Settling Behavior of LMSSN The LMSSN uses in its internal cal-
culations scaled versions of the inputs, outputs, and states (see Appendix B.2). All
values lie during training in a hypercube between 0 and 1. Therefore, one can check
if from different initial conditions Z(0) for different constant levels of the scaled input
signal @(k), an equilibrium is reached, a limit cycle is entered, or if the behavior is
divergent. In other terms, we check if all relevant points in the state space are in
the region of attraction to possibly multiple equilibrium points or limit cycles. This
analysis gives an intuition of the model’s stability but is surely no mathematical

stability proof or guarantee.
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As an example, the Bouc-Wen benchmark is used (see Sect. 5.5). The LMSSN model
is chosen to have n, = 3 state variables. It is trained and validated with a random
phase multisine with N = 8192 data points each. Training is done in batch mode
with the adaptive moment estimation (ADAM) optimizer (see Appx. A.3), with a
base learning rate of & = 1-1073. The learning rate is decreased with increasing
training epochs by the factor %, where ¢ is the number of epochs. The LMSSN
has MISO state equations and a MISO output equation, meaning that each state
variable and the output are composed of individual LMNs. The obtained LMSSN
model has a total number of 68 LMs. Two projections (one of the Z;(k)-Z2(k) plane
and another of the Z5(k)-Z3(k) plane) for the initial N = 128 steps are shown in
Fig. 3.26. The trajectories’ beginnings are indicated by the color blue and turning
more and more towards yellow for increasing time steps. Two distinct limit cycles
can be discerned at input amplitudes of around u = 0.25 and u = 0.6. The ability of
the LMSSN model to produce limit cycles can be understood as an undesirable or
desirable property, depending on the point of view. Of course, the models’ flexibility
to produce those is undesirable for processes where inherently no limit cycles occur.
On the other hand, for processes that do have inherent limit cycles (like the Van
der Pol oscillator), this shows that the LMSSN is able to identify those as well. An

illustrative study of the Van der Pol oscillator is given in Sect. 5.2.

u=2~0 u=0.25 u=20.5 u=0.6 u=1

| | | | |
0 1 0 1 0 1 0 1

1 (k) 1 (k) 1 (k) 1 (k) 1 (k)
Figure 3.26: Settling behavior of LMSSN with different initial conditions Z(0) (shown
are the first 128 time steps). The upper row shows the projection into
the 21 (k)—22(k) plane, the lower row the projection into the 2 (k)-23(k)
plane. As initial conditions, the corners of the unit square of the shown
projection are chosen with the not shown state variable being equal to 0
(2(0) = [0,1], top row: #3(0) = 0, bottom row: Z,(0) = 0). Each
column shows the two projections for different constant levels of the
input signal.

o -
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3.5 Relation to Other Model Structures and

Incorporation of Prior Knowledge

It is beneficial if a proposed model structure can incorporate prior knowledge. This
wish comes from the basic rule in estimation to not estimate what you already know
[130]. In this way, the space of possible model structures is restricted, likely leading

to a more accurate and reliable model.

A common way is to distinguish between at least three levels of prior knowledge,

which have been color-coded as follows [130]:

o White-box models: The model is fully obtained by physical insight and prior
knowledge.

e Gray-box models: There is some physical insight available, but not all param-
eters are determined by first principles and remain for estimation. Sjoberg et.

al. (1995) further divide this category into two sub-classes:

— Physical modeling: The model is built on physical grounds, with a certain
number of parameters to be estimated from data. This could, e.g., be a

state space model of given order and structure.

— Semi-physical modeling: Physical insight is used to suggest certain non-
linear combinations of measured data signals, which can be understood
as feature engineering. These new features are then subjected to model

structures of black-box character.

o Black-box models: No physical insight is available or used, but the chosen
model structure belongs to families that are known to have good flexibility

and have been “successful in the past”.

Restricting certain properties of the LMSSN imposes more structure on the model,
which can be motivated by additionally available (physical) knowledge, making the
LMSSN then fall into the semi-physical instead of the black-box modeling category.
Those restrictions can be used to show how the LMSSN simplifies to existing ap-
proaches (Sect. 3.5.1) and how knowledge can be incorporated to draw connections

to block-oriented modeling structures (Sect. 3.5.2).
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3.5.1 Differences to Existing Approaches

In the following, we want to look at the differences of the LMSSN to other state
space model structures, which employ LMNs or which the LMSSN can degrade to
like PWA state space models.

Other Local Model State Space Models There are mainly two contributions,
which deal with local model approaches in state space [139, 152]. The main differ-

ences to both works are summarized in the following three points.

Structure Identification In both works there is no effort put into structure identifi-
cation but only on parameter estimation for a given structure. It is assumed that
the number, position, size, and shape of validity functions is known a priori. For
black-box identification, the RBFs are therefore placed most of the time uniformly in
the input space (becoming infeasible for higher-dimensional problems) or an a-priori
optimized structure is assumed to be known. In contrast, this thesis focuses on both

structure and parameter identification.

Individual Nonlinear Structure of State Variables Both works follow the idea of blend-
ing multiple affine state space models (see Sect. 2.1.2.3). This means that the same
validity functions are used for state and output equation and that all matrices are
blended as a whole. The LMSSN is much more flexible as state variables can be

treated individually.

Scheduling with the States Even though it is stated in both works that the validity
functions can depend on the state variables and dynamic input, all shown studies
only deal with partitioning along the input u(k) and process output y(k) axis. In
this way, the authors intend to guarantee stability of gradient calculations if the
model itself is stable. This comes at the cost, though, of losing flexibility in the state
equation. The LMSSN takes the risk of unstable gradients into account for the gain

of nonlinearities within state variables.

Piecewise Affine Models The PWA state space model is introduced in Sect. 2.1.2.3.
One major difference to the LMSSN is that all parameters switch simultaneously
when the operating point changes from one model to another. In this respect, PWA
and multiple affine state space models are equivalent. In contrast, for an LMSSN

with a bank of MISO LMNs modeling the state equations, a change of the operating
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point may lead to altering parameters in an arbitrary number of state equations
and not necessarily in all of them. This is the case, as each state is modeled with
a unique LMN with possibly different input spaces z and individual input space

partitionings.

Additionally, a PWA state space model switches hard from one model to another.
There is no smooth transition between the models, nor is it ensured that two neigh-
boring submodels form a continuous or even differentiable surface. The LMSSN
always possesses a smooth transition between the LMs and hence a continuous and

differentiable surface.

In one special case, the LMSSN does resemble a PWA state space model. If there
is only one set of validity functions that partition the input spaces of all state and
output equations equally and if the smooth transition of validity functions becomes
abrupt. This can either be achieved by infinitely small standard deviations of the
RBFs (for NRBF validity functions) or infinitely large values of the scaling parame-

ter x for the hierarchical sigmoid functions, see (2.52).

3.5.2 Block-oriented Structures

The LMSSN is designed to be a black-box identification procedure with a minimal
number of hyperparameters that have to be specified a priori (besides the desired
model order, nothing else needs to be specified beforehand). Nevertheless, if prior
knowledge is available, it is convenient and advantageous if incorporating this prior

knowledge into the identification procedure is possible.

The LMSSN offers the possibility to restrict certain properties of the model structure
so that it resembles (or turns into an only slightly more expressive structure than)
the block-oriented structures from Fig. 2.14. Restrictions can be imposed in two
ways. First, only certain equations can be set to be modeled by LMNs. In turn,
all other equations are modeled linearly. Second, if an equation is chosen to be
modeled by an LMN, it can be restricted in the input dimensions in which it is
allowed to perform splits. It is thus achieved to separate the input space in two sets
of input dimensions that influence the model output linearly or nonlinearly (see also
Fig. 3.15). Additionally, input dimensions to each equation may be neglected (setting
the corresponding parameters to 0 in the LMs) regardless of the equation being a
linear function or an LMN. The computational effort is thus drastically reduced and

the likelihood to converge to the true process is enhanced.
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Wiener Process A Wiener process can be described by
(3.41)

where G(q) is a linear time-invariant (LTI) block of order m and f(-) an arbitrary
static function. This process can be modeled in principle by any nonlinear state space
model by choosing the order of the state space model the same as the dynamical
order of the Wiener process n, = m. To restrict the LMSSN’s flexibility to resemble
the Wiener process (see Fig. 3.27), the state equation can be chosen as a linear
function, while the output equation is modeled as a MISO LMN which only takes

the state vector as input as
2(k+1) = Az(k) + bu(k)

g(k) = g(@(k))  with  g(@(k) =Y (pi+ (k) - (k).

In principle, an even more restrictive model could be chosen, which also imposes
structure on A and b by using canonical representations. If, for example, the observ-
ability canonical form is enforced for the state equation, it is only necessary to model
a nonlinear output equation with a single state variable as input. Unfortunately, the
restriction to assume only one state variable to be a nonlinear input to the output
equation is not feasible. Due to the non-uniqueness of the state space formulation, it
is unclear in which state variable the nonlinearity will be identified. This challenge
could be overcome by the aforementioned transformation into, e.g., the observability
canonical form. However, the LMSSN is already transformed after each split to scale
the state trajectory to the unit hypercube for the estimation of the validity functions,
making it thus not possible to perform an additional transformation without violat-

ing this trajectory scaling condition. Therefore, one can only restrict the LMSSN

Wiener process LMSSN

u(k) r(k) y(k) u(k) Ek )2k 9() 9(k)

— G(Q) > f() > —> b q | MISO
LMN

->\D>->g

Figure 3.27: Wiener process (left) and LMSSN resembling Wiener process (right)
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to splits in all state dimensions and not more specifically to splits in a single state

variable.

This makes the restricted LMSSN come close to the Wiener structure but is still
more expressive than it. Note that the static nonlinearity in the Wiener process
has a one-dimensional input space (f : R — R), while the static nonlinearity of
the LMSSN has a high-dimensional input space (¢ : R™ — R). This relaxation
to consider nonlinearities in all state variables instead of a single one will also be

present in the other block-oriented structures.

Hammerstein Process A Hammerstein process can be described by
(3.43)

with G(q) of order m and f(-) being an arbitrary static function. Equations (3.43)
can be described with an LMSSN of order n, with a state equation which is nonlinear
in the process input u(k) and linear in the state variables and with a linear output
equation (see Fig. 3.28) as

Bk +1) = A2(k) + h(u(k))  with  hlu(k) = (0; + bju(k)) - &
j=1 (3.44)

As for the Wiener process, it is not clear which state variable (or which combination of
state variables) might capture the nonlinear behavior. Therefore, the process input

must be an input to all state equations (represented in Fig. 3.28 by the product

Hammerstein process LMSSN
> k . r(k+1 t(k y(k
oY oy EXC e CLORRL, IO N FOEAR [pma 1) e V10
LMN

= S

Figure 3.28: Hammerstein process (left) and LMSSN resembling Hammerstein pro-
cess (right)
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Hammerstein-Wiener process

uh)  [SETEE Gl ST
LMSSN
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Figure 3.29: Hammerstein-Wiener  process (top) and LMSSN resembling
Hammerstein-Wiener process (bottom)

Hammerstein-Wiener Process The Hammerstein-Wiener process can be described
by

s(k) (3.45)

where, again, G(q) is of order m and f(-) and I(-) are arbitrary (static) functions.
It can be modeled as a straightforward extension of the Hammerstein process with

a nonlinear output equation in the state variables as

2(k+1)=A2(k) +h(uk)  with  h(u(k) = fj (0; + bju(k)) - o
. = (3.46)

(k) = g(a(k))  with  g(@(k) = (p+d 2(k)) - &7 (k).

=1

The block diagram of the Hammerstein-Wiener process and the corresponding LMSSN

are shown in Fig. 3.29.

Wiener-Hammerstein Process A Wiener-Hammerstein process can be described
by

s(k) = f(r(k)) (3.47)
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Wiener-Hammerstein process
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Figure 3.30: Wiener-Hammerstein process (top) and LMSSN resembling Wiener-
Hammerstein process (bottom)

where the LTI block G(q) and H(q) are assumed to both be of dynamical order m
and f(-) is an arbitrary (static) function. To model such a process, an LMSSN with
n, = 2m state equations is needed. The LMSSN can be set up as

2q(k) 0 bg
mk)] ! ll'h@c;(k»] ! M (k)

y(k) =0 cf] FG(Z))] , (3.48)

iH(

Ag 0
0 Ay

Tk +1)

[@Gug +1)

Nm

with  h(ia(k) = (06 + Anc ia(k)) - @),
j=1
where each submatrix and vector has appropriate dimensions to either model the dy-
namic behavior of G(q) or H(q), denoted by the subscripts ()¢ and (-) g, respectively
(see Fig. 3.30). Only the lower block of the state equation models nonlinear behavior
regarding Z4(k). The scalar function h(-) is learned just as was done for the Ham-

merstein process. A lot of sparsity is achieved in the otherwise fully parametrized

LMSSN.

Summary of Block-oriented Structures The four different block-oriented pro-
cesses and how the LMSSN can resemble these is summarized in Tab. 3.1. Here,
the focus is on the different input dimension @(k) = [Z(k)u(k)] to the state and
output equation and whether they influence the output of the equation in a linear

or nonlinear way.

Table 3.2 summarizes how the number of parameters is reduced from a general



98

3.5 Relation to Other Model Structures

Table 3.1: Overview of how the LMSSN can resemble block-oriented processes. The
inputs to the state and output equation are shown and how those exert
linear and nonlinear influence on the equation output.

Inputs to state equation

Inputs to output equation

PSSR a0k 1 1) = ha k), u(k) | 9(k) = g (k) u(k)
State Process State Process
Structure variables input variables input
z(k) u(k) 2(k) u(k)
LMSSN Nonlinear Nonlinear Nonlinear Nonlinear
Wiener Linear Linear Nonlinear -
Hammerstein Linear Nonlinear Linear -
Hammerstein-Wiener Linear Nonlinear Nonlinear -
Wiener-Hammerstein Nifﬁigé . Linear Linear -

Table 3.2: Number of parameters of an LMSSN that resembles block-oriented struc-
tures. For simplicity, an LMSSN of order n, with a MIMO state equation
and a MISO output equation is assumed. Additionally, it is assumed that
each LMN has the same number n,, of LMs.

LMSSN Number of parameters Typical LMSSN with
Structure n; =3 and n,, = 10
LMSSN order n, (ne + 1)(ng + 2)n, 200
Wiener (nge + 1)(ng + 1) 52
Hammerstein (ne + D)ng + 2ny, 32
Hammerstein-Wiener | (n, + 1)n,, + 2n,, + n> 69
Wiener-Hammerstein | (n, + 1)n,, + n, +n2/2 ~ 48

LMSSN to block-oriented structures. For simplicity, we assume that we deal with
an LMSSN of order n, with a MIMO state equation and a MISO output equation.
Additionally, it is assumed that each LMN has the same number n,, of LMs. It

can be seen from the table that the general nonlinear identification task can be

significantly simplified since, in all cases, the number of parameters is drastically

reduced in contrast to the general LMSSN. The number of parameters are explicitly
calculated for a typical LMSSN with three state variables and ten LMs in the right

column. Note that in the Wiener-Hammerstein case, the LMSSN order is chosen

twice the order of the LTI blocks n, = 2m, which always leads to an integer for

the number of parameters. How the domain and range of state and output equation
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are reduced for the LMSSN resembling block-oriented structures can be found in

Appx. B.4.

3.6 Numerical and Computational Aspects

In the following, some numerical and computational aspects of the LMSSN are dis-

cussed.

3.6.1 Numerical Issues with NRBF Validity Functions

Since RBFs are exponentially decaying, their normalization becomes increasingly
harder with increasing distance to their center coordinates. Eventually, when the
numerical values of the RBFs fall below the smallest value that can be represented
by the computer in the chosen numeric data type, a division-by-zero occurs. To
circumvent this problem, when the NRBFs are constructed, the smallest value that
can be represented by the chosen numeric data type, ¢, is added to the denominator

as

(3.49)

Vj(u, pr o)
@j(%ﬁjjgj) - 21 ws{ﬂv;ygs) +e
For double-precision floating-point numbers, € is round about € ~ 2.2 - 1073%. For
demonstration purposes, consider a neural network with two inputs. Now, one ad-
ditional RBF is added at a time in the us-dimension (see Fig. 3.31). This is done in
such a way that the region uy,us € [0, 1] x [0, 1] is governed by an increasing number
of RBFs (with the aim to transform them eventually to NRBFs). Constant e is set
to € ~ 2.2204 - 1071¢, which is the relative double-precision floating-point accuracy
at the numeric value 1. The colored dots represent the center coordinates of the
RBFs. The corresponding colored circular and elliptical lines represent the position
in the input space (contour lines) where ¥; = €. This means if only a single RBF
existed, the NRBF has the function value of 0.5 at this point (since ¥; = €). The
NRBF is inside the circle or the ellipse &~ 1 and outside ~ 0 (if no other RBFs exist).
For an increasing number of RBFs, the standard deviation in the us;-dimension is
decreased, making the validity region of each RBF gradually smaller. This means
that with an increasing number of RBFs in one dimension, the region without nu-
merical issues becomes smaller. Let us fix, for example, the coordinate in dimension

uy to 0.5. In the case with only one RBF, the model has no numerical problems for
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Figure 3.31: RBFs for different numbers of splits in one LMN.
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Figure 3.32: Reactivation with NRBFs in extrapolation. The blue model reactivates
for values uy < —0.2, where the green model should usually be active.

roughly —2.9 < uy < 3.9. The model with four RBFs has no numerical problems
for —0.9 < uy < 2.4. Therefore, it is likely for a model with many neurons in one
dimension that numerical problems (validity functions which are supposed to be ac-
tive become 0) occur closer to the extrapolation boundaries than for models with

only fewer neurons.

Another problem that can occur with NRBF networks is reactivation [128]. It can
occur when the underlying RBFs have different standard deviations. The example
with four RBFs from Fig. 3.31 is taken and its NRBFs are shown in Fig. 3.32.

It can be seen that the blue model, which is supposed to be active only for high
values of us, also reactivates for values us < —0.2. So the model extrapolates for

small uy not as expected with the green model but with the blue model.
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Case Study: Numerical Issues of LMSSN with NRBF Validity Functions Let us
consider (3.49) and analyze the influence of this NRBF validity function construction
mechanism on dynamical models. Let us take, for example, the state equation of a

first-order time-discrete process
2(k+1) = —az(k) + bu(k), (3.50)

where p = —a is the pole and the gain is calculated by K = 1%@ Now, (3.50) is
transformed to an LMN with one LM as

2(k+1) = [—az(k) + bu(k)] (2, u, p, 0) . (3.51)

The center coordinates in the Z-dimension and wu-dimension of the RBF are
p=10.5,0.5]", the standard deviation is set to o = [0.4,0.4]". This corresponds
to the setup of the LMSSN with NRBF validity functions when it is initialized with
the BLA.

Now we set the pole of the process to p = —a = 0.9 and the gain to K = 10 (leading
to b = 1) and compare the step responses of the process and model described in
(3.50) and (3.51). The step responses to process and model are shown in the upper
plot of Fig. 3.33. It can be seen that the true process converges slowly to its gain,
while the LMSSN periodically turns 0 after six time steps. This behavior originates
from the addition of € in the denominator of (3.49). Once the RBF values approach
¢, the NRBF validity function is no longer 1 but decreases rapidly to 0.

This is demonstrated in the lower plot of Fig. 3.33. Here, the output Z(k + 1) is
shown with respect to #(k), while the input u(k) is the step function like for the
upper plot. For (k) > 3.5, the validity function decreases from 1 to 0, producing
the oscillatory effect. It is therefore crucial that e is chosen as small as possible to
extend the valid region of the LMs as far as possible. Depending on the process under
test, this problem is sometimes of minor importance, while for other processes, it
turns out that LMSSNs with NRBF validity functions are hardly identifiable. This
problem is fully overcome with hierarchical sigmoid validity functions at the cost of

longer computation times because of their complex construction.
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Figure 3.33: Step responses of first-order process and LMSSN model with NRBF
validity functions. The upper plot shows the time responses and the
lower the state equation. The LMSSN shows oscillatory behavior since
the constant e is added during the construction of the NRBFs to prevent
division-by-zero.

3.6.2 Computational Aspects

LMSSN Toolbox The user-friendliness of nonlinear system identification algo-
rithms is often underestimated or neglected [122]. Therefore, for the LMSSN algo-
rithm, an object-oriented MATLAB® toolbox is developed, which makes the LMSSN
readily available with concise demos and documentation. Another implementation
is done in Python using the TensorFlow (v2.6.0) [1] and Keras [20] library.

Gradient Computation The LMSSN MATLAB® toolbox has different options that
are used for optimization.  Either the Levenberg-Marquardt algorithm (see
Sect. 2.3.2) or a Quasi-Newton method (see Appx. A.3) is employed for optimiza-

tion.

The gradients are either supplied analytically (derivations of the gradients see

Appx. B.3) or estimated by finite differences. Due to the recurrent nature and
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complexity of the gradients, the calculation speed is oftentimes not faster when the

gradients are supplied analytically.

The Python version of the LMSSN makes use of the TensorFlow framework, which
allows for automatic differentiation and the use of advances from the machine learn-
ing community. A comparison of different optimizers for the LMSSN and their

performance can be found in [126].

Computation Time The LMSSN is computationally quite expensive. Since mul-
tiple LMNs may exist (say there are npyn LMNs within the same model), where
each LMN can be split (in the axis-orthogonal case) in all its inner input dimensions
Nz + My, Up to npun - (e + n,) splits and nonlinear optimizations are performed
per iteration. The splits can be conveniently and efficiently implemented on paral-
lel architecture, nevertheless leading to much longer computation times than other

nonlinear system identification algorithms due to the growing tree structure.
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4 Deep Recurrent Neural Networks

Parts of the chapter have been published in [123].

Learning of dynamical models is not a discipline solely confined to system identifi-
cation. Especially dynamics realizations of state space character are established in
the machine learning community, where dynamics are realized by recurrent neural
networks (RNNs) [44]. The RNN is quite similar to the nonlinear state space model
but not exactly the same. The techniques used in the machine learning field are
usually suited for a broader range of problems than in the system identification field.
RNNs, especially long short-term memory (LSTM) networks [55], are used for au-
tomatic translation or even for music generation. The task in system identification
is different, as the system is excited by a possibly multivariate sampled signal and
also the output is a signal with the same constant sampling frequency. Recently,
so-called transformer architectures have become the state-of-the-art architecture in
natural language processing, which was commonly the domain of RNNs [138]. They
use attention mechanisms (which can be seen under certain circumstances as a kind
of nonlinear finite impulse response (NFIR) structure) and have proven to be very
successful on machine translation tasks [27, 12]. Transformers eliminate the time-
recurrent structure of the RNN, which speeds up model training drastically and
makes enormous numbers of parameters feasible (the well-known language model
GPT-3 has 175 billion parameters), as no backpropagation-through-time (BPTT)
is necessary. On the downside, the notion of “past and future” is lost (transformer
structures are usually non-causal), making transformers in their current form un-

suitable for simulation of time-series data, which is the scope of this work.

Therefore, we will focus on RNN structures. Several works have considered the
usage of RNNs for the modeling of dynamic behavior. The first works assessing
the learning of dynamic systems use time-delayed output values and are similar to
nonlinear autoregressive with exogenous input (NARX) models [87]. Also, relatively
early internal states for neural networks have been considered [28]. These approaches

have also been compared experimentally on relatively simple system identification
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Figure 4.1: Structure of this chapter

tasks [56]. Recently, a deep neural network has been trained for a soft robotics
actor [95].

Compared to relatively early approaches to applying neural networks for system
identification, we take a different viewpoint. Usually, only a moderate amount of
data has been used for the identification of neural networks, say 1000 — 10000 data
points. One significant advantage of RNNs trained by stochastic gradient descent
(SGD) is that a very large number of data samples, say 105 — 107, can easily be
used due to the utilization of mini batches (see Sect. 2.3.4). The different possi-
bilities for constructing deep RNNs for nonlinear system identification are analyzed

systematically. An overview of this chapter is given in Fig. 4.1.

4.1 Nonlinear State Space Models Versus Recurrent

Neural Networks

Let us consider the single-input single-output (SISO) nonlinear state space model

from (3.1) and compare it to an RNN structure which is typically described by

2,(k) = b, (2,(k — 1), u(k)) (4.1)

The RNN block diagram in contrast to the state space model is depicted in Fig. 4.2.
Both structures are quite alike and it is possible to transfer the state space structure

to an RNN representation and vice versa. If a state space structure is given, the
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Figure 4.2: Similarity between a) the nonlinear state space and b) the RNN.

corresponding equations describing the RNN can be found by

[ﬂ@]zlmm%—w@Ak—wF>

(k) u(k)
&, (k) h, (&, (k—1)u(k)) (4.2)
J(k) = g([2(k) Z.(k)]").

z,.(k)

In the RNN state equation, for calculating the current state Z,(k), the one time step
delayed input u(k — 1) is only implicitly included in Z,(k — 1). To incorporate this
time delay explicitly, u(k) is added to the state equation as additional state variable
%, (k), which is an argument to the original state equation h(-) in its time-delayed

version.

If the RNN structure is given, then the equations of the state space model can be

found by

Z.(k+1) = h,(Z,(k), u(k))
2(k+1) h(z(k),u(k))
J(k) = gr(h(Z,(k), u(k))),
g(&(k),u(k))

(4.3)

with the new state Z, (k), which is a one time step delayed version of the state of the
RNN so that z,.(k) = Z,(k — 1).

4.2 Composition of Deep Recurrent Neural Networks

This section explains the RNN structure and its components in more detail. Note

that for the recurrent state Z, (k), the subscript (-), is dropped. Normal weight arrows
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indicate vector signal flows for the rest of the chapter as only recurrent models and

vectorial quantities are dealt with.

4.2.1 Simple Recurrent Layer

A simple RNN layer (with similarities to the state equation of an affine state space
model) is shown in Fig. 4.3. A hidden state in layer i, Z;(k), is calculated by a
linear combination of its one time step delayed version #;(k — 1) and the input to
the layer at the current time step &;_;(k), which is then passed through a nonlinear-
ity. Note that ¢! indicates the time-shift operator and that the input to the first
layer is simply &;_;(k) = u(k). Hereby, &;(k — 1) is weighted with the parameter
matrix A, € R"™i*"i ¢, (k) is weighted with B, € R"*"=i-1_ Additionally, an
offset or bias vector o, € R™i*! is added before the linear combination is passed
through a nonlinearity, which is for RNNs oftentimes a hyperbolic tangent (see also
Appx. A.1), denoted by (). The hyperbolic tangent is chosen for its smoothness
and its continuous differentiability. The output of the i-th layer of a deep RNN at

time step k is therefore
2y(k) =00 + A Zi(k — 1) + B; ;4 (k)) . (4.4)

This notation is chosen to illustrate the similarities to a state space model. Likewise,
illustrations of RNNs such as in [45], which underline the computer science perspec-
tive on the neurons, will not be shown here. Instead of unfolding the network over

time, it is more intuitive in controls to use the time-shift operator ¢—*.

RNN;
z z;(k
4; ¢
b e

Figure 4.3: Illustration of simple recurrent layer
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Figure 4.4: Tllustration of a dense layer

4.2.2 Fully Connected Layer (Dense Layer)

A fully connected layer (or dense layer) is a simple feed-forward layer, see Fig. 4.4.
It maps the input vector (for example Z;(k)) weighted with the matrix W, € R"»*"=
and an offset o; € R™*! after passing a rectified linear unit (ReLU) activation to
the output of the layer z(k)

z(k) = ReLU(W,; (k) + o;) - (4.5)

The ReLU is defined as
ReLU(z) = max(0,z), (4.6)

where the max(-) operator is applied element-wise. The ReLU is a popular choice
as it avoids the vanishing gradient problem and is computationally less expensive
than the hyperbolic tangent or sigmoid. A drawback of the ReLU is that it is not
differentiable at the origin. The coverage of the unique advantages and disadvantages

of many other existing activation functions is beyond the scope of this thesis.

4.2.3 Connecting the Layers

An almost infinite number of possibilities exists for the composition of deep RNNs.
To conquer this challenge, a set of network variations is chosen from one default
setup, depicted in Fig. 4.5. The input u(k) passes n series-connected RNN layers,
each with n,, neurons (or in terms of the state space models with n,, state variables).
After that, one standard fully connected layer (n, neurons and a ReLU activation,
see Fig. 4.4) maps the last state Z,,(k) to z(k). To form an output that can also
have negative values, z(k) is weighted with the matrix W, € R*"= (here a vector)

to finally obtain the scalar model output (k).
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| RNN; [—{| RNN, [—|| RNN;3 ||| Dense |[— W, —>

Figure 4.5: Illustration of deep recurrent neural network

LSTM;

2,4 (k)
&, (k—1) >|—“—> Dense,

Figure 4.6: Illustration of an LSTM layer

4.2.4 Complex Recurrent Layer Networks

Instead of connecting many simple layers to achieve a sufficiently flexible model, one

could also use fewer but more complex recurrent layers.

Long short-term memory Probably the most commonly known complex RNN
layer is the LSTM layer [55], depicted in Fig. 4.6. The key idea of LSTMs is to
build an internal state s(k) into each neuron. This internal state acts as a memory
cell that can retain information over a period of time, dependent on the forget gate
activation f(k). The forget gate activation acts as the pole of a first-order dynamic
system, with stable dynamics (due to the sigmoid activation in the forget gate, the
pole is always in the range (0 1)). The forget gate activation thus determines the

dynamics of the internal cell and how much information can be retained for how long

[39).

The input to the layer Z,_;(k) and the one time step delayed output of the current
layer &;(k — 1) are fed through four different dense layers, with the same number

of neurons n,,. Usually, for Dense, a hyperbolic tangent is chosen as an activation
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function and for the other three dense layers, a sigmoid is a common choice [66].
The signal g(k) passes first the input gate, indicated by the Hadamard product of
g(k) ®i(k). Understanding this operation as a gate is intuitive, as i(k) lies between
0 and 1 due to the sigmoid activation of the previous time step. This gate, therefore,

determines how much of the input signal is let through.

As previously mentioned, the forget gate activation f(k) influences the dynamics
of the so-called internal state s(k) and can be thought of as the pole of a first-
order discrete-time system for the dynamics of s(k). It determines how much of the
past information is memorized or forgotten. Then, the signal is passed through a
nonlinearity, usually a hyperbolic tangent, and then multiplied with the output gate
activation o(k), leading to the layer output Z;(k). The LSTM illustration in Fig. 4.6
bridges the gap between the different understandings of dynamic modeling in the
computer science and controls disciplines. Unlike most other publications, the here

presented LSTM shows the model from the controls perspective.

GRU An alternative popular complex recurrent layer is the gated recurrent unit
(GRU) [19]. In general, it has fewer parameters than the LSTM as it only possesses
two instead of three gates. A GRU layer from the system identification perspective is
shown in Fig. 4.7. The output of the layer Z;(k) is a tradeoff between a proposed state
Z,(k) and the state of the previous time step Z;(k — 1). This tradeoff is controlled
by the update gate activation z(k) as

(k) = z(k) © Zi(k) + (L= 2(k)) © Z;(k = 1). (4.7)

GRU;

i—> Dense AA| Ny
- -

MN—p]
»
>

Figure 4.7: Illustration of a GRU layer
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RNN;
&, (k) Z,;(k)
Dense||- - - 9| |Dense,, >
(k1) e

Figure 4.8: Illustration of complex recurrent layer

The proposed state Z;(k) combines the input to the layer &; (k) and the previous
state of the current layer #;(k — 1) that are passed through a dense layer. The
reset gate activation r(k) controls the amount the previous state contributes to the

proposed state.

For the reset and update gate, commonly sigmoid functions are used (to have the
interpretability as gates as their outputs are in the range 0 to 1), while for the

proposed state layer Dense,, a hyperbolic tangent is used.

Other Complex Recurrent Layers Other, more complex, RNN layers can be mod-
eled, such as in Fig. 4.8. In this case, the recurrent layer does not only comprise a
simple affine function followed by a nonlinearity but is replaced by multiple dense
layers. The output after all dense layers is then fed back. It constitutes a more
sophisticated layer type than shown in Fig. 4.3, but this extension is straightforward
compared to the LSTM or GRU layer.

4.3 Case Study: Bouc-Wen Benchmark

Different deep RNN structures will be studied on the Bouc-Wen benchmark. The full
description of the benchmark can be found in Sect. 5.5. This benchmark allows gen-
erating own training and validation data. Therefore, a random phase multisine input
signal with N = 500 000 data points with excited frequencies between 5 — 150 Hz was
created and applied to the simulated benchmark system. The obtained dataset was
then split into sequences of size Ny = 1000 with 50 % overlap leading to a total of

999 sequences. The first 70 % of the sequences was used as training data and the
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Figure 4.9: Convergence of default deep RNN on training and validation data

remaining 30 % as validation data. The sampling frequency is f; = 750 Hz. The root
mean squared (rms) amplitude of the input is 50 N (force). The benchmark provides
two fixed test datasets, one with a random phase multisine input (N = 8192) and
the other one with a sine-sweep input (/N = 153 000).

The models are compared by their root mean squared error (RMSE) on test data,

which is calculated by

RMSE = J D) = () (48)

Here, y,(k) is the process output on test data, g;(k) is the model output on test data,
and N; is the number of test samples. All results shown here were obtained using
TensorFlow (v2.6.0) [1] with the Keras library [20] using the following setup. The
default training routine uses the adaptive moment estimation (ADAM) optimizer
(see Appx. A.3) [59] with a learning rate of 1-107%. All networks are trained for
100 epochs if the early stopping criterion (RMSE on validation data did not improve
over the last 15 epochs) is not met before. The loss function is chosen to be the
RMSE on training data.

The default network architecture (Fig. 4.5) has n = 3 hidden RNN layers (with
n,, = 30 neurons each) followed by a fully connected layer with n, = 100 neurons
and the output weight matrix, mapping the n, outputs of the dense layer to the final
model output. This default setup leads to a total of 7820 trainable parameters. An
exemplary convergence plot is shown in Fig. 4.9. Here, after 94 epochs, the algorithm
stopped. As the ADAM algorithm is a stochastic optimizer, it can be seen that the
loss function shows slight fluctuations on training data and larger fluctuations on

validation data over the advancing epochs.

The RMSE on the multisine test signal is RMSE = 7.6-107°. The process is captured
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Figure 4.10: RMSEs for different learning rates and a different number of neurons
(w=) 1, =5, (=) n, =30, (=) n, = 50,(==)n, =100 per layer on
mulitsine and sine-sweep test datasets.

well with the default deep RNN. The training of this default network converged for
all trials that were run. On the sine-sweep dataset, the RMSE is 4.1 - 1075, which is
also a good result when compared to other identification algorithms (see Tab. 5.4 at
the end of Sect. 5.5).

4.3.1 Variation of Learning Rate

For this study, the learning rate was varied between 1-107° and 1-107%. In Fig. 4.10
on the left, the results for networks with three simple recurrent layers (default setup),
each with 5, 30, 50, or 100 neurons is shown. This leads to architectures with 845 up
to 60600 parameters. It can be seen that learning rates around 1- 1073 lead to the
best results on the multisine test signal. It can also be seen that model performance
increases with the number of neurons per layer. For 30 neurons and more, though,
the performance does not increase significantly anymore. The same can be said for
the results on the sine-sweep test dataset (see Fig. 4.10 on the right). Here, also the
learning rate of 1-1073 yields the best results and the differences in performance of

30 up to 100 neurons per layer are also negligible.

4.3.2 Number of Neurons and Layers

In the default setup, for all three layers, the number of neurons is varied from n,, = 2
up to n,, = 50. This leads to parameter numbers for the overall network ranging
from 428 to 17900. The results can be seen in Fig. 4.11 (left side) on the sine-sweep

test dataset. With an increasing number of neurons, better model qualities can be
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Figure 4.11: RMSE for different numbers of neurons on the sine-sweep test dataset
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Figure 4.12: RMSE for different activation functions on multisine test dataset.

achieved. Especially n,, = 25 and n,, = 30 seem to establish a parsimonious model

with satisfactory model complexity.

Another study was carried out with a variation in the number of recurrent layers that
are series-connected. All layers have the default number of n,, = 30 neurons. The
results are shown in Fig. 4.11 on the right. Even though parameter numbers range
from 4161 (one recurrent layer) to 15141 (seven recurrent layers), performance on
the sine-sweep test signal stays in the same range. The best performance is obtained
for a network with three recurrent layers. For more than seven layers, the models
were not able to converge anymore. This might be due to the vanishing gradient
problem [54].

4.3.3 Comparison of Different Activation Functions

Common choices for activation functions in recurrent layers are the hyperbolic tan-
gent or the ReLU [66]. Both will be compared when used in each of the three
recurrent layers. The results are summarized in Fig. 4.12. It can be seen that even

though the activation functions are quite different, the results for different learning



116 4.3 Case Study: Bouc-Wen Benchmark

Table 4.1: Comparison of different number of series-connected LSTM layers

RMSE RMSE
multisine | sine-sweep

1070 1073

default RNN 7.64 4.12

1 LSTM layer 6.32 3.16

2 LSTM layers 6.10 2.78

3 LSTM layers 5.98 2.80

1 GRU layer 6.57 3.55

2 GRU layers 6.30 5.03

3 GRU layers 6.11 3.86

rates are very similar. Overall, the hyperbolic tangent activation performs slightly
better than the ReLLU, probably due to its smoothness.

4.3.4 Complex Recurrent Layers

Next, instead of simple RNN layers, complex RNN layers (Fig. 4.8), LSTM layers
(Fig. 4.6), and GRU layers (Fig. 4.7) are used. For the complex RNN layer, instead
of three series-connected simple recurrent layers, one complex layer, which comprises
three dense layers, was used. Within each dense layer inside the complex RNN layer,
the number of neurons was varied between 2 and 50. None of the studied model
architectures yields a satisfactory model quality as the average RMSE on test data
is at least three times greater compared to multiple simple RNN layers. For neuron

numbers below 25 per dense layer, the models did not even converge.

The LSTM study was carried out with one, two, and three LSTM layers, each with
n,, = 30 neurons. The number of parameters is 7040, 14 360, and 21 680, respectively.
The GRU study was also done for one to three layers with 6081, 11571, and 17061

parameters, respectively.

The results on the two test datasets are summarized in Tab. 4.1. All three model
architectures perform well on the Bouc-Wen benchmark. The networks with two and
three LSTM layers perform slightly better than one LSTM layer.
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4.3.5 Discussion

A comprehensive comparison of published results on the Bouc-Wen benchmark can
be found in Tab. 5.4 at the end of Sect. 5.5. Even though the deep RNN architectures
chosen here were not tailored to the overall best performance on the benchmark
problem, they lead to acceptable results without tedious tuning. It can be seen that
it is possible to achieve state-of-the-art performance by simply increasing the amount
of data for training and the depth of the network, which is also true for many other
applications like image recognition or language translation. Deep RNNs thus offer

promising results also for system identification when large datasets are available.
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5 Studies and Applications

This chapter covers studies and applications of the local model state space network
(LMSSN) on various processes. The shown studies highlight some characteristics
of LMSSNs, while the usefulness and applicability of LMSSN are demonstrated on
benchmark problems as well as real-world problems. An overview of this chapter is

given in Fig. 5.1.

Error Figures For comparison, usually, the root mean squared error (RMSE) or
normalized root mean squared error (NRMSE) is used. The RMSE is calculated
by

RMSE - J = (k) — 9(), 6.)

where N is the number of samples, y(k) is the process output, and ¢(k) is the model
output. The NRMSE is calculated as

i (y(k) — (k)
S (y(k) — )2

NRMSE = J (5.2)

Studies and Applications

Studies
5.1 Study on 5.2 Study on
Partitioning Strategies Dynamics Realizations
Benchmarks
5.3 Cascaded Tanks 5.4 Silverbox 5.5 Bouc-Wen
Benchmark Benchmark Benchmark

Real-word Applications

5.6 NOx-Emission Modeling of 5.7 Subprocess Modeling of
Turbocharged Diesel Engine Combine Harvester

Figure 5.1: Structure of this chapter
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where g is the mean of the process output. This expression is equivalent to the
RMSE divided by the standard deviation of the process output

RMSE
std(y) -

NRMSE = (5.3)
The NRMSE can thus be interpreted as the ratio of the standard deviation of the
error signal (if the error signal is mean-free) and the standard deviation of the output
signal. Alternatively, the NRMSE can be interpreted as the achieved improvement
by the model (NRMSE < 1) compared to the baseline model §(k) = y (which has an
NRMSE = 1). Note that the error figures can be calculated for different datasets,

e.g., on training, validation, or test data.

Default Training The LMSSN is trained with the Levenberg-Marquardt algorithm,
see Sect. 2.3.2. Per split, usually 100 Levenberg-Marquardt iterations are carried out.
Some implementation details can be found in Appx. A.4. Alternatively, a Quasi-
Newton optimizer is used (see Appx. A.3). All shown results are computed with the
MATLAB® implementation of LMSSN either on the high-performance OMNI-cluster
of the University of Siegen or on a notebook with a 2,3 GHz Quad-Core Intel Core
i5 and 16 GB RAM.

Default Termination Criterion The default termination criterion for LMSSN is to
terminate if the model performance on validation data does not increase sufficiently

anymore. The algorithm terminates if
Se — 8o > Ny, (5.4)

where s, is the current number of total splits, s, is the number of total splits until the
NRMSE on validation data is in the vicinity of the currently lowest NRMSE value on
validation data, and ng is the number of allowed deteriorations. An example of the
criterion is given in Fig. 5.2. All values below a threshold NRMSE,;;; + NRMSE, gise
define the vicinity to the lowest NRMSE value. The value NRMSE, i is set to
NRMSE, pise = 0.01 if not mentioned differently. This corresponds to the assumption
that the signal-to-noise ratio (SNR) of the validation output signal is 40 dB. If more
knowledge about the signals is available, NRMSE, i is adjusted accordingly. If no
noise is assumed (SNR = oo dB), NRMSE, ;s is 0 and the two dashed lines fall onto

each other.
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Figure 5.2: Example of default termination criterion. For a user-defined number
of deteriorations, e.g., ng = 2, the algorithm terminates after the sev-
enth split. At the fifth split, the NRMSE drops the first time below
NRMSE,in + NRMSE, pise. The algorithm will continue with the next
split if ng is chosen larger.

5.1 Study on Partitioning Strategies

In this study, we investigate different partitioning strategies of the LMSSN. Axis-
orthogonal splitting of the local linear model tree (LOLIMOT) and the hierarchical
local model tree (HILOMOT) are compared to the axis-oblique partitioning, which
is possible for HILOMOT.

To illustrate the differences and for simplicity, a nonlinear first-order process is cho-

sen. The process is described by

Gl(z)zlg'?fzzl_l it y(k) < 1—u(k), o
Golz) = 2 i (k) > 1— uk),

T 120621

with a smooth transition between the two linear time-invariant (LTI) systems real-
ized by weighting them with sigmoid validity functions, see Fig. 5.3. The training,
validation, and test dataset are amplitude-modulated pseudo random binary signals
(APRBSs) of length N = 512, respectively. The training and validation data is
corrupted by white Gaussian noise at the output so that those two signals have an
SNR of 40 dB.

Three LMSSN models of first order are trained: one with LOLIMOT, one with
HILOMOT (axis-orthogonal splits only), and a third model with HILOMOT but
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Figure 5.3: The nonlinear first-order example process consists of two LTI systems
blended via axis-oblique validity functions in the (u(k —1),y(k —1))-
space.

with axis-oblique splits possible as well.

The state equation of the LMSSN is modeled by a multiple-input single-output
(MISO) local model network (LMN), while the output equation is an affine function.
After training, the output equation is transformed to g(k) = (k). This is achieved
by transforming the output equation parameters to ¢* = 1 and p* = 0 via the affine
The feedthrough is neglected

state transformation (3.27) with 7= % and t = —£.
(d=0).

The NRMSE on test data, the number of splits, and the mean evaluation time are
shown in Fig. 5.4. The axis-orthogonal LOLIMOT and HILOMOT produce roughly
the same error on test data. The algorithm stopped in both cases after the third
split. The axis-oblique HILOMOT models the artificial process with only one split
perfectly. This is expected as the process requires an oblique split in the inner input
space [#1(k) u(k)].

The LOLIMOT is roughly four times faster than the axis-orthogonal HILOMOT and
six times faster than the axis-oblique HILOMOT per split!. The main reason why the
LOLIMOT model is faster than the HILOMOT model is the construction of the va-
lidity functions, which is computationally a lot more involved for hierarchical sigmoid
functions than for “unstacked” normalized radial basis functions (NRBFs). For the
axis-oblique HILOMOT, the split parameters v; from (2.52) are optimized as well,
leading to two additional parameters per split that are optimized. The percentage

of additional parameters through axis-oblique partitioning decreases for an overall

1 using the Levenberg-Marquardt algorithm with analytical gradients; computed on 2.3 GHz Quad-

Core Intel Core i5, 16 GB RAM
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Figure 5.4: Results of the (mll) LOLIMOT, (ol) HILOMOT orthogonal, and

(mll ) HILOMOT oblique LMSSN model on nonlinear first-order example
process.

O = N Wk

increasing number of parameters of the LMSSN. Therefore, for models of higher com-
plexity, the computational times for both HILOMOT methods approach each other.
This is fundamentally different behavior than for HILOMOT in a nonlinear autore-
gressive with exogenous input (NARX) or nonlinear finite impulse response (NFIR)
model with LMNs as here the local model (LM) parameters are estimated by least
squares and only the split parameters have to be optimized nonlinearly. Since all LM
and split parameters are estimated nonlinearly in the LMSSN, the nonlinear split
optimization does not produce significant additional computational costs. There-
fore, it is always recommended to perform nonlinear split optimization when using
HILOMOT for greater flexibility at the expense of minor additional computational

demand.

The state equation map, as well as the input space partitionings, are shown in
Fig. 5.5. The two orthogonal partitioning models are structurally not well suited to
correctly model the “oblique” process and look a lot alike concerning their partition-
ings. Note that the splits are shifted in the #;-dimension, which occurs through the
rescaling of the state trajectory (see Sect. 3.3.3). The two models do not produce
exactly the same results due to their validity function’s slightly different construction
mechanisms (see also Fig. 2.16). The oblique partitioning HILOMOT model is able

to simulate the process behavior perfectly.

5.2 Study on Dynamics Realizations

In this study, different dynamics realizations shall be compared on the Van der Pol

oscillator process. It is described by a second-order ordinary differential equation
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Figure 5.5: Results of three first-order LMSSN models with different construction
strategies. The state equation map is shown in the upper row and the
input space partitionings are shown in the bottom row for the three
models, respectively.

(ODE) with a nonlinear damping term as

§() + 2 (y2(0) — 1) 9(0) + wBy(t) = ult). (5.6)

Here, u(t) is a forcing term, y(t) is considered the output, and wy is the natural
angular frequency [26]. The nonlinear damping term is controlled by e, called the
Van der Pol parameter. The system’s damping can be positive or negative, depending
on the output level, which leads to limit cycles. Discretizing (5.6) using a first-order

forward Euler step yields

1 T,
—wiT, €Ty +1

y(k) =1 0] x(k),

z(k+1) = z(k) + | | ulk) + wi (k)wa (k)

T, (5.7)

where T is the sampling time. The parameters are set to ¢ = 0.03, wy = 27,
and Ty = 0.01sec, just as is done in [26]. The Van der Pol oscillator is in itself a

polynomial nonlinear state space model (PNLSS) (see also Sect. 2.1.2.3).

The training, validation, and test dataset each contain a random phase multisine

with N = 4096 data points, all with a root mean squared (rms) value of 50. The
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training and validation output is corrupted with white Gaussian noise so that the

SNR of the signals is 40 dB.

Four different models are trained. The first two models are a NARX and an NFIR
model with an LMN as static approximator (trained with the LMNTOOL v1.5.2 [48]).
Here, the HILOMOT algorithm with oblique partitioning is used. The order of the
NARX model is not chosen equal to the process order since this model performed
quite poorly (likely due to missing regressor terms that include cross-products and
higher-order terms. It has been found by trial and error that a NARX model with
s=uk—-1uk-2)yk—1)...ylk—8)]and z = [y(k — 1)...y(k — 4)] (compare
Sect. 3.3.2 for the explanation of the s and z input spaces) performs quite well. For
the NFIR model, the order and different combinations in s and z input spaces did not
matter performance-wise (all NFIR models perform poorly, explanation see below).
The third model is a second-order LMSSN model constructed with the HILOMOT
algorithm. The state equation is modeled by MISO LMNs and the output equation
is an affine function. For the LMSSN, s = [#(k) Z2(k)] and z = [#1(k) Z2(k)]. The
fourth model is a PNLSS model (trained with PNLSS v1.0 [135]). For the state
equation, monomial combinations only of the states of second and third order are

allowed O(() = [2 3]. The output equation is a linear function O(n) = [].

The NARX, LMSSN, and PNLSS model results are shown in Fig. 5.6. Since the Van
der Pol oscillator process (5.7) is a PNLSS structure, the PNLSS model can correctly
and perfectly model the Van der Pol oscillator. The LMSSN has one LM in the first
state equation and four LMs in the second state equation. It performs well and is
able to identify the process accurately but not perfectly due to the inherent struc-
tural differences between the polynomial process and local affine modeling strategy.
The NARX model is also able to find a decent description of the process, with some
shortcomings, though. It is in principle possible to model the second-order process
with a second-order NARX model. However, choosing the model’s dynamic order
equal to the order of the process led in this study to erroneous models. This is likely
due to missing cross-products and higher-order terms in the regressor, as mentioned
before. Additionally, the Van der Pol oscillator exhibits at certain frequencies de-
terministic chaos. Therefore, the exponentially growing errors dominate for models
that do not closely resemble the process. Only the increase in (local) model order
(s-space), as well as an increase of splittable dimensions (z-space), led to acceptable
results at the cost of a large number of necessary splits and parameters. This high-
lights the fact that state space models are much more expressive than input-output

models (comparing models of the same order), as clarified in Sect. 2.1.3. All NFIR
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Figure 5.6: Results on Van der Pol oscillator. Shown are the (=) noise-free test
process output of Van der Pol oscillator, (==) NARX error, (==) LMSSN
error, and (==) PNLSS error.

Table 5.1: Comparison of NRMSEs of different approaches on Van der Pol oscillator
test dataset.

’ NRMSE \ Approach ‘

0.095 | NARX LMN (m = 8), 33 LMs, 491 parameters
> 1 NFIR LMN (various orders)
0.001 PNLSS, 23 parameters

’ 0.047 \ LMSSN, 5 LMs, 23 parameters ‘

models failed in modeling the process which is expected as the feedback is lacking
which is necessary to model the oscillatory behavior. This is nevertheless a notewor-
thy drawback as the class of processes that can be modeled with NFIR models is
limited. The NRMSE values of the different approaches are summarized in Tab. 5.1.

5.3 Cascaded Tanks Benchmark

The cascaded tanks benchmark is a fluid level control system consisting of two tanks
with free outlets fed by a pump. The input signal controls a water pump that
transports the water from a reservoir into an upper water tank. The water flows
from the upper water tank through a small opening into the lower water tank and
finally back into the reservoir. The output of the process is the water level of the
lower tank, which is measured with a capacitive water level sensor. This process has
a smooth and weak nonlinear behavior. If one of the tanks overflows because of a
too high input signal amplitude, the water flows directly into the water reservoir,
exhibiting a strong nonlinear behavior [120]. The combination of the weak nonlinear

behavior during normal operation and a hard saturation effect for high input signal
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peaks make this benchmark challenging. Furthermore, only a short data record is

available for the benchmark, which poses additional difficulty.

Without the overflow effect, the following state space model can be constructed based

on Bernoulli’s principle and conservation of mass

—km/xl(t) + k4U(t> + U)1<t) s
Ea(t) = kayJoa(t) — kg\Ja(t) + ws(t), (5.8)

y(t) = za(t) +e(t)

5.
—
—~
~
N—
Il

where u(t) is the input signal, z1(¢) and xo(t) are the state variables of the system,
wi (t), wy(t) and e(t) are noise sources, and ky, ko, k3, and k4 are constants depending

on the properties of the system.

The estimation dataset? and test dataset each consist of N = 1024 data points. The
input signals include excitation in the frequency range from 0 to 0.0144 Hz. The

sampling period is Ty, = 4sec. The measured output signals have an SNR close to
40dB.

Black-box Modeling A HILOMOT LMSSN is trained, where only axis-orthogonal
splits are allowed. Optimization is done with a Quasi-Newton method. The model
is of second order (n, = 2) and each state and output equation is modeled by a
separate MISO LMN. There is no additional knowledge incorporated. The LMSSN
has three LMs in the first state equation, four LMs in the second state equation,
and two LMs in the output equation. It achieves an RMSE of 0.52 on the given test
dataset (RMSE of the best linear approximation (BLA) is 0.72).

Gray-box Modeling Prior knowledge can be incorporated by assuming block-
oriented structures (see Sect. 3.5.2) or by restricting the z and s input spaces (see
Sect. 3.3.2). The latter will be used here. When we neglect the overflow effect, the
LMSSN can incorporate the prior knowledge, available from (5.8). The state equa-
tion LMNs are only allowed to split in the state dimensions and not in the input
dimension g[f]z = [21(k) Z2(k)], while the LM input space contains the full inner input

space §[15]2 = [#1(k) Z2(k) u(k)]. The output equation is an affine function 2% =[],

2 The estimation data is split into training data (first 70 % of the estimation data) and validation
data (last 30 % of the estimation data).
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slol = [2,(k) 25(k) u(k)]. Those restrictions, though, did not yield a significant im-

provement in modeling accuracy.

Hard Restriction Now the LMSSN is given exactly the flexibility implied by the
nonlinear structure of the physical model. For that, the first LMN is only al-
lowed to split in the first state dimension zi = [21(k)] while the LM input space
is §[1$] = [21(k) u(k)]. Therefore, the input can only influence the first state equation
linearly. The second state equation (second LMN) is allowed to split in both state
variable dimensions 2 = [21(k) Z2(k)] and there is no influence of the input signal
§[25] = [21(k) Z2(k)]. The output equation is an affine function only with the second

state variable as input zI% =[], sl = [2,(k)].

Applying those restrictions leads to two challenges. First, the BLA returns the best
possible linear model. Due to the non-uniqueness of the state space representation,
it is unclear if the state variables are in the same “order” as the physical model.
Second, the BLA is learned with all model matrices fully populated. Now the BLA
needs to be transformed so that certain parameters turn zero. To accomplish this, a
similarity transformation is not easily possible. Therefore, the unneeded entries are
simply set to zero and then a nonlinear optimization is carried out. The assumption
is that the initial BLA is a good starting point to converge to the restricted linear

model, but it is not guaranteed that this step is always successful.

When restricting the LMSSN equations to resemble (5.8) perfectly, the model per-
formance improved significantly to an RMSE = 0.25. This error value is currently
the best result on this benchmark to the author’s knowledge. Figure 5.7 shows the
fully restricted LMSSN output in comparison to the BLA and the process output.

PR A N L
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Figure 5.7: Results on the test dataset of the cascaded tanks benchmark. Here,
(===) is the process output, (===) is the model output of the BLA, and
(==) is the output of the fully restricted LMSSN.
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Figure 5.8: Projection of input spaces of best black-box (top row) and best fully
restricted LMSSN (bottom row). Here, (—) indicate splits in the in-
put space. Note that all splits are visible and there are no splits in
the missing dimension that is not shown in the projection. For the
best fully restricted model, the z spaces are restricted to g[f} = [21(k)],

250 = [21(k) 2(k)], and 21 = [].

Comparison of Black-box to Fully Restricted Model The black-box LMSSN has
38 parameters. It has three LMs in the first state equation, four LMs in the second
state equation, and two LMs in the output equation. The fully restricted LMSSN has
a total of 33 parameters. This model has two LMs in the first state equation, eight
LMs in the second state equation, and the output equation is affine. Projections of
the input spaces of the black-box and fully restricted LMSSN are shown in Fig. 5.8.
For the fully restricted LMSSN, it can be seen that the algorithm paid the most
attention to the nonlinear modeling of state equation two. The restriction of the z
and s input spaces led to improved modeling quality. In both cases, training was
carried out on the OMNI-cluster. The black-box LMSSN training took 185 min, the
training of the fully restricted LMSSN only 83 min. The speed-up can be explained

by fewer tried splits and fewer optimizable parameters.

Comparison to Other Approaches The overall LMSSN performance on this bench-
mark is comparable and sometimes better than state-of-the-art nonlinear system
identification algorithms. In [146], a very low RMSE of 0.30 is achieved with an ex-

tended model obtained with a genetic algorithm. The simulation model was extended
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Table 5.2: Comparison of different methods applied to the cascaded tanks bench-

mark.

’ RMSE [V] \ Approach \ Ref. ‘
0.30 Extended model with genetic algorithm [146]
0.34 Basis function expansion state space model | [105]
0.38 Output error method [14]
0.45 Flexible nonlinear state space model [133]
0.45 PNLSS [105]
0.51 Genetic algorithm [146]
0.63 NFIR with LMN 8]
0.67 NOBF with LMN 8]
0.93 NARX with LMN 8]
0.71 BLA
0.52 Best black-box LMSSN
0.25 Best fully restricted LMSSN

by a correctional term to better fit this specific process. Without the correctional
term, the genetic algorithm achieves an RMSE of 0.51. Other results on this bench-

mark problem are summarized in Tab. 5.2.

5.4 Silverbox Benchmark

The Silverbox identification problem represents a nonlinear mechanical resonating
system, i.e., mass, viscous damping, and nonlinear spring [144]. The electrical circuit
which simulates this system is designed to relate the displacement y(¢) (the output)
to the force u(t) (the input) by the following second-order differential equation

mi(t) + dy(t) + kuy(t) + ksy*(t) = u(t) (5.9)

with the mass m, damping factor d, and k; and k3 describing the static but position-

dependent stiffness of the nonlinear spring.

The given benchmark input signal contains N = 131072 data points and consists
of two parts (see Fig. 5.9). The first part (blue) is a white Gaussian noise sequence
with 40 000 samples filtered by a ninth order discrete-time Butterworth filter with a
cut-off frequency of 200 Hz. The amplitude increases linearly over the interval from
0 to its maximum of about 0.1 V. This part will be used for testing since the end

of this “arrow tip” tests the models in extrapolation. The second part of the signal
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Figure 5.10: Results on the Silverbox test dataset. Shown is () the test process

output, (===) error of the BLA, (==) error of the MISO/MISO LMSSN,
(===) error of the PNLSS.

(yellow and green) consists of ten successive realizations of a random odd multisine
signal. The first nine realizations of the multisine are used for training, while the

tenth realization is used as validation dataset.

Four LMSSN models (the four setups from Fig. 3.3 a)-d)) are trained with LOLIMOT
(and not HILOMOT) for faster computation on the long training data record. The
SNR is assumed to be co dB (NRMSE,ise = 0). The model order is chosen to n, = 2
as the process described in (5.9) can be written as a second-order state space system.
The results can be seen in Fig. 5.10. Shown are the test output signal and the errors
of the BLA, the MISO/MISO LMSSN, and a PNLSS model with O(¢) = [2 3] and
O(n) =[] (trained with PNLSS v1.0 [135]).

The LMSSN achieves an RMSE of 1.26 mV which is a significantly better result than
the linear model (RMSE = 13.7mV). The LMSSN performs well in extrapolation
(roughly after 20000 time steps, while, from here on, the BLA produces high error
values. The PNLSS has a very low test RMSE of 0.29 mV. The PNLSS works so well
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Figure 5.11: Input spaces of the two state equations (with four and eight LMs, re-
spectively) and input space of the output equation (three LMs). The
black contours (—) are the borders of the LMs, (¢) are the center co-
ordinates of the LMs.

even in extrapolation on this benchmark due to the similarity between the PNLSS
model and the internal polynomial structure of the Silverbox [96]. This similarity is
a clear benefit on the test dataset for this specific process/model combination. If the
polynomial degrees of the PNLSS do not match the process, severe erratic behavior

in extrapolation is the consequence (see Sect. 3.4.2).

The partitioning of the input spaces of the two state equations and the output
equation of the MISO/MISO LMSSN model are shown in Fig. 5.11. The first state
equation has four LMs, the second state equation eight LMs and the output has
three LMs.

Table 5.3 summarizes some of the best results obtained on the Silverbox problem by
other algorithms. The LMSSN performs quite well, considering that it is a black-
box model. Physical block-oriented and specifically to the task tailored models (like
the NARX model with custom polynomial regressors), nevertheless perform even
better.

5.5 Bouc-Wen Benchmark

Hysteresis is a phenomenon that is often encountered in very diverse engineering and
science disciplines. The identification of those systems is challenging, as the output
depends on the trajectory of the input. One extensively used model of hysteresis

systems is the Bouc-Wen model, which is provided in this benchmark [94].
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Table 5.3: Comparison of different methods applied to the Silverbox benchmark.

| RMSE [mV] | Approach | Ref. |
0.26 | PNLSS 98]
0.30 NARX with custom regressor | [71]
0.32 LSSVM with NARX 31]
0.35 Poly-LFR [136]
0.38 Physical block-oriented 97]
0.96 Physical block-oriented (53]
1.30 Local Linear State Space [140]
3.98 LSTM 5]
4.08 MLP [5]
4.88 TCN [5]
7.80 MLP-ANN 132]
9.10 Extended fuzzy logic [111]
13.71 BLA
1.26 MISO / MISO, 12 splits (60)
1.62 MISO / affine, 7 splits (40)
1.66 MIMO / MISO, 15 splits (96)
2.07 MIMO / affine, 10 splits (92)

The vibrations of a single-degree-of-freedom Bouc-Wen system, i.e., a Bouc-Wen
oscillator with a single mass, is governed by Newton’s law of dynamics written in

the form
my(t) +r(y,9) + 2(y,9) = u(?), (5.10)

where m is a mass, y(t) is the displacement, and u(t) is an external force. The total
restoring force in the system is composed of a static term r(y, ) which depends only
on the current value of the displacement y(¢) and the current value of the velocity

y(t). The term r(y,y) is assumed to be linear as

r(y, ) = kLy +ccy, (5.11)

where k7, and ¢y, are the linear stiffness and viscous damping coefficients. The nonlin-
ear term z(y,y) resembles the dynamic (history-dependent) and hysteretic memory

of the system. This term is derived by the first-order differential equation

Hy,9) =ag— Byl 2+ 092", (5.12)

where the Bouc-Wen parameters «, (5, v, d, and v are used to tune the shape and

the smoothness of the system’s hysteresis loop [94].
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The training and validation datasets are each a random phase multisine with
N = 8192 data points with excited frequencies between 5 — 150 Hz. The sampling
frequency is fs = 750Hz. The benchmark provides two test data sets, one with a
random phase multisine input (N = 8192) and the other with a sine-sweep input
(N = 153000).

Four third-order LMSSN models (the four setups from Fig. 3.3 a)-d)) are trained
with LOLIMOT. The SNR is assumed to be oo dB (NRMSE, s = 0). A typical
convergence curve is shown in Fig. 5.12 of the LMSSN with MISO state equations
and affine output equation. It can be seen that training and validation errors are
close together, indicating that overfitting is not an issue during training on this

process. Moreover, much overfitting is seldom an issue for LMSSN training.

Figure 5.13 shows the two test output signals of the multisine and sine-sweep test
datasets. On top are the errors of the BLA and the MISO/affine LMSSN at different
complexity stages during training (different number of total splits). The final LMSSN
model possesses a total of 74 splits, one in the first state equation, 37 splits in the
second state equation, and 36 splits in the third state equation. It is beneficial on
this benchmark that the LMSSN can model different state equations at different

complexity levels.

Different approaches that have been tested on the Bouc-Wen benchmark are listed in
Table 5.4. The LMSSN performs comparable and even better than other state-of-the-
art system identification approaches. Note that for the results of the convolutional
neural networks and the recurrent neural networks (RNNs) a data record of 153 000
training data points is used. For the here shown LMSSN studies, only 8192 samples

were used for training and validation, respectively.

RMSE

10_5 | | | | | | | | | | | | | lré
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70
total number of splits

Figure 5.12: Convergence curve of the LMSSN during training on the Bouc-Wen
benchmark. Here, (===) is the convergence on the training data, (=)
on validation data, (===) on the multisine test data, and (===) on the
sine-sweep test data.
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Table 5.4: Comparison of selected methods on Bouc-Wen benchmark [124]

RMSE

RMSE

multisine | sinesweep Approach Ref.
105 10-5 (Num. of parameters)
PNLSS
1.34 1.12 Decoupled (51) [35]
1.87 1.20 MIMO / linear [2 — 3] (90) [35]
5.42 - MIMO / linear [2] (34) 93]
3.15 - MIMO / linear [2 — 4] (109) (93]
1.27 - MIMO / linear [2 — 7] (364) (93]
1.21 - MIMO / linear [357] (217) (93]
Convolutional neural networks
2.43 1.73 Deep regularized FIR neural network [83]
3.21 2.97 Deep FIR (without regularization) network | [83]
Recurrent neural networks
2.80 5.98 LSTM (3 layers) [123]
7.6 41 | ReLU RNN 123]
Other models
17.0 138 | NARX with LMN 8]
16.4 17.2 regularized LMN FIR 8]
31.2 24.9 | OBF with LMN 8]
7.9 11 Stochastic Subspace 6]
5.3 1.5 NARX Sigmoidal (1571) [143]
5.7 1.9 Decoupled NARX (151) [143]
8.76 6.39 Volterra feedback [119]
468 18.6 Nelder-Mead [14]
468 190 | NOMAD [14]
LMSSN
2.24 1.85 MISO / MISO, 76 splits (403)
1.68 1.18 MISO / affine, 74 splits (393)
2.31 1.51 | MIMO / MISO, 20 splits (153)
1.56 3.48 MIMO / affine, 43 splits (668)
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Figure 5.13: Error of LMSSN at different stages during training on the multisine and
sine-sweep test signals of the Bouc-Wen benchmark. Here, (+) is the
test process, (===) the error of the BLA, (=) the error of LMSSN after
the first split, (===) error of LMSSN after eight splits, and (===) the
error of the final LMSSN with 74 splits.

5.6 NO, Emission Modeling of Turbocharged Diesel

Engine

In heavy-duty applications, commonly Diesel engines are employed. One crucial
aspect in developing new Diesel engines and their operating strategies is the NO,
emissions produced by the engine. Ever decreasing emissions are demanded by the
legislature. The goal to lower the NO emissions is thus of utmost importance. To
conquer this goal, new control strategies are to be developed which require more

accurate emission models of Diesel engines than are currently available.

One way to accomplish more sophisticated and accurate models is by modeling the
engines dynamically instead of commonly used static models that only yield accept-

able modeling accuracy [49, 4]. An accurate dynamic emissions model might also be

3

employed as a virtual sensor as it is not an easy task to measure NO, emissions”,

which is only practically feasible on test stands or prototypes due to too excessive

3 commonly employed NO,-sensors have a tolerance range of round about 410 % (i.e., Continental

UniNOy sensor [21])
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Figure 5.14: Air pathway through a turbocharged Diesel engine with exhaust recir-
culation (adapted from [149]). The used model inputs for identification
are indicated in green, the modeled output (NO, mass flow) is indicated
in blue.

weight, space, and cost. Therefore, a dynamic model would bring the developments
of a so-called “digital twin” of the Diesel combustion engine one step closer to real-
ization. A side effect of dynamic modeling is cost reductions. Static measurements
(with long hold times until the process settles) are more expensive than dynamic

ones, which can be kept shorter in time and require thus less time on test benches.

To show that the LMSSN is an appropriate tool for dynamic NO, emissions modeling,
a simulation model (GT-Power Engine Simulation) of a 2.9 liters turbocharged direct
injection Diesel engine without charge air cooling is used as system under test. This
GT-Power model is a solid representation of its physical counterpart [113], which
makes the identification of this simulation model with data-driven methods sensible.

A schematic sketch of the air pathway of the engine is shown in Fig. 5.14%.

In the simulation study, the engine is excited by four manipulated variables: engine
speed n., injection mass flow 7h;, intake throttle valve position (y,, and the exhaust
gas recirculation valve position (.. For excitation of the manipulated variables, a
space-filling APRBS is used [131].

Six inputs are used to model the NO, mass flow myo, (listed in Tab. 5.5). The
training signal consists of N = 20700 samples, the validation dataset of N = 5980

4 Note that not all built-in components are drawn for simplicity.
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Table 5.5: Used model inputs and outputs for NO, modeling

Inputs/Output | Symbol Description
uy (k) TNe Engine speed
us (k) 1, Injection mass flow
ug(k) T; Intake temperature
uy (k) Di Intake pressure
us (k) D Exhaust pressure
ug (k) X; O, concentration of intake

] y(k) | o, | NO, mass flow |

data points. For testing, on the one hand, the non-road transient cycle (NRTC)
(N =12327) is used, which is an official dynamic cycle used by the US EPA and
the EU for engine certification [131]. On the other hand, the static model behavior
is investigated. For that 1000 space-filling static operating points (Sobol sequence)
in the six-dimensional identification input space are held for 6000 time steps and are
then concatenated. Only the last model output of each holding period is used for
the evaluation of the static behavior (in total 1000 data points). All signals have a
sampling frequency of f; = 10 Hz.

A second-order LMSSN model is trained with LOLIMOT?. For comparison, results
from the long short-term memory (LSTM) model and gated recurrent unit (GRU)
model have been taken from [131]. Here, the LSTM model consists of two LSTM
layers followed by a dense layer with 15 neurons for each layer. The GRU has 35
hidden states followed by a dense layer [131]. The model order of the LMSSN and
the structures of the LSTM and GRU have been found by trial and error.

A comparison of the model’s training NRMSE, test NRMSE on the NRTC, test
NRMSE on the static data, the number of parameters ny, and normalized compu-
tational demand e are shown in Fig. 5.15. The normalized computational demand
is used to make the models comparable since they have been built in different pro-
gramming languages. It is the ratio of the model’s execution time for one time step

to the execution time of 100 consecutive random exponential function evaluations

1 tmodel
€= . . 5.13
N; test thOexp ( )

% Training with oblique HILOMOT was tried as well. However, no performance improvements
were noted on this process at the cost of a lot longer computation times.
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Figure 5.15: Results of the ( mll ) LMSSN, ( oll ) LSTM model, and ( all ) GRU model
for the identification of the NO, emissions of a GT-Power engine simula-
tion of a 2.9 liters Diesel engine. Here, ny is the number of parameters

and € is the normalized computational demand. The results of the
LSTM model and GRU model are taken from [131].

It can be seen that the LMSSN performs best on the NRTC and static test datasets.
Noteworthy is that LMSSN performs best with less than a tenth of parameters
compared to the LSTM and GRU model (LMSSN 308 parameters, LSTM 3256
parameters, GRU 4551 parameters). The evaluation time is also the lowest for the
LMSSN, but the difference to the other two models is not as large as might be
expected from the differences in the number of parameters. This is likely because
the calculations of the validity functions for the LMSSN are quite time-consuming.
In practice, the low number of parameters and low execution time make the LMSSN
model an appropriate candidate to be employed in actual operation on an electronic

control unit with limited memory and computation power.

A more detailed look at the model performance of the LMSSN and its dynamic and
static behavior can be found in Fig. 5.16. All shown quantities have been normalized
to a range between zero and one. First, we focus on the dynamic behavior (upper
and lower left plot). Four distinct phases (marked in yellow, green, red, and blue)
are investigated that show some interesting features. The yellow phase indicates the
transient phase. The LMSSN performs quite well right from the start. This is due
to the way the unknown initial state on the test dataset is set. Since it is known for
the LMSSN that the state trajectory is inside the unit hypercube during training,
the initial state for testing is set to gty = 0.5 -1"=*1 which is a viable initialization
under the assumption that the test signal operates in roughly the same regime as

the training signal.

The LMSSN can approximate the process quite well in the first steady phase (green),
while this is not true for the second steady phase (red). As explained in [131], a
reason why the LMSSN does not perform well in the second steady phase is likely
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Figure 5.16: Evaluation of the LMSSN on NRTC (upper plot). Correlation plot of

the LMSSN model on NRTC test data (lower left plot) and static test
dataset (lower right plot). The line (—) ¥ = m -y + b is the least
squares regression in the (y,¢)-space. An optimal model yields slope
m = 1, offset b = 0, and ¢ = 0. For the dynamic data, (¢) indicates a
transient phase, (o) a first steady phase, (o) a second steady phase, and
(e) operating points that lead to high NO, emissions.

that the GT-Power simulation model is flawed in this region as also other models

are congruently not able to model this sequence. The blue phases indicate operating

regions of high NO, emissions. Here, the LMSSN is also able to approximate the

process well.

Second, the static behavior of the LMSSN is shown in the lower right plot of Fig. 5.16.

Here, the correlation plot between the static process and model output is shown.

The least squares regression line slightly underestimates the static behavior for high

amplitudes but otherwise yields good results.
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5.7 Subprocess Modeling of Combine Harvester

Combine harvesters are complex agricultural machines that automate the harvesting
process of various kinds of grain crops to a large proportion. Due to the enormous
complexity of combine harvesters, it is common to model combine harvesters as
“the sum of its subprocesses”. The main subprocesses are threshing, separation, and

cleaning [23].

After cutting, the crop enters the threshing process (see Fig. 5.17). Here, the separa-
tion of grain kernels and chaff from the straw takes place. Two material flows exit the
threshing process and enter the separation and cleaning subprocesses, respectively.
In the separation process, the remains of grain kernels left in the straw are once more
tried to be separated from the straw. The separated grain and the other material
flow from the threshing enter the cleaning subprocess, where the grain kernels are

separated from the chaff and remaining straw pieces [62].

To increase the efficiency and achieve optimal performance of the combine harvester,
accurate models of the subprocesses are needed. Experiments have shown that har-
vesting is a nonlinear dynamic process [81] requiring sophisticated nonlinear dynamic

models.

One subprocess shall be modeled with the use of LMSSN. The chosen subprocess is
threshing and how this process influences the losses after separation, see Fig. 5.17.
The crop passes through a gap between the threshing drum and threshing concave,
which is variable in height. The throughput (u;; the amount of passing crop), the
height of the gap (u2), and the rotational speed of the drum (us3) influence the

threshing process most dominantly.

Two datasets (the first for estimation with N = 4527 data points and the second

throughput =—p » separation losss

rotational speed —{ threshing |_>
— IOSSC

sap —p orain tank

cleaning

»
»

(=) material flow

Figure 5.17: Simplified block diagram of threshing process within a combine har-
vester (adapted from [62])



142 5.7 Subprocess Modeling of Combine Harvester

Table 5.6: Results on test data for modeling the separation losses within a combine
harvester.

’ NRMSE \ Approach ‘

056 | BLA

0.52 | Static LOLIMOT
0.38 | LOLIMOT NARX (m
0.36 | LOLIMOT NARX (m
0.26 | LMSSN (n, = 1)

1)
2)

for testing with N = 2234 data points) are available. Both datasets are obtained
from the field operation of a combine harvester, where the three inputs are excited
by an optimized nonlinear input signal (OMNIPUS) [62]. The datasets have been
preprocessed to eliminate dead times. Since the throughput is believed to have the
strongest influence on the process, a single-input single-output (SISO) LMSSN will

be trained. Note that all results are normalized.

In total, four different LMSSNs were trained where all state equations are modeled
by one LMN and the output equation is modeled by another LMN. LMSSN models
from first to fourth order are tried. It turns out that an increasing dynamic order of

the LMSSN does not yield better performance on validation data.

The first-order LMSSN achieves an NRMSE on test data of 0.26 (one LM in the
state equation, two LMs in the output equation). Therefore, the resulting LMSSN

structure resembles a Wiener block-oriented model (see Sect. 3.5.2).

Employing a purely static model (static LOLIMOT model trained with the LMN-
TOOL v1.5.2 [48]) yields an NRMSE of 0.52, while the BLA (LTI model) achieves
an NRMSE of 0.56. Only the combined use of a dynamic and nonlinear model in
the form of the LMSSN makes the test error drop roughly to half (NRMSE = 0.26),
compared to the nonlinear static and linear dynamic model (see Tab. 5.6). The
normalized process, LMSSN model, and BLA output on test data can be seen in
Fig. 5.18.

The output equation of the first-order LMSSN model is shown in Fig. 5.19. The
split in the #;(k)-dimension moved outside the normal range [0, 1] (the black plane
in left plot), which produces seemingly exponential behavior in the interpolation
range [0, 1]? (right plot). The LMSSN is able to perform an automatic split adaption
through the rescaling of the state trajectory after every split (see Sect. 3.3.3). This
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Figure 5.18: Normalized separation losses of process, BLA, and LMSSN for modeling
of the threshing process of a combine harvester.
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Figure 5.19: Normalized output equation g(k) = ¢(Z1(k),u(k)) of a first-order
LMSSN with two LMs. Left plot: the split (black plane) moved outside
the interval [0, 1] in the Z;(k)-dimension to Z;(k) = —0.073. Right plot:
this produces in the interpolation range [0, 1]? seemingly exponential
behavior.

automatic split adaption leads to the ability of LMSSN to model, for example, ex-
ponential behavior with a lot fewer LMs than tree-construction algorithms without
split adaption. This is the case, as usually for LMNs, the overall nonlinear behavior
is dominantly defined by the LMs. In the case shown here, though, the split adaption

mechanism mainly utilizes the shape of the validity functions instead.
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6 Conclusion and Qutlook

This thesis focuses on developing innovative methods in the field of nonlinear system

identification.

Conclusion

A novel class of model structures and associated training algorithms for building

data-driven nonlinear state space models is developed.

To achieve this goal, the foundations of system identification have been explained.
This encompasses different dynamics realizations such as internal and external dy-
namics approaches for which a non-comprehensive overview of advantages and dis-
advantages is given. Neural networks with an emphasis on local model networks
(LMNs) as well as different nonlinear optimization algorithms are covered. For recur-
rent structures like the nonlinear state space model, the problem of backpropagation-
through-time is explained. Special attention is then given to different training strate-
gies regarding the gradient update frequency. Here, the cases of batch, mini batch,
and sample adaption training are studied for which different options for the state
initialization are introduced. The different gradient update strategies are then as-
sessed regarding their stochasticity, computational demand, the dimensionality of
the optimization problem, and their likeliness for error-prone gradients. Closing the
foundations chapter, the bias/variance tradeoff and model complexity selection is

explained.

The novel local model state space network (LMSSN) is developed. The model struc-
ture of LMSSN can be explained from a neural network and a system identification
perspective. The local linear model tree (LOLIMOT) and hierarchical local model
tree (HILOMOT) algorithms are extended to be applicable to state space. This
concerns a strategy for initialization, transforming the state trajectory and adapting
splits, constructing local loss functions in the state equation, and the notion of a
worst local model (LM) is expanded to multiple LMNs. Additionally, data-driven



146

local coordinates (DDLC) are covered and how this strategy is employed during op-
timization. The model’s favorable extrapolation behavior is explained. Finally, some
numerical issues with normalized radial basis function (NRBF) validity functions in
recurrent structures are explained and it is explained how hierarchical sigmoid func-
tions as validity functions, for which the partition of unity also holds, can alleviate

those problems.

Common recurrent neural networks (RNNs) are similar but not equal to nonlinear
state space models and the conversion from one model to the other is shown. Different
building blocks for deep RNNs are explained from a controls perspective, including
the simple recurrent, fully connected, long short-term memory (LSTM), and gated
recurrent unit (GRU) layer. A comprehensive case study compares different deep

RNN structures and closes this part.

The overall very good performance of LMSSN is demonstrated in various studies
and applications. Studies regarding the partitioning strategy of LMSSN and re-
garding different dynamics realizations are carried out on two different artificial
test setups. Challenging nonlinear system identification benchmarks are addressed.
The LMSSN’s performance is comparable and sometimes beyond the performance
of other state-of-the-art nonlinear system identification algorithms. It is shown that
the LMSSN method can handle a very wide variety of processes and consistently
computes expressive yet compact models. The LMSSN is successfully applied to
two real-world processes. The first process deals with the NO, modeling of a tur-
bocharged Diesel engine. It is shown that the LMSSN achieves superior test per-
formance in comparison to other identification algorithms while having the lowest
model complexity in terms of number of parameters and model order. The second
real-world application is the subprocess modeling of a combine harvester. Here, the
threshing process is modeled. The LMSSN best describes the process in resemblance

to a Wiener block-oriented model.

Outlook

The following points can be addressed in future research.

Imposing Structure Through Nonlinear Canonical Representations There exist
different canonical representations for linear state space models, such as the observ-

able, controllable, or Jordan canonical forms. This removes the redundancy of the
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state space model but imposes severe restrictions concerning the model’s flexibility.
Some work has been done regarding the extension of the linear canonical forms into
the nonlinear world [151]. The properties of such canonical forms in the nonlin-
ear case and incorporation possibilities into LMSSN shall be further investigated.
These restriction are assumed to be too severe, at least in the pure black-box case.
More promising seems to pursue fully populated matrices/vectors but combined with
Lqi-norm regularization. L;-norm regularization can generate sparse representations

(many parameters are driven to zero) but keeps the structure flexible.

Local Optimization As stated in [85], global optimization runs the risk of locally
inaccurate LMs (meaning that they do not resemble appropriate linearizations of
the nonlinear system in the according operating point) for the sake of overall lower
cost function values. Therefore, for static and external dynamics LMNs, regular-
ization via local estimation is very commonly utilized. The idea is to estimate the
parameters of each LM separately, ignoring/neglecting their coupling due to the va-
lidity functions’ overlap. Since a single loss function measures the mismatch between
process and model output for LMSSNs, the parameter estimation becomes intrinsi-
cally global. However, in [153], it is demonstrated how local and global estimation
can be combined and what benefits can be obtained by this unification. This idea
and its transfer to the LMSSN is quite promising. It can be realized by adding
the local losses IZ[S]] and !9 from (3.15) and (3.16), respectively, to the global loss
I10ba1 in the objective to be optimized. This can be done in a weighted manner, i.e.,
Liotal = @lgiobal + (1 — @) (Zi il (sl 4 >om ]7[,‘;]). This promises to exploit all benefits

Z7J
from local estimation without reducing the computational load, though.

Excitation Signals Based on State-space-filling Designs For all data-driven mod-
eling approaches, the modeling quality highly depends on the information contained
in the data that is used for training. For external dynamics approaches, much work
has been done that aims for optimized nonlinear input signals (OMNIPUSSs) [52, 62].
The idea is to build in a first step a rough proxy model of the process for which the
input signal shall be designed. In a second step, the input signal is designed so that
it covers the input space to the proxy model in a space-filling manner. Currently,
external dynamics proxy models are employed. Here, the idea for future research is
to employ state space proxy models instead and apply space-filling designs to the
inner input space a(k) = [27 (k) u(k)]”.
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A Background and Notation

A.1 Neural Networks

Let us consider the basis function formulation

Nm

j=1

The model output ¢ is calculated as a weighted sum of n,, basis functions @;(-).
The basis functions are weighted with the linear parameters 6; and depend on the
input vector u and a set of nonlinear parameters anl]‘ Now we say that the input
arguments to the basis functions are combined into z;, which are linear combinations

of the inputs (with an additional offset)
O (u,00") = @) ((w)  with 2(u) =w]u+b;. (A.2)

Note that weight-vector MJT and offset b; are, in this case, the hidden layer parameters

Qg-"l] from (A.1) and @, is called a neuron of the neural network.

Different well-known neural network types are obtained depending on the choice of
®,(+). The multilayer perceptron (MLP) network is obtained if a saturation function

like the sigmoid function
1

T 1+ exp(—z(w)

o;(w) (A3)

or the tanh(-) is employed. The name originates from the early works on the per-
ceptron of Rosenblatt [108].

Another popular choice are rectified linear unit (ReLU) functions

ReLU;(u) = max(0, z;(u)) . (A.4)
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Figure A.1: Illustration of different activation functions @;. Shown are (===) the
tanh, (=) sigmoid, and (==) ReLU activation.
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Figure A.2: Network setup

Hidden layers with those ReLLU functions are particularly popular in deep learning
applications. The layers of these neurons are oftentimes referred to as fully-connected

or dense layers.

Those three nonlinear functions are shown in Fig. A.1. They can be interpreted as
activation functions as there are parts where the nonlinear function lets an input

pass and where the input is blocked (or, in the case of the tanh(-), set to —1).

A fourth-order polynomial
y = 0.5+ 0.02u + 0.055u* + 0.02u* — 0.03u* (A.5)

is considered as a small illustrative example. This function is to be approximated
with a neural network (one hidden layer with two neurons), as depicted in Fig. A.2.

The model output g is calculated by

g281+82 :01 -@1(w1u+b1)+92-@g(wQU—i—bg), (A6)
z1 z2

with the six trainable parameters 01, wy, by, 0, wo, by. Three neural networks (one
with tanh(-), one with sigmoid, and the third with ReLU activation functions) are

trained with a Quasi-Newton optimizer with N = 50 data points which are, for
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Figure A.3: Neural networks with one hidden layer with two neurons. Here, (===) is
the fourth-order polynomial process. The model output ¢ is the sum of
the two scaled neuron outputs § = $; + s9, shown by (===) (=) and
(== for different activation functions.

simplicity, linearly spaced points in the interval [—4,4]. The results are shown in
Fig. A.3. It can be seen how the different activation functions are active in a part
of the input space and inactive in the other part. A superposition of an increasing

number of nodes makes neural networks very expressive.

A.2 Comparison of NRBF Network and LMN

A visual example of a normalized radial basis function (NRBF) network in contrast
to an local model network (LMN) is shown in Fig. A.4 for the one-dimensional case.
Shown are an NRBF network (left plots, blue) and an LMN (right plots, yellow)
with NRBF validity functions with three weighted nodes / local models for each
neural network (plots si-s3). The location and standard deviations of the radial
basis functions (RBFs) are chosen for both neural networks to (py,07) = (—3,0.5),
(2, 09) = (—1,0.5), and (us, 03) = (2,0.5).

The local characteristics of both networks are clearly visible. The additional param-
eter per node / local model gives the LMN greater modeling capabilities when the
number of local models (LMs) is equal for both models. In the case of an infinitely
small standard deviation (o — 0), the NRBF network is hard-switching its constant
local behavior depending on the location in the input space. The same goes for the

LMN as it switches between different affine functions, also depending on the location



152 A.3 Nonlinear Optimization Algorithms
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Figure A.4: Comparison of an NRBF network with an LMN. Here, (==) is the true
process. The model output 3 is the sum of the three (===) weighted
neurons / (==) local models as § = s1 + $3 + s3.

in the input space. In this extreme case (¢ = 0), an LMN is equivalent to a piecewise
affine (PWA) model.

A.3 Nonlinear Optimization Algorithms

Some nonlinear optimization algorithms are explained in more detail.

Newton’s Method For the steepest descent method, only the gradient g(7) is nec-
essary for the parameter update. In contrast, Newton’s method (and other second-
order methods) use information about the curvature of the loss function in addition
to the gradient for the parameter updates [3]. A quadratic approximation of the loss

function around an initial parameter vector §(i) can be written as

I(O(i+1)) = 1(0(i) + (0(i+1) —0(:)) " g(i) + ;(9(2' +1) = 0(0))" H(@)(0i+1) - 0())

(A.7)
where g(7) is the gradient and H (i) the Hessian matrix of the loss function with
respect to 6(i). Now, one can set the gradient of the approximate loss function

regarding 0(i + 1) (A.7) to 0, leading to the optimality condition

oI(0(i+1)) 1
S (A8)
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which gives the condition in terms of the quadratic approximation as

g(i) + H(i)(0(i + 1) — 0(i)) = 0. (A.9)

After rearranging (A.9), the following parameter update equation is obtained
0(i +1) = 0(i) — H(i)'g(i). (A.10)

Here, the (A) denotes that the obtained parameters are optimal with respect to the
quadratic approximation of the loss function. Comparing (2.56) with (A.10) shows
that for the classical Newton method (i) = 1 and R(i) = H '(3).

A step size is reintroduced since one can never really know how well the quadratic
approximation fits the actual loss function surface. It is most of the time optimized

via line search. This then yields the damped Newton update equation as

0(i+1) = 0i) — (i) H (i) g(i). (A.11)

A major concern with Newton’s method is that the updated parameters will only
decrease the loss function value for positive definite Hessians H (7). This is surely
true in the vicinity of an optimum but is not necessarily true for an initial param-
eter vector. Modified Newton methods can therefore be employed, using an altered
Hessian H (i), which is close to the original H (i), but it is ensured that this matrix

is positive definite [89)].

The most important advantage (of using H(i) in the parameter update) is that
the rate of convergence is of second order. However, this comes at the cost that
second-order derivatives have to be computed and a computationally expensive ma-

trix inversion needs to be performed.

Some properties of Newton’s method are listed below [89]:

requires second-order derivatives

e cubic computational complexity due to matrix inversion

o quadratic memory requirement complexity (storage of Hessian)

o fastest convergence normally encountered in nonlinear optimization

e requires a single iteration for the solution of a linear regression problem
« unaffected by a linear transformation of the parameters

o suited for small problems (order of 10 parameters).
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Quasi-Newton Method Since the calculation of the Hessian H (i) is computation-
ally expensive, Quasi-Newton methods use only information of loss function eval-
uations /(A(i)) and the gradient g(¢) to approximate the Hessian H (7). This can
be done with the formula by Broyden [13], Fletcher [36], Goldfarb [42], and Shanno
[127] (BFGS), as it has been proven to be the most effective general purpose method.

For a detailed account of the calculation, refer to [112].
Again, some properties [89]:

e no requirement of second-order derivatives

o quadratic computational complexity owing to matrix multiplication

e quadratic memory requirement

» very fast convergence

o requires at most ngy iterations for the solution of a linear regression problem
« affected by a linear transformation of the parameters

o suited best for medium sized problems (order of 100 parameters).

Adaptive Moment Estimation Method Another widespread choice for nonlin-
ear optimization is the adaptive moment estimation (ADAM) method [59]. ADAM
has been applied successfully on various machine learning tasks [148, 59] and is in-
tensively studied in the machine learning community [104, 67]. ADAM computes
individual adaptive learning rates for different parameters from estimates of the gra-
dients’ first- and second-order moments. It was designed to combine the advantages
of two other optimization algorithms, the adaptive gradient algorithm (ADAGRAD)
(which works well with sparse gradients) and root mean square propagation (RM-
Sprop) (which works well in online settings). Having the advantageous properties
of both of these algorithms enables us to use ADAM for a broader range of tasks.
ADAM can also be looked at as the combination of RMSprop and stochastic gradi-
ent descent (SGD) with momentum. It hereby combines an exponentially decaying
average of past gradients m(7) and an exponentially decaying average of past squared

gradients v(7)

m(i) = fim(i — 1)+ (1 - 51) gli) (A12)
u(i) = fawli — 1)+ (1 - 52) g*(0). (A.13)

The squared gradients are calculated element-wise (with the Hadamard product)

as ¢*(i) = g(i) ® g(i). Here, m(i) and v(i) are estimates for the first-order moment
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(the mean) and the second-order moment (the uncentered variance), hence the name

adaptive moment estimation.

At the beginning of the training, m(i) and v(i) are initialized as zero-vectors. There-
fore, they are biased towards zero in the early epochs. These biases are counteracted

by computing bias-corrected first- and second-order moment estimates as

)= 20 h18
0(i) = 1“_(%5. . (A.15)

For the derivation, refer to the original paper [59]. The parameter update rule is

eventually calculated as

0(i +1) = 0(i) — ——L—1ni). (A.16)
(i) + €

The authors propose standard values of 0.9 for 3, 0.999 for S5, and 10728 for €.
Some properties of the ADAM optimizer [59, 16]:

e no requirement of second-order derivatives
e linear computational complexity
e linear memory requirement complexity

« the actual step size taken by ADAM in each iteration is approximately bounded
by the step size hyperparameter. This property adds intuitive understanding
compared to other unintuitive learning rate hyperparameters in common ma-

chine learning optimizers.

o step size of ADAM is invariant to the magnitude of the gradient.

A.4 Levenberg-Marquardt Algorithm Implementation

In the following, some details regarding the Levenberg-Marquardt algorithm and its
implementation is covered. The general procedure is adapted from [96]. To solve
(2.72), it is written as

0 =0—nJ"J+NI)""J"e, (A.17)
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where the updated parameter vector is denoted by (-)* and all indices are left out

for brevity. Now, we rewrite the problem according to
(LTI +NT)p=J"e (A.18)

and solve this system of equations (also called the normal equation), where the

parameter update p is defined as

0 —0
p=—"——. A.19
p " (A.19)

The singular value decomposition (SVD) of J is given by
J=UxV". (A.20)

Since we usually have N > ny, the thin, or economy, SVD is used, which means that
U only contains ng columns and X is a square matrix € R™*" . When J is singular,

J has rank ny < ng and the truncated SVD is given by

J = Udiag(oy,09,...,04,,0,...,00V". (A.21)

(VE"s VT 4+ X20) p =V E'U"e. (A.22)

I

Now we can define a matrix T, which adds the scaled identity matrix A2 to 7%,

which is an (ng X ny) matrix as

z:diag(af+A2,a§+A2,... o2 +)\2,>\2,...,/\2). (A.23)

Y ne

Using the property VIV = I (since V is also a unitary matrix), inserting I' and

rearranging (A.22) yields

p=VI'EU"e. (A.24)

At last, let us define A as
A=T"1%7 = di 7 2 9w .0 A.25
pav ] 5] lag<a%+>\2>o_%+)\27 ’U%é—l-)\Q’ ’ ) ; ( )
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which then yields the final equation

p=VAUTe. (4.26)

Before computation of the SVD, the columns of J are normalized with respect to
their root mean squared (rms) value for better conditioning of the SVD. Vector
p is afterward “denormalized” accordingly. The learning rate is chosen as n = 1
so that operation is purely controlled by A. The factor A is initialized with the
largest singular value in the first iteration oy [37]. The updated A, denoted by \*, is

calculated as
2 if 1(6*) < I1(8
N— 1) <10 (A.27)
A-v10, if 1(6%) > 1(0)
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B LMSSN Details

B.1 LMSSN Equations

In the following, the local model state space network (LMSSN) notation is explained.
Let us consider the multiple-input single-output (MISO) LMSSN. Note that an ex-
tension to the multiple-input multiple-output (MIMO) case is straightforward.

The MISO LMSSN can be written as

max(nm,; ,No)

dk+1) = > (o +A2(k) + Bju(k)) 8 (&(k), u(k))
max(ii n0) (B.1)
I = > (p+ ek + duk)) &7 (2(k), u(k))

The parameters o;, A;, B;, p;, cr'.d¥ stand for one “slice” in the third dimension of

=50 %)
Fig. 3.10 as
o, A, B

]

T 4T
Pi g 4

(B.2)

The first “slice” O, is fully populated since we always start with an affine approx-
imation. In all other “slices” (j = 2,...,max(n,,,,n,)), some rows may contain
parameters, while others do not, depending on the way each individual state or out-
put equation is split (see for example Fig. 3.10, where for j = 2 the third row has
no entries and for j = 3 entries are missing in all rows except the second). Note
that max(n,,,, n,) is used for ease of notation without loss of generality as not all
rows of each ©; may contain parameters. This makes all combinations of MIMO
and MISO local model networks (LMNs) and affine functions in state and output

equation possible.
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The validity functions, from now on in short

=J

@[jS] (2(
[0]

b;(k) = (B.3)

are constructed either by normalized radial basis functions (NRBFs) or by hierar-
chical sigmoid functions. Just as in (B.2), the first “slice” @, (k) is fully populated,
as in all other “slices” (j = 2,..., max(n,,,, n,)) some rows may contain parameters,
while others do not, depending on the way each individual state or output equation

is split.

Validity Functions — Example 1 For example, consider a second-order LMSSN with
a MIMO LMN with three local models (LMs) for the state equation and with an
affine output equation. Then, (B.3) becomes for j = 1,2,3

(2 (k), u(k)) o5 (2 (k), u(k)) o5 (2 (k), u(k))
Dy (k) = | @ (@(k),u(k))| o(k) = | D5 (@(K), u(k))| s(k) = D5 (2(K),u(k))
1 0 0

(B.4)
Note that the first two rows of @, (k), @,(k), and P4(k) contain the same values,
respectively, as the validity function is shared for the MIMO LMN.

Validity Functions — Example 2 As another example, consider a second-order LMSSN
with a MISO LMN with two LMs for the first state equation, and a MISO LMN with
three LMs for the second state equation, and an affine output equation. Then, (B.3)

becomes for j =1,2,3

O (2(k), u(k)) O (2 (k), u(k)) 0
D (k) = | B (2(k), u(k))| o(k) = D54 (2(k), u(k))| s(k) = |D5L(2(k), u(k))
1 0 0

Note that in &

4,7
index stands for the j-th local model.

the first index indicates the i-th state equation and the second

Normalized Radial Basis Functions The NRBF validity functions are calculated
by
@;(k) = w;(k) @ [IL(R)l, . (B.6)
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where ¥, (k) denote the radial basis functions (RBFs), @ element-wise division, and
|&(k)||, denotes a vector with the 1-norms of the RBFs in each state and output
max(nim; mo) (k) with ¥;(k) > 0. For the divisions,

equation, which is calculated by >, v,

a very small € is added to the denominator.

Normalized Radial Basis Functions — Example 1 For example, consider again a second-
order LMSSN with a MIMO LMN with three LMs for the state equation and with

an affine output equation. Then, (B.6) becomes

wl[s] l‘p2[5] W[S]

P D - -2 -3
v +u72[sz Tu?és] +e o +w2[sz T%[f] +e v +¢2[sz -}-WB[,S] +e
— Ve _ 4% — 2
D, (k) = g g Dy(k) = SOOI Dy(k) = b g
vl gl vl gl e vl gl
1 0 0

(B.7)
Note that the first two rows of @, (k), @,(k), and @4(k) contain the same values,
respectively, as the validity function is shared for the MIMO LMN. The argument £

is omitted for brevity.

Normalized Radial Basis Functions — Example 2 As another example, consider a
second-order LMSSN with a MISO LMN with two LMs for the first state equa-
tion, and a MISO LMN with three LMs for the second state equation, and an affine
output equation. Then, (B.6) becomes

! !

Ll _ Yie 0
WL+ e O T e .
[s] TS wls
Di(k)=|_ i | By(k)= | Ver | By(k)= |
W e LTl ol e s+ Vo H e
1 0 0
(B.8)
Here, the argument k is omitted as well for brevity. Note that in Wi[,sj], the first

index indicates the i-th state equation and the second index stands for the j-th local

model.

Radial Basis Functions The RBFs are calculated by

w0 = esp (=5 (70 o™ - ul) 2 ([0 0] - n)) . B9
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where HJ-T (row vector) contains the center coordinates of the RBFs regarding the

B = [METT]] ) (B.10)

and X, is a diagonal matrix, which contains the squared standard deviations regard-

state and input dimensions

ing the state and input dimensions

(B.11)

Hierarchical Sigmoid Functions The hierarchical sigmoid validity functions are

calculated by
®,(k) = [[ (k). (B.12)
=1

where n, is the number of stacked sigmoid functions. The sigmoid functions ¥, (k)
are calculated by

o, (k) with (B.13)

- 1+es®
Gk = (o [1 270 oT)]) (B.14)

Here, k is a fiddle parameter determining the steepness of the sigmoid functions and

vl are the split parameters containing the distance to the origin and “direction” of

the sigmoid (which can be optimized as well) as

v =[] . (B.15)

Optimization Problem All local model parameters are gathered in

@: @1 @2 @max(nmi,no) : (B16)

In the most general case, all optimizable parameters are finally concatenated in the

vector

0 = [vec(®)" VT 2l1". (B.17)
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Here, vec(+) selects all non-empty elements of © and vectorizes them. The vector V.
stores all split parameters v; from (B.14) of all sigmoid functions in the hierarchical
local model tree (HILOMOT) case, while zl is the initial training state vector.
Optimizing the split parameters V and initial training state vector z! is optional. Tt
shall be noted that the majority of parameters in 8 comes from vec(©), a lot fewer

from V, and only n, from z,.

The optimization problem is then stated by

N
argmin I(¢) = argmin »_ e*(k,f) with (B.18)
0 6

=1

e(k,0) = y(k) —9(k,0). (B.19)

B.2 Affine Transformation

Starting point for the affine transformation are the MISO LMSSN equations from
(B.1). The state trajectory is transformed initially and after every optimization in
such a way that it scales exactly in the unit hypercube [0, 1]™ (see Fig. B.1). To
accomplish this, for each state variable z; an offset s¢ and range parameter s is

calculated according to

= mind (1), B2
s; = max (k) — mkin zi(k) . (B.21)
8(2) 52
Al ( R
1 | 1
g L LF __J , transf. g ..... - M-
« B A
0 —— ST | 0 .

Figure B.1: Transformation of state trajectory for a two-dimensional example. The
evolving state trajectory is transformed so that it fits inside the square
[0, 1].
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Now, the transformed state vector Z(k) can be found by

E(k) =T7"(&(k) — 1), (B.22)
where
s7 0 0 59
0 s s$
T=1| ' S land t=1| " |. (B.23)
0 Sn. sp

Using the relation (B.22) to transform (B.1) leads to

max(nmi Mo)

Bkt 1) = Y (o + AE(k) + Bju(k)) & (Da(k) + ¢, u(k))
max(jr:ji,no) (B24>
gy = > (ﬁj + & E(k) + d“fu(k)) S (T (k) +t, u(k)) ,

with the transformed scalars, vectors, and matrices

éj = IilQ]’ + Iilﬂjzﬁ -t

i —1

Aj - I AJI
Bj - I_lﬁj

: (B.25)

pj=p;+¢Tt

& =T

~T T

dj :dj .

Transforming NRBF Validity Functions The transformation of the NRBF valid-
ity functions leads to transformed center coordinates for the state variables (com-
pare (B.10))

B = (" T (B.26)

and transformed squared standard deviations (compare (B.11)) for the state vari-

ables

e _
DR S (B.27)

Since both T and X are diagonal matrices, (B.27) simplifies to

s = (sl (B.28)
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The center coordinate in the process input dimensions H[“] and the squared standard

deviation regarding the process input dimensions e stay unaltered.

Transforming Hierarchical Sigmoid Validity Functions For every sigmoid func-

tion, the vy and all entries of yl[x] (compare (B.15)) are transformed as

T
Up = vy + le t

T T
5 =07 T

The entries in QE"} regarding the process input dimensions stay unaltered.

Initial Condition The initial condition for the state vector is transformed as

To=T &g —1t). (B.31)

B.3 Gradient Calculations

To better understand the derivation of the gradients, we will first consider a more

intuitive and schematic sketch that is not so strict regarding notation. Then, in a

second step, we will derive the exact gradients.

B.3.1 Sketch of Gradient Calculation

We consider the MISO state space model
(B.32)

2(k+1)=02(k)+ AD(k)L
(B.33)

g(k) = p@(k) + " D(k)2(k) + d" D(k)u(k).
The multiplication operation between the parameters (o, A, B, p, c’, dT), validity
vector @(k), and state vector Z(k) or input u(k) is not closely defined. All model

parameters are stored in the matrix

(B.34)

[

o

B
P T dT

@:

I
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All optimizable parameters are concatenated in the vector
0 = [vec(®)" VT 2l17. (B.35)

Here, vec(+) selects all non-empty elements of © and vectorizes them. The vector V.
stores all split parameters v; from (B.14) of all sigmoid functions in the HILOMOT

case, while gOT is the initial training state vector.

Calculating the derivative of the model output g(k) with respect to 6; (i-th entry of
9) yields

oy(k)  o@(k) Op
20, P o0 T 5,2

+ (cT 02(k) + aCTfﬁ(k)> 2(k) + cTQB(k)ai@

00; 00;

+ (dTagé? N %Céi cp(k)) u(k) (B.36)

with

0P(k) 0A R oz (k)
+<A 20, +89i¢(k)> (k) + Ad(k) 20,
od(k) OB
+ <B o+ aej@(k)) u(k) . (B.37)

Normalized Radial Basis Function Validity Function Gradient In the case of
NRBFs as validity functions

(k) = ||§<(ff>)||1 ’ (B.38)

the derivatives are calculated as

oo(k) TR, — E(k)|| %

; (B.39)

09; (k) 17

with

Il
|
5
N
/
1=
S
—
E
~
I
=
z
|
S
~——~
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AT T
-1 [8159<k) OIXTLP‘| 7 (B40>
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where p contains the center coordinates of the RBFs regarding the state and input
dimensions, and X is a diagonal matrix, containing the squared standard deviations

regarding the state and process input dimensions.

Hierarchical Sigmoid Validity Function Gradient In the case of hierarchical sig-

moid validity functions

o(k) = T[ 24(k) (B.41)
&, (k) = Hel_gl(k) (B.42)
Gy = (o [ 2" uT)]") (B.43)

where x is a fiddle parameter determining the steepness of the sigmoid functions.
The split parameters v] containing the “direction” of the sigmoid can be optimized

as well. The derivatives are calculated as

11%,k) (B.44)

00; &= 00
J#l
o (k) 109G (k)
o0, — LWk e g (B.45)
8§l(/€)_ v} AT WrNE T a@TU“) 1xnp !
et ) (1 &7 (k) u" (k)] +of |0 a0 0 . (B.46)

where n, is the number of hierarchically stacked sigmoid functions.

B.3.2 Detailed Gradient Calculation

Now, let us consider the general MIMO LMSSN and be more precise about notation.
We will start with some definitions. Each parameter matrix consists of multiple
“slices”, where each row in each “slice” determines the local behavior per state or
output equation. The first “slice” in all parameter matrices is fully populated since
we always start with an affine approximation. In all other “slices”, some rows may
contain parameters, while others do not, depending on the way each individual state
or output equation is split. Therefore, n,, here corresponds to the maximum number
of splits over all equations and all missing parameter entries are filled with zeros.

The same goes for the validity function vectors and later for the way the sigmoid
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validity functions are built for up to n. stacked sigmoid functions. For later used

element-wise divisions, a very small € is added to the denominator.

Now, we define

O =0y 0y ... 0, ]€R™*"

A =[A A, ... A, | € Riexmenm

B = [51 By ... ﬁnm] € R Xmpnm

P =Ip p, - p, | R (B.A7)
=[C, Cy ... C, | €RMaXNanm

D*=[D, D, ... D, ]€RMmnm

where all “parameter slices” are concatenated over the second dimension. The full

parameter matrix is defined as

o A" B*
= T (B.48)
P Cc D
All optimizable parameters are concatenated in the vector
0 = [vec(©@)" VT 2", (B.49)

where vec(-) selects all non-empty elements of ©" and vectorizes them. Parameter

0; is the i-th element of vector 6.

The validity function vectors are also concatenated in the same manner as

(k) = [ (k) (k) ... ®F] (k)] € R (B.50)
(k) = [@(k) o' (k) ... @ (k)] € Rroxmm (B.51)

and the membership function matrices ¥**/(k) and ¥*(k) as well. The L;-norms
Hg*[s](k)Hl and Hg*[o](k)Hl are standing vectors with row-wise L;-norms. Since the
membership function values are always positive, this is equivalent to a sum over the

columns over the matrix.

The operator ® denotes the Hadamard (element-wise) product, the operator @ de-
notes the Hadamard (element-wise) division (see Appx. B.3.3), and ® denotes the
Kronecker product (see Appx. B.3.4).
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The last definitions we need to get started are

1 - 1
19%0 = o (B.52)
1 1
which is a matrix of size (a x b) with all entries being one and
0 --- 0
(e I (B.53)
0 - 0

is a matrix of size (a x b) with all entries being zero.

LMSSN Equations We will write the LMSSN with the introduced notation as

b(k+1) = (0" @) 1!

+ :A* ® (Q*[s] ®l1mx): (lnmxl ®@(k¢))

+[B* @ (e @ 1vm)| (1 @ u(k)) (B.54)
i(k) = (B* @Q*[o]> rmx1

+[C" o (@19 @ 17| (17 ® (k)

+ Do (@M e1tm)] (1! @ u(k)) - (B.55)

State Equation Term — Example 1 ~As an example, we take the second row of (B.54)
for a second-order LMSSN with a MIMO LMN with three LMs in the state equation.
Then, the second row of (B.54) becomes

”a(1,1),1 a(1,2),1 [ @(1,1),2 @(1,2),2|A(1,1),3 Cl(1,2),3] ®( 45[13] @[281 @gs] ® {1 1})_

a1 42,21 |a21),2 42,2)2|4(2,1),3 4(2,2),3 45[15] 45[25] @gs] i
1 A
1|® xl(k)]
T 92’2““)
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21 (k
Zo(k)
. |:a’(1,1),1@[151 a(1,2),1@[18] a(1,1),2@[28] Cl(1,2),2<p[28] a(1,1),3@[38] C1(1,2),39%8] 52’1(/€)
a a(2,1),1q5[18] 0(2,2),195[15} a(2,1),2¢[28} 0(2,2),295[25} a(2,1),3¢[;} a(z,z),ssi%ﬂ @2(@
21(k)
Zo(k)

(B.56)

The parameters a;),; indicate the LM parameter for the ¢-th state equation, which

is multiplied by the [-th state in the j-th local model. The lines within the matrices

are drawn between different LMs.

State Equation Term — Example 2 As another example, consider a second-order
LMSSN with a MISO LMN with two LMs for the first state equation and a MISO
LMN with three LMs for the second state equation. Then, the second row of (B.54)

becomes
a a a a 0 0 @M (P[S] 0 ]
(1,1),1 @(1,2),1]8(1,1),2 4(1,2),2 ® [137]1 [1512 . ® [1 1]
A2,1),1 A2,2),1|A(2,1),2 @(2,2),2|4(2,1),3 @(2,2),3 @2,1 452,2 @2,3 ]
1
— _ |21(k)
1| ®
— :%2(/@)]
1
_ gﬁl(k; -
Za(k)
— a(lal)ﬂ@[ls,]l a(1,2),1@[18}1 a(171),2¢18,]2 a(1,2),2€15[18}2 0 0 21(k)
a(2,1),195[25;]1 a(2,2),1@[25:}1 a(2,1),2@[zs,]2 CL(2,2),2¢[2&;}2 a(2,1),3(p[25:}3 G(Q,2),3@[28}3 52’2(]{7)
1(k)
I 2o (k) |
(B.57)

The parameters a;),; indicate the LM parameter for the i-th state equation, which
is multiplied by the [-th state in the j-th local model. The lines within the matrices

are drawn between different LMs.
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Gradient Calculation The gradient calculation yields for the output equations

(k) P+l . (OP*
— | p* 1n X @*[ o 1nm><1
o, \& 950, 20 © <

0

<>

D

+ -Q* o ( *[0] 2 11><n1 H ® 11><nJL>‘| (lnmxl ®i(k’)>

&*Lol

- _D*Q < = ® 1™ 8D*

+ Q* (@*[o] ® 11><nz ( ><1 )

oY (= 1“”?)] (17t @ u(k))

(B.58)

and for the state equations

a@k + 1) _ * ag*[S] N X1 aQ* *[s] Nm X 1

. _A* (ag;[s] ®11mz> n %;11 5 (@*[s} ®11an)] (lnmxl ®i(k))

+[4 0 (@1 o 100 <1nmxl o 8:%(/<:)>

00;
*[s]

0
B* = 11><np
+ © ( a0, ®1 ) +

0B*
00;

o (gp*[s] ® 1lxnp)] (lnmxl ®Q(k’)) )

(B.59)

NRBF Validity Function Gradients The NRBF validity functions are calculated

as

@12/ — @14/ ¢ (|l

@1 (B.60)

Note that (-)[*/? indicates that the calculations can be done for the state and output
ol

equations, respectively. The definition of ¥**/? will be done per “slice” QES/ for

j =1,...,n,, since tensor operations are necessary to compute the whole s/l iy

o]

one step. Therefore, QES/ is calculated as

1 2
g;s/O} _ exp<_2 [(1(nx/nq)x1 ® {iT(k‘) QT(k‘)] _HES/O]T> @JBS/O]T} 1nx+npx1> ,

(B.61)
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where the square operation (-)? is done element-wise. The center coordinates are
stored per “slice” in the matrices HBS/ " Those contain in each row the center co-
ordinates regarding all state dimensions and input dimensions, while each column
contains the center coordinates regarding one dimension for all state or output equa-
tions, respectively. Those matrices are likewise stacked along the second dimension
as

H*[S/O]T — |:H[1$/O]T H[;/O]T o HE,{IO]T} c R(nx/nq)x(”x+”p)nm ) (B62)
The standard deviations o*¥/°1" are organized in the same way. Now, the gradients

are calculated as

ag*[s/o] B (a!p*[s/o](k

= (2 e (i), e 1)

oL | 11Xnm>> (B.63)
1

_p*ls/ol
s

o e,

with

v [s/o] 1 T T T
o (| [ W) - )
% 070 (B.64)
na/ng z nip [5/07% | 4ty
® (1( /na)x1 & l i 0 ]) o ]1 + x1) _

Hierarchical Sigmoid Validity Function Gradients The validity functions ¢**/°!(k)
consist of element-wise products of the sigmoid functions stored in matrices
W/ (k) € Re/na)xmm - Note that { = 1,...,n, is the index of multiplied sigmoid
functions (so to say the depth of the hierarchy) and not the index for the LM. The
number n, may change depending on the state or output equation. All empty entries
in @) (k) are filled with zeros if no validity function is present at that location and
filled with ones if the number of stacked sigmoids is smaller than n,. in this location.
This then yields

&) = T (k) (B.65)
=1

with the product [] being employed element-wise.
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As an example, consider a second-order LMSSN with a MISO LMN with two LMs
for the first state equation and a MISO LMN with three LMs for the second state
equation. The depth of the hierarchy in the first state equation is one, while it is

two for the second state equation. Then, (B.65) becomes

0 Palh] o P-wfl] o 1] o0
S(R) = | 1 |l sl | = | gl 5] 5 | © 5] s | -
452,1 @2,2 (52, g172,1 1 —%,1 1_L[—/2,1 1 %,2 1—@2,2
(B.66)
The sigmoid functions are calculated as
1 (k) = 10l g [L e e (— ) (B.67)

with the exponential function being employed element-wise. The g[s/ (k) is the

concatenation over all active LMs g[js/ (k)
Gy = [Ry k) ()| € Rime/mad e (B.68)

Each gl[sj/ °l(k) is calculated as

s/o N T
k) = ko {(1(nx/nq>x1 @ul™)[1 2" (k) ' (k)] ] (B.69)
with

QESJ’/O] c Rlxl—&—nx—i-np

, (B.70)

containing all split parameters for one LM in one state or output equation. The split

[s/0]
!

parameters v; ;" may be optimized as well.

The gradient calculation then yields

(9@*[8/0](]{3) Ne agis/o](k> Ne

o - X g LET® (B.71)

m=1 [=1
l#m
ag;[S/O](k) *[s /o] (nz/ng)xn (nz/ng)xn *[s/0] 8§;[S/O}(k)
T4 (K)o (1 o1 +exp(C(R)]) @ 5

(B.72)
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okl (k) Hulsrel .
2lm _ (na/nq)x1 ~lm ~T T
o0 kO |1 ® 20, [1 2 (k) u (k)] +

(B.73)

Gradient Calculations with Respect to =, It is common to optimize the initial
state x, along with the parameter vector . This is also usually done during LMSSN

optimization. The gradient of the state vector with respect to the ¢-th initial state

%%—E)k_) is always a zero-vector, except for k = 0, where the i-th element is one.
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B.3.3 Hadamard Product and Division

The Hadamard product and division, denoted by ® and @, respectively, perform
element-wise multiplications or divisions on two equally sized matrices. Let A € R"™*"

and B € R™*™ be two equally sized matrices. Then the Hadamard product is calcu-

lated as
al,lbl,l Cl1,2l71,2 Tt al,nbLn
az,lbz,l a2,2b2,2 a2,nbz,n
AOB= , _ : (B.74)
am,lbm,l am,me,2 T am,nbm,n

where a; ; and b; ; denote the (7, j)-th entry of the matrices A and B, respectively.

The Hadamard division is defined accordingly as

6l1,1/b1,1 a1,2/bl,2 T CLLn/bl,n
A0 B = CL2,1'/52,1 a2,2/b2,2 | a2,n'/b2,n ' (B.75)
am,l/bm,l am,Z/bm,2 e am,n/bm,n

B.3.4 Kronecker Product

The Kronecker product, denoted by the operator ®, can be applied to two arbitrary-
sized matrices. Let A € R™™ and B € R%*? be two arbitrary matrices. The

Kronecker product is then calculated as

al,lﬁ G1,2§ Tt G1,n§
a1 B as2B as B

A@B=| "7 % 2= (B.76)
am,lﬁ am,QB e am,nﬁ

where a; ; denotes the (4, j)-th entry of the matrix A. The resulting matrix has the

size (m-o0 X n-p).
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B.4 LMSSN Resembling Block-oriented Structures

Table B.1 summarizes how the domains and the ranges of the LMSSN state and

43

output equation change when they resemble block-oriented structures (i.e., “nl:
m+1 — m” means that a nonlinear function maps from R™*! — R™). The Wiener,
Hammerstein, and Hammerstein-Wiener processes are modeled with an LMSSN of
order m (light blue background), while the Wiener-Hammerstein with its two lin-
ear time-invariant (LTT) blocks is modeled by an LMSSN of order 2m (light yellow
background), where m is the order of the dynamic blocks. The general nonlinear
identification task can be significantly simplified since the dimensionality of the do-
main and/or range is drastically reduced in all cases. This reduction leads to lower-
dimensional functions that have to be approximated and thus reduces the number
of parameters that have to be estimated. Note that the LMSSN only comes close to

the block-oriented processes and does not match those exactly in some cases.

Table B.1: Reduction of the dimensionality of the domain and range of the LMSSN
state and output equation when resembling block-oriented structures.
The equations may be nonlinear (nl) or linear mappings (lin). For ex-
ample, “nl: m + 1 — m” means that a nonlinear function maps from
R™*! — R™. When the state equation can be modeled with a com-
bination of linear and nonlinear parts, then those are listed below each
other in the same cell. The Wiener, Hammerstein, and Hammerstein-
Wiener process can be modeled by an LMSSN of order m (), while the
Wiener-Hammerstein process has to be modeled by an LMSSN of order

2m ().
LMSSN || State equation Output equation
Structure h(-) 9()
LMSSN order m n:m+1—-m nkm+1—1
Wiener linnm+1—m nl: m — 1
Hammerstein nl: 1 — 1 lin: m — 1
lin: m —m
Hammerstein-Wiener nl: 1 — 1 nl: m — 1
lin: m —m
LMSSN order 2m nl: 2m+1—2m || nl: 2m+1—1
Wiener-Hammerstein nl: m — 1 lin: m — 1
lin: m —m
linnm+1—=m
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