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Abstract

In many applications of particle physics, we encounter a variety of different
energy scales, which tend to be widely separated in many cases. The concept
of factorisation exploits this scale separation in order to simplify the intri-
cate physics of scattering processes by disentangling the short-distance and
long-distance effects. The theoretical description of these processes is usu-
ally provided by effective field theories (EFTs), which naturally implement
factorisation for both collider and flavour physics applications. Asymptotic
freedom allows to use techniques from perturbation theory to describe short-
distance effects in typical problems of flavour physics, while additional meth-
ods like QCD sum rules or light-cone sum rules are necessary to parameterise
long-distance effects. However, the physical situation is more complicated in
the case of collider physics, since we additionally encounter a soft scale Λsoft,
which is still perturbatively treatable in the regime Λsoft � ΛQCD.
In the first project, we focus on Soft-Collinear Effective Theory (SCET). In
this approach, a large hierachy of scales arises since the QCD radiation is
restricted to the soft and collinear phase-space regions. While soft modes
are characterised by small energies, collinear modes contain small virtuali-
ties with respect to the typical hard scales of the process. This defines a
small power-counting parameter λ such that cross sections factorise in terms
of hard, soft and collinear functions at every order in the power expansion.
As long as the underlying scales are perturbative, these functions can be
computed order-by-order for each observable. In order to streamline the cal-
culation of the functions that arise at leading order in the power expansion,
the computation of soft and final-state collinear (jet) functions has been au-
tomated in recent years for a general class of observables. The goal of this
project consists in developing a similar automated setup for the computation
of initial-state collinear (beam) functions to next-to-next-to-leading order
(NNLO) in perturbation theory. In particular, our calculation provides the
last missing ingredient to fully automate resummations at a modified next-
to-next-to-leading logarithmic (NNLL′) accuracy using SCET.
In comparison to that, the second and third project deal with applications
of factorisation in flavour physics. Specifically, we apply QCD sum rules
in the second project and light-cone sum rules in the third project to pa-
rameterise non-perturbative effects. The second project aims to determine
important parameters in the description of the B meson in the framework
of Heavy-Quark Effective Theory (HQET), which are called λ2E,H . Contrary
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to previous works, we make use of a diagonal correlation function containing
two three-particle currents to resolve the discrepancies between two prior de-
terminations. In our analysis, we include all contributions to leading order
in the strong coupling constant αs and all contributions up to vacuum con-
densates of mass dimension seven.
The third project ventures into the domain of new physics effects and inves-
tigates the two-particle decay B → pΨ in the B-Mesogenesis model, where
p denotes a proton, while Ψ corresponds to a new fermionic dark matter
antibaryon, which interacts with the Standard Model via a colour-charged
mediator boson Y . Light-cone sum rules are the appropriate framework to
determine the relevant form factors up to twist six such that we can obtain
an estimate for the branching fraction of this decay. Experimental facilities
like Belle-II have recently started to look into decays of this particular model
and our calculation is therefore particularly relevant for these studies.



Zusammenfassung

In vielen Anwendungen der modernen Teilchenphysik tauchen eine Vielzahl
von Energieskalen auf, die in einigen Fällen weit voneinander getrennt liegen.
Die Methode der Faktorisierung benutzt diese Skalentrennung zur Verein-
fachung der zugrundeliegenden Physik von Streuprozessen, indem kurzreich-
weitige Effekte von langreichweitigen Effekten getrennt werden. Effektive
Feldtheorien (EFTs) implementieren die Idee der Faktorisierung sowohl für
Anwendungen in der Kolliderphysik als auch in der Flavourphysik. In typis-
chen Problemen der Flavourphysik können wir Techniken aus der Störungs-
theorie, die auf asymptotischer Freiheit beruhen, verwenden, um kurzre-
ichweitige Effekte zu beschreiben. Dahingegen benötigen wir zur Parame-
terisierung von langreichweitigen Effekten zusätzliche Methoden wie QCD-
Summenregeln oder Lichtkegel-Summenregeln. Allerdings ist die physikalis-
che Situation in der Kolliderphysik komplizierter, da wir zusätzlich auf eine
softe Skala Λsoft treffen, die jedoch immer noch in der Größenordnung Λsoft �
ΛQCD perturbativ behandelbar ist.
Im ersten Projekt konzentrieren wir uns auf die Soft-Collinear Effective The-
ory (SCET). In dieser Theorie beobachten wir eine große Hierarchie von
Skalen, da die QCD-Strahlung auf die soften und kollinearen Phasenraum-
bereiche beschränkt ist. Während softe Moden durch kleine Energien charak-
terisiert werden, enthalten kollineare Moden kleine Virtualitäten im Vergleich
zu den typischen harten Skalen des Prozesses. Darüber lässt sich ein kleiner
Skalierungsfaktor λ definieren, sodass der Wirkungsquerschnitt durch harte,
softe und kollineare Funktionen zu jeder Ordnung in der Entwicklung in λ
ausgedrückt werden kann. Solange die zugrundeliegenden Skalen pertur-
bativ sind, können diese Funktionen ordnungsgemäß für jede beobachtbare
Größe berechnet werden. Um die Berechnung der Funktionen zu verein-
fachen, die in führender Ordnung in der Störungsreihe auftreten, wurde die
Berechnung von soften und kollinearen Funktionen für den Endzustand (Jet-
funktionen) in den letzten Jahren für eine allgemeine Klasse von Observablen
automatisiert. Das Ziel dieses Projekts besteht darin, einen ähnlichen au-
tomatisierten Ansatz für die Berechnung von kollinearen Funktionen für den
Anfangszustand (Beamfunktionen) bis zur nächst-nächst führenden Ordnung
(NNLO) in der Störungstheorie zu entwickeln. Insbesondere liefert unsere
Berechnung die letzte fehlende Komponente, um Resummationen mit einer
modifizierten nächst-nächst führenden logarithmischen (NNLL′) Genauigkeit
unter Verwendung von SCET vollständig zu automatisieren.
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Im Vergleich dazu beschäftigen sich das zweite und dritte Projekt mit An-
wendungen der Faktorisierung in der Flavourphysik. Konkret verwenden wir
im zweiten Projekt QCD-Summenregeln und im dritten Projekt Lichtkegel-
Summenregeln, um nicht-perturbative Effekte zu parametrisieren. Das Ziel
des zweiten Projekts besteht darin, wichtige Parameter in der Beschreibung
des B Mesons im Rahmen der Heavy-Quark Effective Theory (HQET) zu
bestimmen, die als λ2E,H bezeichnet werden. Im Gegensatz zu früheren Ar-
beiten nutzen wir eine diagonale Korrelationsfunktion, die zwei Dreiteilchen-
Ströme enthält, um die Diskrepanzen zwischen zwei früheren Bestimmungen
aufzulösen. In unserer Analyse berücksichtigen wir alle Beiträge in führen-
der Ordnung in der starken Kopplungskonstante αs und alle Beiträge bis zu
Vakuumkondensaten mit Massendimension sieben.
Im dritten Projekt untersuchen wir Effekte neuer Physik. Dabei analysieren
wir den Zwei-Teilchen-Zerfall B → pΨ im B-Mesogenesis-Modell, wobei p
ein Proton und Ψ ein neues fermionisches wie auch antibaryonisches dun-
kle Materie Teilchen darstellt, das über ein farbgeladenes Vermittler-Boson
Y mit dem Standardmodell wechselwirkt. Die geeignete Methode zur Un-
tersuchung dieses Zerfalls sind Lichtkegel-Summenregeln, mittels derer die
relevanten Formfaktoren bis zu Twist sechs bestimmt werden, um eine Ab-
schätzung für die Zerfallsbreite dieses Zerfalls zu erhalten. Experimente wie
Belle-II haben in letzter Zeit begonnen, sich mit Zerfällen dieses speziellen
Modells zu beschäftigen, daher bieten unsere Berechnungen einen Anhalt-
spunkt für die theoretische Erwartung.
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Chapter 1

Introduction

The physics of the universe involves a plethora of different energy scales rang-
ing from cosmological scales like the Hubble length in the sub eV region to
the Planck scale around 1018 GeV, where gravitational effects become domi-
nant. Physicists dream to find a theory which incorporates all physical effects
within this energy range. So far, all observed effects belong to four different
classes mediated by four fundamental forces, which are electromagnetism,
the weak nuclear force, the strong nuclear force and gravity. Other effects,
which have not yet been tested by experiment, are assumed to interact via
these fundamental forces with the known elementary particles such that they
can be detected in principle.
Albeit the main purpose of the fundamental theory is to unify all forces, it
is usually assumed to fulfil additional requirements. Besides basic principles
like locality, which is closely related to causality, the theoretical description
should be based on certain symmetries. Most important in this context is
the concept of gauge invariance in order to quantise massless spin-1 particles.
Second, renormalisability guarantees as another key element of the unified
theory that quantum fluctuations yield well-defined results and that the the-
ory is valid to arbitrary high energy scales.
The Standard Model (SM) of particle physics is the closest theory framework
towards grand unification. It has been extensively studied experimentally
and it has managed to withstand all precision tests so far. From the theo-
retical point of view, it combines the physics of strong interactions with the
electroweak sector, which is yet another unification of physical effects induced
by the weak nuclear force and electromagnetism. Thus, this theory treats
three of the four fundamental forces on the same footing and it respects in
addition important symmetries like gauge invariance, Lorentz invariance and
renormalisability. However, gravity as the fourth fundamental force is not
embedded in this framework. The current frontier to describe gravitational
effects is set by General Relativity, which is a classical field theory solely
describing long-distance interactions. A quantised version of it is currently
unknown.
Precision tests in particle physics mostly rely on collisions of two particle
beams at high energies, which produce a huge number of additional particles
in the final state. Typical collider experiments, for instance the Large Hadron
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Collider (LHC) at CERN, have perfomed tests of the theoretical framework
to very high precision up to energies of several TeV. But despite recent ex-
perimental discoveries like the Higgs boson at the ATLAS [1] and CMS [2]
experiment at CERN, there still exist several open questions that cannot be
explained within the SM. Examples for these new physics effects are dark
matter, dark energy, the matter-antimatter asymmetry of the universe or
neutrino masses. In this context, the experimental proof of neutrino oscilla-
tions, which are only observable for non-zero neutrino masses, constitutes a
prominent example for the direct measurement of new physics effects which
are not captured by the SM [3–5]. This is why experimental searches, espe-
cially in the current Run-3 of the LHC [6], or at the dedicated flavour exper-
iments like Belle-II [7] perform increasingly precise measurements to look for
deviations between theoretical predictions and experimental measurements
or to search directly for new non-SM particles. These measurements are sup-
posed to shed light on the many possible theoretical explanations for new
physics effects and provide the path for future theoretical investigations.
From a theoretical point of view, the SM is a local, relativistic and renormal-
isable theory based on gauge invariance under the SU(3)c×SU(2)L×U(1)Y
group. Each gauge group implements different physical effects associated
with the fundamental forces. For instance, quantum electrodynamics (QED),
the quantised version of electromagnetism, arises from invariance under the
group U(1)EM after spontaneous symmetry breaking [8] of the gauge group
SU(2)L × U(1)Y .
The fundamental building blocks of matter in the SM are quarks and leptons,
which are grouped into multiplets of the various gauge groups. In general,
there exist three categories (families) with the same gauge couplings, but
organised according to their charges and masses. Bosons, which are parti-
cles whose spin only takes integer values, are responsible for the interaction
between matter. As an example, gluons are the interaction particles of the
strong interaction, while photons mediate electromagnetic interactions. No-
tice that the Higgs particle is of particular importance in the group of SM
bosons. It can be interpreted as fluctuations of the Higgs field which gener-
ates the mass for all massive particles in the SM via the Higgs mechanism
[9, 10], including quarks, leptons and gauge bosons. However, it does not
explain the observed neutrino masses, since the SM assumes massless neu-
trinos.
The electroweak sector is particularly suited for precision tests of SM param-
eters. Especially the field of flavour physics is adequate for accurate mea-
surements as it allows for the study of transitions between different types
(flavours) of quarks and leptons. Typical parameters in these transitions
are the components of the quark-mixing matrix due to Cabibbo, Kobayashi
and Maskawa (CKM) [11, 12] or directly the masses of the gauge bosons
MW ,MZ . Due to the large number of possible transitions, the electroweak
sector exhibits a rich phenomenology, in particular for B-meson decays. The
investigation of central properties of the B mesons, i.e. quark-antiquark
bound states that involve a bottom quark (and additional virtual particles),
as well as channels hinting towards new physics effects in form of dark matter
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are among the central elements of this work.
Contrary to that, the physical nature of the strong interaction is completely
different compared to the electroweak interaction. In this case, the gauge
group is the SU(3)c and quarks as well as antiquarks are grouped according
to their colour charge in triplets, while gluons form an octet since they be-
long to the adjoint representation of the SU(3)c. A direct comparison of the
behaviour of the coupling constant αs in quantum chromodynamics (QCD)
and αEM for electromagnetic interactions provides hints for the different the-
oretical foundations. The β-function is particularly suited to illustrate this
behaviour

β(α(µ)) ≡ dα(µ)

d log µ
= −2β0

α(µ)2

4π
+O(α3) (1.1)

with β0 = 11
3
CA− 2

3
nf > 0 in QCD and β0 < 0 in QED. Notice that Eq. (1.1)

corresponds to a renormalisation group equation (RGE), which describes the
running of the coupling in the MS scheme. This running indicates that
physical parameters are scale-dependent in renormalisable theories and they
change their value depending on the probed energy. In general, we are able
to derive such RGEs for any parameter and coupling of the SM. They can
subsequently be used to switch between different scales.
Generally, the running of the QCD coupling constant αs(µ) helps to under-
stand the fundamental theoretical properties of the strong interaction. At
large energies, i.e. short distances, the coupling tends to zero, underlining the
fact that constituents inside bound states in QCD, namely quarks and glu-
ons, are quasi-free particles and perturbative methods are applicable. This
fundamental characteristic is called asymptotic freedom [13–15]. But on the
other end of the energy scale at low energies, the coupling becomes stronger.
We refer to this effect as confinement. Quarks and gluons are not separately
visible, since only bound states are observed in nature. The formation of
bound states takes place at characteristic scales around ΛQCD ∼ 200 - 300
MeV.
Many physical observables are furthermore sensitive to widely separated
scales such that a power expansion in the small scale ratio may be per-
formed. This expansion naturally leads to the factorisation of short-distance
and long-distance effects in form of an operator product expansion, where
short-distance contributions can be computed with perturbation theory due
to asymptotic freedom, while long-distance contributions are usually param-
eterised with methods like QCD sum rules, light-cone sum rules or extracted
from lattice QCD. Factorisation is the key concept in the construction of effec-
tive field theories. Prominent examples like Soft-Collinear Effective Theory
(SCET) [16–19] or Heavy-Quark Effective Theory (HQET) [20–23] exploit
this fundamental property and allow, as effective theories of QCD, for a sim-
plified description of the low-energy physics based on factorised expressions
at different scales.
For QED however, the β-function has an opposite sign, which induces the
opposite physical picture compared to QCD. In particular, the gauge group is
now the U(1)EM, which has a simpler algebraic structure. This is represented
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by the behaviour of the electromagnetic coupling constant as the coupling
becomes weaker with larger distances and stronger as the particle approaches
an electromagnetic source. Note that this is also reflected in particle inter-
actions: The gauge bosons of QCD, the gluons, are self-interacting particles,
while photons, the mediators of electromagnetic interactions in QED, do not
interact with each other. Furthermore, the self-interaction of gluons is re-
sponsible for the formation of bound states on long-distance scales.
Asymptotic freedom is crucial for the theoretical description of QCD. Pertur-
bation theory is an effective and systematic tool to compute scattering pro-
cesses of SM particles at large energies µ� ΛQCD. Physical observables are
expressed in terms of an asymptotic expansion of the small coupling constant
αs such that corrections become smaller at higher orders in perturbation the-
ory. These corrections in fact often turn out to be divergent due to quantum
fluctuations with arbitrarily large (kµ →∞) or small (kµ → 0) momenta. At
this point, the renormalisability of the theory becomes important, because
this ingredient ensures that divergences from large loop momenta can be ab-
sorbed into the parameters of the theory. Singularities due to small momenta
of the interacting particles in virtual and real corrections cancel because of
the Kinoshita-Lee-Nauenberg (KLN) theorem [24, 25].
There exist many tools in the literature that automate the calculation of
next-to-leading order (NLO) corrections in QCD. Prominent examples are
MadGraph [26–28], HELAC-NLO [29] or WHIZARD [30, 31] among many
others. In the past decades, several approaches for the automated compu-
tation of NNLO corrections emerged, which are mostly based on global or
local substraction schemes at NLO [29, 32–37] that have been subsequently
extended to NNLO. Frameworks like ANTENNA-substraction [38], qT -slicing
[39], STRIPPER [40, 41] or Nested soft-collinear substraction [42, 43] are typ-
ical examples for setups to automatically evaluate NNLO corrections on the
basis of the previously mentioned substraction techniques.
However, the perturbative predictions may be spoilt by large logarithmic cor-
rections for observables that are not fully inclusive. In particular, Sudakov
double logarithms arise whenever the QCD radiation is constrained to be
low-energetic (soft) or aligned (collinear) to some external hard partons. As
an example, the transverse-momentum spectrum of the Higgs boson suffers
from large corrections of the order of αns ln2n(pT/mH), which become large
and spoil the convergence of the perturbative series for pT � mH . As the
transverse momentum of the Higgs boson must be balanced by the QCD
radiation, this implies that the QCD radiation is either soft or collinear to
the beam directions in this case. The particular method to sum these correc-
tions of order αns ln2n(pT/mH) to all orders in perturbation theory is called
resummation.
Effective field theories (EFTs) provide a natural framework to resum large
logarithms based on the factorisation of different modes characterised by
widely separated scales. High-energy modes are usually integrated out in
these type of theories such that only low-energetic degrees of freedoms are
left and the infrared (IR) physics of the full theory is correctly reproduced.
An example for an EFT is again Soft-Collinear Effective Theory, which relies
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on the factorisation of collinear and soft modes to describe complicated col-
lider processes in terms of simple building blocks accounting for soft, collinear
and the hard QCD radiation. Large logarithms are systematically resummed,
thus very precise results for many different collider observables can be ob-
tained.
In the literature, there exist automated setups for the resummation of Su-
dakov corrections to next-to-leading logarithmic (NLL) [44] or next-to-next-
to-leading logarithmic (NNLL) [45] accuracy, which are based on the direct
QCD framework [46] and make it obsolete to perform resummation case-
by-case for each observable. But automated frameworks for resummation
beyond this order do not exist, since crucial ingredients for the description of
the initial-state radiation at NNLO are still unknown for many observables.
The first part of this thesis is devoted to the construction of an automated
approach that captures collinear initial-state radiation at hadron colliders
to NNLO in QCD. These effects are encoded in so-called beam functions
and they have been computed for many observables to high accuracy either
analytically or semi-numerically, but there does not exist a consistent setup
which automatises these calculations for arbitrary observables. For soft and
jet functions, similar approaches have been developed recently [47–50]. With
the development of such an automated framework for beam functions, we
provide the last ingredient for automated high precision resummations to
NNLL′ in SCET.
In order to discuss our implementation coherently, we introduce general con-
cepts of SCET in section 2.1 with a focus on a particular reference observable
for which we choose transverse-momentum (pT -) resummation. Chapter 3 is
devoted to the discussion of the basics of the approach, in particular the
definition as well as general properties of quark and gluon beam functions
in section 3.1 and which type of observables are suitable for our automated
evaluation in section 3.2. After this, we turn to the general determination of
the matrix elements at NLO in chapter 4 and at NNLO in chapter 5. More-
over, we discuss the renormalisation of the beam functions in chapter 6 both
in momentum and Mellin space for SCET-I and SCET-II observables. After
discussing the numerical implementation in chapter 7, we present various re-
sults in chapter 8. The conclusion in chapter 9 closes the first project.
Furthermore, a second example for an effective field theory is Heavy-Quark
Effective Theory (HQET), which is suited for the study of B-meson prop-
erties. Depending on the structure of these decays, it is possible to ex-
tract parameters of the SM like the CKM matrix elements. HQET is suited
for the treatment of perturbative contributions, but the parameterisation of
non-perturbative effects is difficult due to hadronisation. Nevertheless, tech-
niques like QCD sum rules [51–53] or light-cone sum rules [54, 55] are well
established methods allowing for the extraction of particle properties in the
non-perturbative domain. These methods make it possible to determine the
decay constants or form factors of processes under consideration. The sec-
ond project is centered around the determination of fundamental parameters
of the B-meson distribution amplitude using QCD sum rules. For this, we
provide a basic introduction to HQET in section 2.2, where we also present
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the fundamental parameters λ2E,H , which we intend to extract with QCD
sum rules. Therefore, chapter 10 provides the basics of this method. Subse-
quently, we derive the corresponding QCD sum rules in chapter 11 to leading
order in αs and include vacuum condensates up to mass dimension seven. We
first review the current status of the determination of these parameters and
go through the various steps from the sum rule approach to the application
of the quark-hadron duality and finally to the discussion of the QCD vacuum
condensates as well as the perturbative contributions. A numerical analysis
in chapter 12 yields estimates for the desired parameters and we summarise
the work in chapter 13.
The third project enters the domain of new physics effects. We determine
the branching fraction of the exclusive B → pΨ decay in the B-Mesogenesis
model with light-cone sum rules. For this, we include all contributions up
to twist six into our analysis. Starting with a general overview on LCSRs
in section 14.1, we discuss the main idea of the underlying B-Mesogenesis
model in section 14.2. We establish the form factor decomposition in section
14.3 and we derive the sum rules in chapter 15 as well as evaluate the OPE
in section 15.1 in the following. In order to extrapolate the form factors
into the physical domain, we need to perform an additional transformation,
which is done in section 15.2. In the end, we perform a numerical analysis
in chapter 16 and obtain the branching fractions with respect to the mass
mΨ of the new dark matter particle Ψ. Notice that the appendix provides
supplementary details on the discussions. We refer to this part throughout
this thesis at appropriate places.



Chapter 2

Factorisation

Factorisation is one of the most important concepts in modern applications
of particle physics. These applications are characterised by largely separated
scales, which are usually given by the kinematics of the underlying process.
As an example, we typically observe that the masses of particles or the en-
ergy of colliding particles are large compared to low-energy scales like the
hadronisation scale ΛQCD ∼ 200 − 300 MeV. Many modern experiments at
the Large Hadron Collider (LHC) or experiments like Belle-II exploit fun-
damental properties like asymptotic freedom to probe processes which show
widely separated energy scales.
Effective field theories are perfectly suited to provide the theoretical descrip-
tion of this physical situation, because factorisation is naturally implemented
into these frameworks. They usually introduce a small parameter λ, defined
as the small ratio of scales occurring in the problem at hand. A systematic
power expansion in the parameter λ allows to describe the factorisation of
short- and long-distance effects in form of an operator product expansion
(OPE). This expansion disentangles the physics at large and small energies
and therefore simplifies the theoretical description of the underlying process.
We can make use of important properties of QCD like asymptotic freedom to
investigate the short-distance physics, while we need to rely on other meth-
ods like QCD sum rules, light-cone sum rules or lattice QCD to parameterise
the long-distance effects. Another possibility to characterise the low-energy
physics is to extract the necessary information from experimental data.
Throughout the calculation of short-distance effects, we usually encounter
complicated Feynman integrals, which are in general hard to evaluate. In
order to simplify the computations, it is possible to exploit factorisation and
perform an asymptotic expansion of these integrals with respect to the power
counting parameter λ. This asymptotic expansion is incorporated in the
method of regions, which has first been presented in [56]. In this approach,
we directly use the hierarchy of different scales appearing in the underlying
problem to simplify the occurring Feynman integrals. The power counting
parameter λ is used to split the full integration domain of a multi-loop in-
tegral into various subregions [57, 58]. Subsequently, the integrand in each
region is expanded in the parameter λ up to the desired order. Furthermore,
the integrals in each region are evaluated individually, keeping in mind that

17
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scaleless integrals vanish in dimensional regularisation. Notice that a com-
plete mathematical proof of this method is missing so far, albeit the approach
has been partially formalised in [57].
The method of regions is a key concept used to identify the relevant degrees
of freedom in an effective field theory. Its application is universal, hence it
also plays an important role in Soft-Collinear Effective Theory (SCET) [16–
19] or Heavy-Quark Effective Theory (HQET) [20–23], which are the central
frameworks in project I and II of this thesis. We begin our discussion with
a short and general introduction to SCET, followed by an introduction to
HQET. After that, we merge both effective field theories into the concept of
QCD factorisation.

2.1 Soft-Collinear Effective Theory

Soft-Collinear Effective Theory (SCET) is a prominent example for an ef-
fective field theory of QCD. This theory has been established in the funda-
mental works [16–19]. In the spirit of an effective field theory, it captures
the low-energy physics of QCD and separates physics at different scales by
introducing different modes based on their momentum scaling. For the char-
acterisation of the momentum modes, it is convenient to use the previously
defined expansion parameter λ which is helpful in the kinematical description
of factorisation in this effective theory. Furthermore, we introduce light-cone
coordinates, which are defined in terms of two light-like four-vectors nµ and
n̄µ satisfying n2 = n̄2 = 0 as well as n · n̄ = 2. From a kinematical point
of view, we see that the two incoming particles are aligned along these two
light-cone vectors and we can further state them explicitly in the lab frame

nµ = (1, 0, 0, 1)T , n̄µ = (1, 0, 0,−1)T . (2.1)

The general idea is that we can express any four-vector pµ in terms of these
light-cone components

pµ = p−
nµ

2
+ p+

n̄µ

2
+ pµ⊥ (2.2)

with n̄ ·p = p− and n ·p = p+. For later convenience, it is useful to introduce
the Euclidean form of the vector p⊥, which satisfies the relation p2⊥ = −p2T .
With these light-cone coordinates, we can define the virtuality of a particle as
its invariant mass and use it to characterise different modes. Typical modes
and their scaling together with their virtuality are shown in the table below:
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Modes Momentum scaling Virtuality

collinear p ∼ (λ2, 1, λ)Q λ2Q2

anti-collinear p ∼ (1, λ2, λ)Q λ2Q2

ultrasoft p ∼ (λ2, λ2, λ2)Q λ4Q2

soft p ∼ (λ, λ, λ)Q λ2Q2

hard p ∼ (1, 1, 1)Q Q2

For collider processes, we observe that typical modes are collinear modes
accounting for particles that are emitted along a jet (or beam) direction
and a soft mode describing isotropic low-energetic radiation. In the table
above, p denotes the momentum of the particle under investigation, while Q
represents the relevant hard scale of the process. The notation stems from
the idea that we decompose the momentum p into light-cone coordinates
with three different components (p+, p−, p⊥). Its virtuality is then given by
p2 = p+p− + p2⊥.
In general, we observe that computations in the SCET framework follow a
certain pattern, at least if we focus on leading power effects. This typical
procedure can be summarised as follows:

1. Momentum modes:
The method of regions helps us to identify the class of the observable
under investigation. This classification is connected to the virtuality
of the various regions. The figures below illustrate the virtualities of
the different modes in SCET-I and -II for a general scaling parameter
λ and allow for a direct comparison of these two classes.

λ2Q

λQ

Q

λ2Q λQ Q
p+

p−

ultrasoft

collinear hard

anti-collinear
λ2Q

λQ

Q

λ2Q λQ Q
p+

p−

soft

collinear hard

anti-collinear

In the left panel, we see that the collinear and anti-collinear mode share
the same virtuality λ2Q2 and lie on the same hyperbola in the p+− p−
plane. But the soft mode, which has now the virtuality of an ultrasoft
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mode according to the table above, is located on another hyperbola.
Observables which show these characteristic modes and scaling belong
to the class of SCET-I observables. Soft modes with a virtuality of
λ2Q2 do not contribute in this case.
Contrary, we observe in the right panel for SCET-II observables that
the collinear, anti-collinear and soft region share the same virtuality
λ2Q2 and therefore lie on the same hyperbola in the p+−p−-plane. The
only distinct region with a different virtuality is the hard region. This
situation is typical for SCET-II problems: In many cases, the ultrasoft
region leads to scaleless integrals in dimensional regularisation if we
only consider leading power contributions in λ, while the soft region
becomes non-trivial. This causes additional complications for SCET-
II, since we observe an overlap between the soft and collinear or anti-
collinear region in certain kinematical configurations, which generates
new type of divergences called rapidity divergences. The naming of this
new type of divergences is intuitive. Generally, the rapidity is defined
in terms of the ratio yp = 1

2
ln
(
p+
p−

)
. For large p+, the soft rapidity

ends up in the vicinity of the anti-collinear region, while for large p−
it enters the opposite collinear region and induces divergences. We are
going to discuss in detail how to tackle these divergences in chapter 6.

2. Factorisation:
After identifying the relevant degrees of freedom, we decompose the
field operators in the QCD Lagrangian density into various sectors in
line with the introduction of different modes based on the scaling with
respect to the parameter λ from before. However, it is possible to show
that these modes completely decouple at leading power in λ for both
SCET-I and SCET-II observables after expanding the Lagrangian in
λ. In the SCET-I case, one performs a field redefinition in order to
decouple all sectors, while soft and collinear modes do not interact in
the SCET-II case from the beginning due to the power scaling of the
different modes. On top of that, we need to analyse the observable in
the power expansion to derive a factorisation theorem of the underlying
process. In this work, we focus on observables that are free of com-
plications like endpoint divergences [59–66] or Glauber gluons [67–72].
The general form of a factorisation theorem at leading power is given
by

dσ = H · B ⊗ B̄ ⊗ S⊗ΠiJi . (2.3)

The factorisation theorem in Eq. (2.3) consists of an observable inde-
pendent hard function H, which encodes the physics at the hard scale
Q, collinear beam and jet functions and soft functions. These func-
tions are defined in terms of the different fields which were introduced
in accordance with the different momentum regions obtained from the
method of regions. Through the decoupling transformation, we can
decompose the full state into collinear, anti-collinear and soft states,
which yields operator expressions for the functions in Eq. (2.3) that
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will be specified below.
The beam functions account for collinear initial-state radiation, while
the soft function describes the soft partons in the scattering process.
Note that the functions in gray in Eq. (2.3) represent jet functions,
which encode the physics of collinear final-state radiation. However,
they are not relevant for this work here, since we focus on processes
which only contain initial-state radiation. Nevertheless, isotropic soft
radiation naturally occurs for these specific processes, since they are
relevant for both initial-state and final-state radiation. An automated
framework to compute these functions has been proposed in [48, 49].

3. Renormalisation:

Once we have derived a factorisation theorem and established the op-
erator definition of the relevant quantities, we can in principle go ahead
and compute them with known perturbative techniques as long as the
collinear and soft scale are larger compared to ΛQCD. In perturbative
calculations, one encounters UV and IR divergences that are usually
regularised in dimensional regularisation with the dimension d = 4−2ε.
These divergences become visible in form of poles in the dimensional
regulator ε, but they are unphysical and need to be removed with
proper procedures. For SCET-I observables, this is in general straight-
forward, since only poles in ε occur. Soft functions can be immediately
computed with perturbative methods and subsequently regularised as
well as renormalised. However, this does not apply for beam functions,
since they are non-perturbative objects due to their operator definition.
For these functions, we need to disentangle short- and long-distance
physics via an operator product expansion (OPE) such that so called
matching kernels describe the short-distance contributions. Those are
again treated with perturbation theory and, at least for SCET-I ob-
servables, renormalised in the usual way. But for SCET-II problems,
additional rapidity divergences generate complications, because dimen-
sional regularisation is not sufficient to regularise these type of singu-
larities.
There exist many different ways to regularise rapidity divergences in
SCET. One possibility consists of implementing an analytic regulator
on the level of the phase-space measure [73], which we use in this work,
another possibility which is commonly applied is to use an exponential
regulator [74].
With this regularisation of the rapidity divergences, which is for in-
stance done with a regulator α in the case of an analytic regulator, tech-
niques like the collinear anomaly approach [75] or the rapidity renor-
malisation group equations [76, 77] can be used to perform the renor-
malisation for these type of problems. We make use of the collinear
anomaly approach throughout this work, which refactorises the beam
functions and resums the rapidity divergences in the same step. After
renormalisation, we are left with finite expressions which we can use
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to perform predictions in phenomenological analyses and to extract
information on the underlying physics.

4. Resummation:
Following the renormalisation procedure, we need to choose a renor-
malisation scheme. Common schemes are the on-shell scheme or the
MS-scheme. In the latter case, like in any mass-independent renormal-
isation scheme, the renormalised parameters depend on the renormali-
sation scheme µ and this scale dependence is controlled by a renormali-
sation group equation (RGE). However, the renormalisation procedure
introduces logarithms of this scale µ and the different scales of the
process, which can in general become large and spoil the asymptotic
behaviour of the perturbative expansion. Therefore, they need to be
resummed, i.e. we use renormalisation group equations to run the
renormalisation scale µ to a common matching scale µres.. In this step,
we observe another advantage of SCET: the EFT approach allows for
a straightforward resummation of large logarithms via RGEs.

These four steps usually appear during the investigation of a SCET prob-
lem. In the following sections, we are going to discuss the details of these
basic steps by considering a benchmark observable for which we choose the
production of a Drell-Yan pair at hadron colliders at small transverse mo-
mentum (pT ). This process was investigated with SCET methods in the
literature to great extent. Results to the desired NNLO order are known
analytically [58, 78, 79] and we follow closely the discussion from [58]. The
current state-of-the-art precision for this observable was elaborated in [80,
81].

Kinematics and momentum modes for pT -resummation

In general, experiments at hadron colliders like the LHC study the interac-
tion of two colliding hadron beams. Since we work in the domain of high
energies, we can use asymptotic freedom for the theoretical description of
the underlying short-distance physics and therefore assume that two partons
within the proton, in particular quarks or gluons, scatter among each other.
The final state consists of a high-energetic Drell-Yan pair. We denote the
large virtuality of the photon by Q2 and its transverse momentum with re-
spect to the colliding beam by pT .
In the domain of small transverse momenta Λ2

QCD � p2T � Q2, it is conve-
nient to define the small parameter

λ =
pT
Q
, (2.4)

which we will use to identify the different momentum modes. It is the small
expansion parameter of the theory and therefore suitable to illustrate fac-
torisation for the problem at hand.
With the help of the method of regions, we know which regions contribute
to our analysis. We observe that, besides the collinear, anti-collinear and
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hard mode, the soft mode becomes relevant here, since it shares the same
counting for the transverse components as the collinear modes. This leads to
the same virtuality of soft and collinear modes, rendering this observable to
be of SCET-II type. According to the discussion in [75], other modes do not
contribute at leading power in the expansion parameter λ, are kinematically
not possible or lead to scaleless integrals in dimensional regularisation.
Transverse momentum resummation belongs to the class of SCET-II observ-
ables, therefore we encounter additional rapidity divergences. We implement
a symmetric analytic regulator on the phase space level in order to account
for these divergences in all SCET-II applications. For this particular regu-
lator choice, the collinear and anti-collinear beam function are related by a
n− n̄-symmetry. With the help of the collinear anomaly approach, we resum
the rapidity divergences and perform the renormalisation subsequently.

Factorisation theorem for pT -resummation

Once we have identified the relevant momentum modes, we can derive the
factorisation theorem for the Drell-Yan cross section at small transverse mo-
menta pT . For simplicity, we focus here on the correction from the virtual
photon exchange. Generally, the steps to derive the factorisation theorem
have been performed many times and to a great extend in the literature [58,
78], thus we follow this discussion closely.
Starting point is the cross section, which includes the correlation function
describing the underlying process and a momentum integration over the ex-
ternal momentum q of the photon

dσ =
4πα2

EM

3q2s

d4q

(2π)4

∫
d4x⊥e

−iqx(−gµν) 〈h1(p)h2(p̄)| (jµ)†(x)jν(0) |h1(p)h2(p̄)〉 .

(2.5)

The current jµ =
∑

q eq q̄γ
µq is the electromagnetic current for the light

quarks q with charges |eq| = 1
3
, 2
3

and αEM = e2

4π
is the electromagnetic

coupling constant. Moreover, the two initial-state hadrons h1 and h2 have
momenta p and p̄, respectively. Additionally, we work in Feynman gauge,
which yields the tensor −gµν from the sum over the photon polarizations.
In order to treat this production process in SCET, we need to perform a
matching from the full QCD expression for the current jµ onto SCET oper-
ators. Thus, the current operator jµ becomes [58]

jµ(x) =

∫
ds

∫
dt⊥CV (s, t) χ̄c(x+ sn̄)γµ⊥S

†
n(x)Sn̄(x)χc̄(x+ tn) . (2.6)

Along this matching procedure, the high-energy physics component is en-
coded in the Wilson coefficient CV (s, t). In the SCET language, we rewrite
expressions in the QCD Lagrangian in terms of hard, collinear, anti-collinear
and soft fields with the momentum scaling from the table above. Thereafter,
modes with high virtuality are integrated out. This leads to the introduc-
tion of collinear and anti-collinear quark fields in (2.6), which we further
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decompose into

qc,c̄(x) = ξc,c̄(x) + ηc,c̄(x) . (2.7)

The Dirac spinors qc,c̄ are therefore reduced to two two-component Weyl
spinors obeying the relations /nξc(x) = 0 as well as /̄nξc̄(x) = 0 for the ξ-fields
and similar relations for the η-fields after replacing ξ → η combined with
/n↔ /̄n. With proper projection operators, they can be related to the spinor
qc,c̄

ξc(x) =
/n/̄n

4
qc(x) , (2.8)

ξc̄(x) =
/̄n/n

4
qc̄(x) (2.9)

and similarly for the η-fields with the same replacements from before.
Furthermore, we can derive the scaling of the subfields ξc,c̄(x), ηc,c̄(x) from
the scaling of the fields qc,c̄(x). We obtain that the field ξc,c̄(x) scales with λ,
while ηc,c̄(x) scales with λ2 [58] and we identify the η-fields as subleading due
to their scaling. For this reason, they do not appear in Eq. (2.6). Rather,
we express the collinear quark fields in Eq. (2.7) in terms of gauge-invariant
building blocks

χc,c̄(x) =W †
c,c̄(x)ξc,c̄(x) , (2.10)

Aµc,c̄(x) =W †
c,c̄(x)

[
iDµ

c,c̄Wc,c̄(x)
]
, (2.11)

where Dµ
c,c̄ = ∂µ − igsAµc,c̄ corresponds to the covariant derivative containing

the collinear gluon field. Wc,c̄ are collinear and anti-collinear Wilson lines
including collinear and anti-collinear gluon fields in order to guarantee gauge
invariance of the expression in Eq. (2.6)

Wc(x) = P exp

[
igs

∫ 0

−∞
ds n̄ · Ac(x+ sn̄)

]
, (2.12)

Wc̄(x) = P exp

[
igs

∫ 0

−∞
dt n · Ac̄(x+ tn)

]
. (2.13)

After introducing the basic notation, we can now focus on the derivation of
the factorisation theorem. First, we consider the combination of two vector
currents

j†,µ(x)jν(0)→
∫

ds

∫
dt

∫
ds′
∫

dt′CV (s, t)C
∗
V (s

′, t′)
[
S†n(x)Sn̄(x)

]ad
× χ̄ac(x+ t′n̄)γµ⊥χ

d
c̄(x+ s′n) χ̄bc̄(sn)γ

ν
⊥χ

c
c(tn̄)

[
S†n̄(0)Sn(0)

]bc
. (2.14)

In this context, we remind ourselves that

γµ = γµ⊥ + /n
n̄µ

2
+ /̄n

nµ

2
. (2.15)
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Due to the relations /̄nχc̄ = 0 and /nχc = 0, we can effectively replace γµ⊥ by
γµ in Eq. (2.14). This will become useful in the following step, where we
apply Fierz transformations [82] on the expression in the second line of Eq.
(2.14), after contracting it with the metric tensor −gµν :

χ̄ac(x+ t′n̄)γµ⊥χ
d
c̄(x+ s′n) χ̄bc̄(sn)γ

ν
⊥χ

c
c(tn̄)

= χ̄ac(x+ t′n̄)
/̄n

2
χcc(tn̄) χ̄

b
c̄(sn)

/n

2
χdc̄(x+ s′n)

+ χ̄ac(x+ t′n̄)
/̄n

2
γ5χ

c
c(tn̄) χ̄

b
c̄(sn)

/n

2
γ5χ

d
c̄(x+ s′n)

(2.16)

In the relation above, we exploited that χ̄cγµχc = nµχ̄c
/̄n
2
χc and χ̄cχc = 0.

We express the currents in terms of the gauge invariant building blocks from
Eq. (2.11) and a, b, c, d are colour indices in the fundamental representation
of SU(Nc). However, the second term in Eq. (2.16) vanishes due to parity
invariance of the strong interaction such that we are only left with the first
line.
In SCET-II, collinear, anti-collinear and soft modes do not interact with
each other to leading power in the expansion parameter λ. Hence, we can
decompose the initial state according to |h1(p)h2(p̄)〉 = |h1(p)〉c ⊗ |h2(p̄)〉c̄ ⊗
|0〉S such that the full matrix element factorises into individual pieces. We
can furthermore average over colour indices. Finally, we obtain

〈h1(p)| χ̄ac(x+ t′n̄)γµ⊥χ
c
c(tn̄) |h1(p)〉

=
1

Nc

δac 〈h1(p)|χ̄ec(x+ t′n̄)γµ⊥χ
e
c(tn̄) |h1(p)〉

〈h2(p̄)| χ̄bc̄(sn)γν⊥χdc̄(x+ s′n) |h2(p̄)〉

=
1

Nc

δbd 〈h2(p̄)|χ̄fc̄ (sn)γν⊥χ
f
c̄ (x+ s′n) |h2(p̄)〉 . (2.17)

Ultimately, we arrive at the matrix element

〈h1(p)h2(p̄)| − j†,µ(x)jµ(0) |h1(p)h2(p̄)〉

→ |CV (−q
2, µ)|2

N2
c

〈h1(p)| χ̄c(x+ + x⊥)
/̄n

2
χc(0) |h1(p)〉

× 〈h2(p̄)| χ̄c̄(0)
/n

2
χc̄(x− + x⊥) |h2(p̄)〉

× 〈0|Tr
[
T̄
[
S†n(x⊥)Sn̄(x⊥)

]
T
[
S†n̄(0)Sn(0)

]]
|0〉 .

(2.18)

In the last equation, we perform several steps at once. First, we need to do
an additional multipole expansion, hence we drop all subleading components
in the power expansion parameter λ. The scaling of the momentum q of the
photon turns out to be (1, 1, λ−1)Q, thus we need to drop x− for the collinear
field, while we neglect x+ for the anti-collinear field. In the case of the soft
field, both the x− and x+ components are subleading. T and T̄ denote the
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time-ordered and anti-time-ordered product respectively. Moreover, we use
translation invariance to shift the arguments of the collinear fields χ and
perform the substitutions x+ → x++ t′n̄− tn̄ as well as x− → x−+ s′n− sn.
This helps us to simplify the Wilson coefficients after performing a Fourier
transformation such that we obtain the factor in Eq. (2.21). For more details
on the explicit calculation, we refer to [58, 78].
After decomposing the integral∫

d4xe−iqx =
1

2

∫
d2x⊥e

−iq⊥·x⊥
∫

dt1e
−it1n̄·q

∫
dt2e

−it2n·q , (2.19)

we can identify the collinear, anti-collinear and soft function

Bq/h1(x1, x2T , µ) =
1

2π

∫ ∞
−∞

dt1e
−ix1t1n̄·p 〈h1(p)| χ̄c(x+ + x⊥)

/̄n

2
χc(0) |h1(p)〉 ,

B̄q̄/h2(x2, x2T , µ) =
1

2π

∫ ∞
−∞

dt2e
−ix2t2n·p 〈h2(p̄)| χ̄c̄(0)

/n

2
χc̄(x− + x⊥) |h2(p̄)〉 ,

S(x2T , µ) =
1

Nc

〈0|Tr
[
T̄
[
S†n(x⊥)Sn̄(x⊥)

]
T
[
S†n̄(0)Sn(0)

]]
|0〉 . (2.20)

Here, we have introduced the transverse component x2T = −x2⊥. From a
physical point of view, the quantity Bq/h1 represents the transverse parton
distribution function, which illustrates the distribution of collinear quarks
and longitudinal momentum fraction x1 inside the hadron h1. With the
definitions from Eq. (2.20), the expressions in Eq. (2.5) becomes

dσ =
4πα2

EM

3Ncq2s
|CV (−q2, µ)|2

d4q

2(2π)2

∫
d2x⊥e

−iq⊥·x⊥S(x2T , µ)

×
∑
q

e2q

[
Bq/h1(x1, x2T , µ)B̄q̄/h2(x2, x2T , µ) + (q ↔ q̄)

]
. (2.21)

This is a typical form of a factorisation theorem in SCET to leading power in
λ. Hard, soft, collinear and anti-collinear contributions to the cross section
are factorised and can be computed independently. Factorisation theorems
for other observables share a similar structure, albeit the specific form of
factors like e−iq⊥·x⊥ depend on the measurement function which incorporates
the full characteristics of the observable. Although we demand several re-
quirements for this function, the ansatz is still general enough to allow for a
large class of observables. In the following chapter, we discuss in more detail
the definition of the beam and the measurement function.
Since pT -resummation is a SCET-II observable, we encounter rapidity diver-
gences which need a special treatment as discussed before. Regularising these
singularities with a symmetric analytic regulator and applying the collinear
anomaly approach subsequently resums those divergences and refactorises
the beam function expressions. We discuss these issues in chapter 6 in more
detail. Once we obtain renormalised expressions, we finally reach our goal to
provide the finite renormalised NNLO beam function expressions which are
missing to push the automation of resummation to NNLL′ accuracy. This is
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related to the last step in our general introduction from before. Albeit renor-
malised expressions are finite and have no poles in the dimensional regulator
ε or in the rapidity regulator α, the renormalisation procedure introduces
logarithms of the renormalisation scale µ and the different scales of the un-
derlying process. These logarithms might become large, depending on the
choice of µ, and might spoil the perturbative series. Resummation techniques
account for this issue and run the scale µ via the RGEs to a common scale,
where the logarithms are small, such that the perturbative series retains
its predictive power. Therefore, resummation is crucial for phenomenologi-
cal analyses. However, this is beyond the scope of this work, since we aim
to provide NNLO predictions for the beam functions, which can be used
in phenomenological studies. For a detailed discussion on resummation of
transverse-momentum resummation, we refer to [58, 78].
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2.2 Heavy-Quark Effective Theory
Heavy-Quark Effective Theory (HQET) [20–23] is another well-established
example for an effective field theory. One of its main advantages is to enable
the study of heavy quarks, such as charm and bottom quarks, in a more
simplified framework compared to the full Standard Model. Within this
approach, one exploits that the mass of a heavy quark is much larger than
the typical energy scale of strong interactions ΛQCD. Therefore, the heavy
quark can be treated as nearly static embedded in a cloud of lighter degrees
of freedom such as gluons or light quarks. In this physical picture, the heavy
meson state H is decomposed into valence and non-valence contributions

|H〉 = |Qq̄〉 ⊕ |Qq̄g〉 ⊕
∑

q′=u,d,s

|Qq̄q′q̄′〉 ⊕ ... , (2.22)

where Q denotes the heavy quark like the b- or c-quark and q the corre-
sponding light u, d, s-quark. The masses of the light quarks are negligible
compared to the hard scale of typical processes such that we restrict our
discussion to a B- or D-meson. Through this effective framework, we have
direct access to SM parameters like the weak mixing angle θW , the Cabbibo-
Kobayashi-Maskawa (CKM) matrix elements and their unitarity relation or
CP -violating effects in a model-independent way. Theoretical predictions are
then compared to experimental data from dedicated flavour physics experi-
ments like BaBar or Belle-II. Besides that, it is even possible to determine
decay constants from leptonic decays or form factors of heavy hadrons from
semileptonic decays if we combine the HQET formalism with methods like
QCD sum rules [51–53], light-cone sum rules [54, 55] or lattice QCD.
Since heavy mesons involve two widely separated energy scales mQ � ΛQCD,
we can again exploit factorisation techniques to separate short-distance and
long-distance physics with an operator product expansion (OPE). Short-
distance effects can be studied within perturbation theory, while long-distance
effects like hadronisation need different methods for an appropriate treat-
ment. The aforementioned QCD sum rule and the light-cone sum rule
(LCSR) approach are used in an attempt to parameterise these low-energy
physical effects. Throughout this work, we employ the QCD sum rule method
to determine two essential HQET parameters called λ2E,H , while we consider
light-cone sum rules to investigate a B-meson decay into a new dark matter
particle which extends the Standard Model.
In general, the theoretical description of this framework is based on the ob-
servation that the large mass of the heavy meson H allows us to introduce
its velocity via the relation

vµ =
pµH
mH

(2.23)

with v2 = 1 such that we can even identify v = (1,~0)T in the rest frame of
the heavy meson.
Since the heavy quark Q is nearly at rest, it is useful to define

pµQ = mQv
µ + kµ , (2.24)
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where kµ ∼ ΛQCD describes the fluctuations around its mass shell. Because
it is of the order of ΛQCD, its effects are usually negligible in the expansion
around the heavy quark mass mQ.
Following the usual spirit of effective field theories, we aim to construct a
theory which captures the low-energy physics of the full theory (QCD) by
integrating out the small components of the heavy quark field. But contrary
to the usual effective field theory approaches, we only remove the small com-
ponents in the heavy-quark momentum decomposition such that we can treat
the effective heavy quark as a degree of freedom of the theory. But since we
modify the high-energy physics by integrating out parts of the heavy-quark
components, we can not capture the full UV physics of QCD. For this, we
need to adjust the scale of the Wilson coefficients of the effective operators
in a matching calculation. The OPE appears in this framework when we
rewrite the effective theory, which is at first non-local, into an infinite series
of local terms which are systematically expanded in inverse powers of mQ.
At this point, it is convenient to split the heavy-quark field into large and
small components

hv(x) = eimQv·xP+Q(x) , Hv(x) = eimQv·xP−Q(x) (2.25)

with the projection operator P± = 1±/v
2

. The projection operators guarantee
that the relations /vhv = hv and /vHv = −Hv hold for the large and small
components of the heavy-quark field respectively.
We are able to rewrite the Lagrangian density for the heavy quark field in
terms of the large and small components hv and Hv

LQ = Q̄(i /D −mQ)Q = h̄viv ·Dhv −Hv(iv ·D + 2mQ)Hv + h̄vi /D⊥Hv

+Hvi /D⊥hv (2.26)

with Dµ
⊥ = Dµ − vµv · D, which satisfies v · D⊥ = 0. Additionally, we use

equations of motion to express the field Hv by hv

Hv =
1

2mQ + iv ·D
i /D⊥hv . (2.27)

Indeed, we observe in this relation that the small components Hv scale as
1/mQ. However, we can insert Eq. (2.27) into Eq. (2.26) to obtain an
effective non-local Lagrangian

Leff = h̄viv ·Dhv + h̄vi /D⊥
1

2mQ + iv ·D
i /D⊥hv . (2.28)

Formally, we can manipulate at this stage the generating functional for the
QCD Greens′ functions containing heavy-quark fields in order to get rid of
the non-local effects [23, 83]. This effectively means that we expand the
Lagrangian in terms of the small residual momentum kµ, which is much
smaller than mQ. Therefore, we obtain the following effective Lagrangian

Leff = h̄viv ·Dhv +
∞∑
n=0

1

2mQ

h̄vi /D⊥

(
− iv ·D

2mQ

)n

i /D⊥hv . (2.29)
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This step naturally introduces a tower of local terms in form of an OPE as
we argued before. By exploiting the relation

P+i /D⊥i /D⊥P+ = P+

[
(iD⊥)

2 +
gs
2
σµνG

µν

]
P+ (2.30)

with Gµν = i
gs
[Dµ, Dν ], we arrive at the following form of the Lagrangian

Leff = h̄viv ·Dhv +
1

2mQ

h̄v(iD⊥)
2hv +

gs
4mQ

h̄vσµνG
µνhv +O

(
1

m2
Q

)
.

(2.31)

Notice that in the limit mQ →∞ only the first term survives, which describes
the kinetic term of the large component of the heavy quark field in form of a
linear propagator and its interaction with soft gluons. The large component
field hv becomes important in the determination of the HQET parameters
λ2E,H . However, we can prove that the interaction terms do not contribute
in our considerations and only the propagator becomes important, since we
work only to leading power in the heavy quark expansion.
Moreover, the factorisation in HQET leads in this particular limit to another
advantage in the description of long-distance effects. It is possible to iden-
tify approximate symmetries in some kinematical regimes, which simplify the
underlying problem and allow for statements beyond perturbation theory at
energy scales µ ∼ ΛQCD. The HQET framework allows to identify two impor-
tant symmetries, which become exact for mQ →∞, namely the heavy-quark
flavour and spin symmetries.
The heavy-quark flavour symmetry becomes apparent if we consider the bind-
ing energy Λ̄ = mH −mQ+O

(
1
mQ

)
. Comparing the values for Λ̄ for B- and

D-mesons, we see that they are nearly identical. This particular feature is
called the flavour symmetry in HQET. The spin symmetry becomes obvious
by studying the difference between the masses of vector and pseudoscalar
heavy mesons. They just differ by the spin orientation of the heavy quark Q
inside the heavy meson H and are also nearly identical.
Besides, it is also possible to understand these two symmetries in a more
direct physical picture [83]. For this, we assign the heavy meson system H a
characteristic size RH . The heavy quark is embedded in a cluster of light par-
tons like quarks, antiquarks and gluons around the energy scale ΛQCD . Since
the heavy quarks constitutes the large scale in this problem, its wavelength
is of the order of λQ � RH . Soft gluons, which live at the characteristic
scale ΛQCD ∼ RH , can not resolve the quantum numbers of the heavy quark,
in particular its spin and flavour. The light degrees of freedom view the
heavy quark as a colour charge source confined inside the hadron. Relativis-
tic effects like colour magnetism allow the soft gluons to distinguish different
heavy quarks. But since these relativistic effects vanish in the heavy quark
limit mQ → ∞, heavy mesonic states containing b− or c-quarks become in-
distinguishable. Interestingly, the nature of this symmetry is quite different
to approximate symmetries of QCD like the chiral symmetry, because it is
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not a symmetry of the full theory in a certain parametrical limit, but rather
an approximate symmetry of an effective theory. Especially the fact that
the symmetry holds only in the limit mQ → ∞ illustrates the difference to
ordinary symmetries in QCD.
After establishing the fundamental framework in HQET, we are in principle
able to investigate many properties of the Standard Model, as we described
before. But apart from the determination of SM parameters, it is also pos-
sible to investigate parameters and quantities directly defined in the HQET
framework. For instance, they are used to describe the properties of the
B-meson by studying matrix elements of operators of the form

O(z) = q̄(0)W (0, z)Γhv(z) . (2.32)

In this context, q denotes the light quark field, hv represents the heavy quark
field in HQET and W (0, z) is the Wilson line rendering the expression in Eq.
(2.32) gauge invariant. It is defined in a similar manner to Eq. (2.12) with
z denoting a light-like vector on the light-cone, i.e. z2 = 0.
One of the most important parameters in HQET is the HQET decay constant
defined in terms of the relation

〈0| q̄(0)γµγ5hv(0) |B̄(v)〉 = iF (µ)vµ . (2.33)

It is related to the physical QCD decay constant fB via the expression

fB
√
mB = F (µ)

[
1 +

CFαs
4π

(
3 · ln

(mb

µ

)
− 2

)
+ ...

]
+O

( 1

mb

)
(2.34)

up to corrections of 1
mb

. Notice that in this relation up to order αs, we expect
that the explicit scale dependence of the decay constant cancels on the right
side such that the physical decay constant fB is scale independent. Another
interesting parameter, which we have already discussed before, is the binding
energy Λ̄ introduced through the matrix element

〈0| q̄ΓiDµhν |B̄〉 =
−i
6

Λ̄F (µ) Tr
[
ΓP+γ5(4v

µ − γµ)
]
. (2.35)

Its definition is given by Λ̄ = mB−mb+O
(

1
mb

)
and it is relevant for the first

moments of the leading and subleading twist amplitude, which we discuss in
the following section.
In addition to that, there are other interesting parameters called λ2H and λ2E,
which contribute to the second moments of the B-meson DAs. Originally,
they have been defined as [84]

〈0| gsq̄ ~α · ~E γ5hv |B̄(v)〉 = F (µ)λ2E , (2.36)
〈0| gsq̄ ~σ · ~H γ5hv |B̄(v)〉 = iF (µ)λ2H . (2.37)

and can be physically interpreted as chromoelectric and chromomagnetic
moments. This fact becomes apparent if we consider the definition of the
quantities in Eqs. (2.36), (2.37). Both ~E and ~H are related to the field
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strength tensor Gµν = Ga
µνT

a via Ei = G0i and H i = −1
2
εijkGjk, which is

similar to the definition of the electric and magnetic fields in QED. This field
strength tensor is defined as Gµν = i

gs
[Dµ, Dν ] with gs denoting the strong

coupling constant, which is related to αs by

αs =
g2s
4π

. (2.38)

~α and ~σ are combinations of Dirac γ-matrices in order to project out the
parameters λ2E,H

αi = γ0γiγ5 , σi = γi . (2.39)

The explicit choice of these projections in Eq. (2.39) guarantees that the
expressions are invariant under parity transformations.
In the second project of this thesis, we plan to determine these parameters
with QCD sum rules within HQET. Instead of analysing a correlation func-
tion of one two-particle and one three-particle current, which has been stud-
ied in the previous works [84, 85], we propose an alternative diagonal sum rule
based on a correlation function containing two three-particle currents. One of
the advantages of this particular correlation function is its positive definite-
ness, which allows for a more reliable application of the quark-hadron duality.
The tension between the two determinations from [84] and [85], where the
central values differ by a factor of three, makes it interesting to investigate
these parameters in an independent approach. These parameters become
relevant in the modelling of the shape of the B-meson in the subleading
power expansion. Due to the large discrepancy between the two extractions,
many authors express their relations through the ratio R = λ2E/λ

2
H , which

is approximately equal, and work with this quantity instead of choosing an
explicit parameter set.
In our determination, we work to leading order in αs and include local vac-
uum condensates up to mass dimension seven into our analysis, therefore we
neglect αs and 1/mb-corrections in Eq. (2.34) and the definition of Λ̄. How-
ever, it is convenient for our analysis to rewrite the definitions in Eq. (2.36)
and (2.37) into a covariant form

〈0| q̄(0)Γµν1 gsGµν(0)hv(0) |B̄〉 =
−i
6
F (µ){λ2H(µ) Tr[Γ

µν
1 P+γ5σµν ]

+ [λ2H(µ)− λ2E(µ)] Tr[Γ
µν
1 P+γ5vµν ]}. (2.40)

In Eq. (2.40), we make use of the covariant trace formalism [84]. We define
σµν =

i
2
[γµ, γν ], while vµν is given by i(vµγν−vνγµ). Although Γµν1 represents

in general an arbitrary combination of Dirac γ-matrices, it is possible to go
back to the original definitions in Eq. (2.36) and (2.37) by choosing Eq.
(2.39) for Γ1.
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2.3 QCD Factorisation
Another important milestone in the description of exclusive hadronic two-
body decays of B-mesons has been the introduction of the QCD factori-
sation approach [86–88]. It is based on the heavy-quark expansion (HQE)
within HQET from section 2.2 combined with collinear factorisation, which
describes the factorisation of hard-exclusive processes. HQE exploits that
the mass of the heavy quark Q inside the mesonic state H is much larger
than the typical hadronic scale ΛQCD, while collinear factorisation operates
at energies where the final-state particles of the exclusive processes, which
are supposed to be on the light-cone, are much larger than the hadronic
scales. Therefore, HQE is applicable in the description of the B-meson in
the expansion ΛQCD � mb, whereas collinear factorisation uses the energy
E ∼ O(mb) of the light final-state particle in the B-meson rest frame and
works in the limit ΛQCD � E. The modern formulation of QCD factorisation
therefore uses methods from both SCET and HQET [89–95].
This framework is perfectly suited for the investigation of heavy B-meson
decays into light (charmless) energetic mesons. As we deal with widely sep-
arated scales, the corresponding decay amplitudes can again be factorised in
the HQE. For this specific case, it takes for a generic operator Oi of the weak
effective Hamiltonian the following form [87]

〈M1M2| Oi |B̄〉 =
∑
j

F B→M1
j (m2

2)

∫ 1

0

duT Iij(u)ΦM2(u) + (M1 ↔M2)

+

∫ 1

0

dξ

∫ 1

0

du

∫ 1

0

dv T IIi (ξ, u, v)ΦB(ξ)ΦM1(v)ΦM2(u) (2.41)

for M1 and M2 being both light. In Eq. (2.41), we have introduced the form
factors F B→M1,2

j (m2
2,1) for B → M1,2 decays, which can be determined with

methods like light-cone sum rules or lattice QCD. Correspondingly, m1,2 are
the masses of the light mesons M1,2. ΦX(u) with X ∈ {M1,M2, B} represent
the leading twist light-cone distribution amplitudes of the meson X. These
light-cone distribution amplitudes are non-perturbative objects and do not
depend on the process under investigation. In addition to that the quantities
T Iij(u) and T IIi (ξ, u, v) correspond to the hard-scattering functions, which
are, contrary to the distribution amplitudes, process dependent. Moreover,
perturbation theory can be applied to determine those functions.
Typical applications of the QCD factorisation approach are for instance the
radiative leptonic B → γlν decays or the hadronic B → ππ decays. These
examples are perfectly suited to determine the properties of the B-meson
distribution amplitude like the first inverse moment λ−1B of the LCDA [96–
103]. In this work, we are interested in the extraction of the parameters
λ2E,H , which are used to model the shape of the B-meson DA [84, 104–
107]. The properties of the B-meson DAs are less known, albeit they are
subject of many studies recently. However, there occur many problems in
their description, especially if we include subleading power corrections [108–
113].
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In order to characterise distribution amplitudes, the quantity twist is defined
as

t = d− s , (2.42)

where d denotes the mass dimension of the operator, while s describes its
canonical spin. Its determination for arbitrary local operators is not always
immediately clear, since it requires to expand quark and gluon fields in terms
of longitudinal and transverse projections to the light-cone direction [114].
For light-meson distribution amplitudes like the pion DAs or for nucleon dis-
tribution amplitudes, which we encounter in the third project of this thesis,
the quantity twist is well defined. Matrix elements can be parameterised
based on symmetries like Lorentz covariance, spin and parity invariance and
can be subsequently related to distribution amplitudes. However, there is
no proper definition for twist in the case of B-meson distribution ampli-
tudes, albeit it is for convenience artificially introduced in many cases [110].
This parameter becomes important in the application of light-cone sum rules,
where twist corresponds to the mass dimension of local operators in the QCD
sum rule approach.
We are now able to state the definition of the leading- and subleading-twist
two-particle B-meson distribution amplitudes, which are defined by the op-
erator in Eq. (2.32) [84]

〈0| O(z) |B̄(v)〉 = − i
2
F (µ) Tr

[
γ5Γ

1 + /v

2

{
φ̃+(u)−

/z

2u
[φ̃+(u)− φ̃−(u)]

}]
(2.43)

for a pseudoscalar initial-state B-meson. φ̃+ and φ̃− denote the leading- and
subleading quark-antiquark distribution amplitudes in position space, respec-
tively. Furthermore, zµ describes a light-like four vector satisfying z2 = 0
and vµ represents the B-meson velocity in HQET with v2 = 1. The quantity
u is defined as u = v · z. Notice that we are able to reproduce Eq. (2.33) by
choosing z = 0 and Γ = γµγ5 in Eq. (2.43).
Analogously, it is also possible to introduce three-particle distribution am-
plitudes [110, 115]

〈0| q̄(z)gsGµν(wz)Γhv(0) |B̄(v)〉 = 1

2
F (µ) Tr

{
γ5ΓP+

[
− ivµν

[
Ψ̃A − Ψ̃V

]
− iσµνΨ̃V − (zµvν − zνvµ)X̃A + (zµγν − zνγµ)

[
W̃ + ỸA

]
− iεµναβzαvβγ5 ˜̄XA + iεµναβz

αγβγ5
˜̄Y A − (zµvν − zνvµ)/zW̃

+ (zµγν − zνγµ)/zZ̃
]}

(u,w, µ) , (2.44)

which contain in total eight different distribution amplitudes. In particular,
we observe that in the limit z → 0, i.e. when we go over to a local matrix
element, we reduce Eq. (2.44) to a similar form as in Eq. (2.40). In this
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context, the role of the HQET parameters λ2E,H becomes obvious. They serve
as hadronic parameters to describe the shape of the higher twist B-meson
distribution amplitudes of non-local matrix elements including three-particle
operators. Moreover, they are used as normalisation of the three-particle
DAs Ψ̃V,A.
Furthermore, these distribution amplitudes are often also considered in mo-
mentum space, where one defines Mellin moments of these amplitudes. While
the first Mellin moment only depends on the HQET parameter Λ̄, the second
moments also depend on a combination of Λ̄ and λ2E,H [84, 115].
In the third part of this thesis, we compute the branching fraction of the
new physics decay B → pΨ. For this, we evaluate the form factors for the
p→ B transition, which involve proton distribution amplitudes in the light-
cone expansion. These amplitudes have been studied to great extent in the
literature [116–119] and they are defined via the matrix element

〈0|T{u(x)u(0)d(0)} |p〉 . (2.45)

Therefore, they only involve light constituents and a decomposition based on
Lorentz invariance, spin and parity makes it possible to relate this matrix
element to definite twist amplitudes. We provide these details in appendix
E. Currently, they are known to leading order in αs up to twist six, which
corresponds to the precision of our computation in project three.





Project I:

An automated framework to calculate beam
functions to next-to-next-to leading order

Partial results of this project led to the publications [120–122].





Chapter 3

Theoretical framework

3.1 Beam functions
Beam functions are important objects which enter factorisation theorems in
EFTs like SCET, since they describe the initial-state radiation at hadron
colliders. In Eq. (2.3), we have encountered a typical example for a factori-
sation theorem including beam functions which account for collinear initial-
state radiation. Moreover, we have examined a specific example in section
2.1, namely transverse-momentum resummation in Drell-Yan production, but
here we aim to start from a more general definition that is valid for arbitrary
observables. This is in the spirit of this work to construct an automated
setup to compute beam functions to NNLO accuracy.
The definition of the quark beam function for a general observable take the
form [123]

1

2

[
/n

2

]
βα

Bq/h(x, τ, µ) =
∑
X

δ
(
(1− x)P− −

∑
i

ki,−

)
M(τ ; {ki})

× 〈h(P )| χ̄α |X〉 〈X|χβ |h(P )〉 . (3.1)

The δ-distribution in Eq. (3.1) accounts for the energy conservation in the
collinear region. In this context, the quantity x denotes the energy fraction
of the quark q going into the hard interaction. Furthermore, the phase space
integral over the emitted partons X with momenta {ki} is implicit here. The
last two important quantities are the matrix element and the measurement
function M(τ ; {ki}). First of all, the measurement function M(τ ; {ki}) in-
corporates the full observable dependence and will be further discussed in
the following section. It depends on both the momenta {ki} as well as the
variable τ , which is the Laplace variable defining the particular measure-
ment. Besides, the matrix element contains the SCET collinear quark field
χ = W †

c
/n/̄n

4
q, where Wc represents the collinear Wilson line from Eq. (2.12)

pointing in the n̄-direction, while q corresponds to the usual QCD quark
field. The external state |h(P )〉 refers to a hadronic state of momentum
P µ = P−

nµ

2
, which renders the beam function a non-perturbative object.

Nevertheless, it is a physical object encoding physical information since it

39
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enters the factorisation theorems in SCET, although applying methods from
perturbation theory for their determination is not possible at first sight. Be-
fore we show how to extract the perturbatively calculable information from
Eq. (3.1), we introduce the corresponding definition of the gluon beam func-
tion [123]

Bg/h(x, τ, µ) =− xP−
∑
X

δ
(
(1− x)P− − ki,−

)
M(τ ; {ki})

× 〈h(P )| Aµ,Ac,⊥ |X〉 〈X| A
A
c,⊥,µ |h(P )〉 . (3.2)

Due to the external hadronic state |h(P )〉, the gluon beam function is also
genuinely a non-perturbative object. The other quantities in Eq. (3.2) are
defined similarly to Eq. (3.1) and Aµc,⊥ is the gauge-invariant building block
from Eq. (2.11).
In order to tackle the non-perturbative nature of Eqs. (3.1) and (3.2), we
perform an operator product expansion in the regime 1/τ � ΛQCD. This re-
quires the assumption that we predominantly work in the small τ region. The
OPE introduces a perturbatively calculable matching kernel Ii←j(x, τ, µ),
which captures the short-distance physics at the scale 1/τ , whereas the long-
distance non-perturbative effects are encoded in the well-known parton dis-
tribution functions (PDFs) fi/h(x, µ) via

Bi/h(x, τ, µ) =
∑

j∈{q,g,q̄}

∫ 1

x

dz

z
Ii←j

(
x

z
, τ, µ

)
fj/h(z, µ) +O(τΛQCD), i ∈ {q, g} .

(3.3)

Notice that Eq. (3.3) is valid for both the quark and gluon beam function.
However, the case i = q̄ does not need to be considered separately, because
it is related to the other channels via charge-conjugation invariance.
The matching kernels Ii←j(x, τ, µ) are independent of the IR physics and
they can therefore be obtained from partonic rather than hadronic beam
functions. Due to the OPE in Eq. (3.3), they only account for the pertur-
bative physics such that asymptotic freedom allows us to work with partons
instead of complicated bound states like hadrons during the computation.
As the matching kernels are defined in terms of a operator matrix element
in the factorisation theorem, they do not depend on the representation of
the external states [124, 125]. In this context, the partonic beam functions
Bi←j(x, τ, µ) are defined in analogy to Eqs. (3.1) and (3.2) except that the
hadronic states are interpreted now as partonic states. If the matching is
performed on-shell in dimensional regularisation, the partonic PDFs evalu-
ate to fi←j(x, µ) = δijδ(1 − x) to all orders in perturbation theory and the
extraction of the matching kernels reduces to the calculation of the bare par-
tonic beam functions.
The above definitions of beam functions are valid for both SCET-I and SCET-
II observables. From the technical point of view, the main difference between
these two classes of observables consists in the fact that the latter are subject
to rapidity divergences that are not regularised in dimensional regularisation.
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k− � k+ k+ � k− k+ ∼ k−(
ν
k−

)α (
ν
k+

)α (
ν

k++k−

)α
Table 3.1: Implementation of symmetric analytic regulator in the collinear,
anti-collinear and soft region. For each final state emission, a regulator needs
to be introduced to account for rapidity divergences in the SCET-II case. For
the collinear and anti-collinear region, we exploit the momentum scaling of
these modes, while there is no ordering in the soft function case.

Therefore, it becomes necessary to introduce a second regulator α, which we
introduce on the level of the phase-space measure [73]

∫
ddki

(
ν

ki,+ + ki,−

)α

δ(k2i )Θ(k0i ) . (3.4)

Thus, we make use of a symmetric regulator in this work, which has the
advantage that collinear and anti-collinear beam functions are directly related
by replacing n↔ n̄. Table 3.1 shows the specific form of this regulator in the
different phase-space regions. In the collinear and anti-collinear region, we
can simplify the regulator by exploiting the different scaling of the light-cone
components.
Up to NNLO, the pertubative expansion of the bare matching kernels then
takes the form

I 0
i←j(x, τ) = δij δ(1− x) +

(
αs
4π

)(
ν

q−

)α
I 0,(1)
i←j (x, τ) +

(
αs
4π

)2(
ν

q−

)α
× I 0,(2,RV)

i←j (x, τ) +

(
αs
4π

)2(
ν

q−

)2α

I 0,(2,RR)
i←j (x) +O

(
α3
s

)
. (3.5)

Note that the real-virtual (RV) and double real (RR) corrections at NNLO
have different exponents in Eq. (3.5). NLO and RV contributions contain
only one-particle final states, while RR contributions consist of a two-particle
final state. This is why we observe the factor ν/q− twice in Eq. (3.5). q
represents the momentum going into the hard interaction and we identify
q− = xP−.
Generally, the matching kernels are distribution valued, as anticipated in Eq.
(3.5). In the explicit calculation, the distributions arise from terms like

SCET-I : I 0
i←j(x, τ) ∼ (1− x)−1−mε ,

SCET-II: I 0
i←j(x, τ) ∼ (1− x)−1−mα . (3.6)

We have developed two independent frameworks to work with these distribu-
tions: In the first approach (x-space), we expand the x-dependence in terms



42 CHAPTER 3. THEORETICAL FRAMEWORK

of distributions

(1− x)−1−mε = − 1

mε
δ(1− x) +

[
1

1− x

]
+

−mε

[
log(1− x)

1− x

]
+

+ ... ,

(3.7)

where the plus-distribution acting on a test function f(x) is defined as∫ 1

0

dx f(x)

[
g(x)

1− x

]
+

=

∫ 1

0

dx
f(x)− f(1)

1− x
· g(x) . (3.8)

We will later rewrite Eq. (3.6) into a more convenient form for numerical
evaluations, which has the advantage that the coefficients in front of the
distributions are x-independent and the remaining (grid) contribution is finite
in the limit x→ 1. In order to deal with the SCET-II case, we just need to
replace ε→ α.
However, we will resolve the distributions via

Î 0
i←j(N, τ) =

∫ 1

0

dx xN−1 I 0
i←j(x, τ) (3.9)

in the second approach (N -space). The transformed matching kernels are
thus regular functions of the Mellin variable N , although this comes with the
disadvantage of one additional integration affecting the numerical accuracy.

3.2 Measurement function
According to the definitions in Eqs. (3.1) and (3.2), the beam functions
consist schematically of three parts, namely the collinear matrix element, the
measurement function and an integration over the phase space of the emitted
particles. Moreover, the bare beam functions are subject to divergences in
the dimensional regulator ε and possibly in the rapidity regulator α. These
divergences only depend on the underlying matrix element and are observable
independent. Hence, the dependence on the observable is solely encoded in
the measurement function M(τ ; {ki}), which acts like a weight function in
the phase space enhancing and suppressing certain contributions depending
on the observable. This observation is the key ingredient of our approach.
Our goal consists of isolating the divergences into monomial form first and
then performing the remaining phase-space integrations numerically. To this
end, we have to find a suitable parameterisation of the measurement function.
Specifically, we assume that the measurement function can be written as

M(τ ; {ki}) = exp[−τω({ki})] , (3.10)

which typically arises as the result of a Laplace transformation and τ is the
corresponding Laplace variable. The generic form of the function ω({ki})
is constrained by a few assumptions that are similar to the requirements
postulated for soft functions in the SoftSERVE framework [48, 49]:
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(i) Measurement function: Our framework requires the measurement
function to be strictly positive Re(ω({ki})) > 0 such that the conver-
gence of the phase space integrals is guaranteed. We only allow for a
vanishing measurement in configurations with zero weight in the phase
space.

(ii) Mass dimension: The Laplace variable τ is supposed to have mass
dimension 1/mass, therefore the measurement ω({ki}) possesses mass
dimension 1.

(iii) Azimuthal dependence: We restrict the function ω({ki}) to only
depend on one angle Θi per emitted particle in the (d− 2)-dimensional
transverse plane. Therefore, the emissions are measured with respect
to a reference vector vµ. But the function ω({ki}) is in addition al-
lowed to contain relative angles Θij in the transverse plane between
two emissions with transverse momenta ki⊥ and kj⊥.

Generally, assumption (ii) could be relaxed in the future. Although we did
not encounter any observable in the beam function case so far which pos-
sesses a mass dimension different from one, there are examples like jet rates
in the jet function case, which violate this assumption. The generalisation
to an arbitrary mass dimension is, however, rather straight-forward in our
approach. In contrast to that we identify requirements (i) and (iii) as crucial
to our framework. According to requirement (i), the measurement ω({ki})
should be strictly positive to ensure convergence of the numerical integra-
tions. Though, we also face observables like transverse-momentum resumma-
tion, which seem to violate this condition at first sight. Due to an additional
Fourier transformation, the measurement becomes imaginary. In chapter 8,
we show explicitly how we can rewrite the measurement function such that it
becomes positive and vanishes only for phase-space points with zero weight.
Whereas the original measurement is formulated as a δ-function for most
observables, which transforms into the form in Eq. (3.10) after a Laplace
transformation, there are some observables like jet-veto resummation which
are expressed in terms of a Θ-function. We will explain later in chapter 8
that these type of measurements can also be brought into the form of Eq.
(3.10) via a Laplace transformation and that they can also be handled by our
approach [49]. The azimuthal dependence required in assumption (iii) be-
comes important in the parameterisation of the angular integrations, which
we discuss in section 5.2.2.
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3.3 Accuracy of the framework and connec-
tion to phenomenology

After discussing the general form of the beam function and the constraints on
the allowed measurements, we focus now on the phenomenological accuracy
and how the new results of this work influence the current state-of-the-art
precision in the literature. In order to accomplish that, we need to introduce
a counting scheme for the logarithmic accuracy as well as the ingredients
that are needed to realise this accuracy. In SCET, logarithms are resummed
by solving the corresponding RGEs. For instance, a typical RGE is of the
form

dH(Q,µ)

d lnµ
=

[
− 2CFΓ

i
cusp(αs) ln

(
µ2

Q2

)
+ γH(αs)

]
H(Q,µ) , (3.11)

where

Γ i
cusp(αs) =

∞∑
m=0

(
αs
4π

)m+1

Γ i
m (3.12)

is the cusp anomalous dimension and

γi,H(αs) =
∞∑
m=0

(
αs
4π

)m+1

γi,Hm (3.13)

denotes the non-cusp anomalous dimension of the hard function H(Q,µ).
The solution of the RGE requires a boundary term, which we call cH . Sim-
ilar relations hold for the beam and soft functions and for the former we
denote the corresponding boundary terms by I (m)

i←j (x) as they are boundary
terms of the matching kernels from Eq. (3.5). We will also see later that
the relevant anomalous dimension for SCET-II observables are the anomaly
coefficients dm. Finally, we need as an input for the renormalisation of the
strong coupling constant αs the QCD β-function.
With these general ingredients for renormalisation and resummation, we can
now define a proper counting for the logarithmic accuracy in table 3.2 and
state individually to which order in αs we need each quantity. In order to
achieve resummation up to NNLL′ accuracy, we need the observable indepen-
dent cusp anomalous dimension Γ i

cusp to O(α3
s), which is currently known up

to four loop order [126–128]. Furthermore, we require the QCD β-function to
order O(α3

s), which is currently known up to O(α5
s) [129, 130]. Its expansion

in αs is given by

β(αs) =
∞∑
m=0

(αs
4π

)m+1

βm . (3.14)

In addition to that we need the hard non-cusp anomalous dimension γi,H and
cH to NNLO. These quantities are related to the underlying hard scattering
process and encode the UV physics according to the factorisation theorem
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LL NLL NNLL NNLL′ N3LL

Γ i
cusp Γ i

0 Γ i
1 Γ i

2 Γ i
2 Γ i

3

β β0 β1 β2 β2 β3

γi,H - γi,H0 γi,H1 γi,H1 γi,H2

cH,S c
(0)
H,S c

(0)
H,S c

(1)
H,S c

(2)
H,S c

(2)
H,S

Fīi - d i1 d i2 d i2 d i3

γi,{B,S} - γ
i,{B,S}
0 γ

i,{B,S}
1 γ

i,{B,S}
1 γ

i,{B,S}
2

Ii←j(x) I (0)
i←j(x) I (0)

i←j(x) I (1)
i←j(x) I (2)

i←j(x) I (2)
i←j(x)

Table 3.2: Inputs for the anomalous dimensions and matching corrections in
order to obtain the desired logarithmic accuracy. Notice that the expressions
in blue correspond to the input to the NNLL′ accuracy which are either
provided by this work or the SoftSERVE framework. The index i indicates the
parton going into the hard interaction and defines the channel. Depending
on the channel, we can identify by this index whether the cusp and non-cusp
anomalous dimensions are taken in fundamental or adjoint representation.

in Eq. (2.3). Specifically, for colour-singlet processes like Drell-Yan or Higgs
production, quark and gluon form factors [131, 132] provide values for the
non-cusp anomalous dimension γi,H as well as the matching correction cH .
Generally, these quantities are observable independent, but the soft func-
tion and the collinear anomaly exponent in the SCET-II case depend on the
observable. For most observables in this work, the non-cusp anomalous di-
mension is known to O(α2

s) [78, 79, 124, 125]. But for generic observables,
it becomes necessary to use SoftSERVE which provides γi,S, cS and d i1,2 nu-
merically. Especially in the SCET-II case, the soft function depends on the
regulator choice for the rapidity divergences and hence some analytical re-
sults from the literature might not be applicable for specific problems. In
general, the SoftSERVE framework allows for both the rapidity renomali-
sation group approach as well as the collinear anomaly approach to resum
rapidity divergences such that the user has more freedom here.
Finally, at least for processes with only initial-state radiation which we con-
sider here, we need the non-cusp anomalous dimension γi,B and matching
correction for the beam function for resummation. In principle, it is possible
to extract the quantity γi,B from our computation, however we use the soft
non-cusp anomalous dimension via the consistency relation

γi,H + γi,S + γi,B + γi,B̄︸ ︷︷ ︸
=2γi,B

= 0 (3.15)

for the factorisation theorem in Eq. (2.3) in order to check our renormalisa-
tion procedure. In the case of final-state radiation described by jet functions,
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we would need to add the jet non-cusp anomalous dimension as well. The
advantage in using the soft anomalous dimension lies in the better numerical
accuracy, since the expressions in the soft function calculation, i.e. the ma-
trix element and the phase space are considerably simpler compared to the
beam function computation. Therefore, we make use of the input from the
soft function as a check of our calculation.
By providing the NNLO boundary term for the matching kernels Ii←j(x),
automated setups for resummation can be pushed to NNLL′ accuracy, which
is beyond reach for many observables so far. The blue quantities in table 3.2
illustrate the expressions which we are able to provide within our automated
framework. As we have discussed above, the NNLO non-cusp anomalous
dimensions γi,{B,S}1 or the NNLO anomaly coefficients d i2 are known to this
order for both quark and gluon channels, hence they are a useful check for
our setup. For SCET-II observables, renormalisation is more involved due
to the rapidity divergences, but the counting in table 3.2 is still valid if the
SCET-I matching kernels Ii←j(x) get replaced by the so-called refactorised
matching kernels Ii←j(x). Moreover, this scheme works similarly for N -space
expressions, the expressions in x-space just need to be Mellin transformed
with Eq. (3.9).



Chapter 4

NLO beam functions

This chapter is devoted to the careful analysis of beam function expressions
up to next-to leading order (NLO) accuracy in the strong coupling constant
αs. They are related to the matching kernels via Eq. (3.3). In order to
evaluate the matching kernels to NLO, we derive a master formula which
has a closed analytical form and with which we are capable of calculating
these terms to NLO accuracy for a general class of observables. We treat
quark and gluon channels separately, although the computational steps are
closely related to each other. The considerations in this chapter are based on
bare quantities denoted by the index ”0”, we translate all these quantities to
renormalised objects in chapter 6.

4.1 The quark beam function at NLO

As argued in section 3.1, the matching kernels can be determined from par-
tonic instead of hadronic beam functions. We thus start from the relation

1

2

[
/n

2

]
βα

I 0
q←j(x, τ) =

∑
X

δ
(
(1− x)P− −

∑
i

ki,−

)
M(τ ; {ki})

× 〈j(P )| χ̄α |X〉 〈X|χβ |j(P )〉 . (4.1)

Since we only work to NLO accuracy for now, the final state |X〉 consists
of a gluon or antiquark with momentum k. Furthermore, the pure virtual
corrections at NLO lead to scaleless integrals in dimensional regularisation
and therefore vanish. As a consequence, the sum over X will be replaced by
the phase-space integral over k.
We now start to calculate the matrix element in Eq. (4.1), which is shown
in form of a Feynman diagram in figure 4.1.

47
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Figure 4.1: NLO Feynman diagram for the diagonal q → q and off-diagonal
g → q matching kernels. These diagrams are the only contributions in light-
cone gauge.

Since we work in light-cone gauge, we only need to evaluate the diagrams in
figure 4.1 for the two quark channels, while the diagrams in figure 4.2 vanish
for this particular gauge. Moreover, it is convenient for the calculation to
project out the spinor structure by multiplying the expression in Eq. (4.1)
with

[
/̄n
2

]
αβ

. The matrix element can then be computed with QCD Feynman
rules. As an example, we evaluate the matrix element for the q → q matching
kernel

M(1)
q←q := 〈q(P )| χ̄α |k〉

/̄nαβ
2
〈k|χβ |q(P )〉

=
i(g0s)

2

2

1

Nc

(
− gµν +

n̄µkν + n̄νkµ
n̄ · k

) 1

k2 + i0+
tr
[
TATBδAB

]
× Tr

[
/Pγν

(/P − /k)
(P − k)2 + i0+

/̄n/n

4

/̄n

2

/n/̄n

4

(/P − /k)
(P − k)2 + i0+

γµ
]

≡ α0
s

4π
M(1)

q←q ·
i

k2 + i0+
. (4.2)

Although we work in the framework of SCET, it is possible to use ordi-
nary QCD Feynman rules for the computation [58]. We observe that the
SCET Lagrangian for the collinear and anti-collinear fields are form-invariant
with respect to the Lagrangian density in QCD for both the SCET-I and -II
case after the corresponding transformations. A Lorentz boost, which leaves
the Dirac bilinears inside the Lagrangian density invariant, transforms the
collinear and anti-collinear fields back to the ordinary QCD fields 1.

1This statement only holds to leading power in λ as the decoupling transformation
factorises each region only at this order.
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Figure 4.2: NLO Feynman diagrams, which additionally to figure 4.1 con-
tribute in Feynman gauge for the q → q matching kernel at NLO. In light-
cone gauge, we can prove that these diagrams vanish. Similar diagrams exist
for the other channels and vanish due to the same reason.

In Eq. (4.2), we have already included the spin averaging factor 1
2

from the
incoming quark as well as the colour averaging factor 1

Nc
. The next step is to

evaluate the traces and express the scalar products in light-cone coordinates

M(1)

q←q = 32π2CF
(1− ε)k2− + 2P 2

− − 2k−P−
(2k · P )k−

. (4.3)

We assume that the incoming quark is aligned along the n-axis, hence P µ =
P−

nµ

2
. For the off-diagonal quark channel, i.e. the g → q channel, we can

proceed similarly to Eq. (4.2) and obtain for the matrix element

M(1)

q←g = 32π2 TF

[
1

k+
+

2

1− ε

( k2−
k+P 2

−
− k−
k+P−

)]
. (4.4)

Until now, we have treated the Feynman diagram in figure 4.1 as an ordi-
nary loop integral. But since there is a cut through the gluon line in these
diagrams, which is indicated by the introduction of a full set of states in Eq.
(4.1), we need to apply Cutkosky rules [133]. They can be summarised as
follows 2:

• Cut through a Feynman diagram in all possible ways. In physical
terms, this corresponds to putting cut particles on-shell.

• Replace every propagator with a cut by
1

k2 −m2 + i0+
= −2πiδ(k2 −m2)Θ(k0) . (4.5)

• Sum over all possible cuts to obtain the complete contribution.
Therefore, we need to replace the gluon propagator 1

k2+i0+
in Eq. (4.2) by

−2πiδ(k2)Θ(k0). The quark matching kernels become

I 0
q←j(x, τ) = δqj δ(1− x) +

(
α0
s

4π

)
· 1
2

∫
dk+
(2π)

∫
dk−
(2π)

∫
dd−2k⊥
(2π)d−2

(
ν

k−

)α
× δ
(
(1− x)P− − k−

)
· iM(1)

q←j (−2πi)δ(k2)Θ(k0)M(τ ; k)

+O
((
α0
s

)2)
, (4.6)

2These rules are strictly speaking only applicable in the physical timelike region. We
refer to [134] for a generalisation to other regions.
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where we have expressed the phase-space integral in terms of light-cone co-
ordinates.
We can make use of the two δ-distributions to remove the integration over
k+ and k−, since k2 = k+k− − k2T . In this context, we remind ourselves that
~k2⊥ = −~k2T ≡ k2T . Furthermore, the (d − 2)-dimensional integral over the
transverse components can be rewritten by using spherical coordinates∫

dd−2k⊥ =

∫
dΩd−3

∫ ∞
0

dkT k
d−3
T

=
2π1−ε

√
π Γ
(
1
2
− ε
) ∫ 1

−1
d cosΘk sin

−1−2ε(Θk)

∫ ∞
0

dkT k
d−3
T . (4.7)

In the last line, we have parameterised the angular integration by an angle
Θk, which describes the angle between a reference vector vµ⊥ that is imposed
by the observable and the emitted gluon in the transverse plane. Since we
work in the (d − 2)-dimensional plane, one angle is sufficient to specify the
kinematic structure of this process.
Similar to the work on soft and jet functions, we can state a general ansatz
for the measurement function obeying all conditions from section 3.2. For
this, we parameterise the phase-space integrals in the form

k− = (1− x)P− , k+ =
k2T

(1− x)P−
(4.8)

with the momentum fraction x ∈ [0, 1]. As we can deduce from Eq. (4.6), the
large k− - component in the collinear region is parameterised by (1 − x)P−
and hence the fraction xP− goes into the hard interaction. The advantage of
this parameterisation is that we can write the divergences of the expressions
in Eq. (4.6) explicitly in terms of monomials, which is easier for the inves-
tigation later. Moreover, the integration domain is restricted between [0, 1],
which is convenient for numerical Monte-Carlo integrations, albeit numerical
integrations are not necessary at the NLO level. Since we only encounter a
one-particle phase space generated by the emitted gluon with momentum k,
we can state the beam function expressions completely analytically, at least
for the examples presented in this work.
Using the parameterisation in Eq. (4.8), we propose the following general
ansatz for the measurement function:

M1(τ ; k) = exp

[
− τkT

(
kT

(1− x)P−

)n
f(Θk)

]
. (4.9)

It has precisely the form as we indicate in Eq. (3.10), thus we identify the
measurement ω({ki}) to be

ω(k) = kT

(
kT

(1− x)P−

)n

f(Θk) . (4.10)

Since we work in Laplace space according to the discussion in section 3.2,
the variable τ represents again the Laplace variable with mass dimension
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[τ ] = −1 in this context. Therefore, we include an additional factor kT in
Eq. (4.9) to render the argument of the exponential function dimensionless.
The last factor is inspired by the definition of the NLO measurement function
for the soft function [48, 49] and jet function [50]. In fact, we can derive the
exact form of these factors by exploiting that the collinear limit of the NLO
soft function and the soft limit of Eq. (4.9) commute [50]. Generally, there is
also a possible angular dependence hidden inside the measurement function
M(τ ; k) in Eq. (4.6), thus we need to investigate the form of this expression
in more detail. As long as the observable belongs to the class of observables
that are allowed in our framework, see section 3.2 for more details, it is pos-
sible to characterise this observable solely by a function f and a number n at
this order in αs. The angular dependence is then captured by the function
f , while n corresponds to the same number which has been introduced in
the case of soft functions [48, 49] as well as jet functions [50]. It is related to
the power counting of the momentum modes. In particular the value n = 0
defines observables which belong to the class of SCET-II, values n 6= 0 define
SCET-I observables [48] 3. Furthermore, the function f(Θk) might depend
on the variable x, but so far we did not see any observable with an explicit
x-dependence at NLO.
Applying the parameterisation from Eq. (4.8) and the ansatz for the mea-
surement function (4.9), we finally derive the master formula to compute the
q → q and g → q matching kernels to O(αs)

I 0
q←q(x, τ) = δ(1− x) + 4√

π(n+ 1)

αsCF
4π

(
µ2τ̄

2
n+1

q
2n
n+1

−

)ε(
ν

q−

)α Γ
( −2ε
n+1

)
Γ
(
1
2
− ε
)

× x
2nε
n+1

+α exp

(
γEε

(
−2
n+ 1

+ 1

))(
1− x

)−1− 2nε
n+1
−α
[
(1− ε)(1− x)2 + 2x

]

×
∫ 1

−1
d cos(Θk) sin−1−2ε(Θk)f

2ε
n+1 (Θk) +O

(
α2
s

)
, (4.11)

I 0
q←g(x, τ) =

4√
π(n+ 1)

αsTF
4π

(
µ2τ̄

2
n+1

q
2n
n+1

−

)ε(
ν

q−

)α Γ
( −2ε
n+1

)
Γ
(
1
2
− ε
)(1− x)− 2nε

n+1
−α

× x
2nε
n+1

+α exp

(
γEε

(
−2
n+ 1

+ 1

))[
1− 2x(1− x)

1− ε

]

×
∫ 1

−1
d cos(Θk) sin−1−2ε(Θk)f

2ε
n+1 (Θk) +O

(
α2
s

)
. (4.12)

Here, q− corresponds to the momentum going into the hard interaction and is
defined via q− = xP−. Moreover, we have already replaced the bare coupling

3In Ref. [50], it is explicitly shown that it is necessary to use the same parameter n
for soft and jet functions in order for the soft limit of the jet function measurement and
for the collinear limit of the soft function measurement to coincide. This argumentation
applies similarly to the beam function case.
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α0
s by its renormalised counterpart, which is given by

α0
s = Zαsµ

2εαse
γEε(4π)−ε and Zαs = 1− αs

4π

β0
ε
+O

(
α2
s

)
. (4.13)

We will elaborate in chapter 6 more on these relations.
In Eqs. (4.11) and (4.12), we perform the kT -integration analytically, but
leave the angular integration open due to the observable-dependent function
f(Θk). On top of that we implement the notation τ̄ = τeγE . By fixing the
number n as well as the measurement function f(Θk), we specify an observ-
able completely. Moreover, we notice that the matrix element expressions
from Eqs. (4.3) and (4.4) are already embedded into the master formulae
after applying the NLO parametrisation in Eq. (4.8).
There is a direct relation between the timelike splitting functions, which also
show up in the master formulae for the jet function [50] and the expressions
in (4.11) and (4.12) via crossing symmetry [135]:

Jet function

• q∗ → q:

k− = z Q−

Q− =P− + k−

• q∗ → g:

k− =(1− z)Q−
Q− =P− + k−

Q−→−Q−; P−→−P−−−−−−−−−−−−−−→

P−→−P−−−−−−→

Beam function

• q → q∗:

k− =(1− x)P−
Q− =P− − k− ≡ q−

• g → q∗:

k− =(1− x)Q−
Q− = − P− + k−

Figure 4.3 illustrates the assignments of the energy fractions in the jet func-
tion and beam function case. For the jet function, the quantity z corresponds
to the energy fraction of the gluon in the diagonal channel, which we denote
by (1− x) in the beam function case.

Figure 4.3: Momentum fraction assignment for the jet function and beam
function on the left and right respectively. The momenta P and k are assigned
according to figure 4.1.

In order to obtain the expressions for the beam function, crossing requires
to flip the incoming quark from the hard interaction in the jet function case
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to the final state, while the final state quark q is moved to the initial state.
This corresponds to the momentum change Q− → −Q− and P− → −P−.
Additionally, we can immediately relate the different energy fractions with
each other

k−
Q−

= z → − k−
Q−

=
1− x
x

(4.14)

and therefore

z → −1− x
x

. (4.15)

Eq. (4.15) allows us in principle to take the jet function expression, for
instance provided in [50], and extract the beam function expression. The
matrix elements are directly related to each other via the crossing relation,
while we need to adjust the phase-space factors. Furthermore, the colour
factor does not change for this particular channel since we interchange two
quarks between initial and final state. However, the situation changes once
we consider the off-diagonal g → q channel. The relations are now slightly
modified compared to the diagonal case, since we first interchange the final-
state quark and gluon in the timelike domain, before we perform the crossing.
Hence, we only need to flip the momentum P− → −P− of the initial-state
quark to the final-state quark now. Thus, the crossing relation for the energy
fractions changes slightly

k−
Q−

= 1− z → −1− x
x

⇔ z → 1

x
. (4.16)

In addition to that the colour factors of the contributions change according
to

CF =
(N2

c − 1)

Nc

TF →
−2Nc

(d− 2)(N2
c − 1)

(N2
c − 1)

Nc

TF =
−TF
1− ε

. (4.17)

The factor 2Nc in the numerator in Eq. (4.17) corrects for the spin average
factor 1/2 and for the colour average factor 1/Nc, which occur in the case
of an initial-state quark. Since we interchange the final-state gluon with the
initial-state quark during the crossing procedure in the off-diagonal channel,
the corresponding averaging factors are now 1/(d−2) for the polarisation of a
gluon in dimensional regularisation and N2

c −1 for the colour average. Notice
that the additional minus appears because we only flip one quark instead of
two in the diagonal case.
With Eqs. (4.15) and (4.16), we can relate the timelike splitting functions
from e.g. [136] to our expressions in Eq. (4.11) and (4.12). For this, it is
convenient to write the splitting functions in terms of an expansion in αs,
similar as for the different quantities in section 3.3

Pq→gq∗(x) =
∞∑
k=0

(
αs
4π

)k+1

P(k)
q→gq∗(x) (4.18)



54 CHAPTER 4. NLO BEAM FUNCTIONS

and analogously for splitting functions with different particle content. The
leading order quark splitting functions, transform under Eqs. (4.15) and
(4.16) in the following way

P(0)
q∗→gq(z) =

CF
z
((1− ε)z2 + 2(1− z))

(4.15)−−−→ −CF
(1− x)x

[
(1− ε)(1− x)2 + 2x

]
≡ −1

x
P(0)
q→gq∗(x) (4.19)

P(0)
q∗→gq(z) =

CF
z
((1− ε)z2 + 2(1− z))

(4.16)−−−→ −1

x
TF

[
1− 2x(1− x)

1− ε

]
≡ −1

x
P(0)
g→q̄q∗(x) . (4.20)

We encounter an additional factor − 1
x
, which will be cancelled by a factor

Q− → −q− = −xP− from the phase space. The relation in Eq. (4.20) is an
example for a off-diagonal channel, where we first need to interchange the
final-state quark and gluon in the jet function expression and subsequently
perform the crossing. This is reflected by the crossing in Eq. (4.16), but also
in the change of the colour factors. In the following discussion, in particular
in the investigation of the real-virtual (RV) and real-real (RR) contributions
which are part of the I (2)

i←j matching kernels, we will heavily exploit this
symmetry.
From Eqs. (4.11) and (4.12), we can read off the divergence structure of the
matching kernels. In addition to the singularity expressed in terms of the Γ-
function Γ

( −2ε
n+1

)
, which originates from the quark becoming collinear to the

gluon, there is another singularity located at x→ 1 for the diagonal matching
kernel. Here, this singularity accounts for the emitted gluon becoming soft.
In the following, we resolve this kind of singularities in terms of distributions

(1− x)−1−
2nε
n+1 = −n+ 1

2nε
δ(1− x) +

[
1

1− x

]
+

− 2nε

n+ 1

[
log (1− x)

1− x

]
+

+ ... ,

(4.21)

which has the advantage that the poles become explicit now.
The special case n = 0 requires further investigation as it characterises SCET-
II observables. According to the discussion below Eq. (3.5), we introduce
analytic regulators for each final-state emission to regularise rapidity diver-
gences. We can also explicitly observe the regularisation problem in Eq.
(4.11). If we set n = 0, the divergence in x→ 1 would not be properly regu-
larised. We will encounter several SCET-II observables in chapter 8, where
poles in the rapidity variable α will occur.
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4.2 The gluon beam function at NLO
Similarly to the previous section, we can investigate the gluon beam function
at NLO in more detail. For this, we start from

I 0
g←j(x, τ) =− xP−

∑
X

δ
(
(1− x)P− −

∑
i

ki,−

)
M(τ ; {ki})

× 〈j(P )| Aµ,Ac,⊥ |X〉 〈X| A
A
c,⊥,µ |j(P )〉 . (4.22)

Since we also work to O(αs) for the gluon beam function, we encounter
again a one-particle final state consisting of an emitted quark or gluon with
momentum k. For the measurement function M(τ ; {ki}), we still use the
general ansatz provided in Eq. (4.9) as well as the parameterisation (4.8)
due to the similar kinematical situation.

Figure 4.4: NLO Feynman diagram for the diagonal g → g and off-diagonal
q → g matching kernels, which give the only contributions in light-cone
gauge.

Applying QCD Feynman rules for the diagrams depicted in figure 4.4, we
obtain the matrix elements in light-cone coordinates

M(1)

g←g =− 64π2CA
(k2− + P 2

− − k−P−)2

(2k · P )k−P−(k− − P−)2
(4.23)

M(1)

g←q =−
16π2CF
2k · P

[
2(1− ε) + 4k−P−

(k− − P−)2

]
(4.24)

Proceeding similarly to section 4.1, we finally end up with the following
master formulae for the two channels:

I 0
g←g(τ, x) = δ(1− x) + 4√

π(n+ 1)

αsCA
4π

(
µ2τ̄

2
n+1

q
2n
n+1

−

)ε(
ν

q−

)α
x

2nε
n+1

+α
Γ
( −2ε
n+1

)
Γ
(
1
2
− ε
)

× exp

(
γEε

(
−2
n+ 1

+ 1

))(
1− x

)−1− 2nε
n+1
−α
[
2(1− (1− x)x)2

x

]

×
∫ 1

−1
d cos(θ) sin−1−2ε(θ)f

2ε
n+1 (θ) +O

(
α2
s

)
, (4.25)



56 CHAPTER 4. NLO BEAM FUNCTIONS

I 0
g←q(τ, x) =

4√
π(n+ 1)

αsCF
4π

(
µ2τ̄

2
n+1

q
2n
n+1

−

)ε(
ν

q−

)α Γ
( −2ε
n+1

)
Γ
(
1
2
− ε
)(1− x)− 2nε

n+1
−α

× exp

(
γEε

(
−2
n+ 1

+ 1

))[
(1− ε)x+ 2(1− x)

x

]
x

2nε
n+1

+α

×
∫ 1

−1
d cos(θ) sin−1−2ε(θ)f

2ε
n+1 (θ) +O

(
α2
s

)
. (4.26)

The divergences are again factorised in terms of monomials and possible
rapidity divergences for n = 0 are again regularised by the analytic regulator
α. Moreover, the matrix element can be related to the timelike splitting
functions [136] via the same crossing relation as in Eq. (4.15)

P(0)
g∗→gg(z) = 2CA

[
z

1− z
+

1− z
z

+ z(1− z)

]
(4.15)−−−→ − CA

(1− x)x2

[
2
(
1− (1− x)x

)2]
≡ −1

x
P(0)
g→gg∗(x)

(4.27)

1

1− ε
P(0)
g∗→qq̄(z) =

TF
1− ε

[
z2 + (1− z)2 − ε

]
(4.15)−−−→ −1

x
CF

[
(1− ε)x+ 2(1− x)

x

]
≡ −1

x
P(0)
q→qg∗(z) .

(4.28)

As for the quark beam function, the factor − 1
x

gets cancelled by Q− →
−q− = −xP−. The crossing works analogously to the quark case.



Chapter 5

NNLO beam functions

In this chapter, we extend our automated framework for the computation of
the beam function matching kernels to O(α2

s). At this order, there are up to
two emitted particles in the final state, which leads to various contributions
with different colour structures. Specifically, the real-virtual (RV) contri-
butions involve a one-loop correction to the matrix elements that we have
considered in the previous chapter and they can be computed with similar
techniques. In contrast to this, the real-real (RR) contributions are the most
challenging part of the evaluation as they require a novel parameterisation of
the measurement function and the two-particle phase space. Virtual-virtual
(VV) corrections, which correspond to two-loop corrections to the matrix
elements from chapter 4, lead to scaleless integrals in dimensional regulari-
sation. We will now address each of these contributions in turn.

5.1 Real-virtual contributions
The RV contributions contain a one-particle cut and therefore require a one-
loop integration over the second emitted (virtual) particle according to the
Cutkosky rules from chapter 4. Following sections 4.1 and 4.2, we assign
the momentum k to the real emitted particle, while the virtual particle has
momentum l. In total, there are again four different channels which we need
to consider if we do not count the hermitian conjugate Feynman diagrams
separately. A full list of all contributions can be found for instance in [124,
125]. As an example to show the basic steps for the evaluation of these
contributions, we apply the usual Feynman rules for the diagram in figure
5.1 such that they can be transferred to the other diagrams.

MRV,1
q←q =

(
g0s
)4

2Nc

∫
ddl

(2π)d
Tr

[
/Pγµ

(/P − /k)
(P − k)2 + i0+

/̄n/n

4

/̄n

2

/n/̄n

4

(/P − /k)
(P − k)2 + i0+

× γρ (/P − /k − /l)
(P − k − l)2 + i0+

γν
(/P − /l)

(P − l)2 + i0+
γσ

]
i

l2 + i0+
i

k2 + i0+

×
(
− gµν +

kµn̄ν + kνn̄µ
k · n̄

)(
− gρσ +

lρn̄σ + lσn̄ρ
l · n̄

)
57
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× tr
[
TA TC TB TD δABδCD

]
. (5.1)

As in the NLO case, we leave the indices of the generators implicit, since they
give rise to non-trivial colour structures. The capital Latin letters A,B, ...
indicate indices from the adjoint representation, which allow for values in the
range 1 to N2

c − 1 = 8. Thus, we can conclude from the matrix element in
Eq. (5.1) that the colour structure here is C2

F − CFCA

2
.

Performing the spin sum over the Dirac spinors u(P )ū(P ), we obtain a trace
over the Dirac γ-matrices, which we can evaluate with the usual trace tech-
nology [133]. The trace expression contains a sum of many different scalar
products in the momenta P, k, l that we can use to simplify the denominator
structure of the loop integral

MRV,1
q←q =

i
(
g0s
)4

128s2

(
C2
F −

CFCA
2

)∫ ddl

(2π)d
N(P · k, P · l, n · l, l · n̄, ...)

A(P ; k, l)

× i

k2 + i0+

=

(
α0
s

4π

)2

MRV,1
q←q

i

k2 + i0+
(5.2)

with

A(P ; k, l) :=
(
(P − k − l)2 + i0+

)(
(P − l)2 + i0+

)(
l2 + i0+

)(
− n̄ · l + i0+

)
(5.3)

and the invariant mass s = 2 k · P . Of particular importance is the linear
propagator originating from the polarisation sum of the gluon propagator in
light-cone gauge. For this propagator, it may not be immediately obvious
which i0+-prescription needs to be chosen, but since it is crucial in the ap-
plication of the Feynman parameterisation in the following steps, it has to
be reconstructed carefully from the QCD diagrams 1.

Figure 5.1: RV Feynman diagram, which contributes to the q → q channel.
The h.c. diagrams are obtained by mirroring these diagrams along the cut.

In order to evaluate the loop integral in Eq. (5.2), it is useful to simplify the
integrand as much as possible. This is accomplished by rewriting the scalar

1This has for instance been done explicitly in [50] for the jet function case. The beam
function case works similarly.
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products inside N(P · k, P · l, n · l, l · n̄, ...) in terms of the expressions in the
denominator as

P · l = − 1

2

[
(P − l)2 − l2

]
k · l = 1

2

[
(P − k − l)2 − (P − l)2 + 2k · P

]
. (5.4)

With these replacements, we can separate the integral over the momentum l
into 8 different contributions:

I1 =

∫
ddl

(2π)d
N1(n̄ · k, k · P, n̄ · P, l · P, k · l, l2)(

(P − l)2 + i0+
)(
l2 + i0+

)(
− n̄ · l + i0+

)
I2 =

∫
ddl

(2π)d
N2(n̄ · k, k · P, n̄ · P, l · P, l2)(

(P − k − l)2 + i0+
)(
l2 + i0+

)(
− n̄ · l + i0+

)
I3 =

∫
ddl

(2π)d
N3(n̄ · k, k · P, n̄ · P, l · P, k · l, l2)(

(P − k − l)2 + i0+
)(
(P − l)2 + i0+

)(
− n̄ · l + i0+

)
I4 =

∫
ddl

(2π)d
N4(n̄ · k, k · P, n̄ · P, n̄ · l)(

(P − k − l)2 + i0+
)(
(P − l)2 + i0+

)(
l2 + i0+

)
I5 =

∫
ddl

(2π)d
N5(n̄ · k, k · P, n̄ · P )(

(P − k − l)2 + i0+
)(
(P − l)2 + i0+

)(
l2 + i0+

)(
− n̄ · l + i0+

)
I6 =

∫
ddl

(2π)d
N6(n̄ · k, k · P, n̄ · P, l · P, l2)(
(P − k − l)2 + i0+

)(
l2 + i0+

)
I7 =

∫
ddl

(2π)d
N7(n̄ · k, k · P, n̄ · P, l · P, l2)(

(P − k − l)2 + i0+
)(
− n̄ · l + i0+

)
I8 =

∫
ddl

(2π)d
N8(n̄ · k, k · P, n̄ · P, l · P, l2)(
(P − l)2 + i0+

)(
− n̄ · l + i0+

) , (5.5)

which are then part of the matrix element

MRV,1
q←q =

i

8s2

(
C2
F −

CFCA
2

) 8∑
k=1

Ik . (5.6)

In order to compute these eight contributions, we first use the formulae in
appendix A to introduce the Feynman parameterisation and rescale the loop
momentum l such that we obtain the form in Eq. (A.4). For integrals
containing the linear propagator (−n̄ · l + i0+), we use the slightly modi-
fied Feynman parameterisation in Eq. (A.2). Tensor integrals with an even
power of the loop momentum l in the numerator are symmetrised accord-
ing to Eq. (A.5), while contributions with an odd number vanish due to
the antisymmetry of the numerator under the change l → −l. It turns out
that the integrals I1, I3, I7, I8 vanish, since they lead to scaleless integrals in
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dimensional regularisation. Combining all integrals, we obtain

MRV,1
q←q =

24επ
3
2
+ε csc(πε)P−

(1− x)εΓ
(
3
2
− ε
)
s1+ε

(
C2
F −

CFCA
2

)[
− 2(2ε− 1)

(
x2(ε− 1)

− 2xε+ ε− 1
)

2F1(1,−ε; 1− ε; 1− x) + x2
(
2ε3 − 3ε2 + 3ε− 2

)
+ x

(
−4ε2 + 3ε− 4

)
ε+ 2ε3 − 2ε2 + 3ε− 2

]
. (5.7)

In Eq. (5.7), we have implemented the NLO parameterisation from Eq. (4.8)
since we still encounter a one-particle phase space. This matrix element for
the diagram in figure 5.1 is directly related to the corresponding jet function
diagram via the crossing

z → −1− x
x

, (5.8)

which corresponds exactly to the NLO crossing relation in Eq. (4.15). Notice
that the prefactors do not match immediately, because the replacement in
Eq. (5.8) introduces the variable change s → −s leading to an additional
imaginary part. After adding the hermitian conjugate diagram, this results
in a factor of 2 cos(πε) instead of the factor 2.
The other two diagrams for the q → q channel can be evaluated similarly
to the discussion above 2. However, the diagram involving the non-Abelian
three-gluon vertex requires an additional transformation. The computation
leads to the hypergeometric function

2F1

(
1,−ε; 1− ε; 1

1− x

)
, (5.9)

where the last argument is a priori troublesome. The radius of convergence
for this hypergeometric function is supposed to be 1 in order to observe
absolute convergence, however we identify in Eq. (5.9) that 1

1−x ≥ 1 for
x ∈ [0, 1]. This requires an additional remapping of this hypergeometric
function for the case that |arg(−z)| < π such that the argument is again in
the region of convergence:

2F1(a, b; c; z) =
Γ(c)Γ(b− a)
Γ(b)Γ(c− a)

(−z)−a2F1(a, 1 + a− c; 1 + a− b; 1/z)

+
Γ(c)Γ(a− b)
Γ(a)Γ(c− b)

(−z)−b2F1(b, 1 + b− c; 1 + b− a; 1/z) .

(5.10)

By setting z := 1/(1 − x), we trade one hypergeometric function for two of
these functions, which are now in the allowed region of convergence. More-
over, this remapping in Eq. (5.10) introduces a small imaginary part, which

2One of those has been evaluated for the jet function case in [50]. Applying the crossing
from Eq. (5.8) and correcting for the prefactor provides the expression for the beam
function case.



5.1. REAL-VIRTUAL CONTRIBUTIONS 61

becomes explicit now and is of importance if we add the hermitian conjugate
diagram in order to obtain the full RV contribution. Convergence at the
point x = 0 is guaranteed for the function in Eq. (5.9), because the sum of
all arguments is greater than 0.
Finally, we are able to calculate the full matrix element in the RV case for
the q → q channel:

MRV
q←q =

3∑
i=1

MRV,i
q←q + h.c. =

25+2επ3+ε

s1+ε
Γ(1− ε) csc(πε)
εΓ(2− 2ε)

M̃RV
q←q (5.11)

In this result, we first perform the remapping in Eq. (5.10) and add up all
contributions as well as their hermitian conjugates. For convenience, we have
defined the pure matrix element without any prefactors:

M̃RV
q←q = −2(x+ 1)ε2(CFCA − C2

F ) + 2
(
x2 + (x− 1)2(−ε) + 1

)(
(1− 2ε)

× (CFCA − 2C2
F ) 2F1(1,−ε, 1− ε; 1− x) + (ε(ε+ 2)− 1)(CFCA − C2

F )

+ CFCAε(2ε− 1)
(
(x− 1)Γ(1 + ε) 2F1(1, 1 + ε, 2 + ε; 1− x)

+ π (1− x)−ε cot(πε)
)
− 2C2

F ε+ C2
F

)
. (5.12)

Excluding prefactors in Eq. (5.12) is useful when we state the final form
of the master formula. For the diagonal channels, in particular also for the
g → g channel, we also pull out an additional factor (1− x)−1, which results
in a singularity at x→ 1.
As we have seen in the previous chapter, the collinear matrix elements are
related to the well-known splitting functions. In the RV case, this corresponds
to the one-loop splitting functions [135, 137] after performing the crossing
in Eq. (5.8) and the mapping (5.10). The same observation also applies to
the other channels. In general, it is possible to either calculate the matrix
elements directly using the techniques from above or to extract them from the
splitting functions in the timelike region using appropriate crossing relations.
For the off-diagonal g → q channel, the crossing works analogously to the
crossing for the off-diagonal quark channel in the NLO case and we can
therefore apply Eq. (4.16). Consequently, the colour structure needs to be
modified accordingly. These modifications ensure that we obtain the correct
colour structures CFTF and CATF in the g → q channel. Ultimately, we end
up with the following matrix element

M̃RV
q←g =

−2TF (1− x)
1− ε

(
(2ε− 1)

(
2x2 − 2x− ε+ 1

)
(CA − 2CF )

(
(1− x)−ε

× cos(πε)Γ(1− ε)Γ(ε+ 1) +
(x− 1)ε 2F1(1, ε+ 1; ε+ 2; 1− x)

ε+ 1

)
− (2ε− 1)CA

(
2x2 − 2x− ε+ 1

)
2F1(1,−ε; 1− ε; 1− x)

+ CA
(
x2(2− 4ε)− x((ε− 4)ε+ 2) + (ε− 1)ε(ε+ 3) + 1

)
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+ CF
(
x2(8ε− 4) + x((ε− 8)ε+ 4)− ε(ε(ε+ 4)− 6)− 2

))
,

(5.13)

where we still remove the prefactors for further simplifications in the master
formula.
The two remaining gluon channels follow the same strategy. In the off-
diagonal q → g channel, we take the timelike splitting function from [137]
and perform the crossing from Eq. (5.8) 3.

M̃RV
g←q =

2 (x2(ε− 1) + 2x− 2)CF
x (3− 2ε)

(
CA
(
4ε2 − 8ε+ 3

)
2F1(1,−ε; 1− ε; 1− x)

+ CA
(
4ε2 − 8ε+ 3

)((x− 1)ε 2F1(1, ε+ 1; ε+ 2; 1− x)
ε+ 1

+ (1− x)−ε

× cos(πε) Γ(1− ε) Γ(ε+ 1)

)
+ 2CAε

3 − 8CAε
2 + 13CAε− 9CA

− 4CF ε
3 + 8CF ε

2 − 7CF ε+ 6CF − 2nfε
2 + 2nfε

)
· (1− x) (5.14)

Finally, the missing matrix element belongs to the g → g channel. After
performing the crossing on the splitting function from Ref. [137], we get

M̃RV
g←g =

2CA
x(ε− 1)2 (3− 2ε)

(
(−2CA

(
x2 − x+ 1

)2
(ε− 1)2

(
4ε2 − 8ε+ 3

)
× 2F1(1,−ε; 1− ε; 1− x)− 2CA

(
x2 − x+ 1

)2
(ε− 1)2

(
4ε2 − 8ε+ 3

)
×
((x− 1)ε 2F1(1, ε+ 1; ε+ 2; 1− x)

ε+ 1
+ (1− x)−ε cos(πε)Γ(1− ε)

× Γ(ε+ 1)
)
+ CA(ε− 1)

(
2(x(x(4(x− 2)x+ 13)− 10) + 5)ε3

+ (−(x− 1)x(x(24x− 23) + 48)− 24)ε2 + 22((x− 1)x+ 1)2ε

− 6((x− 1)x+ 1)2
)
− 2TFnf (x− 1)ε2

(
x2 − 2xε+ 2ε

))
. (5.15)

With these matrix elements, we can state the master formulae for all four
channels. From a computational point of view, we follow the same steps as
in chapter 4. We still start with the expressions in Eq. (4.6), perform the
kT -integration analytically according to Eq. (4.7) and use the ansatz (4.9)
for the measurement function. Thus, we obtain for the bare RV matching

3Ref. [137] works in the convention TF = 1
2 , therefore we need to correct these results

accordingly.



5.1. REAL-VIRTUAL CONTRIBUTIONS 63

kernel for all channels

I 0,(2,RV)
i←j =

4
√
π

Γ
(

1
2
− ε
)CF Γ(1− ε) csc(πε)

Γ(2− 2ε)ε

(
µτ̄

1
n+1

q
n

n+1

−

)4ε Γ
(
− 4ε

n+1

)
n+ 1

x
4nε
n+1

+α

× exp

(
εγE

(
− 4

n+ 1
+ 2

))
(1− x)−1+ε−

4nε
n+1
−αM̃RV

i←j

×
∫ 1

−1
d cos(Θk) sin

−1−2ε(Θk)f
4ε

n+1 (Θk) (5.16)

with i ∈ {q, g}. The case i = q̄ coincides with the i = q case due to
the charge-conjugation invariance of the collinear splitting functions. In Eq.
(5.13) and (5.14), we include an additional factor (1− x) to compensate for
the divergent factor (1 − x)−1+ε−

4nε
n+1 , which does not lead to an explicit di-

vergence in the off-diagonal channels. Moreover, the matrix elements M̃RV
i←i

correspond to the two-loop splitting functions as discussed above. Since the
RV contributions contain by construction one particle in the final state, we
only need to include one analytic regulator into the phase space measure,
which we pull out in Eq. (3.5). However, this factor is crucial in the deriva-
tion of the master formulae, as we have shown in the NLO case, and has to
be included following table 3.1.
Furthermore, we still need to work with the NLO measurement function
f(Θk), albeit with a different exponent now. Similar to the NLO case in
sections 4.1 and 4.2, the singularities are again completely factorised. While
the Γ-function Γ

(
− 4ε

n+1

)
accounts for the collinear divergence, the factor

(1 − x)−1+ε−
4nε
n+1
−α denotes the soft divergence. In addition to that there

occur two more ε-poles from the csc(πε)- and the 1/ε-factor such that the
highest divergence is of the order 1/ε4 in the SCET-I case and 1/(αε3) in the
SCET-II case.
The overall factor (1 − x)−1+ε−

4nε
n+1
−α requires further investigation. As we

previously mentioned, the SCET-II case corresponds to the parameter choice
n = 0. Hence, one would naively assume that the factor (1−x)−1+ε−α is reg-
ularised due to the ε-term in the exponent and thus the α-regulator is not
needed at all. But it turns out that there occur additional terms of the form
(1 − x)−ε in Eq. (5.12) and (5.15) after the remapping in Eq. (5.10). This
cancellation of the ε-term leads to the necessity to introduce the α-regulator.
To summarise, we have stated the master formulae for the RV contributions
for all four matching kernels in Eq. (5.16) in the SCET-I and SCET-II case.
Since we encounter a one-particle phase space here, we can present the mas-
ter formulae completely analytically and work with the NLO measurement
function f(Θk). They can be used to extract the RV contributions to the
complete NNLO matching kernels according to Eq. (3.5).
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5.2 Real-real contributions
In this section, we focus on the most complicated NNLO structures, namely
the real emission process of two massless partons. For the first time in this
work, we encounter a two-particle final state. The necessary methods and
techniques, as well as numerical aspects related to their application, are
discussed in the following. Before we study each contribution in detail, we
start by deriving the respective master formula.
Our starting point are again the partonic beam function definitions (4.1) and
(4.22), which we now expand to order α2

s. In particular, we now obtain a
contribution with two emitted particles with momenta k and l. For the quark
channels, we get

I 0
q←j(x, τ) = δqj δ(1− x) +

(
αs
4π

)(
ν

q−

)α[
I 0,(1)
q←j (x, τ) +

(
αs
4π

)
I 0,(2,RV)
q←j (x, τ)

]

+

∫
ddk

(2π)d

(
ν

k−

)α ∫
ddl

(2π)d

(
ν

l−

)α
δ
(
(1− x)P− − k− − l−

)
× 〈j(P )| χ̄ |k, l〉

/̄n

2
〈k, l|χ |j(P )〉 (−2πi)δ(k2)Θ(k0) (−2πi)δ(l2)

×Θ(l0)M2(τ ; k, l) +O
(
α3
s

)
, (5.17)

where we wrote the RR contribution from Eq. (3.5) explicitly.
If we generalise the NLO discussion from chapter 4, we see that we now need
to integrate over two emitted particles with momenta k and l instead of a
single emission. From the definition of the RR contributions, we know that
these two particles are on-shell, which is indicated by the on-shell conditions
in the last two lines of Eq. (5.17). They get introduced into this expression
after applying the Cutkosky rules due to the cuts on the two emitted final
state particles. Additionally, we have included the analytic regulators in
order to account for SCET-II observables. Energy conservation is guaranteed
by the δ-distribution restricting the large components in the collinear sector.
The momentum fraction x denotes the energy fraction of the parton going
into the hard interaction, see figure 4.3. Moreover, M2(τ ; k, l) denotes the
two-emission measurement function in Eq. (5.17), which again completely
determines the observable under investigation.
Similarly, we can also state the starting point for the gluon channels

I 0
g←j(x, τ) = δgj δ(1− x) +

(
αs
4π

)(
ν

q−

)α[
I 0,(1)
g←j (x, τ) +

(
αs
4π

)

× I 0,(2,RV)
g←j (x, τ)

]
− xP−

∫
ddk

(2π)d

(
ν

k−

)α ∫
ddl

(2π)d

(
ν

l−

)α
(−2πi)δ(k2)

× 〈j(P )| Aµ,Ac,⊥ |k, l〉 〈k, l| A
A
c,⊥,µ |j(P )〉 δ

(
(1− x)P− − k− − l−

)
× (−2πi)δ(l2)Θ(k0)Θ(l0)M2(τ ; k, l) +O

(
α3
s

)
. (5.18)

Since the computational steps are the same as for the quark beam function,
we continue our explanations with the quark channels.
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The first step is to introduce light-cone coordinates∫
ddk

(2π)d
→ 1

2

∫
dk+
2π

∫
dk−
2π

∫
dd−2k⊥
(2π)d−2∫

ddl

(2π)d
→ 1

2

∫
dl+
2π

∫
dl−
2π

∫
dd−2l⊥
(2π)d−2

(5.19)

and to use the δ-distributions to perform some integrations

k+ →
k2T
k−
, l+ →

l2T
l−
, l− → (1− x)P− − k− . (5.20)

This leaves us with an integration over k−, k⊥ and l⊥. For both integrations
over k⊥ and l⊥, we go over to spherical coordinates. Ultimately, we end up
with

I 0
q←j(x, τ) = δqj δ(1− x) +

(
αs
4π

)(
ν

q−

)α[
I 0,(1)
q←j (x, τ) +

(
αs
4π

)
I 0,(2,RV)
q←j (x, τ)

]

+
1

4

∫ ∞
0

dk−
(2π)2

∫
dΩ

(k)
d−2

∫
dΩ

(l)
d−2

(−i)2

(2π)2d−4

∫ ∞
0

dkT k
d−3
T

×
∫ ∞
0

dlT l
d−3
T

ν2α

k1+α− ((1− x)P− − k−)1+α
〈j(P )| χ̄ |k, l〉

/̄n

2

× 〈k, l|χ |j(P )〉M2(τ ; k, l) +O
(
(αs)

3
)

(5.21)

for the matching kernels of the quark channels and we obtain similarly for
the gluon channels

I 0
g←j(x, τ) = δgj δ(1− x) +

(
αs
4π

)(
ν

q−

)α[
I 0,(1)
g←j (x, τ) +

(
αs
4π

)

× I 0,(2,RV)
g←j (x, τ)

]
− xP−

1

4

∫ ∞
0

dk−
(2π)2

∫
dΩ

(k)
d−2

∫
dΩ

(l)
d−2

(−i)2

(2π)2d−4

×
∫ ∞
0

dkT k
d−3
T

∫ ∞
0

dlT l
d−3
T

ν2α

k1+α− ((1− x)P− − k−)1+α

× 〈j(P )| Aµ,Ac,⊥ |k, l〉 〈k, l| A
A
c,⊥,µ |j(P )〉M2(τ ; k, l) +O

(
α3
s

)
. (5.22)

In the following, we introduce a suitable parameterisation of the phase-space
integrals, investigate the angular integrations in the transverse space, pro-
pose a specific form of the two-emission measurement function M2(τ ; k, l)
and evaluate the corresponding matrix elements, before we derive a suitable
master formula for the computation of the RR contributions.

5.2.1 Phase-space parameterisation
In order to parameterise the two-particle phase space, we use the variables

a =
k−lT
l−kT

, x12 =
k− + l−
P−

, b =
kT
lT
, qT =

√
(k+ + l+)(k− + l−)

(5.23)
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with the inverse transformation

k− =
abx12P−
1 + ab

, k+ =
q2T b

(a+ b)x12P−
, l− =

x12P−
1 + ab

, l+ =
q2Ta

x12P−(a+ b)
.

(5.24)

We call this parameterisation the physical parameterisation, since there is a
direct physical meaning attached to it. The variable a is a measure of the ra-
pidity difference between the two rapidities yk = 1

2
ln
(
k+
k−

)
and yl = 1

2
ln
(
l+
l−

)
of the two emissions, while x12 describes the energy fraction of the two emis-
sions. Based on momentum conservation, we identify x12 = 1−x. b accounts
for the single soft limit in this particular parameterisation.
We remark that this parameterisation is particularly useful since the diver-
gence in x12 will be factorised in all cases. This is essential in our x-space
approach, where the matching kernels are distribution valued in (1− x).
However, it may be convenient to use different parameterisations for some
contributions, which have the advantage that the singularities are immedi-
ately factorised. For instance, the parameterisation

x1 =
k−
P−

, x2 =
l−
P−

, b =
kT
lT
, qT = kT + lT (5.25)

and its inverse transformation

k− = x1P− , k+ =
q2T b

2

(1 + b)2x1P−
, l− = x2P− , l+ =

q2T
(1 + b)2x2P−

(5.26)

are helpful for some contributions to the q → q channel, since the divergences
factorise directly in this case. This parameterisation is inspired by the uncor-
related emission contributions to soft functions [49] 4. Nevertheless, we point
out that this parameterisation is only useful for our N -space approach where
we integrate over x12, whereas it becomes difficult to extract the distribu-
tions in the x-space framework. Another slightly modified parameterisation
is given by

ã =
l−kT
k−lT

, x12 =
k− + l−
P−

, r =
k−
l−
, qT =

√
(k+ + l+)(k− + l−)

(5.27)

and the inverse transformation

k− =
rx12P−
1 + r

, k+ =
q2T rã

2

(1 + rã2)x12P−
, l− =

x12P−
1 + r

, l+ =
q2T (1 + r)

x12P−ã2r2
.

(5.28)

4So far, we investigated this parameterisation only for SCET-II observables. Therefore,
we can set n = 0 in [49] and expand the remaining terms according to the momentum
scaling in the collinear region. For our x-space approach, we rather stick to the parame-
terisation in Eq. (5.23) for both SCET-I and SCET-II observables.
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This parameterisation simplifies the calculation of the CFTF colour structure
of the q → q channel. Generally, it remaps the divergence for a → ∞ to
ã → 0, because of ã → 1

a
and disentangles overlapping divergences by using

the new variable r.
When using the parameterisation from Eq. (5.23), the integration domain is
restricted to

a, b, qT ∈ [0,∞) x12 ∈ [0, 1] . (5.29)

As we will see, we integrate out the dimensionful variable qT analytically,
and we find it convenient to map the integration domain of the variables
(a, b) to the interval [0, 1], since we intend to perform numerical Monte Carlo
integrations due to the complicated phase-space structure. This can be done
by splitting the integrations

∫ ∞
0

da

∫ ∞
0

db I(a, b, ...) =

[∫ 1

0

da+

∫ ∞
1

da

][∫ 1

0

db+

∫ ∞
1

db

]
I(a, b, ...)

(5.30)

and substituting a → 1
a

or b → 1
b

in the integrals with integration range
[1,∞). Here, the integrand I(a, b, ...) is an abbreviation for all components
present in Eqs. (5.21) and (5.22). Thus, the integration splits into four
regions:

Region Abbreviation Substitution Integrand

Region A RA - I(a, b, ...)

Region B RB a→ 1/a a−2 I
(
1
a
, b, ...

)
Region C RC b→ 1/b b−2 I

(
a, 1

b
, ...
)

Region D RD a→ 1/a, b→ 1/b a−2b−2 I
(
1
a
, 1
b
, ...
)

Table 5.1: List of the various substitutions in order to define the specific
regions. We perform the remapping such that we only work on the unit
hypercube when we perform numerical integrations.

However, we observe in many cases that the functions in the integrand
I(a, b, ...) like the matrix element, the measurement function and the Ja-
cobian are invariant under some of the substitutions listed in table 5.1. As a
consequence, the number of regions and the necessary numerical integrations
are reduced significantly.
Generally, the discussion from above also holds for the parameterisations in
Eqs. (5.25) and (5.27). In the second case, the variables ã and r need to
be remapped onto the unit hypercube, while the first case only requires the
remapping of b→ 1

b
and therefore it only introduces two subregions.
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5.2.2 Angular integrations
After parameterising the phase-space integrations in terms of the variables in
Eq. (5.23), we turn towards the investigation of the angular variables. They
stem from the integrals over the transverse coordinates k⊥ and l⊥, therefore
it is natural that they should encode the relative position of these vectors.

k̂⊥

v̂⊥

l̂⊥

θ5

θkl
θl

Figure 5.2: Angular parameterisation in the transverse plane. We param-
eterise the angular integration by introducing two angles Θl and Θ5 with
respect to a reference vector ~v⊥. v̂⊥, k̂⊥ and l̂⊥ denote in this context unit
vectors pointing into the ~v⊥, ~k⊥ as well as ~l⊥ direction, respectively. For the
third angle, it is convenient to choose the angle Θkl between the k and l
emission in the transverse plane. We can reduce this to the NLO case by
choosing the reference vector to be the n̄-axis. The picture is taken from [48].

Following our general assumptions in section 3.2, we only allow for one angle
per particle which is measured with respect to a reference vector ~v⊥ that is
imposed by the observable. We can then apply the same angular parame-
terisations as in the SoftSERVE approach [48, 49]. The transverse plane is
(d − 2)-dimensional, therefore we define the transverse components of the
two emissions as depicted in figure 5.2 with

~l⊥ = |~l⊥|(1, 0, ..., 0)T ,
~k⊥ = |~k⊥|(cosΘkl, sinΘkl, 0, ..., 0)

T , (5.31)
~v⊥ = |~v⊥|(cosΘl, sinΘl cosΘ5, sinΘl sinΘ5, 0, ..., 0)

T .

The choice for the angles in Eq. (5.31) is useful for our applications, since
the invariant mass s12 = (k+ l)2 depends only on the angle Θkl, i.e. the angle
between the two transverse vectors ~k⊥ and ~l⊥, Θkl = ∠(~k⊥,~l⊥). Contrary,
the other two angles are defined with respect to some reference vector ~v⊥

Θk =∠(~k⊥, ~v⊥) , (5.32)
Θl =∠(~l⊥, ~v⊥) , (5.33)
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where

cosΘk = cosΘkl cosΘl + sinΘkl sinΘl cosΘ5 . (5.34)

If we parametrise now the angular integrations in Eqs. (5.21) and (5.22) by
these variables, we obtain∫

dΩ
(k)
d−2 dΩ

(l)
d−2 =

4π
1
2
−2ε

Γ(1/2− ε)Γ(−ε)

∫ π

0

dΘkldΘldΘ5 sin
d−4(Θkl) sin

d−4(Θl)·

× sind−5(Θ5)

=
32π

1
2
−2ε

Γ(1/2− ε)Γ(−ε)

∫ 1

0

dtkldtldt5(4tklt̄kl)
− 1

2
−ε(4tlt̄l)

− 1
2
−ε·

× (4t5t̄5)
−1−ε (5.35)

In the last line, we have substituted

cos(Θy) = 1− 2ty with y ∈ {kl, l, 5} (5.36)

such that the integration boundary lies on the unit hypercube and we define
t̄x = 1− tx with x ∈ {kl, l, 5}.
We observe that the t5-integration becomes divergent at the integration end-
points t5 → {0, 1}. These singularities are spurious and unphysical. They
stem from the fact that we have parameterised the transverse plane with
more angles than there exist in four space-time dimensions, but their un-
physical nature guarantees that this singularity cancels against the prefactor

1
Γ(−ε) = O(ε).
In our framework, we aim to factorise all singularities in monomial form such
that an expansion in ε is possible. However, the spurious divergence does not
allow for a simple ε expansion since there are divergences at both endpoints.
Hence, we deal with this issue by splitting the integration range at t5 = 1/2
and performing the substitutions

I1 : t5 → t′5/2

I2 : t5 → 1− t′5/2 (5.37)

with t′5 ∈ [0, 1] to end up with unit integration boundaries suitable for nu-
merical integrations.
As can be seen from above, the angle Θ5 enters our calculation only via
relation (5.34), which turns to

t±k = tl + tkl − 2tltkl ± 2
√
tlt̄ltklt̄kl(1− t′5) . (5.38)

according to Eqs. (5.36) and (5.37) for the regions I1 and I2 respectively.
We are going to discuss the implications of this relation in the next section,
when we focus on the measurement function. After substituting Eq. (5.37),
the final form of the angular parameterisation reads∫

dΩ
(k)
d−2 dΩ

(l)
d−2 =

16π
1
2
−2ε

Γ(1/2− ε)Γ(−ε)

∫ 1

0

dtkldtldt5(4tklt̄kl)
− 1

2
−ε(4tlt̄l)

− 1
2
−ε

×
(
t′5(2− t′5)

)−1−ε
. (5.39)
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At this point, it is important to keep in mind that we integrate over two
copies of the integrand in Eq. (5.39), one with the substitution I1 from Eq.
(5.38), the other with the substitution I2.

5.2.3 Measurement function
Since we encounter now two emissions with momenta k and l in the final state,
the measurement function requires some modification. For the purpose of a
coherent discussion, we state our ansatz for the NLO measurement function
from Eq. (4.9) after making use of Eq. (5.36)

M1(τ ; k) = exp

[
− τkT

(
kT

(1− x)P−

)n
f(tk)

]
. (5.40)

The NLO argumentation applies similarly to the NNLO case. We can propose
the following ansatz

M2(τ ; k, l) = exp

[
− τqT

(
qT

(1− x)P−

)n
ρF (a, b, x12, tk, tl, tkl)

]
. (5.41)

We are working in Laplace space, so τ is the corresponding Laplace vari-
able with mass dimension [τ ] = −1. This is the reason for the exponential
form of the measurement function. In order to guarantee that the argument
of the exponential function is then dimensionless, we need to introduce an
additional factor of qT , which is the only dimensionful variable in our param-
eterisation. The n-dependent factor is chosen according to the NLO case,
since the underlying physics for the NLO and NNLO case are the same: the
dimensionful variable is now qT and the energy fraction going into the hard
interaction is x = 1− x12.
Moreover, we have introduced an additional factor ρ which accounts for the
issue that we need to pull out factors from the function F (a, b, x12, tk, tl, tkl)
in order to render this function finite and non-zero in all singular limits of the
matrix elements. While this factor is necessary for both SCET-I and SCET-
II observables, it is particularly important in the SCET-II case. The reason
is that these additional factors produce 1/α2 poles in some contributions, as
we will see below.
Besides this factor ρ, the function F (a, b, x12, tk, tl, tkl) possesses other inter-
esting properties. This function is in general a complicated object, which
depends on the parameterisation, as well as on the angles in the transverse
plane Θk,Θl,Θkl that were defined in section 5.2.2. Note that the depen-
dence on x12 is an observable-dependent and parameterisation-dependent
statement. However, for the physical (a, b)-parameterisation, which we use
for both our x-space and N -space formalism, we can safely drop the x12-
dependence in the argument of the function F (a, b, x12,Θk,Θl,Θkl) for all
observables under investigation. An explicit x12 would cause in principle no
additional problems in our setup, but it leads to simplifications if the mea-
surement does not depend on this variable as well.
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Furthermore, this function has certain limits which are protected by infrared-
collinear (IRC) safety. First of all, the limit a→ 1 and Θkl → 0 corresponds
to the case in which the two emitted particles become collinear to each other.
This limit occurs for instance in the CFTFnf colour structure of the q → q
channel, where we observe a quark-antiquark bubble. In this limit, the NNLO
measurement functionM2(τ ; k, l) reduces to the NLO measurement function
M1(τ ; k) in certain physical limits

kµ || lµ : F (1, b, x12, tk, tk, 0)→ f(tk) (5.42)

and therefore

M2(τ ; k, l)→M1(τ ; k) . (5.43)

Furthermore, the limit b → 0 represents the limit of particle k becoming
soft. This can be seen from the inverse transformation in Eq. (5.24), since
the components k+, k− tend in the same scaling to zero for b→ 0. However,
the limit b→∞ represents the opposite limit with particle l becoming soft.

b→ 0 : F (a, 0, x12, tk, tl, tkl)→ f(tl) (5.44)
b→∞ : F (a,∞, x12, tk, tl, tkl)→ f(tk) (5.45)

Notice that the measurement function has an explicit dependence on the an-
gle Θk. According to Eq. (5.38), we see that the complete expression of the
measurement function F (a, b, x12, tk, tl, tkl) consists of two different compo-
nents, in which we consider in the first part the measurement F (a, b, ...) and
replace in the second part t+k → t−k . There are observables with an explicit
dependence on this angle like transverse-momentum resummation in which
the colour-singlet particle singles out a specific direction in the transverse
plane, while there are others that do not. In the latter case, the two contri-
butions then simply give a factor of two.
From the discussion of the parameterisations in section 5.2.1, one might as-
sume that it is necessary to use different measurement functions for different
regions in the phase space defined in table 5.1. As it turns out, we can
exploit symmetry arguments between different regions. One symmetry uses
the fact that the measurement function can not distinguish between the two
emissions and it is therefore symmetric under the substitution a→ 1/a and
b→ 1/b. Therefore, the measurement function coincides in regions A and D
as well as in regions B and C.

5.2.4 Crossing symmetry
As we have already pointed out in sections 4.1, 4.2 and 5.1, the collinear
matrix elements correspond to the spacelike splitting functions [135]. This
connection has been extensively used in the jet function computation at
NNLO [50] for timelike splitting functions and it can also be extended to
the beam function case to NNLO accuracy. Since we now consider two-
particle emissions, the relevant splitting functions are now the triple-collinear
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splitting functions [135, 136, 138] and require a more complicated crossing
than in the NLO or RV case. The relevant crossing relations are

z1 → −x1
x
, z2 → −x2

x
, z3 →

1

x
, (5.46)

s12 → s12 , s13 → −s13 , s23 → −s23 , s123 → sB123 , (5.47)

where we define the invariant masses sB123 = s12 − s13 − s23, s12 = (k + l)2,
s13 = (k + P )2 and s23 = (l + P )2. x1,2 and x indicate the momentum
fractions of the constituents inside the beam function with x = 1 − x1 − x2
due to momentum conservation. Depending on the matching kernel under
consideration, it might be necessary to interchange some particles in the
timelike splitting functions first, before the crossing is applied.
The derivation of these crossing relations follows closely the discussion from
chapter 4. For the jet functions, we identify the relations

k− = z1Q−

l− = z2Q−

P− = z3Q−

Q− = k− + l− + P− .

In the diagonal quark channel, we need to perform the interchanges Q→ −Q
and P → −P . With this, we obtain the relations:

k− = x1Q−

l− = x2Q−

P− = xQ−

Q− =P− − k− − l− .

In order to obtain the crossing in Eq. (5.46), we consider similarly to chapter
4 the ratio between the different components k−/Q−, l−/Q−, P−/Q− and
perform the interchanges from above. Following the argumentation from
chapter 4, we arrive at Eq. (5.46). Furthermore, the invariant masses change
due to the interchange P− → −P−. For instance, s13 = (k + P )2 = 2k · P →
−2k · P = −s13 and analogous considerations apply for the other invariant
masses. In general, the crossing works similarly for the other channels as
well.
Moreover, we observe a plethora of different colour structures for the various
matching kernels, which do not arise in timelike splitting functions. This is
related to the interchanges between a quark and gluon in the initial and final
state. However, this works exactly as in the NLO case, therefore we refer to
chapter 4 for details.

5.2.5 Master formula
After studying each part of Eqs. (5.21) and (5.22) individually, we now com-
bine all ingredients and state the master formulae for the RR contributions
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in the physical parameterisation in Eq. (5.23). First, we notice that the
integration over the only dimensionful variable qT can always be performed
analytically,

∫ ∞
0

dqT q
2d−9
T M2(τ ; k, l) = τ

4ε
n+1 (1− x)−

4nε
n+1 P

− 4nε
n+1

−
Γ
(
− 4ε

n+1

)
n+ 1

× ρ
4ε

n+1F
4ε

n+1 (a, b, x12, tk, tl, tkl) . (5.48)

The factor q2d−9T arises on dimensional grounds from the Jacobian of the vari-
able transformation and the matrix element.
Finally, we conclude our general considerations by showing the master for-
mula for the RR NNLO matching kernels in the physical parameterisation

I 0,(2,RR)
i←j (x, τ) =

16π−3/2

Γ(−ε)Γ(1/2− ε)
exp

((
− 4ε

n+ 1
+ 2ε

)
γE

)
Γ
(
− 4ε

n+1

)
n+ 1

× (1− x)−1−
4nε
n+1
−2α
∫ 1

0

dtkl

∫ 1

0

dtl

∫ 1

0

dt′5

∫ ∞
0

da

∫ ∞
0

db (4tlt̄l)
− 1

2
−ε

× (4tklt̄kl)
− 1

2
−ε(t′5(2− t′5))−1−ε (ab)1−2ε−α

(a+ b)2−2ε(1 + ab)2−2ε−2α
|M (2)

i←j|2

× x
4nε
n+1

+2α

[
ρ

4ε
n+1F

4ε
n+1 (a, b, x12, t

+
k , tl, tkl) + (t+k → t−k )

]
(5.49)

In Eq. (5.49), we consider the complete RR master formula without the
remapping onto the unit integration range. Since the integration domain of
the variables a and b spans from 0 to∞, we need to perform the substitutions
in table 5.1 to end up with integrations over the unit hypercube. As we have
already mentioned, further simplifications are possible due to symmetries of
the matrix element, the Jacobian and the measurement function. Notice also
that the term |M (2)

i←j|2 corresponds to the squared matrix element without the

qT -factors and the factor
(
αs

4π

)2
.

Furthermore, we see that we have two isolated singularities in Eq. (5.49),
the first one is given by the Γ-function Γ

(
− 4ε

n+1

)
, while we also observe

a singularity in x12 = 1 − x, which is one of the reasons of choosing the
parameterisation in Eq. (5.23). This divergence is characteristic for the
diagonal channels in the quark and gluon case. In the x-space formalism, we
translate this factor into distributions according to

(1− x)−1−
4nε
n+1 = −n+ 1

4nε
δ(1− x) +

[
1

1− x

]
+

−

(
4nε

n+ 1

)[
ln[1− x]
1− x

]
+

+
1

2

(
4nε

n+ 1

)2[
ln[1− x]2

1− x

]
+

− 1

6

(
4nε

n+ 1

)3[
ln[1− x]3

1− x

]
+

+ ... ,

(5.50)
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for SCET-I observables, while in the SCET-II case we only need an expansion
to O(α)

(1− x)−1−2α = − 1

2α
δ(1− x) +

[
1

1− x

]
+

− 2α

[
ln[1− x]
1− x

]
+

+ ... , (5.51)

since n = 0 here. In the N -space approach, the distributions get removed by
an additional Mellin transformation on top of the Laplace transformation,
i.e. we evaluate the integrals of the form∫ 1

0

dxxN−1+
4nε
n+1

+2α (1− x)−1−
4nε
n+1
−2α I(a, b, x, ...) , (5.52)

where the expression I(a, b, x, ...) is similarly to section 5.2.1 an abbreviation
for all contributions in Eq. (5.49) apart from the explicit factors in x and
(1− x). Due to the integration over x, the matching kernels become regular
functions of the Mellin parameter N and they are not distribution valued
anymore. Nevertheless, this does not apply in x-space. In this case, it is more
convenient to rewrite the distributions such that we obtain x-independent
coefficients in front of the distributions and finite grid contributions

(1− x)−1−
4nε
n+1 I(a, b, x, ...) =

{
− n+ 1

4nε
δ(1− x) +

[
1

1− x

]
+

−

(
4nε

n+ 1

)[
ln[1− x]
1− x

]
+

+
1

2

(
4nε

n+ 1

)2[
ln[1− x]2

1− x

]
+

− 1

6

(
4nε

n+ 1

)3[
ln[1− x]3

1− x

]
+

}
I(a, b, 1, ...)

+
I(a, b, x, ...)− I(a, b, 1, ...)

1− x

(
1− 4nε

n+ 1
ln[1− x]

+
1

2

(
4nε

n+ 1

)2

ln[1− x]2 − 1

6

(
4nε

n+ 1

)3

ln[1− x]3
)
, (5.53)

which applies similarly for the SCET-II case by replacing 4nε
n+1
→ 2α. As we

anticipated in the beginning, we now have x-independent coefficients in front
of the distributions. The grid contributions in the last two lines then consist
of the original x-dependent integrand I(a, b, x, ...), which is now substracted
by the same function I(a, b, 1, ...) that appears in front of the distributions.
This renders these contributions finite in the limit x→ 1, therefore the distri-
butions become ordinary functions. However, this substraction is in general
numerically difficult, especially in the limit x → 1, and requires a careful
treatment in order to keep the uncertainties in a reasonable range. Another
advantage of the ordering in Eq. (5.53) is that we only need to compute the
coefficients I(a, b, 1, ...) once. This will be further investigated in chapter 7,
where we describe the numerical implementation of our framework.
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To summarise, we observe two factorised divergences in Eq. (5.49) yielding
1/ε2 - poles (or 1

αε
- poles in the SCET-II case). However, the highest possible

poles at O(α2
s) are 1/ε4-poles for SCET-I observables and 1/(α2ε2), 1/(αε3)-

poles for SCET-II observables. The remaining singularities arise from the
phase-space integration in Eq. (5.49). In particular, they tend to be entan-
gled in form of overlapping divergences in the denominators of the matrix
element. We solve this issues with the help of sector decomposition [139–141]
and selector functions [142]. Besides, the measurement function is designed
to be finite and non-zero in all singular limits if we pull out factors ρ appro-
priately.
With all these considerations in mind, we are now able to turn to individual
contributions and discuss the additional steps which are needed to obtain
factorised singularities in monomial form from Eq. (5.49).

Matching kernel Iq←q: CFTFnf - contribution

Figure 5.3: Feynman diagram for the CFTFnf colour structure.

One of the easiest structures in the calculation of all matching kernels is the
CFTFnf colour structure in the q → q channel. This contribution occurs
when a gluon is emitted from the incoming quark line and subsequently
decaying into a quark-antiquark pair. Due to the quark bubble, the flavour
of the quark-antiquark pair is unknown, hence we sum over all nf quark
flavours. We depict the corresponding diagram in figure 5.3.
In order to compute this structure, we start with Eq. (5.49). The following
steps, which are necessary to obtain completely factorised singularities in
terms of monomials, depend on the matrix element and partly also on the
measurement function under consideration. In principle, the measurement
might contain entangled singularities in form of overlapping zeroes, which
need to be treated properly in our approach.
As we already pointed out in section 5.2.4, the matrix elements are related
to the triple-collinear splitting functions [135]. In particular, the CFTFnf
matrix element is related to the Pq∗→q̄qq splitting function from [136] after
performing the crossing from Eqs. (4.15) and (4.16). We can decompose the
complete CFTFnf colour structure according to

PCFTFnf

q→q̄qq∗ = P(I1)
CFTFnf

+ P(I2)
CFTFnf

+ P(I3)
CFTFnf

. (5.54)
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P(I1)
CFTFnf

=
((s12 − 2s23)x1 − (s12 − 2s13)x2)

2

(sB123)
2s212(1− x)2

[
− 4xP−

2

]
,

P(I2)
CFTFnf

=
−4P−

sB123s12(1− x)

[
x̄21 + x̄22 − ε (1− x)2

]
,

P(I3)
CFTFnf

=
4xP−
(sB123)

2

[
− 1− 2ε

2

]
. (5.55)

For later considerations, it is useful to split these contributions into three
independent pieces, although we will immediately compute the sum in the
numerical implementation. The next steps are to replace the invariant masses
by scalar products, rewrite them in terms of light-cone coordinates and use
the parameterisation from Eq. (5.23). In addition to that we need to drop the
qT -dependence, since they have been accounted for in Eq. (5.48). Afterwards,
the matrix element is in such a form that it can be implemented into the
master formula in Eq. (5.49).
Further investigation of the matrix element leads to the conclusion that the
singularities are yet not completely factorised. The reason is that we observe
an overlapping singularity in the denominator

s12 = (k + l)2 ∼ ((1− a)2 + 4atkl) (5.56)

in the combined limit a→ 1 and tkl → 0, which needs to be resolved. At this
point, we introduce an additional non-linear transformation, which separates
the singularity [48]

a→ 1− u(1− v), tkl →
u2v

1− u(1− v)
, {u, v} ∈ [0, 1] . (5.57)

After performing this additional transformation, we end up with divergences
in monomial form. We can state the modified version of Eq. (5.49)

I 0,(2,RR,nf )
q←q (x, τ) =

16π−3/2

Γ(−ε)Γ(1/2− ε)
exp

((
− 4ε

n+ 1
+ 2ε

)
γE

)
Γ
(
− 4ε

n+1

)
n+ 1

× x
4nε
n+1

+2α(1− x)−1−
4nε
n+1
−2α

∫ 1

0
du

∫ 1

0
dtl

∫ 1

0
dt′5

∫ 1

0
dv

∫ 1

0
db (4tl t̄l)

− 1
2
−ε

× (4vū(1 + uv))−
1
2
−ε(t′5(2− t′5)

)−1−ε (1− uv̄)1−αb−2ε−αu−1−2ε

(1− uv̄ + b)−2ε(1 + (1− uv̄)b)2−2ε−2α

× 4P−

(1 + v)3 (−bu2(1 + v)2x12 + b(1− uv̄)(1 + b− uv̄) + b− uv̄ + 1)2

×

(
− (1 + v)2(1 + b− buv̄)

(
b2(1− uv̄)3

(
x212(1 + ε)− 2

)
+ b(1− uv̄)2

×
(
b2(x12(x12(ε− 1) + 2)− 2) + 2x12(x12(ε− 1) + 3)− 4

)
+ (1− uv̄)

×
(
2b2(x12(x12(ε− 1) + 3)− 2) + x12(x12(ε− 1) + 2)− 2

)
+ b

(
x212(ε+ 1)− 2

) )
+ bu2(v + 1)4x12

(
x12ε(1 + b− buv̄)2 + b(1− uv̄)(b(x12 − 2)(1− uv̄)

+ 4(x12 − 1)) + x12 − 2
)
+ 2b(1− v)2(x12 − 1)(2− uv̄)2(bu(v − 1) + b+ 1)2

)
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×
[
ρ

4ε
n+1F

4ε
n+1 (a, b, x12, t

+
k , tl, tkl) + (t+k → t−k )

]
+ (b→ 1/b) (5.58)

Here, we use the notation from Eq. (3.5) and compute the CFTFnf colour
structure of the q → q channel. We obtain Eq. (5.58) by taking our master
formula from Eq. (5.49) and insert Eq. (5.54) after removing the qT -factor
in the denominator. All singularities appear in monomial form, as we have
originally desired. Notice that the derivation of the master formula for the
remaining contributions works similarly. All individual sectors are listed in
appendix C. Each sector needs to be implemented into Eq. (5.49) after
removing the qT -dependence in the corresponding splitting function contri-
butions P and needs to be subsequently combined according to the decom-
positions in appendix C to yield the complete colour structures.
The CFTFnf colour structure is a prominent example in which the measure-
ment function and matrix element obey symmetries, which can be exploited
to reduce the number of integrations. Both the matrix element and measure-
ment function coincide in regions A and D as well as B and C, which are
obtained according to the substitutions in table 5.1.

Matching kernel Iq←q: C 2
F - contribution

Figure 5.4: Sample Feynman diagram for the C 2
F colour structure. The full

list of diagrams which is necessary to determine this structure is provided in
[124, 125].

The colour structure C 2
F of the q → q channel requires more advanced tech-

niques in order to disentangle all singularities. As the Feynman diagram in
figure 5.4 already suggests, there are many symmetries hidden in the matrix
element, which we will exploit extensively. In general, the complete contri-
bution to this colour structure is given by

PC 2
F
= PC

2
F

q→ggq∗ + Pidq→q̄qq∗ (5.59)

with

PC
2
F

q→ggq∗ =
1

2

[
P(I1)

C 2
F
+ P(I23)

C 2
F

+ 2 · P(I4A)

C 2
F

]
Pidq̄qq∗ =P(I1)

id + P(I2)
id + P(I3A)

id + P(I3B)
id + P(I4)

id . (5.60)
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In Eq. (5.59), we have included the symmetry factor 1
2
, which becomes

necessary because we encounter two identical particles in the final state. But
in contrast to the corresponding timelike splitting function, we do not need
to include this symmetry factor in front of the identical splitting function
here. While we encounter two identical final state quarks in the jet function
case [50], we obtain in the beam function case a quark and an antiquark due
to the crossing procedure, which are now distinguishable.
We list the various contributions similarly to the CFTFnf case:

P(I1)

C 2
F

=
4P−

s13s23x1x2

[{
1 + x2 − ε(x21 + x1x2 + x22)− ε2x1x2

}]
,

P(I2)

C 2
F

=
4xP−
(sB123)

2

[
2ε(1− ε)

]
,

P(I3)

C 2
F

= 4xP−
s213 + s223

(sB123)
2s13s23

[
− (1− ε)2

]
,

P(I4A)

C 2
F

=
−4P−

sB123s13x1x2

[
x̄31 + xx̄2 − ε(x21 + x1x2 + x22)x̄1 + ε2x1x2(1 + x)

]
P(I4B)

C 2
F

=
−4P−

sB123s23x1x2

[
x̄32 + xx̄1 − ε(x21 + x1x2 + x22)x̄2 + ε2x1x2(1 + x)

]
.

(5.61)
Each piece is obtained in the same way as for the CFTFnf structure: First, we
take the Pq→ggq∗ timelike splitting functions from [135, 136], apply the cross-
ing relations from section 5.2.4 including the transformation of the colour
structures and split the contributions into the parts I1 to I4. For the nu-
merical integrations, we group the contributions depending on the power of
the invariant mass sB123 in the denominator. Therefore, we calculate P(I1)

C 2
F

separately and combine P(I2)

C 2
F

and P(I3)

C 2
F

. For the piece P(I4)

C 2
F

= P(I4A)

C 2
F

+ P(I4B)

C 2
F

,
we make use of the fact that the components P(I4A)

C 2
F

and P(I4B)

C 2
F

are related by
a 1 ↔ 2, i.e. k ↔ l, symmetry. Hence, we only compute the contribution
P(I4A)

C 2
F

and account for the second contribution by a factor of two.
There appears an additional contribution, which is induced by the so-called
identical splitting function piece Pid:

P(I1)
id = 4xP−

s23(s12 − s13)
(sB123)

2s12s13

[
2(1− ε)

]
+ (2↔ 3) ,

P(I2)
id =

4xP−
(sB123)

2

[
− 2ε(1− ε)

]
+ (2↔ 3) ,

P(I3A)
id =

4P−
sB123s12x̄1x̄

[
(x21 + x2)x̄− 2x2xx̄1 + ε

{
− x̄3 − (x− x1)x̄1x̄

+ 2x2xx̄1

}
+ ε2x̄1x̄

2

]
+ (2↔ 3) ,

P(I3B)
id =

4P−
sB123s13x̄1x̄

[
(x21 + x2)x̄1 + 2xx̄− ε

{
x̄31 − (x− x1)x̄1x̄+ 2xx̄

}
+ ε2x̄21x̄

]
+ (2↔ 3) ,
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P(I4)
id =

4x1P−
s12s13x̄1x̄

[{
(x21 + x2)− ε

(
x̄21 − x̄1x̄+ x̄2

)
+ ε2x̄1x̄

}]
+ (2↔ 3) . (5.62)

The interchange (2 ↔ 3) indicates that we have to add the term in front
after interchanging the indices 2 and 3.
Similar to Eq. (5.61), we group these contributions according to their powers
in the invariant mass sB123. From a computational point of view, it is appro-
priate to combine these structures, because this leads to numerically stable
and reliable results. If we consider all components together, we observe that
numerical integrations become time consuming and unstable.
When we now try to implement these contributions, we encounter problems
in form of overlapping divergences in the denominators of various terms.
Another source of these overlapping singularities are terms in the Jacobian
or the measurement function, which generate logarithmic divergences after
expansion in ε. For example, the component P(I1)

C2
F

shares this issue. If we
express the contribution in terms of light-cone coordinates and subsequently
introduce the parameterisation from Eq. (5.23), the situation becomes ap-
parent. Symbolically, we get

a1−2εb1−2ε(a+ b)2ε−2 P(I1)

C2
F
∼ a−1−2εb−1−2ε(a+ b)2εN . (5.63)

The term N represents the remaining factors including phase-space factors,
the Jacobian, the matrix element with the troublesome denominators and
the measurement function. For this particular part of the C2

F -contribution,
we also observe overlapping divergences in the denominator of the matrix
element, which we do not show explicitly here.
The factors 1/a2 and 1/b2 from P(I1)

C2
F

introduce a singularity in a and b,
as illustrated above. We can visualise the problem in the following way:
According to Eq. (5.63), we rewrite the singularities a−1−2ε and b−1−2ε to
leading order as −1

2ε
δ(a) or −1

2ε
δ(b) and expand the second term (a+ b)2ε in ε

such that we obtain
N
2ε
δ(a)δ(b) ln(a+ b) +O(ε) , (5.64)

which is an ill-defined expression upon integration over a and b.

Figure 5.5: Sector decomposition in a schematic form taken from [50]. In
our discussion, x corresponds to a, while y is b.

The problem is clearly related to the structure (a+b)2ε, which is an example of
an overlapping zero that needs to be disentangled properly. To do so, we make
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use of sector decomposition [139–141]. The idea of this approach is simple.
Singularities in integrals with overlapping divergences are disentangled by
splitting the integrals according to figure 5.5 first and by remapping them in
the next step to the unit integration domain. Let us demonstrate the basic
steps of this method for the integral above in a slightly simplified form

Ĩ =

∫ 1

0

da

∫ 1

0

db a−1−2εb−1−2ε(a+ b)2ε . (5.65)

First, we insert unity in terms of a sum of two Θ-functions

Ĩ =

∫ 1

0

da

∫ 1

0

db a−1−2εb−1−2ε(a+ b)2ε
[
Θ(a− b) + Θ(b− a)

]
(5.66)

which induces an ordering in the integrations over a and b. In each part of
the sum, we perform a substitution which remaps the integration domain to
the unit interval. First, we substitute b→ t · a in the domain a > b∫ 1

0

da

∫ 1

0

db a−1−2εb−1−2ε(a+ b)2εΘ(a− b)

=

∫ 1

0

da

∫ 1

0

db a−1−2εt−1−2ε(1 + t)2ε (5.67)

and similarly for b > a in the second integral with a→ t · b∫ 1

0

da

∫ 1

0

db a−1−2εb−1−2ε(a+ b)2εΘ(b− a)

=

∫ 1

0

dt

∫ 1

0

db b−1−2εt−1−2ε(1 + t)2ε . (5.68)

The full result in Eq. (5.65) consists now of the sum of Eqs. (5.67) and
(5.68). However, the advantage is that we have factorised all singularities in
form of monomials and no overlapping zero in the factor (1 + t)2ε is present
anymore. This method is sufficient to disentangle all overlapping divergences
in our approach. In particular, it is enough to perform one sector decom-
position step in each part of the matrix element in order to disentangle all
singularities.
Moreover, we note that the parameterisation in Eq. (5.23) is particularly
useful in the x-space framework since we obtain the singularity in x imme-
diately in factorised form. Although this parameterisation also works in the
N -space approach, we can use the parameterisation from Eq. (5.25) in this
case. The advantage of the latter is that we do not need to perform the
additional sector decomposition step.
Albeit this sector becomes particularly simple, we see that the structure
P(I4A)

C2
F

becomes more involved due to overlapping divergences. Even more
problematic is the fact that this parameterisation is the first case where we
explicitly observe a x1,2-dependence in the measurement function for the ob-
servable pT -veto, which requires additional sector decomposition steps. This
complication is for example absent in the (a, b)-parameterisation. In our
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N -space formalism, we use both parameterisations and see that the results
agree. From the numerical side, we do not encounter major differences in
terms of precision and runtime.

Matching kernel Iq←q: CFCA - contribution

Figure 5.6: An example for a Feynman diagram for the CFCA colour struc-
ture. The full list of diagrams, which is necessary to determine this structure
is provided in [124, 125].

We next investigate the CFCA colour structure of the q → q channel, where
we will find the last complication in the computation of the RR contributions.
The complete expression is

PCFCA
=PCFCA

q→ggq∗ −
1

2

{
Pid + P(I1)

C 2
F
+ 2 · P(I4A)

C 2
F

}
− 1− ε

2

{
P(I13)
CFTFnf

}
(5.69)

with

PCFCA
q→ggq∗ = P(I3)

CFCA
+ P(I5)

CFCA
+ P(I6)

CFCA
. (5.70)

In order to obtain the contribution P(I13)
CFTFnf

, we combine P(I1)
CFTFnf

and P(I3)
CFTFnf

from Eq. (5.55).
Besides the expressions from the C 2

F colour structure and parts of the CFTFnf
colour structure discussed above, which also occur in the complete CFCA
structure, we encounter pure CFCA contributions of the form

P(I3)
CFCA

=
4P−

s12s13s23x1x2x̄

[
x1s23

{
x̄1x2x+ xx̄+

ε̄

2
(x32 + x̄3)

}
+ x2s13

{
x1x̄2x+ xx̄+

ε̄

2
(x31 + x̄3)

}]
P(I5)
CFCA

=
−4P−

s12sB123x1x2x̄

[
1

2

{
x̄41 + x̄42 − 2x4 − x1x2(x21 + x22 + 12x2)

− 4(x1x̄2 + x̄1x2)x
2 − 2x3x̄

3 − ε(x1 − x2)2(x21 + x1x2 + x22)

}]
P(I6)
CFCA

=
−4P−

s13s23sB123x1x2x̄

[
x1s23

{
ε̄

2

(
x̄31 + x(1 + x2x)

)
+ εx̄1x(1 + x2)
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− εε̄

2
x2x̄2x̄

}
+ x2s13

{
ε̄

2

(
x̄32 + x(1 + x1x)

)
+ εx̄2x(1 + x1)

− εε̄

2
x1x̄1x̄

}]
(5.71)

The pure CFCA structure with the individual parts I3, I5, I6 are of particular
interest since they contain a different kind of singularity structure, which
we did not observe so far. For instance, if we parameterise the I5 term in
Eq. (5.71) in terms of the physical parameterisation from Eq. (5.23), we
symbolically get

a1−2ε P(I5)
CFCA

= a−1−2ε
N2

(1− a)2 + 4atkl
. (5.72)

Here, we included the factor a1−2ε from the Jacobian and isolate from Eq.
(5.71) only the troublesome term in the denominator. Therefore, we see
that there occur divergences for the variable a at both endpoints, i.e. for
a → 0 and additionally the overlapping singularity for a → 1 and tkl → 0.
These singularities at both endpoints need to be disentangled in order to
obtain completely factorised divergences. One possibility would be to split
the phase space integration at a = 1/2, similar to the discussion in section
(5.2.2), where we split the t5-integration as well at t5 = 1

2
to deal with

singularities at t5 = 0 and t5 = 1. But in this case, we have decided to follow
a different approach by introducing selector functions [142]. We multiply
each contribution with a singularity structure of the type (5.72) a function
of the form

1 =
S1 + S2
S

=
S1 + S2

a+ (1− a)2 + 4atkl
(5.73)

and identify

S1 = a, S2 = (1− a)2 + 4atkl and S = S1 + S2 . (5.74)

In this way, we split the integration such that in one case S1 cancels the diver-
gence at a = 0, while in the other case S2 removes the overlapping singularity
at a → 1 and tkl → 0. In the first part containing the selector function S1,
we deal with the overlapping divergence by using once more the non-linear
transformation from Eq. (5.57). Contrary to that, we can just continue to
work in the physical parameterisation in the expression including the second
selector function S2, since the singularity in a→ 0 is immediately factorised.
Notice that we also encounter, similar to the previous C 2

F contribution, over-
lapping divergences, where sector decomposition is necessary to factorise all
singularities. In some cases, it is even necessary to split the divergences at
both endpoints for the variable a with Eq. (5.74) first and subsequently ap-
ply a sector decomposition step to obtain fully factorised results.
In appendix C, we show all steps explicitly in order to obtain fully factorised
singularities. Furthermore, we also highlight that it becomes necessary in
some cases to pull out certain factors in the measurement to guarantee that
the measurement function stays finite and non-zero. This complication will
be the topic of the next paragraph.
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Additional treatment of the measurement function

The methods developed so far were focussed around the manipulation of the
matrix element in order to disentangle singularities therein and obtain them
in monomial form. In this section, we intend to ensure that the measurement
function is finite and non-zero. Albeit the singularities are in monomial form,
there occur several cases in which the measurement becomes zero or even di-
verges in the singular limits. So far we have not encountered these cases in
the physical parameterisation from Eq. (5.23) for the observables that we
mainly focus on here, namely transverse-momentum resummation, jet-veto
resummation and beam thrust, although this is an observable-dependent and
phase-space parameterisation dependent statement. But for angularities in
deep-inelastic scattering (DIS) as a class of observables, we leave the value of
n, which is a parameter defining the measurement, open. More specifically,
we require n ∈ (0,∞) based on infrared-collinear safety. These type of mea-
surements introduce additional complications for which we have included the
factor ρ in Eq. (5.41). One sector decomposition step is in general not enough
to account for this issue, because the variables inside the measurement func-
tion do not scale homogeneously. In order to reduce the total number of
sectors, we perform a rescaling in the variables first before we apply sector
decomposition. Generally, we encounter two different types of this problem

Type-I : F (t, b, x12, tk, tl, tkl) =FI(t, b, x12, tk, tl, tkl) · t
n−1
2 ·

[
tn + b1−n

]
Type-II: F (t, a, x12, tk, tl, tkl) =FII(t, a, x12, tk, tl, tkl) ·

[
1 + t · a1−n

]
.

(5.75)
For Type-I, we observe that for n > 1 we do not encounter any difficulties.
It is possible to pull out the factor ρn>1 = b1−n such that the overlap is
resolved. However for 0 < n < 1, we still see overlapping divergences in the
limit {b, t} → 0. At this point, the idea is to rescale the variables t, b such that
they scale homogeneously and subsequently perform a sector decomposition
step to factorise the singularities. Hence, the following substitutions are
necessary to obtain all singularities in monomial form

t→ s1−n; b→ gn; s→ gs̃; g → ss̃ . (5.76)

These singularities lead to the factor ρn<1 = g
1−n2

2 s̃
(1−n)2

2 , which we ultimately
pull out of the measurement function.
For the second type in Eq. (5.75), we observe the opposite behaviour. In
the case that 0 < n < 1, we encounter no additional problems. But for
n > 1, a factor a1−n has to be pulled out of the measurement function,
which introduces an overlapping divergence between the variables a and t
for {a, t} → 0 with an inhomogeneous scaling. We resolve this problem in a
similar manner

t→ sn−1; a→ gs; s→ ga . (5.77)

The factor ρ now takes the form ρn<1 = s
1−n2

2 .
These steps are in general sufficient to disentangle all singularities that we
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encounter in the measurement function on top of those in the matrix element.
Notice that we have already discussed the special case n = 0 previously.
Here, the expressions in Eq. (5.75) do not require any additional steps and
we identify for the Type-I scenario that ρn=0 = t2ε. This is in accordance
with our previous findings and provides the explanation for the occurence
of 1/α2-poles. The factor t2ε cancels the ε-dependence in the singularity
t−1−2ε−α, which leads to the second α-pole besides the explicit divergence in
x12.
In appendix C, we explicitly state in which sector we need to introduce the
additional rescaling and sector decomposition.

Remaining contributions

In the previous sections, we have discussed all techniques which are necessary
to obtain fully factorised singularities in the CFTFnf , C 2

F and CFCA colour
structure of the q → q channel. However, these methods have to be applied
similarly for the other channels to end up with factorised divergences. We
summarise the necessary steps in appendix C. Moreover, we have shown a
few diagrams illustrating typical contributions which we need to evaluate.
The full list of diagrams is given in [124, 125].
This completes our discussion on the contributions which enter at NNLO
level. Since these expressions still contain poles in the dimensional regulator
ε and in the case of SCET-II also in the rapidity regulator α, we turn our
attention to the renormalisation in the next chapter.



Chapter 6

Renormalisation

In this chapter, we turn our attention to the renormalisation of the bare
matching kernels I 0

i←j, which we construct from the computations in chap-
ters 4 and 5 by using the corresponding master formulae for the NLO, RV and
RR contributions. As we will see in this chapter, the renormalisation proce-
dure works differently for SCET-I and SCET-II observables. While the bare
results in the SCET-I case contain only poles in the dimensional regulator
ε, one encounters additional rapidity divergences in the SCET-II case. This
new type of singularities requires a different method to remove all divergences
and to obtain a finite result which is free of rapidity and ε divergences. The
renormalisation of the beam function matching kernels then proceeds simi-
larly to the renormalisation of soft [48, 49] and jet [50] functions, except that
the renormalisation group equations include an additional term associated
with the scale dependence of the PDFs in the matching relation in Eq. (3.3).
We will now first investigate the renormalisation in the SCET-I framework
and then generalise this framework to the SCET-II case.

6.1 SCET-I observables

6.1.1 Renormalisation in x-space
So far, we have considered bare quantities throughout this work, i.e. Laurent
expansions with poles in the dimensional regulator ε in the SCET-I case. We
distinguished bare from renormalised quantities by a different superscript ”0”
for bare quantities, while renormalised quantities have no superscript.
Based on our explicit computations above, we are able to state the most
general ansatz for the bare matching kernels

I 0
i←j(x, τ) = δij δ(1− x)

+

(
Zαsαs
4π

) (
µτ̄

1
n+1

q
n

n+1

−

)2ε {
h2
ε2

+
h1
ε
+ h0 + h−1 ε+ h−2 ε

2 +O(ε3)
}

+

(
Zαsαs
4π

)2
(
µτ̄

1
n+1

q
n

n+1

−

)4ε {
y4
ε4

+
y3
ε3

+
y2
ε2

+
y1
ε
+ y0 +O(ε)

}

85



86 CHAPTER 6. RENORMALISATION

+O(α3
s) . (6.1)

The second line in Eq. (6.1) can be obtained from the NLO master formulae
in Eqs. (4.11), (4.12), (4.26) and (4.25). Notice that the NLO coefficients hi
are functions of x and in some cases distribution valued. This depends on
the observable under investigation.
In the third line, we can identify the NNLO contributions. We combine the
RV and RR contributions from sections 5.1 and 5.2 into the NNLO coeffi-
cients yi, which again depend in general on x. All previous considerations
have intended to construct an automated framework which provides these
coefficients for a general class of observables within the constraints from sec-
tion 3.2.
The connection between bare and renormalised quantities is provided by two
renormalisation factors. In x-space, this relation is given by a convolution,
which simplifies to a simple product after performing a Mellin transformation
as we will see below

Ii←j(x, τ) =
∑

k∈{q,g,q̄}

ZB
i

∫ 1

x

dz

z
I 0
i←k

(x
z
, τ
)
Zf
k←j(z)

≡
∑

k∈{q,g,q̄}

∫ 1

x

dz

z
I 0
i←k

(x
z
, τ
)
Z̃f
i;k←j(z) , i, j ∈ {q, g, q̄} .

(6.2)

In general, it is possible to combine the two terms ZB
i and Zk←j, but a

separation of those terms is more convenient in order to avoid confusions
regarding the representation of the cusp and non-cusp anomalous dimensions
inside ZB

i . Here, ZB
i substracts the UV divergences, while Zf

k←j incorporates
the IR divergences that match the UV divergences of the PDF.
Starting from the fact that bare quantities do not possess any µ-dependence,
one can derive renormalisation group equations (RGEs) for the counterterms
ZB
i as well as Zf

k←j and the renormalised matching kernels Ii←j(x). The
corresponding RGEs for the renormalisation factors are

d

d lnµ
ZB
i (τ, µ) =

[
4f(n)Γicusp(αs)L− g(n)γi,B(αs)

]
ZB
i (τ, µ) , (6.3)

and

d

d lnµ
Zf
k←j(x, τ, µ) =− 2

∑
l∈{q,g,q̄}

∫ 1

x

dz

z
Zf
k←l

(x
z
, τ, µ

)
Pl←j(z, αs) , (6.4)

where we leave the expressions f(n) := n+1
2n

and g(n) general, since they are
determined by the observable. The remaining quantities in Eq. (6.3) are the
cusp anomalous dimensions Γ i

cusp(αs) and the non-cusp anomalous dimension
γi,B(αs). Their expansion in αs is given in section 3.3. Generally, the cusp
anomalous dimension is an observable-independent quantity and it is known
at the considered two-loop order. In contrast to that the non-cusp anomalous
dimension is observable dependent. One way to determine this quantity
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is to compute it directly with our framework, another way makes use of
consistency relations between the hard and soft anomalous dimensions, see for
example Eq. (3.15). But even if the non-cusp anomalies can be determined
in this way, a direct calculation provides a useful check of our calculation. As
mentioned before, the index i indicates the representation of the anomalous
dimensions, which ultimately depends on the channel under investigation.
For the quark channel, we need to use the fundamental representation, while
the gluon channels live in the adjoint representation.
The differential equations in Eqs. (6.3) and (6.4) can be used to extract
general expressions for the renormalisation factors. For the UV part, we get

ZB
i (τ, µ) = 1 +

(αs
4π

)−f(n)Γ i
0

ε2
−

2f(n)Γ i
0L− g(n)

γi,B0

2

ε


+
(αs
4π

)2{f(n)2(Γ i
0)

2

2ε4
+

(
2f(n)2Γ i

0L− f(n)g(n)
γi,B0
2

+ f(n)
3β0
4

)
Γ i
0

ε3

+

(
2f(n)2(Γ i

0)
2L2 − Γ i

0

(
f(n)g(n)γi,B0 − f(n)β0

)
L− f(n)Γ

i
1

4
+
g(n)2(γi,B0 )2

8

− g(n)β0γ
i,B
0

4

)
1

ε2
− 4f(n)Γ i

1L− g(n)γ
i,B
1

4ε

}
. (6.5)

In this expression, the factors L = ln
(
µτ̄

1
n+1/q

n
n+1

−

)
stems from the prefactors

in Eq. (6.1) after expansion in ε. Furthermore, β0 = 11
3
CA− 4

3
TFnf represents

the lowest coefficient in the expansion of the QCD β-function. Note that the
origin of these terms lies in the renormalisation of the QCD coupling αs. The
relation between the bare and renormalised coupling is given by

α0
s = Zαsµ

2εαse
γEε(4π)−ε and Zαs = 1− αs

4π

β0
ε
+O

(
α2
s

)
. (6.6)

The second renormalisation factor has the solution

Zf
k←j(x, τ, µ) = δkjδ(1− x) +

(αs
4π

){
P

(0)
k←j(x)

1

ε

}
+
(αs
4π

)2{
− P (0)

k←j(x)
β0
2ε2

+
1

2ε2

∑
l

∫ 1

x

dz

z
P

(0)
k←l

(x
z

)
P

(0)
l←j(z) + P

(1)
k←j(x)

1

2ε

}
. (6.7)

Here, the main quantities are the one- and two-loop splitting functions P (0)
k←j(x)

and P
(1)
k←j(x) respectively, which we take from [135, 136].

For the renormalised matching kernels, we can state a RGE as well

d

d lnµ
Ii←j(x, τ, µ) =

[
4f(n)Γ i

cusp(αs)L− g(n)γi,B(αs)
]
Ii←j(x, τ, µ)

− 2
∑
k

∫ 1

x

dz

z
Ii←k

(x
z
, τ, µ

)
Pk←j(z, αs) . (6.8)
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Its solution is given by

Ii←j(x, τ, µ) = δij · δ(1− x)

+
(αs
4π

){(
2f(n)Γ i

0 L
2 − g(n)γi,B0 L

)
δijδ(1− x)− 2LP

(0)
i←j(x) + I

(1)
i←j(x)

}
+
(αs
4π

)2{(
2f(n)2(Γ i

0)
2L4 − 4f(n)Γ i

0

(
g(n)

γi,B0
2
− β0

3

)
L3 +

(
2f(n)Γ i

1

+ g(n)2
(γi,B0 )2

2
− g(n)β0γi,B0

)
L2 − g(n)γi,B1 L

)
δijδ(1− x)− 2

(
2f(n)Γ i

0L
3

× δ(1− x) +
(
β0 − g(n)γi,B0

)
L2
)
P

(0)
i←j(x) +

(
2f(n)Γ i

0L
2 − 2L

(
g(n)

γi,B0
2

− β0
))
× I (1)

i←j(x) + 2
∑
k

∫ 1

x

dz

z

(
L2 P

(0)
i←k

(x
z

)
− L I (1)

i←k

(x
z

))
P

(0)
k←j(z)

− 2LP
(1)
i←j(x) + I

(2)
i←j(x)

}
. (6.9)

As the various anomalous dimensions and splitting functions are known, the
non-logarithmic terms I (1)

i←j(x) and I (2)
i←j(x) are of particular interest for us.

For many observables, this provides a new input for phenomenological anal-
yses and pushes the frontier to NNLL′ accuracy, as we discussed in section
3.3.
The next step is to derive explicit expressions for the NLO and NNLO renor-
malised matching kernel as well as consistency relations between the general
coefficients of the bare matching kernels in Eq. (6.1) and the renormalised
quantities. For the O(αs) contribution, we obtain

I (1)
i←j(x, τ, µ) =

∫ 1

x

dz

z

[
I 0,(1)
i←k

(x
z
, τ
)
δkjδ(1− z) + δikδ

(
1− x

z

)
Z̃

(1)
i;k←j(z)

]
= I 0,(1)

i←j (x, τ) + Z̃
(1)
i;i←j(x) . (6.10)

Thus, we can extract consistency relations between cusp and non-cusp anoma-
lous dimensions and bare coefficients

h2(x) = f(n) Γ i
0 δ(1− x) ,

h1(x) = g(n)
γi,B0
2

δ(1− x)− P (0)
i←j(x) ,

h0(x) = I (1)
i←j(x) . (6.11)

Furthermore, the expression for the NNLO renormalised matching kernel is

I (2)
i←j(x) = I

0,(2)
i←j (x, µ) + Z̃

(2)
i;i←j(x) +

∑
k=q,g,q̄

∫ 1

x

dz

z
I 0,(1)
i←k

(x
z
, τ̄
)
Z̃

(1)
i;k←j(z) .

(6.12)
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Notice that the matching kernel I (1)
q←q̄ = 0, since the leading contribution of

this kernel is O(α2
s). Moreover, we observe that I (1)

g←q̄ = I (1)
g←q and Z̃

(1)
q̄←g =

Z̃
(1)
q←g due to invariance under the discrete charge-conjugation symmetry. We

are again able to connect the anomalous dimensions to the bare coefficients
via

Γ i
1 δ(1− x) =

4

f(n)

(
y2(x)− β0h1(x)− Γ i

0f(n)h0(x)−
g(n)

2
γi,B0 h1(x)

+

∫ 1

x

dz

z
P

(0)
i←i

(x
z

)
h1(z) +

(
β0g(n)

γi,B0
4

+ g(n)2
(γi,B0 )2

8

)
δ(1− x)

−
(β0
2

+ g(n)
γi,B0
2

)
P

(0)
i←i(x) +

1

2

∑
k

∫ 1

x

dz

z
P

(0)
i←k

(x
z

)
P

(0)
k←i(z)

)
, (6.13)

γi,B1 δ(1− x) = 4

g(n)

(
y1(x)− β0h0(x)− Γ i

0f(n)h−1(x)−
g(n)

2
γi,B0 h0(x)

+

∫ 1

x

dz

z
P

(0)
i←i

(x
z

)
h0(z) +

1

2
P

(1)
i←i(x)

)
. (6.14)

Furthermore, one can make use of Eq. (6.12) to extract the expression
I (2)
i←j(x), which represents a new prediction for some observables. Observ-

ables, for which this term is known, provide a useful check of our approach.
In the SCET-I case, we exploit that the results for beam thrust [124, 125]
are known analytically and choose this observable to test our framework.

6.1.2 Renormalisation in N-space

In addition to the x-space framework, we also implement our approach in
Mellin (N)-space. This includes an additional integration over the variable
x, which leads to simplifications in the renormalisation procedure. As we
pointed out before, this is one of the main motivations to work in N -space.
But since factorisation theorems require in general the beam functions in x-
space, it would be necessary to transform the matching kernels back by using
an inverse Mellin transformation. The contour integrals introduce numerical
uncertainties which have a major impact on the accuracy of our results. But
in general, the N -space results provide a useful check. Besides, there are also
some observables for which the factorisation theorems are naturally stated
in Mellin space. Hence, our N -space framework would be perfectly suited to
study such observables.
In the following, we separate x-space expressions from N -space quantities by
putting an additional hat symbol for expressions in Mellin space, similar to
Eq. (3.9).
Generally, the renormalisation procedure works as in x-space except that
the convolutions in the variable x become products of regular functions in
the Mellin variable N due to the Mellin transformation in Eq. (3.9). For
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instance, we observe for two test functions f(x) and g(x)∫ 1

0

dxxN−1f ⊗x g ≡
∫ 1

0

dxxN−1
∫ 1

x

dz

z
f
(x
z

)
· g(z) = f̂(N) · ĝ(N) .

(6.15)

In order to obtain all expressions and relations from the previous section in
Mellin space, we only need to perform the Mellin transformation in (3.9) on
each relation and apply Eq. (6.15).

6.2 SCET-II observables
Contrary to the SCET-I case, we observe additional rapidity divergences
for SCET-II observables due to the overlap of the soft with the collinear
and anti-collinear regions. The reason for this issue is that the soft modes
have the same virtuality as the collinear ones in SCET-II. This new type
of divergences requires a modification of the renormalisation procedure. We
split the following discussion for different channels in both the x-space and
N -space formalisms. The diagonal channels need a slightly different approach
compared to the off-diagonal channels, since the leading contributions to the
off-diagonal channels start one order higher in the expansion in αs.

6.2.1 Renormalisation in x-space
In order to account for the additional rapidity divergences in the SCET-II
case, the collinear anomaly approach has been introduced in the literature
[75, 143]. The idea is that in the combination of collinear, anti-collinear
and soft regions the rapidity divergences have to cancel and as a result the
associated rapidity logarithms will be resummed in terms of an anomaly
coefficient F 0

īi (τ)[
I 0
i←j(x1, τ, ν) I 0

ī←k(x2, τ, ν) S
0
īi(τ, ν)

]
Q
= (Qτ̄)−2F

0
īi
(τ) I 0

i←j(x1, τ) I
0
ī←k(x2, τ) .

(6.16)

At this point, we consider the collinear anomaly approach in the most general
form. The index i belongs to i ∈ {q, g} and therefore determines whether
we work with quark or gluon kernels. In comparison to that the indices
j, k ∈ {q, g} are not fixed here and it is possible to choose them such that we
either investigate diagonal or off-diagonal channels. Notice that Eq. (6.16)
is directly stated on the level of the matching kernels rather than the (non-
perturbative) beam functions. Generally, there exists the freedom to work
with bare or renormalised quantities in the renormalisation procedure, thus
we decide to use the bare version in our approach. As we have previously
mentioned, we obtain the bare matching kernel I 0

i←j(x1, τ, ν) from the master
formulae in chapters 4 and 5. Moreover, using the n− n̄-symmetry provides
an expression for the anti-collinear matching kernel I 0

ī←k(x2, τ, ν). The last
ingredient is the soft function, which we obtain from the fully automated
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framework SoftSERVE [48, 49]. This setup computes soft functions for a
general class of observables to NNLO accuracy based on similar considera-
tions as in section 3.2.
On the right-hand side of Eq. (6.16), we observe that the rapidity loga-
rithms are resummed into the anomaly coefficient F 0

īi (τ) and only the hard
scale Q2 = q+q− appears. Since the collinear anomaly approach operates at
the scale Q, we can now understand why we have introduced the momentum
q− in the general ansatz in Eq. (6.1).
In Eq. (6.16), the Laplace variable τ encodes the observable dependence.
However, the most interesting objects are the refactorised matching kernels
I 0
i←j(x1, τ). Their bare version contains only poles in the dimensional regula-

tor ε and their renormalisation works similarly to the SCET-I case. Addition-
ally, the renormalised matching kernels are interesting for phenomenological
studies and they are for most observables unknown at NNLO.
Both the renormalised anomaly coefficient Fīi(τ, µ) and the refactorised match-
ing kernels Ii←j satisfy well-defined RGEs in the MS scheme. Before we in-
vestigate these further, it is convenient to factor out the terms related to the
anomaly coefficient F 0

īi (τ) in the bare matching kernels on the left-hand side
of Eq. (6.16). For this, we introduce the remainder functions W 0

i←j(x, τ)
which contain only poles in ε

I 0
i←j(x1, τ, ν) =

(
ν

q−

)F 0
īi
(τ)

W 0
i←j(x1, τ) ,

I 0
ī←k(x2, τ, ν) =

(
ν

q+

)F 0
īi
(τ̄)

W 0
ī←k(x2, τ) , (6.17)

Sīi(τ, ν) =
(
ν2τ̄ 2

)−F 0
īi
(τ)

W S,0
i (τ) .

At this stage it becomes obvious why we need to perform the transformation
from the momentum P− to q−. The rapidity logarithms transform with
q− = xP− according to(

ν

P−

)m·α

→

(
ν

q−

)m·α

xm·α withm ∈ {1, 2} . (6.18)

If we now multiply the relations in Eq. (6.17), we notice that the coefficients
in front of the remainder functions combine to(

ν

q−

)Fīi(τ̄)
(
ν

q+

)Fīi(τ̄)(
ν2τ̄ 2

)−Fīi(τ̄)

=
(
Q2τ̄ 2

)−Fīi(τ̄)

(6.19)

such that we reproduce the resummed anomaly coefficient from Eq. (6.16)
and the dependence on the scale ν drops out. Hence, the introduction of
the remainder functions in Eq. (6.17) provides a possibility to connect these
functions directly to the refactorised matching kernels in Eq. (6.16)

W 0
i←j(x1, τ) W

0
ī←k(x2, τ) W

S,0
i (τ) = I 0

i←j(x1, τ) I
0
ī←k(x2, τ) . (6.20)
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Due to the n− n̄ symmetry, it is sufficient to compute the kernels I 0
i←j(x1, τ)

in order to extract the final renormalised refactorised matching kernels. But
for now, we discuss the renormalisation of the anomaly coefficients and the
extraction of the relevant finite piece.
Based on the collinear anomaly approach, we know that the anomaly expo-
nent for the beam and soft function are the same. Therefore, we can use the
same ansatz as analysed in [48]

F 0
īi (x, τ) = −

1

2

(
Zαsαs
4π

)
(µ2τ̄ 2)ε

{
h11
ε
+ h10 + h1−1 ε+ h1−2 ε

2 +O(ε3)
}

−
(
Zαsαs
4π

)2

(µ2τ̄ 2)2ε
{(

y13 +
z13
2
− h02 ⊗x h11

)
1

ε3
+

(
y12 +

z12
2
− h02 ⊗x h10

− h01 ⊗x h11
)
1

ε2
+

(
y11 +

z11
2
− h02 ⊗x h1−1 − h01 ⊗x h10 − h00 ⊗x h11

)
1

ε
+ y10

+
z10
2
− h02 ⊗x h1−2 − h01 ⊗x h1−1 − h00 ⊗x h10 − h0−1 ⊗x h11 +O(ε)

}
. (6.21)

Similar to Eq. (6.1), the coefficients hji denote the NLO coefficients, however
we introduce the superscript j in order to account for the additional poles
in the regulator α in the SCET-II case. The lower index i still describes the
order of the ε-poles. The same notation applies to the NNLO coefficients.
In contrast to the SCET-I case, we need to split the RV contributions, illus-
trated by the coefficients zji , from the RR contributions with the coefficients
yji due to the decomposition in Eq. (3.5). There, we implement the analytic
regulator on the level of the phase space measure for each final state emission
in order to account for the rapidity divergences. Since the RR contribution
consists of two final-state emissions, while the RV contribution has only one
parton in the final state, we observe different prefactors

(
ν
q−

)2α
and

(
ν
q−

)α
,

respectively.
All coefficients in Eq. (6.21) are functions of the variable x and for conve-
nience we have introduced the abbreviation from Eq. (6.15).
The anomaly coefficient renormalises additively via the relation

F 0
īi (τ) = Fīi(τ, µ) + ZF (µ) . (6.22)

and obeys the RGE

d

d lnµ
Fīi(τ, µ) = 2Γ i

cusp(αs) i ∈ {q, g} . (6.23)

For the quark channel, Γ q
cusp belongs to the fundamental representation, while

the gluon channel lives in the adjoint representation. After solving the RGE
in Eq. (6.23), we get the solution

Fīi(τ, µ) =
(αs
4π

){
2Γ i

0 L+ d1

}
+
(αs
4π

)2 {
2β0Γ

i
0 L

2 + 2
(
Γ i
1 + β0d

i
1

)
L

+ d i2

}
+O

(
α3
s

)
(6.24)
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for the anomaly coefficient and for the counterterm, which satisfies a similar
RGE, we obtain

Zi
F (τ, µ) =

(αs
4π

){Γ i
0

ε

}
+
(αs
4π

)2{
− β0Γ

i
0

2ε2
+

Γ i
1

2ε

}
+O

(
α3
s

)
. (6.25)

The interesting quantities are the d i1,2 coefficients, which are observable de-
pendent and provide a useful check of our approach, because they are known
in most of the cases. Furthermore, they can be expressed in terms of the
bare coefficients from Eq. (6.21) as

d i1 δ(1− x) = h10 ,

−d i2
2

δ(1− x) = − y10 −
z10
2

+ h0−1 ⊗x h11 + h00 ⊗x h10 + h01 ⊗x h1−1 + h02 ⊗x h1−2

+
β0h

1
−1

2
. (6.26)

In addition to that we can state consistency relations for the α - poles,

−y13 −
z13
2

= 0 , (6.27)

−y12 −
z12
2

+ h11 ⊗z h01 + β0
h11
2
− Γi0

β0
4
δ(1− x) = 0 , (6.28)

−y11 −
z11
2

+ h11 ⊗z h00 +
Γi1
4
δ(1− x) = 0 . (6.29)

Next, we turn to the refactorised matching kernels I 0
i←j(x, τ). As we have

mentioned before, these quantities renormalise similarly to the SCET-I case,
since the relation between the bare and renormalised kernels is similar to Eq.
(6.2)

Ii←j(x, τ) =
∑

k∈{q,g,q̄}

ZB
i

∫ 1

x

dz

z
I 0
i←k

(x
z
, τ
)
Zf
k←j(z)

≡
∑

k∈{q,g,q̄}

∫ 1

x

dz

z
I 0
i←k

(x
z
, τ
)
Z̃f
i;k←j(z) , i ∈ {q, g, q̄} .

(6.30)

Hence, the kernels satisfy a similar RGE compared to Eq. (6.8). It is pos-
sible to reconstruct the RGE for the refactorised matching kernels from this
equation by choosing f(n) = 1

2
and g(n) = 2 such that

d

d lnµ
Ii←j(x, τ, µ) = 2

[
Γ i
cusp(αs)L− γi,B(αs)

]
Ii←j(x, τ, µ)

− 2
∑
k

∫ 1

x

dz

z
Ii←k

(x
z
, τ, µ

)
Pk←j(z, αs) . (6.31)

The solution to this RGE is then determined by Eq. (6.9) for the same choice
of f(n) and g(n). The interesting term is the expression I

(2)
i←j(x), which is
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for many observables a new prediction. It depends on the energy fraction
x and is usually stated in terms of the coefficients of the distributions and
a grid for x ∈ [0, 1]. Similar to the SCET-I case, the determination of this
expression for various observables is one of the main tasks in this thesis and
is discussed in the following chapters.
Similarly, the RGEs for the two renormalisation factors ZB

i and Zf
k←j take

the form in Eqs. (6.3) and (6.4) with f(n) = 1/2 as well as g(n) = 2
with their solution given in Eqs. (6.5) and (6.7). The last step is to relate
the bare refactorised matching kernels to the renormalised ones and to state
explicit expressions for the anomalous dimensions and the finite refactorised
matching kernels I (1)

i←j(x) and I
(2)
i←j(x). For this discussion, it is convenient

to consider diagonal and off-diagonal channels separately, since they start at
different orders in the perturbative expansion in αs.

Diagonal channels

The starting point for this discussion is Eq. (6.20), which connects the bare
remainder functions that only contain poles in ε, to the bare refactorised
matching kernels I 0

i←j(x, τ). However, we need to choose the indices j, k in
Eq. (6.16) explicitly to make any further statements. With the choice j = i
and k = ī, we consider diagonal matching kernels with[
I 0
i←i(x1, τ, ν) I 0

ī←ī(x2, τ, ν) S
0
īi(τ, ν)

]
Q
= (Qτ̄)−2F

0
īi
(τ) I 0

i←i(x1, τ) I
0
ī←ī(x2, τ)

(6.32)

such that the relation for the remainder functions in Eq. (6.20) becomes

W 0
i←i(x1, τ) W

0
ī←ī(x2, τ) W

S,0
i (τ) = I 0

i←i(x1, τ) I
0
ī←ī(x2, τ) . (6.33)

Based on the decompositions in Eq. (6.17), we are able to propose a general
ansatz for the remainder functions with i ∈ {q, g}

W 0
i←i(x, τ) = δ(1− x) +

(
Zαsαs
4π

)
(µτ̄)2εW

(1)
i←i(x) +

(
Zαsαs
4π

)2

(µτ̄)4εW
(2)
i←i(x)

+O(α3
s) (6.34)

with the NLO

W
0,(1)
i←i (x) =

h02
ε2

+
h01
ε
+ h00 + h0−1ε+ h0−2ε

2 + h−12

α

ε2
+ h−11

α

ε
+ h−10 α + h−1−1αε ,

(6.35)

and NNLO remainder function:

W
0,(2)
i←i (x) =

y04
ε4

+
y03
ε3

+
y02
ε2

+
y01
ε
+ y00 +

z04
ε4

+
z03
ε3

+
z02
ε2

+
z01
ε
+ z00 −

h−13 ⊗x h11
ε4

− h−12 ⊗x h11
ε3

− h−11 ⊗x h11
ε2

− h−12 ⊗x h10
ε2

−
h−13 ⊗x h1−1

ε2
− h−10 ⊗x h11

ε

− h−11 ⊗x h10
ε

−
h−12 ⊗x h1−1

ε
−
h−13 ⊗x h1−2

ε
. (6.36)
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Notice that the mixing terms appear here in order to account for the mixing
of the 1/α-poles from the NLO anomaly coefficient F 0

īi and the O(α) con-
tributions from the NLO remainder function W 0

i←i(x). In the SCET-I case,
these mixing terms would not occur and since there is no distinction between
RV and RR contributions necessary, we would obtain the ansatz from Eq.
(6.1). The same ansatz holds for the anti-collinear beam function and the
soft function, albeit the coefficients for the collinear and anti-collinear beam
function coincide due to the n− n̄ symmetry.
Furthermore, we can express the refactorised matching kernels in terms of
the collinear remainder function and the soft function from our calculations.
For this, we take Eq. (6.33) and expand both sides in αs. After exploiting
the n− n̄ symmetry between the collinear and anti-collinear expressions, we
get at NLO

I
0,(1)
i←i (x) = W

0,(1)
i←i (x) +

1

2
W

S,0,(1)
i (6.37)

with i ∈ {q, g}, while the corresponding NNLO expression involves more
mixing terms

I
0,(2)
i←i (x) = W

(2)
i←i(x) +

1

2
W

S,0,(2)
i +

1

2
W

0,(1)
i←i (x)W

S,0,(1)
i − 1

8

[
W

S,0,(1)
i

]2
.

(6.38)

Note that the case i = q̄ is related to i = q by charge-conjugation invariance.
The remaining step is to relate the bare refactorised matching kernel to the
renormalised refactorised matching kernel via Eq. (6.30). At NLO, we obtain

I
(1)
i←i(x, µ) = I

0,(1)
i←i (x, τ̄) + Z̃

(1)
i;i←i(x) , (6.39)

while the corresponding NNLO expression reads

I
(2)
i←i(x, τ, µ) = I

0,(2)
i←i (x, µ) + Z̃

(2)
i←i(x) +

∑
k=q,g,q̄

∫ 1

x

dz

z
I
0,(1)
i←k

(x
z
, τ̄ , µ

)
Z̃

(1)
i;k←i(z) .

(6.40)

After inserting all insights, the extraction of the renormalised refactorised
matching kernels becomes apparent. For the diagonal channels, we can ex-
press the cusp and non-cusp anomalous dimensions in terms of the NLO as
well as NNLO coefficients in the bare remainder functions. Similar to the
RGE solution in Eq. (6.9), we can go back to Eqs. (6.11) as well as (6.14)
and set f(n) = 1

2
and g(n) = 2. In the following chapters, we extract these

quantities for several observables to prove that we can indeed reproduce the
literature values. But as we have stressed several times before, this provides
rather a check of our framework than a new prediction.

Off-diagonal channels

We can proceed similarly to extract the refactorised matching kernels for the
off-diagonal channels. For these channels, we start from Eq. (6.16) with one
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diagonal and off-diagonal channel[
I 0
i←j(x1, τ, ν) I 0

ī←ī(x2, τ, ν) S
0
īi(τ, ν)

]
Q

= (Qτ̄)−2F
0
īi
(τ,µ) I 0

i←j(x1, τ) I
0
ī←ī(x2, τ) . (6.41)

From Eq. (6.41), we can read off that we leave the index j 6= i open and
set k = ī. The reason for this modification lies in the expansion of the
off-diagonal matching kernel in αs. While the leading contribution to the
diagonal matching kernels and the soft function is of O(1), the contribution
to the off-diagonal matching kernels with j 6= i reads

I 0
i←j(x1, τ, ν) =

αs
4π
I 0,(1)
i←j (x1, τ, ν) +

(
αs
4π

)2

I 0,(2)
i←j (x1, τ, ν) +O

(
α3
s

)
.

(6.42)

In order to extract the refactorised matching kernel I 0
i←j(x) to O(α2

s), we
have to combine the off-diagonal matching kernel I 0

i←j(x1) with the diagonal
kernel I 0

ī←ī(x2). Combining two off-diagonal matching kernels would only
allow for the extraction of the NLO contribution at O(α2

s).
The ansatz for this remainder function is slightly different from Eq. (6.36)

W
0,(1)
i←j (x) =

h02
ε2

+
h01
ε
+ h00 + h0−1ε+ h0−2ε

2 ,

W
0,(2)
i←j (x) =

y04
ε4

+
y03
ε3

+
y02
ε2

+
y01
ε
+ y00 +

z04
ε4

+
z03
ε3

+
z02
ε2

+
z01
ε
+ z00 −

h−13 ⊗x h̄11
ε4

− h−12 ⊗x h̄11
ε3

− h−11 ⊗x h̄11
ε2

− h−12 ⊗x h̄10
ε2

−
h−13 ⊗x h̄1−1

ε2

− h−10 ⊗x h̄11
ε

− h−11 ⊗x h̄10
ε

−
h−12 ⊗x h̄1−1

ε
−
h−13 ⊗x h̄1−2

ε
. (6.43)

In this particular case, the mixing terms connect coefficients from the collinear
and anti-collinear beam function, which coincide in our approach due to the
n− n̄-symmetry. The coefficients of the anti-collinear beam function are de-
noted by the bar symbol.
In the off-diagonal case, the construction of the NNLO remainder function
is not as simple as in Eq. (6.17) for the diagonal function, where we can
derive the expression for the remainder function for each sector individually.
The reason lies in the fact that the leading order in the off-diagonal case is
O(αs). It becomes necessary at this point to consider the complete product
in Eq. (6.41) for the derivation of Eq. (6.43). Then, we see that the countert-
erms in Eq. (6.43) in form of a product of NLO collinear and anti-collinear
beam function coefficients need to be naturally inserted to account for the
combination of 1/α-poles from the anomaly exponent, which occur in the
decomposition of I 0

ī←ī, with O(αs) terms from the remainder function of the
anti-collinear beam function.
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Similar to Eq. (6.20), it is possible to relate the refactorised matching kernels
to the remainder function at NLO and NNLO

I
0,(1)
i←j (x, τ) = W

0,(1)
i←j (x, τ)

I
0,(2)
i←j (x, τ) = W

0,(2)
i←j (x, τ) +

1

2
W

0,(1)
i←j (x, τ)W

S,0,(1)
i (τ) . (6.44)

Notice that we can not make use of the off-diagonal channels to extract the
NNLO anomaly coefficient to O(α2

s), since the leading order of this coefficient
is αs here. Renormalisation for the off-diagonal channels works according to
Eq. (6.30) such that we obtain the relations

I
(1)
i←j(x, τ, µ) = I

0,(1)
i←j (x, τ) + Z̃

(1)
i;i←j(x) , (6.45)

I
(2)
i←j(x) = I

0,(2)
i←j (x, µ) + Z̃

(2)
i←j(x) +

∑
k=q,g,q̄

∫ 1

x

dz

z
I

0,(1)
i←k

(x
z
, τ, µ

)
Z̃

(1)
i;k←j(z) .

(6.46)

for i 6= j.
Notice that the matching kernel Iq←q̄(x) starts to contribute at order O(α2

s)

and therefore I (1)
q←q̄(x) = 0. As a consequence, the third term in Eq. (6.46)

vanishes. Additionally, the NLO kernels I(1)g←q(x) and I
(1)
g←q̄(x) are equal due

to the C-invariance of QCD.

6.2.2 Renormalisation in N-space
For completeness, we also show the relevant relations for renormalisation
in N -space. The collinear anomaly relation from Eq. (6.16) gets slightly
modified[
Î 0
i←j(N1, τ, ν) Î 0

ī←k(N2, τ, ν) S0
īi(τ̄ , ν)

]
Q

= (Qτ̄)−2F
0
īi
(τ) Î 0

i←j(N1, τ) Î
0
ī←k(N2, τ) . (6.47)

Instead of the convolution variables x1,2, the matching kernels depend now
on the Mellin parameters N1,2, which we have introduced via the Mellin
transformation in Eq. (3.9). Moreover, we also see, as we intuitively expect,
that the collinear and anti-collinear matching kernels are still related by the
n − n̄-symmetry, thus the additional Mellin transformation does not affect
this symmetry. Quantities with a hat denote again that they belong to N -
space.
Similar to the SCET-I case, we can extract all expressions and relations for
the SCET-II renormalisation from our discussion in x-space after performing
a Mellin transformation. According to Eq. (6.15), convolutions in x between
two terms turn into a product in Mellin space.





Chapter 7

Numerical
implementation

This chapter is devoted to the numerical implementation of our novel au-
tomated framework for the calculation of beam function matching kernels.
It relies on numerical Monte Carlo integrations, which we perform with the
publicly available library Cuba [144–146]. More specifically, we have im-
plemented the master formulae from chapters 4 and 5 into the public code
pySecDec [147–149], which performs the expansions in the various regula-
tors and provides an interface to the Cuba library. In order to improve the
numerical convergence and to obtain reliable uncertainty estimates, we have
added a few further refinements that will be described in this chapter. But
before we come to this part, we give a short introduction to the program
pySecDec.

7.1 pySecDec
pySecDec is the newer version of the original program SecDec [141, 150,
151]. SecDec was originally designed for the factorisation and evaluation
of parameter and multi-loop integrals based on sector decomposition of the
integrands. In general, the workflow is implemented in a hybrid format be-
tween python and C++. The starting point of our implementation consists
in providing the master formulae for each sector in python1. This input is
then further processed with FORM [152–154] to produce optimised C++ func-
tions, which can subsequently be integrated with the numerical integrator
Cuba. Within the Cuba library, we can choose between several integration
methods. The most prominent ones are the Vegas, as well as the Divonne,
routine, which mainly differ in their strategy to perform variance reduction.
In figure 7.1, we visualise the workflow of pySecDec. General inputs into
pySecDec are either loop integrals or parameter integrals. The next step in
the pySecDec framework is connected to the parameterisation of loop inte-

1Notice that there is a caveat in this implementation, which we solve later in section
7.2.3. It is connected to the physical parameterisation from Eq. (5.23) in our master
formulae.

99
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grals, which is not necessary in our case since we only consider parameter
integrals. After that, pySecDec takes the input from parameter integrals or
the parameterised loop integrals to perform sector decomposition in order
to disentangle overlapping singularities and to obtain completely factorised
singularities. This step also becomes obsolete in our approach, since we
have already obtained fully factorised divergences in each sector by using the
methods described in chapter 5 in Mathematica. Therefore, the expressions
we implement in the SCET-I case are schematically of the form

I({xi}) = Πi x
−1+aiε
i R({xi}) (7.1)

with integration on a multi-dimensional unit hypercube in the variables {xi}.
In the SCET-II case, we have

I({xi}) = Πi x
−1+aiε+biα
i R({xi}) , (7.2)

where some of the variables ai may be zero, which requires the rapidity
regulator α to make the integral well-defined. In the above expression, we
have in fact assumed that all divergences arise in the limit xi → 0, while
the function R({xi}) is finite and non-zero in this limit. The next step in
the workflow, namely the contour deformation, is not relevant, because we
only evaluate parameter integrals and we can immediately proceed to step 5,
which corresponds to the substraction of the poles. It aims to isolate poles
in the regulators ε or α with the help of integration by parts. In the general
case

I({xi}) = Πi x
a+aiε
i R({xi}) (7.3)

or

I({xi}) = Πi x
a+aiε+biα
i R({xi}) , (7.4)

partial integrations need to be employed for |a| > 1. However, we only
encounter the case a = −1 in our setup, therefore we can also skip this
step. Besides, we already implement the singularities in monomial form into
pySecDec , an internal isolation inside the pySecDec framework is therefore
not necessary.
Factorising the singularities explicitly has the advantage that we can expand
the integrand in terms of distributions and perform a Laurent expansion in
the regulators ε and α. The order of expansion is relevant in the SCET-II
case, the α expansion needs to be performed first.
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Figure 7.1: Workflow for the code pySecDec taken from [147].

Furthermore, pySecDec optimises the code for a more efficient numerical in-
tegration in the following step. In older versions, like the 1.4.4 version which
we make use of in our implementation, pySecDec relies on the Cuba library
to integrate these optimised expressions numerically with Monte Carlo tech-
niques. Here, the user has the freedom to choose between different integra-
tors, although we stick to the integrator Vegas. In the last step, pySecDec
provides the result of the numerical integration in form of a Laurent expan-
sion in the regulators ε and α. We take these bare results and perform the
renormalisation subsequently based on our discussion in chapter 6.

7.2 Error estimation
In this section, we discuss methods to quantify the uncertainties of our numer-
ical implementation. This topic is of importance in order to obtain reliable
and well-defined results and it provides information regarding the feasibility
as well as competitiveness compared to direct analytical or semi-numerical
calculations. For this, we investigate the basics of Monte Carlo integrations
first and study the uncertainty estimates based on optimisation techniques
like importance sampling.

7.2.1 Monte Carlo integration
Monte Carlo (MC) integration is a powerful technique to evaluate integrals
numerically by treating the integrals as discrete sums over a large number of
sampling points. While there exist many different MC algorithms, they all
share the same characteristics [155]:
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• The integrand does not need to be smooth or even continuous. In
particular, step functions or other irregular functional dependencies do
not pose any problems.

• The convergence rate of the integrals does not depend on their dimen-
sion per integration, but solely on the sampling points.

In order for this characteristics to hold and in order to obtain a reason-
able estimate, the number of sampling points should be at least around 106.
Although MC techniques are usually applied for the evaluation of multidi-
mensional integrals, it is sufficient at this stage to work for simplicity with
one-dimensional integrals. Consider for example the integral of the form

I[f ] =

∫
G

dx f(x) . (7.5)

The true value of I[f ] can be estimated by the relation

〈IN [f ]〉p =
1

N

N∑
k=1

f(xk)

p(xk)
, (7.6)

where xk are uniform random points. In Eq. (7.6), we discretise the original
integral for I[f ] by using N random points inside the domain G with nor-
malised probability density p(x) to scan the behaviour of the test function
f(x). For a proper estimate, N should be sufficiently large. The strong law
of large numbers guarantees that in the limit N →∞ we observe

lim
N→∞

〈IN [f ]〉p = I[f ] . (7.7)

However, in most cases we do not know the value for I[f ] and hence its
variance is also unknown. To obtain an estimate for the uncertainty on the
Monte Carlo integration, it is possible to make use of the empirical variance

σ2
N [f ] =

1

N(N − 1)

(
N∑
k=1

(
f(xk)

p(xk)

)2

− 1

N

( N∑
k=1

f(xk)

p(xk)

)2
)2

. (7.8)

If we now increase the number of sampling points N , the variance σ2
N reduces

at the cost of an increasing runtime of the integration. This naive error esti-
mate can be further optimised with certain sampling methods. A prominent
example is used in the Vegas algorithm called importance sampling. We use
this routine for our numerical integrations.

7.2.2 Vegas

The Vegas method is based on calculating the estimate in Eq. (7.6) for the
integral I[f ] M times [155]. In each evaluation, we get an error estimate
σ2
N,i[f ] according to Eq. (7.8). The idea is now to vary the probability

function p(x) such that the uncertainties σ2
N,i[f ] get reduced step by step
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until they are minimised. From a theoretical point of view, the explicit
choice

p(x) =
|f(x)|∫

G
dx|f(x)|

(7.9)

minimises the error σ2
N [f ], meaning that the sampling points are concentrated

in the region where the magnitude is the largest. Vegas evaluates now M
estimates to approximate the integral I[f ] in the best way. In this method,
the integral I[f ] is not just given approximately by Eq. (7.6), but rather by
the cumulative estimate

I[f ] ≈ σ̄2

M∑
i=1

〈IN [f ]〉p,i
σ2
N,i

(7.10)

with

σ̄2 =

[
M∑
i=1

1

σ2
N,i

]−1
. (7.11)

In the first step, the algorithm starts with uniformly distributed random
variables and obtains an approximate estimate 〈IN [f ]〉p,1. The integration
domain is divided into a large number of hypercubes such that the average
number of points per cube is nearly constant. After this first iteration step,
the density p(x) gets modified such that σ2

N,2 < σ2
N,1 in the next iteration. We

proceed M times with the aim that σ2
N,M ≤ σ2

N,M−1 < ... < σ2
N,1. The number

of evaluations N during one iteration step remains constant. This implies
that, due to the change of the probability density, the grid of hypercubes
is narrow in regions with large |f(x)| and therefore samples these regions in
more detail, while other regions get suppressed. In this way, Vegas tries to
find the optimal grid to reduce the variance. This method is called impor-
tance sampling, i.e. depending on the magnitude of the test function f(x),
the algorithm samples these regions with more points. This step is iterated
a fixed number of times, until the parameter χ2 per degree of freedom

χ2/dof = 1

M − 1

M∑
i=1

(
〈IN [f ]〉p,i − 〈IN [f ]〉

)2
σ2
N,i

(7.12)

tends to approximately one. Thus, the estimate 〈IN [f ]〉p becomes reasonably
close to the original expression I[f ].

7.2.3 Computational parameterisation
The previous discussion on the basics of MC integration and importance
sampling methods is helpful to understand why the phase-space parameter-
isations that we have introduced in chapters 4 and 5 are not yet suited for
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numerical evaluations. In particular, problems arise for the angular integra-
tions over the variables tl, tkl, which are of the form(

4x(1− x)
)− 1

2
−ε

with x ∈ {tl, tkl} , (7.13)

and from other terms like y−2ε. Especially the first type of divergences leads
to problems at the both endpoints if we expand the expression in ε(

4x(1− x)
)− 1

2
−ε

=
1√

4x(1− x)

∞∑
n=0

(−ε)n

n!
lnn
[
4x(1− x)

]
(7.14)

and induces square root singularities at x = {0, 1}.
Contrary to that, logarithmic divergences result from the phase-space mea-
sure and become singular in the limit y → 0

y−2ε = 1− 2ε ln(y) +O(ε2) . (7.15)

Both square-root and logarithmic singularities are integrable divergences,
however they potentially cause problems during numerical evaluations. In
regions near singularities, it becomes difficult to sample the integrand which
has an unbounded peak in this area. In particular, square-root divergences
cause a major problem for Monte Carlo integrations based on variance reduc-
tion techniques. This is the case for both the Vegas and Divonne routines,
although Vegas is less affected by this issue. The reason for the stability
of the Vegas algorithm lies in the fact that this routine suppresses phase
space points at endpoints. Only for high precision runs with a large number
of sampling points, the algorithm starts to probe the regions near the end-
points and breaks down due to square-root and logarithmic singularities.
Moreover, variance reduction techniques use the empirical variance to com-
pute an error estimate for the numerical evaluation, which depends on the
underlying probabilistic function p(x) to sample the points and on the num-
ber of evaluation points N . Therefore, the sample variance is always finite,
but the variance of the integral itself is unbounded due to the integrable
singularities. Adaptive integration techniques are based on the assumption
that the variance of the integrand is finite and subsequently use the empirical
variance to reduce the error estimate. Thus, the error estimates are in general
unreliable, since the basic requirement for adaptive integration techniques is
not fulfilled.
We intend to use the Vegas routine for our numerical evaluations, so we need
to find a way to avoid these type of singularities. In principle, we are able to
resolve this issue by appropriate substitutions. For logarithmic singularities,
it is sufficient to perform the following substitution∫ 1

0

dy y−2εf(y) =

∫ 1

0

dy2 y−4εf(y2) = 2

∫ 1

0

dy y1−4εf(y2)

= 2

∫ 1

0

dy f(y2)
(
y − 4εy ln(y) +O(ε2)

)
, (7.16)
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where the function f(y) is a finite test function. We observe that this sub-
stitution leads to a suppression of the form y ln(y). In our specific case, we
use this transformation for the t′5-integration and thus replace t′5 → s25.
Square-root divergences in the variable u, which appears after making use
of the non-linear transformation in Eq. (5.57), can also be removed by the
substitution∫ 1

0

duu−1−2ε (1− u)−
1
2
−εf(u)

= 2

∫ 1

0

dut (1− ut)
[
1− (1− ut)2

]−1−2ε
(1− ut)−1−2εf

(
1− (1− ut)2

)
= 2

∫ 1

0

dut (1− ut)−2εu−1−2εt (2− ut)−1−2εf
(
1− (1− ut)2

)
. (7.17)

Rather than substituting a squared variable, we apply u→ 1−(1−ut)2 here.
We trade the square root divergence at u = 1 for a logarithmic divergence in
ut = 1, which is less problematic for numerical integrations in Vegas. Besides,
in most regions we get additional terms of the form (1 − ut)m with m > 1
from the Jacobian and matrix element such that the logarithmic singularity is
ultimately removed. In the case where numerical integrations are not stable
in one sector, we observe that the transformation u→ 1− (1− u2t )4 removes
the logarithmic divergence completely.
Finally, we turn our attention to the most prominent square root divergence
given in Eq. (7.13). For this type of divergence, we use

tx → 1− (1− s4x)4 x ∈ {l, kl} (7.18)

in order to remove singularities at 0 and 1 for the angular integrations. No-
tice that we also perform this substitution for the angular variable v which
enters due to the non-linear transformation in Eq. (5.57).
With this set of substitutions, we get rid of all problematic square root diver-
gences. We call this parameterisation in the end the computational parame-
terisation as it has no direct physical meaning like the physical parameteri-
sations in Eqs. (5.23), (5.25) or (5.27) and as it is only included to account
for numerical issues during Monte Carlo integrations. Our pySecDec input
in the python files is expressed in terms of this parameterisation instead of
the physical parameterisation.

7.2.4 Error propagation
In this section, we explain how we obtain the final uncertainties of the renor-
malised matching kernels in the SCET-I and -II case. Prior to the discussion
on the numerical implementation, we have discussed the various contribu-
tions, which enter the final result. Besides the NLO and the RV contributions
in chapters 4 and section 5.1 respectively, there are the more complicated
RR contributions, which are characterised by a two-particle final state. This
makes it necessary to perform numerical Monte Carlo integrations to eval-
uate the phase-space integrals. We parameterise the phase space with the
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physical parameterisation from section 5.2.1, which has the advantage that
the singularities in the variable x are immediately factorised. Our N -space
formalism performs an additional Mellin transformation (3.9), which removes
the distributions in x according to Eqs. (5.50) as well as (5.51). However, we
notice that the physical parameterisation suffers from square-root divergences
originating from the angular integrations and logarithmic singularities, which
we need to remove in order to apply MC techniques based on variance re-
duction like importance sampling in the Vegas routine. The computational
parametrisation achieves precisely this goal such that we can obtain numer-
ically reliable error estimates from Cuba. Chapter 8 states all channels and
independent matching kernels which we need to evaluate. We observe three
quark channels, which lead to seven independent kernels which we define ac-
cording to their colour structure, and analogously two gluon channels with
five independent kernels. Each kernel has various sectors, which we need to
combine following the decompositions in chapter 5 for the quark channels or
the decompositions in appendix C for the remaining contributions. Thus,
each of these sectors is independently implemented in our pySecDec frame-
work and provides bare numbers from the numerical integrations, which we
need to combine according to the decompositions. We add the uncertain-
ties from each sector quadratically in Mathematica, since we assume that
the error estimates are uncorrelated and have a Gaussian nature. At this
point it becomes obvious why we aim to have completely factorised singular-
ities in each sector, which we achieve with the methods described in chapter
5. Although pySecDec would be in principle able to compute integrals with
overlapping singularities as well, we see now the advantage of the divergences
in monomial form. Compared to a direct input into pySecDec without any
disentanglement, we observe that it is numerically more stable to remove
overlapping divergences by hand. On top of that, we obtain better error
estimates, while we also reduce the runtime significantly at the cost that we
need to implement more sectors. Nevertheless, runtime reduction and better
numerics support our framework.
This procedure yields the uncertainties on the level of the bare matching
kernels in (6.1) and (6.36). But the final expression for the matching kernels
consists of NLO and RV contributions as well. In our framework for both
x- and N -space, we calculate those terms fully analytically for the observ-
ables under investigation. Therefore, these coefficients do not represent a
new source of uncertainties. However we notice that, especially for the N -
space formalism, we can evaluate these contributions also numerically, which
provides a useful check of the analytic computation. But if we consider these
coefficients from the numerical evaluations, we see that they increase the
errors up to 50% due to the large uncertainties stemming from the RV con-
tributions. Using the analytic results instead of the numerical estimates is
thus desirable.
In order to obtain the renormalised matching kernels, we need to combine
these various contributions during the renormalisation procedure. For in-
stance, the error propagation for the anomaly coefficient d i2 in Eq. (6.26)
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works in the following way

σd i
2
=2 ·

[
σ2
y10
+

1

4
σ2
z10
+ σ2

h0−1

(
h11
)2

+
(
h0−1
)2
σ2
h11

+ σ2
h00

(
h10
)2

+
(
h00
)2
σ2
h10

+ σ2
h01

(
h1−1
)2

+
(
h01
)2
σ2
h1−1

+ σ2
h02

(
h1−2
)2

+
(
h02
)2
σ2
h1−2

+
β2
0

4
σ2
h1−1

] 1
2

.

(7.19)
In our discussion, we are able to extract the NLO and RV coefficients com-
pletely analytically, hence they do not contribute. As a consequence, the
error on the RR coefficients y directly propagates to the anomaly coefficient
d i2. This observation holds for all expressions in the off-diagonal channels.
But we see that the diagonal channels contain another source of uncertainties
due to the contributions from the soft functions in Eqs. (6.16) and (6.47).
These coefficients are provided by SoftSERVE and introduce uncertainties,
in particular for the finite matching kernels. The errors on the NLO and RV
coefficients are in general negligible, while the errors on the RR contribution
become sizeable.
Notice that the level of precision in the individual sectors lies around 0.1% to
0.2% for our high precision setup, but during the combination of all sectors
the total uncertainty tends to become as large as 1%. But we also observe for
many observables large cancellations of RR and RV contributions such that
these combined errors become sizeable and exceed the sub per mille level,
although we manage to maintain this level of precision in each sector of the
RR contributions individually. This is one disadvantage of introducing many
sectors. Uncertainties seem to be overestimated since the central values from
our computation tend to be in very good agreement with the results from
the literature.
Furthermore, we notice that in our N -space approach the additional integra-
tion over x increases the runtime of the numerical evaluations and provides
worse central values with larger uncertainties compared to the results in x-
space. Factorisation theorems for most observables are stated in x-space,
hence a calculation in N -space is not necessary. In particular, the inverse
transformation from Mellin space to x-space is additionally non-trivial and
introduces unknown systematic errors. Nevertheless as we have mentioned
before, there exist some observables in the literature which are defined in
Mellin space and where our setup is useful.
But the x-space approach comes with its own complications, especially the
grid contribution. This contribution is problematic, as it can be seen from
Eq. (5.53). We substract from the complicated function I(a, b, x, ...) the
function at x = 1 rendering this difference finite in the limit x → 1. We
implement this exactly in our framework in order to guarantee that large
contributions cancel internally. This works from the numerical perspective
quite well. However, we encounter a different critical behaviour at the end-
point x→ 0. Here, there occur logarithmic divergences in x in every colour
structure, which result from the factor x

4nε
n+1

+2α. A similar behaviour is also
possible for the limit x→ 1, which is induced by the NLO splitting functions
during renormalisation. In order to capture the correct behaviour at these
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points, a larger number of sampling points is required. Numerical integra-
tions in the direct vicinity of x = 0 become unreliable and need a careful
study. This aspect will be more important when it comes to the implemen-
tation of this approach into a novel standalone C++ code, which is beyond
the scope of this work.



Chapter 8

Results

In this chapter, we collect all results obtained with the outlined automated
framework to compute beam function matching kernels both in momentum
and Mellin space. Specifically, we consider transverse-momentum (pT ) re-
summation, jet-veto resummation, the hadron collider event shape beam
thrust and angularities in deep inelastic scattering. pT -resummation and
beam thrust play a special role in this context, because analytic results are
known in this case and hence they provide a useful test of the SCET-II and
SCET-I setup, respectively. In contrast to that our results for jet-veto re-
summation and DIS angularities are new [122].
For the characterisation of the different renormalised matching kernels, we
follow the notation from chapter 6. At NLO, we encounter four different
channels, which we denote by I (1)

i←j(x). In the NNLO case, there are many
different channels containing different colour structures. We separate the
quark matching kernels based on the various colour structures and follow for
this the notation from [122]:

I (2)
q←q(x) = C 2

F I (2,CF )
q←q (x) + CFCA I (2,CA)

q←q (x) + CFTFnf I
(2,nf )
q←q (x)

+ CFTF I (2,TF )
q←q (x) ,

I (2)
q←g(x) = CFTF I (2,CF )

q←g (x) + CATF I (2,CA)
q←g (x) ,

I (2)
q←q̄(x) = CF (CA − 2CF ) I (2,CAF )

q←q̄ (x) + CFTF I (2,TF )
q←q (x) ,

I (2)
q←q′(x) = I

(2)
q←q̄′(x) = CFTF I (2,TF )

q←q (x) . (8.1)
The notation q′ denotes a quark with different flavour than the quark q.
Charge-conjugation invariance reduces the number of independent matching
kernels as well. We also observe that some matching kernels can be ex-
pressed in terms of contributions, which we already computed for another
kernel, leaving us with seven independent contributions that we need to cal-
culate.
For the gluon channels at NNLO, we can state a similar decomposition ac-
cording to different colour structures:

I (2)
g←q(x) =C 2

F I (2,CF )
g←q (x) + CFCA I (2,CA)

g←q (x) + CFTFnf I
(2,nf )
g←q (x)

I (2)
g←g(x) =C 2

A I (2,CA)
g←g (x) + CATFnf I

(2,CAnf )
g←g (x) + CFTFnf I

(2,CFnf )
g←g (x) .

(8.2)

109



110 CHAPTER 8. RESULTS

This decomposition also holds for the refactorised renormalised matching
kernels I (2)

i←j(x) in the SCET-II case. For our Mellin space framework, we
replace each expression in Eqs. (8.1) and (8.2) by the corresponding Mellin
transformed N -dependent functions. Before we study the individual observ-
ables, it is convenient to introduce the decomposition into distributions and
the remainder, which we call grid, in our x-space approach. For the diagonal
q → q channel, we perform the decomposition

I (2,y)
q←q (x) = c q−1 δ(1− x) + c q0

[
1

1− x

]
+

+ c q1

[
ln(1− x)
1− x

]
+

+ c q2

[
ln2(1− x)
1− x

]
+

+ c q3

[
ln3(1− x)
1− x

]
+

+ I (2,y),Grid
q←q (x)

(8.3)

with y ∈ {nf , TF , CF , CA} and for the diagonal gluon channel, we decompose
similarly

I (2,y)
g←g (x) = c g−1 δ(1− x) + c g0

[
1

1− x

]
+

+ c g1

[
ln(1− x)
1− x

]
+

+ c g2

[
ln2(1− x)
1− x

]
+

+ c g3

[
ln3(1− x)
1− x

]
+

+ I (2,y),Grid
g←g (x)

(8.4)

where now y ∈ {CFnf , CAnf , CA}. The off-diagonal channels do not contain
a singularity in (1 − x) such that we only obtain a grid contribution in this
case. Therefore, we can identify

I (2,y)
q←g (x) = I (2,y),Grid

q←g (x) , y ∈ {CF , CA} (8.5)
I (2,y)
g←q (x) = I (2,y),Grid

g←q (x) , y ∈ {nf , CF , CA} , (8.6)
I (2,CAF )
q←q̄ (x) = I (2,CAF ),Grid

q←q̄ (x) . (8.7)

In order to obtain the corresponding SCET-II relations, we need to replace
the matching kernels in Eqs. (8.1) to (8.7) by the refactorised matching
kernels from chapter 6.
As we have discussed earlier in section 3.1, the coefficients in front of the
distributions are numbers and thus independent of x, while the whole x-
dependence is contained in the grid contribution. For our N -space setup, it
is not necessary to perform such a decomposition since we integrate over the
singularity in x and transform all distributions into regular functions in the
Mellin parameter N .
To conclude our general considerations here, we state the decompositions
for the anomaly coefficients d i2 into different colour structures here. For the
NNLO anomaly coefficient, we perform the decomposition

d q2 = d
nf

2 CFTFnf + dCF
2 C 2

F + dCA
2 CFCA ,

d g2 = d
nf

2 CATFnf + dCA
2 C 2

A , (8.8)
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for the quark and gluon channel, respectively. At this point, we notice that
these expressions are related via Casimir scaling. Casimir scaling is a prop-
erty which originates from the similar structure of quark and gluon soft func-
tions and allows to extract the gluon soft function from the quark soft func-
tion by replacing CF → CA. Therefore, the quark channel colour factors
C 2
F and CFCA are combined to yield C 2

A, while the CFTFnf structure in the
quark channel becomes CATFnf for the gluon channel.
Casimir scaling is only applicable for soft function matrix elements, which
are in general expressed in terms of Wilson lines. There, it becomes immedi-
ately obvious that replacing a quark Wilson line by a gluon Wilson line only
amounts for the change of the Casimir operator. In the beam function case,
we can exploit this scaling relation whenever we work in the threshold limit
x→ 1, which describes the physical situation that the complete energy goes
into the hard interaction and the radiation becomes soft. Hence, the matrix
elements simplify to the soft matrix elements for each colour structure, for
which we know the replacement is valid. Due to the decompositions from Eqs.
(8.3) and (8.4), we see that the coefficients c q,g−1,0,1,2,3 are defined in the limit
x→ 1 and therefore related via Casimir scaling. The same is also true for the
anomaly coefficients d i2 for SCET-II observables. In addition to that we also
use Casimir scaling for the soft function in the collinear anomaly approach.
The quark soft function is provided by SoftSERVE, while we obtain the gluon
soft function via Casimir scaling. An example where Casimir scaling is not
applicable are the quark and gluon anomalous dimensions γ{q,g},B1 , since this
quantity requires the full collinear matrix element for its determination.

8.1 Transverse-momentum resummation
The first observable we are going to present is pT -resummation, which has
been extensively studied in section 2.1. For this observable, the measurement
function is given by:

ωpT ({ki}) = −2i
∑
i

ki,T cos(Θi) . (8.9)

We observe an explicit dependence on the angle Θi in the transverse plane,
since the QCD radiation has to balance the transverse momentum of the
colour-singlet particle, which thus singles out a specific direction in the trans-
verse plane. On top of this, we note that the measurement function is purely
imaginary in this case, which is in conflict with the assumptions specified in
section 3.2. In order to solve this problem, we follow a procedure that was
introduced for the calculation of the Fourier-space soft functions in [48, 49].
To this end, one considers the auxiliary measurement function

ωaux
pT

({ki}) = 2

∣∣∣∣∑
i

ki,T cos(Θi)

∣∣∣∣
for which the requirement ω ≥ 0 is now satisfied. We follow the argumenta-
tion in [48], where the treatment of Fourier-space soft functions is described
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in detail. The same argumentation also holds in the beam function case.
Ultimately, it is possible to compute the measurement from Eq. (8.9) by
taking the absolute value of Eq. (8.9) and multiply it by an additional fac-
tor. According to [48], this factor is cos(πε) in the NLO case and cos(2πε)
for both the RV and RR case.
At NLO, the auxiliary function, which we use from now on to compute pT -
resummation, takes the form

f aux
pT

= 2|1− 2tk| , (8.10)

whereas it is given at NNLO in terms of the variables in Eq. (5.23) by

F aux
pT

= 2

√
a

(a+ b)(1 + ab)
·

∣∣∣∣∣1− 2tl + b ·
(
1− 2t±k

)∣∣∣∣∣ . (8.11)

Notice that the auxiliary observable vanishes for special configurations with

Θi =
π

2
, (8.12)

which corresponds to

tl = t±k =
1

2
(8.13)

in Eq. (8.11). As the measurement function contributes in form of loga-
rithms after expanding in the regulators, this leads to an integrable diver-
gence, which is complicated to treat numerically since it leads to a logarithmic
divergence similar to the one we have encountered in chapter 7. In principle,
it is possible to split the phase space such that the integrable divergences lie
at the endpoints rather than inside the integration region, but this approach
would be observable dependent and not within the idea of our approach.
From the numerical perspective, we make use of the fact that contributions
with F aux

pT
= 0 have zero weight in the phase space. Hence, we can set

F aux
pT

= 1 for these specific points without changing the result.
pT -resummation is an example for a SCET-II observable, therefore we use
the collinear anomaly framework discussed in chapter 6 in order to arrive at
renormalised results. During renormalisation, we can extract the observable-
dependent constants d i1 and d i2 entering the anomaly coefficient Fīi, but also
the non-cusp anomalous dimensions γi,B0 , γi,B1 as well as the refactorised
matching coefficients from chapter 6. For most observables that we en-
counter, the non-cusp anomalous dimensions as well as the anomaly coef-
ficients are known at NNLO and provide a useful check for our computation.
For pT -resummation, the renormalised matching kernels are also known an-
alytically from [78, 79], as we will see in the following.

x-space

We start by stating the results in x-space. At NLO, we can compare the non-
cusp anomalous dimension γi,B0 and the anomaly coefficient d i1 to the results
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d q2 analytic this work

CFTFnf −8.2963 −8.2956(50)

C 2
F 0 0.0009(468)

CFCA −3.7317 −3.6882(526)

d g2 analytic this work

CFTFnf 0 0

CATFnf −8.2963 −8.2970(54)

C 2
A −3.7317 −3.7325(450)

Table 8.1: NNLO anomaly coefficients for the quark and gluon channels. We
take the analytic results from [78, 79]. Notice that we can obtain the gluon
anomaly coefficient from the quark anomaly coefficient via Casimir scaling.

γq,B1 analytic this work

CFTFnf 11.3946 11.3948(3)

C 2
F −10.6102 −10.6102(432)

CFCA −4.6371 −4.6471(419)

γg,B1 analytic this work

CFTFnf 4 4

CATFnf 7.2882 7.2884(29)

C 2
A −17.1941 −17.1951(15)

Table 8.2: Non-cusp anomalous dimension γi,B1 for the quark and gluon chan-
nel. The analytic results are known from [78, 79].

in the literature, as well as the finite refactorised renormalised matching
kernel for the four different channels. We can extract the NLO quantities
analytically, since they only contain a one-particle final state as discussed in
chapter 4. We find that γq,B0 = −3CF and γg,B0 = −β0 for the q → q and
g → g channel, respectively, as well as d q1 = d g1 = 0. For the refactorised
matching kernels defined in Eq. (6.45), we obtain

I (1)
q←q(x) = 2CF (1− x)− π2

6
CF δ(1− x) , (8.14)

I (1)
q←g(x) = 4TF x(1− x), (8.15)
I (1)
g←q(x) = 2CF x, (8.16)

I (1)
g←g(x) = −

π2

6
CA δ(1− x) . (8.17)

These results are in agreement with the literature [78, 79].
We proceed to the comparison of the NNLO results. Our results for the
NNLO anomaly coefficient d i2 are collected in table 8.1, which are in agree-
ment with the analytic results for both the quark as well as the gluon channel.
Even the uncertainties on the most complicated colour structure, the CFCA-
structure in the diagonal quark channel, are under good control and the
central value is in good agreement with the expected value. The quark and
gluon coefficients are related to each other through Casimir scaling, as we
have discussed in the beginning of this chapter.
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c q−1 analytic this work

CFTFnf 5.1735 5.1740(28)

C 2
F 1.3529 1.3463(749)

CFCA −8.2534 −8.1352(1385)

c g−1 analytic this work

CFTFnf 0 0

CATFnf 5.1735 5.1928(64)

C 2
A −6.9005 −6.9551(761)

Table 8.3: Coefficients c i−1 in front of the δ-distribution in Eqs. (8.3) and
(8.4). These coefficients are again related by Casimir scaling.

c q0 analytic this work

CFTFnf 8.2963 8.2956(50)

C 2
F 0 7 · 10−6

CFCA 3.7317 3.6883(526)

c g0 analytic this work

CFTFnf 0 0

CATFnf 8.2963 8.2970(54)

C 2
A 3.7317 3.7325(450)

Table 8.4: Coefficients c i0 in front of the plus distribution in Eqs. (8.3) and
(8.4). These coefficients are again related by Casimir scaling.

Next, we turn to the NNLO non-cusp anomalous dimension γi,B1 , which is also
analytically known [78, 79] and for completeness given in appendix A. Our
numbers are shown in table 8.2 and we observe perfect agreement within the
uncertainties. Moreover, we extract the x-independent coefficients in front
of the distributions in x in Eqs. (8.3) and (8.4). As the distributions only
occur in the case of explicit divergences in x, they arise only for the diagonal
quark and gluon channels. We show the results for the q → q channel and
the g → g channel in tables 8.3 and 8.4.
It turns out that the coefficients c q,g1 , c q,g2 , c q,g3 vanish, which is a common
feature of every SCET-II observable. The reason is that we only need to
expand the SCET-II case in Eq. (3.6) up to O(α) since the highest pos-
sible pole in the regulator α is 1/α2. Furthermore, the deviations of the
central values show the same pattern as for the anomaly coefficients and the
non-cusp anomalous dimensions and therefore agree with the analytic results
within one standard deviation. But besides the CFCA structure, other colour
structures show larger uncertainties as well since we expand the integrand
to higher orders in the regulator. Note also that we are again able to relate
both channels via Casimir scaling, i.e. it is sufficient to compute the quark
channel to this order and extract the values for the gluon channels by replac-
ing CF → CA in the quark channel results. In addition to that we observe a
direct relation between the anomaly coefficient d i2 and the coefficient in front
of the plus distribution c i0. These two coefficients only differ by a global
minus sign. This is related to the construction of these contributions. For
both the d i2 and c i0 coefficients, the same O(α0)-terms multiply the singular-
ity (1 − x)−1−2α, which provides after an expansion in α the d i2 coefficient
from the first term and the c 0i coefficient from the second term in the expres-
sion. This relations also hold for the other observables which we consider in
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Figure 8.1: Grid contribution to the refactorised matching kernels for all
quark channels for the observable transverse-momentum resummation in x-
space. The dots indicate numbers from our numerical approach, the solid
lines the analytical expressions taken from [78, 79]. Uncertainties on our
computation are included, but not visible.
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Figure 8.2: This plot shows the same as in figure 8.1 for the gluon channels.

this work. Notice that the values in γi,B1 are not related via Casimir scaling,
because we need the full collinear matrix element in this case.
Finally, we plot the grid contribution of the NNLO refactorised matching
kernels in the conventions of Eqs. (8.3) and (8.4). The results are also ana-
lytically known in this case [78, 79]. Therefore, this observable constitutes a
useful check of our approach. The dots indicate the prediction obtained with
our framework, which lie perfectly on the solid lines provided by the analytic
expressions from [78, 79]. We include the uncertainties in the plots, albeit
they are not visible.
This observable proves that our approach is able to reproduce the known
results for pT -resummation. Notice that the low and high x values provide
critical limits, which need to be tested in general more carefully with a finer
grid. This is left for a more dedicated study of specific observables in the fu-
ture; the goal at this stage is to prove the applicability of our setup. Figures
8.1 and 8.2 reproduce this behaviour, since the analytic predictions illus-
trated by the solid lines diverge for each colour structure in the limit x→ 0
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and also for some structures for x→ 1. As we have already pointed out, this
is related to logarithms in the variable x occurring in the expressions of the
master formula in Eq. (5.49) after expansion in α and ε and to diverging
factors in the limit x → 1 originating from prefactors inside the splitting
function.
From the numerical perspective, this observable is the most expensive ob-
servable that we consider in this work because of the angular dependence
which allows for zeroes inside the integration domain. However, the very
good agreement with the analytic results underlines the precision and appli-
cability of our approach.

N-space

The observable pT -resummation provides also an immediate check for our N -
space formalism. Similar to the x-space results at NLO, we can extract the
non-cusp anomalous dimension γi,B0 and anomaly coefficient d i1 together with
the finite refactorised matching kernels at NLO. While the former can again
be obtained analytically, the refactorised matching kernels are now functions
of the Mellin value N introduced during the Mellin transformation from Eq.
(3.9). We find

Î (1)
q←q(N) =

2CF
N(1 +N)

− π2

6
CF , (8.18)

Î (1)
q←g(N) =

4TF
(N + 1)(N + 2)

, (8.19)

Î (1)
g←q(N) =

2CF
N + 1

, (8.20)

Î (1)
g←g(N) = − π2

6
CA . (8.21)

In principle, the two-loop anomaly coefficient d i2 and non-cusp anomalous
dimension γB1 can be extracted for different Mellin values N . Since we evalu-
ate the beam function for ten different Mellin values, we obtain ten different
estimates for these quantities. We decide to choose the Mellin value N = 12,
because it lies in the middle of our Mellin parameter range and represents
the central values as well as the corresponding uncertainties well. Our results
are shown in tables 8.5 and 8.6. These results agree with the results from the
literature and they are comparable to the numbers we found in the x-space
approach in tables 8.1 and 8.2. We can move on and consider again the
refactorised matching kernels for all partonic channels. As we have already
seen at NLO, they depend now on the Mellin parameter N . Besides that, the
integration over x removes all distributions and a decomposition according
to Eqs. (8.3) and (8.4) is not needed in this case. Our results are displayed in
figure 8.3, where we see that the our computation, illustrated in form of the
dots with uncertainties, agrees again with the analytic results represented by
the solid lines.
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d q2 analytic this work

CFTFnf −8.2963 −8.2932(41)

C 2
F 0 0.0155(389)

CFCA −3.7317 −3.7236(191)

d g2 analytic this work

CFTFnf 0 0

CATFnf −8.2963 −8.2969(68)

C 2
A −3.7317 −3.7287(558)

Table 8.5: NNLO quark and gluon anomaly coefficient d i2. The analytic
results are given in [78, 79].

γq,B1 analytic this work

CFTFnf 11.3946 11.3915(89)

C 2
F −10.6102 −10.5959(420)

CFCA −4.6371 −4.6520(528)

γg,B1 analytic this work

CFTFnf 4 4

CATFnf 7.2882 7.2884(73)

C 2
A −17.1941 −17.1951(579)

Table 8.6: Non-cusp anomalous dimensions γi,B1 for the quark and gluon
channels. Analytic results are extracted from [78, 79].
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Figure 8.3: Refactorised matching kernel for all quark channels (upper row)
and gluon channels (lower row) for the observable transverse-momentum re-
summation in Mellin space. The dots indicate numbers from our numerical
approach, the solid line the analytical expression taken from [78, 79]. Uncer-
tainties on our computation are included, but not visible.
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Furthermore, we find that the critical behaviour for x → 0 in x-space is
mapped onto the small N -range due to the Mellin transformation in Eq.
(3.9). We expect in this limit logarithmic divergences or explicit divergences
of the form 1

x
, which transform under a Mellin transformation like∫ 1

0

dx
lnb(x)

xa
xN−1 =

(−1)bb!
(N − a)1+b

. (8.22)

For N → 1, the analytic predictions start to diverge if there appears a factor
of 1

x
in x-space, but the large N limit seems to be under good control, at

least for the parameter range investigated in this work.
However, we notice another interesting fact regarding the numerics. The
integration over x has a direct impact on the numerical accuracy of our
approach. This is already visible in the values for d i2 and γi,B1 , especially for
the NNLO non-cusp quark anomalous dimension. While the central values
in x-space, in particular for the C 2

F colour structure, are particularly close to
the analytic result, there is a slight deviation in N -space, which is still well
within the uncertainties. The same observation applies for the refactorised
matching kernels. This is remarkable, especially in the context that the
number of evaluations we used in our Mellin space approach is 2.5 ·108 points
instead of the 108 points in momentum space. But performing more precise
numerical integrations in order to achieve the same level of agreement as for
the x-space results might lead to a breakdown of the integration with the
Vegas routine, as has been discussed in chapter 7. In this case, it might
become necessary to use another numerical integrator like Divonne, which is
also implemented in SoftSERVE [48, 49].

8.2 Jet-veto resummation
The next observable we consider is jet-veto resummation. Jet vetoes are of-
ten applied in LHC analyses to suppress backgrounds. In order to extract
for instance the H → W+W− signal, one imposes a veto on additional jets
to suppress the background from tt̄-production that also end up in a W+W−

pair and two additional b-jets.
Due to its phenomenological importance, this jet-veto resummation has been
studied in many physical applications, ranging from Drell-Yan and Higgs
production to the resummation of arbitrary electroweak final states in [156–
161], specific analyses of associated Higgs production [162, 163], gauge bo-
son pair production [164–166] to beyond-standard-model computations [167–
170]. With the methods developed in this work, it is possible to extend the re-
summation to NNLL′ accuracy. In fact, our calculation in [122] has provided
the NNLO refactorised matching kernels for the quark channels in Mellin
space for the first time, while they were published in momentum space for
all channels in [171]. The current state-of-the-art for the prediction of the
jet-vetoed Higgs boson includes a resummation of logarithms up to NNLL
matched onto N3LO fixed order computations [172].
The general form of the measurement function is complicated as it depends
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on the details of the jet algorithm, which clusters the particles according
to a pair-wise recombination scheme. For one emission, the veto is directly
imposed on this emission and one has

M1(τ ; k) = Θ(pveto
T − kT ) . (8.23)

By taking a Laplace transform with respect to the variable pveto
T , we can bring

this measurement function into the form in Eq. (4.9) with n = 0, f(Θk) = 1
and an additional factor 1/τ . The method for inverting the Laplace transform
before renormalisation was described in [49] and it amounts to multiplying
the NLO computation by a factor e2εγE

Γ(1−2ε) and the NNLO contribution by
e4εγE

Γ(1−4ε) . These factors are, in fact, slightly different compared to the ones
in [49], because the analytic regulator does not include any τ -dependence in
the beam function case. Therefore, we can take the factors from [49] and set
α = 0 in order to obtain our correction factors. By including these factors,
we are able to use our approach without any further restrictions.
At NNLO, the jet algorithm distinguishes between regions in which the two
emissions are clustered together and those where they are treated separately.
The distinction depends on the distance measure

∆2 =
1

4
ln2

(
l+k−
l−k+

)
+Θ2

lk (8.24)

in terms of which the measurement becomes

M2(τ ; k, l) = Θ(pveto
T − ωveto(k, l)) (8.25)

with

ωveto(k, l) = Θ(∆−R)max
(
kT , lT

)
+Θ(R−∆)

∣∣∣~kT +~lT

∣∣∣, .

Depending on the size of the distance measure, the algorithm identifies the
particle with the largest transverse momentum as an independent jet if ∆ >
R or groups them together into a single jet if the measure is less than the jet
radius R. In terms of the parameterisation from Eq. (5.23), the measurement
function then becomes

Fveto(a, b, x12, t
±
k , tl, tkl) =

√
a

(a+ b)(1 + ab)

[√
(1 + b)2 − 4btkl

×Θ
(
R−∆(a, tkl)

)
+Θ

(
∆(a, tkl)−R

)]
, (8.26)

where ∆(a, tkl) =
√
ln2(a) + arccos2(1− 2tkl), which we obtain from Eq.

(8.24) after inserting the physical parameterisation from Eq. (5.23). We
can now go on and extract the same quantities as for the observable pT -
resummation.
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x-space

We start our discussion again with the NLO non-cusp anomalous dimension
γi,B0 and the NLO anomaly coefficient d i1, which we can extract analytically.
In particular, we find γq,B0 = −3CF , γg,B0 = −β0 and d i1 = 0 as before for the
quark (gluon) channel. For the refactorised matching kernels at NLO, we get

I (1)
q←q(x) = 2CF (1− x)− π2

6
CF δ(1− x) , (8.27)

I (1)
q←g(x) = 4TF x(1− x), (8.28)
I (1)
g←q(x) = 2CF x, (8.29)

I (1)
g←g(x) = −

π2

6
CA δ(1− x) , (8.30)

which is in agreement with [160] and the same result that we found for
pT -resummation. Due to the fact that the jet algorithm needs at least two
particles to work, the NLO results do not depend on the jet radius R. This de-
pendence enters at NNLO. The anomaly coefficient d i2 at NNLO is a function
of this radius R and we can compare our computation to the semi-analytic
results from [160] for the three values of the jet radius R = {0.2, 0.5, 0.8}.
We perform this analysis in more detail for the N -space results and explicitly
show that our computation for different jet radii R captures the behaviour
of the semi-analytic results correctly. The same observation holds for the
NNLO non-cusp anomalous dimension γi,B1 , which is R-independent. We
state its value later in our N -space analysis.
Furthermore, we can investigate the x-independent coefficients in front of
the distributions defined in Eqs. (8.3) and (8.4). As for pT -resummation, the
coefficients c q,g1 , c q,g2 , c q,g3 vanish. Our result for the remaining coefficients are
shown in tables 8.7 to 8.10 for the different values of the jet radius. Again,
we observe that these coefficients for the diagonal quark and gluon channels
are related to each other by Casimir scaling.

c q−1
R = 0.2 R = 0.5 R = 0.8

[171, 173] this work [171, 173] this work [171, 173] this work

CFTFnf 0.3161 0.3112(140) 1.3849 1.3807(135) 1.9419 1.9386(132)

C 2
F 1.5462 1.5463(425) 2.5921 2.5932(425) 4.6614 4.6617(427)

CFCA −24.8692 −24.8629(1093) −19.5692 −19.5651(1110) −16.9469 −16.9474(1106)

Table 8.7: Coefficients of the δ-distribution for the three different colour
structures of the diagonal quark channel. We extract these coefficients for
three different values of the jet radius R = {0.2, 0.5, 0.8}.
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c g−1
R = 0.2 R = 0.5 R = 0.8

[171, 173] this work [171, 173] this work [171, 173] this work

CFTFnf 0 0 0 0 0 0

CATFnf 0.3161 0.3100(123) 1.3849 1.3817(59) 1.9419 1.9387(122)

C 2
A −23.3230 −23.3174(910) −16.9771 −16.9812(914) −12.2855 −12.2876(915)

Table 8.8: We show the same as in table 8.7 for the three colour structures
of the diagonal gluon channel.

c q0
R = 0.2 R = 0.5 R = 0.8

[171, 173] this work [171, 173] this work [171, 173] this work

CFTFnf 16.4363 16.4362(130) 11.4000 11.4013(121) 9.0121 9.0118(114)

C 2
F −1.0496 −1.0496(211) −6.4547 −6.4546(212) −16.0249 −16.0254(212)

CFCA 80.0687 80.0692(780) 49.6549 49.6546(780) 36.2145 36.2156(773)

Table 8.9: Coefficients in front of the plus distribution for the three different
colour structures of the diagonal quark channel. We extract these coefficients
for three different values of the jet radius R = {0.2, 0.5, 0.8}.

c g
0

R = 0.2 R = 0.5 R = 0.8

[171, 173] this work [171, 173] this work [171, 173] this work

CFTFnf 0 0 0 0 0 0

CATFnf 16.4363 16.4376(105) 11.4000 11.4001(56) 9.0121 9.0124(99)

C 2
A 79.0192 79.0202(596) 43.2002 43.2014(594) 20.1896 20.1909(597)

Table 8.10: The same as in table 8.9 for the three colour structures of the
diagonal gluon channel.

Finally, we can show the contributions to the grid for the refactorised match-
ing kernels and compare it to the results in [171, 173]. In these works, the
authors have followed a different approach since they have computed the dif-
ference between the pT -veto observable and a reference observable that can
be obtained from the transverse-momentum resummation results in the pre-
vious section. Moreover, the authors of [171, 173] used a different rapidity
regulator and it is therefore interesting to validate these results which ap-
peared only recently.
Similarly to the previous discussion, we observe again the critical behaviour
at the endpoints, in particular for the limit x→ 0. Nevertheless, the results
from both works agree very well, since the central values coincide within the
uncertainties of our computation, which are not visible on the scale of the
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plot. We show the plots for the remaining channels in appendix B.1.
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Figure 8.4: Grid for the refactorised renormalised matching kernel for the
colour structures CFTF and CFTFnf for the observable pT -veto in x-space.
The large dots indicate numbers from our numerical approach, the small dots
the semi-analytical expressions extracted from [171, 173]. Uncertainties on
our computation are included, but not visible. However, there are no errors
for a direct comparison stated in [171, 173].
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Figure 8.5: We show the same as in figure 8.4 for the colour structures C 2
F

and CFCA of the diagonal quark channel.

N-space

We also consider the jet-veto resummation in our N -space formalism. The
results for the quark channels were in fact published by us in [122] before
[171] appeared. In the following, we present additional values for the jet
radius R = {0.4, 1.0}, which are also commonly used in the literature. First,
we extract the non-cusp anomalous dimension γi,B0 and anomaly coefficient
d i1 together with the refactorised matching kernels at NLO. While we again
find γq,B0 = −3CF , γg,B0 = −β0 and d i1 = 0, the refactorised matching kernels
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are now functions of the Mellin value N . Specifically, we find

Î (1)
q←q(N) =

2CF
N(1 +N)

− π2

6
CF , (8.31)

Î (1)
q←g(N) =

4TF
(N + 1)(N + 2)

, (8.32)

Î (1)
g←q(N) =

2CF
N + 1

, (8.33)

Î (1)
g←g(N) = − π2

6
CA . (8.34)

As we have mentioned in the discussion of our x-space results, we investigate
the anomaly coefficient d i2 and γi,B1 in more detail here. In particular, the
anomaly coefficient d i2 is now R-dependent, therefore we analyse its behaviour
for ten different values of R in figure 8.6. We decompose the quark anomaly
coefficient d q2 and the gluon anomaly coefficient d g2 according to Eq. (8.8).
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Figure 8.6: NNLO anomaly coefficient d i2 for the quark (left) and gluon
(right) channel as a function of the jet radius R. The dots indicate our
computation and the solid lines illustrate the semi-analytic results from [160].
Uncertainties on our calculations are included, but not visible. The anomaly
coefficients are again related to each other via Casimir scaling.

We observe very good agreement for all colour structures. Next, we extract
the NNLO non-cusp anomalous dimension γi,B1 . We expect its value to be the
same as for pT -resummation due to the similar renormalisation procedure.
In accordance with our analysis in 8.1, we choose N = 12 for our extraction
and R = 0.5, although a specification of R is not necessary since the γi,B1 are
independent of the value R.
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γq,B1 analytic this work

CFTFnf 11.3946 11.3948(22)

C 2
F −10.6102 −10.6105(185)

CFCA −4.6371 −4.64397(168)

γg,B1 analytic this work

CFTFnf 4 4

CATFnf 7.2882 7.2879(51)

C 2
A −17.1941 −17.1932(322)

Table 8.11: Non-cusp anomalous dimension γi,B1 for the quark and gluon
channel. We compare the results in our work to the analytic results from
[78, 79].

These quantities agree both very well with the analytic results and values we
found for pT -resummation in table 8.6. Finally, we turn our attention to the
refactorised matching kernels in Mellin space. We show these expressions for
five different values of R for the diagonal quark channel, other channels are
stated in appendix B.2.
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Figure 8.7: Refactorised matching kernels for the four colour structures of
the diagonal quark channel for the observable jet-veto resummation in Mellin
space. The dots indicate numbers from our numerical approach. Uncertain-
ties on our computation are included, but not visible.

Notice that the uncertainties are included in the plots, however they are not
visible here. By verifying that our momentum-space numbers agree with the
numbers from [171, 173], we directly confirm our N -space calculation as well,
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since they only include an additional integration. We have also confirmed
that our numbers for the x- and N -space formalism agree by performing this
additional integration explicitly.

8.3 Beam thrust

As a first SCET-I observable, we are going to analyse the hadronic event-
shape variable beam thrust. The measurement function consists in this case
of the sum of the small light-cone components of the emissions. At NLO,
we identify that n = 1 and the measurement function f(tk) = 1 becomes
trivial. The same observation holds at NNLO as well, i.e. we find that n = 1
and F (a, b, x12, t

±
k , tl, tkl) = 1. From a physical point of view, beam thrust

quantifies how the emitted partons are grouped around the beam axis. The
limit ωBT � 1 corresponds to the kinematical configuration where the emit-
ted particles are aligned along the beam axis, while ωBT ∼ 1 illustrates hard
radiation with the order of the hard scale Q emitted perpendicularly to the
beam axis.
Beam thrust is a SCET-I observable and its renormalisation has been dis-
cussed in chapter 6. Due to the particularly simple measurement function,
we are able to extract the NLO matching kernels and the RV contribution
analytically as well.
The expressions for the NLO and NNLO non-cusp anomalous dimensions as
well as the NLO and NNLO refactorised matching kernels are known an-
alytically [124, 125]. However, we need to perform an additional Laplace
transformation of these results in order to transform the measurement into
the desired exponential form in Eq. (3.10). We explicitly show the impact
of the Laplace transformation in appendix A.4.

x-space

In analogy to the analysis of the two previous SCET-II observables, we start
by considering the NLO contributions to beam thrust. In our framework,
we are able to extract all relevant quantities at this order analytically. The
diagonal quark and gluon channels allow us to extract the NLO quark and
gluon non-cusp anomalous dimension with γq,B0 = −3CF and γg,B0 = −β0,
respectively. For the refactorised matching kernels, we obtain at NLO

I (1)
q←q(x) = 2CF

(
1− x− 1 + x2

1− x
ln(x) + (1 + x2)

[
ln(1− x)
1− x

]
+

)
, (8.35)

I (1)
q←g(x) = 2TF

(
2x(1− x) +

(
(1− x)2 + x2

)
ln

(
1− x
x

))
, (8.36)

I (1)
g←q(x) = 2CF

(
x+

1

x
·
(
2− (2− x)x

)
ln

(
1− x
x

))
, (8.37)
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I (1)
g←g(x) = − 4CA

(
1− (1− x)x

)2
x

(
ln(x)

1− x
−
[
ln(1− x)
1− x

]
+

)
, (8.38)

which are in agreement with the results from the literature [124, 125, 174].
At NNLO, the non-cusp anomalous dimension is also known at this order
and our results are summarised in table 8.12.

γq,B1 analytic this work

CFTFnf 13.3495 13.3494(117)

C 2
F −10.6102 −10.6102(114)

CFCA 3.2601 3.2599(171)

γg,B1 analytic this work

CFTFnf 4 4

CATFnf 9.2431 9.2432(33)

C 2
A −9.2968 −9.2970(167)

Table 8.12: NNLO non-cusp anomalous dimension γi,B1 . We compare our
results to the analytic results provided in [124, 125].

We observe excellent agreement between the results from the literature [124,
125] and our computation also for SCET-I observables. Finally, we can com-
pare the refactorised matching kernels at NNLO.

c q−1 analytic this work

CFTFnf −1.238 −1.2380(220)

C 2
F −2.165 −2.1647(153)

CFCA −12.732 −12.7313(294)

c g−1 analytic this work

CFTFnf 0 0

CATFnf −1.2379 −1.2379(53)

C 2
A −14.8965 −14.8962(294)

Table 8.13: Coefficients of the δ-distribution for the diagonal quark and gluon
matching kernels in Eqs. (8.3) and (8.4). We compare our computation to
the analytic results from [124, 125]. Additionally, we observe Casimir scaling
between both coefficients.

c q0 analytic this work

CFTFnf 3.9098 3.9098(117)

C 2
F 19.2329 19.2329(114)

CFCA 15.7945 15.7943(172)

c g0 analytic this work

CFTFnf 0 0

CATFnf 3.9098 3.9098(33)

C 2
A 35.0274 35.0273(167)

Table 8.14: We show the same as in table 8.13, but for the distribution[
1

1−x

]
+

.
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c q1 analytic this work

CFTFnf −8.8889 −8.8889(33)

C 2
F −26.3189 −26.3189(81)

CFCA 16.6183 16.6186(89)

c g1 analytic this work

CFTFnf 0 0

CATFnf −8.8889 −8.8889(12)

C 2
A −9.7006 −9.7005(87)

Table 8.15: We show the same as in table 8.14, but for the distribution[
ln(1−x)
1−x

]
+

.

c q2 analytic this work

CFTFnf 2.6667 2.6667(5)

C 2
F 0 0

CFCA −7.3333 −7.3333(15)

c g2 analytic this work

CFTFnf 0 0

CATFnf 2.6667 2.6667(1)

C 2
A −7.3333 −7.3333(15)

Table 8.16: We show the same as in table 8.14, but for the distribution[
ln2(1−x)

1−x

]
+

.

c q3 analytic this work

CFTFnf 0 0

C 2
F 8 8± 10−4

CFCA 0 0

c g3 analytic this work

CFTFnf 0 0

CATFnf 0 0

C 2
A 8 8± 10−4

Table 8.17: We show the same as in table 8.14, but for the distribution[
ln3(1−x)

1−x

]
+

.

Here, we perform the same decomposition as in Eqs. (8.3) and (8.4) for the
diagonal quark and gluon channels, albeit the coefficients c q,g1 , c q,g2 , c q,g3 do
not vanish for SCET-I observables, because we observe poles up to ε−4. Our
results are given in tables 8.13 to 8.17. We see again, similarly to the SCET-
II case, that the coefficients between the diagonal quark and gluon channel
are related to each other via Casimir scaling. The reason is the same as be-
fore: the limit x→ 1 corresponds to the threshold limit in which the matrix
elements satisfy Casimir scaling. Additionally, we see perfect agreement be-
tween the known analytic results and our calculation, which is related to the
fact that the measurement function is particularly simple in this case. This
is also reflected in the grid contributions to the refactorised matching kernels
shown in figures 8.8 and 8.9. Again, our results, indicated by the points,
are in perfect agreement with the analytical computation illustrated by the
solid lines [124, 125]. Notice that the errors on our evaluation are not visible
on these scales. This proves that our setup is also applicable for SCET-I
observables, albeit we have chosen a particular value for the parameter n.
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Figure 8.8: Grid contribution to the refactorised matching kernels for all
quark channels for the observable beam thrust. The dots indicate numbers
from our numerical approach, the solid lines the analytical expression taken
from [124, 125]. Uncertainties on our computation are included, but not
visible.
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Figure 8.9: We show the same as in figure 8.8 for the grid contribution of
the gluon channels.

Next, we perform a similar analysis in N -space in order to test this framework
for SCET-I observables as well.

N-space

In Mellin space, the NLO refactorised matching kernels read

Î (1)
q←q(N) =

CF
3N2(N + 1)

(
π2(N + 1)N2 + 6

(
γEN(γEN + γE + 2) + γE

+ 3
)
N + 6N

(
N(N + 1)ψ(N)2 +

(
2N(γEN + γE + 1) + 1

)
× ψ(N) +N(N + 1)ψ′(N + 1)

)
+ 6

)
, (8.39)

Î (1)
q←g(N) =TF

4− 2 (N2 +N + 2) (ψ(N) + γE)

N(N + 1)(N + 2)
, (8.40)
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Î (1)
g←q(N) =CF

−2 (N2 +N + 2)HN−2 + 2(N − 1)N + 6

N (N2 − 1)
, (8.41)

Î (1)
g←g(N) =

1

3
CA

(
12 (N (N2 + γE(N − 1)(N + 1)(N + 2)− 3)− 4)ψ(N)

(N − 1)N(N + 1)(N + 2)

+ 6

(
4γE − 1

N
+

4− 2γE
N + 1

+
2γE − 3

N + 2
− 2γE
N − 1

+
2

(N − 1)2
+ γ2E

)
+ 6ψ(N)2 + 6ψ′(N) + π2

)
, (8.42)

where ψ′(N) denotes the first derivative of the digamma function ψ(N).
Moreover, HN corresponds to the harmonic number HN =

∑N
k=1 1/k.

In addition to that we can also determine the NNLO non-cusp anomalous
dimension γi,B1 , which is shown in table 8.18.

γq,B1 analytic this work

CFTFnf 13.3495 13.3494(76)

C 2
F −10.6102 −10.6106(528)

CFCA 3.2602 3.2564(503)

γg,B1 analytic this work

CFTFnf 4 4

CATFnf 9.2431 9.2432(71)

C 2
A −9.2968 −9.2976(604)

Table 8.18: NNLO non-cusp anomalous dimension γi,B1 for the quark and
gluon channel extracted from our Mellin-space setup. We compare our results
to [124, 125].

We observe once more good agreement within the uncertainties, albeit the
central values are slightly worse compared to the x-space extraction. This
can be traced back to the additional x-integration, as we discussed before.

0 2 4 6 8 10 12 14 16 18 20
Mellin value N

0

100

200

300

400 − ̂(2, nf)
q← q (N)

̂(2,CA)
q← q (N)
̂(2,CF)
q← q (N)

100 ⋅ ̂(2, TF)
q← q (N)

0 2 4 6 8 10 12 14 16 18 20
Mellin value N

−14

−12

−10

−8

−6

−4

−2

0

̂(2,CF)
q← g (N)
̂(2,CA)
q← g (N)

10 ⋅ ̂(2,CAF)
q← ̄q (N)

Figure 8.10: Refactorised matching kernels for all quark channels for the
observable beam thrust. The dots indicate numbers from our numerical
approach, the solid line the analytical expression extracted from [124]. Un-
certainties on our computation are included, but not visible.
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Figure 8.11: We show the same as in figure 8.10 for the gluon channels.

Finally, we compare the refactorised matching kernels against the Mellin
and Laplace transformed results of [124, 125]. The dots correspond to our
calculation, while the solid lines are the analytic results, which we extract
from [124, 125]. Furthermore, the uncertainties on the computed values are
not visible on the scales shown here. This proves that our N -space formalism
can also deal with SCET-I observables.

8.4 DIS-angularities
Contrary to the discussion of the other observables, DIS-angularities corre-
spond to a class of observables since we leave the parameter n open and
allow it to be in the range n ∈ (0,∞). Therefore, this whole class of observ-
ables belongs to SCET-I. Note that this parameter range also includes beam
thrust, namely if we set n = 1.
This class of observables is special in the sense that it introduces a mixing
of small and large light-cone components for the first time. At NLO, we
see that the measurement function is trivial as in the beam thrust case, i.e.
f(tk) = 1, while the measurement function takes a more complicated form
at NNLO in the physical parameterisation from Eq. (5.23)

FDIS(a, b, x12, t
±
k , tl, tkl) = (a+ b)

A
2
−1(1 + ab)−

A
2 ·
[
b · a

A
2 + a1−

A
2

]
, (8.43)

where we introduce the angularity parameter A ≡ 1− n.
As we have discussed in chapter 5, this class of observables leads to additional
complications in our analysis since the measurement function might become
infinite or zero. This requires additional treatment in form of a rescaling and
more sector decomposition steps to disentangle all divergences.
In the following, we consider in total three different values of the angu-
larity parameter A ∈ {−1, 0, 0.5}, which translates into different n-values
n ∈ {0.5, 1, 2}. We consider this particular choice, because it is used on the
one hand for instance in [175], on the other hand we treat both cases n > 1
and n < 1, which require different computational steps according to chapter
5. The case n = 1 is a check since we expect to recover beam thrust.
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The NLO quark and gluon non-cusp anomalous dimension as well as the
quark NLO matching kernels are known analytically [175]. Furthermore, we
can use the NNLO non-cusp anomalous dimension γ

{q,g},B
1 from the analysis

of event-shape angularities [176] via a similar consistency relation as in Eq.
(3.15) as a check of our renormalisation procedure. In [50], a similar analy-
sis has been performed in the jet function case and since the jet and beam
function factorisation theorems for event-shape and hadronic angularities are
similar, the same relation between the different non-cusp anomalous dimen-
sions holds. Thus, we take the expected value for the non-cusp anomalous
dimensions from [50], which are extracted from [176].

x-space

Similar to the previous observables, we begin our discussion by considering
the NLO contributions to DIS-angularities. Thus, we can extract the NLO
non-cusp anomalous dimensions analytically in our framework and obtain
γq,B0 = −3CF and γg,B0 = −β0 for the quark and gluon case, respectively.
Furthermore, we compute the NLO matching kernels:

I (1)
q←q(x) = −

CF
6n(n+ 1)

[
π2(n− 1)(n+ 3)δ(1− x) + 12n

((
2n

1 + x2

1− x

× ln(x)− (1 + n)(1− x)
)
− 2n

(
1 + x2

) [ ln(1− x)
1− x

]
+

)]
,

(8.44)

I (1)
q←g(x) =TF

[
4n

n+ 1

(
2x2 − 2x+ 1

)
ln

(
1− x
x

)
+ 4(1− x)x

]
, (8.45)

I (1)
g←q(x) =CF

[
4n

n+ 1

(
x− 2 +

2

x

)
ln

(
1− x
x

)
+ 2x

]
, (8.46)

I (1)
g←g(x) = −

CA
6n(n+ 1)

(
1− (1− x)x

)2
x

[
(n− 1)(n+ 3)π2δ(1− x) + 48n2

×

(
ln(x)

1− x
−
[
ln(1− x)
1− x

]
+

)]
. (8.47)

We notice that we are able to reproduce beam thrust if we choose n = 1.
Moreover, we can compare Eqs. (8.44) and (8.45) with [175] and see that
both results agree.
Next, we turn our analysis to the NNLO contributions. For convenience,
we only focus on the q → q channel here, the other results are provided in
appendix B.3. The first relevant check which we employ is the comparison
of the quark non-cusp anomalous dimension γq,B1 to the results in [176]. As
we have already pointed out, the factorisation theorems for event-shape an-
gularities relevant for the jet function case and hadronic angularities in the
beam function case share the same structure, thus we can derive an analo-
gous consistency relation for the non-cusp anomalous dimensions as in the
jet function case. The input for the soft and hard function are the same
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in both cases, hence we expect both the jet and beam non-cusp anomalous
dimension to coincide.

γq,B1

A = −1 A = 0 A = 0.5

[176] this work [176] this work [176] this work

CFTFnf 11.16 11.1553(29) 13.35 13.3495(37) 16.56 16.5558(186)

C 2
F −10.61 −10.6100(235) −10.61 −10.6102(114) −10.61 −10.6111(1916)

CFCA −4.38 −4.3762(485) 3.26 3.2595(509) 14.49 14.4939(2740)

Table 8.19: NNLO quark non-cusp anomalous dimensions for the three dif-
ferent angularity values A = {−1, 0, 0.5}. We compare the results obtained
here to [176].

Table 8.19 shows the comparison of the non-cusp anomalous dimension values
computed in this work to the results from [176]. In general a comparison to
the jet function case [50] would be possible as well, however we expect better
numerics from the soft function extraction. We observe very good agreement
between both results for all three angularity values.
In the next step, we extract the x-independent coefficients c q−1 to c q3 in Eq.
(8.3). We only focus on the diagonal quark channel here, as we show the rest
of the results in appendix B.3:

c q−1 A = −1 A = 0 A = 0.5

CFTFnf 6.3202(53) −1.2379(70) −17.4888(606)

C 2
F −2.9089(440) −2.1647(153) 6.4092(4087)

CFCA −4.0903(1196) −12.7298(892) −2.6909(6790)

Table 8.20: x-independent coefficients in front of the δ-distribution for the
colour structures of the diagonal quark channel. We extract these coefficients
for three different angularity values A = {−1, 0, 0.5}.

c q0 A = −1 A = 0 A = 0.5

CFTFnf −0.1494(38) 3.9098(37) 8.1559(37)

C 2
F 34.1920(313) 19.2329(114) 8.5473(1277)

CFCA 17.5791(647) 15.7938(509) 8.6366(1826)

Table 8.21: We show the same as in table 8.20, but for the
[

1
1−x

]
+

-
distribution.
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c q1 A = −1 A = 0 A = 0.5

CFTFnf −11.8519(14) −8.8889(10) −5.9260(16)

C 2
F −54.0999(261) −26.3189(81) −1.4623(308)

CFCA 22.1584(324) 16.6189(252) 11.0796(398)

Table 8.22: We show the same as in table 8.20, but for the
[
ln(1−x)
1−x

]
+

-
distribution.

c q2 A = −1 A = 0 A = 0.5

CFTFnf 4.7407(3) 2.6667(3) 1.1852(1)

C 2
F −0.0001(23) 0 0

CFCA −13.0371(49) −7.3333(42) −3.2592(28)

Table 8.23: We show the same as in table 8.20, but for the
[
ln2(1−x)

1−x

]
+

-
distribution.

c q3 A = −1 A = 0 A = 0.5

CFTFnf 0 0 0

C 2
F 14.2222(4) 8± 10−4 3.5556(1)

CFCA 0 0 0

Table 8.24: We show the same as in table 8.20, but for the
[
ln3(1−x)

1−x

]
+

-
distribution.

These numbers constitute a new prediction. The same is true for the various
grid contributions, which we show for the four different colour structures in
the quark channel in figure 8.12. Here, the dots indicate the new predic-
tions, which are currently unknown for the angularity values A = {0, 5, 2}
but necessary to push the resummation of this observable to NNLL′ accu-
racy. Furthermore, we include the uncertainties of our computation, albeit
they are not visible at the scales shown here. However, we need to make
a final remark regarding the accuracy of our approach: As it is to be seen
from the measurement function in Eq. (8.43), the expression becomes com-
plicated since the variables occur with fractional numbers in their exponents.
If we encounter regions where we observe explicit divergences in {a, b} in our
physical parameterisation from Eq. (5.23), the implementation of the com-
putational parameterisation becomes necessary to account for logarithmic
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Figure 8.12: Refactorised matching kernels for the four colour structures of
the diagonal quark channel for the observable DIS-angularities for angularity
values A = {−1, 0, 0.5}. The dots indicate numbers from our numerical
approach. Uncertainties on our computation are included, but not visible.

and sqaure-root divergences, especially in regions where additional rescaling
and sector decomposition steps are necessary. Since we do not include this
additional modification on the physical parameterisation, this has a sizeable
effect on our central values. While the angularity value A = 0.5 is particu-
larly sensitive to this feature, the impact on the other two angularity values
is less prominent. But we also see this feature for n = 1, i.e. A = 0, i.e.
beam thrust. If we compare the results in this section to the explicit beam
thrust results from the section before, we conclude that the central values
of both calculations are in very good agreement, but the uncertainties are
larger for the DIS-angularities case. Notice that we observe similar issues for
the remaining contributions shown in appendix B.3.



Chapter 9

Conclusions and Outlook

In the era of high-precision physics, collider experiments like the LHC search
for deviations from the Standard Model (SM) predictions. These deviations
would provide a window to new-physics effects, which are not incorporated
in the SM and therefore require new developments in the field of theoretical
particle physics. The new run at the LHC will provide data with unprece-
dented precision, which requires the theoretical predictions to become more
and more precise. Fixed-order computations in the SM are to a large extent
automated to NLO and NNLO in perturbation theory, however they suffer
from large logarithmic corrections in some regions of the phase space. These
logarithms spoil the convergence of the perturbative series and therefore need
to be resummed to all orders. Effective field theories (EFTs) provide a sys-
tematic framework to resum these logarithms.
Soft-Collinear Effective Theory (SCET) is the EFT applied throughout this
project. Different momentum modes are factorised according to their scal-
ing with respect to a power counting parameter λ in the SCET framework.
Typical modes are energetic modes of the invariant mass (collinear) and low-
energetic isotropic (soft) radiation. The soft region is described by the soft
function in the factorisation theorem, while final-state collinear radiation is
captured by jet functions. For these functions, there already exist automated
frameworks for their computation to NNLO accuracy for a general class of
observables. But the automated calculation of initial-state collinear radia-
tion, which is described by beam functions, for a general class of observables
to NNLO was up to now missing. In particular, this is the only missing
ingredient to automate resummations at NNLL′ accuracy.
Until now, beam functions have rather been computed case-by-case for spe-
cific observables, which led to many results in the literature at NNLO. In
particular, we could use the available results for beam thrust, which is a
SCET-I observable, and transverse-momentum (pT ) resummation, which is
a SCET-II observable, to test our novel setup.
Our framework is based on general, observable-independent master formu-
lae, which incorporate completely disentangled phase-space divergences in
monomial form and which we have implemented in the publicly accessible
code pySecDec. In general, we have achieved this specific form of the mas-
ter formulae using methods like sector decomposition, selector functions and
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non-linear transformations. We have further used pySecDec as an interface
to the Cuba Vegas library, which evaluates the phase-space integrals numeri-
cally and provides bare results for the beam function matching kernels. After
renormalisation, we have obtained finite results useful for phenomenological
applications.
Besides the test observables pT -resummation and beam thrust, we have also
determined the matching kernels for jet-veto resummation and angularities
in deep-inelastic scattering. The results for the former were unknown for a
long time and they were first determined by us in Mellin space for the quark
channels [122] and subsequently in momentum space for all channels by an-
other group [171].
In the current work, we have computed the remaining channels for jet-veto
resummation and DIS angularities directly in x-space, which is an important
extension compared to our previous work [122]. We use our independent N -
space setup to compute the observable pT -veto independently and also show
the gluon channels which were not discussed in [122].
In general, there are some aspects that one might consider to further improve
the setup in the future. We list the most important ideas below:

• First of all, one should implement the master formulae from this work
in a standalone C++ code in the spirit of SoftSERVE [48, 49]. This
has the advantage that several optimisations can be implemented that
are not possible with a multi-purpose program like pySecDec. For
instance, the integrands could be further simplified and processed more
efficiently by the numerical integrator. Moreover, this would allow one
to be independent of future pySecDec updates and the code could be
made public in this specific form.

• Connected to the last point is an optimised computational parameter-
isation, which helps to suppress logarithmic and in particular square-
root divergences. So far we treat the square-root divergences from the
angular integrations and critical logarithmic singularities induced by
the matrix element and the Jacobian, however there exists another
source for square-root divergences, which is in particular problematic
for DIS-angularities. These additional singularities are related to the
measurement function itself and they could be treated by introducing
an additional parameter as it was also done in SoftSERVE. This would
further improve the numerics for observables like DIS angularities.

• It would also be interesting to better understand the behaviour of the
matching kernels at the endpoints x → 0 and x → 1. Once the diver-
gent behaviour has been properly isolated, this would allow us to use
an optimised grid and thus to significantly reduce the runtime of our
code.

• Finally, for some observables like transverse-momentum resummation,
one may also consider polarised beam functions. So far, we have worked
with unpolarised beam functions, where we perform spin averages and
where the matrix elements are connected to the unpolarised timelike
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splitting functions via crossing. Polarised beam functions generalise
this setup, because one splits matrix elements according to different
spin structures. Nevertheless, the methods derived in this project
should be powerful enough to tackle these kind of beam functions as
well.





Project II:

QCD sum rules for parameters of the B -
meson distribution amplitudes

This project led to the publication [177].





Chapter 10

QCD sum rules: Overview

In the following, we are going to discuss the framework of QCD sum rules
(QCD SRs), which has been first proposed in [51, 52] for light mesons (ρ,
K∗, φ) and charmonium resonances. Generally, this method can be used to
determine properties of hadrons like hadron masses, decay constants, form
factors or characteristic parameters for the modelling of distribution ampli-
tudes (DAs). The goal in this work is to apply the QCD SR method to
extract two characteristic parameters, λ2E,H , of the B-meson DA, as we will
elaborate later.
Starting point of the QCD SR framework is the correlation function (for the
relevant cases here we are focussing on two-point sum rules) of the form

ΠKL(q) = i

∫
ddx eiqx 〈0|T{jK(x), jL(0)} |0〉 ≡ TKLΠ(q

2) , (10.1)

which will be expressed as a dispersion relation containing a ground state
resonance as well as excited and multihadron continuum states located above
a threshold sth.

ssth

ρhadr.

Figure 10.1: Schematic representation of the hadronic spectral density ρhadr..
The peak denotes the ground state contribution, which gets separated from
the continuum contribution and higher excited states starting at a threshold
sth illustrated by the dashed line. However, there are also cases where a
separation with a proper choice of sth is not immediately obvious, for instance
if there is an overlap between the ground state and the lowest continuum
contributions.

The general structure of the currents in Eq. (10.1) is jK(x) = q̄(x)ΓKq
′(x)

141



142 CHAPTER 10. QCD SUM RULES: OVERVIEW

and jL(0) = q̄′(0)ΓLq(0), where q and q′ allow for all quarks apart from the
top quark and ΓK,L are combinations of Dirac γ-matrices which determine
the spin and parity of the currents. The sum over the colour indices is implied
such that the currents are in total colour-neutral. Section 11.2 provides more
details on the correlation function in Eq. (10.1) and specifies the exact form
of the currents jK(x) as well as jL(0). Furthermore, the concept of quark-
hadron duality is used in order to relate the hadronic spectral density to the
operator product expansion (OPE) density [178], see section 11.3. In general,
the OPE employed in the QCD SR approach has the form 1

jK(x)jL(0) =
∑
i

Ci(x)Oi(0) (10.2)

in the limit x → 0. The OPE in Eq. (10.2) allows to separate the currents
in the correlation function (10.1) into short-distance contributions repre-
sented by perturbatively calculable Wilson coefficients Ci(x) and into a long-
distance part denoted by vacuum matrix elements of the operators Oi(0).
Here, the important property is the locality of these operators, which leads
to local vacuum condensates of increasing mass dimension in the QCD SR
approach. The values of these condensates can be derived from lattice QCD
or from comparisons of sum rules with experiments and are input parameters.
Their properties and parameterisation are further investigated in section 11.4.
The explicit computation of the Wilson coefficients is performed in section
11.5. Notice that based on dimensional analysis, the Wilson coefficient of
the unit operator with mass dimension d = 0 is singular at x2 → 0, which
emphasises that at large q2, i.e. small distances, this contribution becomes
dominant. Finally, the numerical analysis to extract the parameters λ2E,H
is done in chapter 12 and the problems and solutions regarding the SRs in
section 11.5 are discussed there.

1This separation of scales holds strictly speaking only in the spacelike region with
−q2 � Λ2

QCD. Analytic continuation links Eq. (10.2) to timelike physical momentum
regions [133].



Chapter 11

Derivation of QCD sum
rules in HQET

11.1 Grozin-Neubert approach
Before we start to discuss the derivation of the sum rules for the problem
at hand, it is convenient to explore the previous works which have already
determined the parameters λ2E,H . As mentioned before, these parameters
have been introduced by Grozin and Neubert [84] and a first value has been
determined by considering an off-diagonal correlation function between a
two-particle quark-antiquark current and a three-particle current

ΠGN(ω) = i

∫
ddxe−iωv·x 〈0|T{q̄(0)Γµν1 gsGµν(0)hv(0)h̄v(x)γ5q(x)} |0〉 .

(11.1)
Since the underlying framework to treat B-mesons is HQET, the field hv(x)
denotes the effective heavy-quark field from section 2.2. The parameter ω
corresponds to the energy of the B-meson. For correlation functions in QCD,
we generally encounter the factor e−iqx, where q denotes the external momen-
tum. Since we work in the B-meson rest frame, we set q = ωv and exploit
that in HQET the usual choice for the velocity is v = (1,~0)T . Thus, the
energy of the B-meson q0 is given by ω. With this special choice of the ref-
erence system, we obtain the factor e−iωvx in Eq. (11.1).
Furthermore, Γµν1 has to be chosen accordingly to project out λ2H and λ2E.
In order to extract these parameters from the correlation function in Eq.
(11.1), they apply the QCD SR framework and include all leading contribu-
tions to the operator-product expansion (OPE) up to vacuum condensates
of mass dimension five. While the leading contribution to the condensates
up to mass dimension four start at O(αs), the leading order contribution to
the mass dimension five condensate already contributes at O(α0

s).
But as it turns out, this extraction is connected to large uncertainties due to
the unstable behaviour of the sum rules with respect to the Borel parameter
M . This instability increases the difficulty to assign a proper Borel window
for the numerical analysis. Notice that this dependence on the Borel param-
eter is expected since condensates with higher mass dimension tend to give
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larger contributions to correlation functions of higher dimensional operators.
The extracted parameters are [84]

λ2H(1 GeV) = (0.18± 0.07) GeV2

λ2E(1 GeV) = (0.11± 0.06) GeV2 . (11.2)

In order to tackle this uncertainty evoked by the instability of the sum rules,
Nishikawa and Tanaka [85] include O(αs) corrections to the quark-gluon
condensate, which is of mass dimension five. Moreover, they also add contri-
butions originating from condensates of mass dimension six starting at O(αs)
to show that the sum rules start to converge. Besides that the HQET decay
constant F (µ) is also incorporated up to O(αs) accuracy. Although these
additional contributions lead to a good convergence of the sum rule for the
decay constant F (µ), these higher order corrections turn our to be around
50% [179, 180]. Finally, the large logarithmic contributions occuring in this
computation are resummed, which leads to more stable sum rules with re-
spect to the Borel parameter and to a more convergent OPE compared to
[84]. The final values are stated to be [85]:

λ2H(1 GeV) = (0.06± 0.03) GeV2

λ2E(1 GeV) = (0.03± 0.02) GeV2 (11.3)

Comparing Eq. (11.2) to (11.3), we see that the values from the two extrac-
tions differ by a factor of three, albeit the ratio R = λ2E/λ

2
H is similar. This

is why many studies rely on the ratio R rather than the separate parameters
in order to eliminate the choice dependence between these two results.
In the following sections, we analyse an alternative sum rule to predict the
parameters λ2E,H . Rather than investigating a correlation of the form in
Eq. (11.1), we focus on a diagonal correlation function between two quark-
antiquark-gluon three-particle currents

Πdiag(ω) = i

∫
ddx e−iωv·x 〈0|T{q̄(0)Γµν1 gsGµν(0)hv(0)h̄v(x)Γ

ρσ
2 gsGρσ(x)q(x)} |0〉 .

(11.4)

This diagonal sum rule is positive definite and therefore the quark-hadron
duality, which is a central assumption in the QCD SR framework, is more
accurate compared to the off-diagonal case in [84, 85]. But since two three-
particle currents lead to operators with even higher mass dimension as in
the off-diagonal case, the OPE does not show better convergence, although
we include all contributions up to condensates of mass dimension seven. In
addition to that we observe that the continuum and higher excited states
dominate the sum rules for the parameters λ2E,H , so we resolve this issue by
investigating combinations of these parameters which suppress these dom-
inating effects. In this context, we use the ratio R as one combination to
suppress continuum contributions.
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11.2 Diagonal QCD sum rule approach
Generally, both correlation functions in Eqs. (11.1) and (11.4) describe phys-
ical effects in two different energy regimes. For large spacelike momenta
−q2 ≡ Q2 � Λ2

QCD, we observe quasi-free particles instead of colour-neutral
bound states due to asymptotic freedom. Therefore, we can apply pertur-
bative methods in this region and describe the underlying physics in terms
of quarks and gluons, which propagate and interact with each other. Con-
trary, we deal with physical bound states of quarks in form of hadrons in the
timelike region q2 > m2

b such that perturbation theory is not adequate to
explain the underlying physical phenomena. Beyond a certain branch point,
which is given by the lowest possible hadron generated by the currents inside
the correlation function at q2 = m2

h, we observe a plethora of excited higher
resonances, multihadron states and continuum contributions. They all lie on
the positive real axis, where Re(q2) > m2

h and are encoded into the spectral
density ρhadr.. Since this spectral density is in general a complicated and
unknown function, it is desirable to work out a method which can tackle
the physics of both regions and which naturally links them in the theoretical
description.
In the framework of QCD sum rules, the OPE disentangles these short-
distance perturbative effects in the spacelike region from the long-distance
low-energy physics. These short-distance contributions are encoded in per-
turbatively calculable Wilson coefficients, while the non-perturbative effects
in the long-distance regime are parameterised in terms of a series of local
vacuum matrix elements of increasing mass dimension due to the non-trivial
QCD vacuum structure. These vacuum averaged matrix elements are called
condensates, which are in addition to that scalar and colour-neutral quanti-
ties.

ΠOPE
X (ω) = C pert

X (ω) + C q̄q
X (ω) 〈0| q̄q |0〉+ C G2

X (ω) 〈0| αs
π
Ga
µνG

a,µν |0〉

+ C q̄Gq
X (ω) 〈0| q̄gsGµνσµνq |0〉+ C G3

X (ω) 〈0| g3sfabcGa
µνG

b,νρGc,µ
ρ |0〉

+ C q̄qG2

X (ω) 〈0| q̄q |0〉 〈0| αs
π
Ga
µνG

a,µν |0〉+ ... (11.5)

The quantities C i
X denote the Wilson coefficients, whose determination is

covered in detail in section 11.5, while the condensates are ordered by their
mass dimension and carry the quantum numbers of the QCD vacuum. We
are going to comment in more detail on the structure of Eq. (11.5) and the
parameterisation of the different condensates in section 11.4. In particular,
we will also discuss the factorisation of the mass dimension seven condensate
in the last line of Eq. (11.5).
It is important to stress that Eq. (11.5) only holds in the deep spacelike region
since non-perturbative effects become dominant in the low-energy domain
−|ω| ∼ ΛQCD and violate the separation between the different distance scales
in the OPE. On the other end of the energy scale at ω � 0, we can use the
methods known from perturbation theory to compute the Wilson coefficients
and the non-perturbative effects are power suppressed. Thus, it is necessary
to work in the transition region, where the condensates give sizeable, but still
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small enough contributions such that we can treat them as local and retail
only a few condensates with low mass dimension.
The quark-hadron duality, which is further investigated in the next section,
makes it possible to connect the physics of spacelike and timelike regions.
But first, we need to find an appropriate representation of the correlation
function which is valid for any point in the complex plane, in particular
in the deep-spacelike and timelike domain. For this, we make use of the
fact that the correlation function is an analytic function in the complex
variable q2 except on the positive real axis above the threshold q2 ≥ m2

h,
where singularities and branch cuts in form of particle poles and multihadron
states occur. Therefore, the threshold parameters s0 and s1, which are used
to parameterise the singularities and branch cut on the positive real axis,
need to be chosen based on the situation at hand. In our case, we intend
to investigate the properties of the B-meson and thus work in HQET, which
introduces the scale ω instead of q2. As a consequence, we choose s0 > 0 and
determine s1 in the following. However to stay as general as possible in the
following discussion, we leave s0 and s1 unspecified.
Based on the structure of the correlation function in the spacelike region
Re[q2] < 0, we can conclude that the correlation function has no imaginary
part in this region, i.e. Im

[
Π(q2)

]
= 0. But as we have pointed out above,

we expect that Π(q2) acquires an imaginary part beyond the threshold s0
due to singularities in form of isolated poles at particle masses of higher
resonances and due to continuum contributions. We prove this statement
with the Schwartz reflection principle [181]. It states that if an analytic
function is real-valued on some part of the real axis, then the function is
equal to its complex conjugate reflected along this real axis. This is true in
our case, since Π(q2) is real-valued below s0. Hence, we know that Π(q2−iε) =
Π∗(q2 + iε) for q2 < s0 and we get for q2 ≥ s0

∆Π(q2) ≡ limε→0

(
Π(q2 + iε)− Π(q2 − iε)

)
= limε→0

(
Π(q2 + iε)− Π∗(q2 + iε)

)
= 2i Im

[
Π(q2)

]
. (11.6)

Therefore, Eq. (11.6) indicates that there is a branch cut starting at the
branch point q2 ≥ s0. The next step is to employ the Cauchy integration
formula, since Π(q2) is an analytic function except on the branch cut on the
positive real axis

Π(q2) =
1

2πi

∮
C

ds
Π(s)

s− q2
. (11.7)

We choose the contour C according to figure 11.1, which we parameterise in
the following way:

1. we start with the upper line C1 parallel to the real axis shifted by an
infinitesimal distance ε:
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q2 = s+ iε with s0 ≤ s ≤ R

2. large circle C2 with radius R: q2 = Reiϕ , ε/R < ϕ < 2π − ε/R

3. small half circle C3 with radius ε: q2 = s0 + εeiϕ , −π/2 ≤ ϕ ≤ π/2

4. lower line C4 parallel to real axis shifted by ε:

q2 = s− iε with R ≤ s ≤ s0

+iε

−iε

s0 s1

R

ε

q2

Figure 11.1: Contour C = C1 + C2 + C3 + C4 for the integral in Eq. (11.7).
The small half-circle with radius ε vanishes for ε→ 0, the bigger circle with
radius R vanishes for R → ∞ if the correlation function Π(q2) converges
for |q2| → ∞. Otherwise, substraction terms are needed to remove the
singularities.

Decomposing Eq. (11.7) into the different parts, we get

Π(q2) =
1

2πi

∫ R

s0

ds
Π(s+ iε)− Π(s− iε)

s− q2
+

1

2πi

∮
C2

dp2
Π(p2)

p2 − q2

+
1

2πi

∮
C3

dp2
Π(p2)

p2 − q2
. (11.8)

We can argue that the small half-circle C3 vanishes if we introduce spherical
coordinates and take the limit ε → 0. The integral over the large circle C2

requires further investigation, since the function Π(q2) might diverge in the
limit |q2| → ∞ for R→∞. This depends on the currents in the correlation
function. In this case, it is necessary to introduce an additional substraction
term at a specific point q20 and perform the analysis with this substraction.
But in the end these substraction terms are not of importance, because we
perform a Borel transformation on the sum rule expressions in order to sup-
press continuum contributions and higher resonances in the hadronic spectral
density. This transformation removes all substraction terms and improves in
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the same step the convergence of the OPE.
Hence, the contour integrals C2 and C3 in Eq. (11.8) vanish. Inserting Eq.
(11.6) and taking the limit R→∞, we finally obtain

Π(q2) =
1

π

∫ ∞
s0

ds
ImΠ(s)

s− q2
. (11.9)

This is the desired form of the correlation function, which we use in the
following discussion. In the next section, we connect the spacelike region with
the timelike region in order to derive sum rule expressions for the parameters
λ2E,H .

11.3 Application of the quark-hadron duality
In this section, we investigate the correlation function stated in Eq. (11.4) in
two different regimes. In particular, the deep-spacelike region −q2 ≡ Q2 �
Λ2

QCD can be tackled with perturbative methods, while the timelike region is
given by the hadronic spectrum. Since this correlation function is embedded
into a dispersion relation in the sum rule approach, we need to consider the
imaginary part of Eq. (11.4) and use the unitary condition
1

π
ImΠdiag(ω) =

∑
n

(2π)3δ(ω − pn) 〈0| q̄(0)Γµν1 gsGµν(0)hv(0) |n〉

× 〈n| h̄v(x)Γρσ2 gsGρσ(x)q(x) |0〉 dΦn

= δ(ω − Λ̄) 〈0| q̄(0)Γµν1 gsGµν(0)hv(0) |B̄〉
〈B̄| h̄v(0)Γρσ2 gsGρσ(0)q(0) |0〉+ ρhadr.(ω)Θ(ω − ωth) (11.10)

including a full set of intermediate states in Eq. (11.10). In this case, the
ground state corresponds to the B-meson and we set an appropriate thresh-
old ωth such that higher excited states like the radially excited B-meson or
the continuum contributions are collected in the hadronic spectral density
ρhadr.(ω). This procedure is symbolically shown in figure 10.1. In general,
the choice of ωth depends on the problem at hand. Moreover, there also
might occur problems where the ground state can not be separated from
the hadronic spectrum by a good choice of the threshold, for instance if the
ground state contribution is broad. But for B-mesons, this procedure is well
established since the ground is isolated. The parameter Λ̄ = mB −mb is the
binding energy, which has already been introduced in section 2.2.
After applying the unitary condition, we make use of the residue theorem
and the Schwartz reflection principle in order to rewrite the correlation func-
tion in Eq. (11.4) into a standard dispersion integral. The details of this
procedure are discussed in section 11.2.

Πdiag(ω) =
1

π

∫ ∞
0

ds
ImΠdiag(s)

s− ω − i0+

=
1

Λ̄− ω − i0+
〈0| q̄(0)Γµν1 gsGµν(0)hv(0) |B̄〉

× 〈B̄| h̄v(0)Γρσ2 gsGρσ(0)q(0) |0〉+
∫ ∞
sth

ds
ρhadr.(s)

s− ω − i0+
. (11.11)
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The threshold parameter ωth transforms into sth once the hadronic contri-
bution is expressed in terms of a dispersion integral. With the help of Eq.
(2.40), the ground state contribution can be simplified

〈0| q̄(0)Γµν1 gsGµν(0)hv(0) |B̄〉 〈B̄| h̄v(0)Γρσ2 gsGρσ(0)q(0) |0〉

=
−i
6
F (µ)

[
λ2H(µ)Tr[Γ1P+γ5σµν ] + [λ2H(µ)− λ2E(µ)]Tr[Γ1P+γ5vµν ]

]
(11.12)

× −i
6
F †(µ)

[
λ2H(µ)Tr[γ5P+Γ2σρσ]− [λ2H(µ)− λ2E(µ)]Tr[γ5P+Γ2vρσ]

]
.

For convenience, we suppress the Lorentz indices at Γµν1,2.
To derive the sum rules for combinations of the parameters λ2E,H , we choose
appropriate expressions for Γ1 and Γ2. To this end, we consider

Γ1 =
i

2
σµνγ5 , (11.13)

and get the sum rule for (λ2H + λ2E)
2. The sum rule for λ4H can be derived by

requiring that

Γ1 = i

(
1

2
δ να − vνvα

)
σµαγ5 , (11.14)

while we designate Γ1 to be

Γ1 = ivνv
ασµαγ5 (11.15)

to obtain λ4E. Contrary to Eqs. (2.36) and (2.37), these choices are Lorentz
covariant. Since we consider diagonal sum rules, Γ2 is related to Γ1 through
the change of indices µ→ ρ, ν → σ.
Using the projections in Eqs. (11.13) to (11.15), it is possible to derive the
expressions for Πdiag(ω) in (11.11) depending on the projection

ΠE,H(ω) = F (µ)2 · λ4E,H ·
1

Λ̄− ω − i0+
+

∫ ∞
sth

ds
ρhadr.
E,H (s)

s− ω − i0+
, (11.16)

ΠHE(ω) = F (µ)2 · (λ2H + λ2E)
2 · 1

Λ̄− ω − i0+
+

∫ ∞
sth

ds
ρhadr.
HE (s)

s− ω − i0+
.

(11.17)

It is important to keep in mind that the threshold parameter sth differs
for the sum rules in Eqs. (11.16) and (11.17), since the hadronic spectral
densities ρhadr.

E,H,HE are in principle different. Now we also see that we choose
s1 = sthE,H,HE in section 11.2.
In order to parameterise the hadronic spectral density, we use the global and
semi-local quark-hadron duality (QHD) [182, 183]. The essential idea of this
approximation is to connect the physical hadronic spectral density to the
spectral density from the OPE [53, 178, 184, 185]. However, we consider
the OPE in the deep-spacelike region with ω � 0, where we observe quasi-
free particles in form of quarks and gluons due to asymptotic freedom, while



150 CHAPTER 11. DERIVATION OF QCD SUM RULES IN HQET

the hadronic spectral density is defined for ω ∈ <. As mentioned before,
the hadronic spectral density incorporates observable bound states of quarks
and gluons due to confinement, therefore we work in the timelike region with
ω > 0. Nevertheless, in the region ω � 0, we can use that the hadronic and
OPE spectral density functions agree at the global level

Πhadr.
X = ΠOPE

X for X ∈ {H,E,HE}. (11.18)

This equality holds since the components of the bound states like mesons and
baryons, i.e. the quarks and gluons, obey asymptotic freedom and appear
as quasi-free particles in the process. Additionally, we need to apply the
semi-local quark-hadron duality, which connects the spectral integrals over
the two densities∫ ∞

sthX

ds
ρhadr.
X (s)

s− ω − i0+
=

∫ ∞
sthX

ds
ρOPE
X (s)

s− ω − i0+
. (11.19)

The quantity X is to be chosen according to Eq. (11.18). Moreover, the
threshold parameter sth might differ between the left and right side of Eq.
(11.19).
Here, the next step is to apply the QHD (11.18) and (11.19) and to obtain
the following expression for the sum rules:

F (µ)2 · λ4E,H ·
1

Λ̄− ω − i0+
=

∫ sthE,H

0

ds
ρOPE
E,H (s)

s− ω − i0+

=

∫ sthE,H

0

ds
1
π
ImΠOPE

E,H (s)

s− ω − i0+
, (11.20)

F (µ)2 · (λ2H + λ2E)
2 · 1

Λ̄− ω − i0+
=

∫ sthHE

0

ds
ρOPE
HE (s)

s− ω − i0+

=

∫ sthHE

0

ds
1
π
ImΠOPE

HE (s)

s− ω − i0+
.

(11.21)

The last step to derive the final expressions for the sum rules is to per-
form an additional Borel transformation on Eqs. (11.20) and (11.21). Since
this transformation is also relevant in the light-cone sum rule approach, we
state the details in appendix A.5. Furthermore, the advantage of this step
lies in the fact that higher resonances and the continuum are exponentially
suppressed and possible substraction terms in the dispersion integral are re-
moved. Besides, the convergence of the sum rule is improved. After applying
this additional transformation, the final sum rule expressions are

F (µ)2 · λ4E,H · e−Λ̄/M =

∫ ωth
E,H

0

dω ρOPE
E,H (ω) e−ω/M

=

∫ ωth
E,H

0

dω
1

π
ImΠOPE

E,H (ω) e−ω/M ,

(11.22)
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F (µ)2 · (λ2H + λ2E)
2 · e−Λ̄/M =

∫ ωth
HE

0

dω ρOPE
HE (ω) e−ω/M

=

∫ ωth
HE

0

dω
1

π
ImΠOPE

HE (ω) e−ω/M .

(11.23)
These sum rules (11.22) and (11.23) are one of the main results in this project.
By choosing the Borel parameter M and the threshold parameter ωth accord-
ingly, we can extract values for the parameters λ2E,H . Details for the deter-
mination of the Borel window and the threshold are provided in chapter 12,
where we discuss the numerics and point out several strategies to pin down
the parameters. Additionally, we also notice that the Borel transformation is
not sufficient to suppress continuum contributions and excited states. This
observation tends to be the case for correlation functions of currents with
large mass dimension, similar to the function in Eq. (11.4). We cover this
issue in the numerical analysis as well. The next subsections are devoted to
the detailed discussion of the components of Eq. (11.5).

11.4 QCD vacuum condensates and parame-
terisation in the OPE

The OPE is the central element of the QCD sum rule framework, since it
allows for the factorisation of perturbative and non-perturbative contribu-
tions. As discussed before, the non-perturbative effects are parameterised by
vacuum condensates of increasing mass dimension. We state the OPE from
Eq. (11.5) introducing a more compact notation
〈q̄q〉 := 〈0| q̄q |0〉 , 〈G2〉 := 〈0|Ga

µνG
a,µν |0〉 , 〈q̄gsσ ·Gq〉 := 〈0| q̄gsGµνσµνq |0〉 ,

〈g3sfabcGaGbGc〉 := 〈0| g3sfabcGa
µνG

b,νρGc,µ
ρ |0〉 . (11.24)

such that the OPE becomes
ΠOPE

X (ω) = C pert
X (ω) + C q̄q

X 〈q̄q〉+ C G2

X 〈αs
π
G2〉+ C q̄Gq

X 〈q̄gsσ ·Gq〉

+ C G3

X 〈g3sfabcGaGbGc〉+ C q̄qG2

X 〈q̄q〉 〈αs
π
G2〉+ ... (11.25)

In order to derive the vacuum condensates contributions from the correlation
function given in Eq. (11.24), we need to average over the Lorentz, Dirac and
colour indices. For this, we closely follow the discussion in [186]. Starting
point is the matrix element 〈0| q̄(0)Γ1P+Γ2 q(x) |0〉, which we Taylor expand
near x = 0:
〈0| q̄(0)Γ1P+Γ2 q(x) |0〉 = 〈0| q̄(0)Γ1P+Γ2q(0) |0〉+ xµ 〈0| q̄(0)Γ1P+Γ2Dµq(0) |0〉

+
xµxν

2
〈0| q̄(0)Γ1P+Γ2DµDνq(0) |0〉+ · · · (11.26)

Notice that we drop for simplicity all indices in the beginning. The first
term in Eq.(11.26) yields the quark condensate

〈0| q̄iα(0)Γ1,αβP+,βγΓ2,γδ q
j
δ(0) |0〉 =

1

4Nc

· Tr[Γ1P+Γ2] · 〈q̄q〉 δij, (11.27)
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where (i, j) are colour indices and (α, β, γ, δ) are spinor indices. The factor
Nc represents the number of colour degrees of freedom. Taking the Dirac
equation into consideration, we see that the second term in Eq. (11.26)
vanishes, because we consider light quarks with mq = 0.

/Dq = −imqq . (11.28)

The third term is directly related to the dimension five matrix element, which
is parameterised as the quark-gluon condensate

〈0| q̄iα(0)gsGµν(0)q
j
δ(0) |0〉 = 〈0| q̄gsσ ·Gq |0〉 ·

1

4Ncd(d− 1)
· δij · (σµν)δα .

(11.29)

Thus, for the third term in Eq. (11.26) we obtain

xµxν

2
〈0| q̄iα(0)DµDνq

j
δ(0) |0〉 =

x2

16Ncd
δijδαδ 〈0| q̄gsσ ·Gq |0〉 . (11.30)

Next, the gluon condensate can be parametrised as

〈0|Ga
µνG

b
ρσ |0〉 =

δab

d(d− 1)(N2
c − 1)

〈G2〉 (gµρgνσ − gµσgνρ) , (11.31)

where d = 4 − 2ε and a, b are colour indices in the adjoint representation.
Finally, we are left with the triple-gluon condensate. According to [187], the
triple-gluon condensate is given by

〈g3sfabcGa
µνG

b
ρσG

c
αλ〉 =

〈g3sfabcGaGbGc〉
d(d− 1)(d− 2)

·
(
gµλgρνgσα + gµσgραgλν + gρλgµαgνσ

+ gανgµρgσλ − gµσgρλgαν − gµλgραgνσ − gρνgµαgσλ
− gσαgµρgνλ

)
≡ 〈g

3
sf

abcGaGbGc〉
d(d− 1)(d− 2)

· Bµλρνσα . (11.32)

The last condensate encountered in Eq. (11.25) is the condensate of mass
dimension seven, where we apply an additional simplification. While there
exist many estimates for the values of the lower dimensional condensates in
the literature from lattice QCD or sum rule computations (see chapter 12 for
more details), contributions arising with higher mass dimension are hard to
tackle due to mixing with lower dimensional terms. This lack of values re-
quires to make use of the vacuum saturation approximation [51], where a full
set of intermediate states is inserted into the condensate expression. After
assuming that only the ground state, i.e. the vacuum, leads a sizeable effect,
these higher dimensional condensates are effectively reduced to a product of
condensates with lower mass dimension. In our case in Eq. (11.25), the di-
mension seven condensate is rewritten into a product of a quark condensate
and a gluon condensate.
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After discussing the averaging and parameterisation of the vacuum conden-
sates in the OPE (11.5) and (11.25), one might wonder whether the con-
densates are parameterised uniquely by the terms stated above. In general,
this is indeed the case for condensates up to mass dimension five. Beyond
this dimension, there arise many different combinations which are in some
cases related by QCD equations of motions or Fierz identities [188]. We only
consider condensates of mass dimension six and seven in the OPE in Eq.
(11.25), which give a leading power contribution to the parameters λ2E,H .
This is consistent with our general setup, since we plan the extraction of
these parameters to leading order in αs. Note that the general counting
is not related to the parameter αs which is not matching between different
condensates. The prefactors in the gluon, quark-gluon and triple-gluon con-
densate are purely chosen according to the convention in [185].

11.5 Perturbative contributions in the OPE
As we have discussed before, we can identify the perturbative part of the
OPE in Eq. (11.25) as the Wilson coefficients C i

X . They encode the short-
distance effects, which can be determined by perturbative methods. We are
working to leading order in αs throughout this project, which turns out to
be O(αs) for a diagonal correlation function (11.4) of two three-particle cur-
rents. This leads to the observation that the computation of Cpert.

X is related
to a two-loop integral, while the other Wilson coefficients up to mass dimen-
sion seven require either the calculation of one-loop integrals or tree level
diagrams. Since there is only one scale involved in this evaluation, we can
perform a direct computation of these integrals on completely analytical ba-
sis. Nevertheless, we also use LiteRED [189] to reduce the two-loop integral
via IBP-reduction [190] in order to check the analytic computation. During
the analytic computation it is useful to work in Feynman gauge.
In the QCD SR method, the long-distance effects are parameterised in terms
of local vacuum matrix elements of increasing mass dimension (11.25). Lo-
cality in these matrix elements require that the fields inside the vacuum con-
densates are expanded in the spacetime coordinate x. Moreover, the gluon
fields do not interact with the HQET heavy quark field hv(x) as we have
proven in appendix D. In total, there are three subdiagrams, which lead to
vanishing contributions and which we show in figure 11.2

Figure 11.2: Vanishing subdiagrams during the computation. The double
line denotes the heavy quark field, while the curly lines denote the gluon
field.



154 CHAPTER 11. DERIVATION OF QCD SUM RULES IN HQET

Since we perform the computations in momentum space, we also use the
heavy-quark propagator in this space

〈0|T{hiv(0)h̄jv(x)} |0〉 =
∫

ddk

(2π)d
eikx

i

v · k + i0+
P+δ

ji (11.33)

for the vanishing diagrams in figure 11.2 as well as the contributions in the
following discussion. Additionally, i, j denote the colour indices of the heavy
quark fields and P+ = (1 + /v)/2 corresponds to the projection operator in
HQET. In general, linear propagators like the above one often appear in ef-
fective field theories and are for instance also a fundamental part of SCET.
We regularise the divergences appearing in the computation of the Wilson co-
efficients C i

X with dimensional regularisation [191], i.e. we work in d = 4−2ε
dimensions. As it is known for a long time, this specific regularisation is
useful since it preserves symmetries like gauge invariance or Lorentz invari-
ance. For the calculation, we follow two different roads. On the one hand, we
perform each integral completely analytically in momentum space by apply-
ing the Feynman parameterisation and solving the occurring integrals. Due
to the linear propagator which appears in the evaluation, it is necessary to
use a slightly modified Feynman parameterisation stated in appendix A.1.
Furthermore, we encounter tensor integrals in the loop momenta, which we
rewrite into scalar integrals by projecting the tensor structures in the loop
momenta onto invariant Lorentz structures according to appendix A.1. On
the other hand, we use FeynCalc [192] to decompose the tensor integrals in
the evaluation to scalar integrals. These scalar integrals are additionally re-
duced to master integrals by integration-by-parts (IBP) identities [190] with
the Mathematica package LiteRed [189]. For both the perturbative contri-
bution as well as for the Wilson coefficients related to vacuum condensates,
this ultimately boils down to a master integral of the form [193]

∫
ddk1
iπd/2

1

(−k21)a1 [−2(k1 + k2) · v + 1]a2
= (−2k2 · v + 1)d−2a1−a2 I(a1, a2)

(11.34)

with

I(a1, a2) =
Γ(2a1 + a2 − d) Γ(d/2− a1)

Γ(a1)Γ(a2)
. (11.35)

By applying the machinery from above, we can solve the two-loop integral for
the determination of C pert.

X iteratively and obtain the following expression:

C pert
X (ω) =

2αs
π3
· CFNc · Tr[Γ1P+Γ2/v] · µ̄4εΓ(−6 + 4ε) · Γ(2− ε) · ω6−4εe4iπε

×
[
Γ(2− ε) · T µρνσ1 + Γ(3− ε) · T µρνσ2

]
, (11.36)
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Figure 11.3: Diagrams for the perturbative and condensate of mass dimen-
sion three Wilson coefficients C pert.

X and C q̄q
X . The double line indicates the

heavy quark field hv in HQET, while the single line corresponds to the light
antiquark q̄. Furthermore, the curvy line denotes the gluon field.

We introduce several abbreviations, which are also relevant for the other con-
tributions. Notice that we depict the diagram corresponding to this Wilson
coefficient on the left in figure 11.3

µ̄2 :=
µ2eγE

4
,

T µρνσ1 := gµρgνσ − gµσgνρ ,
T µρνσ2 := − gνσvµvρ + gµσvνvρ + gνρvµvσ − gµρvνvσ . (11.37)

The above definitions in Eq. (11.37) are chosen such that they satisfy all
symmetries imposed by the field strength tensors Gµν and Gρσ. Notably, they
are anti-symmetric under the exchange {µ ↔ ν}, {ρ ↔ σ} and symmetric
under the simultaneous exchange {µ↔ ν, ρ↔ σ}.
The remaining one-loop integrals for the other Wilson coefficients are of
simpler nature and an analytic computation can be performed easily. Thus,
we obtain for the factor C q̄q

X in front of the quark condensate

C q̄q
X (ω) =− αs

π
· CF · Tr[Γ1P+Γ2] · µ̄2ε · Γ(−3 + 2ε) · ω3−2εe2iπε

×
[
Γ(2− ε) · T µρνσ1 + Γ(3− ε) · T µρνσ2

]
. (11.38)

Both coefficients are stated in a completely general form for all sum rules in
Eqs. (11.22) and (11.23) since they are expressed in terms of Γ1,2. Choosing
these matrices accordingly leads to the contributions to the individual sum
rules, thus we follow this notation for the rest of the coefficients. For the
gluon condensate diagrams, which is shown in figure 11.4, we can proceed
similarly and obtain

C G2

X (ω) = Tr[Γ1P+Γ2/v] ·
µ̄2ε

(4− 2ε)(3− 2ε)
Γ(−2 + 2ε) · Γ(2− ε) · ω2−2εe2iπε

× T µρνσ1 . (11.39)
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Figure 11.4: Diagrams for the gluon condensate and condensate of mass
dimension five Wilson coefficients C G2

X and C q̄Gq,1
X . The double line indicates

the heavy quark field hv in HQET, while the single line corresponds to the
light antiquark q̄. Furthermore, the curvy line denotes the gluon field.

The quark-gluon condensate of mass dimension five receives several contri-
butions depending on the location of the gluon line. Moreover, there is an
additional correction term originating from the higher order expansion in x in
the expression for the quark condensate (11.30). We show the corresponding
Feynman diagrams in figures 11.4 and 11.5.

C q̄Gq,1
X (ω) =− αs

π
· CF · Tr[Γ1P+Γ2] ·

µ̄2ε

(4− 2ε)
Γ(−3 + 2ε) · Γ(3− ε) · ω1−2ε

× e2iπεT µρνσ1 , (11.40)

C q̄Gq,2
X (ω) =

αs
4π
· CF · µ̄2ε

(4− 2ε)(3− 2ε)
· Γ(−1 + 2ε) · Γ(1− ε) · ω1−2εe2iπε

×
[
Tr[Γ1P+Γ2σµνσρσ]− (1− ε) · Tr[Γ1P+Γ2/vvµνσρσ]

]
, (11.41)

C q̄Gq,3
X (ω) =

αs
4π
· CF · µ̄2ε

(4− 2ε)(3− 2ε)
Γ(−1 + 2ε) · Γ(1− ε) · ω1−2εe2iπε

×
[
Tr[Γ1P+Γ2σµνσρσ] + (1− ε) · Tr[Γ1P+Γ2σµνvρσ/v]

]
, (11.42)

C q̄Gq,4
X (ω) =

iαs
32π
· CACF · µ̄2ε

(2− ε)(3− 2ε)
· Tr[Γ1P+Γ2σ

χβ] · Γ(−1 + 2ε) · Γ(1− ε)

× ω1−2εe2iπε
[
{gµχT νρβσ1 − (β ↔ χ)}+ (1− ε)

×
(
{vβgµρ(vσgνχ − vνgσχ)− (ρ↔ σ)} +

{vνgµχ(vσgβρ − vρgβσ)− (β ↔ χ)}
)]
− (µ↔ ν) , (11.43)
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Figure 11.5: Diagrams for the remaining mass dimension five vacuum con-
densates. The double line indicates the heavy quark field hv in HQET, while
the single line corresponds to the light antiquark q̄. Furthermore, the curvy
line denotes the gluon field.

Apart from the definitions in Eq. (11.37) which appear in Eqs. (11.40)
to (11.43), we encounter additional complicated tensor structures as well.
Nevertheless, all symmetries based on the properties of the field strength
tensor are still satisfied. In order to obtain the complete Wilson coefficient
for the mass dimension five condensate, we need to add up the contributions
in Eqs. (11.40) to (11.43)

C q̄Gq
X =

4∑
k=1

C q̄Gq,k
X . (11.44)

Finally, the two remaining diagrams are shown in figure 11.6. The corre-
sponding condensates are of mass dimension six and seven. Since the OPE is
supposed to converge in the sense that condensates of higher mass dimension
tend to give smaller contributions to the sum rules, we expect these terms
to be small in comparison to the other expressions. But as we will discuss in
detail in the numerical analysis, the condensate contributions are in general
larger compared to the perturbative contribution. This behaviour spoils the
converge of the OPE at first sight, albeit it is not unusual for the types of
correlation functions (11.4) that we encounter.
Notice that in general the triple-gluon condensate and the condensate of mass
dimension seven have more than one contribution to the OPE in Eq. (11.25).
Due to our leading order analysis, which is O(αs) in this case, we end up
with one contribution for each condensate, which are depicted in figure 11.6.
We can state those to be

C G3

X (ω) =
µ̄2ε

64π2
· Bµλρνσα · Γ(2ε) · Γ(1− ε) · ω−2εe2iπε · (−i)

×
[
Tr[Γ1P+Γ2/vσ

λα] + Tr[Γ1P+Γ2v
αλ]]
]
, (11.45)

C q̄qG2

X (ω) = −Tr[Γ1P+Γ2] ·
T µρνσ1

ω + i0+
· π2

2Nc(4− 2ε)(3− 2ε)
. (11.46)
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Figure 11.6: Diagrams for the condensates of mass dimension six and seven
Wilson coefficients C G3

X and C q̄qG2

X . The double line indicates the heavy
quark field hv in HQET, while the single line corresponds to the light anti-
quark q̄. Furthermore, the curvy line denotes the gluon field.

The expression Bµλρνσα in Eq. (11.45) is defined in Eq. (11.32). Note
that the computation of the triple-gluon condensate involves a subtlety, in
particular the final expression needs to be symmetrised in order to preserve
all symmetries with respect to the Lorentz indices µ, ν, ρ, σ. This is related
to an additional factor of x in the integration over the exponential functions
such that we can not immediately identify this integral as the momentum
conserving δ-distribution.
According to Eq. (11.22) or Eq. (11.23), the dispersion integral states that we
need to include the imaginary part of our results into these sum rules. In Eqs.
(11.36) to (11.45), we see factors of eiπnε yielding the imaginary part after
expansion in ε. These factors originate from terms of the form (−1+ i0+)ε in
the computation. The last contribution in Eq. (11.46) constitutes a factor
of 1

ω+i0+
, which we relate to the corresponding imaginary part via

1

ω ± i0+
= PV

[
1

ω

]
∓ iπδ(ω) , (11.47)

where PV indicates the principal value.
After the extraction of the imaginary part, we can now derive the sum rules
in their complete form. In order to obtain the final expression for the sum
rules in Eqs. (11.22) and (11.23), we integrate ω up to ωth and state the
result in terms of the function

Gn(x) := 1−
n∑
k=0

xk

k!
e−x (11.48)

in a completely analytical form. With the abbreviation in Eq. (11.48), we
can state the final result for the sum rules for the parameters λ4E,H and the
combination (λ2E + λ2H)

2:

F (µ)2 · (λ2H + λ2E)
2 e−Λ̄/M =

αsCACF
π3

· 24M7 ·G6

(ωth
M

)
− αsCFCA

4π
· 〈q̄gsσ ·Gq〉 ·M2 ·G1

(ωth
M

)
− 3αsCF

2π
· 〈q̄gsσ ·Gq〉 ·M2
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×G1

(ωth
M

)
− π2

2Nc

〈q̄q〉 〈αs
π
G2〉 , (11.49)

F (µ)2 · λ4H e−Λ̄/M =
αsCACF

π3
· 12M7 ·G6

(ωth
M

)
− αsCF

π
〈q̄q〉 · 6M4

×G3

(ωth
M

)
+

1

2
〈αs
π
G2〉 ·M3 ·G2

(ωth
M

)
− αsCFCA

8π
· 〈q̄gsσ ·Gq〉 ·M2

×G1

(ωth
M

)
− 3αsCF

4π
· 〈q̄gsσ ·Gq〉 ·M2 ·G1

(ωth
M

)
+
〈g3sfabcGaGbGc〉

64π2

×M ·G0

(ωth
M

)
− π2

4Nc

〈q̄q〉 〈αs
π
G2〉 , (11.50)

F (µ)2 · λ4E e−Λ̄/M =
αsCACF

π3
· 12M7 ·G6

(ωth
M

)
+
αsCF
π
〈q̄q〉 · 6 ·M4

×G3

(ωth
M

)
− 1

2
〈αs
π
G2〉 ·M3 ·G2

(ωth
M

)
− αsCF

2π
· 〈q̄gsσ ·Gq〉 ·M2

×G1

(ωth
M

)
− 〈g

3
sf

abcGaGbGc〉
64π2

·M ·G0

(ωth
M

)
− π2

4Nc

〈q̄q〉 〈αs
π
G2〉 .

(11.51)

Notice that the perturbative contribution for the sum rules in λ4E,H in Eqs.
(11.50), (11.51) are identical, in particular they share the same sign. This
positive sign is expected since we investigate a positive definite correlation
function in Eq. (11.4). In addition to that the condensate with mass dimen-
sion seven agrees in these sum rules as well. But we also recognise that the
quark, gluon and triple-gluon condensate in Eqs. (11.50) and (11.51) have
different signs. Furthermore, the Wilson coefficients in Eqs. (11.41), (11.42),
(11.43) do not contribute to the sum rule for λ4E. This turns out to be crucial
for the stability of this sum rule, since the mass dimension five condensate
gives rise to the largest contribution. The consequences of this behaviour are
studied in chapter 12 in more detail. Finally, we note that in Eq. (11.49)
the quark, the gluon and the triple-gluon condensate do not appear, because
they enter the sum with opposite signs.
Besides, all sum rules involve the HQET decay constant F (µ), which was
defined in Eq. (2.33). We only include leading order contributions in the
sum rule expression in order to be consistent in our sum rule analysis. The
sum rule can be found in e.g. [85]

F 2(µ) · e−Λ̄/M =
2NcM

3

π2
·G2

(ωth
M

)
− 〈q̄q〉+ 1

16M2
〈q̄gsG · σq〉 . (11.52)

By inserting the sum rule for the decay constant F (µ) into Eqs. (11.49) to
(11.51), it is possible to extract the parameters λ2E,H . Besides, the depen-
dence on the low-energy parameter Λ̄ drops out due to the insertion above. In
the next section, we perform the numerical analysis and study the behaviour
of the sum rules in more detail.





Chapter 12

Numerical analysis

In this section, we compute the parameters λ2E,H by employing the sum rules
stated in Eqs. (11.49) to (11.51). As mentioned before, we make use of the
sum rule in Eq. (11.52) in order to eliminate the dependence on the decay
constant F (µ) and on the HQET parameter Λ̄. The numerical inputs for the
condensates and other parameters are collected in table 12.1.

Parameters Value Ref.

αs(1 GeV) 0.471 [194, 195]

〈q̄q〉 (−0.242± 0.015)3 GeV3 [196]

〈αs

π
G2〉 (0.012± 0.004) GeV4 [51, 197]

〈q̄gG · σq〉 / 〈q̄q〉 (0.8± 0.2) GeV2 [198]

〈g3sfabcGaGbGc〉 (0.045± 0.045) GeV6 [51]

Λ̄ (0.55± 0.06) GeV [199]

Table 12.1: List of the numerical inputs, which we use in our analysis. The
renormalisation scale is chosen to be µ = 1 GeV. For the strong coupling
constant we use the two-loop expression with Λ

(4)
QCD = 0.31 GeV taken from

[194, 195].

During the determination of the optimal window for the Borel parameter M
for the sum rules in Eqs. (11.49) to (11.51), we find that these sum rules are
dominated by contributions from excited states and the continuum. Thus,
the estimation for the parameters λ2E,H(1 GeV) and their ratio

R(µ) = λ2E(µ)

λ2H(µ)
(12.1)

at µ = 1 GeV is unreliable since we are not able to separate out the ground
states in the dispersion integrals in Eqs. (11.20), (11.21) by a proper choice
of ωth. This is a crucial step in the sum rule analysis. In order to avoid
this issue, we consider different combinations of Eqs. (11.49) to (11.52) such
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that the separation of the ground state is possible and continuum and higher
excited states are suppressed.
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Figure 12.1: Analysis for the continuum dominated sum rule (11.50). The left
plot shows the complete sum rule for different choices of ωth with respect to
the Borel parameter M . Contrary, the right plot illustrates each contribution
individually up to the vacuum condensate of mass dimension seven and hence
indicates the relative sizes of each contribution.

Before we study these combinations in more detail, we investigate the original
sum rules in Eqs. (11.49) to (11.51) first to determine whether the continuum
dominance in these sum rules have a great effect on the parameter extraction.
In figure 12.1, we plot the contributions for λ4H from each vacuum condensate
and we notice that each correction enhances the total value of this param-
eter. Interestingly, the quark-gluon condensate contributes the most to the
sum rule. Usually, we expect that the size of the contributions are ordered in
the sense that the Wilson coefficient for the perturbative contribution is the
largest among the Wilson coefficients in the power expansion and conden-
sates contribute less with increasing mass dimension. Therefore, the OPE
shows good convergence and the extracted quantities are reliable within this
framework. In our case, we observe a different behaviour due to the large Wil-
son coefficient in front of the quark-gluon condensate. Nevertheless, we see
that beyond this condensate, the contributions become increasingly smaller
indicating that the OPE starts to converge. This particular behaviour is a
well-known fact if correlation functions of currents with a large mass dimen-
sion are considered, because local condensates with a large mass dimension
dominate for small values of the Borel parameter M . The left plot in figure
12.1 illustrates the sum of all contributions up to the condensate with mass
dimension seven for different choices of the threshold parameter ωth. We
conclude that the value of the sum rule with fixed threshold parameter ωth
is stable under the variation of the Borel parameter M . Additionally, this is
also emphasised by the small error bands due to the variation of ωth within
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its uncertainties. This observation turns out to be crucial in the study of
the correlation of ωth and M . In general, the determination of ωth depends
on the Borel parameter M , while the determination of the Borel window re-
quires a particular choice for the threshold parameter ωth. In order to obtain
the optimal values for both the threshold parameter and the Borel window,
it is possible to scan each value independently until the conditions for the
determination of those parameters are satisfied. However, due to the small
variation of ωth with respect to the Borel parameter M , it is sufficient to
choose one point in the parameter space spanned by ωth and M such that
the conditions are met. We account for the correlation by varying both ωth

and M within their uncertainties and take the maximal deviation as an esti-
mate for the error induced by the Borel parameter M .
We continue to determine the optimal window for the threshold ωth in two
different ways, in the end it turns out that both results coincide. In the
first method, we make use of the HQET decay constant F (µ) and vary this
function in figure 12.2 for different values of ωth. The decay constant yields
reliable estimates for the particular choice 0.8 GeV ≤ ωth ≤ 1.0 GeV due to its
stable behaviour. Nevertheless, we need to prove that this window provides
reasonable results. For this check, we extract the physical decay constant fB
from F (µ) within the range 0.8 GeV ≤ ωth ≤ 1.0 GeV via relation (2.34) and
provide the comparison in figure 12.3.
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Figure 12.2: Analysis for the sum rule (11.52) for the HQET decay constant.
We plot the constant for different choices for ωth in order to investigate the
stability of F (µ) with respect to the Borel parameter M .

According to figure 12.2, the dependence on the threshold parameter ωth in
the desired range is minimised if M ≥ 0.8 GeV is chosen, since the sum
rules become stable and reliable beyond this boundary. We need to keep in
mind that we neglect higher order corrections in αs to the decay constant
F (µ), which are known to be large [179], especially the O(αs) corrections.
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Figure 12.3: Translation of the HQET decay constant F (µ) to the physical
decay constant fB for various threshold parameters ωth via Eq. (2.34). The
dashed black line denotes the value for fB from lattice QCD [200], while the
green band indicates the corresponding error.

Additionally, we cut off the OPE expansion in vacuum condensates at mass
dimension seven and neglect all the contributions beyond this dimension.
Hence, it is appropriate to assume a conservative uncertainty of 50%. The
authors in [85] discuss the impact of these corrections and conclude that the
overall uncertainty on F (µ) gets reduced to 15%− 20%.
The second method is more established in the literature and relies on direct
manipulation of the sum rules. Here, the idea is to take the derivative of
the sum rule under investigation with respect to the inverse Borel param-
eter ∂/∂(−1/M) and divide this new expression by the original sum rule.
This provides a direct method to determine an estimate for the parameter
Λ̄, which can be adjusted by choosing a range for ωth such that Λ̄ coincides
with values from the literature, i.e. the value stated in table 12.1. In the
end, both methods provide the same interval 0.8 GeV ≤ ωth ≤ 1.0 GeV.
The analysis of the sum rule in Eq. (11.49) proceeds similarly. In figure

12.4, we plot again the contribution from each vacuum condensate individ-
ually. For this particular case, the contributions from the quark, gluon and
triple-gluon condensate get cancelled in the sum rule for the combination
(λ2H +λ2E)

2. Moreover, the quark-gluon condensate with mass dimension five
gives rise to the largest contribution again. Beyond this order the size of the
contributions decreases indicating the convergence of the OPE. The second
plot illustrates the complete sum rule for this combination as a function of
the Borel parameter M for different choices of ωth. We fix this parameter
by applying both methods from above and obtain again the range 0.8 GeV
≤ ωth ≤ 1.0 GeV.
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Figure 12.4: Analysis for the continuum dominated sum rule (11.49). The left
plot shows the complete sum rule for different choices of ωth with respect to
the Borel parameter M . Contrary, the right plot illustrates each contribution
individually up to the vacuum condensate of mass dimension seven and hence
indicates the relative sizes of each contribution.
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Figure 12.5: Analysis for the continuum dominated sum rule (11.51). The
left plot shows the complete sum rule for different choices of ωth with re-
spect to the Borel parameter M . Due to larger deviations from the central
values, this sum rule seems less stable compared to Eqs. (11.49), (11.50).
The right plot illustrates each contribution individually up to the vacuum
condensate of mass dimension seven and provides an explanation for the lack
of convergence.

While the extraction of the threshold for the parameters λ4H and (λ2H + λ2E)
2

is straightforward due to the convergence of the OPE and the stability of
the sum rule, we encounter several problems in the analysis of the sum rule
for the parameter λ4E. Figure 12.5 is structured similarly to the plots for the
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previous sum rules. The left panel shows the combination of all contribu-
tions up to condensates of mass dimension seven, the right panel presents
each contribution individually. We notice for this particular sum rule that
the quark and the gluon condensate enter with opposite signs in Eq. (11.51)
compared to Eqs. (11.49) and (11.50). This leads to an unreliable and there-
fore unstable sum rule. Furthermore, the dominant condensate with mass
dimension five is significantly reduced in comparison to the sum rules in
Eqs. (11.49), (11.50) since the Wilson coefficients in Eqs. (11.41), (11.42),
(11.43) vanish in this case. In addition to that the vacuum condensate with
mass dimension seven seems to be another sizeable correction, hence the
convergence of the OPE itself is not guaranteed. In order to ensure the con-
vergence of the OPE, it would be necessary to include condensates of even
higher mass dimension and higher order corrections in αs to the computation
of the Wilson coefficients C i

X . Adding condensates of higher mass dimension
to the OPE generates additional problems, because their values are not nu-
merically known from lattice QCD or sum rule analyses. A possibility here
is to use the vacuum saturation approximation, although the applicability
and accuracy is unknown. Higher order corrections in αs require a detailed
loop integral computation similar to the evaluation in [85] for a correlation
function containing a two-particle and a three particle current. Albeit this
calculation requires some effort, it is nevertheless feasible.
These issues have a direct impact on the determination of the threshold in-
terval ωth. It follows that the determination via the derivative method fails
and we are only left to use the decay constant F (µ) and its relation to the
physical constant fB to obtain the threshold range. Additionally, the devi-
ation from the central values by varying the threshold ωth is also enhanced
compared to the sum rules in Eqs. (11.49), (11.50). This fact points towards
less stable sum rules with larger uncertainties. Ultimately, we end up with a
parameter range of 0.55 GeV ≤ ωth ≤ 0.65 GeV.
Next, we investigate the determination of the optimal Borel window by using
figures 12.1 to 12.5. Notice that we show all sum rules for the Borel param-
eter range between 0.2 and 1 GeV. The optimal window is ideally chosen in
the mid-range such that the condensate contributions are not too dominant
for small values of M as well as the perturbative contribution for large values
of M . As it can be seen from Eqs. (11.49) to (11.51), the Borel parame-
ter occurs with the highest power in the perturbative contribution and the
condensate with mass dimension seven has no M dependence at all. This
explains the behaviour which is relevant for the choice of the Borel window:
For small M , the condensates tend to contribute the most, especially the con-
densate with mass dimension seven, while for larger M the perturbative part
dominates. Hence, we fix the lower bound of the Borel window by requiring
that the contribution of the condensate with the highest mass dimension,
i.e. with mass dimension seven, does not exceed 40% of the total OPE. As a
result, the lower bound for the sum rules (11.49) and (11.50) is set to be at
0.5 GeV ≥M . If we compare this choice with figures 12.1 and 12.4, we note
that at this bound the sum rule becomes stable and thus reliable. But for the
parameter λ4E in Eq. (11.51), the sum rule is unstable and the above method
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does not apply. Nevertheless, we still choose the lower bound to be at 0.5
GeV by investigating the behaviour of the sum rule depicted in figure 12.5
and reading off the bound from this plot based on its stability. We account
for this rough estimation of the lower bound in the error analysis.
In order to determine the upper bound, we define a new quantity

Rcont. = 1−
∫ ωth

0
dω 1

π
ImΠOPE

X (ω)e−ω/M∫∞
0

dω 1
π
ImΠOPE

X (ω)e−ω/M
X ∈ {H,E,HE} . (12.2)

The idea is that the integral in the numerator in the above Eq. (12.2) captures
the duality interval of the ground state, which is an isolated pole if we choose
the threshold ωth properly. The integral in the denominator describes the
contribution from the entire hadronic spectrum including the ground state,
as well as the continuum and excited states. Thus, Eq. (12.2) measures
the role of the continuum and higher resonances in the sum rules. For a
reliable extraction of the parameters λ2E,H , we expect the upper bound to be
Rcont. ≤ 50% for M ≤ Mmax. But when we apply this criterion for the sum
rules in Eqs. (11.49) to (11.51), we notice that the continuum and excited
states dominate the sum rule such that Rcont. ∼ 96%. This is an expected
feature for a correlation function with currents of large mass dimension, thus
this method to determine the upper bound for M is not applicable.
In order to nevertheless establish the upper boundary of the Borel window,
we consider combinations of λ2E,H together with the HQET decay constant
F (µ). These combinations should be chosen such that the continuum and
excited states are suppressed. One possible choice for these combinations is
the following:

(λ2H + λ2E)
2

λ4H
= (1 +R)2

F (µ)2M4e−Λ̄/M + 1
π
F (µ)2λ4He

−Λ̄/M

F (µ)2M4e−Λ̄/M − 1
π
F (µ)2λ4Ee

−Λ̄/M , (12.3)

where the quantity R is defined according to Eq. (12.1). We choose the
first combination, because the quark-gluon condensate contribution in the
sum rule for λ4H (11.49) reduces the value of Rcont. as this combination is the
dominant part in the sum rule expression. The second combination is use-
ful since it is dominated by large O(α0

s) contributions from F (µ) such that
λ4E,H become numerically small. This ordering gets spoiled if we introduce an
additional factor of M4 into the sum rule for F (µ) which is necessary on di-
mensional grounds. But we are able to restore the desired ordering by adding
a suppression factor 1

π
in front of λ2E,H . In the end, both combinations yield

a continuum suppression of less than 50% (Rcont. ≤ 50%) for Mmax = 0.8
GeV. The lower bound can be determined from the arguments given above
and is around Mmin = 0.5 GeV. Before we derive the parameters λ2E,H from
the combinations in Eq. (12.3), we present the finally adopted Borel win-
dow and the threshold range and finally plot the combinations in figure 12.6
with respect to the Borel parameter M for different thresholds ωth. Here,
the green shaded area denotes the Borel window and we observe that within



168 CHAPTER 12. NUMERICAL ANALYSIS

Sum rule Borel window threshold interval

Eq. (12.3) 0.5 GeV ≤M ≤ 0.8 GeV 0.8 GeV ≤ ωth ≤ 1.0 GeV

Table 12.2: Summary of the threshold and Borel window for the combination
in Eq. (12.3).

this specific window the sum rules are stable and therefore suitable for an
extraction of the distribution amplitude parameters.
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Figure 12.6: Combinations of the sum rules in Eqs. (11.49) to (11.51) chosen
to suppress the continuum contributions and the excited states for different
threshold parameters ωth.

We are now set to determine the parameters λ2E,H from the combinations
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shown in Eq. (12.3). Notice that there are several sources for total uncer-
tainty in the final ranges of the parameters. Apart from the intrinsic error of
the OPE expansion related to the truncation of vacuum condensates beyond
mass dimension seven and to the neglect of higher order terms in αs in the
Wilson coefficients in Eq. (11.25), there occur uncertainties generated by the
input parameters. We account for them by varying each input parameter
individually within their uncertainty and add them in the end in quadrature.
Besides, there is also an error induced by the sum rule approach itself which
is connected to the application of the quark-hadron duality. These intrinsic
errors are in general hard to estimate, thus we assume a conservative error
of 30%− 50%.
In order to derive the value of the strong coupling constant αs(1 GeV) = 0.471

in table 12.1, we make use of the QCD scale Λ(4)
QCD = 0.31 GeV up to two-loop

order. The uncertainty is determined by varying the scale Λ
(4)
QCD in the range

0.29GeV ≤ Λ
(4)
QCD ≤ 0.33GeV, which results into a parameter range for αs

of 0.44 ≤ αs ≤ 0.50. For the R-ratio, we get the following estimate

R(1GeV) = 0.1 +

(
+0.03
−0.03

)
ωth

+

(
+0.01
−0.02

)
M

+

(
+0.01
−0.01

)
αs

+

(
+0.01
−0.01

)
〈q̄q〉

+

(
+0.02
−0.03

)
〈αs

π
G2〉

+

(
+0.05
−0.04

)
〈q̄gG·σq〉

+

(
+0.02
−0.02

)
〈g3sfabcGaGbGc〉

= 0.1± 0.07 (12.4)

while for λ2H we obtain

λ2H(1GeV) =
[
0.154 +

(
+0.002
−0.003

)
ωth

+

(
+0.002
−0.004

)
M

+

(
+0.001
−0.001

)
〈αs

π
G2〉

+

(
+0.001
−0.001

)
〈q̄gG·σq〉

+

(
+0.001
−0.001

)
〈g3sfabcGaGbGc〉

]
GeV2

= (0.154± 0.006)GeV2 . (12.5)

We do not include the uncertainties caused by αs and the vacuum condensates
of mass dimension three as well as six since they do not change the central
value significantly. However, they are inserted into the final result for λ2E due
to their sizeable effect.

λ2E(1GeV) =
[
0.009 +

(
+0.004
−0.005

)
ωth

+

(
+0.002
−0.003

)
M

+

(
+0.001
−0.001

)
αs

+

(
+0.003
−0.003

)
〈q̄q〉

+

(
+0.003
−0.004

)
〈αs

π
G2〉

+

(
+0.007
−0.006

)
〈q̄gG·σq〉
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+

(
+0.002
−0.002

)
〈g3sfabcGaGbGc〉

]
GeV2

= (0.009± 0.009)GeV2 . (12.6)

There are several comments on the error analysis in Eqs. (12.4), (12.5)
and (12.6) in order. First, there generally exists a correlation between the
threshold parameter ωth and the Borel parameter M , especially in the un-
certainty estimation. As have previously discussed, we follow two different
paths for the determination of the threshold, i.e. the derivative method and
the method via the HQET decay constant. In the derivative method, we
obtain the low-energy parameter Λ̄ as a function of ωth and fix the thresh-
old parameter such that we are able to reproduce the value of Λ̄ from table
12.1. This value naturally introduces an error which we use to determine
the error on ωth. Hence, this method provides a more rigorous uncertainty
estimate than the method via the HQET decay constant, where the errors
are introduced by estimating the effects of higher order corrections in αs to
F (µ) in order to compare this constant to the value of the physical decay
constant fB known from lattice QCD [200]. At this point, it is already nec-
essary to choose the Borel parameter M to fix ωth. But since the variation
of ωth with respect to M is negligible, we can argue that it is sufficient to
choose one point in the parameter space of both parameters, i.e. set M to
a value which is supposed to be in the mid range such that neither the con-
densate contributions for small M or the continuum and excited states for
large M dominate. The variation of ωth with respect to M usually provides
a guidance for the first choice of M based on the stability of the sum rule.
After fixing ωth, we can determine the Borel window by the arguments from
above. If the benchmark value for M to set ωth lies within this window, this
choice is justified a posteriori. In order to consider the uncertainties of these
parameters, we vary the parameters within their errors and choose the max-
imal possible deviation from the sum rule from the central values. Thus, we
account for the correlation between these parameters, as we described above
in more detail.
Notice that the diagonal structure of the correlation function allows us to
state an upper bound for λ2E,H due to the positive definiteness of the spectral
density. The idea is to perform the limit ωth →∞ in Eqs. (11.49) to (11.51)
and consequently include all contributions, in particular the continuum and
higher excited states. This leads to an upper bound on these parameters sim-
ilarly to the fD and fDs decay constants [201]. The uncertainties on these
bounds are determined by varying the input parameters within their range
in table 12.1 and add them in quadrature. Note that the intrinsic error due
to the QHD approximation in the sum rule approach does not appear in this
case.

λ2H < 0.48+0.17
−0.24 GeV2 , (12.7)

λ2E < 0.41+0.19
−0.24 GeV2 . (12.8)

When we now finally extract λ2E,H at µ = 1 GeV, these estimates are expected
to lie below the bounds stated in Eqs. (12.7), (12.8). We add the uncertain-
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ties from neglecting higher order corrections as well as from the sum rule
approach itself to the uncertainties originating from the input parameters in
Eqs. (12.4), (12.5) and (12.6) in order to obtain the final numbers with a
conservative error estimate.

λ2E(1 GeV) = (0.01± 0.01) GeV2 , (12.9)
λ2H(1 GeV) = (0.15± 0.05) GeV2 , (12.10)

R = 0.1± 0.1 . (12.11)

Interestingly, we note that if we directly consider Eqs. (11.49), (11.50) and
take the Borel window and the threshold parameter ωth as shown in table
12.2, we obtain the values:

λ2E(1 GeV) = (0.05± 0.03) GeV2 , (12.12)
λ2H(1 GeV) = (0.16± 0.05) GeV2 , (12.13)

R = 0.3± 0.2 . (12.14)

An extraction for λ2E is in general possible if we make use of (11.51) with
the threshold window 0.55 GeV ≤ ωth ≤ 0.65 GeV depicted in figure 12.5,
although we expect this value to be not reliable due to the stability issues in
this sum rule. Thus, we observe that the values in Eqs. (12.12) to (12.14),
which are dominated by the continuum contributions and excited states in
our chosen Borel window from table 12.2, agree with the parameters in Eqs.
(12.9) to (12.11) within their uncertainties. In particular the parameter λ2H
matches nearly perfectly, which indicates the stability and reliability of the
sum rule, even in the presence of dominating effects from the continuum.
However, the value for λ2E changes significantly, which is expected since the
convergence of the OPE is not guaranteed and the sum rule in Eq. (11.51)
is rather unstable with respect to the variation of the Borel parameter and
threshold parameter ωth. This is in general reflected in the determination of
ωth, where we observe that the methods are not immediately applicable as
for the other sum rules. Nevertheless, all estimates stated above lie below
the upper bounds in Eqs. (12.7), (12.8).
In table 12.3, we compare our results with all currently known values.

Parameters [84] [85] this work ([177])

R(1 GeV) (0.6 ± 0.4) (0.5 ± 0.4) (0.1 ± 0.1)

λ2H(1 GeV) (0.18 ± 0.07) GeV2 (0.06 ± 0.03) GeV2 (0.15 ± 0.05) GeV2

λ2E(1 GeV) (0.11 ± 0.06) GeV2 (0.03 ± 0.02) GeV2 (0.01 ± 0.01) GeV2

Table 12.3: Comparison of our results for the parameters λ2E,H and R at
µ = 1 GeV.

We are now able to explain the deviation between the works [84] and [85].
One reason surely lies in the sum rule for the HQET decay constant F (µ) in
Eq. (11.52). While [84] includes only O(αs) contributions, which is indeed
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justified since the OPE itself shows good convergence, [85] also add O(αs)
corrections to obtain a consistent O(αs) extraction of the parameters λ2E,H .
But these additional O(αs) contributions turn out to be large, especially for
the perturbative Wilson coefficient [179]. This fact already explains a factor
of two deviation between the two analyses. Furthermore, the authors of [85]
add O(αs) corrections to the quark-gluon condensate, add the corresponding
triple-gluon condensate with O(αs) accuracy to prove the convergence of
the OPE and resum their result in the end. These steps finally lead to the
deviation which we observe.
Turning to our results, we first note that the central value for λ2H is in the
ballpark of [84], but does not agree with [85] within the errors. Due to the
fact that the continuum dominated result in Eq. (12.13) agrees with the
modified value (12.10) and due to the convergence of the OPE, we conclude
that this value is an reliable estimate. Based on these observations, we do
not expect that the inclusion of O(αs) corrections to the Wilson coefficients
or the inclusion of vacuum condensates with higher mass dimension change
the final value significantly.
This observation certainly does not apply to the parameter λ2E. The values
from the continuum dominated sum rule in Eq. (12.12) and the modified
sum rules in Eq. (12.9) differ significantly, which follows from the instability
of the sum rule and the lack of convergence of the OPE, see figure 12.5.
Our extracted estimate largely deviates from previous extractions and has a
large uncertainty. It is clear that further studies of this parameter using a
correlation function with two three-particle currents is necessary in order to
check the convergence of the OPE in general, but also to remove the large
uncertainty. Here, we expect that the value starts to approach the values
in [84] and [85]. This will also alter the value of R-ratio towards the other
values stated in table 12.3.
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Conclusion

The decay of B mesons into light mesons can be described within the QCD
factorisation approach. This factorisation introduces B-meson distribution
amplitudes as well as distribution amplitudes for the two light mesons, which
capture the long-distance effects of the underlying process. While the prop-
erties of light meson distribution amplitudes are in general quite well known,
the properties for B-meson distribution amplitudes are less well known, espe-
cially beyond leading power in the 1/mb-expansion. The HQET parameters
λ2E,H are important quantities in the description of the B-meson distribution
amplitude since they are for instance used in the normalisation of B-meson
three-particle distribution amplitude. These parameters have been studied
in previous works [84, 85]. Albeit they both use the same off-diagonal cor-
relation function, which consists of one three-particle and one two-particle
current, their final results differ by roughly a factor of three, although the
ratio R = λ2E/λ

2
H is nearly equal. The work [84] performs a leading order

analysis in αs up to vacuum condensates of mass dimension five, while the
discussion in [85] includes condensates up to mass dimension six and a rig-
orous treatment of all O(αs) contributions. In particular, this includes loop
corrections for the quark-gluon condensate as well as the O(αs) corrections
for the HQET decay constant F (µ).
In order to resolve this tension, we have investigated alternative QCD sum
rules, which are based on a diagonal correlation function including two three-
particle currents. The advantage of this approach is that the sum rules are
positive definite, thus we expect that the quark-hadron duality holds much
better than for an off-diagonal correlation function. In our evaluation, we
have considered all vacuum condensates up to mass dimension seven to lead-
ing order in αs. For consistency, we have also worked with the leading order
expression for the HQET decay constant F (µ). However, we have noticed
that the sum rules are dominated by continuum contributions and excited
states, hence we have constructed combinations of our sum rules to guaran-
tee that the ground state becomes the dominant contribution in the Borel
parameter range which we apply for our analysis.
We have observed that the two sum rules in Eqs. (11.49) and (11.50) show
good convergence, since the contributions beyond the vacuum condensate of
mass dimension five become smaller indicating the convergence of the OPE.
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But this is not the case for the sum rule in Eq. (11.51), because the contri-
butions from the quark-gluon condensate and condensate of mass dimension
seven are still sizeable. The combination of sum rules in Eq. (12.3) shows
good convergence and allows for the extraction of the parameters λ2E,H , which
are more reliable due to the suppression of the continuum and excited state
contributions.
Our final results are listed in table 12.3. The parameter λ2H is in good agree-
ment with the original work [84], but the parameter λ2E differs from the
previous analysis, which illustrates that the sum rules are not reliable due to
the lack of convergence of the OPE. Interestingly, we found that the original
sum rules from Eqs. (11.49) to (11.51), which are still dominated by contri-
butions from the hadronic spectrum, yield a similar value for λ2E,H .
As future improvements, one might include O(α2

s)-contributions into the
analysis to obtain even more accurate results. Moreover, the inclusion of
vacuum condensates of even higher mass dimension into the OPE is also de-
sirable, especially for the sum rules for λ2E, where the convergence of the OPE
is not clear and therefore the result not fully reliable. However, one encoun-
ters different problems at this point, for instance the values of the vacuum
condensates with high mass dimension are not known. Usually, one applies
the vacuum saturation approximation at this stage and relates these conden-
sates to a product of lower dimensional condensates for which the values are
known. But there exists no reliable estimate regarding the applicability of
the vacuum saturation approximation. Although the computation becomes
more accurate by including O(α2

s) corrections, we are not able to reduce the
intrinsic uncertainties of the sum rule approach itself. Nevertheless, we ex-
pect that these corrections will improve the convergence of the OPE for the
parameter λ2E such that the extracted value will move towards the values
from [84, 85]. A similar effect on the R-ratio is also expected.



Project III:

B-meson decay into a proton and dark
antibaryon from QCD light-cone sum rules

This project led to the publications [202, 203].





Chapter 14

Introductory Remarks

14.1 Light-cone sum rules: Overview
In the QCD sum rule approach described in section 11.2, the OPE is used
to treat a correlation function with two local operators at different points
in position space in the limit x → 0. Within this framework, short- and
long-distance physics are disentangled such that high-energy effects are then
encoded in perturbatively calculable Wilson coefficients and non-perturbative
effects are parameterised by local vacuum matrix elements of increasing mass
dimension.
Light-cone sum rules (LCSRs) [54, 55] can be viewed as an extension of
the QCD SR approach in a sense that the QCD SR method is merged with
the physics of hard-exclusive processes. Instead of considering correlation
functions with vacuum initial and final states, we now examine transitions
between a hadronic initial state to the vacuum final state. Thus, the corre-
lation functions are now typically of the form

ΠKL(q
2) = i

∫
ddx eiqx 〈0|T{jK(x)jL(0)} |M〉 . (14.1)

In this context, the initial state |M〉 might stand for a light meson like pions,
a heavy meson like the B-meson or even a baryon like a proton or neutron.
In our case, we are particularly interested in a proton as the initial state. To
explain the light-cone dominance, we contract for simplicity the open indices
K,L in the correlation function by multiplying the metric tensor gKL. But
this depends on the particular choice of the Lorentz structure of the currents
in the correlation function. Moreover, we assume only light quark content
inside the currents jK,L in order to drop dependencies on the quark masses
[204]. From Eq. (14.1), we can identify the correlation function as a purely
x-dependent piece

Π(x2) ≡ i 〈0|T{jK(x)jK(0)} |M〉 . (14.2)

In general, the exponential factor eiqx in Eq. (14.1) acts as a cutoff due
to its oscillating behaviour and thus determines essentially the size of the
dominating contribution inside Π(x2) to good approximation as a function
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of q2. After Fourier transforming Π(x2)

Π(x2) =

∫
dω eiωx

2

Π(ω) (14.3)

we can rewrite Eq. (14.1)

Π(q2) =

∫
ddx eiqx

∫
dω eiωx

2

Π(ω) =

∫
dωΠ(ω)

∫
ddx ei(qx+ωx

2) . (14.4)

Completing the square and redefining y := x+ q/(2ω), we end up with

Π(q2) =

∫
ddx

∫
dωeiωx

2

eiQ
2/(4ω)Π(ω) (14.5)

with Q2 ≡ −q2. Since the measure in Eq. (14.5) is invariant under con-
stant shifts, we can immediately switch back from y to x in the integration
measure. We observe for large ω that at least one of the integrands |ωx2|
or |Q2/(4ω)| strongly oscillates and hence suppresses the contribution to the
integral. Therefore, we obtain only sizeable contributions to Eq. (14.1) if
two conditions are satisfied simultaneously:

|ωx2| ≤ 1 ,
Q2

4|ω|
≤ 1 . (14.6)

This leads to the final constraint

|x2| ≤ 4

Q2
. (14.7)

For large Q2 → ∞, we work in the domain of small |x2| → 0, i.e. near the
light-cone. Moreover, in the limit x2 → 0, or more general in the region of
small x2, it is possible to rewrite the time-ordered product of Eq. (14.1) in
terms of an expansion in bilocal operators

T{jK(x)jL(0)} =
∑
t

Ct(x
2)Ot(x, 0) . (14.8)

This is exactly in the spirit of the OPE expression which we have encoun-
tered during the discussion of QCD SRs in section 11.2. Notice that in the
discussion in section 11.2 the argumentation from above is also possible, in
particular the region near the light-cone x2 ∼ 0 is also dominating in this
method. The difference lies in the correlation function under consideration
as well as in the general structure of the OPE. While the QCD SR approach
uses vacuum matrix elements and the OPE encodes the long-distance effects
in terms of local composite operators, which are then parameterised in form
of vacuum condensates of increasing mass dimension, the LCSR approach
makes use of more complicated transitions between a hadronic initial state
and the vacuum. In addition to that the low-energy physics is described by
matrix elements of bilocal operators Ot(x, 0), as follows from substituting
Eq. (14.8) into (14.2). Furthermore, the ordering parameter is now twist
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instead of the mass dimension of the operators.
In general, the expansion in Eq. (14.8) works since the short-distance physics
is encoded in the Wilson coefficients Ct(x2) for large Q2 and asymptotic free-
dom guarantees that perturbation theory can be applied for the determina-
tion of those coefficients. Additionally, it is possible to truncate Eq. (14.8) in
the limit x2 → 0 at sufficiently large twists to obtain a reasonable accuracy,
similar to the OPE in the QCD sum rule approach. But as it has been seen
for instance in the determination of the parameter λ2E in chapter 12, this
might become tricky since the convergence of the OPE is not obvious at first
sight. This makes it necessary to include higher twist contributions into the
analysis in order to extract reasonable and reliable results.
The direct physical connection of twist to a conformal partial wave expansion
makes it apparent to parameterise the matrix elements of bilocal operators
Ot(x, 0) in terms of distribution amplitudes of increasing twist. As it has
been stressed before, this is one of the major differences between the light-
cone sum rule approach and the QCD sum rule approach. In section 2.3,
we have already introduced the B-meson distribution amplitudes, which de-
scribe the transition between an initial B-meson to a vacuum state. For
the following discussion, which belongs to the domain of new physics sce-
narios, we encounter three particle distribution amplitudes with a proton in
the initial state. Details on the parameterisation of these objects and their
connection to the definite twist amplitudes are provided in appendix E. Be-
fore we elaborate more on computational steps, we first introduce the main
aspects of the underlying model and emphasise the particular importance of
the channel B → p + missing energy in a very brief manner.

14.2 B-Mesogenesis model
In the following sections, we investigate two different versions of the B-
Mesogenesis model. This model has been proposed in [205–207] and provides,
besides the explanation of the relic dark matter abundance in the universe,
the explanation for observed matter-antimatter asymmetry in the universe

YB ≡ (nB − nB̄)/s = (8.718± 0.004) · 10−11 , (14.9)

which can be deduced from measurement of the Cosmic Microwave Back-
ground (CMB) [208, 209] and Big Bang Nucleosynthesis (BBN) [210, 211].
But in order to guarantee the existence of this asymmetry in Eq. (14.9), the
three Sakharov conditions [212] have to be satisfied:

• Processes that violate baryon number symmetry appear in the universe;

• C and CP - violation appear in the universe;

• universe is in departure from thermal equilibrium.

In other words, one consequence of the departure from thermal equilibrium
is the violation of the discrete time reversal symmetry (T-symmetry) such
that the combined discrete symmetry CPT is conserved, as it is supposed to
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be for every Poincare invariant theory. In this model, the main mechanism
relies on these three conditions. First, we start with a heavy scalar particle Φ
with a mass MΦ > 11 GeV which decays at a temperature of TR ∼ 15 MeV,
at which the universe is in a non-equilibrium state, into bb̄-pairs. Due to the
low temperature involved in this mechanism, we observe to a large amount
the hadronisation of these quasi-free particles to bound states in form of
mesons and anti-mesons, in particular to bound states like the B±-, B0

d,s-
and B̄0

d,s-mesons. From the SM we know that there occur oscillations in the
neutral B0

d,s− B̄0
d,s-systems as typical examples for CP-violating effects [211],

which are known to be sizeable for B-meson systems. These observations
can be parameterised in terms of the observable AqSL [206]

AqSL =
Γ(B̄0

q → B0
q → f)− Γ(B0

q → B̄0
q → f̄)

Γ(B̄0
q → B0

q → f) + Γ(B0
q → B̄0

q → f̄)
, (14.10)

which can also be expressed in terms of the physical mass and width differ-
ences ∆M q = 2|M q

12| as well as ∆Γq = 2|Γq12| cosφ
q
12

AqSL = −
∣∣∣∣ Γq12M q

12

∣∣∣∣ sin(φq12) . (14.11)

Here, φq12 denotes the relative phase between M q
12 and Γq12. Such CP-violating

effects trigger various decays with a mixing between the dark sector and the
SM sector [205–207]. Of particular interest in the following work is the decay
of a B-meson into a SM baryon B and a dark matter particle Ψ, B → BΨ,
but decays into additional mesons in the final states are also possible. The
introduction of the dark matter particle Ψ has an impact on the baryon
number conservation. By considering each sector individually, we observe
baryon number violation, which yields the matter-antimatter asymmetry,
but in combination with the dark sector, which interacts only via gravity
or via a heavy scalar mediator boson Y with the SM, we see that the total
baryon number of the universe is conserved if we assign the particle Ψ a
baryon number of −1. Notice that it is crucial for this model that we work
at low reheating temperature TR = 15 MeV such that it is possible to obtain
distinctive experimental signatures in experiments like Belle-II [205, 206].
In the minimal version of this model, it is necessary to introduce two addi-
tional particles, a SM singlet scalar anti-baryon φ and a SM singlet Majorana
fermion ξ. The dark matter particle Ψ has a mass of the order of a few GeV
and decays into these additional particles Ψ→ φ ξ. Without this restriction,
the particle Ψ would just decay into light anti-baryons such that the con-
served baryon number symmetry would be violated again. Furthermore, we
assume the existence of a Z2-symmetry which stabilises the φ and ξ particles
such that further decays via proton or electron exchange are not allowed and
forbidden by kinematics. The corresponding interaction is then given by a
renormalisable Yukawa type interaction, i.e.

L ∈ −ydΨ̄φξ + h.c. . (14.12)
Besides these particles, we need to claim the existence of another boson,
namely a colour-triplet scalar particle Y serving as the mediator for the inter-
action with the dark sector. Since the mediator boson is supposed to interact
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with SM quarks, we require it to be a colour triplet. Furthermore, this boson
is a singlet under the weak isospin symmetry SU(2)L, thus it does not dis-
tinguish between left- and right-handed particles. But for the hypercharge,
we see that the model allows for two possibilities, i.e. QY = {−1/3, 2/3}.
We focus in the following on the model with QY = −1/3 and refer to [205–
207] for more details on the other version of this model. Nevertheless, the
general approach and the computational methods elaborated in this thesis
can be also applied to the second model after a few modifications. With this
particle content, we have built the minimal realisation of the B-Mesogenesis
model. In table 14.1, we summarise all additional particles together with
their quantum numbers:

Field Spin QEM B colour Z2 mass

Φ 0 0 0 3 +1 11− 100 GeV

Y 0 −1
3
−2

3
3 +1 O(TeV)

Ψ 1
2

0 −1 1 +1 O(GeV)

ξ 1
2

0 0 1 −1 O(GeV)

φ 0 0 −1 1 −1 O(GeV)

Table 14.1: Quantum numbers of minimal realisation of the B-Mesogenesis
model with hypercharge QY = −1/3. In general, the model also allows for
the hypercharge QY = 2/3, which we disregard in this work.

Although this model exhibits a rich phenomenology, we restrict ourselves in
this work to the decay mode B → pΨ, because the application of the LCSR
approach is straightforward and comparable to previous works for Λb → p
form factors [213]. Moreover, the nucleon DAs have been studied in a de-
tailed fashion [116–118, 214] and the parameters in the conformal expansion
are known from QCD sum rule [116, 117], from model consideration [214],
from light-cone sum rules [116, 215] or lattice calculations [119]. The overall
goal is to provide the fundamental framework to treat two-particle decays
like B → pΨ such that this framework can be extended in a similar manner
to the other phenomenological interesting cases, which has been done in Ref.
[216] to leading twist approximation. The Lagrangian in our specific case
takes the form

L(QY =−1/3) =− yudεijkY ∗ iū jRd
c k
R − yubεijkY ∗iū

j
Rb

c k
R − yΨdYiΨ̄dc iR − yΨbYiΨ̄bc iR

+ h.c. , (14.13)

where the yud, yΨd and yub, yΨb are the (antisymmetric) Yukawa couplings
between the dark sector and the SM sector. The c-notation denotes charge-
conjugated fields such that fields qc (q̄c) have the quantum numbers of an
(anti)particle. Furthermore, the index R represents right-handed SU(2)L-
singlet Weyl fields, which can be obtained from ordinary Dirac fields with
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the projection operator PR = 1+γ5
2

. Since the scalar field Y is a singlet
under the SU(2)L symmetry, it only couples to right-handed SM particles.
The Latin indices i, j, k correspond to colour indices running between one
to three, so we can additionally check that the Lagrangian in Eq. (14.13)
is indeed gauge-invariant under the SU(3)c transformation. In the first two
terms, all fields belong to the anti-fundamental representation 3̄ of the colour
SU(3), thus we observe an antisymmetric combination of three 3̄-fields which
is gauge invariant. The last two terms are gauge singlet under SU(3)c, be-
cause we combine a charge-conjugated quark field in the 3̄-representation
with a Y -boson which is a 3-field [205].
During our calculation, we will perform an additional simplification by ex-
ploiting that the mass of the Y -boson is of the order of a few TeV (see table
14.1).

(P + q)

Ψ(q)

u

u b

d

p(P )

Figure 14.1: Diagram for the p→ B transition, which differs from the B → p
transition relevant for the B → pΨ decay by an unobservable global phase.
The mediator particle Y has been integrated out such that we obtain an
effective four-fermion interaction.

Hence, we can integrate out the mediator Y and obtain an effective inter-
action. The spin-0 propagator is expanded for large masses MY similar to
Fermi’s theory

i

k2 −M2
Y

= − i

M2
Y

·
(
1 +

k2

M2
Y

+ ...
)
≈ − i

M2
Y

(14.14)

and we get as a result a four-fermion interaction between the SM quarks and
the fermionic dark anti-baryon Ψ depicted in figure 14.1. We can derive the
corresponding effective Lagrangian

L(QY =−1/3) =
yubyΨd
M2

Y

iεijk
(
Ψ̄dc iR

) (
ūjRb

c k
R

)
+
y∗uby

∗
Ψd

M2
Y

iεijk
(
b̄c iR u

j
R

) (
d̄c kR Ψ

)
+ {d↔ b} (14.15)

and therefore the effective Hamiltonian is given by

H(QY =−1/3) = − yubyΨd
M2

Y

iεijk
(
Ψ̄dc iR

) (
ūjRb

c k
R

)
− y∗uby

∗
Ψd

M2
Y

iεijk
(
b̄c iR u

j
R

) (
d̄c kR Ψ

)
+ {d↔ b} . (14.16)

Note that it is in principle possible to consider more complicated Dirac struc-
tures in (14.15), but after performing Fierz transformations [82], they can be
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reduced to the bilinear form above [206].
In order to derive the expressions for the effective operators of the under-
lying four-fermion interaction, we attach the charge conjugation matrix to
the field Ψ by performing an additional Fierz transformation [82]. For this
transformation, we use

Ψ̄dcR = d̄RΨ
c, d̄cRΨ = Ψ̄cdR , (14.17)

and factorise the field Ψ from the effective Hamiltonian:

H(QY =−1/3) = − G(d)Ō(d)Ψ
c − G∗(d)Ψ̄

cO(d) + {d↔ b} . (14.18)

For brevity, we introduce the effective four-fermion coupling G(d) =
yubyΨd

M2
Y

,
which consists of the antisymmetric Yukawa-type couplings yub and yΨd from
Eq. (14.13), and define in Eq. (14.18) the following local three-quark opera-
tor and its conjugate

Ō(d) = iεijk
(
ūiRb

c j
R

)
d̄kR, O(d) = iεijkd

i
R

(
b̄c jR u

k
R

)
(14.19)

The coupling G(d) is one of the input parameters which need to be determined
from experiment and its choice is discussed in chapter 16. The index (d) in the
relations in Eqs. (14.18) and (14.19) denotes that we consider the coupling
of the d-quark to ΨY . Another possibility in this context is the coupling
of the b-quark to ΨY , which we indicate with the index (b). Notice that it
is possible to obtain the equations for the (b)-type version by replacing in
above equations (d) ↔ (b). This introduces the effective coupling G(b) =
(yudyΨb)/M

2
Y and the three-quark operators

Ō(b) = iεijk
(
ūiRd

c j
R

)
b̄kR, O(b) = iεijkb

i
R

(
d̄ c jR u

k
R

)
. (14.20)

These operators (14.19), (14.20) play a crucial role in our framework, since
they enter the correlation function for the determination of the B → pΨ
decay. As for the QCD SR approach, the correlation function is the fun-
damental object for the LCSR method as well. In the following, we treat
the operators in Eqs. (14.19) and (14.20) as two different versions of the
B-Mesogenesis model, indicated by the indices (d) and (b) respectively. In
comparison to [206], they correspond to the "type 2" and "type 1" operators
introduced therein.

14.3 Form factor decomposition
The central element in our analysis is the following correlation function

Π(d)(P, q) = i

∫
d4x ei(P+q)·x 〈0|T

{
jB(x),O(d)(0)

}
|p(P )〉 (14.21)

with jB(x) denoting the B-meson current jB(x) = imbb̄(x)γ5u(x) and with
O(d) corresponding to the three-quark operator in Eq. (14.19), which en-
ters the four-fermion interaction in (14.16) including the new hypothetical
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fermionic dark matter particle Ψ. In the second version of the B-Mesogenesis
model, the operator O(d) needs to be replaced by O(b) from Eq. (14.20).
This correlation function (14.21) can be decomposed into different kine-
matical structures according to all possible Lorentz-invariant amplitudes
ΠR,L, Π̃R,L:

Π(d)(P, q) = Π
(d)
R ((P + q)2, q2)up,R(P ) + Π

(d)
L ((P + q)2, q2)up,L(P )

+Π̃
(d)
R ((P + q)2, q2)/qup,R(P ) + Π̃

(d)
L ((P + q)2, q2)/qup,L(P ) . (14.22)

The Dirac spinors up,{R,L}(P ) are the right-handed and left-handed com-
ponents of the Dirac spinor up(P ) , i.e. up,{R,L}(P ) = P{R,L}up(P ) =

1
2
(1 ±

γ5)up(P ). Notice that there is another Lorentz structure of the form /Pup,R/L,
which can be reduced to the decomposition in the first line of Eq. (14.22) by
using the Dirac equation.
We are interested in the decay B → pΨ, for which we can state the corre-
sponding decay amplitude:

A(d)(B
+ → pΨ) = G(d) 〈p(P )Ψc| Ō(d) |B+(P + q)〉

= G(d) 〈p(P )| Ō(d) |B+(P + q)〉 ucΨ(q) (14.23)

with the effective operator Ō(d) from Eq. (14.19). Following the derivation
of section 14.2, we start with interaction vertices including Standard Model
quarks and a heavy scalar complex field Y which provides the link between
the SM and dark matter sector. During the computation of the Hamiltonian,
we exploit that the mass MY of the Y -boson is much larger than the mo-
mentum transfer. Hence, we can integrate out the heavy particle and obtain
an effective Fermi-type 4-fermion coupling, which couples the SM quarks to
the dark matter particle Ψ.
The momentum assignment can be read off Eq. (14.23): the B meson has the
momentum P +q satisfying the on-shell condition (P +q)2 = m2

B, the proton
the momentum P with the on-shell condition P 2 = m2

p and the Dirac fermion
Ψ the momentum q with q2 = m2

Ψ. Since the mass mΨ of the fermion is un-
known, we keep it as a free parameter in our analysis. The hadronic matrix
element in Eq. (14.23) can be parameterised in terms of four independent
B → p form factors:

〈p(P )|Ō(d)|B+(P + q)〉 = F
(d)
B→pR(q

2)ūp,R(P ) + F
(d)
B→pL(q

2)ūp,L(P )

+F̃
(d)
B→pR(q

2)ūp,R(P )
/q

mp

+ F̃
(d)
B→pL(q

2)ūp,L(P )
/q

mp

. (14.24)

Notice that we introduce the factor 1/mp in the second line of Eq. (14.24)
in order to guarantee that the form factors are dimensionless. This set of
form factors will be determined in the following using the light-cone sum rule
approach.
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Derivation of the LCSRs

Starting point of the derivation of the sum rules is the correlation function
in Eq. (14.21)

Π(d)(P, q) = i

∫
d4x ei(P+q)·x 〈0|T

{
jB(x),O(d)(0)

}
|p(P )〉 .

According to this correlation function, we investigate the p→ B rather than
the B → p form factors, where the latter accounts for the physically relevant
B+ → pΨ decay. This is possible since these form factors only differ by a
global phase, which is irrelevant for physical observables like decay widths.
Long-distance contributions are parameterised by proton distribution ampli-
tudes of increasing twist, which have been extensively studied in [116–118,
214] and are summarised in appendix E. Advanced lattice QCD calculations
and sum rule analyses have determined the input parameters in the confor-
mal expansion to good accuracy [116, 117, 119, 214, 215]. Alternatively, it
would be necessary to investigate B-meson distribution amplitudes. On the
one hand, the B meson needs to be studied in the framework of HQET,
which adds not completely understood 1/mb corrections to the correlation
functions, on the other hand the key parameter of these DAs is the inverse
moment λB [97–103], which suffers from a rather large uncertainty of around
30%. In addition to that the nucleon interpolating current would cause ad-
ditional problems in this approach. First, the current is not unique and the
sum rule results are therefore choice dependent [213]. Furthermore, we would
need to consider an additional pole besides the proton in the dispersion re-
lation ansatz due to the negative parity baryon with proton valence quark
content [213]. Finally, the advantage of the p→ B transition is that similar
computations have been performed in LCSRs for Λb → p form factors [213],
so we can guide our calculation along this work. For these particular reasons,
it is therefore easier to work with the nucleon DAs instead of the B-meson
DAs.
The light-cone sum rule approach works in the region where the external mo-
menta P+q and q are far off-shell, thus we work in the regions (P+q)2 � m2

b

and q2 � m2
b . As shown in section 14.1, the x-integration region shrinks to a

domain near the light-cone x2 ≈ 0 and in this kinematical region we achieve
the separation of short- and long-distance physics in form of an operator
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product expansion. Here, short-distance effects are encoded in perturba-
tively calculable matching coefficients, while long-distance contributions are
parameterised in terms of the nucleon distribution amplitudes of increasing
twist.
In order to obtain an expression for the different form factors from Eq.
(14.21), we use our considerations from section 11.2 to express the corre-
lation function in terms of a dispersion integral. These steps are similar to
the QCD sum rules derivation, since the major difference between these two
methods lies in the paramerisation of the non-perturbative effects. After we
have obtained a dispersion integral, we use the unitarity condition and write
down a hadronic dispersion relation in the variable (P + q)2

Π(d)(P, q) =
〈0|jB|B+(P + q)〉〈B+(P + q)|O(d)|p(P )〉

m2
B − (P + q)2

+

∞∫
sh

ds
ρh(d)(s, P, q)

s− (P + q)2
.

(15.1)

Here, we isolate the ground state contribution in form of a B+-meson and
introduce a cutoff sh = (mB+2mπ)

2 in the integral over the hadronic density
ρh(d) accounting for excited resonances like the B∗- or ρ-mesons and contin-
uum contributions. The threshold sh is chosen based on the lowest possible
mass of the combination of mesons conserving the quantum numbers of the
initial B meson. Possible substractions in Eq. (15.1) are neglected, because
they vanish after performing the Borel transformation in the next steps. The
hadronic dispersion relation in Eq. (15.1) incorporates all dispersion rela-
tions for the different invariant amplitudes in Eq. (14.22) for the (d)-model.
By inserting the decomposition for the hermitian conjugate matrix element
in Eq. (14.22) into Eq. (15.1) and by ordering the contributions according
to different Dirac structures, we can for instance write down the hadronic
dispersion relation for the form factor F (d)

B→pR :

Π
(d)
R ((P + q)2, q2) =

m2
BfB F

(d)
B→pR(q

2)

m2
B − (P + q)2

+

∞∫
sh

ds
ρ
h(d)
R (s, q2)

s− (P + q)2
. (15.2)

Notice that we use that 〈0|jB|B+〉 = m2
BfB and that we separate the hadronic

spectral density ρh(d) according to the different Dirac structures as well.
Moreover, we also replace the original form factor for p → B transition
by the B → p form factor and neglect the additional global phase. The other
three form factors can be obtained by the following replacements:

Π
(d)
R →Π

(d)
L , Π̃

(d)
R , Π̃

(d)
L , F

(d)
B→pR → F

(d)
B→pL , m

−1
p F̃

(d)
B→pR , m

−1
p F̃

(d)
B→pL ,

ρ
h(d)
R →ρh(d)L , ρ̃

h(d)
R , ρ̃

h(d)
L . (15.3)

In the next section, we are going to calculate the correlation function in Eq.
(14.21) employing an OPE. The various contributions can be transformed
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into the dispersive integral form, e.g. for the amplitude Π
(d)
R

Π
(d),OPE
R ((P + q)2, q2) =

1

π

∞∫
m2

b

ds
ImΠ

(d),OPE
R (s, q2)

s− (P + q)2
, (15.4)

where we rewrite ρ(d),OPE
R = 1

π
ImΠ

(d),OPE
R . With the help of the (semi-local)

quark-hadron duality, we can replace the integral over the hadronic spectral
density ρh(d) by the integral over the spectral density obtained from the OPE
ImΠ(d),OPE

∞∫
sh

ds
ρ
h(d)
R (s, q2)

s− (P + q)2
=

1

π

∞∫
sB0

ds
ImΠ

(d),OPE
R (s, q2)

s− (P + q)2
. (15.5)

As we have previously mentioned, this step is useful in order to get rid of
the hadronic spectral density, which is in general hard to estimate and in
many cases unknown. However, this introduces the effective threshold sB0 ,
which needs to be determined in the numerical analysis and constitutes an
additional uncertainty.
With all these steps at hand, we can now substitute Eq. (15.4) into Eq.
(15.2) and perform simplifications on the integration region after applying
Eq. (15.5). Finally, we perform a Borel transformation, see appendix A.5,
in the variable (P + q)2 to arrive at the desired form of the sum rules:

m2
BfB F

(d)
B→pR(q

2)e−m
2
B/M

2

=
1

π

sB0∫
m2

b

ds e−s/M
2ImΠ

(d),OPE
R (s, q2) . (15.6)

As we will see in the next section, the OPE contributions ImΠ
(d),OPE
R (s, q2)

also depend for the higher twist contributions on inverse powers of the Borel
parameter M2. This indicates that higher twist contributions tend to be
suppressed. The sum rules for the other form factors are obtained in a
similar way by using the replacements in Eq. (15.3).
If we now turn to the second model under consideration in this work, the
(b)-model, we can start again in Eq. (14.21) and replace the operator O(d)

by O(b). Besides this replacement, the derivations follow the same steps as
presented above.

15.1 Evaluating the OPE
The explicit calculation follows the usual steps for evaluating correlation
functions: First, we use Wicks theorem to contract the b-quarks. Since we
recognise that there is a transposed b-quark field in the operator O(d) in Eq.
(14.19) instead of an ordinary b-quark field, we perform an additional Fierz
transformation:

ūRb
c
R = b̄Ru

c
R, b̄cRuR = ūcRbR . (15.7)
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After that the trace over the Dirac indices of the spinor fields can be evaluated
using the well-known trace technologies from the literature. However, there
remain uncontracted quark fields between a vacuum and a proton state of
the form:

〈0|T{u(x)u(0)d(0)} |p〉 (15.8)

These terms are related to the nucleon DAs via the relations Eqs. (E.1) and
(E.6) in appendix E in the light-cone limit x2 → 0. Moreover, they are sorted
according to increasing twist and become increasingly more complicated in
terms of computation. The leading-twist contributions have been worked out
in [202, 216] for both operators. They read:

Π(d)(P, q) =

[
− mb

2

1∫
0

dα

(
(1− α)m2

p + P · q
)
(V1 + A1)(α)

((1− α)P + q)2 −m2
b

]
up,R(P ) (15.9)

Π(b)(P, q) =

[
− mbmp

4

1∫
0

dα
(1− α)mp(V1 + A1)(α)− 3mbT1(α)

((1− α)P + q)2 −m2
b

]
up,R(P )

−

[
mbmp

4

1∫
0

dα
(V1 + A1)(α)

((1− α)P + q)2 −m2
b

]
/qup,L(P ) . (15.10)

We see that at leading twist only one form factor enters for the operator O(d),
while for the operator O(b) also the contribution from the Lorentz structure
/qup,L(P ) appears. The integration variable α denotes the energy fraction of
the u-quark inside the proton bound state, while we have already integrated
the other two components α2 and α3. The leading-twist amplitudes V1, A1, T1
are stated in appendix E together with the other distribution amplitudes up
to twist six. Furthermore, there occurs a scalar product P · q in Eq. (15.9),
which needs to be replaced by

2P · q = (P + q)2 −m2
p − q2 , (15.11)

allowing for the cancellation of the (P + q)2-dependence in the denominator
in Eq. (15.9). This introduces constant terms which vanish when we per-
form the Borel transformation. We replace this scalar product similarly in
the other contributions as well.
When we now start to include higher twist corrections, explicit x-dependencies
appear for the first time in Eqs. (14.21) and (E.1). These dependencies
prevent us from immediately rewriting the exponential functions into the
momentum conserving δ-distributions, see table 15.1.
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twist 3
∫
ddx eikxei(P+q)xe−iPαx = (2π)dδ(d)(k + q + Pᾱ)

twist 4, 5, 6

∫
ddx eikxei(P+q)xe−iPαxxν = −i(2π)d ∂

∂kν
δ(d)(k + q + Pᾱ)∫

ddx eikxei(P+q)xe−iPαxxµxν = (−i)2(2π)d ∂
∂kµ

∂
∂kν

δ(d)(k + q + Pᾱ)∫
ddx eikxei(P+q)xe−iPαxxµx

µ = (−i)2(2π)d ∂
∂kµ

∂
∂kµ

δ(d)(k + q + Pᾱ)

Table 15.1: Integration over the position variable x in order to obtain the
momentum conserving δ-distributions. For brevity, we introduce the notation
ᾱ = 1− α.

Second, we encounter scalar products P · x from the light-cone expansion
in Eq. (E.1), which prevent us to use the relations in table 15.1. At this
point we need to perform an additional partial integration with respect to
α. It turns out that the surface terms vanish during this partial integration,
even in the case where we need to perform partial integration steps twice.
The complete higher twist contributions for both models up to twist six are
provided in appendix F.1. We also include the O(x2) contributions to the
twist-three contributions, while we neglect the O(x2) corrections to twist
four, since they are numerically small and correspond to a power-suppressed
contribution [117]. In general, the computations for the operator O(b) are
of similar complexity, albeit the various T -structures in the proton matrix
element decomposition in Eq. (E.1) contribute for this operator. In addition
to that we notice that the form factor F̃B→pL originating from the Dirac
structure /qup,L(P ) also starts to contribute beyond twist three for the O(d)

operator. Hence, our numerical discussion will include four kinematically
independent form factors for both models instead of three in previous works
[202, 216].
In order to obtain similar relations as in Eqs. (15.9) and (15.10) including
all corrections up to twist six, we need to take all contributions listed in
appendix F.1 and add them up based on the different spinor structures. We
continue the discussion with the complete contributions by modifying the
denominator such that we obtain the usual form of a dispersion relation.
Therefore, we rewrite the expression ((1− α)P + q)2

((1− α)P + q)2 = (1− α)(P + q)2 + αq2 − α(1− α)m2
p (15.12)

and perform the following substitution

s :=
m2
b − αq2 + α(1− α)m2

p

1− α
. (15.13)

The integral
∫ 1

0
dα in the leading-twist contributions in Eqs. (15.9) and

(15.10), as well as the contributions in appendix F.1, are replaced by
∫∞
m2

b
ds

due to the substitution in Eq. (15.13) and we obtain the desired dispersion
integral relation.
Now we can use Eq. (A.32) to execute the Borel transformation of the con-
tributions such that we can insert our result into Eq. (15.6). Subsequently,
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it is useful to replace the variable s in the dispersion relation by α.
After performing the Borel transformation, we derive the LCSR for the form
factor F (d)

B→pR(q
2) and for the remaining form factors by using the replace-

ments in Eq. (15.3) and (d)↔ (b) in Eq. (15.6) after inserting our complete
contributions up to twist six from appendix E. For completeness, we state
the F (d)

B→pR(q
2) form factor in Eq. (15.14), while the three remaining form

factors are shown in appendix in Eqs. (F.41) to (F.43).

F
(d)
B→pR(q

2) =
1

m2
BfB

∫ αB
0

0

dα e
m2

B−s(α)

M2

{
m3
b

4

(
1 +

ᾱ2m2
p − q2

m2
b

)
(V1 + A1)(α)

ᾱ2

− m2
bmp

2

P1(α) + S1(α)

ᾱ
+
mbm

2
p

4

(
V3(α)− A3(α)

)
+
m3
bm

2
p

4M2

× Ṽ123(α)− Ã123(α)

ᾱ2

(
1 +

m2
pᾱ

2 − q2

m2
b

)
+
m2
bm

3
p

2

S̃12(α)− P̃21(α)

ᾱM2

−
mbm

2
p

4

Ṽ1345(α) + Ã1345(α)

ᾱ

(
1 +

m2
b

ᾱM2

)
+
mbm

2
p

4ᾱ2

(
ÃM1 − Ṽ M

1

)
×
(
1 +

q2 −m2
pᾱ

2 +m2
b

ᾱM2
+

m2
b

ᾱ2M4

(
q2 −m2

pᾱ
2 −m2

b

))
+
mbm

4
p

2

˜̃
V 123456(α)−

˜̃
A123456(α)

ᾱM2

(
1 +

m2
b

ᾱM2

)}
. (15.14)

Besides the notation ᾱ = 1− α, we introduce the abbreviation

Ṽ (α) =

∫ α

0

dα′ V (α′) (15.15)

˜̃
V (α) =

∫ α

0

dα′
∫ α′

0

dα′′ V (α′′) , (15.16)

where we have already integrated over the momentum fractions α2 as well
as α3 and where we have performed additional integrations in α1 = α due
to the partial integrations. We exploit this notation to a great extent in the
form factors in Eqs. (15.14) and (F.41) to (F.43). Moreover, we introduce
the various distribution amplitudes in Eq. (15.14) in appendix E.
However, these form factors are strictly speaking only valid in the region
q2 � m2

b , while we intend to extract predictions in the physical timelike
region with q2 = m2

Ψ. Since the mass of the particle Ψ might be in the region
mΨ ∼ mb, we need to extrapolate the form factors to these q2 values. The
next section is devoted to this issue.

15.2 Transition to large mΨ-region
In the last section, we have discussed the derivation of the form factors and
stated the results in appendix F.2 for the (d)- and (b)-model, which are an
essential part of the decay width for the process B → pΨ. However, the
derivation within the LCSR approach requires that we work in the limit
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q2 � m2
b in order to use the light-cone OPE. In the physical region, we can

identify that q2 = m2
Ψ and see that the form factors need to be modified

such that reliable results can be obtained in the region mΨ ∼ mb. Although
it is in general possible to extract the form factors in the lower part of the
interval mp ≤ mΨ ≤ (mB −mp) ≈ 4.34GeV, an extrapolation to the upper
region of the interval is necessary to obtain a reliable prediction, also for large
masses mΨ. While the lower bound of this interval is set by the requirement
that the model prevents proton decays, the upper bound is given by the
kinematics of a two-body decay of the B meson in the specific decay channel
B → pΨ. The corresponding extrapolation which we adopt here is the BCL
version [217] of the z-expansion [218], which has the advantage that it is a
model-independent parameterisation of the form factors. Thus, the idea is
to perform a conformal mapping of the variable q2 onto the complex variable
z which lives on a unit circle in the complex plane:

z(q2) = (
√
t+ − q2 −

√
t+ − t0)/(

√
t+ − q2 +

√
t+ − t0) . (15.17)

This reparameterisation is based on the assumption that the form factors
in (15.14) and (F.41) to (F.43) are free from singularities in the complex q2

plane apart from the positive real axis. Notice that this physical picture is
reflected in the choice of the parameters t± and t0 in Eq. (15.17). A common
choice for the default parameter t0 is given by (mB +mp) · (

√
mB −

√
mp)

2,
while the variables t± are determined by (mB ± mp)

2. With this default
parameter choice, the maximum truncation error gets minimised. The bound
t− = mB −mp constitutes the upper bound of the kinematics of the decay
B → pΨ, the bound t+ = mB + mp represents the threshold where the
timelike form factors develop an imaginary part due to intermediate states
and higher resonances. Therefore, the variable z becomes imaginary in the
region q2 > t+. However, there is one subthreshold pole below t+, namely
the Λb-baryon, which takes the form of an isolated pole at q2 = m2

Λb
. By

isolating the singularity, we can define a function

f(z) = (1− q2/m2
Λb
)F (q2) , F (q2) ∈ {F (d),(b)

B→pR , F̃
(d),(b)
B→pL} (15.18)

which is an analytic function in q2 apart from the cut on the positive real
axis with q2 ≥ t+ and finite for q2 → ∞. Since the physical region of the
dark baryon mass mΨ for the particular mapping in Eq. (15.17) is expressed
in terms of small z values between 0.077 > z > −0.083, a Taylor expansion
of the function f(z) can be performed such that we end up with a parame-
terisation of the form [217]

F (q2) =
1

1− q2/m2
Λb

N∑
n=0

b̄nz(q
2, t0)

n (15.19)

From restrictions imposed by the threshold t+ onto the variable z [217], it is
possible to derive an additional constraint on the expansion coefficients

b̄N = −(−1)N

N

N−1∑
n=0

(−1)nnb̄n . (15.20)
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For our purposes, it is convenient to rewrite the expansion coefficients as
b̄n = F (0)bn, where F (0) is the form factor evaluated at q2 = 0. Thus, we
can express the lowest coefficient b0 by

b0 = 1−
N−1∑
n=1

bn

[
z(0, t0)

n − (−1)n−N n

N
z(0, t0)

N
]

(15.21)

and therefore end up with the final form of the form factors in the z-expansion

F (q2) =
F (0)

1− q2/m2
Λb

[
1 +

N−1∑
n=1

bn

(
z(q2, t0)

n − z(0, t0)n − (−1)n−N n

N
·

[
z(q2, t0)

N − z(0, t0)N
])]

. (15.22)

The form factors F (q2) are chosen according to Eq. (15.18). It is sufficient
to truncate the expansion at O(z2) such that we have two free parameters.

F
(d)
B→pR(q

2) =
F

(d)
B→pR(0)

1− q2/m2
Λb

[
1 + b

(d)
B→pR

(
z(q2)− z(0) + 1

2

[
z(q2)2 − z(0)2

])]
(15.23)

First, we have the form factors evaluated at q2 = 0, which corresponds to the
normalisation of this form factor, and the slope parameter b(d)B→pR . This slope
parameter is determined by a fit for each of the form factors individually.
The other form factor expressions are obtained from the replacement rule in
Eq. (15.3) and from the replacement (d)↔ (b).
The form factors in Eq. (15.23) are the final expressions which will be used
in the following analysis to determine the decay width and subsequently the
branching fraction.



Chapter 16

Numerical analysis

This chapter is devoted to the numerical evaluation of the sum rules in Eq.
(15.6) and the determination of the decay width and branching fractions of
the decay B → pΨ.

Parameter interval Ref.

b-quark MS mass mb(3 GeV) = 4.47+0.04
−0.03 GeV [219]

Renormalization scale µ = 3.0+1.5
−0.5 GeV

[220, 221]Borel parameter squared M2 = 16.0± 4.0 GeV2

Duality threshold sB0 = 39.0−1.0+1.5 GeV2

B-meson decay constant fB = 190.0± 1.3 MeV [200]

Nucleon decay constant fN(µ = 2 GeV) =
(
3.54+0.06

−0.04
)
× 10−3 GeV2 [119]

ϕ10(µ = 2 GeV) = 0.182+0.021
−0.015

ϕ11(µ = 2 GeV) = 0.118+0.024
−0.023 [119]

λ1(µ = 2 GeV) =
(
− 44.9+4.2

−4.1
)
× 10−3 GeV2

Parameters of nucleon DAs λ2(µ = 2 GeV) =
(
93.4+4.8

−4.8
)
× 10−3 GeV2

η10(µ =
√
2 GeV) = −0.039+0.005

−0.005 [215]
η11(µ =

√
2 GeV) = 0.14+0.016

−0.016

ξ10(µ = 2 GeV) = −0.042+0.313
−0.312 [214]

Table 16.1: Input parameters for the LCSRs.

The various input parameters for the LCSRs are given in table 16.1. We
work at a renormalisation scale of µ = 3 GeV, because recent studies of LC-
SRs for B → π or B∗Bπ strong couplings [220, 221] indicate that this choice
with the corresponding uncertainties is optimal for B-meson interpolating
currents. Furthermore, we take the b-quark mass in the MS-scheme and use
the same value for the B-meson decay constant fB as in the determination
of the parameters λ2E,H in Project II, which has been obtained from lattice
QCD computations with nf = 2 + 1 + 1 [200].
The input parameters of the nucleon DAs require a more detailed investiga-
tion. We take some of these parameters at a scale µ0 = 2 GeV from a recent

193
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lattice determination [119], while others from a LCSR computation [215] at
a scale µ0 =

√
2 GeV. Since we perform our analysis at the scale µ = 3 GeV,

we need to run these parameters to this scale by using their RGE [215]

d

d lnµ
ϕ(µ) = −γϕ ϕ(µ) . (16.1)

γϕ denotes the anomalous dimension for the parameter ϕ. Its solution to
NLO order is given by

ϕ(µ) = ϕ(µ0)

(
αs(µ)

αs(µ0)

) γ0ϕ
2β0

. (16.2)

Here, γ0ϕ indicates the one-loop anomalous dimension according to the ex-
pansion in Eq. (3.13). We are able to simplify Eq. (16.2) if we include the
one-loop RGE solution for αs

αs(µ
2) ≈

(
β0 ln

(
µ2

Λ2
QCD

))−1
(16.3)

such that we obtain

ϕ(µ) = ϕ(µ0)

(
ln(µ0/ΛQCD)

ln(µ/ΛQCD)

) γ0ϕ
2β0

. (16.4)

We take the value for ΛQCD = 0.288 GeV from [194] for nf = 4. Notice that
Eq. (16.4) can be used for all parameters of the nucleon DA. The non-cusp
anomalous dimension γ0 is given for instance in [215] for various parameters.
We collect them for completeness in table 16.2. The advantage of using

Parameter ϕ fN ϕ10 ϕ11 η10 η11 λ1 λ2 ξ10

γ0ϕ
4
3

40
9

16
3

40
9

8 4 4 20
3

Table 16.2: Non-cusp anomalous dimensions for different parameters of the
nucleon DA.

these parameters instead of the parameters in the conformal expansion in
appendix E is that they satisfy a well-defined RGE. They can be related to
the parameters of the conformal expansion via [215]

Au1 = ϕ10 + ϕ11

V d
1 =

1

3
− ϕ10 +

1

3
ϕ11

fd1 =
3

10
− 1

6

fN
λ1

+
1

5
η10 −

1

3
η11

fu1 =
1

10
− 1

6

fN
λ1
− 3

5
η10 −

1

3
η11

fd2 =
4

15
+

2

5
ξ10 . (16.5)
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16.1 Numerical analysis: Form factors

After performing the running of the nucleon DA parameters to the desired
scale µ = 3 GeV, we can estimate the uncertainties on the form factors as they
are the relevant input parameters. For this, we consider these form factors
before the z-expansion and vary each input parameter individually within the
given uncertainty range. For each variation of one parameter, we perform
a z-expansion and obtain two additional slope parameters representing the
upper and lower bound on central value of the slope parameter b. After
performing these steps for each input parameter, we determine the upper
uncertainty ∆↑ on the central value b by considering the difference of b with
each upper slope parameter, obtained by inserting the upper limit of each
input parameter into the different form factor expressions individually, and
adding all the differences in quadrature. The same steps apply for the lower
uncertainty ∆↓ on the parameter b by inserting the lower uncertainties on
each input parameter into the form factors. We show these steps for the
slope parameter of the form factor F (d)

B→pR in Eq. (16.6)

∆↑
b
(d)
B→pR

=

[∑
k

(b
(d)
B→pR − b

(d),↑
B→pR;k)

2

] 1
2

∆↓
b
(d)
B→pR

=

[∑
k

(b
(d)
B→pR − b

(d),↓
B→pR;k)

2

] 1
2

(16.6)

with k ∈ {M2, µ, ϕ10, ϕ11, fB, fN ,mb, η10, η11, λ1, λ2, ξ10}. In this context, the
parameter b(d),↑B→pR;φ10

illustrates for instance the slope parameter from the z-
expansion if we insert the upper bound on the parameter φ10 into the form
factor F (d)

B→pR . We keep correlations between different parameters in mind,
for example the Borel parameter M2 and the threshold parameter sB0 are
correlated, hence upper and lower limits need to be inserted into the form
factor before z-expansion simultaneously. Furthermore, the variation of the
scale µ leads to different values of the b-quark mass as well, since this mass
has an explicit scale dependence. In the end, we notice that the parameters
∆↑,↓
b
(d)
B→pR

in Eq. (16.6) are precisely the deviations which we show in table
16.3 as uncertainties on the slope parameters.
Moreover, the second input parameter in the z-expansion is the form factors
at q2 = 0. We determine its uncertainties as in Eq. (16.6). In order to obtain
the error estimates on the other three form factors, we need to perform a
similar analysis for the three remaining form factors.
We provide the several slope parameters and the form factor at q2 = 0 within
their uncertainties in table 16.3 for the (d)-model and in table 16.4 for the
(b)-model:
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F
(d)
B→pR(0) b

(d)
B→pR F̃

(d)
B→pL(0) b

(d)
B→pL

0.022+0.013
−0.013 4.46+0.97

−1.72 0.005+0.002
−0.001 −2.27+0.10

−0.08

Table 16.3: Parameters of the z-expansion for the (d)-model form factors
including all contributions up to twist six. Notice that the parameters
F

(d)
B→pR(0) and F̃

(d)
B→pL(0) have the dimension GeV2, while the slope parame-

ters b(d)B→pR ,b(d)B→pL are dimensionless.

F
(b)
B→pR(0) b

(b)
B→pR F̃

(b)
B→pL(0) b

(b)
B→pL

−0.041+0.019
−0.018 −2.00+1.58

−3.62 −0.007+0.003
−0.002 −2.85+0.17

−0.15

Table 16.4: We show the same as in table 16.3, but for the parameters of the
(b)-model.

With these input parameters, we are able to perform the z-expansion and
investigate the four different form factors for the two models individually.
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Figure 16.1: Analysis for the form factor F (d)
B→pR(q

2) in the (d)-model for dif-
ferent Borel parameter M2. The right plot shows each higher twist correction
individually, while the left plot illustrates all contributions combined up to
twist six for various choices of the threshold parameter sB0 . We choose for
the mass of the dark matter particle mΨ the benchmark value mΨ = 2 GeV
[206].
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Figure 16.2: Similar analysis as in figure 16.1 for the form factor F̃ (d)
B→pL(q

2).

We plot in figures 16.1 to 16.4 the four different form factors with respect
to the Borel parameter M2. The plot on the right side illustrates each twist
correction individually and provides a relative estimate of the magnitude of
the different corrections to the leading twist three contribution. The leading
contributions have been investigated in [202], see also [216].

5 10 15 20 25 30
M2 in GeV2

−0.070

−0.065

−0.060

−0.055

−0.050

−0.045

−0.040

−0.035

−0.030

F(b
)

B
→
p R

in
Ge

V2

OPE for sB0 = 38.0 GeV2

OPE for sB0 = 39.0 GeV2

OPE for sB0 = 40.5 GeV2

5 10 15 20 25 30
M2 in GeV2

−0.06

−0.04

−0.02

0.00

0.02 Twist 3
Twist 4
Twist 5
Twist 6

Figure 16.3: Analysis for the form factor F (b)
B→pR(q

2) in the (b)-model for dif-
ferent Borel parameter M2. The right plot shows each higher twist correction
individually, while the left plot illustrates all contributions combined up to
twist six for various choices of the threshold parameter sB0 . We choose for
the mass of the dark matter particle mΨ the benchmark value mΨ = 2 GeV
[206].
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Figure 16.4: Similar analysis as in figure 16.1 for the form factor F̃ (b)
B→pL(q

2).
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Figure 16.5: Plot for the ratios R(d)
B→pR;i and R̃

(d)
B→pL;i defined in Eqs. (16.7)

and (16.8) with respect to the dark fermion mass mΨ. The left panel contains
the contributions from the form factor F (d)

B→pR , while the right panel shows
the ratios for the form factor F̃ (d)

B→pL .

Notice that the form factor F̃ (d)
B→pL(q

2) starts to contribute at twist four ac-
curacy, while the other three form factors already give rise to contributions
at twist three. As it is expected from various different sum rules analyses
including B-meson interpolating currents, the OPE shows good convergence.
While the form factors in the (d)-model show the typical hierarchy of twist
contributions at the benchmark value mΨ = 2 GeV, we observe that the twist
four correction is large for the (b)-model, in particular for the form factor
F

(b)
B→pR(q

2), where the twist four contribution is larger than the leading-twist
contribution. This can be traced back to the large T2,4-contributions in Eq.
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(E.1), which enhance the twist four correction in the (b)-model, but van-
ish for the (d)-model in the computation of the correlation function. These
contributions introduce for the first time the sizeable and not very precisely
known parameter ξ10 via Eq. (16.5). Beyond twist four, we also observe in
the (b)-model convergence of the OPE indicated by the fact that higher twist
corrections tend to become smaller.
The left panel shows the complete form factor after including all higher twist
corrections for different choices of the threshold parameter sB0 within the
bounds stated in table 16.1. Due to the small variation of the form factors
for different thresholds with respect to different Borel parameter, we again
conclude that the sum rules for the four form factors are stable at the bench-
mark value mΨ = 2 GeV and hence reliable.
The range for the Borel parameter M2 is chosen in accordance to table 16.1
and in agreement with the work in [202], although we include higher twist
corrections up to twist six here. Besides that, it is also possible to verify
this Borel window by investigating the behaviour of the form factors over a
wider range of the Borel parameter and by choosing this window based on
the stability of the sum rule. As shown in figures 16.1 to 16.4, we see that
the sum rules are stable for the specific Borel window provided in table 16.1,
thus this parameter range seems to be adequate. Furthermore, it turns out
that for this particular choice of the Borel parameter the contributions of
the excited and continuum states are reasonably suppressed due to the Borel
transformation from Eq. (A.32) and lie around 20 − 30%. Therefore, our
result does not depend sensitively on the QHD approximation.
In addition to that the threshold parameter sB0 is determined by taking the
derivative of the sum rules in Eq. (15.6) with respect to −1/M2 and by
combining the result such that we obtain an estimate for the B-meson mass
mB, which we fit to the literature [211]. The stability of the sum rules in fig-
ures 16.1 to 16.4 underline that this choice is appropriate in order to obtain
reliable estimates.
The argumentation on the stability of the sum rule is based around the pa-
rameter choice mΨ = 2 GeV. We know that the LCSR approach works for
q2 = m2

Ψ � m2
b , therefore we expect that the OPE shows good convergence

as well for values mΨ below 2 GeV. However, we can now take the analysis
one step further and investigate whether the OPE is still applicable for larger
values of mΨ, in particular at which point the expansion starts to break down.
We perform this analysis for the (d)-model in figure 16.5 for the form factor
F

(d)
B→pR(q

2) in the left panel and for the form factor F̃ (d)
B→pL(q

2) in the right
panel. For this, it is convenient to define the ratios

R
(d)
B→pR;i =

F
(d)
B→pR;i∑

i∈{3,4,5,6} F
(d)
B→pR;i

; R̃
(d)
B→pL;i =

F̃
(d)
B→pL;i∑

i∈{4,5,6} F̃
(d)
B→pL;i

, (16.7)

R
(b)
B→pR;i =

F
(b)
B→pR;i∑

i∈{3,4,5,6} F
(b)
B→pR;i

; R̃
(b)
B→pL;i =

F̃
(b)
B→pL;i∑

i∈{3,4,5,6} F̃
(b)
B→pL;i

, (16.8)

where F (d)
B→pR;i and F̃ (d)

B→pL;i correspond to the twist i contribution of the form
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factors F (d)
B→pR and F̃

(d)
B→pL , respectively. With the help of Eqs. (16.7) and

(16.8), we obtain an estimate at which values of mΨ the OPE breaks down.
The idea at this point is that once higher twist contributions become large,
i.e. the ratios above become large, the twist corrections tend to dominate and
the convergence is spoiled. We observe that for the form factor F (d)

B→pR(q
2)

in the left panel of figure 16.5 the convergence breaks down for mΨ around
3 GeV, while the contributions to the form factor F̃ (d)

B→pL(q
2) are insensitive

to this analysis. But for the benchmark value 2 GeV studied above, we see
that the convergence of the OPE is still well established. Notice that we can
not investigate values of mΨ larger than 6.2 GeV, since we cross the multi-
hadron threshold t+ at this point, which results into complex values of the
z-parameter.
Similarly, we can perform this analysis for the (b)-operator, which we illus-
trate in figure 16.6.
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Figure 16.6: Plot for the ratios R(b)
B→pR;i and R̃

(b)
B→pL;i defined in Eqs. (16.7)

and (16.8) after replacing (d) → (b) with respect to the dark fermion mass
mΨ. The left panel contains the contributions from the form factor F (b)

B→pR ,
while the right panel shows the ratios for the form factor F̃ (b)

B→pL .

We conclude that the hierarchy in the twist expansion is well preserved for
both form factors in the (b)-model, indicating that the expansion is conver-
gent over the whole kinematically possible mΨ-range.
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16.2 Numerical analysis: Branching fractions
In order to derive the decay width and branching fraction of the decay B →
pΨ, we need to compute an expression for the matrix element A(B → pΨ)
which enters both observables. This matrix element can be parameterised in
terms of form factors of the transition B → p as discussed in Eq. (14.24)

A(d)(B
+ → pΨ) = G(d)

[
F

(d)
B→pR(q

2)ūp,R(P )u
c
Ψ(q) + F

(d)
B→pL(q

2)ūp,L(P )u
c
Ψ(q)

+ F̃
(d)
B→pR(q

2)ūp,R(P )
/q

mp

ucΨ(q) + F̃
(d)
B→pL(q

2)ūp,L(P )
/q

mp

ucΨ(q)

]
.

(16.9)

With the help of the Dirac equation for a charge-conjugated field /qucΨ(q) =
mΨu

c
Ψ(q), we end up at the following expression:

A(d)(B
+ → pΨ) = G(d)ūp(P )

[
A(d) +B(d)γ5

]
ucΨ(q) , (16.10)

where

A(d) ≡ 1

2

[
F

(d)
B→pR(q

2) +
mΨ

mp

F̃
(d)
B→pR(q

2)

]
+

1

2

[
F

(d)
B→pL(q

2) +
mΨ

mp

F̃
(d)
B→pL(q

2)

]
(16.11)

B(d) ≡ − 1

2

[
F

(d)
B→pR(q

2) +
mΨ

mp

F̃
(d)
B→pR(q

2)

]
+

1

2

[
F

(d)
B→pL(q

2) +
mΨ

mp

F̃
(d)
B→pL(q

2)

]
(16.12)

Next, Eq. (16.10) is to be inserted into the general relation for the decay
width Γ(B+ → pΨ):

Γ(d)(B
+ → pΨ) =

1

2mB

∫
dΠ |A(d)(B

+ → pΨ)|2 . (16.13)

For a two-body decay, the phase-space integration yields an analytic result
in terms of the Källen function

Γ(d)(B
+ → pΨ) =

1

16πm3
B

λ
1
2 (m2

B,m
2
p,m

2
Ψ) |A(d)(B

+ → pΨ)|2

= |G(d)|2
λ

1
2 (m2

B,m
2
p,m

2
Ψ)

8πm3
B

[
|A(d)|2

(
m2
B − (mp −mΨ)

2
)

+ |B(d)|2
(
m2
B − (mp +mΨ)

2
)]

. (16.14)

During the derivation of Eq. (16.14), we use the on-shell conditions of the
momenta, i.e. (P + q)2 = m2

B, q2 = m2
Ψ and P 2 = m2

p. Since we only
encounter two of the four form factors in Eq. (14.24) in each version of the
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model, it is possible to state the final expression for the decay width in terms
of these form factors in the following form

Γ(d)(B
+ → pΨ) = |G(d)|2

{[(
F

(d)
B→pR(m

2
Ψ)
)2

+
m2
ψ

m2
p

(
F̃

(d)
B→pL(m

2
Ψ)
)2]

×
(
m2
B −m2

p −m2
Ψ

)
+ 2m2

ΨF
(d)
B→pR(m

2
Ψ)F̃

(d)
B→pL(m

2
Ψ)

}
λ1/2(m2

B,m
2
p,m

2
Ψ)

16πm3
B

.

(16.15)

This is the final result for the desired decay width. Compared to the leading-
twist three approximation in [202, 216], we additionally see that the form
factor F̃

(d)
B→pL(q

2) contributes due to higher twist corrections. Since this
form factor already appears for the (b)-model at leading-twist approxima-
tion (15.10), it is now possible to just replace (d) ↔ (b) in order to obtain
the relations in the second model under consideration.
The last observable of interest is the branching fraction of this decay, which
can be obtained from Eq. (16.15) by inserting the form factors from Eqs.
(15.14) and (F.41) to (F.43) and dividing this result by the total width of
the B meson, i.e. is the inverse lifetime τB± , such that

Br(d)(B
+ → pΨ) = Γ(d)(B

+ → pΨ) · τB± . (16.16)

Therefore, we use the B±-lifetime τB± = 1.638± 0.004 ps from [219].
With the expressions for the branching fractions in mind, we can next per-
form the numerical analysis. Since we were only able to obtain an estimate
for the branching fraction to the leading-twist approximation in the original
work [202], it was not immediately possible to make a statement about the
convergence of the OPE in general. However, our analysis from last section,
where we have included twist corrections up to twist six, allows us to study
this convergence. We apply these insights in the following.
In figure 16.7, we show the branching fraction for the (d)-model including all
contributions up to twist six after setting the four-fermion coupling |G(d)|2
to 10−13 GeV−4 and compare those to the leading twist contribution from
[202, 216]. We observe good agreement between both computations in the
mΨ-range up to 3 GeV, which is in accordance with our previous observation
in figure 16.5 that around this particular value the higher twist contributions
start to dominate and the convergence of the OPE is spoiled. The uncer-
tainties on our twist six calculation are larger compared to the twist three
evaluation since the error estimates on input parameters for the conformal
and next-to-conformal expansion are large, especially for the parameter ξ10,
for which we assume a conservative error of 50% from [214]. But in gen-
eral we confirm that the leading-twist result provides a good estimate for
the branching fractions for the mΨ-range up to 3 GeV and agrees with our
calculation including contributions up to twist six.
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Figure 16.7: Branching fraction for the decay B → pΨ in the (d)-model with
respect to the dark matter particle mass mΨ. We set |G(d)|2 = |G(b)|2 =
10−13 GeV−4. The blue line with the blue dashed error band corresponds
to the original twist three computation from [202], see also [216], while the
black curve shows the computation including contributions up to twist six.
The dashed red curves illustrate the uncertainty on this calculation, which is
slightly enhanced due to the large errors on the input parameters from the
conformal and next-to-conformal expansion.
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Figure 16.8: We show the same as in figure 16.7, but for the (b)-model
instead. In comparison to the (d)-model, the leading-twist approximation is
not sufficient here to allow for an reliable estimate of the branching fraction.

However, we observe a sizeable difference in the (b)-model between the twist-
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three determination and the computation up to twist six contributions. The
branching fraction gets enhanced around a factor of 20 and both calculations
do not agree within the uncertainties. This difference can be traced back to
the large twist four correction for both form factors in the model, see figures
16.3 and 16.4. In particular, the T2,4-contributions in the decomposition from
Eq. (E.1) give a sizeable contribution and dominate this twist correction.
These contributions introduce for the first time the parameter fd2 , which is
directly related to ξ10 via Eq. (16.5). In the (d)-model, we observe that these
kind of contributions vanish during the computation. The uncertainties on
the twist six computation are again large due to the same reason as for the
(d)-model, in particular the upper bound uncertainty blows up for mΨ > 3
GeV. This indicates that the branching fraction becomes unreliable since
m2

Ψ ∼ m2
b , which violates the key requirement for the light-cone expansion.

Hence, we can conclude that the leading-twist analysis from [202] for this
specific model is not sufficient and a higher twist analysis points out that
the OPE does not show the typical hierarchy. But we see that the additional
corrections push this particular decay into the sensitivity range of Belle-II,
which lies around 3 · 10−6.
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Conclusions

The Standard Model (SM) of particle physics has been tested to high pre-
cision in the past and provides the theoretical foundation to describe the
visible sector in particle physics. Nevertheless, it is known for a long time
that it does not account for the full physics of the universe. The quantisation
of gravity or effects like dark matter, dark energy or neutrino masses are few
examples which require different theoretical frameworks for their description.
The theoretical study of dark matter is a long standing problem and led to
a plethora of different approaches for its explanation, although we lack ex-
perimental confirmation for these theories so far.
In this work, we focus on the recently proposed dark matter model called
B-Mesogenesis, which is of particular interest since it allows for a direct test
in experiments like Belle-II. In its simplest version, a new dark matter par-
ticle Ψ, which is considered to be a fermionic antibaryon, is generated via
CP -violating effects in the mixing of neutral B0

d,s− B̄0
d,s-systems. With these

assumptions, one observes baryon number violation in the visible SM sector,
but in combination with the dark sector the baryon number is ultimately
conserved.
In general, this model allows for many different decay modes. However, we
have considered the decay mode B → pΨ in more detail, where p denotes a
proton. As a mediator particle between the visible sector and the dark sec-
tor, the model introduces a heavy scalar boson Y with a mass of the order of
TeV, which we have integrated out to obtain an effective four-fermion inter-
action. In order to determine the branching fraction for this decay and test
whether this decay is in the sensitivity range of Belle-II, we have investigated
the p→ B transition, which is related to the relevant B → p transition by a
global phase. Similar to the work [213], we made use of light-cone sum rules
to parameterise the long-distance effects in the operator product expansion
in terms of the proton distribution amplitudes. We studied this model for
two different versions (the (d)- and (b)-model), which are characterised by
the operators describing the four-fermion interaction.
In the first part of this work, which led to the publication [202], we have
determined the leading-twist contributions to the form factors of the p→ B
transition to leading order in αs. This determination of the form factors
has allowed us to calculate the corresponding branching fraction for the

205
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B → pΨ decay in the two realisations of this model and compare it to
the sensitivity range of Belle-II. The branching fraction was in the end a
function of the dark matter particle mass mΨ, for which we found a pa-
rameter range 0.94GeV ≤ mΨ ≤ 4.34GeV based on the kinematics of
the two-particle decay. Moreover, we chose the effective couplings to be
|G(d)|2 = |G(b)|2 = 10−13 GeV−4. We have concluded from our analysis that
the branching fraction for the (d)-model was well within the sensitivity range
of Belle-II, while the branching fraction for the other model has turned out
to be suppressed.
However, the leading-twist analysis in [202] did not allow to study the con-
vergence of the OPE in general. Therefore, we have included higher twist
corrections up to twist six into our analysis in a subsequent work in order to
investigate the convergence of the OPE for both models and in order to see
the effect of these corrections on the values of the branching fractions them-
selves. For the (d)-model, we were able to verify that the OPE shows good
convergence in the parameter range 0.94GeV ≤ mΨ ≤ 3 GeV in the sense
that higher twist corrections tend to become smaller for increasing twist. For
values of mΨ beyond 3 GeV, we have seen that the OPE expansion breaks
down since higher twist contributions start to become the dominant contri-
butions to the form factors. However, this is expected due to the light-cone
condition m2

Ψ � m2
b , which is not well satisfied in this parameter range.

A corresponding analysis for the (b)-model has shown that the twist four
contributions were dominating, but beyond twist four we confirmed the con-
vergence of the OPE in the complete range 0.94GeV ≤ mΨ ≤ 4.34 GeV.
Furthermore, we were able to make quantitative statements about the im-
pact of higher twist corrections on our leading-twist analysis from [202]. For
the (d)-model, we have observed that the branching fractions of the leading-
twist analysis and the analysis including higher twist corrections were in good
agreement in the convergence range. Interestingly, the (b)-model has shown
a sizeable difference for the branching fractions up to a factor of 20. This
pushes this particular model into the sensitivity range of Belle-II as well.
In the future, it might be interesting to include higher twist corrections for
other decay channels as well. The original intention to focus on the partic-
ular decay B → pΨ was that this analysis could be carried out in a similar
way to [213] and provides a first reliable estimate for the branching fraction
of these decays, since previous studies have only determined rather imprecise
estimates. Furthermore, the developed techniques are easily applicable to
other decay channels, which has been done in [216] to leading-twist accu-
racy after the publication of our results in [202]. The study of higher twist
corrections in these channels is interesting as well, because they might turn
out to be sizeable as in our case. Moreover, it might be interesting to anal-
yse decays like B → ∆Ψ → pπΨ or B → Λψ → pπΨ, since the Belle-II
experimental setup prefers three-particle final states over two-particle final
states from a technical point of view. These decays can be computed with
the methods explored in this work, albeit the distribution amplitudes for the
∆- and Λ-baryon are less known. But a leading-twist analysis might still be
interesting as a rough estimate for the branching fraction. In addition to that
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the ratio of the branching fraction of these decays with the branching frac-
tion obtained here is independent of the couplings G(d),(b), which is another
input parameter into our analysis besides the dark matter particle mass mΨ.
In our case, we deal with this issue by normalising our branching fractions
with respect to the order of magnitude of the involved couplings. However,
the ratio would be directly independent of the couplings and provide a better
way to study the dependence on the particle mass mΨ.
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Appendix A

Useful formulae and
transformations

A.1 Feynman integrals and loop integrals in
dimensional regularisation

In this chapter, we aim to collect the formulae which are relevant for the
computation of loop integrals in project I and II. In order to combine several
denominators of the propagators in the correlation functions, we make use
of the Feynman parameterisation. For a general number n of denominators
raised to powers k1 to kn, we have the relation [133]

1

Dk1
1 ... Dkn

n

=
Γ(k1 + ...+ kn)

Γ(k1) ...Γ(kn)

∫ 1

0

dx1 ...

∫ 1

0

dxn
δ(1−

∑n
i=1 xi)x

k1−1
1 ... xkn−1n

(
∑n

i=1 xiDi)
∑n

i=1 ki
,

(A.1)

where Re(ki) > 0 for 1 ≤ i ≤ n and we use the Γ-function above. In case
we encounter a linear propagator like in applications of SCET or HQET, we
make use of the slightly modified form

1

Dk1
1 D

k2
2

=
Γ(k1 + k2)

Γ(k1)Γ(k2)

∫ ∞
0

dλ
λk1[

λD1 +D2

]k1+k2 (A.2)

if D1 corresponds to the linear propagator. In the case that we need to deal
with a linear propagator and several quadratic propagators, we first combine
the quadratic propagators according to Eq. (A.1) and use Eq. (A.2) subse-
quently.
After we combine all contributions and regularise the integrals with dimen-
sional regularisation, we obtain phase-space integrals of the form∫

ddk

(2π)d
k2a

(k2 −∆)b
, (A.3)
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which we can rewrite into the closed form expression∫
ddk

(2π)d
k2a

(k2 −∆)b
= i(−1)a−b 1

(4π)d/2
1

∆b−a− d
2

Γ(a+ d/2)Γ(b− a− d/2)
Γ(b)Γ(d/2)

.

(A.4)

We employ this relation extensively in this work. Particularly interesting are
tensor integrals, which can be expressed in terms of Eq. (A.4)∫

ddk

(2π)d
kµkν

(k2 −∆)b
=

1

d
gµν
∫

ddk

(2π)d
k2

(k2 −∆)b
. (A.5)

Integrals with an odd number of tensors in the numerator like∫
ddk

(2π)d
kµ

(k2 −∆)b
(A.6)

vanish due to the antisymmetry of the integrand. Furthermore, the special
case ∆ = 0 is of importance since this leads to scaleless integrals in dimen-
sional regularisation.

A.2 Anomalous dimensions
In this section, we summarise the analytic expressions for the anomalous di-
mensions of the observables that we encounter in this work. We start with
the anomaly coefficient for the SCET-II observables transverse-momentum
resummation and jet-veto resummation. For pT -resummation, the NLO
anomaly coefficient d1 vanishes, d q,g1 = 0. The NNLO coefficient reads [78,
79]

d q2 =

(
808

27
− 28ζ3

)
CFCA −

224

27
CFTFnf (A.7)

d g2 =

(
808

27
− 28ζ3

)
C 2
A −

224

27
CATFnf . (A.8)

For pT -veto, the NLO anomaly coefficient is the same as for pT . However the
NNLO anomaly coefficients d q,g2 are only known semi-analytically and can
be found for instance in [160] for the quark case. The gluon case is obtained
via Casimir scaling.
The cusp anomalous dimensions are observable independent. They read for
the quark case

Γ q
0 =4CF (A.9)

Γ q
1 =

(
268

9
− 4π2

3

)
CFCA −

80

9
CFTFnf (A.10)

and for the gluon case we need to replace CF → CA.
Finally, we turn our attention to the non-cusp anomalous dimensions. At
NLO, they coincide for all observables under consideration here and are γ q0 =
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−3CF and γ g0 = −β0 for the quark and gluon case at NLO, respectively. The
NNLO non-cusp anomalous dimensions are the same for pT -resummation and
pT -veto

γ q1 =

(
− 3

2
+ 2π2 − 24ζ3

)
C 2
F +

(
− 961

54
− 11π2

6
+ 26ζ3

)
CFCA

+

(
130

27
+

2π2

3

)
CFTFnf (A.11)

γ g1 =

(
− 692

27
+

11π2

18
+ 2ζ3

)
C 2
A +

(
256

27
− 2π2

9

)
CATFnf + 4CFTFnf ,

(A.12)
while these quantities become for beam thrust

γ q1 =

(
− 3

2
+ 2π2 − 24ζ3

)
C 2
F +

(
− 1769

54
− 11π2

9
+ 40ζ3

)
CFCA

+

(
242

27
+

4π2

9

)
CFTFnf (A.13)

γ g1 =

(
− 1096

27
+

11π2

9
+ 16ζ3

)
C 2
A +

(
368

27
− 4π2

9

)
CATFnf + 4CFTFnf .

(A.14)

A.3 Splitting functions in momentum space
Here, we aim to collect the expressions for the leading order and next-to-
leading order splitting functions. We expand these splitting functions simi-
larly to Eq. (4.18) in αs:

Pi←j(x) =
∞∑
k=0

(αs
4π

)k+1

P
(k)
i←j(x) (A.15)

For the leading order splitting function, we observe contributions from four
different channels

P (0)
q←q =2CF · pq←q(x) + 3CF δ(1− x) , (A.16)

P (0)
q←g =2TF · pq←g(x) , (A.17)
P (0)
q←g =2CF · pg←q(x) , (A.18)
P (0)
q←g =2CA · pg←g(x) + β0 δ(1− x) . (A.19)

We have defined the splitting function kernels

pq←q(x) = (1 + x2) ·
[

1

1− x

]
+

, (A.20)

pq←g(x) = ((1− x)2 + x2) , (A.21)

pg←q(x) =
1

x
(1 + (1− x)2) , (A.22)

pg←g(x) = 2 ·
[

1

1− x

]
+

+
2

x
− 4 + 2x− 2x2 . (A.23)
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For the NLO splitting function, we obtain for the q → q channel

P (1)
q←q(x) = 4

[
CF
2

(
1 + x2

) [ 1

1− x

]
+

[(
67

9
− π2

3

)
CA −

20TFnf
9

]
+ δ(1− x)

[(
1

8
+
π2

6

)
β0CF + CFCA

(
1

4
− 3ζ(3)

)
+ C2

F

(
6ζ(3) +

3

8
− π2

2

)]
+ CF

(
(1 + x2) ln(x)

2(1− x)
− x+ 1

)
β0

+ CFCA

(
(1 + x2) ln(x)2

2(1− x)
+ 3(1− x) + (x+ 1) ln(x)

)

+ C2
F

(
−
(
(1 + x2)

(
2 ln(1− x) + 3

2

)
ln(x)

1− x
+ 5(1− x)

+
1

2
(1 + x) ln(x)2 +

1

2
(7x+ 3) ln(x)

))
+ CFTF

(
− 56x2

9
+

(
8x2

3
+ 5x+ 1

)
ln(x) + 6x+

20

9x

− (1 + x) ln(x)2 − 2

)]
. (A.24)

For the g → q channel, we get

P (1)
q←g(x) = CFTF

[
8x2(ln(x)(ln(x) + 2) + 5)− 2 ln(x)2 − 2 ln(x)

− 4

3
(2(x− 1)x+ 1)

(
−3 ln(1− x)2 + 6 ln(x) ln(1− x) + π2

)
− 2(x− 1)(8x ln(1− x) + 2 ln(x)(ln(x) + 2) + 29)− 30

]

+ 4CATF

[
− 2(2x(x+ 1) + 1)(Li2(−x) + ln(x) log(x+ 1))

+
2

9
x2(66 ln(x)− 109)− 2π2x

3
+ 25x+

20

9x
+ (−2(x− 1)x− 1)

× ln(1− x)2 − 3 ln(x)2 + 9 ln(x) + 2(x− 1)(2x ln(1− x)

− (ln(x)− 4) ln(x))− 2

]
, (A.25)

where the function Hn1,...,nj
(x) denote the harmonic polylogarithms. The

splitting functions for the two gluon channels read

P (1)
g←q(x) = − 4C2

F

[
1

2
(7x+ 5) +

((1− x)2 + 1) ln(1− x)2

x
+
(3 ((1− x)2 + 1)

x

+ 2x
)
ln(1− x) + 1

2
(2− x) ln(x)2 − 1

2
(7x+ 4) ln(x)

]
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+ 4CFCA

[
−

((x+ 1)2 + 1)
(
−2Li2(−x)− 2 ln(x) log(x+ 1)− π2

6

)
x

+
1

18

(
88x2 − x+ 56

)
− 1

3

(
8x2 + 15x+ 36

)
ln(x) + (x+ 2) ln(x)2

+ 2x ln(1− x) + 11

3

(
x+

((1− x)2 + 1)
(
ln(1− x) + 5

3

)
x

)

+
((1− x)2 + 1)

(
ln(1− x)2 − 2 ln(x) ln(1− x)− π2

6
− 101

18

)
x

]

− 16

3
CFTFnf

[
x+

((1− x)2 + 1)
(
ln(1− x) + 5

3

)
x

]
, (A.26)

P (1)
g←g(x) =C2

A

[
4
(

67
9
− π2

3

)
(x2 − x+ 1)

2

x

[
1

1− x

]
+

+
8 (x2 − x+ 1)

2

x

(
ln(x)

2

− 2 ln(1− x)
)
ln(x)

[
1

1− x

]
+

− 8 (x2 + x+ 1)
2

x(x+ 1)

(
− 2Li2(−x)

+
ln(x)2

2
− 2 ln(x) log(x+ 1)− π2

6

)
+

44

3

(
− 13x2

6
− 3(1− x)

2

+
13

6x
+ (x+ 1) ln(x)

)
+ 4

(
277x2

18
− 4

3

(
11x2 + 9

)
ln(x)

+ 19(1− x)− 277

18x
+ 4(x+ 1) ln(x)2

)
+ 4

(
3ζ(3) +

8

3

)
δ(1− x)

]

+ CATFnf

[
− 80 (x2 − x+ 1)

2

9x

[
1

1− x

]
+

− 16

3

(
− 13x2

6

− 3(1− x)
2

+
13

6x
+ (x+ 1) ln(x)

)
− 16

3
δ(1− x)

]

+ 4CFTFnf

[
20x2

3
− δ(1− x) + 8x+

4

3x
− 2(x+ 1) ln(x)2

− 2(5x+ 3) ln(x)− 16

]
. (A.27)

A.4 Laplace transformation of logarithms in
momentum space

In this section, we are going to collect the Laplace transformation for the
logarithms in momentum space, which are relevant to compare the momen-
tum space results for the observable beam thrust in [124, 125] to the results
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in chapter 8. Starting with the highest logarithm, we observe∫ ∞
0

dx

[
Θ(x) log3(x)

x

]
+

exµ
2τ =

1

4
log4(µ2τ̄) +

π2

4
log2(µ2τ̄) + 2ζ(3) log

(
µ2τ̄
)

+
3π4

80
, (A.28)

where we define x := t/µ2 and τ̄ = τeγE . Notice that τ represents the Laplace
variable in this context. Next, the squared logarithm transforms as follows:∫ ∞

0

dx

[
Θ(x) log2(x)

x

]
+

exµ
2τ = −1

3
log3(µ2τ̄)− π2

6
log
(
µ2τ̄
)
− 2

3
ζ(3) .

(A.29)

Finally, for the single logarithm and no logarithm we see∫ ∞
0

dx

[
Θ(x) log(x)

x

]
+

exµ
2τ =

1

2
log2(µ2τ̄) +

π2

12
, (A.30)

∫ ∞
0

dx

[
Θ(x)

x

]
+

exµ
2τ = − log

(
µ2τ̄
)
. (A.31)

In order to compare the renormalised matching kernels for beam thrust from
chapter 8 to [124, 125], we need to correct the results for the constant terms
which do not contain any logarithms.

A.5 Borel transformation
In this section, we introduce the Borel transformation, which is an essential
tool to make the sum rules more convergent. Generally, the Borel trans-
formation of a function g(−q2) ≡ g(Q2) in the unphysical spacelike region
q2 < 0 is defined to be

B̂M2 = lim
Q2,n→∞, Q2/n=M2

(Q2)n+1

n!

(
− d

dQ2

)n

g(Q2) ≡ g(M2) . (A.32)

The advantage of this additional transformation is to suppress the contin-
uum and higher excited or multihadron states in the hadronic spectral density
ρhadr. and to remove possible substraction terms originating from the contour
integral in the dispersion relation, as investigated in section 11.2. This en-
sures that the dependence on the quark-hadron duality gets reduced.
For special functions g(Q2), it is possible to state a closed form for the trans-
formation in Eq. (A.32). In the case of polynomials in Q2, we see that

B̂M2(Q2)k = 0, k ≥ 0. (A.33)
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This is for instance the reason why we rewrite the scalar product P · q in Eq.
(15.9), since we obtain simple polynomials in (P + q)2 which vanish during
the Borel transformation.
The second frequently used transformation is connected to the denominators:

B̂M2

1

(s+Q2)k
=

1

(k − 1)!

( 1

M2

)k−1
e−s/M

2 (A.34)

In our case, we deal with k = 1, 2, 3 and Q2 = −(P + q)2.





Appendix B

Remaining results

B.1 Jet-veto resummation in x-space

Here, we show the remaining results for the refactorised matching kernels
for pT -veto in x-space. Similarly to the plots in section 8.2, the large dots
indicate numbers from our numerical approach, while the small dots, which
approximately look like a solid line are semi-analytical expressions extracted
from [171, 173]. The uncertainties on our computation are included, albeit
not visible on the scales presented here. Notice that the results from [171, 173]
do not state any uncertainties on their calculation, although some results are
given in form of a grid in the variable x in the small R-expansion. We know
that factorisation works in the limit R� 1, but it has been proven in many
applications that results in the range R ∼ 1 also reproduce experimental
data very well [159]. Therefore, we choose the values R = {0.2, 0.5, 0.8} in
our setup.
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Figure B.1: Grid contribution of the refactorised matching kernel for the
g → q channel for R = {0.2, 0.5, 0.8}.
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Figure B.2: Grid contribution of the refactorised matching kernel for the
q̄ → q channel and for the CFTFnf colour structure of the q → g channel for
R = {0.2, 0.5, 0.8}.
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Figure B.3: Grid contribution of the refactorised matching kernel for the
two remaining colour structures C 2

F and CFCA of the q → g channel for
R = {0.2, 0.5, 0.8}.
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Figure B.4: Grid contribution of the refactorised matching kernel for the
colour structures CFTFnf and CATFnf of the g → g channel for R =
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Figure B.5: Grid contribution of the refactorised matching kernel for the C 2
A

colour structure of the g → g channel for R = {0.2, 0.5, 0.8}.

It turns out that our results agree very well with the extraction from [171,
173], in particular for complicated colour structures like the C 2

A structure
in the g → g channel. Notice that also the small and large x-limit are in
agreement, which are known to be difficult to resolve due to the singular
behaviour in x→ {0, 1}.

B.2 Jet-veto resummation in N-space
Additionally, we collect the results for Mellin space for the off-diagonal quark
channel and both gluon channels. The results for the quark channels have
been published in [122] for three values of the jet radius R = {0.2, 0.5, 0.8},
which are commonly used in the literature. We extend this analysis to the
gluon channels here and moreover include two additional values for R, namely
R = {0.4, 1.0}.
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Figure B.6: Refactorised matching kernel for the g → q channel for R =
{0.2, 0.4, 0.5, 0.8, 1.0}. The uncertainties are shown here on each point, but
not visible.
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Figure B.9: Refactorised matching kernel for the colour structures CFTFnf
and CATFnf of the g → g channel for R = {0.2, 0.4, 0.5, 0.8, 1.0} in N -space.
The uncertainties are shown here on each point, but not visible.
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Figure B.10: Refactorised matching kernel for the C 2
A colour structure of the

g → g channel for R = {0.2, 0.4, 0.5, 0.8, 1.0} in N -space. The uncertainties
are shown here on each point, but not visible.

These results can in principle be compared to our x-space computation or to
the results from [171, 173] after performing a Mellin transformation on those
according to Eq. (3.9). We observe perfect agreement within the uncertain-
ties with these results. Notice that the uncertainties on our calculation are
shown in all plots, but not visible at the scales presented there. Since the
factorisation for this observable is usually stated in x-space, it is necessary to
perform an additional inverse Mellin transformation on these results to end
up in momentum space. This procedure introduces yet another unknown sys-
tematic error on our evaluation. But since our x-space setup provides good
results with reasonable uncertainties, we rather make use of this framework
in order to calculate observables with factorisation theorems in x-space and
employ our Mellin space framework for observables defined in N -space.

B.3 DIS-angularities in x-space

Here, we are going to state the remaining contributions for the class of ob-
servables DIS-angularities. We cover three different angularity values A =
{−1, 0, 0.5} and therefore show the applicability of our framework for all
possible values of n since angularity values less or greater than 0 (n values
less or greater than 1) require different treatment, as we have discussed in
chapter 5 and as we will further investigate in the next chapter C. We show
the x-independent coefficients for the diagonal gluon channel from Eq. (8.4)
first, whereas we have listed the corresponding quark coefficients in section
8.4. Before we do that, we investigate the NNLO gluon non-cusp anomalous
dimension γg,B1 and compare it to the results from [176].
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γg,B1

A = −1 A = 0 A = 0.5

[176] this work [176] this work [176] this work

CFTFnf 4 4 4 4 4 4

CATFnf 7.05 7.0490(26) 9.24 9.2432(33) 12.45 12.4480(296)

C 2
A −16.93 −16.9324(470) −9.30 −9.2964(523) 1.94 1.9286(2918)

Table B.1: NNLO quark non-cusp anomalous dimensions for the three dif-
ferent angularity values A = {−1, 0, 0.5}. We compare the results obtained
here to [176].

We observe very good agreement between our computation and [176] within
the uncertainties. Notice that the errors on the angularity value A = 0.5
are worse compared to the other two angularities, as have we elaborated in
section 8.4. This effect can be traced back to logarithmic and square-root
divergences inside the measurement function, which require a more advanced
version of the computational parameterisation than the one we have imple-
mented so far.
Next, we state the x-independent coefficients c g−1 to c g3 , which constitute a
new prediction.

c g−1 A = −1 A = 0 A = 0.5

CFTFnf 0 0 0

CATFnf 6.3202(41) −1.2379(53) −17.4870(877)

C 2
A −7.0118(1115) −14.8952(922) 11.9223(7150)

Table B.2: x-independent coefficients in front of the δ-distribution for the
colour structures of the diagonal gluon channel. We extract these coefficients
for three different angularity values A = {−1, 0, 0.5}.

c g0 A = −1 A = 0 A = 0.5

CFTFnf 0 0 0

CATFnf −0.1494(34) 3.9098(33) 8.1559(197)

C 2
A 51.7720(627) 35.0279(523) 17.1790(1946)

Table B.3: We show the same as in table B.2, but for the
[

1
1−x

]
+

-distribution.
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c g1 A = −1 A = 0 A = 0.5

CFTFnf 0 0 0

CATFnf −11.8519(16) −8.8889(12) −5.9259(27)

C 2
A −31.9426(348) −9.7011(274) 9.6170(424)

Table B.4: We show the same as in table B.2, but for the
[
ln(1−x)
1−x

]
+

-
distribution.

c g2 A = −1 A = 0 A = 0.5

CFTFnf 0 0 0

CATFnf 4.7407(1) 2.6667(1) 1.1852(1)

C 2
A −13.0371(72) −7.3334(48) −3.2592(30)

Table B.5: We show the same as in table B.2, but for the
[
ln2(1−x)

1−x

]
+

-
distribution.

c g3 A = −1 A = 0 A = 0.5

CFTFnf 0 0 0

CATFnf 0 0 0

C 2
A 14.2222(4) 8± 20−4 3.5555(1)

Table B.6: We show the same as in table B.2, but for the
[
ln3(1−x)

1−x

]
+

-
distribution.

We see once more that these coefficients are connected to the corresponding
quark coefficients via Casimir scaling. Moreover, the value A = 0 corresponds
to beam thrust and we observe perfect agreement with the previous results
within the uncertainties.
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Figure B.11: Refactorised matching kernel for the off-diagonal quark channel
for A = {−1, 0, 0.5}. The uncertainties are shown here on each point, but
not visible.
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Figure B.12: Refactorised matching kernel for the q̄ → q channel and the
CFTFnf colour structure of the q → g channel for A = {−1, 0, 0.5}. The
uncertainties are shown here on each point, but not visible.
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Figure B.13: Refactorised matching kernel for the remaining contributions
of the off-diagonal gluon channel for A = {−1, 0, 0.5}. The uncertainties are
shown here on each point, but not visible.
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Figure B.14: Refactorised matching kernel for the colour structures CFTFnf
and CATFnf of the g → g channel for A = {−1, 0, 0.5}. The uncertainties
are shown here on each point, but not visible.
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Figure B.15: Refactorised matching kernel for the colour structure C 2
A of the

g → g channel for A = {−1, 0, 0.5}. The uncertainties are shown here on
each point, but not visible.

These grid contributions constitute a new prediction for the angularity values
A = {−1, 0.5} and A = 0 serves as a check of our approach since we can
compare these numbers to our beam thrust computation. We conclude that
these results are in perfect agreement within the uncertainties. These un-
certainties are also shown in the plots above, albeit not visible on the scales
presented above. For further discussion regarding the error estimates for this
observable, we refer to section 8.4 for more details.





Appendix C

Steps to derive
singularities in monomial
form in all sectors

In this section, we will explicitly elaborate all steps for each matching kernel
and colour structure in the RR contributions in order to derive completely
factorised singularities in monomial form. We assume that we have already
performed the remapping of the integrals to the unit hypercube such that
the integration domain is always between 0 and 1. Moreover, we work in
computational parameterisation.
In general, the decomposition is the same in our momentum-space and Mellin-
space approach. We state the substitutions, which are necessary to obtain
the monomial forms, the divergences in each sector and the factor ρ denoting
factors which we have to remove from the measurement function in order
to keep it finite and non-zero. In particular, we show the factor ρ for three
different cases (n ≥ 1, 0 < n < 1, n = 0) since they require different treat-
ment. Generally, the allowed range for the parameter n is n ∈ [0,∞). The
methods which are required to arrive at singularities in monomial form have
been discussed in chapter 5. On the one hand, we use sector decomposition
steps (SD), on the other hand we use the selector functions introduced in
Eq. (5.74). In the case of the observable DIS-angularities, we preserve the
n-dependence, which requires a modification of the measurement function,
see chapter 5 for more details. There, we have introduced the additional
substitutions in Eqs. (5.76) and (5.77)

229
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Region Substitution SD ρ

TI b→ gn; t→ s1−n
s→ g · s̃ g

1−n2

2 · s̃
(1−n)2

2

g → s · s̃ s
1−n2

2

TII t→ sn−1
a→ g · s g(1−n)

s→ g · a -

Table C.1: List of additional substitutions to ensure that the measurement
function is still finite and non-zero in the case where we study a class of
observables with unfixed parameter n.

These additional steps need to be performed if it is indicated in the following
tables.
The implementation of the various contributions in this chapter is straight-
forward. The complete expressions for each colour structure in each channel
are related to the timelike splitting functions from [135, 136, 138] via the
crossing procedure described in section 5.2.4. We state each contribution
separately in terms of invariant masses. For a direct implementation, the
invariant masses need to be expressed in terms of the parameterisation from
Eq. (5.23) and subsequently in the computational parameterisation from
chapter 7. This expression is exactly the matrix element in the RR NNLO
master formula in Eq. (5.49) if we remove the factors of qT in the denomina-
tor (which we already integrated analytically to obtain the master formula).
Then, we can perform the integrations indicated in the master formula.
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C.1 The I 0,(2)
q←q matching kernel

The first matching kernel under consideration is the diagonal q → q chan-
nel. As already discussed in much detail, we encounter four different colour
structures in this case, in particular the CFTF , the CFTFnf , C 2

F and CFCA
structures. Contrary to the jet function case [50], there occurs an additional
structure CFTF which becomes apparent for spacelike splitting functions. For
timelike splitting functions, the CFTF and CFTFnf structures coincide and
only yield a factor of two. We follow the same conventions as above, i.e. the
different regions are defined by the substitutions:

Region Abbreviation Substitution

Region A RA -

Region B RB a→ 1/a

Region C RC b→ 1/b

Region D RD a→ 1/a & b→ 1/b

Table C.2: List of the various substitutions in order to define the specific
regions. We perform the remapping such that we only work on the unit
hypercube if we perform numerical integrations.

CFTF - structure

We start this discussion with the CFTF colour structure. The complete
structure is given by

PCFTF
q→q̄qq∗ = P(I1)

CFTF
+ P(I2)

CFTF
+ P(I3)

CFTF
, (C.1)

which we further decompose according to

P(I1)
CFTF

=
((s13 + 2s23)x1 + (s13 − 2s12))

2

(sB123)
2s213(1− x1)2

[
− 4xP−

2

]
,

P(I2)
CFTF

=
−4P−
sB123s13x̄1

[
x̄22 + x̄2 − ε x̄21

]
,

P(I3)
CFTF

=
4xP−
(sB123)

2

[
− 1− 2ε

2

]
. (C.2)

In our implementation, we combine these three pieces immediately, since the
matrix element is simple enough to integrate it directly. We show them here
separately to illustrate that they are related to the CFTFnf in Eq. (5.55) via
the exchange 2→ 3. In table C.3, we denote how to decompose each sector
in order to derive at singularities in monomial form for this particular colour
structure.
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Region Substitution Divergences ρn≥1 ρn<1 ρn=0

RA - s5 - - -

RB SD1 a→ t · b b, s5 t
1−n
2 t

1−n
2 t1/2

RB SD2 b→ t · a a, s5 - - -

RC - s5 - - -

RD - s5 - - -

Table C.3: All sectors for the CFTF colour structure in the q → q channel.
The factor ρ denotes the terms which needs to be removed from the mea-
surement function. ”SD” stands for sector decomposition and indicates that
Region B needs an additional sector decomposition step in order to disen-
tangle overlapping divergences in the matrix element.
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CFTFnf - structure

Next, we discuss the CFTFnf colour structure. For this contribution, the
matrix element and the measurement function exhibit the symmetry that
the expressions in region A and D coincide, as well as in region B and C. We
have already studied the complete structure and its decomposition in Eqs.
(5.54) and (5.55) respectively.

Region Substitution Divergences ρn≥1 ρn<1 ρn=0

RA {a, b} → {u, v} → {ut, vt} x12, ut, s5 p
1−n
2 p

1−n
2 -

RB {a, b} → {u, v} → {ut, vt} x12, ut, s5 p
1−n
2 p

1−n
2 -

Table C.4: All sectors for the CFTFnf colour structure in the q → q channel.

p corresponds to the variable a expressed in terms of {ut, vt}, p = 1 −
(
1 −

(1−ut)2
) (

1−v4t
)4. Notice that this contribution is the first colour structure

which possesses a divergence in x12. In our x-space framework, this diver-
gence does not explicitly occur in our pySecDec code since we use Eq. (5.53)
to rewrite this singularity into distributions. Contrary to that, we explicitly
integrate over the x12-divergence in the N -space formalism, because we per-
form additionally the Mellin transformation. Therefore, the singularity in
x12 occurs explicitly.
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C 2
F - structure

In chapter 5, we have introduced the C 2
F colour structure as the first example

where sector decomposition steps are necessary. We have mentioned the
complete expression as well as its decomposition in Eqs. (5.59), (5.60), (5.61)
and (5.62). Therefore, we can now proceed to state all sectors individually:

Component Region Substitution Divergences ρn≥1 ρn<1 ρn=0

RA SD1 a→ t · b x12, b, t, s5 t
1−n
2 · b(1−n) TI t1/2

P(I1)

C 2
F

RA SD2 b→ t · a x12, a, t, s5 TII - -

RB SD1 a→ t · b x12, b, t, s5 t
1−n
2 t

1−n
2 t1/2

RB SD2 b→ t · a x12, a, t, s5 - - -

RA - s5 a
1−n
2 a

1−n
2 -

P(I23)

C 2
F

RB SD1 a→ t · b b, s5 t
1−n
2 t

1−n
2 t1/2

RB SD2 b→ t · a a, s5 a
1−n
2 a

1−n
2 -

RA SD1 a→ t · b x12, b, s5 t
1−n
2 · b(1−n) t

1−n
2 t1/2

RA SD2 b→ t · a x12, a, t, s5 TII - -

RB SD1 a→ t · b x12, b, t, s5 t
1−n
2 t

1−n
2 t1/2

P(I4)

C 2
F

RB SD2 b→ t · a x12, a, t, s5 - - -

RC SD1 a→ t · b x12, s5 t
1−n
2 t

1−n
2 t1/2

RC SD2 b→ t · a x12, s5 - - -

RD SD1 a→ t · b x12, b, t, s5 t
1−n
2 · b(1−n) TI t1/2

RD SD2 b→ t · a x12, a, s5 a(1−n) - -

Table C.5: All sectors for the C 2
F contributions from Eq. (5.61). Sector

decomposition steps (SD).
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Moreover, we decompose the contributions from the identical splitting func-
tion in the following way:

Component Region Substitution Divergences ρn≥1 ρn<1 ρn=0

RA {a, b} → {u, v} → {ut, vt} ut, s5 p
1−n
2 p

1−n
2 -

S1 ·RB {a, b} → {u, v} → {ut, vt} ut, s5 p
1−n
2 p

1−n
2 -

P(I12),(I3),(I4)
id S2 ·RB SD1 a→ t · b b, s5 t

1−n
2 t

1−n
2 t1/2

S2 ·RB SD2 b→ t · a a, s5 - - -

RC {a, b} → {u, v} → {ut, vt} ut, s5 p
1−n
2 p

1−n
2 -

RD {a, b} → {u, v} → {ut, vt} ut, s5 p
1−n
2 p

1−n
2 -

Table C.6: All sectors for the identical contribution of the C 2
F colour struc-

ture. The selector functions are defined according to chapter 5
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CFCA - structure

Finally, we focus on the CFCA colour structure. We have already discussed
its general structure and the decomposition of the pure CFCA contributions
in Eqs. (5.69), (5.70) and (5.71) as the first example for the introduction of
selector functions. We state all sectors in the following table.

Component Region Substitution Divergences ρn≥1 ρn<1 ρn=0

P(I1)
CFCA

RA, RB {a, b} → {u, v} → {ut, vt} x12, ut, s5 p
1−n
2 p

1−n
2 -

P(I2)
CFCA

RA −RD {a, b} → {u, v} → {ut, vt} x12, s5 p
1−n
2 p

1−n
2 -

RA {a, b} → {u, v} → {ut, vt} x12, ut, b, s5 p
1−n
2 p

1−n
2 -

RB {a, b} → {u, v} → {ut, vt} x12, ut, b, s5 p
1−n
2 p

1−n
2 -

S1 ·RC {a, b} → {u, v} → {ut, vt} x12, ut, b, s5 p
1−n
2 p

1−n
2 -

P(I3)
CFCA

S2 ·RC SD1 a→ t · b x12, b, t, s5 t
1−n
2 t

1−n
2 t1/2

S2 ·RC SD2 b→ t · a x12, a, t, s5 - - -

S1 ·RD {a, b} → {u, v} → {ut, vt} x12, ut, b, s5 p
1−n
2 p

1−n
2 -

S2 ·RD SD1 a→ t · b x12, b, t, s5 t
1−n
2 · b(1−n) TI t1/2

S2 ·RD SD2 b→ t · a x12, a, t, s5 TII - -

RA {a, b} → {u, v} → {ut, vt} x12, ut, s5 p
1−n
2 p

1−n
2 -

RB {a, b} → {u, v} → {ut, vt} x12, ut, s5 p
1−n
2 p

1−n
2 -

P(I5)
CFCA

RC {a, b} → {u, v} → {ut, vt} x12, ut, b, s5 p
1−n
2 p

1−n
2 -

RD SD1 a→ t · b x12, b, s5 t
1−n
2 · b(1−n) t

1−n
2 t1/2

S1 ·RD SD2 {a, b} → {u, v} → {ut, vt} x12, ut, t, s5 p(1−n) - -
S2 ·RD SD2 b→ t · a x12, a, t, s5 - TI -

RA {a, b} → {u, v} → {ut, vt} x12, s5 p
1−n
2 p

1−n
2 -

RB SD1 b→ t · a x12, a, s5 - - -

P(I6)
CFCA

RB SD2 a→ t · b x12, b, s5 t
1−n
2 t

1−n
2 t1/2

RC {a, b} → {u, v} → {ut, vt} x12, s5 p
1−n
2 p

1−n
2 -

RD SD1 a→ t · b x12, b, t, s5 t
1−n
2 · b(1−n) TI t1/2

RD SD2 b→ t · a x12, a, s5 a(1−n) - -

Table C.7: All sectors for the CFCA contributions from Eq. (5.71). Sector
decomposition steps (SD) and selector functions are defined according to
chapter 5.



C.2. THE I 0,(2)
Q←G MATCHING KERNEL 237

C.2 The I 0,(2)
q←g matching kernel

CFTF - structure

Similar to the CFTF colour structure in the I 0,(2)
q←q matching kernel, the I 0,(2)

q←g
kernel does not exhibit any divergences in the x12 variable. In this struc-
ture, we observe two colour structures, namely the CFTF and CATF colour
structures. The complete CFTF contribution for the g → q channel is given
by

PCFTF
g→gqq∗ =

CFTF
−ε̄

[
P(I1)
CFTF

+ P(I23)
CFTF

+ P(I4)
CFTF

]
(1− x) . (C.3)

Notice that the factor ε̄ originates from the crossing as described in section
5.2.4. Since we cross a gluon into the initial state, we need to account for its
different polarisation compared to an initial-state quark.
The different components in Eq. (C.3) are given by:

P(I1)
CFTF

=
−4x2P−
s12s23x1

[{
x2 + x22 − ε(x21 − x1 + 1) + ε2x1

}]
,

P(I2)
CFTF

=
4xP−
(sB123)

2

[
2ε(1− ε)

]
,

P(I3)
CFTF

=
4xP−

(
s212 + s223

)
(sB123)

2s12s23

[
(1− ε)2

]
,

P(I4A)
CFTF

=
4P−

sB123s12x1

[
x̄3 + x2x̄2x− ε(x21 − x1 + 1)x̄+ ε2x1(x− x2)

]
,

P(I4B)
CFTF

=
4P−

sB123s23x1

[
x̄32 + x2xx̄− ε(x21 − x1 + 1)x̄2 − ε2x1(x− x2)

]
. (C.4)

In our setup, we group these contributions again according to the power of
the invariant mass sB123 in the denominator. Hence, we investigate I1 sepa-
rately, while we combine I23 = I2 + I3 and I4 = I4A + I4B.
The following table lists the individual sectors for each contribution in Eq.
(C.3). As we have discussed in chapter 5, we need to perform a series of sec-
tor decomposition steps and implement selector functions in order to obtain
completely factorised singularities in each sector.
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Component Region Substitution Divergences ρn≥1 ρn<1 ρn=0

S1 ·RA {a, b} → {u, v} → {ut, vt} b, ut, s5 p
1−n
2 p

1−n
2 -

S2 ·RA SD1 a→ t · b b, t, s5 t
1−n
2 · b(1−n) TI t1/2

S2 ·RA SD2 b→ t · a a, t, s5 TII - -

P(I1)
CFTF

RB {a, b} → {u, v} → {ut, vt} ut, b, s5 p
1−n
2 p

1−n
2 -

S1 ·RC {a, b} → {u, v} → {ut, vt} ut, s5 p
1−n
2 p

1−n
2 -

S2 ·RC SD1 a→ t · b t, b, s5 t
1−n
2 t

1−n
2 t1/2

S2 ·RC SD2 b→ t · a a, s5 - - -
RD {a, b} → {u, v} → {ut, vt} ut, s5 p

1−n
2 p

1−n
2 -

RA {a, b} → {u, v} → {ut, vt} ut, s5 p
1−n
2 p

1−n
2 -

RB {a, b} → {u, v} → {ut, vt} ut, s5 p
1−n
2 p

1−n
2 -

P(I23)
CFTF

S1 ·RC {a, b} → {u, v} → {ut, vt} ut, s5 p
1−n
2 p

1−n
2 -

S2 ·RC SD1 a→ t · b b, s5 t
1−n
2 t

1−n
2 t1/2

S2 ·RC SD2 b→ t · a a, s5 - - -

RD {a, b} → {u, v} → {ut, vt} ut, s5 p
1−n
2 p

1−n
2 -

S1 ·RA {a, b} → {u, v} → {ut, vt} ut, b, s5 p
1−n
2 p

1−n
2 -

S2 ·RA SD1 a→ t · b b, t, s5 t
1−n
2 · b(1−n) TI t1/2

S2 ·RA SD2 b→ t · a a, t, s5 TII - -

P(I4)
CFTF

RB {a, b} → {u, v} → {ut, vt} ut, b, s5 p
1−n
2 p

1−n
2 -

S1 ·RC {a, b} → {u, v} → {ut, vt} ut, s5 p
1−n
2 p

1−n
2 -

S2 ·RC SD1 a→ t · b b, t, s5 t
1−n
2 t

1−n
2 t1/2

S2 ·RC SD2 b→ t · a a, s5 - - -

RD {a, b} → {u, v} → {ut, vt} ut, s5 p
1−n
2 p

1−n
2 -

Table C.8: All sectors for the CFTF colour structure in the g → q channel.
We introduce the selector functions S1,2, which have been defined in Eq.
(5.74).
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CATF - structure

The CATF colour structure requires a more complicated decomposition. In
particular, parts of the CFTF structure from before and the CFTFnf structure
from the diagonal q → q channel enter here. Thus, the complete CATF
structure is given by

PCATF
g→gqq∗ =

CATF
−ε̄

[
P(I3)
CATF

+ P(I5)
CATF

+ P(I6)
CATF

− 1

2

{
P(I1)
CFTF

+ P(I4)
CFTF

}
− (1− ε)

{
P(I1)
CATF

+ P(I2)
CATF

}]
(1− x) . (C.5)

As we have mentioned before, the factors ε̄ are introduced during the cross-
ing procedure. Furthermore, we state the decomposition of the pure CATF
contributions:

P(I3A)
CATF

=
4P−

s12s13x̄1

[
x̄1x2x+ xx̄− (1− ε)

2

(
1 + x̄31

)]
,

P(I3B)
CATF

=
4P−

s13s23x1x̄1

[
x1x̄2x+ x̄1x2x+

(1− ε)
2

(
x31 − x̄31

)]
,

P(I5)
CATF

=
4P−

s13sB123x1x̄1

[
1

2

{
x̄42 + x̄4 − 2x4 + x1(x

2
1 + 1 + 12x2)

− 4(x1x̄2 + x̄)x2 + 2x̄31x− ε(1 + x1)
2(x21 − x1 + 1)

}]
,

P(I6A)
CATF

=
4P−

s12sB123x̄1

[
(1− ε)

2
(−x̄3 + x22x− x2) + ε xx̄(1 + x2)

− ε(1− ε)
2

x̄1x̄2

]
,

P(I6B)
CATF

=
4P−

s23sB123x1x̄1

[
(1− ε)

2
(x̄32 + x22x+ x1x

2) + ε x̄2x(x1 − x2)

− ε(1− ε)
2

x1x̄1x̄

]
(C.6)

There are two additional structures, which are connected to the CFTFnf
colour structure of the diagonal quark channel. However, we compute them
independently according to the decomposition

P(I1)
CATF

=
−4xP−

2

((
x1(s13 + 2s23) + (s13 − 2s12)

)2
s213(s

B
123)

2(1− x1)2

)
,

P(I2)
CATF

=
−4xP−

2

(
1− 2ε

2(sB123)
2

)
. (C.7)

In table C.9, we state the sector decomposition steps and applications of se-
lector functions to arrive at completely factorised singularities in each sector.
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Component Region Substitution Divergences ρn≥1 ρn<1 ρn=0

RA - s5 a
1−n
2 a

1−n
2 -

RB SD1 a→ t · b b, s5 t
1−n
2 t

1−n
2 t1/2

P(I1)
CATF

RB SD2 b→ t · a a, s5 - - -

RC - s5 a
1−n
2 a

1−n
2 -

RD - s5 a
1−n
2 a

1−n
2 -

P(I2)
CATF

RA, RB - s5 a
1−n
2 a

1−n
2 -

S1 ·RA {a, b} → {u, v} → {ut, vt} b, ut, s5 p
1−n
2 p

1−n
2 -

S2 ·RA SD1 a→ t · b b, t, s5 t
1−n
2 · b(1−n) TI t1/2

S2 ·RA SD2 b→ t · a a, t, s5 TII - -

S1 ·RB {a, b} → {u, v} → {ut, vt} b, ut, s5 p
1−n
2 p

1−n
2 -

P(I3)
CATF

S2 ·RB SD1 a→ t · b b, s5 t
1−n
2 t

1−n
2 t1/2

S2 ·RB SD2 b→ t · a a, t, s5 - - -

S1 ·RC {a, b} → {u, v} → {ut, vt} ut, s5 p
1−n
2 p

1−n
2 -

S2 ·RC SD1 a→ t · b b, t, s5 t
1−n
2 t

1−n
2 t1/2

S2 ·RC SD2 b→ t · a a, s5 - - -

RD {a, b} → {u, v} → {ut, vt} ut, s5 p
1−n
2 p

1−n
2 -

RA SD1 a→ t · b b, s5 t
1−n
2 · b(1−n) t

1−n
2 t1/2

RA SD2 b→ t · a a, t, s5 TII - -

P(I5)
CATF

RB SD1 a→ t · b b, s5 t
1−n
2 t

1−n
2 t1/2

RB SD2 b→ t · a a, t, s5 - - -

RC - s5 a
1−n
2 a

1−n
2 -

RD - s5 a
1−n
2 a

1−n
2 -

S1 ·RA {a, b} → {u, v} → {ut, vt} ut, s5 p
1−n
2 p

1−n
2 -

S2 ·RA SD1 a→ t · b b, t, s5 t
1−n
2 · b(1−n) TI t2ε

S2 ·RA SD2 b→ t · a a, s5 a(1−n) - -

P(I6)
CATF

RB {a, b} → {u, v} → {ut, vt} ut, s5 p
1−n
2 p

1−n
2 -

S1 ·RC {a, b} → {u, v} → {ut, vt} ut, s5 p
1−n
2 p

1−n
2 -

S2 ·RC SD1 a→ t · b t, b, s5 t
1−n
2 t

1−n
2 t1/2

S2 ·RC SD2 b→ t · a a, s5 - - -

RD {a, b} → {u, v} → {ut, vt} ut, s5 p
1−n
2 p

1−n
2 -

Table C.9: All sectors for the CATF colour structure in the g → q channel.
We introduce the selector functions S1,2, which have been defined in Eq.
(5.74).
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C.3 The I 0,(2)
g←q matching kernel

C 2
F - structure

The real-real contributions of the off-diagonal channel for the gluon beam
function consists of two colour structures, namely the C 2

F and the CFCA
colour structure. First, the complete C 2

F colour structure is of the form

PC
2
F

q→gqg∗ = C2
F

[
P(I12)

C2
F

+ P(I3)

C2
F
+ P(I4)

C2
F

]
(1− x) . (C.8)

The different components are given by:

P(I1)

C2
F

=
4xP−
(sB123)

2

[
2(1− ε)

]
,

P(I2)

C2
F

= 4xP−
s23(s12 − s13)
(sB123)

2s12s13
(1− ε)2 ,

P(I3)

C2
F

=
4P−
s12s13x

[
2ε̄(x21 + x2) + 2(x1x+ 2x2)

]
,

P(I4A)

C2
F

=
4P−
s12sB123

[
ε̄(x− 2x1) + εε̄x+ 2(x1 + x2)

]
,

P(I4B)

C2
F

=
4P−
s13sB123

[
− ε̄(x− 2x1)− εε̄x+ 2(1− x1)

]
. (C.9)

Again, we group the various contributions depending on the power of the
invariant mass in the denominator. Thus, we combine I12 = I1 + I2 and
I4 = I4A + I4B. We state all steps to arrive at factorised singularities below.
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Component Region Substitution Divergences ρn≥1 ρn<1 ρn=0

RA {a, b} → {u, v} → {ut, vt} ut, s5 p
1−n
2 p

1−n
2 -

S1 ·RB {a, b} → {u, v} → {ut, vt} ut, s5 p
1−n
2 p

1−n
2 -

P(I12)

C2
F

S2 ·RB SD1 a→ t · b b, s5 t
1−n
2 t

1−n
2 t1/2

S2 ·RB SD2 b→ t · a a, s5 - - -

RC {a, b} → {u, v} → {ut, vt} ut, s5 p
1−n
2 p

1−n
2 -

RD {a, b} → {u, v} → {ut, vt} ut, s5 p
1−n
2 p

1−n
2 -

RA {a, b} → {u, v} → {ut, vt} b, ut, s5 p
1−n
2 p

1−n
2 -

S1 ·RB {a, b} → {u, v} → {ut, vt} b, ut, s5 p
1−n
2 p

1−n
2 -

P(I3)

C2
F

S2 ·RB SD1 a→ t · b b, s5 t
1−n
2 t

1−n
2 t1/2

S2 ·RB SD2 b→ t · a t, a, s5 - - -

RC {a, b} → {u, v} → {ut, vt} ut, s5 p
1−n
2 p

1−n
2 -

RD {a, b} → {u, v} → {ut, vt} ut, s5 p
1−n
2 p

1−n
2 -

RA {a, b} → {u, v} → {ut, vt} ut, s5 p
1−n
2 p

1−n
2 -

S1 ·RB {a, b} → {u, v} → {ut, vt} ut, s5 p
1−n
2 p

1−n
2 -

P(I4)

C2
F

S2 ·RB SD1 a→ t · b b, s5 t
1−n
2 t

1−n
2 t1/2

S2 ·RB SD2 b→ t · a a, s5 - - -

RC {a, b} → {u, v} → {ut, vt} ut, s5 p
1−n
2 p

1−n
2 -

RD {a, b} → {u, v} → {ut, vt} ut, s5 p
1−n
2 p

1−n
2 -

Table C.10: All sectors for the C 2
F colour structure in the q → g channel. We

introduce the selector functions S1,2, which have been defined in Eq. (5.74)
and performed sector decomposition steps introduced in chapter 5.
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CFCA - structure

For the CFCA colour structure, the total contribution takes the form

PCFCA
q→gqg∗ =CFCA

[
P(I1)
CFCA

+ P(I2A)
CFCA

+ P(I2B)
CFCA

+ P(I3A)
CFCA

+ P(I3B)
CFCA

+ P(I4)
CFCA

+ P(I5)
CFCA

+ P(I6)
CFCA

]
(1− x)

=CFCA

[
P(I1)
CFCA

+ P(I2)
CFCA

+ P(I3)
CFCA

+ P(I4)
CFCA

+ P(I5)
CFCA

+ P(I6)
CFCA

]
× (1− x) . (C.10)

We decompose the matrix element, which is related to the q → gqg∗ splitting
function as shown below

P(I1)
CFCA

= 4xP−
((s23 + 2s13)x2 + (s23 − 2s12))

2

(sB123)
2s223(1− x2)2

[
ε̄

2

]
,

P(I2A)
CFCA

=
4P−

s13s23x1x̄2x

[
ε̄

2
(x̄32 + x31) + xx̄+ 2x1x2

]
,

P(I2B)
CFCA

=
4x2P−

s12s23x1x̄2x

[
ε̄

2
(x̄32 + x31) + x2x̄1x+ 2x1x2

]
,

P(I3A)
CFCA

=
−4P−

s13sB123x1x̄2

[
ε̄

2
x̄1(x

2 − x1x̄2) + x2x̄
2
1

]
,

P(I3B)
CFCA

=
4P−

s12sB123x1x̄2

[
− ε̄

2
x̄(x2 − x1x̄2)− x̄2

]
,

P(I4)
CFCA

=
−4P−

s23sB123x1x̄2

[
ε̄(x3 − x31)− x1(1 + x2)

2 + 2x2(x− x1)
]
,

P(I5)
CFCA

=
4xP−
(sB123)

2

[
ε̄(1− 2ε)

2

]
,

P(I6)
CFCA

=
−4P−
s12s13x

[
ε̄(x2 + x21) + (x1x+ 2x2)

]
, (C.11)

and combine similar to the spirit above I2 = I2A + I2B and I3 = I3A + I3B.
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Component Region Substitution Divergences ρn≥1 ρn<1 ρn=0

RA - s5 a
1−n
2 a

1−n
2 -

RB - s5 a
1−n
2 a

1−n
2 -

P(I1)
CFCA

RC SD1 a→ t · b b, s5 t
1−n
2 t

1−n
2 t1/2

RC SD2 b→ t · a a, s5 - - -

RD - s5 a
1−n
2 a

1−n
2 -

S1 ·RA {a, b} → {u, v} → {ut, vt} ut, b, s5 p
1−n
2 p

1−n
2 -

S2 ·RA SD1 a→ t · b b, ut, s5 t
1−n
2 · b(1−n) TI t1/2

S2 ·RA SD2 b→ t · a a, t, s5 TII - -

S1RB {a, b} → {u, v} → {ut, vt} ut, b, s5 p
1−n
2 p

1−n
2 -

P(I2)
CFCA

S2 ·RB SD1 a→ t · b b, s5 t
1−n
2 t

1−n
2 t1/2

S2 ·RB SD2 b→ t · a a, t, s5 - - -

S1 ·RC {a, b} → {u, v} → {ut, vt} ut, b, s5 p
1−n
2 p

1−n
2 -

S2 ·RC SD1 a→ t · b b, t, s5 t
1−n
2 t

1−n
2 t1/2

S2 ·RB SD2 b→ t · a a, s5 - - -

RD {a, b} → {u, v} → {ut, vt} ut, s5 p
1−n
2 p

1−n
2 -

S1 ·RA {a, b} → {u, v} → {ut, vt} ut, b, s5 p
1−n
2 p

1−n
2 -

S2 ·RA SD1 a→ t · b b, t, s5 t
1−n
2 · b(1−n) t

1−n
2 -

S2 ·RA SD2 b→ t · a a, t, s5 TII - -

P(I3)
CFCA

S1 ·RB {a, b} → {u, v} → {ut, vt} ut, b, s5 p
1−n
2 p

1−n
2 -

S2 ·RB SD1 a→ t · b b, s5 t
1−n
2 t

1−n
2 t1/2

S2 ·RB SD2 b→ t · a a, t, s5 - - -

RC {a, b} → {u, v} → {ut, vt} ut, s5 p
1−n
2 p

1−n
2 -

RD {a, b} → {u, v} → {ut, vt} ut, s5 p
1−n
2 p

1−n
2 -

RA SD1 a→ t · b b, t, s5 t
1−n
2 · b(1−n) TI t1/2

RA SD2 b→ t · a a, s5 a
1−n
2 - -

P(I4)
CFCA

RB - s5 a
1−n
2 a

1−n
2 -

RC SD1 a→ t · b b, t, s5 t
1−n
2 t

1−n
2 t1/2

RC SD2 b→ t · a a, s5 - - -

RD - s5 a
1−n
2 a

1−n
2 -

P(I5)
CFCA

RA, RB - s5 a
1−n
2 a

1−n
2 -

S1 ·RB a→ t · b ut, b, s5 a
1−n
2 a

1−n
2 -

S2 ·RB SD1 a→ t · b b, s5 t
1−n
2 t

1−n
2 t1/2

P(I6)
CFCA

S2 ·RB SD2 b→ t · a a, t, s5 - - -

RC {a, b} → {u, v} → {ut, vt} ut, s5 p
1−n
2 p

1−n
2 -

RD {a, b} → {u, v} → {ut, vt} ut, s5 p
1−n
2 p

1−n
2 -

Table C.11: All sectors for the CFCA colour structure in the q → g channel.
We introduce the selector functions S1,2, which have been defined in Eq.
(5.74).
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C.4 The I 0,(2)
g←g matching kernel

CFTFnf - structure

The diagonal gluon channel contains in total three colour structures, namely
the C 2

A, the CATFnf and the CFTFnf structure. For the CFTFnf colour
structure, we write the matrix element in terms of the splitting function
decomposition

PCFTFnf

g←q̄qg∗ =
CFTFnf

ε̄

[
P(I1)
CFTFnf

+ P(I2)
CFTFnf

+ P(I3)
CFTFnf

+ P(I4A)
CFTFnf

+ P(I4B)
CFTFnf

]
=
CFTFnf

ε̄

[
P(I12)
CFTFnf

+ P(I3)
CFTFnf

+ P(I4)
CFTFnf

]
. (C.12)

We group them according to the power of the invariant mass sB123 in the
denominator. The various expressions in Eq. (C.12) can be stated:

P(I1)
CFTFnf

=
4xP−
(sB123)

2

[
− 2(1− ε)

]
, (C.13)

P(I2)
CFTFnf

= 4xP−
s12(s23 + s13)

(sB123)
2s23s13

[
(1− ε)2

]
, (C.14)

P(I3)
CFTFnf

=
4P−
s23s13x

[
2ε̄(1 + x2)− 2(x3 + 2x1x2)

]
, (C.15)

P(I4A)
CFTFnf

=
4P−
s23s123

[
ε̄(2 + x) + εε̄x− 2(1− x2)

]
, (C.16)

P(I4B)
CFTFnf

=
4P−
s13s123

[
ε̄(2 + x) + εε̄x− 2(1− x1)

]
. (C.17)

We combine I1 + I2 = I12 and I4 = I4A + I4B.
In the following, we mention in detail all steps which are necessary in order
to obtain completely factorised singularities in each sector.



246 APPENDIX C. STEPS TO MONOMIAL FORM

Matching kernel Region Substitution Divergences ρn≥1 ρn<1 ρn=0

RA - s5 a
1−n
2 a

1−n
2 -

P(I12)
CFTFnf

RB SD1 a→ t · b b, s5 t
1−n
2 t

1−n
2 t1/2

RB SD2 b→ t · a a, s5 - - -

RA - s5 a
1−n
2 a

1−n
2 -

P(I3)
CFTFnf

RB SD1 a→ t · b b, s5 t
1−n
2 t

1−n
2 t1/2

RB SD2 b→ t · a a, s5 - - -

RA - s5 a
1−n
2 a

1−n
2 -

P(I4)
CFTFnf

RB SD1 a→ t · b b, s5 t
1−n
2 t

1−n
2 t1/2

RB SD2 b→ t · a a, s5 - - -

Table C.12: All sectors for the CFTFnf colour structure in the g → g channel.
We need to perform one sector decomposition step in each region.
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CATFnf - structure

After investigating the CFTFnf structure, we focus on the more complicated
CATFnf colour structure. Here, we need to perform a combination of selector
functions and sector decomposition. The complete colour structure is given
by

PCATFnf

g→q̄qg∗ =
CATFnf

ε̄

[
P(I1)
CATFnf

+ P(I2)
CATFnf

+ P(I3)
CATFnf

+ P(I4)
CATFnf

+ P(I5)
CATFnf

+ P(I6)
CATFnf

]
(C.18)

Each contribution in Eq. (C.18) is given by

P(I1)
CATFnf

=
((s12 − 2s13)x2 − (s12 − 2s23)x1)

2

(sB123)
2s212(x1 + x2)2

[
− 4xP−ε̄

2

]
,

P(I2A)
CATFnf

=
−4x1P−
s13s12xx̄

[
− ε̄

2
(1 + x̄3) + x1x̄2x+ 2x1x2

]
,

P(I2B)
CATFnf

=
−4x2P−
s23s12xx̄

[
− ε̄

2
(1 + x̄3) + x2x̄1x+ 2x1x2

]
,

P(I3A)
CATFnf

=
4P−

s13sB123x̄

[
ε̄

2
x̄1(x

2 − x̄) + x2x̄
2
1

]
,

P(I3B)
CATFnf

=
4P−

s23sB123x̄

[
ε̄

2
x̄2(x

2 − x̄) + x1x̄
2
2

]
,

P(I4)
CATFnf

=
−4P−
s12sB123x̄

[
ε̄(1 + x3) + (x1 − x2)2 − 2x1x2(1 + x)

]
,

P(I5)
CATFnf

=
4xP−
(sB123)

2

[
− ε̄(1− 2ε)

2

]
,

P(I6)
CATFnf

=
4P−
s23s13x

[
− ε̄(1 + x2) + (x+ 2x1x2)

]
, (C.19)

where we combine I2 = I2A + I2B and I3 = I3A + I3B in the end.
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Matching kernel Region Substitution Divergences ρn≥1 ρn<1 ρn=0

P(I1)
CATFnf

RA, RB {a, b} → {u, v} → {ut, vt} x12, ut, s5 p
1−n
2 p

1−n
2 -

RA {a, b} → {u, v} → {ut, vt} ut, s5 p
1−n
2 p

1−n
2 -

P(I2)
CATFnf

S1 ·RB {a, b} → {u, v} → {ut, vt} ut, s5 p
1−n
2 p

1−n
2 -

S2 ·RB SD1 a→ t · b b, s5 t
1−n
2 t

1−n
2 t1/2

S2 ·RB SD2 b→ t · a a, s5 - - -

RA - s5 a
1−n
2 a

1−n
2 -

P(I3)
CATFnf

RB SD1 a→ t · b b, s5 t
1−n
2 t

1−n
2 t1/2

RB SD2 b→ t · a a, s5 - - -

P(I4)
CATFnf

RA, RB {a, b} → {u, v} → {ut, vt} x12, ut, s5 p
1−n
2 p

1−n
2 -

P(I5)
CATFnf

RA, RB - s5 a
1−n
2 a

1−n
2 -

RA - s5 a
1−n
2 a

1−n
2 -

P(I6)
CATFnf

RB SD1 a→ t · b b, s5 t
1−n
2 t

1−n
2 t1/2

RB SD2 b→ t · a a, s5 - - -

Table C.13: All sectors for the CATFnf colour structure in the g → g channel.
We make use of sector decomposition to decompose all overlapping singular-
ities.

C 2
A - structure

Finally, we turn our attention to the most complicated colour structure in
the g → g channel, namely the C 2

A structure. The complete contributions is
given by

PC
2
A

g→ggg∗ =
C 2
A

2

[
P(I1)

C 2
A
+ P(I2)

C 2
A
+ P(I3)

C 2
A
+ P(I4)

C 2
A
+ P(I5)

C 2
A
+ P(I6)

C 2
A
+ P(I7)

C 2
A
+ P(I8)

C 2
A

+ P(I9)

C 2
A
+ P(I10)

C 2
A

]
=
C 2
A

2

[
2 · P(I1)

C 2
A
+ P(I3)

C 2
A
+ P(I4)

C 2
A
+ 2 · P(I5)

C 2
A
+ P(I7)

C 2
A
+ 2 · P(I8)

C 2
A
+ P(I10)

C 2
A

]
(C.20)

where we extensively exploit the (1 ↔ 2)-symmetry between I1 and I2, I5
and I6 as well as I8 and I9.

P(I1)

C 2
A

=
4P−

s12s13x2x̄1xx̄

[
x1

(
x22x̄

2
1(x− 2) + x̄2(x+ 2x2)

)
− x2x̄1x̄

× (2x21 − x1x− 4x2) + x2(x
4 − 2x1x

3 + 2x21x
2 + 2x2x̄1x̄) + x2x̄1x̄

× (x2 + 2x1x̄2)

]
,

P(I2)

C 2
A

=
4P−

s12s23x1x̄2xx̄

[
x2

(
x21x̄

2
2(x− 2) + x̄2(x+ 2x1)

)
− x1x̄2x̄
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× (2x22 − x2x− 4x2) + x1(x
4 − 2x2x

3 + 2x22x
2 + 2x1x̄2x̄) + x2x̄2x̄

× (x2 + 2x2x̄1)

]
,

P(I3)

C 2
A

=
4P−

s13s23x1x̄1x2x̄2x

[(
x21x̄

2
2(x+ 2x2) + x22x̄

2
1(x+ 2x1)

)
+ x1x̄1x2x̄2

× (2 + x− 4x2) + x1x2(x
4 + 2x3 + 2x2 + 2x1x̄1x2x̄2) + x̄1x̄2x

2

× (x2 + 2x̄)

]
,

P(I4)

C 2
A

=
4P−

s12sB123x1x̄1x2x̄2x̄

[
x1x2x̄1x̄2x̄(3x+ 5)− x̄(x1x̄2 + x2x̄1)(x

2 + x̄)2

+ 8x1x2x̄1x̄2(x
2 − x1x2)− 2x1x2x̄1x̄2x̄(2x

2 − x1x2)
]
,

P(I5)

C 2
A

=
4P−

s13sB123x1x̄1x2x̄2x̄

[
− x1x2x̄1x̄2x̄(3x− 5x2)− x̄1(x1x̄2 + x̄)(x2 + x2x̄1)

2

+ 8x1x2x̄2x̄(x
2 + x1)− 2x1x̄1x̄2x̄(2x

2 + x1)

]
,

P(I6)

C 2
A

=
4P−

s23sB123x1x̄1x2x̄2x̄

[
− x1x2x̄1x̄2x̄(3x− 5x1)− x̄2(x2x̄1 + x̄)(x2 + x1x̄2)

2

+8x1x2x̄1x̄(x
2 + x2)− 2x2x̄1x̄2x̄(2x

2 + x2)

]
,

P(I7)

C 2
A

=4xP−
((s12 − 2s23)x1 − (s12 − 2s13)x2)

2

(sB123)
2s212(x1 + x2)2

[
ε̄

2

]
,

P(I8)

C 2
A

=4xP−
((s13 + 2s23)x1 + (s13 − 2s12))

2

s2123s
2
13(1− x1)2

[
ε̄

2

]
,

P(I9)

C 2
A

=4xP−
((s23 + 2s13)x2 + (s23 − 2s12))

2

(sB123)
2s223(1− x2)2

[
ε̄

2

]
,

P(I10)

C 2
A

=
4xP−
(sB123)

2

[
9

2
ε̄

]
(C.21)

For these contributions, it will be necessary to use sector decomposition and
selector functions as well to obtain singularities in monomial form. We state
all steps to factorise all singularities properly:
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Matching kernel Region Substitution Divergences ρn≥1 ρn<1 ρn=0

RA {a, b} → {u, v} → {ut, vt} x12, ut, b, s5 p
1−n
2 p

1−n
2 -

S1 ·RB {a, b} → {u, v} → {ut, vt} x12, ut, b, s5 p
1−n
2 p

1−n
2 -

S2 ·RB SD1 a→ t · b x12, b, t, s5 t
1−n
2 t

1−n
2 t1/2

P(I1)

C 2
A

S2 ·RB SD2 b→ t · a x12, a, t, s5 - - -

RC {a, b} → {u, v} → {ut, vt} x12, ut, b, s5 p
1−n
2 p

1−n
2 -

S1 ·RD {a, b} → {u, v} → {ut, vt} x12, ut, b, s5 p
1−n
2 p

1−n
2 -

S2 ·RD SD1 a→ t · b x12, b, t, s5 t
1−n
2 · b(1−n) TI t1/2

S2 ·RD SD2 b→ t · a x12, a, t, s5 a(1−n) - -

RA SD1 a→ t · b x12, b, t, s5 t
1−n
2 · b(1−n) TI t1/2

P(I3)

C 2
A

RA SD2 b→ t · a x12, a, t, s5 TII - -

RB SD1 a→ t · b x12, b, t, s5 t
1−n
2 t

1−n
2 t1/2

RB SD2 b→ t · a x12, a, t, s5 - - -

S1 ·RA {a, b} → {u, v} → {ut, vt} x12, ut, b, s5 p
1−n
2 p

1−n
2 -

S2 ·RA SD1 a→ t · b x12, b, t, s5 t
1−n
2 · b(1−n) t

1−n
2 t1/2

P(I4)

C 2
A

S2 ·RA SD2 b→ t · a x12, a, t, s5 TII - -

S1 ·RB {a, b} → {u, v} → {ut, vt} x12, ut, b, s5 p
1−n
2 p

1−n
2 -

S2 ·RB SD1 a→ t · b x12, s5 t
1−n
2 t

1−n
2 t1/2

S2 ·RA SD2 b→ t · a x12, t, s5 TII - -

RA SD1 a→ t · b x12, b, s5 t
1−n
2 · b(1−n) t

1−n
2 t1/2

RA SD2 b→ t · a x12, a, s5 TII - -

RB SD1 a→ t · b x12, b, t, s5 t
1−n
2 t

1−n
2 t1/2

P(I5)

C 2
A

RB SD2 b→ t · a x12, a, t, s5 - - -

RC SD1 a→ t · b x12, s5 t
1−n
2 t

1−n
2 t1/2

RC SD2 b→ t · a x12, s5 - - -

RD SD1 a→ t · b x12, b, t, s5 t
1−n
2 · b(1−n) TI t1/2

RD SD2 b→ t · a x12, a, s5 a(1−n) - -

P(I7)

C 2
A

RA, RB {a, b} → {u, v} → {ut, vt} x12, a, s5 p
1−n
2 p

1−n
2 -

RA, RC , RD - s5 a
1−n
2 a

1−n
2 -

P(I8)

C 2
A

RB SD1 a→ t · b b, s5 t
1−n
2 t

1−n
2 t1/2

RB SD2 b→ t · a a, s5 - - -

P(I10)

C 2
A

RA, RB - s5 a
1−n
2 a

1−n
2 -



Appendix D

Vanishing subdiagrams

In section 11.5, we mention several subdiagrams, which vanish in the eval-
uation of our diagrams in momentum space. Here, we explicitly prove that
these subdiagrams do not contribute. In the first subdiagram, the gluon from
the three-particle current in Eq. (11.4) is contracted with the heavy quark
field propagator (D.3). For this, we need to define the interaction vertex of
a heavy quark with an emitted gluon in HQET. The Feynman rule is given
by

igsv
µtAji

which we can extract for instance from [184]. With this, we are able to
compute the correlation function for the subdiagram on the left in figure
11.2.

ΠS1 = i

∫
ddxe−iωvx

∫
ddy 〈0|T{q̄(x)Γ1gsGµν(x)hv(x)h̄v(y)igsv

ω

× Aω(y)hv(y)h̄v(0)Γ2gsGρσ(0)q(0)} |0〉

= ig3s 〈0|T{q̄Γ1Gµν(x)P+Γ2q(0)} |0〉
∫

ddl

(2π)d
1

ω + i0+
1

(l + ωv) · v + i0+

× 1

l2 + i0+

[
lρgσω − lσgρω

]
= ig3s 〈0|T{q̄Γ1Gµν(x)P+v

ωΓ2q(0)} |0〉
∫ ∞
0

dx

∫
ddl

(2π)d
1

(l2 −∆)2

×
[(
l − x

2
v
)
ρ
gσω −

(
l − x

2
v
)
σ
gρω

]
= − ig3s 〈0|T{q̄Γ1Gµν(x)P+Γ2q(0)} |0〉

∫ ∞
0

dx
x

2

∫
ddl

(2π)d
vρvσ − vσvρ
(l2 −∆)2

= 0 (D.1)

251
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As we have used before, the contraction between the gluon field strength
tensor and a gluon field is, after performing the derivatives, a generalisation
of the ordinary gluon propagator in QCD.
The second vanishing diagram states that there is no gluon condensate con-
tribution originating from the heavy quark propagator. In order to prove this
statement, it is more convenient to investigate this contribution in position
space. Here, it is common to consider the gluon in background field gauge
[187] and decompose it into a background and a quantum field. For the back-
ground field, we employ the fixed-point of Fock-Schwinger (FS) gauge [222,
223]

xµA
µ(x) = 0 and Aµ(x) =

∫ 1

0

du uxνGνµ(ux) , (D.2)

which is particularly helpful due to the direct connection between the gluon
field and the field strength tensor. For convenience, we set the reference point
in the FS gauge to x0 = 0, since the final result is expected to be independent
of the explicit choice of this parameter. Generally, this gauge is a popular
choice for sum rule calculations in the literature.
Furthermore, the proof requires the heavy-quark propagator in position space

hv(0)h̄v(x) = Θ(−v · x) δ(d−1)(x⊥)P+ P exp

(
igs

∫ 0

v·x
dsv · A(sv)

)
, (D.3)

where the gluon field A inside Eq. (D.3) corresponds to the background
field. The quantity xµ⊥ is defined in the standard definition in HQET, i.e.
xµ⊥ = xµ − (v · x)vµ and P+ = (1 + /v)/2 denotes to the projection operator
in HQET. P illustrates the path ordering operator in Eq. (D.3).
Since this contribution is a O(gs) effect, it is sufficient to expand (D.3) to
this order:

hv(0)h̄v(x) = Θ(−v · x) δ(d−1)(x⊥)P+ igs

∫ 0

v·x
ds vµ · Aµ(sv)

= Θ(−v · x) δ(d−1)(x⊥)P+ igs

∫ 0

v·x
ds vµ

∫ 1

0

du usvνGνµ(usv) = 0

(D.4)

In this computation, we have exploited the relation between the gluon field
Aµ and the field strength tensor Gµν in FS gauge provided in Eq. (D.2).
Moreover, vµvνGµν(x) = 0 due to the antisymmetry of Gµν .
The last vanishing diagram requires a one-loop calculation.

ΠS3 = i

∫
ddxe−iωv·x 〈0|T{q̄(0)Γµν1 gsGµν(0)

∫
ddz igsq̄(z)γ

λAλ(z)q(z)

× hv(0)h̄v(x)Γρσ2 gsGρσ(x)q(x)} |0〉

= i2
∫

ddx e−iωv·x
∫

ddz g2sγ
λ
ερΓ1,αβP+,βγΓ2,γδ 〈0|T{qδ(0)q̄ε(z)} |0〉
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×
∫

ddk

(2π)d
e−ikx

i

v · k + i0+

∫
ddq

(2π)d
eiqz

i/q

q2 + i0+

∫
ddl

(2π)d
e−ilz

×
[
lµ

gνλ
l2 + i0+

− lν
gµλ

l2 + i0+

]
=0 (D.5)

In the last line, we use that we are able to rewrite the d-dimensional tensor in-
tegral into a decomposition of Lorentz structures after exploiting momentum
conservation given by the position space integrals in x and z∫

ddl

(2π)d
i/l

l2 + i0+

[
lµ

gνλ
l2 + i0+

− lν
gµλ

l2 + i0+

]
=

∫
ddl

(2π)d
i

d

γµgνλ − γνgµλ
(l2 + i0+)2

= 0 ,

which vanishes since we encounter a scaleless integral. Keeping these scaleless
integrals in mind, we finally end up with the diagrams in section 11.5 which
are left to evaluate to leading power in the OPE expansion in Eq. (11.25).





Appendix E

Nucleon distribution
amplitude

Generally, the matrix element in Eq. (15.8) can be decomposed into different
Lorentz structures according to symmetry considerations based on Lorentz
covariance, spin and parity of the proton [116].

4 〈0| εijkuiα(a1x)u
j
β(a2x)d

k
γ(a3x) |p(P )〉

= S1mpCαβ (γ5up(P ))γ + S2m
2
pCαβ (6xγ5up(P ))γ + P1mp (γ5C)αβ (up(P ))γ

+P2m
2
p (γ5C)αβ (6xup(P ))γ +

(
V1 +

x2m2
p

4
VM1
)
(6PC)αβ (γ5up(P ))γ

+V2mp (6PC)αβ (6xγ5up(P ))γ + V3mp (γµC)αβ (γ
µγ5up(P ))γ

+V4m2
p (6xC)αβ (γ5up(P ))γ + V5m

2
p (γµC)αβ (iσ

µνxνγ5up(P ))γ

+V6m3
p (6xC)αβ (6xγ5up(P ))γ +

(
A1 +

x2m2
p

4
AM1

)
(6Pγ5C)αβ (up(P ))γ

+A2mp (6Pγ5C)αβ (6xup(P ))γ +A3mp (γµγ5C)αβ (γ
µup(P ))γ

+A4m
2
p (6xγ5C)αβ (up(P ))γ +A5m

2
p (γµγ5C)αβ (iσ

µνxνup(P ))γ

+A6m
3
p (6xγ5C)αβ (6xup(P ))γ +

(
T1 +

x2m2
p

4
T M1

)
(P νiσµνC)αβ

× (γµγ5up(P ))γ + T2mp (x
µP νiσµνC)αβ (γ5up(P ))γ + T3mp (σµνC)αβ

× (σµνγ5up(P ))γ + T4mp (P
νσµνC)αβ (σ

µρxργ5up(P ))γ

+T5m2
p (x

νiσµνC)αβ (γ
µγ5up(P ))γ + T6m

2
p (x

µP νiσµνC)αβ (6xγ5up(P ))γ
+T7m2

p (σµνC)αβ (σ
µν 6xγ5up(P ))γ + T8m

3
p (x

νσµνC)αβ (σ
µρxργ5up(P ))γ

(E.1)

On the left side of Eq. (E.1), we consider a proton to vacuum matrix el-
ement with an on-shell proton of P 2 = m2

p in the initial state. The fields
u(x), u(0) and d(0) display the valence quarks inside the proton, which have
a spinor index attached to it denoted by Greek letters α, β, γ, as well as a
colour index with Latin letters i, j, k. Notice that the valence quark structure

255
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inside the proton requires the quarks to be totally antisymmetric in colour
space. For simplicity, we suppress the gauge link factor between each valence
quark which renders the expression in Eq. (E.1) gauge invariant. In addition
to that we can set a1 = 1 and a2 = a3 = 0 in our case. According to the
previous discussion, the matrix C is the charge conjugation matrix defined
as C = γ2γ0 and up(P ) is the proton spinor. The tensor σµν is given by the
standard relation σµν =

i
2
[γµ, γν ].

There are in total 24 invariant functions Si, Pi, Ai, Vi, Ti, which do not
possess a definite twist. Note that the nomenclature is chosen according to
their Lorentz structure. Si and Pi illustrate scalar and pseudoscalar contri-
butions, which are related to distribution amplitudes only appearing at twist
4 and 5, while Vi, Ai and Ti are connected to vector, axial-vector and tensor
contributions of the DAs, respectively. In order to introduce a definite twist
expansion in Eq. (E.1), we define a light-like vector of the form

pµ = Pµ −
1

2
xµ

m2
p

p · x
, p2 = 0 (E.2)

and therefore work in the infinite-momentum frame. Moreover, it is possible
to decompose the proton spinor up(P ) into a large and a small component

up(P ) =
1

2p · x
(/p/x+ /x/p)up(P ) = u+p (P ) + u−p (P ) (E.3)

by identifying the projection operators

Λ+ =
/p/x

2p · x
, Λ− =

/x/p

2p · x
. (E.4)

If we assume that the proton moves along the positive x-direction, then p+

and x− are the only non-vanishing contributions. The infinite-momentum
frame corresponds to the limit p+ ∼ Q → ∞ with fixed P · x = p · x ∼ 1,
where Q is the large scale of the underlying process. This power counting
in Q makes it possible to perform an explicit expansion in twist. With
u+p (P ) ∼

√
p+ and u−p (P ) ∼ 1/

√
p+, we can replace for instance the V∞

expression in terms of an expansion in twist:

(/PC)αβ(γ5up(P ))γ = (/pC)αβ(γ5u
+
p (P ))γ + (/PC)αβ(γ5u

−
p (P ))γ

+
m2
p

2p · x
(/xC)αβ(γ5u

+
p (P ))γ +

m2
p

2p · x
(/xC)αβ(γ5u

−
p (P ))γ

(E.5)

From Eq. (E.5), we see that the first term scales as (p+)
3/2, the second as

(p+)
1/2, the third term as (p+)−1/2 and the last term as (p+)

−3/2, which can
be interpreted as expansion in twist starting with the leading twist three
contribution up to twist six.
The calligraphic quantities can be related to the twist amplitudes in the
following way:
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F(a1, a2, a3, (P · x)) =
∫

dα1dα2dα3 δ(1−α1−α2−α3)e
−i(P ·x)

∑
i αiaiF (αi)

(E.6)
In the above expression, the variables α1,2,3 correspond to the momentum
fractions of the different quarks inside the proton. Starting with twist three,
we can relate the calligraphic quantities appearing in Eq. (E.1) with Eq.
(E.6) to the definite twist amplitudes:

F integrand on r.h.s. of (E.6)

V1 V1

A1 A1

T1 T1

The definite twist distribution amplitudes are given by

V1(αi) = 120α1α2α3[φ
0
3 + φ+

3 (1− 3α3)] ,

A1(αi) = 120α1α2α3(α2 − α1)φ
−
3 ,

T1(αi) = 120α1α2α3[φ
0
3 − 1

2
(φ+

3 − φ−3 )(1− 3α3)] . (E.7)

We are working in the conformal spin expansion, which is the physical ana-
logue of the partial wave expansion in quantum mechanics [116]. With the
help of the conformal symmetry of the QCD Lagrangian [224], we are able to
disentangle the longitudinal degrees of freedom from the transverse degrees
of freedom. The contributions originating from the longitudinal momentum
fractions can be expressed in terms of a set of orthogonal polynomials of the
collinear subgroup SL(2, R) of the conformal group [116].
At the level of twist three, there are three coefficients φ(0,±)

3 , which can be
parameterised through the parameters fN , the normalisation factor in lead-
ing conformal spin, and Au1 as well as V d

1 , which belong both to the next to
leading conformal spin:

φ0
3 = fN ; φ+

3 =
7

2
fN(1− 3V d

1 ); φ−3 =
21

2
fNA

u
1 (E.8)

In general, we can group the remaining contributions according to their twist
and identify their tensor structure [116]:
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twist 3 twist 4 twist 5 twist 6

vector V1 V2, V3 V4, V5 V6

pseudovector A1 A2, A3 A4, A5 A6

tensor T1 T2, T3, T7 T4, T5, T8 T6

scalar S1 S2

pseudoscalar P1 P2

With this ordering of twist for the distribution amplitudes in mind, we can
group the calligraphic quantities in Eq. (E.1) into the different twist contri-
butions. By identifying the highest twist distribution amplitude inside the
calligraphic expression, we classify this expression as a contribution to this
order of twist. This is equivalent to counting the powers of mp in Eq. (E.1),
since the order of the twist expansion is directly related to the power of mp.
Thus, we identify the calligraphic quantities contributing to twist 4 according
to:

F Integrand on r.h.s. of (E.6) Abbreviation

S1 S1

P1 P1

2V3 V3

2A3 A3

2T3 T7

2(P · x)V2 V1 − V2 − V3 V123

2(P · x)A2 −A1 + A2 − A3 A123

2(P · x)T2 T1 + T2 - 2T3 T123

2(P · x)T4 T1 − T2 − 2T7 T127

Here, we drop the explicit renormalisation scale dependence for brevity. For
consistency, the above abbreviations are chosen according to [116, 117, 213,
214]. We state the twist four DAs in the conformal expansion:

V2(αi) = 24α1α2[φ
0
4 + φ+

4 (1− 5α3)] , A2(αi) = 24α1α2(α2 − α1)φ
−
4 ,

T2(αi) = 24α1α2[ξ
0
4 + ξ+4 (1− 5α3)] ,

A3(αi) = 12α3(α2 − α1)[(ψ
0
4 + ψ+

4 ) + ψ−4 (1− 2α3)]

V3(αi) = 12α3[ψ
0
4(1− α3) + ψ+

4 (1− α3 − 10α1α2) + ψ−4 (α
2
1 + α2

2

− α3(1− α3))]

T3(αi) = 6α3[(φ
0
4 + ψ0

4 + ξ04)(1− α3) + (φ+
4 + ψ+

4 + ξ+4 )(1− α3 − 10α1α2)
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+ (φ−4 − ψ−4 + ξ−4 )(α
2
1 + α2

2 − α3(1− α3))]

T7(αi) = 6α3[(φ
0
4 + ψ0

4 − ξ04)(1− α3) + (φ+
4 + ψ+

4 − ξ+4 )(1− α3 − 10α1α2)]

+ (φ−4 − ψ−4 − ξ−4 )(α2
1 + α2

2 − α3(1− α3))]

S1(αi) = 6α3(α2 − α1)[(φ
0
4 + ψ0

4 + ξ04 + φ+
4 + ψ+

4 + ξ+4 ) + (φ−4 − ψ−4 + ξ−4 )

× (1− 2α3)]

P1(αi) = 6α3(α1 − α2)[(φ
0
4 + ψ0

4 − ξ04 + φ+
4 + ψ+

4 − ξ+4 ) + (φ−4 − ψ−4 − ξ−4 )
× (1− 2α3)]

(E.9)

Here, we introduce additional parameters:

φ0
4 =

1

2
(fN + λ1); φ

+
4 =

1

4
(fN(3− 10V d

1 ) + λ1(3− 10fd1 ));

φ−4 =− 5

4
(fN(1− 2Au1)− λ1(1− 2fd1 − 4fu1 )) (E.10)

ψ0
4 =

1

2
(fN − λ1); ψ+

4 = −1

4
(fN(2 + 5Au1 − 5V d

1 )− λ1(2− 5fd1 − 5fu1 ));

ψ−4 =
5

4
(fN(2− Au1 − 3V d

1 )− λ1(2− 7fd1 + fu1 )) (E.11)

ξ04 =
1

6
λ2; ξ

+
4 =

1

16
λ2(4− 15fd2 );

ξ−4 =
5

16
λ2(4− 15fd2 ) (E.12)

For completeness, we state whether they belong to the leading or next-to-
leading conformal spin [118]:

Leading twist Higher twist

Leading conformal spin fN λ1, λ2

Next-to-leading conformal spin Au1 , V
d
1 fu1 , f

d
1 , f

d
2

For twist 5, we have

V4(αi) = 3[ψ0
5(1− α3) + ψ+

5 (1− α3 − 2(α2
1 + α2

2)) + ψ−5 (2α1α2

− α3(1− α3))] ,

A4(αi) = 3(α2 − α1)[−ψ0
5 + ψ+

5 (1− 2α3) + ψ−5 α3] ,

T4(αi) =
3

2
[(φ0

5 + ψ0
5 + ξ05)(1− α3) + (φ+

5 + ψ+
5 + ξ+5 )(1− α3 − 2(α2

1 + α2
2))]

+ (φ−5 − ψ−5 + ξ−5 )(2α1α2 − α3(1− α3)) ,

T8(αi) =
3

2
[(φ0

5 + ψ0
5 − ξ05)(1− α3) + (φ+

5 + ψ+
5 − ξ+5 )(1− α3 − 2(α2

1 + α2
2))

+ (φ−5 − ψ−5 + ξ−5 )(2α1α2 − α3(1− α3))] ,
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F Integrand on r.h.s. of (E.6) Abbreviation

4(P · x)V5 V4 − V3 V43

4(P · x)A5 A3 − A4 A34

2(P · x)T5 −T1 + T5 + 2T8 T158

4(P · x)T7 T7 − T8 T78

2(P · x)S2 S1 − S2 S12

2(P · x)P2 P2 − P1 P21

4(P · x)V4 −2V1 + V3 + V4 + 2V5 V1345

4(P · x)A4 −2A1 − A3 − A4 + 2A5 A1345

4(P · x)2T6 2T2 − 2T3 − 2T4 + 2T5 + 2T7 + 2T8 T234578

VM1 V M
1

AM1 AM1

T M1 TM1

V5(αi) = 6α3[φ
0
5 + φ+

5 (1− 2α3)] , A5(αi) = 6α3(α2 − α1)φ
−
5 ,

T5(αi) = 6α3[ξ
0
5 + ξ+5 (1− 2α3)] ,

S2(αi) =
3

2
(α2 − α1)[−(φ0

5 + ψ0
5 + ξ05) + (φ+

5 + ψ+
5 + ξ+5 )(1− 2α3)

+ (φ−5 − ψ−5 + ξ−5 )α3] ,

P2(αi) =
3

2
(α1 − α2)[−(φ0

5 + ψ0
5 − ξ05) + (φ+

5 + ψ+
5 − ξ+5 )(1− 2α3)

+ (φ−5 − ψ−5 − ξ−5 )α3] ,

The new parameters occuring in the twist 5 DAs read in the conformal ex-
pansion:

φ0
5 =

1

2
(fN + λ1); φ+

5 = −5

6
[fN(3 + 4V d

1 )− λ1(1− 4fd1 )] ,

φ−5 =− 5

3
[fN(1− 2Au1)− λ1(fd1 − fu1 )] (E.13)

ψ0
5 =

1

2
(fN − λ1); ψ+

5 = −5

6
[fN(5 + 2Au1 − 2V d

1 )− λ1(1− 2fd1 − 2fu1 )] ,

ψ−5 =
5

3
[fN(2− Au1 − 3V d

1 ) + λ1(f
d
1 − fu1 )] ,

(E.14)

ξ05 =
1

6
λ2; ξ+5 =

5

36
λ2(2− 9fd2 ); ξ−5 = −5

4
λ2f

d
2 , (E.15)
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F integrand on r.h.s. of (E.6) Abbreviations

4(P · x)2V6 −V1 + V2 + V3 + V4 + V5 − V6 V123456

4(P · x)2A6 A1 − A2 + A3 + A4 − A5 + A6 A123456

4(P · x)2T8 −T1 + T2 + T5 − T6 + 2T7 + 2T8 T125678

Finally, for twist 6 we get the following contributions:

V6(αi) = 2[φ0
6 + φ+

6 (1− 3α3)] , A6(αi) = 2(α2 − α1)φ
−
6 ,

T6(αi) = 2[φ0
6 −

1

2
(φ+

6 − φ−6 )(1− 3α3)] . (E.16)

The twist 6 parameters read:

φ+
6 =

1

2
[fN(1− 4V d

1 )− λ1(1− 2fd1 )] ,

φ−6 =
1

2
[fN(1 + 4Au1) + λ1(1− 4fd1 − 2fu1 )] . (E.17)





Appendix F

Expressions beyond
leading twist

F.1 Higher twist corrections
Here, we collect all higher twist corrections, which contribute to the leading
twist amplitudes in Eqs. (15.9) and (15.10). It turns out that the operator
O(d) receives additional contributions from the structure /qup,L. We separate
the contributions according to the different Dirac structures in Eq. (14.24).
In addition to that we define D := ((1− α1)P + q)2 −m2

b .
In the expressions below, we have already performed the integrations in α2

and α3 from Eq. (E.6), since the exponential function does not have any
dependence on these variables in our case. Thus, we introduce the notation

Ṽ (α) =

∫ α

0

dα′ V (α′) (F.1)

˜̃
V (α) =

∫ α

0

dα′
∫ α′

0

dα′′ V (α′′) , (F.2)

which enters due to the partial integrations in the variable α because of the
factors 1/(2P · x). Surface terms vanish in this context.

Π
(d)
P1

=
m2
bmp

2

∫ 1

0

dα
P1(α)

D
up,R(P ) (F.3)

Π
(d)
V3 = −mbmp

4

∫ 1

0

dα1
V3(α)

D
[/qup,L(P ) + mp(1− α)up,R(P )] (F.4)

Π
(d)
A3

=
mbmp

4

∫ 1

0

dα
A3(α)

D
[/qup,L(P ) + mp(1− α)up,R(P )] (F.5)

Π
(d)
S1 =

m2
bmp

2

∫ 1

0

dα
S1(α)

D
up,R(P ) (F.6)

263
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Π
(d)
A2

=− mbmp

4

∫ 1

0

dα
Ã123(α)

1− α
1

D

[[
1 +

m2
b − q2 +m2

p(1− α)2

D

]
/qup,L(P )

+mp(1− α)
m2
b − q2 +m2

p(1− α)2

D
up,R(P )

]
(F.7)

Π
(d)
V2 =

mbmp

4

∫ 1

0

dα
Ṽ123(α)

1− α
1

D

[[
1 +

m2
b − q2 +m2

p(1− α)2

D

]
/qup,L(P )

+mp(1− α)
m2
b − q2 +m2

p(1− α)2

D
up,R(P )

]
(F.8)

Π
(d)
P2

= −
m2
bm

2
p

2

∫ 1

0

dα
P̃21(α)

D2
[/qup,L(P ) + mp(1− α)up,R(P )] (F.9)

Π
(d)
S2 =

m2
bm

2
p

2

∫ 1

0

dα
S̃12(α)

D2
[/qup,L(P ) + mp(1− α)up,R(P )] (F.10)

Π
(d)
V4 =

mbm
2
p

4

∫ 1

0

dα
Ṽ1345(α)

D

[
1− m2

b

D

]
up,R(P ) (F.11)

Π
(d)
A4

=
mbm

2
p

4

∫ 1

0

dα
Ã1345(α)

D

[
1− m2

b

D

]
up,R(P ) (F.12)

Π
(d)

VM
1

=
mbm

2
p

4

∫ 1

0

dα
Ṽ M
1 (α)

1− α
1

D

(
1− 2m2

b

D

)(
1 +

m2
b − q2 +m2

p(1− α)2

D

)
× up,R(P ) (F.13)

Π
(d)

AM
1
=
−mbm

2
p

4

∫ 1

0

dα
ÃM1 (α)

1− α
1

D

(
1− 2m2

b

D

)(
1 +

m2
b − q2 +m2

p(1− α)2

D

)
× up,R(P ) (F.14)

Π
(d)
V6 =

mbm
3
p

2

∫ 1

0

dα
˜̃
V 123456(α)

D2

[
1− 2m2

b

D

]
[/qup,L(P ) + mp(1− α)up,R(P )]

(F.15)
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Π
(d)
A6

=
−mbm

3
p

2

∫ 1

0

dα
˜̃
A123456(α)

D2

[
1− 2m2

b

D

]
[/qup,L(P ) + mp(1− α)up,R(P )]

(F.16)

The contributions Π
(d)
T2 , Π(d)

T3 , Π(d)
T4 , Π(d)

T5 , Π(d)
T6 , Π(d)

T7 , Π(d)
T8 , Π(d)

A5
and Π

(d)
V5 vanish

due an antisymmetric contraction of Lorentz indices in the trace.
Next, we can proceed and state the results for the second operator O(b).

Π
(b)
P1

= −m
2
bmp

4

∫ 1

0

dα
P1(α)

D
up,R(P ) (F.17)

Π
(b)
S1 = −m

2
bmp

4

∫ 1

0

dα
S1(α)

D
up,R(P ) (F.18)

Π
(b)
V3 =

mbmp

2

∫ 1

0

dα
V3(α)

D
[/qup,L(P ) + mp(1− α)up,R(P )] (F.19)

Π
(b)
A3

= −mbmp

2

∫ 1

0

dα
A3(α)

D
[/qup,L(P ) + mp(1− α)up,R(P )] (F.20)

Π
(b)
T3 = −3m2

bmp

2

∫ 1

0

dα
T7(α)

D
up,R(P ) (F.21)

Π
(b)
V2 = − mbmp

4

∫ 1

0

dα
Ṽ123(α)

1− α
1

D

[(
1 +

m2
b − q2 +m2

p(1− α)2

D

)
/qup,L(P )

+mp(1− α)

(
1−

q2 −m2
p(1− α)2

D

)
up,R(P )

]
(F.22)

Π
(b)
A2

=
mbmp

4

∫ 1

0

dα
Ã123(α)

1− α
1

D

[(
1 +

m2
b − q2 +m2

p(1− α)2

D

)
/qup,L(P )

+mp(1− α)

(
1−

q2 −m2
p(1− α)2

D

)
up,R(P )

]
(F.23)

Π
(b)
T2 =

m2
bmp

8

∫ 1

0

dα
T̃123(α)

1− α
1

D

[(
1 +

m2
b − q2 −m2

p(1− α)2

D

)
up,R(P )

− 2mp
(1− α)
D

/qup,L(P )

]
(F.24)
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Π
(b)
V5 =

3mbm
2
p

8

∫ 1

0

dαṼ43(α)
1

D

(
1− m2

b

D

)
up,R(P ) (F.25)

Π
(b)
A5

=
3mbm

2
p

8

∫ 1

0

dαÃ34(α)
1

D

(
1− m2

b

D

)
up,R(P ) (F.26)

Π
(b)
T5 = −

3m2
bm

2
p

4

∫ 1

0

dαT̃158(α)
1

D2

[
/qup,L(P ) +mp(1− α)up,R(P )

]
(F.27)

Π
(b)
T7 = −

3m2
bm

2
p

2

∫ 1

0

dαT̃78(α)
1

D2

[
/qup,L(P ) +mp(1− α)up,R(P )

]
(F.28)

Π
(b)
S2 = −

m2
bm

2
p

4

∫ 1

0

dα1S̃12(α)
1

D2

[
/qup,L(P ) +mp(1− α)up,R(P )

]
(F.29)

Π
(b)
P2

=
m2
bm

2
p

4

∫ 1

0

dαP̃21(α)
1

D2

[
/qup,L(P ) +mp(1− α)up,R(P )

]
(F.30)

Π
(b)
V4 = −

mbm
2
p

8

∫ 1

0

dαṼ1345(α)
1

D

(
1− m2

b

D

)
up,R(P ) (F.31)

Π
(b)
A4

= −
mbm

2
p

8

∫ 1

0

dαÃ1345(α)
1

D

(
1− m2

b

D

)
up,R(P ) (F.32)

Π
(b)

VM
1

= −
mbm

3
p

4

∫ 1

0

dαṼ M
1 (α)

1

D2

(
1− 2m2

b

D

)[
/qup,L(P ) +mp(1− α)up,R(P )

]
(F.33)

Π
(b)

AM
1
=
mbm

3
p

4

∫ 1

0

dαÃM1 (α)
1

D2

(
1− 2m2

b

D

)[
/qup,L(P ) +mp(1− α)up,R(P )

]
(F.34)

Π
(b)

TM
1

= −
3m4

bm
3
p

2

∫ 1

0

dαT̃M1 (α)
1

D3
up,R(P ) (F.35)
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Π
(b)
V6 = −

mbm
3
p

4

∫ 1

0

dα
˜̃
V 123456(α)

1

D2

[
1− 2m2

b

D

][
/qup,L(P ) +mp(1− α)up,R(P )

]
(F.36)

Π
(b)
A6

=
mbm

3
p

4

∫ 1

0

dα
˜̃
A123456(α)

1

D2

[
1− 2m2

b

D

][
/qup,L(P ) +mp(1− α)up,R(P )

]
(F.37)

Π
(b)
T8 = −

3m4
bm

3
p

2

∫ 1

0

dα
˜̃
T 125678(α)

1

D3
up,R(P ) (F.38)

Π
(b)
T6 = −

m2
bm

2
p

8

∫ 1

0

dα
˜̃
T 234578(α)

1− α
1

D2

[
2

(
1 +

m2
p(1− α)2 − q2 +m2

b

D

)
/qup,L(P )

+mp(1− α)

(
1 + 2

m2
p(1− α)2 − q2 −m2

b

D

)
up,R(P )

]
(F.39)

Π
(b)
T4 =

m2
bmp

4

∫ 1

0

dα1T̃127(α)
1

D

[
−2mp

D
/qup,L(P )

+

[
5

2(1− α)
+

5

2(1− α)
m2
b − q2

D
+
m2
p(1− α)
2D

]
up,R(P )

]
(F.40)

F.2 Form factors
In this section, we collect the remaining form factor expressions. The form
factor F̃ (d)

B→pL(q
2) does not contribute at leading-twist three and its contri-

butions start at twist four level. Notice that we also include the O(x2)-
contributions to twist three, which we denote V M

1 , AM1 and TM1 , while the
O(x2)-contributions to twist four are considered to be numerically negligi-
ble.

F̃
(d)
B→pL(q

2) =
1

m2
BfB

∫ αB
0

0

dα e
m2

B−s(α)

M2

{
mbmp

4ᾱ

(
V3(α)− A3(α)

)
+
m2
bm

2
p

2

× S̃12(α)− P̃21(α)

ᾱ2M2
+
mbmp

4

Ã123(α)− Ṽ123(α)
ᾱ2

(
1−

m2
pᾱ

2 − q2 +m2
b

ᾱM2

)
+
mbm

3
p

2

(
1 +

m2
b

ᾱM2

) ˜̃
V 123456(α)−

˜̃
A123456(α)

ᾱ2M2

}
(F.41)
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F
(b)
B→pR(q

2) =
1

m2
BfB

∫ αB
0

0

dα e
m2

B−s(α)

M2

{
m2
bmp

4

(
mp

mb

(
V1(α) + A1(α)

)
− 3

ᾱ
T1(α)

)
+
m2
bmp

4

P1(α) + S1(α) + 6 · T7(α)
ᾱ

+
mbm

2
p

2

(
A3(α)− V3(α)

)
+
mbm

2
p

4

Ṽ123(α)− Ã123(α)

ᾱ

(
1 +

q2 −m2
pᾱ

2

ᾱM2

)
− m2

bmp

8

T̃123(α)

ᾱ2

×
(
1−

m2
b − q2 −m2

pᾱ
2

ᾱM2

)
−

3mbm
2
p

8

Ã34(α) + Ṽ43(α)

ᾱ

(
1 +

m2
b

ᾱM2

)
+
m2
bm

3
p

4

P̃21(α)− S̃12(α)

ᾱM2
−

3m2
bm

3
p

4

2 · T̃78(α) + T̃158(α)

ᾱM2

+
mbm

2
p

8

Ṽ1345(α) + Ã1345(α)

ᾱ

(
1 +

m2
b

ᾱM2

)
+

3m4
bm

3
p

4

T̃M1
ᾱ3M4

− m2
bmp

4

T̃127(α)

ᾱ

(
5

2ᾱ

(
1− m2

b − q2

ᾱM2

)
−

m2
p

2M2

)
+

3m4
bm

3
p

4

˜̃
T 125678(α)

ᾱ3M4
+
mbm

4
p

4

˜̃
A123456(α)−

˜̃
V 123456(α)

ᾱM2

(
1 +

m2
b

ᾱM2

)
+
mbm

4
p

4ᾱM2

(
1 +

m2
b

ᾱM2

)(
ÃM1 − Ṽ M

1

)
(α)

−
m2
bm

3
p

8

˜̃
T 234578(α)

ᾱ2M2

(
1−

m2
pᾱ

2 − q2 −m2
b

ᾱM2

)}
(F.42)

F̃
(b)
B→pL(q

2) =
1

m2
BfB

∫ αB
0

0

dα e
m2

B−s(α)

M2

{
mbm

2
p

4α
(V1(α) + A1(α)) +

mbmp

2ᾱ

× (A3(α)− V3(α)) +
m2
bm

2
p

4

P̃21(α)− S̃12(α)

ᾱ2M2
+
mbmp

4ᾱ2

(
Ṽ123(α)− Ã123(α)

)
×
(
1 +

q2 −m2
pᾱ
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pᾱ

2 − q2 +m2
b

2ᾱM2
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