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Abstract

In this manuscript, we explore different aspects of quantum information
using graph theory as a principal tool. The research presented in this thesis
addresses fundamental questions in quantum information theory, such
as uncertainty relations and quantum entanglement, as well as practical
applications such as certification of quantum systems.

First, we define and analyse the anticommutativity graph associated
with a set of observables. This approach allows us to relate the expectation
values of these observables to the Lovász number of their anticommutativity
graph, a well-known graph invariant. More specificity, the Lovász number
provides an upper bound on the sum of the squares of the expectation
values. This relationship enables us to derive uncertainty relations for any
set of dichotomic observables. These can be transformed into witnesses to
detect entanglement, including in PPT entangled states.

Second, we address the problem of measurement scheduling for mar-
ginal state tomography, i.e., finding measurement settings that allow for the
reconstruction of marginal states of a quantum system. We demonstrate
that, for Pauli tomography, this problem can be mapped to a specific in-
stance of the graph-theoretical problem of edge clique covering. Using this
mapping, we show for instance that, for two-body marginal tomography
of planar qubit topologies, nine Pauli settings are necessary and sufficient,
regardless of the numbers of qubits in the system. Furthermore, we establish
that with general local projective measurements, 3k measurement settings
are sufficient to reconstruct all k-body marginal states of a multi-qubit sys-
tem. We report an experimental demonstration of the applicability of the
measurement settings derived in our work.

Lastly, we develop necessary criteria for network entanglement, reveal-
ing that many graph states, as well as permutationally symmetric states,
cannot be prepared in network structures without the usage of classical
communication. We then propose a certification protocol for the topology of
quantum networks, which has later been implemented experimentally.
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Zusammenfassung

In dieser Arbeit werden verschiedene Aspekte der Quanteninformati-
on unter Verwendung der Graphentheorie als Hauptwerkzeug untersucht.
Die vorliegende Studie befasst sich sowohl mit grundlegenden Fragen der
Quanteninformationstheorie, wie Unschärferelationen und Quantenver-
schränkung, als auch mit praktischen Anwendungen, beispielsweise der
Zertifizierung von Quantensystemen.

Erstens definieren und analysieren wir den Antikommutativitätsgraph,
der mit einer Menge von Observablen verbunden ist. Dieser Ansatz ermö-
glicht es uns, die Erwartungswerte dieser Observablen mit der Lovász-Zahl
des Graphen, einer bekannten Grapheninvariante, in Beziehung zu setzen.
Die Lovász-Zahl liefert eine obere Schranke an die Summe der Quadrate der
Erwartungswerte. Aus dieser Beziehung lassen sich Unschärferelationen
für beliebige dichotome Observablen ableiten, die wiederum zum Nach-
weis verschränkter Zustände, einschließlich PPT-verschränkter Zustände,
verwendet werden können.

Im zweiten Teil der Arbeit befassen wir uns mit der optimalen Messstra-
tegie für Marginalzustands-Tomographie. Wir zeigen, dass dieses Problem
im Fall der Pauli-Tomographie auf einen Spezialfall des graphentheoreti-
schen Problems der Kanten-Cliquen-Abdeckung reduziert werden kann.
Mit Hilfe dieser Methode demonstrieren wir zum Beispiel, dass für die
Zweikörper-Marginal-Tomographie von planaren Qubit-Topologien neun
Pauli-Einstellungen ausreichen, unabhängig von der Anzahl der Qubits im
System. Zudem zeigen wir, dass bei allgemeinen lokalen projektiven Mes-
sungen 3k Messeinstellungen genügen, um alle k-Körper-Marginalzustände
eines Multiqubit-Systems zu rekonstruieren. Die Anwendbarkeit unserer
Messeinstellungen wurde experimentell überprüft.

Zuletzt entwickeln wir notwendige Kriterien für Netzwerkverschrän-
kung und zeigen, dass viele Graphenzustände sowie alle permutationssym-
metrischen Zustände in Netzwerkstrukturen ohne klassische Kommuni-
kation nicht erzeugt werden können. Anschließend schlagen wir ein Zer-
tifizierungsprotokoll für die Topologie von Quantennetzwerken vor und
präsentieren hiervon eine experimentelle Implementierung.
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Preface

In the last decades, quantum information science has witnessed a remarkable
development. Since the end of the 20th century, the field has transitioned
from merely observing peculiar quantum phenomena to developing prac-
tical protocols. A prominent example is quantum key distribution, which
allows for the distribution of cryptographic keys between distant parties and
is theoretically provably secure [14, 47]. Today, we find ourselves in an era
where experimental implementations of these protocols are feasible, at least
at a proof-of-principle level. Examples include long-distance entanglement
distribution [166, 149], quantum key distribution in networks [127, 119],
and quantum metrology [32]. This rapid progress calls for more and more
verification and certification techniques of quantum devices.

Despite the significant progress of the field, some of the earliest seeds
of quantum information science remain incompletely characterised. Fun-
damental concepts such as uncertainty relations, discovered by Heisen-
berg as early as 1927 [72], and quantum entanglement, first discussed by
Schrödinger in 1935 [129], still elude complete understanding. For instance,
uncertainty relations are still a central topic in quantum information the-
ory, yet the problem of determining the possible expectation values of a
collection of quantum observables on a specific state remains generally
unresolved. Additionally, emerging concepts like network entanglement
[3, 94, 101, 111] require further exploration.

This thesis aims to contribute in two significant ways: It addresses
foundational problems in quantum mechanics and proposes new techniques
for characterising quantum systems. To do so, Chapter 1 introduces the
essential concepts and mathematical tools necessary for understanding the
results presented in the subsequent chapters.

In Chapter 2, we establish a novel connection between quantum observ-
ables and graph theory, which can be used to derive uncertainty relations for
any set of dichotomic observables. Specifically, we obtain an upper bound
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on the sum of the squares of their expectation values. This result and its
extensions derived in [106, 163] not only advances our understanding of
uncertainty relations but also finds practical application in entanglement de-
tection, ground state energy estimation [4], and quantum state tomography
[90].

Chapter 3 focuses on the certification of quantum devices through
quantum state tomography. It is well-known that the number of samples
required for quantum state tomography of a multi-qubit system grows ex-
ponentially with the number of qubits, making these protocols impractical
for large systems. However, in practice, many natural and engineered sys-
tems are subject to only local interactions, or are highly symmetric, making
their global properties largely contained in a few of their parts. For these
cases, marginal tomography is more appropriate and scalable. Marginal
tomography aims to reconstruct (low-dimensional) reduced density oper-
ators of multipartite quantum systems. This problem is closely related to
concepts in combinatorial design theory. We present different measurement
scheduling strategies, each optimal according to specific figures of merit,
whose applicabilities are verified in a six-photon experiment.

Finally, in Chapter 4, we address open problems in network entangle-
ment, which deals with characterising the set of states that can be gener-
ated when only some resources, such as bipartite entangled sources among
nearby parties, are available. We develop new techniques to tackle this
issue and apply them to derive necessary criteria for network-entangled
states. Notably, we show that several classes of symmetric states cannot be
prepared in network structures without classical communication. Addition-
ally, we present two certification methods for network states and discuss an
experimental demonstration.

In summary, this thesis seeks to advance both the foundational and
applied aspects of quantum information theory, with the concepts of graphs
and networks as a common thread. By exploring novel connections and de-
veloping efficient techniques for quantum state characterisation, we address
critical challenges in the field. The contributions presented are intended to
improve our understanding of quantum information theory and facilitate
future research.
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Chapter 1

Preliminaries

This first chapter covers the key concepts needed to understand the results
in this thesis. We begin by introducing fundamental elements in quantum
mechanics, namely quantum states and measurements, uncertainty relations,
quantum entanglement, classes of symmetric states, and quantum state
tomography. In the last section, we present basic notions of mathematical
optimisation and graph theory.

1.1 Quantum states and measurements

In quantum mechanics, quantum systems are described by pure states, which
are given by vectors belonging to a complex Hilbert space. If d ∈ N is the
dimension of the quantum system considered, we associate to it the Hilbert
space Hd ≃ Cd and represent its state by a normalised state vector |ψ⟩ ∈ Hd.
When no superscript is present, i.e., H, the dimension is understood as an
arbitrary finite dimension d. We give a brief overview of these fundamental
concepts, and refer to [152] for a detailed discussion. In this thesis, only
finite-dimensional systems are considered.

In general, the state of the system may not be pure and could instead be
in a a statistical mixture of pure states. In that case, the state is represented
by a unit trace and positive semidefinite (PSD) operator acting on Hd. These
are called density operators, generally denoted by ϱ and can be decomposed
according to the spectral decomposition

ϱ =
L

∑
k=1

pk |ψk⟩⟨ψk| , (1.1)

3



Preliminaries

with L = rank(ϱ) and where pk are the non-zero eigenvalues of ϱ satisfying
pk > 0 and ∑L

k=1 pk = 1, and |ψk⟩ their corresponding normalised eigen-
vectors, for all k ∈ [L]. The notation [L] = {1, . . . , L} is used throughout
this thesis. When the system can be described by a single vector |ψ⟩, its
density operator reduces to the projection operator (or projector) ϱ = |ψ⟩⟨ψ|.
We note that the decomposition into a convex combination of pure states
is not unique [80], and that any operator that can be written as the convex
combination of rank-one projectors is a valid density operator. The set of
all density operators is called the set of states of Hd and denoted by S(Hd)

[152],
S(Hd) = {ϱ ∈ L(Hd) | ϱ ⪰ 0, tr(ϱ) = 1}, (1.2)

where L(Hd) is space of linear operators acting on Hd, and where ϱ ⪰ 0
means that ϱ is a PSD operator. By abuse of language, we simply refer to
elements of S(Hd) as states.

Of particular interest in quantum information theory are two-level sys-
tems, called qubits [71]. Their states can be written with the help of two real
parameters φ ∈ [0, 2π[ and θ ∈ [0, π] as

|ψ⟩ = cos
(︃

θ

2

)︃
|0⟩+ eiφ sin

(︃
θ

2

)︃
|1⟩ , (1.3)

where |0⟩ = (1, 0)T and |1⟩ = (0, 1)T form the two-dimensional computa-
tional basis1, and where ·T stands for transposition.

Qubit states therefore have a convenient representation as unit vectors
on a sphere, which is called the Bloch sphere [71] and presented in Figure 1.1.
In order to show how mixed states also fit into this description, we intro-
duce the Pauli basis of the real vector space of 2 × 2-dimensional Hermitian
operators. The Pauli basis is composed of four elements (the Pauli operators)
[118],

σ0 =

(︄
1 0
0 1

)︄
, σx =

(︄
0 1
1 0

)︄
, σy =

(︄
0 −i
i 0

)︄
, σz =

(︄
1 0
0 −1

)︄
.

(1.4)
The operator σ0 is simply the two-dimensional identity operator, 12.2 Any

1The computational basis can trivially be extended to d-dimensional spaces, denoted by
{|i⟩}d−1

i=0 with |i⟩ being the d-dimensional unit vector in the ith direction.
2We denote the d-dimensional identity operator by 1d, and drop the subscript when the

situation is unambiguous.
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Preliminaries

Figure 1.1: Bloch sphere. Each qubit state can be represented by a three-dimensional
real vector with a norm of at most one. Pure states lie on the Bloch sphere such
as |ψ⟩, meaning their Bloch vectors have a unit norm. Mixed states lie inside the
sphere.

state ϱ ∈ S(H2) can be written as

ϱ =
1
2
(︁
σ0 + axσx + ayσy + azσz

)︁
(1.5a)

=
1
2
(12 + a · σ) (1.5b)

with a = (ax, ay, az)T ∈ R3, ∥a∥ ≤ 1, where ∥a∥ =
√

aTa is the Euclidean
norm [75]. We introduced in Eq. (1.5) the notation a · σ = axσx + ayσy + azσz,
with σ = (σx, σy, σz)T. The vector a can be represented inside the Bloch
sphere and is called the Bloch vector of ϱ [71]. The entries of a are given by
ai = tr(σiϱ) for all i = x, y, z. Conversely, any three-dimensional real vector
with a norm less or equal to one represents a state in S(H2) [28, 89]. We
note that for systems with three or more dimensions, this description does
not generalise trivially to higher-dimensional spheres (for details, see [89]
or [48]).

In this thesis, the Pauli operators play a significant role. The three other
Pauli operators are traceless and have eigenvalues +1 and −1, hence they
all square to the identity operator. For readability, we often use the notation
σ0 = 1, σx = X, σy = Y and σz = Z.

In order to have access to information about a d-dimensional quantum
system, one has to perform a quantum measurement on the system. An
important class of quantum measurements is the class of projective measure-
ments, sometimes called projection-valued measures (PVMs) measurements. A
projective measurement is described by an observable A, a Hermitian oper-
ator acting on the set of states S(Hd) [114]. The possible outcomes of the
measurement operation are given by the (real) eigenvalues of A, {ai}L

i=1.

5



Preliminaries

When the system is in a state ϱ ∈ S(Hd), the probability of obtaining the ith
outcome ai is given by the Born rule, pi = tr(Πiϱ), where Πi is the projector
onto the eigenspace of A corresponding to the eigenvalue ai, with i ∈ [L].
As the spectral decomposition of the observable A reads A = ∑L

i=1 aiΠi,
it is clear that the expectation value of the observable A on the state ϱ is
⟨A⟩ϱ = ∑L

i=1 ai pi = tr(Aϱ) [114].
Although most of the results in this thesis involving measurement con-

cern projective measurements, we briefly present the concept of positive
operator-valued measures (POVMs), the most general description of meas-
urement operations on quantum systems. A POVM M is described by a
set of PSD operators, M = {Ei}L

i=1, obeying the normalisation constraint
∑L

i=1 Ei = 1 [152]. The PSD operators Ei, with i ∈ [L], are called POVM

elements. Without loss of generality, the set of measurement outcomes is
[L], and each operator Ei is associated with the outcome i ∈ [L]. When
performing the POVM measurement M on a quantum system, probability of
obtaining the measurement outcome i ∈ [L] is given by pi = tr(Eiϱ), and the
positivity of the elements of M together with the normalisation constraint
ensure that the probabilities are positive and normalised. Clearly, projective
measurements are a type of POVM measurements, where all POVM elements
are projectors and verify an orthogonality relation [152].

1.2 Uncertainty relations

When the state vector |ψ⟩ ∈ H of a quantum system corresponds to an
eigenvector of some observable A ∈ L(H), the system is said to be in
an eigenstate of A. We denote by a the corresponding eigenvalue, such
that A |ψ⟩ = a |ψ⟩. In that case, performing the projective measurement
associated to A on the quantum system always gives the same outcome a.
The variance of A on the state |ψ⟩, defined as ∆2

ϱ(A) = ⟨A2⟩ϱ − ⟨A⟩2
ϱ with

ϱ = |ψ⟩⟨ψ|, is thus equal tor zero [71].
Now, consider a second observable, B ∈ L(H). If A and B share an

eigenstate |ψ⟩, the variances of both observables on that state are equal
to zero. However, if no common eigenstate to A and B can be prepared,
the variances cannot simultaneously vanish. We are thus interested in
formalising the relation between the probability distributions that arise
when measuring A and B on the same state ϱ: This is commonly expressed
through fundamental bounds on functions of the observables’ variances or
entropies, referred to as (preparation) uncertainty relations (URs). In this thesis,
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Preliminaries

the focus is on inequalities involving expectation values of observables,
thus only variance-based URs are discussed. While variance-based URs are
typically taught in undergraduate quantum mechanics, entropic URs are
sometimes considered more fundamental due to their independence from
the label of possible measurement outcomes. For a thorough review of
entropic URs, see [35].

One of the foundational variance-based URs is the Robertson UR [125]
that asserts a non-trivial lower bound on the product of variances of A and
B,

∆2
ϱ(A)∆2

ϱ(B) ≥
⃓⃓⃓⃓
1
2
⟨[A, B]⟩ϱ

⃓⃓⃓⃓2
∀ϱ ∈ S(H). (1.6)

Notably, for the position and momentum observables, a similar inequality
was proposed as early as 1927 by Heisenberg and formulated by Kennard
and Weyl [72, 85, 159].

Although URs such as Eq. (1.6) remarkably bound the variances of two
observables on the same state, we notice that when evaluated on an eigen-
state of either A or B, the lower bound becomes trivial. Various approaches,
such as those by Huang [79] and by Maccone and Pati [102], have attempted
to address this issue by introducing bounds on the sum of variances. A well
known example of such an UR puts a bound on the sum of the variances of
the Pauli observables X, Y, and Z for all states ϱ, namely [49]

∆2
ϱ(X) + ∆2

ϱ(Y) + ∆2
ϱ(Z) ≥ 2. (1.7)

Unlike the Robertson UR, its lower bound does not depend on the state on
which the variances are computed. Such relations, called state independent
URs, can be evaluated even when no information on the state is known.

Exceptions aside, very few variance-based URs satisfy the properties
of (i) being state-independent, (ii) providing a lower bound for the sum
of variances, and (iii) applying to more than two observables. Chapter 2
proposes URs that fulfil these criteria, albeit limited to dichotomic observ-
ables. Similar preparation URs have been previously studied, for instance
in [2, 130, 55, 139], but the results were mainly applicable to two or three
observables and not to larger sets.

The message conveyed by preparation URs is that, given a set of observ-
ables, it is not always possible the prepare a quantum system in a sate that
is arbitrarily close to eigenstates of all the observables considered. On the
other hand, preparation URs do not reveal anything about the measurement

7



Preliminaries

process in itself. This equally fundamental question is covered by measure-
ment uncertainty relations, which aim to quantify the disturbance caused by
one measurement onto another when they are performed simultaneously or
sequentially. For a detailed discussion on the topic, we refer to [26] and to
[27].

1.3 Quantum entanglement

Quantum entanglement was first described in 1935 by Schrödinger [129]
and by Einstein, Podolsky, and Rosen [46], sparking many debates among
physicists at the time. Years later, Bell proposed experimentally testable
inequalities that could demonstrate a deviation from classical physics [12],
now referred to as Bell inequalities. These inequalities have later been im-
plemented experimentally [50, 6, 155], leading to the awarding of the 2022
Nobel Prize in physics to Aspect, Clauser, and Zeilinger “for experiments
with entangled photons, establishing the violation of Bell inequalities and
pioneering quantum information science”. Although driven by interest for
a fundamental understanding of the quantum theory, physicists have since
realised that entanglement is not just a theoretical curiosity but can be a
practical resource, with applications such as quantum teleportation [15] and
quantum key distribution [47].

From a theoretical perspective, the structure of the set of entangled states
is extremely rich, especially when going to more than two parties. In this
section, we review basic concepts in entanglement theory that are relevant
for the subsequent chapter. We first present in Section 1.3.1 the definitions
of entanglement between two parties. We then discuss in Section 1.3.2
how these definitions behave when entanglement is shared between more
than two parties, and present some of the main methods for entanglement
detection in Section 1.3.3. Finally, we present in Section 1.3.4 the more recent
concept of network entanglement, which is concerned with entanglement
distribution in network structures.

1.3.1 Bipartite entanglement

When considering composite systems, that is, systems that are made up of
several subsystems, tensor products of Hilbert spaces are required. Let us
consider a quantum system made up of two subsystems A and B, each of
dimension d without loss of generality. Its global Hilbert space is H = HA ⊗

8



Preliminaries

HB [152]. Naturally, this space contains states of the form |Ψ⟩ = |ϕ⟩ ⊗ |χ⟩
where |ϕ⟩ ∈ HA and |χ⟩ ∈ HB. However, not all elements of H can be
decomposed in such a way. A evident four-dimensional example is the
two-qubit state ⃓⃓

Φ+
⟩︁
=

1√
2
(|0⟩ ⊗ |0⟩+ |1⟩ ⊗ |1⟩), (1.8)

which is one of the four Bell states [152]. Physically, bipartite systems in the
state |Φ+⟩ cannot be described separately by pure states. This motivates the
definition of separable and entangled pure states.

Definition 1.1 (Separable (pure) state [60]). A pure state |Ψ⟩ ∈ HA ⊗HB is
said to be separable if there exist two states |ϕ⟩ ∈ HA and |χ⟩ ∈ HB such that
|Ψ⟩ can be written as a tensor product, i.e., |Ψ⟩ = |ϕ⟩ ⊗ |χ⟩. Otherwise, the
state |Ψ⟩ is called entangled.

In the following, we omit the tensor product symbol, or directly write
the states in the same vector when the situation is unambiguous, e.g., |ϕ⟩ ⊗
|χ⟩ = |ϕ⟩ |χ⟩ = |ϕχ⟩. This is also applied to Pauli operators, e.g., X ⊗ X =

XX.
In order to decide whether a (pure) state |Ψ⟩ is entangled, it suffices to

look at its Schmidt decomposition. Indeed, for any state |Ψ⟩ ∈ Hd
A ⊗Hd

B, it
is possible to find two local orthonormal bases {|αi⟩ ∈ HA}d

i=1 and {|βi⟩ ∈
HB}d

i=1, and r coefficients ς1 ≥ · · · ≥ ςr > 0, such that [152]

|Ψ⟩ =
r

∑
i=1

ςi |αi⟩ |βi⟩ . (1.9)

The right hand side is called the Schimdt decomposition of |Ψ⟩, and the
number r of coefficients is called its Schmidt rank of |Ψ⟩ [60]. Clearly, r is
at most d, the local dimension. The uniqueness of the coefficients follows
from a singular value decomposition [152], from which follows that |Ψ⟩ is
separable if and only if its Schmidt rank is equal to one. We note that this is
not the only way to determine if a state is separable or entangled [52, 60, 77].

Unfortunately, such a necessary and sufficient criterion for separability
does not exist for mixed states. When the state of the system is mixed, we
say that it is separable if it can be written as a convex combination of pure
separable states.

Definition 1.2 (Separable (mixed) state [60]). A mixed state ϱ ∈ S(HA ⊗HB)

is said to be separable if the exist two sets of L pure states {|ϕk⟩ ∈ HA}L
k=1

9
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and {|χk⟩ ∈ HB}L
k=1, and convex weights {pk}L

k=1 such that ϱ can be written
as a convex combination of pure separable states, i.e., ϱ = ∑L

k=1 pk |ϕk⟩⟨ϕk| ⊗
|χk⟩⟨χk|. Otherwise, the state ϱ is called entangled.

The set of separable states is convex. As a particular case, we define
product states.

Definition 1.3 (Product state [60]). A product state ϱ ∈ S(HA ⊗HB) is a state
that can be written as a tensor product, i.e., ϱ = ϱA ⊗ ϱB with ϱA ∈ S(HA)

and ϱB ∈ S(HB). In particular, all pure separable states are product states.

Deciding whether a general quantum state is entangled or not is a central
question in quantum information theory.

Problem 1.1 (Separability problem). Given a bipartite state ϱ ∈ S(HA ⊗HB),
determine whether it is separable or entangled.

It has been shown that this problem is in general NP-hard [66]. As
mentioned, it is fully solved for bipartite pure states, for instance through
the Schimdt decomposition. For the general case, only partial results are
known, mostly under the form of necessary or sufficient criteria (see e.g.
[52, 60, 67, 77] for reviews on the topic).

In practical situations, it might not be possible or relevant to have access
to the state of the global system. In this case, it may be interesting to describe
only a single subsystem. This can be done via marginal states (or reduced
density operators). A bipartite state ϱ ∈ S(HA ⊗HB) has two marginal states,
ϱ(A) = trB(ϱ) and ϱ(B) = trA(ϱ), which belong to S(HA) and to S(HB)

respectively. Therein, the partial trace operation is used, which is the unique
linear map trA : L(HA ⊗HB) → L(HB) such that trA(X ⊗ Y) = tr(X)Y for
all X ∈ L(HA) and all Y ∈ L(HB) [152]. This definition extends trivially
to trB. As an example, the marginal states of |Ψ+⟩ defined in Eq. (1.8) are
ϱ(A) = ϱ(B) = 1/2, i.e., the maximally mixed state3.

1.3.2 Multipartite entanglement

The situation gets arguably more intricate for multipartite systems with
more than two parties. Here, we only introduce concepts for tripartite
systems ABC, as it generalises easily for more parties. Let us start with a
few definitions.

3The d-dimensional mixed state 1/d is called maximally mixed, as it is an equal-probability
mixture of all basis states of Hd.

10
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Definition 1.4 (Separable pure state [60]). A tripartite pure state |Ψ⟩ ∈
HA ⊗HB ⊗HC is biseparable across the bipartition A | BC if there exist states
|ϕ⟩ ∈ HA and |χ⟩ ∈ HB ⊗HC such that |Ψ⟩ = |ϕ⟩ ⊗ |χ⟩. The same holds for
the bipartitions B | CA and C | AB. If there exist states |ϕ⟩ ∈ HA, |χ⟩ ∈ HB

and |ζ⟩ ∈ HC such that |Ψ⟩ = |ϕ⟩ ⊗ |χ⟩ ⊗ |ζ⟩, the pure state |Ψ⟩ is called
fully separable.

These definitions extend naturally to mixed states.

Definition 1.5 (Separable state [60]). A tripartite state ϱ ∈ S(HA ⊗HB ⊗
HC) is biseparable if it can be written as a convex combination of biseparable
pure states. If it can be written as a convex combination of fully separable
pure states, it is called fully separable.

An important note is that the pure states in the biseparable decom-
position of ϱ ∈ S(HA ⊗ HB ⊗ HC) may be biseparable across different
bipartitions, e.g., ϱ = 1/2(|0⟩⟨0|A ⊗ |Φ+⟩⟨Φ+|BC + |Φ+⟩⟨Φ+|AB ⊗ |0⟩⟨0|C).
The first term of its decomposition is biseparable across A | BC, whereas
the second is biseparable across AB | C. For the sake of clarity, we added
subscripts indicating to which subsystems the states refer. The definitions of
full separability and biseparability naturally generalise to n-partite systems
with n > 3, n ∈ N.

Finally, we define the central concept of genuine multipartite entanglement
(GME).

Definition 1.6 (Genuine multipartite entanglement [60]). An n-partite state
ϱ ∈ S(⨂︁n

i=1 Hi) is said to be genuine multipartite entangled if it cannot be
written as a convex combination of biseparable pure states, i.e., if it is not
biseparable.

A famous example is the three-qubit Greenberger–Horne–Zeilinger (GHZ)
state, [58]

|GHZ⟩ = 1√
2
(|000⟩+ |111⟩), (1.10)

which can be extended to n-qubit systems, |GHZn⟩ = 1√
2
(|0 . . . 0⟩+ |1 . . . 1⟩).

Notice that |GHZ2⟩ is equal to |Φ+⟩, defined in Eq. (1.8). The so-called W
state [44]

|W⟩ = 1√
3
(|001⟩+ |010⟩+ |100⟩) (1.11)

is GME as well. Notably, if a tripartite quantum system is in a |GHZ⟩ state, it
is not possible to transform it into a W state using local operations assisted
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by classical communication (a set of transformations called LOCC), even if
the transformation may only be achieved stochastically (we then talk about
SLOCC transformations) [44]. Indeed, the GHZ state and the W state belong
to distinct classes of three-qubit entangled states that are inequivalent under
SLOCC operations, and form the homonymous entanglement classes. For
three-qubit systems, these are the only inequivalent GME classes [60].

1.3.3 Entanglement detection and quantification

As entanglement is a central resource for many quantum information ap-
plications, it is of importance to certify that a given state is entangled (GME)
or not. Moreover, one may be interested in quantifying the amount of entan-
glement in a state. In other words, answering whether some states can be in
a sense “more entangled” than others. A vast literature exists on the subject,
for which we refer the reader to [52, 60, 67, 77]. We introduced here some
concepts that are necessary for the proper understanding of this thesis.

Entanglement witnesses

Probably the easiest-to-understand tool for entanglement detections is the
concept of entanglement witnesses.

Definition 1.7 (Entanglement witness [60]). An entanglement witness is a
Hermitian operator W ∈ L(HA ⊗HB) such that tr

(︁
Wϱsep

)︁
≥ 0 holds for all

separable states ϱsep ∈ S(HA ⊗HB) and such that there exists at least one
entangled state ϱ ∈ S(HA ⊗HB) for which tr(Wϱ) < 0.

Clearly, any state ϱ that satisfies tr(Wϱ) < 0 is detected to be entangled,
which makes entanglement witnesses sufficient criteria for entanglement.
It has been shown that every entangled state can be detected by a witness
[76], but this only shifts the separability problem to finding the appropriate
witness for a given state.

Since entanglement witnesses are Hermitian operators, they correspond
to physical observables. They are thus considered experimentally friendly,
as tr(Wϱ) corresponds to the expectation value of the observable W on
the state ϱ. Nevertheless, measuring non-product observables remains
experimentally challenging, and in practice witnesses are often decomposed
in a sum of product operators that are in turn all individually measured
[61, 21, 52].

12
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To illustrate the concept of entanglement witnesses, we consider the
class of fidelity witnesses that rely on the maximal fidelity to some entangled
state. The fidelity Fψ of a state ϱ ∈ S(H) to a pure state |ψ⟩ quantifies the
overlap between them in the following way

Fψ(ϱ) = ⟨ψ| ϱ |ψ⟩ . (1.12)

From this, we construct a witnesses based on an entangled state |Ψ⟩,

WΨ = ς2
11 − |Ψ⟩⟨Ψ| , (1.13)

where ς1 is the largest Schimdt coefficient of |Ψ⟩ (see Eq. (1.9)). The fact
that operators of that form are proper entanglement witnesses follows from
maxϱsep FΨ(ϱsep) = ς2

1 [21, 65, 42]. As an example, consider an n-qubit
GHZ state as in Eq. (1.10). For any bipartition, its Schmidt decomposition
is the same and ς2

1 = 1/2. Therefore, WGHZ = 1/2 − |GHZn⟩⟨GHZn| is an
entanglement witness for any bipartition of n qubits that detects states with
a fidelity FGHZn strictly lager than 1/2 to be entangled.

Fidelity witnesses are easy to derive and an important class of witnesses,
nevertheless, it has been shown that they are not sufficient, in the sense that
not all entangled states can be detected by such witnesses [156, 65].

Covariance matrices

First introduced in the context of quantum information for continuous vari-
able systems [54, 158], covariance matrices (CMs) have been used since the
early 2000s to characterise bipartite and multipartite quantum entanglement
[56, 63]. For a given multipartite state, they quantify the covariance between
the expectation values of different observables. A CM Γ is constructed for
a state ϱ and a set of observables {Mi}N

i=1, and has the following matrix
entries

[Γ({Mi}, ϱ)]mn = ⟨Mm Mn⟩ϱ − ⟨Mm⟩ϱ⟨Mn⟩ϱ (1.14)

for all m, n ∈ [N]. These are particularly used in the context of the separ-
ability problem when only local observables can be measured. When
{Mi}N

i=1 = {Ai ⊗ 1, 1 ⊗ Bi}d2

i=1, the CM has a block structure

Γ({Ai ⊗ 1, 1 ⊗ Bi}d2

i=1, ϱ) =

(︄
ΓA γE

γT
E ΓB

)︄
, (1.15)
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where the diagonal blocks are CMs for the marginal states ϱA = trB(ϱ)

and ϱB = trA(ϱ), i.e., ΓA = Γ({Ai}d2

i=1, ϱA) and ΓB = Γ({Bi}d2

i=1, ϱB). The
separability problem can be restated as a necessary and sufficient condition
on the block CM [56]. When Ai, i ∈ [d2], are orthogonal observables that
fulfil tr

(︁
Ai Aj

)︁
= dδij, i, j ∈ [d2] (similarly for Bi, i ∈ [d2]), it follows that if

the state ϱ is separable, then ∥γE∥2
tr ≤ d2(1 − tr

(︁
ϱ2

A
)︁
)(1 − tr

(︁
ϱ2

B
)︁
), which is

a computable entanglement criteria [56]. The norm ∥·∥tr is the trace norm,
given by the sum of the singular values of its argument [75].

Schmidt number

The Schmidt rank of pure states is an entanglement measure and can be used
to quantify the entanglement dimensionality [77]. The notion of Schmidt
rank extends to mixed states ϱ ∈ S(Hd

A ⊗Hd
B) under the name of Schmidt

number (SN) as follows [77],

SN(ϱ) = min
ϱ=∑L

k=1 pk |ψk⟩⟨ψk |
max
k∈[L]

r(ψk) (1.16)

where by r(ψk) we mean the Schmidt rank of the pure state |ψk⟩. Therefore,
1 ≤ SN(ϱ) ≤ d holds for all ϱ ∈ S(Hd

A ⊗ Hd
B). The Schmidt number

quantifies the amount of entanglement in a mixed state ϱ through the largest
Schmidt rank-state that is at least needed to prepare ϱ. The set of states with
Schmidt number smaller or equal to q is convex, and denoted Sq, q ∈ [d].
Clearly, we have S1 ⊂ S2 ⊂ · · · ⊂ Sd and S1 is the set of separable states.

Similarly to entanglement witnesses, we can define Schmidt number
witnesses as Hermitian operators Wq that verify tr

(︁
Wqϱq

)︁
≥ 0 for all ϱq ∈ Sq

and for which there exists at least one state ϱ with a Schmidt number strictly
larger than q such that tr

(︁
Wqϱ

)︁
< 0. Obviously, when q = 1, we recover the

definitions of entanglement witnesses. In Chapter 2, we propose a way of
constructing such witnesses from uncertainty relations.

1.3.4 Network entanglement

Quantum networks are a central topic in the development of the concept of
the quantum internet: A network of interconnected computers that should be
able to send, receive and manipulate quantum systems [16, 88, 126, 134, 154].
Such structures should in the future answer a demand for operations such
as remote quantum computations [24], distant frequency comparison [112]
or multipartite quantum key agreement [110]. Building blocks including en-
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Figure 1.2: The four different network state definitions. (a) BTN: Three (entangled)
source states ϱa, ϱb and ϱc distribute parties to the three nodes A = A1 A2, B = B1B2
and C = C1C2. (b) UTN: The three parties A, B and C perform unitary operations
UA, UB and UC on their respective systems. (c) CTN: The operations are no longer
restricted to unitary operation, but may be any CPTP maps EA, EB and EC. (d) LOSR
triangle network: The local operation may be coordinated by a shared random
variable λ ∈ [L].

tanglement generation and distribution [25, 82, 87, 137], quantum repeaters
[8, 133] or quantum memories [91, 98] are currently being investigated both
theoretically and experimentally.

In this context, we present the notion of network entanglement, which aims
to answer the question whether a multipartite state can be prepared using
several source states with lower numbers of parties that are distributed
in a network structure, without classical communication (see e.g. [3, 11,
36, 94, 101, 103, 151, 162, 164] and [A, C]). This situation differs from the
usual consideration of multipartite entanglement, where the parties have
access to a multipartite state generated by a global source. In addition, the
absence of classical communication prevents from executing protocols such
as quantum teleportation or entanglement swapping [15, 20, 116, 167].

For the sake of clarity, we consider the smallest non-trivial example, viz.
the triangle network (see Figure 1.2). It involves three parties, A, B and
C, wanting to share a tripartite (entangled) state, while only having access
to bipartite sources. The different parties of the network are sometimes
referred to as the nodes of the network. Between them, three states (sources
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states) are distributed following the three edges. Depending on the situation,
the parties may perform local operation on their systems, either restricted
to unitary operations or not, or even have access to shared randomness.
We present in what follows four different definitions of network states: the
basic triangle network (BTN), where bipartite sources are shared among the
parties, the triangle network with local unitaries (referred to as UTN) where
A, B and C are allowed to perform unitary operations on their local systems,
the triangle network with local channels (referred to as CTN) where, as the
name indicates, local channels are performed by the parties, and finally,
LOSR networks where channels are applied and the nodes have access to
shared randomness. All are illustrated in Figure 1.2.

In the BTN, three (entangled) bipartite source states ϱa, ϱb, and ϱc are
prepared and each subsystem is sent to a node according to the distribution
in Figure 1.2 (a), i.e., ϱa is distributed to B2 and C1, ϱb is distributed to C2 and
A1, and ϱc is distributed to A2 and B1. Without loss of generality, we assume
that the sources all send d × d-dimensional states. The three nodes A, B, and
C have access to the bipartite systems A1 A2, B1B2, and C1C2 respectively, as
shown in Figure 1.2 (a). We define BTN states as follows.

Definition 1.8 (BTN states). Let ϱa ∈ S(HB2 ⊗HC1), ϱb ∈ S(HC2 ⊗HA1),
and ϱc ∈ S(HA2 ⊗HB1) be d × d-dimensional bipartite source states. The
global state of a basic triangle network reads

ϱBTN = ϱb ⊗ ϱc ⊗ ϱa, (1.17)

where ϱBTN ∈ S(HA ⊗HB ⊗HC) is a d2 × d2 × d2-dimensional state.

Notice that the order of the subsystems in Eq. (1.17) is ABC for the left-
hand side, whereas the right-hand-side is organised following the order
C2 A1 A2B1B2C1. This scenario has for instance been studied in the context
of pair entangled network states in [36], where the authors show that GME

in BTN with bipartite sources depends on both the level of noise and on the
network topology.

When thinking about practical implementations of quantum networks,
it is perfectly reasonable to assume that the parties have the ability to per-
form operations on their local systems. We distinguish two types of local
operations: unitary operations and the more general completely positive
and trace preserving (CPTP) operations [152].
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Definition 1.9 (UTN states). Let ϱBTN be a BTN state as in Definition 1.8 and
let UA, UB and UC be unitary operators in L(Hd2

). The global state of a
unitary triangle network reads

ϱUTN = (UA ⊗ UB ⊗ UC)ϱBTN(U†
A ⊗ U†

B ⊗ U†
C). (1.18)

In this situation, the nodes no longer necessarily hold separable states.
We note that here again, there is no tripartite interaction between the parties.

Second, we drop the unitary restriction on the local operations, meaning
that the nodes may now perform channels on their local systems, represen-
ted by CPTP maps EA, EB and EC.

Definition 1.10 (CTN states). Let ϱBTN be a BTN state as in Definition 1.8
and let EA, EB and EC be CPTP maps transforming elements from S(Hd2

) to
elements in S(Hd′). The global state of a channel triangle network reads

ϱCTN = EA ⊗ EB ⊗ EC(ϱBTN). (1.19)

We note that the channels applied may reduce the dimension, e.g., the
sources may be four-dimensional states and the channels reduce the dimen-
sion to qubits, EX : S(H4) → S(H2), with X = A, B, C. The preparations of
UTN and CTN states are represented in Figures 1.2 (b) and (c) respectively.

Lastly, we allow the local operations to be coordinated by a global clas-
sical random variable λ ∈ [L], as presented in Figure 1.2 (d). This corres-
ponds physically to coordinating which CPTP maps are applied, i.e., access
to shared randomness. Depending on the allowed local operations and on
the presence or absence of shared randomness, the set of preparable states
varies, it is therefore important to always explicitly mention which definition
of network entanglement is considered.

Definition 1.11 (LOSR network states). Let ϱBTN be a BTN state as in Definition
1.8 and let E (λ)

A , E (λ)
B and E (λ)

C be CPTP maps acting from S(Hd2
) to S(Hd′)

that depend on a random variable λ ∈ [L]. Let pλ, with λ ∈ [L], be convex
weights. The global state of a LOSR triangle network reads

ϱ∆ =
L

∑
λ=1

pλE (λ)
A ⊗ E (λ)

B ⊗ E (λ)
C (ϱBTN). (1.20)

The discerning reader may have noticed that in Eq. (1.20) the state ϱBTN

does not depend on the shared random variable λ ∈ [L]. As pointed out in
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[111], in the case of unbounded source dimensions, it suffices to consider
that either the state or the parties have solely access to the global variable.
Indeed, the dependency on the shared random variable in the source states
can always be removed by enlarging the dimension. To see that, consider
∑L

λ=1 pλE (λ)
A ⊗ E (λ)

B ⊗ E (λ)
C (ϱ

(λ)
BTN), with ϱ

(λ)
BTN = ϱ

(λ)
b ⊗ ϱ

(λ)
c ⊗ ϱ

(λ)
a , λ ∈ [L]. It

is possible to combine the set {ϱ
(λ)
a }L

λ=1 to a single, higher dimensional ϱa

and redefine the maps E (λ)
A such that they act on the appropriate ϱ

(λ)
a , with

λ ∈ [L], and similarly for b and c. This results in a form where ϱBTN does not
depend on λ any more, hence the state can be written as in Eq. (1.20).

Equivalently, the dependency of the map EX on λ may be removed such
that the shared randomness is solely carried by the source states, for all X =

A, B, C. More explicitly, the source states may be redefined as ϱ
(λ)
c ⊗ |λ⟩⟨λ|

with orthogonal ancilla states |λ⟩ being send to party B such that B can, by
measuring |λ⟩, decide which channel to apply, for all λ ∈ [L]. The sources
ϱ
(λ)
a and ϱ

(λ)
b are refined similarly, sending their ancillas respectively to C

and A. This measurement can then be seen as a global channel EB that does
not depend on λ. From the linearity of the maps, LOSR networks states may
equivalently be defined as ϱ∆ = EA ⊗ EB ⊗ EC(∑λ pλϱ

(λ)
BTN).

A direct observation is that, whereas Eqs. (1.17 – 1.19) lead to non-convex
state sets [94], the set of LOSR network states is convex. Its extremal points
are of the form EA ⊗EB ⊗EC(|a⟩⟨a| ⊗ |b⟩⟨b| ⊗ |c⟩⟨c|), with |a⟩ , |b⟩ , |c⟩ ∈ Hd2

.
For instance, pure biseparable tripartite states, such as |ψ⟩ = |ϕ⟩AB ⊗ |η⟩C
are extremal points. Nonetheless, some extreme points are mixed states,
which can be seen as follows: It was shown in [101] that pure three-qubit
states that are GME cannot be prepared in the triangle network. On the other
hand, in [111], it was shown that there are LOSR network states having a
GHZ fidelity of 0.51704, which implies that they are GME, as certified by the
GHZ fidelity witness (see Section 1.3.3). So, the set of LOSR network states
must have some extremal points that are GME mixed states. Finally, notice
that pure GME states can exist in higher-dimensional triangle networks: For
instance, the three-ququart state |ϕ+⟩A2B1

⊗ |ϕ+⟩B2C1
⊗ |ϕ+⟩C2 A1

is GME for
the partition A1 A2 | B1B2 | C1C2, as pointed out in [36].

Figure 1.2 summarises the four aforementioned definitions. Each of
them can directly be extend to more parties and to multipartite sources. We
nevertheless require that no matter the definition, n-partite networks should
involve source states that are at most (n − 1)-partite. An example are the

4In a private communication, Nikolai Wyderka reported three-qubit LOSR network states
with a fidelity of 0.548047 to the GHZ state.
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no common double source (NCDS) networks, where any two parties can share
subsystems from at most one common source. For instance, networks with
only bipartite sources are NCDS networks.

Importantly, such constructions do not allow for classical communication
between the parties, nor for non-local operations, which makes the set of
network states a non-trivial subset of general states. A crucial example is
that the GHZ state |GHZ⟩ = 1/

√
2(|000⟩+ |111⟩) cannot be prepared in LOSR

triangle networks [3, 94, 101, 111].
Analogously to the separability problem, we aim to find necessary

and/or sufficient criteria that determine whether a tripartite state can or
cannot be prepared in such a way. We address this question in Chapter 4.

1.4 Symmetric states

As discussed, multipartite entanglement is a crucial resource for many
quantum information protocols, but characterising the set of GME states
has proved to be challenging. Indeed, already for four-qubit systems, the
number of inequivalent entanglement classes under SLOCC is infinite [96,
150]. The focus has thus been shifted to specific classes of states that are
not only highly entangled, but also describable using simple formalisms.
Among these, symmetric states stand out. In this context, we consider two
types of symmetric states that are invariant under transformations of the
form ϱ ↦→ TϱT† = ϱ, namely, stabiliser states and permutationally symmetric
states.

1.4.1 Stabiliser and graph states

Among the large class of stabiliser states, graph states are multi-qubit en-
tangled pure states that find numerous applications. It has long been estab-
lished that they serve as essential resources for quantum error correction
codes [57] and measurement-based quantum computation [23, 124]. Ap-
plications are still being developed today, such as their recent use in bench-
marking quantum computers [19]. Furthermore, graph states are relevant in
foundational topics, such as achieving maximal violation of Bell inequalities
[62]. Graph states have a convenient graphical description where certain
graphical operations directly correspond to physical operations on the states.

We begin by defining stabiliser states. A stabiliser state is an n-qubit pure
state described by a stabiliser S, a set of 2n pairwise commuting n-qubit Pauli
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operators (up to a ±1 factor). The stabiliser state |Ψ⟩ associated to S is the
unique common (normalised) +1-eigenstate of the elements in S, hence it
satisfies

s |Ψ⟩ = |Ψ⟩ ∀s ∈ S. (1.21)

It thus directly follows that the projector onto |Ψ⟩ reads

|Ψ⟩⟨Ψ| = 1
2n ∑

s∈S
s. (1.22)

As an example, consider the Bell state |Φ+⟩ = 1/
√

2(|00⟩+ |11⟩) of Eq. (1.8).
It is easy to verify that it is invariant under the action of XX, −YY, and
ZZ. We say that |Φ+⟩ is stabilised by these operators, and its stabiliser reads
S = {14, XX,−YY, ZZ}.

A stabiliser can alternatively be described by a set of n generators. The
generators gi, with i ∈ [n], are n elements of S that are such that S =

{∏n
i=1 gki

i | ki = 0, 1, i ∈ [n]}, i.e., they generate the 2n elements of S. In the
case of |Φ+⟩, the elements XX and ZZ generate its stabiliser. It is often more
convenient to directly work with the set of generators of a stabiliser state
then with the state itself.

Graph states are particular n-qubit stabiliser states that can be described
by mathematical graphs. Each qubit is associated with a vertex of a graph
G = ([n], E), where [n] is the vertex set and E the edge set (see the later
Section 1.6.2 for graph theory definitions). The set of edges dictates how
the generators behave. Let us denote the neighbourhood of the vertex i in
G by Ni, that is, the set of all vertices of G that share an edge with i. The
generators of the graph state associated to G are given by

gi = Xi ∏
j∈Ni

Zj ∀i ∈ [n]. (1.23)

The indices on the Pauli operators refer to the qubits they act on. As an ex-
ample, consider the six-vertex star graph G∗ presented in Figure 1.3. Follow-
ing the above equation, the graph state |G∗⟩ is the +1-common eigenstate
of

g1 = XZZZZZ, g2 = ZX1111, g3 = Z1X111,

g4 = Z11X11, g5 = Z111X1, g6 = Z1111X.
(1.24)

From a more practical perspective, graph states can be generated using
controlled Z operations, CZ = 1 − 2 |11⟩⟨11| [70]. Preparing the graph state
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Figure 1.3: Six-vertex star graph G∗. The corresponding six-qubit graph state is the
unique +1-common eigenstate of the six generators presented in Eq. (1.24).

|G⟩ associated to the graph G = ([n], E) goes as follows: All the n qubits are
initialised in the state

|+⟩ = 1√
2
(|0⟩+ |1⟩) . (1.25)

The global n-qubit state reads |+⟩⊗n. Then, for each edge {i, j} ∈ E, the
unitary operation CZ is applied on the qubits i and j. The resulting global
state is the graph state

|G⟩ =

⎛⎝ ∏
{i,j}∈E

CZij

⎞⎠ |+⟩⊗n , (1.26)

where the indices ij specifies on which two qubits the CZ operation is
applied. The state |G∗⟩ associated to the graph G∗ of Figure 1.3 thus reads

|G∗⟩ = CZ1,2CZ1,3CZ1,4CZ1,5CZ1,6 |+⟩⊗6 . (1.27)

As previously discussed, determining whether two multipartite en-
tangled states are equivalent under SLOCC transformations is a question
of significant importance, although hard to answer in general. Perhaps
surprisingly, this equivalence for graph states reduces to equivalence under
local unitary transformations [70]. In this context, we introduce a graphical
formalism to determine whether two graph states are equivalent under a
specific set of local unitary transformations, namely those within the local
Clifford group5.

We introduce a graph operation called local complementation. Consider a

5The local Clifford group is the set of transformations that preserve the Pauli group. For
further details, we refer the reader to [69], as the relevant point here is that these operations
exist and are local.
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Figure 1.4: Example of local complementation. First, the local complementation is
applied on vertex 1 of G. The neighbourhood of vertex 1 is {4, 5}, which are not
connected. The set E1 is thus empty and Ē1 = {{4, 5}}. The resulting graph is
G′, whose edge set is E′ = (E \ ∅) ∪ {{4, 5}}. The local complementation is now
applied to vertex 2 of G′, whose neighbourhood is {3, 4, 5}. Therein, the vertices 3
and 5 are connected, as well as 4 and 5. The resulting graph is G′′ with edge set
E′′ = (E′ \ {{3, 5}, {4, 5}}) ∪ {{3, 4}}. The three graph states |G⟩, |G′⟩, and |G′⟩
are equivalent under local operations.

graph G = ([n], E) and one of its vertices x ∈ [n]. Let us define

Ex = {{i, j} ∈ E | i, j ∈ Nx}, (1.28a)

Ēx = {{i, j} /∈ E | i, j ∈ Nx} (1.28b)

where Ex is the set of edges of neighbourhood of x, and Ēx is its complement.
The local complementation of G on x renders a graph G′ with the same
vertex set, and as edge set E′ = (E \ Ex) ∪ Ēx. Figure 1.4 depicts an example.
The two graph states |G⟩ and |G′⟩ are related by |G′⟩ = Ux |G⟩ [69, 147],
where

Ux =
√︁
−iXx ∏

y∈Nx

√︂
iZy. (1.29)

The indices x and y indicate on which qubits the Pauli operators act. Whereas
it is now clear that if two graphs are equivalent under local complementation,
then the corresponding graph states are equivalent under local unitaries, the
converse is not true, despite being conjectured for some time [83, 145, 148].
Interestingly, it has been shown that every stabiliser state is equivalent under
local complementation to some graph state [147].

1.4.2 Permutationally symmetric states

We now define permutationally symmetric states and present some of their
properties. An n-partite state ϱ ∈ S(H⊗n) is said to be permutationally
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symmetric for the pair {i, j}, with i, j ∈ [n], if it is contained in the permuta-
tionally symmetric subspace of parties i and j. Mathematically speaking, it
satisfies

ΠijϱΠij = ϱ, (1.30)

where Πij = 1/2(1+ Fij) is the projector onto the symmetric subspace for the
pair {i, j}, with Fij being the swap operator that exchanges parties i and j.
The swap operator is a unitary operators that is defined through the action

Fij
(︁
|ψ1⟩ . . . |ψi⟩ . . .

⃓⃓
ψj
⟩︁

. . . |ψn⟩
)︁
= |ψ1⟩ . . .

⃓⃓
ψj
⟩︁

. . . |ψi⟩ . . . |ψn⟩ , (1.31)

for all product states |ψ1⟩ . . . |ψi⟩ . . .
⃓⃓
ψj
⟩︁

. . . |ψn⟩ ∈ H⊗n. For two qubits, it
reads F12 = |00⟩⟨00|+ |01⟩⟨10|+ |10⟩⟨01|+ |11⟩⟨11|.

This definition naturally extends to any permutation π in the symmetric
group on n symbols, denoted Symm(n). The operator Fπ, π ∈ Symm(n) is
defined through the action

Fπ (|ψ1⟩ . . . |ψn⟩) =
⃓⃓⃓
ψπ−1(1)

⟩︂
. . .
⃓⃓⃓
ψπ−1(n)

⟩︂
, (1.32)

for all product states |ψ1⟩ . . . |ψn⟩ ∈ H⊗n [152]. We define the projector onto
the symmetric subspace and the (totally) permutationally symmetric states.

Definition 1.12 (Symmetric subspace). The projector onto the symmetric sub-
space of S

(︁
(Hd)⊗n)︁ is given by

Π+ =
1
n! ∑

π∈Symm(n)
Fπ. (1.33)

The dimension of the symmetric subspace is (d+n−1
n ) [152].

Definition 1.13 (Totally permutationally symmetric states). A state ϱ ∈
S
(︁
(Hd)⊗n)︁ is (totally) permutationally symmetric if is satisfies

Π+ϱΠ+ = ϱ. (1.34)

Since the permutations {i, i + 1} for i ∈ [n − 1] generate the symmetric
group [128], a state ϱ ∈ S(H⊗n) that satisfies Πi,i+1ϱΠi,i+1 = ϱ for all
i ∈ [n − 1] is totally permutationally symmetric.

When considering mixed states, we note that some states may be ex-
changeable, i.e., satisfy FijϱFij = ϱ for a pair {i, j}, i, j ∈ [n], but not per-
mutationally symmetric for that same pair. The simplest example of a
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state verifying this is the two-qubit maximally mixed state 1/4, which is
exchangeable, but not permutationally symmetric.

Similarly, we define the projector onto the antisymmetric subspace
as Π− = 1/n! ∑π∈Symm(n) sign(π)Fπ. A state ϱ ∈ S

(︁
(Hd)⊗n)︁ that fulfils

Π−ϱΠ− is called (totally) permutationally antisymmetric. We note that totally
antisymmetric states only exist when the local dimension d is at least equal
to the number of parties n, as the dimension of the antisymmetric subspace
is (d

n) [152]. Examples of totally symmetric and totally antisymmetry states
are respectively

|S⟩ = 1√
3
(|001⟩+ |010⟩+ |100⟩) , (1.35a)

|A⟩ = 1√
6
(|012⟩+ |120⟩+ |201⟩ − |021⟩ − |102⟩ − |210⟩) , (1.35b)

where |S⟩ ∈ (H2)⊗3 and |A⟩ ∈ (H3)⊗3.
In what follows, we present three selected results concerning symmetric

states that are exploited in Chapter 4.

Proposition 1.1 ([45], [A]). Let ϱ = ∑L
k=1 pk |ψk⟩⟨ψk| be in S(H), and let Π

be a projector on a subspace of H. The state ϱ satisfies ΠϱΠ = ϱ if and only if
Π |ψk⟩ = |ψk⟩, ∀k ∈ [L].

Proof. Let us show that if ΠϱΠ = ϱ, then Π |ψk⟩ = |ψk⟩, ∀k ∈ [L], since the
converse is trivial. From tr(ΠϱΠ) = 1, it directly follows that ⟨ψk|Π |ψk⟩ =
1, ∀k ∈ [L]. Since Π is a projector, we conclude that Π |ψk⟩ = |ψk⟩, ∀k ∈
[L].

This holds in particular for the projectors onto the symmetric and anti-
symmetric subspaces.

Proposition 1.2 ([45], [A]). Let ϱ be the state of an n-partite system, n ≥ 3, and
let A and B be two of its subsystems. If the marginal state on AB is permutationally
symmetric (respectively antisymmetric) under the exchange of parties A and B,
then the global state also is.

Proof. Let ϱ = ∑L
k=1 pk |ψk⟩⟨ψk| be the state of a tripartite system ABC. By

considering the Schmidt decompositions |ψk⟩ = ∑rk
i=1 ςk,i

⃓⃓⃓
ϕ
(AB)
k,i

⟩︂ ⃓⃓⃓
χ
(C)
k,i

⟩︂
with respect to the bipartition AB | C for all k ∈ [L], we obtain

ϱ =
L

∑
k=1

pk

rk

∑
i,j=1

ςk,iς
∗
k,j

⃓⃓⃓
ϕ
(AB)
k,i

⟩︂⟨︂
ϕ
(AB)
k,j

⃓⃓⃓
⊗
⃓⃓⃓
χ
(C)
k,i

⟩︂⟨︂
χ
(C)
k,j

⃓⃓⃓
. (1.36)
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From that, ϱ(AB) = ∑L
k=1 pk ∑rk

i=1 |sk,i|2
⃓⃓⃓
ϕ
(AB)
k,i

⟩︂ ⟨︂
ϕ
(AB)
k,i

⃓⃓⃓
. So, if ϱ(AB) is per-

mutationally symmetric (respectively antisymmetric), then from Proposi-
tion 1.1 all states in its decomposition also are. Clearly, if the states

⃓⃓⃓
ϕ
(AB)
k,i

⟩︂
,

i ∈ [rk], k ∈ [L], are permutationally symmetric (respectively antisymmetric),
then ϱ also is.

We note that for this proposition, the converse is trivial.

Proposition 1.3 (Entanglement in symmetric states [A]). 1. All permuta-
tionally symmetric multipartite states are either GME or fully separable.

2. All permutationally antisymmetric multipartite states are GME.

Proof. Due to Proposition 1.1, we only need to consider pure states. Let
|Ψ⟩ be an n-partite (anti)symmetric state that is separable across a certain
bipartition. Without loss of generality, we assume that there exist t ∈ [n]
such that

|Ψ⟩ = |φ1,...,t⟩ ⊗ |ϕt+1,...,n⟩ . (1.37)

When tracing out the first t parties, the resulting marginal state is pure. The
symmetry of |Ψ⟩ thus implies that the marginal state is pure after tracing
out any t parties. This can only be true if |Ψ⟩ is fully separable.

Now, let |Ψ⟩ be a permutationally antisymmetric product state, i.e.,
|Ψ⟩ =

⨂︁n
i=1 |ψi⟩. Then, we have |ψ1⟩ |ψ2⟩

⨂︁n
i=3 |ψi⟩ = − |ψ2⟩ |ψ1⟩

⨂︁n
i=3 |ψi⟩.

It implies that −1 = ⟨ψ1ψ2 ∏n
i=3 ψi|ψ2ψ1 ∏n

i=3 ψi⟩ = |⟨ψ1|ψ2⟩|2 ≥ 0, hence
we arrive at a contradiction.

1.5 Quantum state tomography

The practical implementation of most quantum information processing
protocols relies on the generation and manipulation of quantum systems,
mathematically represented by quantum states. Thus, it is crucial to accur-
ately determine the quantum state that best describes a source of physical
quantum systems. When a full characterisation of the quantum state is
required, a quantum state tomography protocol must be performed.

Quantum state tomography refers to a collection of techniques for es-
timating the quantum state prepared by a source (see for instance [140]).
Generally, measurements are repeatedly performed on identical copies of
the quantum systems prepared by the source. From the collected experi-
mental data, a state estimate ϱ̂ is constructed. Since the density operator of
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a d-dimensional quantum system is composed of d2 − 1 real parameters,
the set of measurements is called tomographically complete if it allows for the
estimation of these d2 − 1 parameters.

A major challenge with quantum state tomography is that, for increasing
dimension, it requires an exponentially increasing number of state prepar-
ations with respect to the number of qudits. To address to this, it can be
valuable to incorporate constraints on the state, such as purity or symmetry
[17, 39, 59, 109, 132]. Additionally, the technique known as shadow tomo-
graphy [1, 78] offers an alternative approach when one only needs to estimate
expectation values of local observables, thereby potentially reducing the
complexity of the tomographic process.

Once the measurement data is acquired, it needs to be processed to
obtain an estimate of the state. Various methods exist to reconstruct a
density operator from measurement data. We present in the section how to
obtain an estimate through linear inversion, though methods based on cost
functions are also widespread in the literature [140].

It is convenient to describe the tomographic experiment by a single
POVM {Ei}L

i=1 performed on N independent copies of the state, resulting in
a list of measurement outcomes {Ni}L

i=1 such that ∑L
i=1 Ni = N. A vector f

of frequencies is constructed with entries fi = Ni/N for all i ∈ [L]. For every
POVM {Ei}L

i=1, there exists a measurement map M that, once applied on a
density operator ϱ, yields a vector of probabilities for each outcome i ∈ [L]
of the POVM. Formally, M is defined through

M : Cd×d → RL : ϱ ↦→ Mϱ = p, (1.38)

where the ith entry of p is given by the probability of obtaining the meas-
urement outcome i when measuring the POVM on ϱ, i.e., tr(Eiϱ). If the
measurement performed is tomographically complete, from the probabil-
ities it is possible to obtain the corresponding state ϱ through M+p = ϱ,
where M+ is any left inverse of M, i.e., such that M+Mϱ = ϱ holds for all
ϱ ∈ S(Hd). Given a vector of frequencies f obtained from measurement
data, we straightforwardly obtain an estimate for the state of the system,

ϱ̂ = M+f. (1.39)

Since quantum mechanics is an inherently probabilistic theory, the state
ϱ cannot be exactly reconstructed from finite data. It is thus important
to give a guarantee of precision together with the estimate ϱ̂, which in
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the case of frequentist statistics is called confidence regions. A confidence
region for state tomography is a region in the space of Hermitian operators,
centred on ϱ̂, that contains the state ϱ with a certain level of confidence
[140]. For concreteness, let us consider the norm-based confidence region
CA developed in [41]. Therein, the authors show that with N samples of the
state ϱ, the estimate ϱ̂ satisfies

Pr[∥ϱ̂ − ϱ∥ < εσ] ≥ 1 − δ, (1.40)

where 1 − δ ∈ [0, 1] is the confidence level which can be evaluated through
ε = 3

√
u(
√

u +
√

u + 1), with u = 2/9N log(8/δ), and where the norm is the
Hilbert-Schmidt norm. The parameter σ is related to the variance in the
measurements. When a vectorisation of ϱ is considered in Eq. (1.38), the
measurement map can be represented by a L × d2 matrix, and in that case σ

reads
σ = max

k∈[d2]

⃦⃦
M+

k

⃦⃦
, (1.41)

where M+
k is the kth column vector of M+ [41]. The resulting confidence

region is a sphere of radius εσ centred in ϱ̂ = M+f in the space of Hermitian
operators,

CA(ε, f) =
{︁

ϱ |
⃦⃦

M+f − ϱ
⃦⃦
≤ εσ

}︁
. (1.42)

The advantages of this confidence region are multiple. It is easy to de-
scribe and compute, and performs well when compared to other regions
from the literature [41]. Furthermore, CA depends on the measurement
scheme considered, which makes it a good candidate to quantify the quality
of a given measurement scheme. Indeed, the parameter σ in Eq. (1.40) only
depends on the measurement map and is related to the variance of the meas-
urement results. Clearly, a large σ would lead to a larger confidence region
and σ can thus be used as a figure of merit for a particular measurement
scheme. This line of thought is relevant for Chapter 3.

1.6 Mathematical toolbox

In this section, we present some key mathematical concepts that are useful
throughout the thesis. We first discuss mathematical optimisation, then
introduce basic notions in graph theory. These concepts are required for the
proper understanding of Chapters 2 and 3.
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1.6.1 Mathematical optimisation

In physics, we are often confronted to problems that can be expressed as
finding a vector of parameters x ∈ Rn that maximises an objective function
f : Rn → R under constraints of the type fi(x) ≤ bi, where fi : Rn → R and
bi ∈ R, with i ∈ [m]. Such a problem is called an optimisation problem, and
the set of x ∈ Rn that satisfy the constraints is called the feasible region. If
the feasible region is empty, the problem is called unfeasible. While solving
optimisation problems is in general quite hard, there are classes of problems
that can be (efficiently) solved to global optimality. We introduce here
three types of optimisation problems, namely linear programming, semidefinite
programming (SDP), and integer programming.

Linear programming

When the objective function as well as the constraints are linear functions,
the optimisation problem can be formulated as, given A ∈ Rm×n and b ∈
Rm, solve

max
x∈Rn

cTx (1.43a)

such that Ax ≤ b, (1.43b)

x ≥ 0, (1.43c)

where the inequalities are to be understood as component-wise. Since
all constraints are linear, the feasible region is a convex polytope in Rn.
The fundamental theorem of linear programming states that every feasible,
bounded linear program has an optimal solution on a vertex of the feasible
region. If two or more vertices lead to the optimal solution, any point lying
on a face connecting them is also an optimal solution.

Semidefinite programming

Semidefinite programming is a class of programs that generalises linear
programing. It is a type of optimisation where the objective function is
linear and the constraints are matrix semidefinite positivity. As states and
measurements are represented by PSD operators, SDP is one of the most
widely used types of mathematical programming in quantum information
(for a detailed presentation with a focus on quantum information theory, we
refer to [135]). To name a few, SDPs have found applications to fundamental
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problems such as quantum state discrimination [10], quantum steering [29],
and causality hierarchies for network entanglement [97, 161]. Semidefinite
programming is particularly relevant as SDPs can be efficiently solved to a
global extremum [152]. Formally, given c ∈ Cn and F0, . . . , Fn ∈ Cm×m, the
standard form of an SDP reads

max
x∈Cn

c†x (1.44a)

such that F0 +
n

∑
i=1

xiFi ⪰ 0. (1.44b)

Let us introduce an illustrative example. Consider an unknown two-
qubit state ϱ ∈ S(H4) for which the expectation values tr(XXϱ) = a and
tr(ZZϱ) = b are known. We are interested in finding a lower bound on the
fidelity of ϱ to the pure state |Φ+⟩ ∈ H4. This can be obtained by solving

min
ϱ∈C4×4

⟨︁
Φ+
⃓⃓
ϱ
⃓⃓
Φ+
⟩︁

(1.45a)

such that ϱ ⪰ 0, (1.45b)

tr(ϱ) = 1, (1.45c)

tr(XXϱ) = a, (1.45d)

tr(ZZϱ) = b. (1.45e)

Although a bit tedious, this program can be written in the standard form
of Eq. (1.44). We first define x = v(ϱ) and c = −v(|Φ+⟩⟨Φ+|), where
v : C4×4 → C16 is a vectorisation function. In order to enforce Eq. (1.45b),
we define F0 = 0 and Fi = v−1(ei), where ei is the ith element from the
16-dimensional standard basis, with i ∈ [16]. Equation (1.45b) is thus
equivalent to F0 + ∑16

i=1 xiFi ⪰ 0. Further, Eq. (1.45c) is satisfied when
both 1 − ∑i=1,5,9,13 xi1 ⪰ 0 and −1 + ∑i=1,5,9,13 xi1 ⪰ 0 are satisfied. The
remaining constraints can be converted analogously, and using direct sums,
all those constraints can be integrated in a in a single matrix inequality of
the type of Eq. (1.44b) with m = 28.

Thankfully, many modelling languages tailored to mathematical op-
timisation, such as JUMP for Julia, enable the user to write their program
directly in the algebraic form such as in Eq. (1.45). The algebraic modelling
language then translates the program to a standard form that is supported
by the solver.

29



Preliminaries

Integer programming

Integer programs aim to find an extremum of a linear function where, as
the name indicates, the variables are restricted to integer numbers. In their
standard form, integer programs read

max
x∈Zn

cTx (1.46a)

such that Ax ≤ b, (1.46b)

x ≥ 0, (1.46c)

given c ∈ Rn, b ∈ Rm, and A ∈ Rm×n. Similarly to SDPs, modelling
languages are used to avoid writing integer programs in the standard form.
We note that if for some i ∈ [n], the variables xi are not in Z, the optimisation
is called mixed integer programming (MIP).

Integer programs are generally solved using branch and bound algorithms.
In a nutshell, branch and bound algorithms work as follows. The program
is first relaxed to a version where the variables are real numbers, i.e., the
integrality restrictions are dropped. The resulting relaxation is thus a linear
program, which we name P0 and solve. Unless the optimal solution happens
to be in Zn (which would solve the original program), one of the variables
whose optimal value in P0 is not an integer is chosen as the branching
variable. For the sake of clarity, let us consider an example. Say we aim to
solve

max
x∈Z2

x1 + 2x2 (1.47a)

such that x1 + 15x2 ≤ 150, (1.47b)

8x1 + 5x2 ≤ 160, (1.47c)

x ≥ 0. (1.47d)

The feasible region is shown in Figure 1.5. Solving the relaxation gives a
maximum of 32.4 at x = (14.3, 9.04)T. This directly yields an upper bound
on the solution. We now chose the variable x1 to branch over, and solve two
linear programs: P1 with the additional constraint that x1 ≤ 14 and P2 with
x1 ≥ 15. The former branch yields 32.1 at x = (14, 9.07)T, and the latter 31
at x = (15, 8)T. As the solution of P2 is integer, we stop the branching there.
Indeed, it is a feasible solution to Eq. (1.47), and is used as a lower bound on
the optimal solution. On the other hand, we branch over P1 by solving two
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Figure 1.5: Feasible region. Purple: Discrete feasible region of in integer program
described in Eq. (1.47) (179 points). Green: Feasible region of its relaxation to a
linear program.

further linear programs, P11 and P12, for which in addition to the constraints
of P1, we incorporate x2 ≤ 9 and x2 ≥ 10 respectively. The program P11 has
a maximal value of 32 at x = (14, 9)T, and P12 of 20 at x = (0, 10)T. As all
the different branches give integer solutions, we conclude that the solution
to the integer program of Eq. (1.47) is 32, and is achieved by x = (14, 9)T.

Although in this example all branches are terminated by an integer
solution, this is not necessary the case. Indeed, it also can happen that
branches turn out to be unfeasible, or that the solution to a relaxation is
smaller than the best feasible solution so far. The branches are then also
terminated. We note that in the worst case, the branch and bound method
has to go through all elements of the feasible region, so, they cannot be
solved efficiently in general.

In addition to branch and bound algorithms, commercial solvers (such as
Gurobi) implement all sorts of symmetry removal and heuristic algorithms
to reduce the size of the problems. For a deeper introduction to the topic,
see for instance [117].

1.6.2 Graph theory

As the name suggests, graph theory is a field in discrete mathematics that
studies mathematical objects called graphs. Graphs can be used to repres-
ent relations between objects, and, due to this property, are of significant
importance in Chapters 2 and 3 of this thesis. Formally, a graph G is an
ordered pair (V, E), where V is the set of vertices and E the set of edges. Each
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edge in E is a pair of vertices of V, that is, E ⊆ {{i, j} ∈ V2 | i ̸= j}, where
V2 = {{i, j} | i, j ∈ V}. The number of vertices in a graph is called its order
and is equal to |V|. Useful is also the graph complement Ḡ of G = (V, E),
which has the same vertex set V, and an edge is in the edge set of Ḡ if and
only if it is not in E. As an example, we introduce the n-vertex complete graph
Kn, where any pair of vertices are connected by an edge. Its complement K̄n

is the n-vertex empty graph.
Except when explicitly mentioned, we consider that the vertex set of

a graph of order n is V = [n]. By abuse of notation, we sometimes refer
to the vertex i of V as i ∈ G, and to the edge {i, j} of E as {i, j} ∈ G, with
i, j ∈ [n]. We note that we only consider undirected graphs, i.e., graphs where
the edges are unordered pairs of vertices.

Graph theory problems have long been studied and found numerous
applications in everyday life. We present here few hand-picked results that
play a role later in this thesis. Let us start with a few definitions, taken from
[43].

Definition 1.14 (Neighbourhood). The neighbourhood Ni of a vertex i ∈ V
from a graph G = (V, E) is the set of vertices that are connected to i, i.e.,
Ni = {j ∈ V | {i, j} ∈ E}. The cardinality of the neighbourhood di = |Ni| is
called the degree of the vertex i ∈ V.

Definition 1.15 (Subgraph). A graph G′ = (V ′, E′) is a subgraph of G =

(V, E) if V ′ ⊆ V and E′ ⊆ E. The graph G′ is an induced subgraph of G if
V ′ ⊆ V and E′ = {{i, j} ∈ E | i, j ∈ V ′}.

Definition 1.16 (Clique). A clique of a graph G = (V, E) is an induced
subgraph of G in which every pair of vertices is connected by an edge. A
maximal clique of G is a clique that is not part of a larger clique. The clique
number ω(G) of G is the maximal order of its maximal cliques, i.e., the
largest integer r such that Kr is an induced subgraph of G.

Following this, we introduce the vertex colouring problem, which we need
to define the chromatic number of a graph.

Problem 1.2 (Vertex colouring problem). Given a graph G, find a way of
colouring each vertex of G such that no adjacent vertices share the same colour,
with the smallest number of colours.

Definition 1.17 (Chromatic number). The chromatic number χ(G) of a graph
G is the number of colours needed to solve the vertex colouring problem.
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Figure 1.6: Wheel graph GW . Its maximal cliques are triangles, leading to ω(GW) =
3, and its chromatic number is four, i.e., χ(GW) = 4.

It is trivial to see the chromatic number of a graph G cannot be less
than its clique number. Indeed, colouring the vertices of a maximal clique
of G already requires ω(G) colours, as all the vertices are connected. By
considering the most trivial connected graph composed of two connected
vertices, we can directly see that some graph achieve ω(G) = χ(G). Now,
the question arises as to whether χ(G) can be strictly larger than ω(G). To
see that this question is answered positively, we consider the wheel graph
GW depicted in Figure 1.6. Maximal cliques are of order three, however, it is
impossible to colour GW with only three colours, at least four are needed.
Therefore we conclude that ω(G) ≤ χ(G), and introduce the following
definition.

Definition 1.18 (Perfect graph). A perfect graph is a graph G for which the
clique and chromatic numbers of all its induced subgraphs (including itself)
are equal. When ω(G) = χ(G) holds, but not necessarily for all induced
subgraphs, G is called weakly perfect.

The long-conjectured strong perfect graph theorem states that a graph is
perfect if and only if it neither has odd-length induced cycles of length at
least five nor complements thereof [31]. Thus, the smallest imperfect graph
is the five-vertex odd cycle, the pentagon. Both problems of finding whether
a clique of a given size exists in a graph G and if G is colourable with a given
number of colours are widely studied and known to be NP-complete [84].

Nevertheless, those two quantities can be estimated efficiently through
the Lovász number of the complement graph. The Lovász number of a graph
was first introduced to upper bound the Shannon capacity of a graph [100]
and has multiple equivalent definitions [92]. We present here two that are
relevant for Chapter 2, yet not the most common.
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Definition 1.19 (Lovász number [92]). The Lovász number of a graph G =

([n], E) is defined as

ϑ(G) = max
B∈Rn×n

Λ(B) (1.48a)

such that B ⪰ 0, (1.48b)

Bii = 1 ∀i ∈ [n], (1.48c)

Bij = 0 ∀{i, j} ∈ E, (1.48d)

where Λ(·) stands for the largest eigenvalue.

A weighted version of the Lovász number for non-negative weights
w = (w1, . . . , wn) can be defined by setting Bii of Eq. (1.48c) equal to wi for
all i ∈ [n]. Notably, the Lovász number can be formulated as an SPD [92],

ϑ(G) = max
C∈Rn×n

n

∑
i,j=1

Cij (1.49a)

such that C ⪰ 0, (1.49b)

tr(C) = 1, (1.49c)

Cij = 0 ∀{i, j} ∈ E. (1.49d)

Proof. Let B fulfil Eqs. (1.48b-1.48d). There exists a set of n-dimensional
real vectors {v(i) | ||v(i)|| = 1}n

i=1 such that Bij = (v(i))Tv(j). The largest
eigenvalue of B can be written as maxx∈Rn,∥x∥=1 xTBx, and by identifying
Cij with (xiv(i))T(xjv(j)) for all i, j ∈ [n], we recover Eq. (1.49).

The Lovász number relates to the clique and chromatic numbers through
the sandwich theorem, which states that for any graph G, the following in-
equality holds [92]

ω(G) ≤ ϑ(Ḡ) ≤ χ(G). (1.50)

Naturally, equality holds for perfect graphs.
We finally present another well-studied graph theoretic problem, namely

the edge clique cover problem.

Problem 1.3 (Edge clique cover problem). Given two graphs G1 and G2, find a
set of cliques of G2 that is minimal with respect to the number of elements such that
every edge of G1 appears in a least one clique of the set.

We note that this problem is not feasible if the edge set of G1 is not
included in the edge set of G2. From it follows the edge clique cover number.
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Definition 1.20 (Edge clique cover number). Given two graphs, the edge
clique cover number is the cardinality of the set of cliques that solves their
edge clique cover problem.

We note that this problem is usually considered for G1 = G2, and as an
example, we consider again the wheel graph of Figure 1.6. Its edge clique
cover number is equal to five, as all the triangles are needed to cover all
its edges. Note that in this example, all cliques used for the covering are
maximal. This is not the case in general.
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Chapter 2

Uncertainty relations

Uncertainty relations are a fundamental topic in quantum information the-
ory. As outlined in Section 1.2, deriving meaningful variance-based uncer-
tainty relations (URs) is challenging, especially given that variances are zero
when evaluated on eigenstates of the observables. The problem is closely
related to the behaviour of the set of observables’ expectation values on
a given state, known as the numerical range of the observables [138]. For
instance, the UR presented in Eq. (1.7) expresses a lower bound on the sum
of the variances of the Pauli operators X, Y, and Z that directly translates to
a bound on the sum of the expectation values for any state ϱ ∈ S(H),

⟨X⟩2
ϱ + ⟨Y⟩2

ϱ + ⟨Z⟩2
ϱ ≤ 1. (2.1)

This relation is not only of fundamental interest but also finds applications
in entanglement characterisation [74] and quantum cryptography [122].
Additionally, we explore its application to network entanglement criteria
in Chapter 4. Consequently, this chapter addresses the generalisation of
Eq. (2.1) to arbitrary sets of observables {Ai}L

i=1, i.e., aims to bound the
expression E = ∑L

i=1⟨Ai⟩2
ϱ.

This chapter is structured as follows. In Section 2.1, we derive a non-
trivial upper bound on E for any set of observables by linking this problem
to graph theory. This result gives rise to URs for dichotomic observables
that (i) are state-independent, (ii) provide a lower bound for the sum of
variances, and (iii) apply to more than two observables. We further analyse
the case of observables that either commute or anticommute, such as multi-
qubit Pauli observables. We also discuss the behaviour of the bound on E

when the observables have a degree of imprecision, for instance due to their
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experimental implementation. In Section 2.2, the bound on E is used to
detect and quantify entanglement through the derivation of entanglement
and Schmidt number witnesses. Most of the results are published in [B] and
we closely follow the presentation of this publication.

2.1 Multi-observable uncertainty relations

We begin by reformulating the UR as an expectation value problem and
prove our main result, which provides a bound on the sum of the squares
of the expectation values of observables, based on their anticommutativity
relations. We go on with discussing the tightness of our bound, particularly
in the case of observables that either commute or anticommute. We later
extend these results to observables for which the anticommutator is not
exactly zero.

2.1.1 Reformulation

Given a set of dichotomic observables {Ai}L
i=1, we aim to compute a lower

bound on the sum of their variances, that is, find a positive constant c ∈ R

such that
L

∑
i=1

∆2
ϱ(Ai) ≥ c ∀ϱ ∈ S(H). (2.2)

The constant c only depends on the observables, and not on ϱ, such that
Eq. (2.2) is a state-independent UR. Without loss of generality, we consider
that the spectrum of each observable is {+1,−1}. They thus square to the
identity and we can write Eq. (2.2) as L − ∑L

i=1⟨Ai⟩2
ϱ ≥ c. Finding a lower

bound for Eq. (2.2) is equivalent to finding an upper bound on

E =
L

∑
i=1

⟨Ai⟩2
ϱ (2.3)

that holds for any state ϱ.
Naturally, such a question has been considered before, and answers for

particular cases are known. First, when {Ai}d2

i=1 contains operators that span
the space of Hermitian operators acting on Hd and that satisfy tr

{︁
Ai Aj

}︁
=

dδij for all i, j ∈ [d2], then E ≤ d. This follows from the positivity of the
density operator and can be interpreted as an upper bound on the length of
its generalised Bloch vector [28, 89]. Second, when all observables pairwise
commute (i.e., [Ai, Aj] = Ai Aj − Aj Ai = 0 for all i, j ∈ [L]) they share
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Figure 2.1: Pentagon graph G⋆ and its complement Ḡ⋆. The vertices are coloured
with the minimal number of colours such that no adjacent vertices share the same
colour. Both graphs have a chromatic numbers equal to three, χ(G⋆) = χ(Ḡ⋆) = 3.
Note that these graphs are isomorphic (self-complementary), which is not the case
in general. Figure adapted from [B].

eigenvectors and the trivial bound E ≤ L is tight1. On the other hand, if
all observables pairwise anticommute ({Ai, Aj} = Ai Aj + Aj Ai = 0 for all
i ̸= j, i, j ∈ [L]), then E ≤ 1 [144, 153]. This inequality led to the derivation of
entropic URs for multiple observables [113, 153], Bell monogamy inequalities
[95] and is used in Chapter 4 for quantum network state compatibility
criteria, among others. If we consider a set of observables {Ai}L

i=1 where
only some pairs anticommute, an upper bound on E can be obtained by
combining those facts, i.e., by partitioning the observables in subsets where
all anticommute and counting the number of subsets.

This can conveniently be formulated using graphs. To any set {Ai}L
i=1,

we associate a graph G in the following fashion: L vertices represent the
L observables, and the vertices i and j are connected when {Ai, Aj} ̸= 0,
with i, j ∈ [L]. As an example, consider a set of five three-qubit observables,
O⋆ = {X11, 1X1, Z1X, ZZ1, 1ZZ}. Its graph G⋆ is the five-vertex cycle
graph depicted in Figure 2.1, i.e., the pentagon graph. We want to partition
the observables (the vertices) in the smallest number of subsets where they
all anticommute (where none are connected). As it turns out, this is exactly
the vertex colouring problem (see Problem 1.2 and related definitions).
Indeed, a vertex colouring of G guarantees that observables associated to
vertices of the same colour all pairwise anticommute, therefore the sum of
the square of their expectation values is upper bounded by one. This enables
us to write

L

∑
i=1

⟨Ai⟩2
ϱ ≤ χ(G) ∀ϱ ∈ S(H), (2.4)

1An inequality (or bound) f (x) ≤ c, with x ∈ A and c ∈ B, on a function f : A → B is
said to be tight if there exists a y ∈ A such that f (y) = c.
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where χ(G) is the chromatic number of G. This fact has for instance been
used in the context of Bell monogamy relations [95], albeit not formulated
in a graph theoretical language. In the case of the pentagon observables of
O⋆, the graph G⋆ has a chromatic number of three (see Figure 2.1), and we
obtain E ≤ 3 for all ϱ ∈ S(H). The obvious question that follows is whether
such a bound is tight, i.e., whether there exists a state ϱ for which equality
holds.

This question is answered in the negative by the following proposition,
where we introduce the anticommutativity graph Ḡ of a set of observables
{Ai}L

i=1. It is defined as the L-vertex graph whose edges connect i and j
if Ai and Aj anticommute, i, j ∈ [L], i.e., the complement of the graph G
introduced previously.

Proposition 2.1 (Lovász number bound [B]). Consider a set of observables
{Ai}L

i=1 where each element squares to the identity. The sum of their variances
is lower bounded by the number of observables minus the Lovász number of their
anticommutativity graph, i.e,

L

∑
i=1

∆2
ϱ(Ai) ≥ L − ϑ(Ḡ) ∀ϱ ∈ S(H). (2.5)

Equivalently,
L

∑
i=1

⟨Ai⟩2
ϱ ≤ ϑ(Ḡ) ∀ϱ ∈ S(H). (2.6)

Proof. Consider a state ϱ ∈ S(H) and define ai = ⟨Ai⟩ϱ for all i ∈ [L] and
Eϱ = ∑L

i=1 ai Ai. The variance of this operator on the same state ϱ is non-
negative, hence ⟨E2

ϱ⟩ϱ ≥ ⟨Eϱ⟩2
ϱ. Here and in the following proofs, we omit

the subscript ϱ on the expectation values for the sake of readability. The left
hand side of this inequality can be expressed as

L

∑
i,j=1

aiaj⟨Ai Aj⟩ =
L

∑
i,j=1

aiajR(⟨Ai Aj⟩), (2.7)

where we used the fact that ⟨Ai Aj⟩ = ⟨Aj Ai⟩∗. Using ⟨Eϱ⟩2 = ∥a∥2 ∑L
i=1⟨Ai⟩2,

we obtain
L

∑
i=1

⟨Ai⟩2 ≤ 1

∥a∥2

L

∑
i,j=1

aiajR(⟨Ai Aj⟩), (2.8)

for a ̸= 0 (when this is not satisfied, E = 0). The right hand side of Eq. (2.8)
is upper bounded by Λ(A), the largest eigenvalue of the L × L real matrix
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with entries Aij = R(⟨Ai Aj⟩), i, j ∈ [L]. Clearly, the diagonal entries of A
are equal to one. By noticing that ⟨Ai Aj⟩ is an imaginary number when
{Ai, Aj} = 0, i, j ∈ [L], we can finally write

L

∑
i=1

⟨Ai⟩2 ≤ max
A∈RL×L

Λ(A) (2.9a)

such that A ⪰ 0, (2.9b)

Aii = 1 ∀i ∈ [L], (2.9c)

Aij = 0 ∀{i, j} ∈ [L]2 : {Ai, Aj} = 0, (2.9d)

with [L]2 = {{i, j} | i, j ∈ [L]}. The edge set of the L-vertex anticommutativ-
ity graph Ḡ of {Ai}L

i=1 is exactly {{i, j} | {Ai, Aj} = 0, i, j ∈ [L]}, therefore
Eq. (2.9) recovers Definition 1.19 of the Lovász number of Ḡ. This proves
the claim.

From the sandwich theorem (see Eq. (1.50)), we know that ϑ(Ḡ) ≤ χ(G),
and that there are graphs for which the inequality is strict. Such graphs are
for instance the anticommutativity graph Ḡ⋆ of O⋆ and its complement G⋆,
both presented in Figure 2.1. Indeed, ϑ(Ḡ⋆) =

√
5 and from Proposition 2.1

it follows that ∑A∈O⋆
⟨A⟩2

ϱ ≤
√

5 ≃ 2.2361, which is an improvement over
the previously-known bound of Eq. (2.4), χ(G⋆) = 3. Notably, this is also
better than maximising E under the anticommutation relations given by Ḡ⋆,
i.e.,

α(Ḡ⋆) = max
(a1,...,a5)T∈R5

5

∑
i=1

a2
i (2.10a)

such that − 1 ≤ ai ≤ 1 ∀i ∈ [5], (2.10b)

a2
i + a2

j ≤ 1 ∀{i, j} ∈ Ḡ⋆, (2.10c)

where by {i, j} ∈ Ḡ⋆, we mean that {i, j} is an edge of Ḡ⋆. Using a computer
algebra system, Eq. (2.10) evaluates to α(Ḡ⋆) = 5/2.

When all the observables anticommute, the graph Ḡ is complete and
since the Lovász number of complete graphs is one, we recover the previ-
ously known result. On the other hand, when none of the L observables
anticommutes, Ḡ is empty and ϑ(Ḡ) = L. This recovers for instance the
result that pairwise commuting observables share eigenvectors. Both cases
directly follow from the definition of the Lovász number.

Also notably, there is a similar connection between linear expressions
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on squares of the expectation values, Ew = ∑L
i=1 wi⟨Ai⟩2

ϱ, where w =

(w1, . . . , wL), wi > 0 for all i ∈ [L], and the weighted Lovász number
ϑ(Ḡ, w) introduced in Section 1.6.2. Indeed, in [B] and in [40] it is shown
that

L

∑
i=1

wi⟨Ai⟩2
ϱ ≤ ϑ(Ḡ, w) ∀ϱ ∈ S(H), (2.11)

and that by setting the weights to w = (Λ(A2
1), . . . , Λ(A2

L)), we obtain
∑L

i=1⟨Ai⟩2
ϱ ≤ ϑ(Ḡ, w) for all ϱ ∈ S(H). Computing ϑ(Ḡ, w) is also a small

instance of an SDP, thus the bound is easily computable [92].
Two remarks are in order here. First, we showed that the bound from

Eq. (2.4) is in general not tight, and provided a tighter bound in Proposi-
tion 2.1. Moreover, Proposition 2.1 is stronger than maximising a sum of
squares of real numbers under the pairwise anticommutativity conditions,
as demonstrated by the fact that Eq. (2.10) evaluates to 5/2. Second, we note
that in contrast to finding the chromatic number of a graph (which is an
NP-hard problem), the Lovász number of a graph is computable through
SDP (see Eq. (1.49)). Hence, more than being tighter, the Lovász number
bound is efficient to compute.

Finally, we recall that Eq. (2.1) completely characterises the set of states in
the two-dimensional case, in the sense that any Bloch vector having a norm
of at most one corresponds to a valid quantum state (see Eq. (1.5)). However,
such there is no extension of this statement valid for higher dimensions.
To construct an example, we start from the Pauli basis in dimension d = 4,
given by {Ai}16

i=1 = {1, X, Y, Z}⊗2. In this case, ϑ(Ḡ) = 4, and from Eq. (2.6),
∑16

i=1⟨Ai⟩2
ϱ ≤ 4, implying that the length of the Bloch vector of any ququart

is bounded by four. Although this bound is tight, it is well-known that
there are vectors of length four that do not represent quantum states [28, 89],
therefore there must be higher-order constraints not encoded in Eq. (2.5). A
possible approach would be to consider sums of powers higher than two,
for instance considering ∑L

i=1⟨Ai⟩4
ϱ with observables that satisfy relations of

the type ∑π∈Symm(4) sign(π)Aπ−1(1)Aπ−1(2)Aπ−1(3)Aπ−1(4) = 0. Finding such
relations is an interesting topic for further research.

2.1.2 Including commutation relations

A prominent application of the Lovász number bound is to multi-qubit Pauli
operators. These operators either commute or anticommute, hence in this
subsection, we analyse the Lovász number bound for observables that obey
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this.
In that case, the equality ∑L

i=1⟨Ai⟩2
ϱ = ω(G) clearly holds for ϱ = |ψ⟩⟨ψ|,

where |ψ⟩ is any common eigenstate of the largest pairwise commuting
observable subset. So, when ω(G) = ϑ(Ḡ), the bound in Eq. (2.6) is tight.
This relation is satisfied for many graphs, including all perfect graphs. The
smallest graph (in terms of number of vertices) for which it does not hold
is the pentagon G⋆. Its clique number is ω(G⋆) = 2 and ϑ(Ḡ⋆) =

√
5.

However, we show in the next proposition that this bound is not tight.

Proposition 2.2 ([B]). Let O⋆ be a set of five observables with a star anticommut-
ativity graph such as in Figure 2.1. Then,

max
ϱ∈S(H)

∑
A∈O⋆

⟨A⟩2
ϱ = ω(G⋆) = 2. (2.12)

Proof. Let ai = ⟨Ai⟩ and a = (a1, . . . , a5)T. From the proof of Proposition
2.1, we know that ∥a∥2 ∑5

i=1⟨Ai⟩2 ≤ ∑5
i,j=1 aiaj⟨Ai Aj⟩. The right hand side

evaluates to ∥a∥2 + 2 ∑5
i=1 aiai+1⟨Ai Ai+1⟩ using the commutation relations

of the observables in O⋆, where the subscript i + 1 is to be understood as (i
mod 5) + 1. We therefore obtain

5

∑
i=1

⟨Ai⟩2 ≤ 1 +
2

∥a∥2

5

∑
i=1

aiai+1⟨Ai Ai+1⟩. (2.13)

In the right hand side, the sum can be interpreted as the scalar product
between two vectors, and using the Cauchy–Schwarz inequality we obtain

5

∑
i=1

aiai+1⟨Ai Ai+1⟩ ≤

⌜⃓⃓⎷ 5

∑
i=1

a2
i a2

i+1

⌜⃓⃓⎷ 5

∑
i=1

⟨Ai Ai+1⟩2. (2.14)

Using the fact that the set {Ai Ai+1}5
i=1 has a complete anticommutativity

graph, i.e., ∑5
i=1⟨Ai Ai+1⟩2 ≤ 1, we obtain

5

∑
i=1

⟨Ai⟩2 ≤ 1 +
2

∥a∥2

⌜⃓⃓⎷ 5

∑
i=1

a2
i a2

i+1. (2.15)

Using a computer algebra system, we show that the right hand side is upper
bounded by two. Since ω(G⋆) = 2, ∑5

i=1⟨Ai⟩2 ≤ 2 is tight.
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Figure 2.2: Anticommutativity graph Ḡ7 and its complement, G7. For the cor-
responding observable set O7, the quantity maxϱ∈S(H) ∑A∈O7

⟨A⟩ϱ is equal to
1/7(9 + 4

√
2) ≃ 2.0938 [106], which is strictly lager than the clique number of

G7, ω(G7) = 2.

We summarise the bounds for the set of observables O⋆ through

∑
A∈O⋆

⟨A⟩2
ϱ = ω(G⋆) < ϑ(Ḡ⋆) < α(Ḡ⋆) < χ(G⋆), (2.16)

where ω(G⋆) = 2, ϑ(Ḡ⋆) =
√

5 ≃ 2.2361, α(Ḡ⋆) = 2/5, and χ(G⋆) = 3.
Notice that none depend on the actual observables, only on their anticom-
mutation relations (and commutation for Proposition 2.2).

This naturally raises the question whether the clique number of G could
be the actual tight bound. To answer this, the authors of [163] analyse the
set of three-qubit observables O7 = {ZZ1, Z11, 1X1, X11, XZX, YZZ, YYY}.
We denote by Ḡ7 its anticommutativity graph and by G7 the complement
thereof, both depicted in Figure 2.2. Proposition 2.1 tells us that E =

∑A∈O7
⟨A⟩2

ϱ is upper bounded by ϑ(Ḡ7) = 1 + (cos(π/7))−1 ≃ 2.1099, with
ϱ ∈ S(H). The clique number of G7 is equal to two, and any common
eigenstate to two commuting observables of O7 reaches E = 2. However, it
is shown in [163] that by taking the state corresponding to the eigenvector
of the most negative eigenvalue of ∑A∈O7

A, we obtain E = 1/7(9 + 4
√

2) ≃
2.0938, which is clearly greater than two. In the same work, the authors
define β(Ḡ) = supϱ∈S(H) E as a new graph invariant, and investigate its
properties. They leave as an open question how to obtain efficient upper
bounds on this quantity.

In [106], the authors answer this question by providing a complete SDP

hierarchy that converges to β(Ḡ), whose first level recovers the Lovász
number. Of course, if at any level of the hierarchy ω(G) is obtained, then
β(Ḡ) = ω(G). They compute up to level seven of their hierarchy for all
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seven-, eight- and nine-vertex graphs, reaching for instance β(Ḡ7) ≤ 2.0938.
This shows that, up to numerical precision, ∑A∈O7

⟨A⟩2
ϱ ≤ 1/7(9 + 4

√
2) is a

tight bound.

2.1.3 Imprecise observables

As noted above, if no pair of observables in a given set {Ai}L
i=1 anticom-

mutes, then ϑ(Ḡ) = L is a trivial bound. Although the bound is tight when
the observables share eigenstates, it is not always the case. This can be
improved if we have access to more information regarding the observables.
For example, one may wonder how the Lovász number bound scales in
the presence of a perturbation such that some pairs of observables “almost”
anticommute. More than an interesting theoretical consideration, this is
also in line with approaches to devise entanglement tests which are robust
against imprecisely calibrated devices [107, 108, 131].

Let us compute
⃦⃦
{Ai, Aj}

⃦⃦
= ε ij, with i, j ∈ [L], where ∥·∥ is any norm

that satisfies Λ(·) ≤ ∥·∥ (for instance, the operator norm [75]), and define
a critical ε > 0. We say that any pair of observables with ε ij strictly less
than ε almost anticommute, with i, j ∈ [L]. We are interested in how this
affects the Lovász number bound, as it for now depends on vanishing
anticommutators. For that purpose, we construct the L × L matrix E(w)

with entries √wiwjε ij if Ai and Aj almost anticommute and zero otherwise,
with i, j ∈ [L]. Proposition 2.1 extends to this case as

L

∑
i=1

wi⟨Ai⟩2
ϱ ≤ ϑ(Ḡε, w) +

1
2

Λ (E(w)) ∀ϱ ∈ S(H), (2.17)

where two vertices in Ḡε are connected if their corresponding observables
almost anticommute. The graph Ḡε is called the almost anticommutativity
graph of {Ai}L

i=1.

Proof. Following the proof of Proposition 2.1 and the notation therein,
we can show that ∥a∥2 ∑L

i=1 wi⟨Ai⟩2 ≤ ∑L
i,j=1 aiaj

√wiwj⟨Ai Aj⟩, with ai =√
wi⟨Ai⟩, i ∈ [L]. Then, by splitting the right hand side into a sum over the

pairs that do not almost anticommute and a sum over the pair that do, we
write

∥a∥2
L

∑
i=1

wi⟨Ai⟩2 ≤ ∑
{i,j}∈Gε

aiaj
√︁

wiwj⟨Ai Aj⟩+ ∑
{i,j}∈Ḡε

aiaj
√︁

wiwj⟨Ai Aj⟩.

(2.18)
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The right hand side’s first sum is upper bounded by ∥a∥2ϑ(Ḡε, w) as previ-

ously, whereas the second sum is upper bounded by ∥a∥2

2 Λ(E(w)), which
finished the proof.

Equation (2.17) is surprisingly simple. Moreover, as is discussed later, the
fact that it decouples the contributions of the idealised observables and the
perturbation also greatly simplifies the design and analysis of entanglement
tests under more realistic conditions.

2.2 Application to entanglement detection

Entanglement witnesses (see Section 1.3.3) are among the main tools for
entanglement detection in practice. However, constructing experimentally
friendly witnesses can be difficult, since obtaining the bounds frequently
require them to have a particular structure that may not necessarily match
what can be implemented in a laboratory. Furthermore, it has been noticed
that even small imprecisions in the measurements can lead to false positives
in entanglement and nonlocality detection [107, 108, 131], but this analysis
could only be done for the simplest examples. Here, we demonstrate how
Eq. (2.17) gives a straightforward solution to both these problems. Then, we
show how the results can be adapted in order to construct Schmidt number
witnesses.

2.2.1 Entanglement witnesses

Recall from Section 1.3.1 that a bipartite state ϱ ∈ S(HA ⊗HB) is separable
(ϱ ∈ S1) if it can be written as a convex combination of product states.
Now, let {Ai}L

i=1 and {Bi}L
i=1 be sets of observables acting on HA and HB

respectively. Clearly,

max
ϱ∈S1

L

∑
i=1

⟨Ai ⊗ Bi⟩ϱ = max
ϱA∈S(HA)
ϱB∈S(HB)

L

∑
i=1

⟨Ai⟩ϱA⟨Bi⟩ϱB . (2.19)

Rewriting Eq. (2.6) and making use of the the Cauchy–Schwarz inequality,
we get

max
ϱ∈S1

L

∑
i=1

⟨Ai ⊗ Bi⟩ϱ ≤
√︂

ϑ(ḠA)ϑ(ḠB), (2.20)
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where ϑ(ḠA) is the Lovász number of the anticommutativity graph of
{Ai}L

i=1 and similarly for ϑ(ḠB). For convenience, we define

ϑAB =
√︂

ϑ(ḠA)ϑ(ḠB).

We thus obtain a class of entanglement witnesses that we summarise in the
following proposition.

Proposition 2.3 ([B]). Let {Ai}L
i=1, {Bi}L

i=1 and ϑAB be such as above. The
observable

WE = ϑAB1 −
L

∑
i=1

Ai ⊗ Bi (2.21)

is an entanglement witness for states in S(HA ⊗HB).

For cases where both involved Lovász number bounds are tight, WE is a
weakly optimal entanglement witness, i.e., there exists at least one separable
state ϱs ∈ S(H) such that tr(Wϱs) = 0 [60]. We note that the separability
problem can be reformulated in terms of weakly optimal witnesses [9].

For concreteness, let us choose a two-ququart PPT entangled state,

ϱI =
1
6
(ϱ1Y + ϱXX + ϱYZ + ϱZX + ϱZY + ϱZZ) , (2.22)

where ϱAB is the projector onto the pure state |ψAB⟩ = 1/2
(︂

11AB ∑3
i=0 |i⟩ |i⟩

)︂
,

A, B ∈ {1, X, Y, Z} [13]. As sets of observables, we take the elements in the
Bloch decomposition of ϱI which correspond to non-zero coefficients, that
is,

{Ai}15
i=1 = {1X, 1Y, 1Z, X1, XX, XY, XZ, (2.23a)

Y1, YX, YY, YZ, Z1, ZX, ZY, ZZ},

{Bi}15
i=1 = { − 1X, 1Y,−1Z,−X1, XX,−XY,−XZ, (2.23b)

Y1, YX, YY,−YZ, Z1,−ZX,−ZY,−ZZ}.

These sets have the same anticommutativity graph ḠI depicted in Figure
2.3, for which ϑ(ḠI) = ω(GI) = 3. The witness based on these observables
reads

WI = 3 −
15

∑
i=1

Ai ⊗ Bi (2.24)

and detects νϱI + (1 − ν)1/16, with ν ∈ [0, 1] to be entangled for ν > 3/5,
which is exactly the separability bound [108]. Notice that the chromatic
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Figure 2.3: Anticommutatvity graph ḠI . Its clique number and the Lovász number
of its complement are equal to three, ω(GI) = ϑ(ḠI) = 3. The chromatic number
of its complement is four, χ(GI) = 4.

number of GI is equal to four. If the witness were constructed with this
quantity instead of the Lovász number bound, it would only be able to detect
entanglement for a visibility ν above 4/5. This illustrates how considering
the chromatic number as a bound on E can lead to worst results. We finally
note that the witness WI is not a fidelity witness, and that entanglement of
PPT entangled states cannot be detected using fidelity witnesses [65].

2.2.2 Imprecise observables

Let us now consider a more realistic scenario and analyse how imprecisions
in the measurements affect the entanglement detection threshold. To this
end, let {Ai}15

i=1 be the target observables of Eq. (2.23) and let us model the
implemented observables by {Ãi}15

i=1. A similar notation holds for {Bi}15
i=1.

We choose an imprecision bound ε such that the almost anticommutativity
graph Ḡε is the same as Ḡ, and for simplicity we consider that ε ij = ε

for all {i, j} ∈ Ḡε. Equation (2.17) then comes in handy, as it enables us
to construct the witness W̃ I = (3 + 4ε) 1 − ∑i Ãi ⊗ B̃i, which can detect
entangled states as long as ε < 1/2. For the PPT entangled state ϱI , the
witness can certify that νϱI + (1 − ν)1/16 is entangled for ν > (3+4ε)/5. This
exemplifies that, although Eq. (2.21) is a witness, if it is implemented by
measuring imprecisely the observables of Eq. (2.23), a negative expectation
value can no longer be taken as a certification that the state is entangled.
Indeed, it may be the case that although tr(WIϱ) is negative, when the
imprecision on the measurement is taken into account tr

(︁
W̃ Iϱ

)︁
is larger than

zero, and thus the presence of entanglement is wrongly detected.
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Naturally, this discussion is only relevant when measured observables
are Ãi ⊗ B̃i, i ∈ [L], and not the witness directly. This is especially relevant
considering that most experimental implementation of observables require
product observables, as discussed in [21, 52, 61].

2.2.3 Schmidt number witnesses

The following proposition shows how the Lovász bound can also be used
to derive Schmidt number witnesses. We recall from Section 1.3.3 that an
Hermitian operator Wq is a q-Schmidt number witness if tr

(︁
Wqϱq

)︁
≥ 0 for

all ϱq ∈ Sq and if there exists at least one state ϱ /∈ Sq such that tr
(︁
Wqϱ

)︁
< 0.

Proposition 2.4. Let {Ai}L
i=1 and {Bi}L

i=1 be sets of observables that either com-
mute or anticommute, and denote their anticommutativity graphs by ḠA and ḠB

respectively. Let {σα}4m

α=1 be the set of m-qubit Pauli operators and denote its
anticommutativity graph by Ḡm. Then,

max
ϱ∈S2m

L

∑
i=1

⟨Ai ⊗ Bi⟩ϱ ≤
√︂

ϑ(ḠA ⊕ Ḡm) ϑ(ḠB ⊕ Ḡm), (2.25)

where ⊕ stands for the XOR graph product2.
In other words,√︂

ϑ(ḠA ⊕ Ḡm) ϑ(ḠB ⊕ Ḡm) 1 −
L

∑
i=1

Ai ⊗ Bi (2.26)

is a 2m-Schmidt number witness.

Proof. To prove this result, we first briefly introduce the lifting technique
proposed by Hulpke and coauthors in [81] that maps q-Schmidt number
witnesses Wq in L(Hd

A ⊗Hd
B) to entanglement witnesses in L(Hd

A ⊗Hq
A′ ⊗

Hd
B ⊗Hq

B′), with q ∈ [d].
Let |ψ⟩ ∈ HA ⊗HB be a d × d-dimensional state with Schimdt decom-

position |ψ⟩ = ∑
q
i=1 ςi |αi⟩ |βi⟩ (see Eq. (1.9)). We associate |ψ⟩ with a higher-

dimensional separable state
⃓⃓
Ψq
⟩︁
. To do that, let us add auxiliary systems

2If G1 and G2 are n1- and n2-vertex graphs respectively, their XOR graph product is the
n1n2-vertex graph G1 ⊕ G2 whose vertices v(i1, i2) and v(j1, j2) are connect if either i1 and j1
are connected in G1 or i2 and j2 are connected in G2, but not if both edges exist in G1 and G2
respectively.
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A′ and B′, each of dimension q, and set

|ψ⟩ ↦→
⃓⃓
Ψq
⟩︁
=

(︄
q

∑
i=1

ςi |αi⟩A |i⟩A′

)︄
⊗
(︄

1
√

q

q

∑
i=1

|βi⟩B |i⟩B′

)︄
. (2.27)

Clearly,
⃓⃓
Ψq
⟩︁

is separable across the bipartition AA′ | BB′. Let T be an
operator acting on HA ⊗HB and analogously lift it to

Tq = T ⊗ q
q

∑
i,j=1

|ii⟩⟨jj|A′B′ (2.28a)

= T ⊗
q2

∑
α=1

µα ⊗ µT
α (2.28b)

where {µα}q2

α=1 is an orthogonal basis of L(Hq) fulfilling tr(µαµα′) = qδα,α′ ,
α, α′ ∈ [q2] such as for instance the Pauli basis. The subscript ·T stands for
transposition. Then we obtain

⟨ψ|T|ψ⟩ =
⟨︁
Ψq
⃓⃓
Tq
⃓⃓
Ψq
⟩︁

, (2.29)

which is Eq. (9) of [81], up to different normalisations of
⃓⃓
Ψq
⟩︁

and Tq. Notice
that by abuse of notation, different subsystem ordering are used for

⃓⃓
Ψq
⟩︁

and Tq. From the convexity of Sq, it follows that

max
ϱ∈Sq

⟨T⟩ϱ ≤ max
ρ∈S1(AA′|BB′)

⟨Tq⟩ρ, (2.30)

where S1(AA′ | BB′) specifies that separability across the bipartition AA′ |
BB′ is considered.

We are now ready to prove the proposition. We set T = ∑L
i=1 Ai ⊗ Bi, and

consider the Schmidt number q = 2m, with m ∈ N. The lifted operator reads
T2m = ∑L

i=1 ∑4m

α=1 Ai ⊗ σα ⊗ Bi ⊗ σT
α , where {σα}4m

α=1 is the set of m-qubit
Pauli operators. Using Eq. (2.20),

max
ρ∈S1(AA′|BB′)

⟨T2m⟩ρ ≤
√︂

ϑ(ḠA)ϑ(ḠB), (2.31)

where ḠA and ḠB are the anticommutativity graphs of {Ai ⊗ σα | i ∈ [L], α ∈
[4m]} and of {Bi ⊗ σT

α | i ∈ [L], α ∈ [4m]} respectively.
The observables Ai ⊗σα and Aj ⊗σβ anticommute only if either {Ai, Aj} =

0 or {σα, σβ} = 0, but not if both are equal to zero, with i, j ∈ [L], α, β ∈ [4m].
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Hence it is easy to see that that ḠA is the XOR graph product of the an-
ticommutativity graphs of {Ai}L

i=1 and of {σα}4m

α=1. Since transposing the
Pauli operators does not affect their commutation relations, an analogous
statement holds for ḠB . Combining this with Eqs. (2.29–2.31), we finally
obtain

max
ϱ∈S2m

L

∑
i=1

⟨Ai ⊗ Bi⟩ϱ ≤
√︂

ϑ(ḠA ⊕ Ḡm)ϑ(ḠB ⊕ Ḡm), (2.32)

which finishes the proof.

As an example, consider a 2n-qubit system, and take Tn = ∑4n

i=1 σi ⊗ σT
i

with {σi}4n

i=1 being the set of n-qubit Pauli operators. From Proposition 2.4,
we obtain

max
ϱ∈S2m

4n

∑
i=1

⟨σi ⊗ σT
i ⟩ϱ ≤ ϑ(Ḡn ⊕ Ḡm). (2.33)

For n = 4, we computed the Lovász numbers of Ḡn ⊕ Ḡm, with m ≤ n. The
results translate to the following inequality that holds for all ϱ ∈ S(H24 ⊗
H24

), up to numerical precision

⟨T4⟩ϱ ≤
SN(ϱ)≤1

16.0 ≤
SN(ϱ)≤2

32.0 ≤
SN(ϱ)≤4

64.0 ≤
SN(ϱ)≤8

128.0 ≤
SN(ϱ)≤16

256.0,

(2.34)

where the subscripts below the inequality signs indicates that the inequality
is valid for states with a Schmidt number below a certain value. Clearly,
the last bound is trivial, as it expresses the number of terms present in T4.
This series of bounds can be applied to the isotropic state ϱv = v |ψ16⟩⟨ψ16|+
(1 − v)1/256, with v ∈ [0, 1] and where |ψ16⟩ = 1/4 ∑15

i=0 |ii⟩. We find that

v >
1
17

⇒ SN(ϱv) > 1, (2.35a)

v >
31
255

⇒ SN(ϱv) > 2, (2.35b)

v >
21
85

⇒ SN(ϱv) > 4, (2.35c)

v >
127
255

⇒ SN(ϱv) > 8, (2.35d)

v > 1 ⇒ SN(ϱv) > 16, (2.35e)

which recovers the results of [141].
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2.3 Discussion

In this chapter, we have established a connection between quantum observ-
ables and graph theory, specifically by showing that the sum of squares
of expectation values of any set of observables is bounded by the Lovász
number of their anticommutativity graph. This is a significant improvement
to the previous bound based on the chromatic number. Nevertheless, as
discussed, there exist cases of imperfect graphs for which Proposition 2.1
does not lead to a tight bound. The follow-up works [163] and [106] took
steps toward characterising the cases where Proposition 2.1 is tight, nev-
ertheless some questions remain open: Does maxϱ∈S(H) E correspond to
a known graph invariant of its associated anticommutativity graph? Are
there instances where maxϱ∈S(H) E = ϑ(Ḡ) while ϑ(Ḡ) differs from ω(G)?
Does including higher order terms lead to a better characterisation of the set
of quantum states, in the sense of Eq. (2.1)?

The implications of our results extend beyond foundational considera-
tions. Specifically, they have practical applications in the characterisation of
entanglement. We have developed entanglement witnesses that are robust
to imprecise measurements of observables, an essential feature for practical
quantum information processing. Additionally, by integrating our results
with the lifting technique introduced in [81], we have constructed Schmidt
number witnesses. So far, the applications of Proposition 2.4 are merely
simple examples, and future work will determine whether it can lead to
new Schmidt number detections.

Finally, we note that our results can be formulated in the language
of entropic uncertainty relations. These can in turn be used to construct
quantum steering detection criteria [37, 146], as is shown in [B] and [40].
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Chapter 3

Marginal tomography

The process of determining the state of a quantum system from measured
data, known as quantum state tomography, is essential in quantum in-
formation theory. However, as the number of qubits in a system increases,
performing full state tomography becomes impractical due to the exponen-
tial growth in the number of required measurement settings. In this chapter,
we focus on a more feasible approach: obtaining k-qubit marginal states
from an n-qubit quantum system. Specifically, we aim to develop efficient
measurement scheduling strategies that minimise the number of required
measurement settings. As introduced in [38], we refer to the problem of
obtaining all k-qubit marginal states of an n-qubit system as k-body overlap-
ping tomography. This falls under the broader topic of marginal tomography,
which aims to reconstruct some marginal states of a multipartite quantum
system.

To address this question, we investigate two general measurement
schemes. The first scheme, discussed in Section 3.1, is restricted to Pauli
settings. We show that constructing the minimal number of Pauli settings
for marginal tomography can be mapped to an edge clique cover problem
in graph theory, and present a few examples. Notably, we show that two-
body marginal tomography of nearest neighbours in planar topologies only
requires nine Pauli settings. The second scheme, covered in Section 3.2,
allows for any projective measurement setting. We demonstrate that in
this case, k-body overlapping tomography can be performed with only 3k

settings, independently of the number of qubits in the system. In Section 3.4,
we compare these schemes in terms of the number of samples required to
achieve the same confidence level in the reconstructed states. This compar-
ison highlights the trade-offs between the different measurement strategies.
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The results will appear in [E].

3.1 Pauli tomography

First, we analyse the problem as it was introduced in [38], [18], and [53], i.e.,
when the measurement settings are restricted to Pauli settings. In [38] and
[18], the authors demonstrate that in order to obtain all k-qubit marginal
states of an n-qubit state, the number of Pauli settings whose expectation
values have to be estimated scales logarithmically in the number of qubits
n. More specifically, Garcı́a-Pérez and coauthors show in [53] that it is
sufficient to consider 6⌈log3(n)⌉+ 3 Pauli settings on n qubits in order to
recover all two-qubit marginals (i.e., k = 2.). In [5], the authors aim to
reconstruct some k-qubit marginal states dictated by the physical structure
of the considered system, referred to as local overlapping tomography. They
propose different methods depending on the topology of the problem to
obtain Pauli measurement settings.

In this section, we contribute to the effort by characterising the optimal
Pauli settings, i.e., minimal with respect to the number of settings, that are
necessary to obtain k-qubit marginal states of n-qubit states. Throughout
this chapter, n always refers to the number of qubits of the global state, while
k denotes the number of qubits in the desired marginals, which we refer to
as the strength. In Section 3.1.1, we look at the particular case of strength two,
i.e., k = 2, for which we give methods for obtaining optimal Pauli settings
that allow the reconstruction of specific two-qubit marginal states. We
then extend the results to higher strengths in Section 3.1.2. These methods
recover the particular case of the overlapping tomography problem, which
we discuss in details in Section 3.1.3. We proceed in Section 3.1.4 to reduce
the size of the problem for large number of qubits, and finally discuss the
optimality of known constructions in Section 3.1.5.

3.1.1 Two-body marginal tomography

In marginal tomography, which of the marginals of an n-qubit state ϱ must
be obtained is dictated by the physical problem that is considered: In some
cases, we might want all of the n(n−1)/2 two-qubit marginals, whereas in
other cases only a subset of those may be relevant, such as nearest neigh-
bours in many-body systems. In this section, we show how the problem of
finding Pauli settings that are tomographically complete for some pairs of

53



Marginal tomography

qubits can be mapped to a graph theory problem, namely the edge clique
covering problem (see Problem 1.3 in Chapter 1).

In the case of strength two, the information about which marginals are
to be reconstructed can be encoded in a graph G with n vertices.

Definition 3.1 (Connectivity graph [E]). An n-vertex graph G with vertex
set [n] and edge set E is the connectivity graph of an n-qubit system in a state
ϱ for which the marginal states ϱ(e) for all e ∈ E are desired.

Further, we define (minimal) Pauli sets.

Definition 3.2 (Pauli set [E]). A set of n-qubit Pauli operators that is tomo-
graphically complete for all qubit subsets e ∈ E for some graph G = ([n], E)
is called a Pauli set for the graph G. If the cardinality of the Pauli set is
minimal, it is called a minimal Pauli set for G. The cardinality of a minimal
Pauli set is denoted by ϕ2(G).

Notice that Pauli sets are not unique: A relabelling of the Pauli operators
X, Y, and Z also leads to a valid Pauli set. Moreover, if two vertices have
the same neighbouring in G, their local settings may be exchanged still form
a Pauli set for G.

For concreteness, let us first focus on the case of a three-qubit state ϱ

for which we want to reconstruct the marginal states ϱ(1,2) and ϱ(2,3). The
corresponding connectivity graph is a three-vertex line graph, depicted in
Figure 3.1 (a). We are thus looking for a set of three-qubit Pauli operators
that are tomographically complete for the qubit pairs {1, 2} and {2, 3}, i.e.,
a minimal Pauli set that covers the nine two-body Pauli operators

XX, XY, XZ, YX, YY, YZ, ZX, ZY, ZZ (3.1)

for both qubit pairs.1

How to obtain such a Pauli set can be described with the help of two
additional graphs. First, we construct a graph where the edges represent
the two-qubit operators required for reconstructing the marginals. So, in
this case, the 18 two-body Pauli operators for the pairs of qubits {1, 2} and
{2, 3}, i.e.,

X1X2, X1Y2, X1Z2, Y1X2, Y1Y2, Y1Z2, Z1X2, Z1Y2, Z1Z2, (3.2a)

X2X3, X2Y3, X2Z3, Y2X3, Y2Y3, Y2Z3, Z2X3, Z2Y3, Z2Z3, (3.2b)

1In this chapter, the term “pair” is used as in “pair set”.
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Figure 3.1: (a) Connectivity graph L of three qubits. The set of edges {{1, 2}, {2, 3}}
represents the two-qubit marginals that are desired. (b) Covering graph L×3 of L.
Each edge represents a two-body Pauli operator that is needed to recover the two-
qubit marginal states. For instance, the expectation value of X1Y2 is required and
thus corresponds to an edge of L×3. On the other hand, Y1 and Z3 are not connected,
as the marginal ϱ(1,3) does not need to be reconstructed. (c) Measurement graph K3,3.
Each triangle represent a possible three-qubit Pauli setting. Figures taken from [E].

where the indices indicate on which qubits the Pauli operators act. To do
that, we instantiate three vertices per qubit (each of them representing a
Pauli operator), and connect the vertices corresponding to the required Pauli
operators of Eq. (3.2), as in Figure 3.1 (b). It is called the covering graph and
denoted by L×3.

The last graph, called measurement graph, represents all possible three-
qubit Pauli settings. It has the same set of vertices as L×3, and two vertices
are connected if and only if they represent single Pauli operators corres-
ponding to different qubits, resulting in the complete tripartite graph with
three vertices per party, K3,3.2 Therein, a global Pauli setting is represented
by the triangle on the vertices corresponding to the Pauli setting, and all
the triangles represent physical three-qubit Pauli settings. For instance, the
global Pauli setting Y1X2Z3 is represented by the triangle with vertices Y1,
X2 and Z3 in the measurement graph (Figure 3.1 (c)). Note that each of the
triangles of K3,3 covers three two-body Pauli settings, which in this case are
Y1X2, Y1Z3, and X2Z3.

This formulation can easily be extended to n parties and arbitrary con-
nectivity graphs G: First, we let the edges of G×3 represent all the two-body
Pauli operators whose expectation values need to be known. Mathematic-
ally speaking, the vertex set of G×3 is given by ∪n

i=1{Xi, Yi, Zi}, and its edge

2The complete n-partite graph with v vertices per party Kn,v is the graph whose nv
vertices can be partitioned into n sets of v unconnected vertices, and such that vertices
belonging to different sets are connected [43].
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set by {{Ai, Bj} | A, B ∈ {X, Y, Z}, {i, j} ∈ G}. The measurement graph is
the n-partite complete graph with three vertices per party, Kn,3. Its vertices
are the same than G×3, and its edge set is {{Ai, Bj} | A, B ∈ {X, Y, Z}, i ̸=
j, i, j ∈ [n]}. Then, the maximal cliques3 of Kn,3 represent all the possible
n-qubit Pauli settings. We notice that each clique is part of a maximal clique,
and that the orders of the maximal cliques are all equal to n. Finding a
minimal Pauli set for the connectivity graph G is thus equivalent to finding
the minimal number of maximal cliques of Kn,3 that are needed to cover all
the edges of G×3, i.e., solving the edge clique cover problem for G×3 and
Kn,3 as defined in Problem 1.3.

Inspired by this construction, it is shown in [E] and [40] how finding
minimal Pauli sets can be formulated as a binary program and solved
exactly.

Proposition 3.1 (Binary program for marginal tomography [E], [40]). Let G
be a connectivity graph for two-body marignal tomography of an n-qubit system. A
minimal Pauli set for G can be obtained by solving the following binary program

ϕ2(n) = min
{zc}c∈C∈{0,1}3n ∑

c∈C
zc (3.3a)

such that zc ∈ {0, 1} ∀c ∈ C (3.3b)

∑
c∈C

zcec ≥ 1 ∀e ∈ E, (3.3c)

where C denotes the set of cliques and edges of Kn,3, E denotes the set of edges
of G×3, and where ec = 1 if e ∈ c, and 0 otherwise. The ec are constants of the
problem.

For the three-qubit example with the line connectivity graph L, a solution
to the edge clique cover and the corresponding Pauli set are given in Figure
3.2, using Proposition 3.1. Obtaining the expectation values of the nine
Pauli settings of Figure 3.2 (b) is therefore sufficient in order to reconstruct
the marginals ϱ(1,2) and ϱ(2,3). Although this particular example may seem
trivial, it is clear that the general problem is not.

We note that the number of variables in Eq. (3.3) is equal to 3n, therefore
large instances may become too expensive to compute. However, we show
in Section 3.1.4 that for many physically motivated connectivities, finding a
minimal Pauli set can be reduced to a small instance of the program, and

3We recall that a clique is a complete subgraph, as defined in Definition 1.16.
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Figure 3.2: (a) Cover of the edges of L×3 by the cliques of K3,3. Each clique used in the
covering is highlighted in a different colour. (b) The corresponding minimal Pauli set.
The three-qubit Pauli settings form a minimal Pauli set for the connectivity graph L
is presented in Figure 3.1. Each three-qubit Pauli setting is associated to the triangle
of the same colour in (a). Figures adapted from [E].

we discuss in Section 3.1.5 how minimal Pauli sets for a few parties can be
extended to larger cases.

3.1.2 Marginal tomography of arbitrary strength

Although most previous methods focused on two-body partial tomography
[18, 38, 53], some physical problems may require k-body marginals of higher
strength. We show how the graph formulation for two-body partial tomo-
graphy can be generalised to arbitrary strength k ≤ n by using hypergraphs.

To do that, we begin by encoding the desired marginals in a connectivity
hypergraph H, where each hyperedge connects k vertices representing the
qubits from the desired marginal sates. As an example, Figure 3.3 depicts
the hypergraph H7 representing seven qubits in a ring configuration where,
for each qubit i ∈ [7], we want to have access to the three-qubit marginal
of the triplet {i − 1, i, i + 1}, i.e., k = 3. Definition 3.2 of Pauli sets extends
straightforwardly, and we denote the cardinality of minimal Pauli set of H
as ϕk(H).

The covering hypergraph H×3 follows the same idea than in the case of
strength two: Each hyperedge represents a k-body Pauli operator whose
expectation value is required to reconstruct the marginals dictated by the
connectivity hypergraph H. The measurement hypergraph Kk

n,3 is such that
its hyperedges represent all possible k-body Pauli settings. Similarly to the
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Figure 3.3: Connectivity hypergraph H7 of seven qubits in a ring. The marginals of
each consecutive triplet of qubits are to be reconstructed, i.e., ϱ(1,2,3), ϱ(2,3,4), ϱ(3,4,5),
ϱ(4,5,6), ϱ(5,6,7), ϱ(6,7,1), and ϱ(7,1,2). The vertices are coloured such that vertices
belonging to a same edge have distinct colours. The grey scale of the edges are for
better readability. Figure taken from [E].

case of strength two, a global Pauli setting is a maximal clique4 in Kk
n,3. Both

hypergraphs H×3 and Kk
n,3 have 3n vertices, one for each single-qubit Pauli

setting.
Finding a minimal Pauli set for the k-body marginal tomography of H is

equivalent to finding a minimal hyperedge covering of H×3 with cliques of
Kk

n,3. Whereas hypergraphs quickly become cumbersome to draw on paper,
it is shown in [E] that the hypergraph covering can also be formulated
as a binary program and solved exactly, leading to a direct extension of
Proposition 3.1. The number of variable used in the binary program quickly
exceeds what is manageable by standard computers, and only a few cases
could be computed. For instance, a minimal Pauli set for H7 is computed in
[E] and presented in Figure 3.4.

3.1.3 Overlapping tomography of arbitrary strength

In this section, we consider the overlapping tomography problem as intro-
duced in [38], [18], and [53], i.e., how to find Pauli settings that allow for
the reconstruction of all k-body marginals of an n-qubit quantum state. In
that case, the Pauli set must be tomographically complete for all k-sets of
qubits. The connectivity hypergraph thus is the complete hypergraph Kk

n,
and the covering graph is Kk

n,3, as all k-body Pauli operators are needed: The

4Given a hypergraph H, its cliques are its induced subgraphs where any distinct k vertices
are connected by a hyperedge.
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Figure 3.4: A minimal Pauli set for the connectivity hypergraph H7. Each column corres-
ponds to one seven-qubit Pauli setting, and the number of settings is ϕ3(H7) = 27.
These 27 Pauli settings grantee that, for every triplet {i − 1, i, i + 1} of qubits, with
i ∈ [7], the corresponding rows cover each of the 33 = 27 combinations of X, Y, and
Z (at least) once.

covering graph is the same as the measurement graph. For conciseness, we
define ϕk(n) = ϕk(Kk

n). We note that in this case, any Pauli set for n qubits
leads to Pauli sets for n′ qubits, with n′ < n, by omitting the measurement
settings on the additional qubits.

In other words, we are looking for an array with n columns, such that
for every k-sets of columns, all 3k possible combinations of X, Y, and Z ap-
pear. Incidentally, the same problem is central in the combinatorial designs
literature, where it appears under the name of covering arrays (CAs).

Definition 3.3 (Covering array [34]). A covering array CA(L; n, k, v) is an
L× n array such that the rows of any L× n subarray cover all the kv possible
combinations of v symbols. A minimal covering array is a covering array for
which L is minimal. The covering array number CAN(n, k, v) is the number
L of rows of a minimal CA(L; n, k, v).

For reviews of the topic, see [34, 143]. Clearly, finding a minimal Pauli
set is equivalent to finding a minimal CA with three symbols (i.e., v = 3).
Therefore, it follows that CAN(n, k, 3) = ϕk(n), the minimal number of
Pauli settings needed to reconstruct all k-qubit marginal states of an n-qubit
system. Similarly to Pauli settings, from a CA(L; n, k, 3), it is possible to
obtain CA(L; n′, k, 3), with n′ < n, by deleting n − n′ columns. Several
facts about the minimal Pauli sets can thus be immediately borrowed, such
as bounds on ϕk(n) and explicit constructions. As examples, it is known
[34, 143] that

ϕk(k + 1) = 3k, (3.4)

and that
ϕk(n) ≤

k − 1

log
(︂

3k

3k−1

)︂ log(n)(1 + o(1)), (3.5)
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n 4 5 6 5 9 10 20
ϕ2(n) 9 11 12 12 13 14 15
ϕ3(n) 27 33 33

Table 3.1: Covering array numbers for CAs of strength two and three and with three
symbols [93]. For integers n′ ∈ [20] that are not displayed, ϕk(n′) = ϕk(n), where n
is the closest larger integer to n′ displayed.

confirming the logarithmical scaling of the number of settings for overlap-
ping tomography [38, 18]. However, minimal covering arrays are notori-
ously hard to construct: To this day, strength-two covering arrays5 with
three symbols are only known up to n = 20 parties [93]. The known values
of ϕ2(n) and ϕ3(n), with n ∈ [20], are given in Table 3.1.

On the other hand, when considering strength two, the particular case
of two symbols has been shown to have an efficient method for computing
a CA. Although not of use in the case of quantum state tomography, this
could turn out to be relevant in a multi-qubit Mermin inequality setting,
as it only requires the expectation values of tensor products of two binary
observables. We leave the discussion for Section 4.4.4 of Chapter 4.

Minimal Pauli sets were obtained through the use of the binary program
described in Proposition 3.1 for k = 2 up to n = 8, and for the case k = 3,
it rendered ϕ3(4) = 27 and ϕ3(5) = ϕ3(6) = 33. As an example, Figure
3.5 depicts a minimal Pauli set for two-body overlapping tomography of
six-qubit systems. We note that to the best of our knowledge, the fact that
CAN(5, 3, 3) = ϕ3(5) = 33 had not been shown previously.

Inspired by the field of combinatorial designs, we notice that there exist
(non-minimal) Pauli set on n-qubits such that, for every k-sets of qubits, each
combination of k Pauli operators appears exactly t times. These Pauli sets
are called uniform Pauli sets, and called minimal uniform Pauli sets when
the number of settings, given by 3kt, is minimal. We recall that in general,
Pauli sets only require that each combination of k Pauli operators appears
at least once. Uniform Pauli sets correspond to orthogonal arrays with three
symbols, see [68] for an introduction to the topic and see [136] for tables of
orthogonal arrays.

Naturally, when the number of repetitions t is fixed, given n and k, it is
not always possible to find a uniform Pauli set. The simple example is to
consider t = 1, then if k = 2, uniform Pauli sets only exist for n = 2, 3, 4,
as for n = 5, minimal Pauli sets are of composed of 11 elements, which

5The strength of a CA(L; n, k, v) is given by k.
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Figure 3.5: Minimal Pauli set for two-body overlapping tomography of a six-qubit
system computed using Proposition 3.1. Each column corresponds to a six-qubit
Pauli setting, and there are 12 settings in total. The settings ensure that, for any pair
of qubits, the corresponding rows cover the nine two-body Pauli operators. Note
that comparing to Definition 3.3 of covering arrays, the table is transposed.

implies the repetitions of some two-body Pauli terms for all pairs of qubits.
Nevertheless, for given n and k, it is always possible to find a number t
such that a uniform Pauli set exists. For instance, the set of all n-qubit Pauli
operators is a uniform Pauli set for any strength k, with repetition t = 3n−k.

Uniform Pauli sets have the advantage that all k-qubit Pauli settings are
in the end measured the same amount of times. Therefore, using uniform
Pauli sets with the smallest number of repetitions possible combines having
a smaller number of settings together with a uniform distribution of the
number of samples of each k-body Pauli operator. However, contrarily to
minimal Pauli sets, the number of settings does not scale logarithmically
with the number of qubits n. The most general lower bound on the number
of settings 3kt is given by the Rao bound [68, 123], and reads

3kt ≥

⎧⎨⎩1 + ∑k/2
i=1 (

n
i )(k − 1)i if k is even

1 + ∑k−1/2
i=1 (n

i )(k − 1)i + ( n−1
k−1/2)(n − 1)k+1/2 if k is odd.

(3.6)

It can be shown that there are infinitely many orthogonal arrays for which
this bound is tight, nevertheless, it is a difficult problem to determine for
which parameters equality occurs [68]. Figure 3.6 shows how this lower
bound behaves for k = 2, 3, 4.

It is for instance known that for seven qubits, minimal uniform Pauli
sets for retrieving all two-qubit marginal states have 18 elements, i.e., each
two-qubit Pauli term appears exactly twice for each pair of qubits [68].
The Pauli set is given in Figure 3.7. For systems with eight to 13 qubits,
minimal uniform Pauli sets of strength two have 27 elements, i.e., with three
repetitions [68].
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Figure 3.6: Value of the Rao bound for different strengths (k = 2, 3, 4) as a function of
the number of qubits n.

3.1.4 Reduction for large number of qubits

Measurement scheduling for marginal tomography can be mapped to a
graph covering problem, which can in turn be formulated as a binary pro-
gram and therefore solved exactly. However, for large connectivity graphs,
those techniques can quickly reach their limits regarding what can actually
be solved by standard computers. Fortunately, for many physically motiv-
ated classes of connectivity graphs, we show in this section how finding
minimal Pauli sets can be mapped to small instances of Eq. (3.3) and optim-
ally computed. We start by presenting an example for the sake of clarity,
and move on to the general case at the end of the section.

Consider 16 qubits in a square lattice configuration, where we aim to
reconstruct the two-body marginals of each pair of first and second neigh-
bours, such that its connectivity graph G16 is the one depicted in Figure 3.8.
For 16 qubits, the binary program of Eq. (3.3) is not solvable with standard
computers (see [E] for details). Regardless, we directly notice that maximal
cliques of G16 put a lower bound on ϕ2(G16). Indeed, for the qubits 1, 2,
5, and 6, we need to reconstruct the marginals of all six pairs of qubits,
therefore at least nine global Pauli settings are needed, and we formalise

ϕ2(4) ≤ ϕ2(G16). (3.7)

We proceed by taking a minimal Pauli set for recovering all two-body
marginals of a four-qubit system. We associate one colour to each qubit, as
shown in Figure 3.9 (a). Each party has nine single-qubit Pauli settings of
one colour. Then, using the same four colours, we colour the 16 vertices of
the connectivity graph G16 in such a way that no adjacent vertices (qubits)
have the same colour. A possible way of doing that is presented in Figure
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Figure 3.7: A minimal uniform Pauli set for two-body overlapping tomography of
seven qubits [136]. Each column corresponds to a seven-qubit Pauli setting, and
there are 18 settings in total. These settings ensure that, for every pair of qubits, the
corresponding rows cover exactly twice each of the nine two-body Pauli operators
presented in Eq. (3.1).

3.8. We construct a Pauli set in the following way: To each qubit i ∈ [16], we
associate the colour given by the graph colouring of G16, and later the single-
qubit Pauli settings of the same colour given by the four-qubit minimal
Pauli set of Figure 3.9 (a). The resulting Pauli set is given in Figure 3.9 (b)
and we obtain ϕ2(G16) = 9. We can easily check that the Pauli settings
form a minimal Pauli set for G16: Any two connected qubits in G16 have a
different colours, and any two single-qubit Pauli settings of different colour
recover all the two-body Pauli operators, as ensured by the minimal Pauli
set of Figure 3.9 (a). Moreover, from Eq. (3.7) we know that a Pauli set of
cardinality nine must be minimal.

However, there exist connectivity graphs for which such a construction
is not possible. Indeed, in graph theory, it is widely known that for any
graph G, its clique number ω(G) is always smaller or equal to the chromatic
number χ(G). Recall that the clique number is given by the number of
vertices in a maximal clique of G, and the chromatic number is the smallest
numbers of colours needed to colour adjacent vertices with different colours,
as defined in Section 1.6.2. A graph G that fulfils ω(G) = χ(G), such as G16

of Figure 3.8, is called weakly perfect (see Definition 1.18). For arbitrary
connectivity graphs G, we thus have to consider a minimal Pauli set for
χ(G) qubits, associate a distinct colour to each qubit, and then proceed as
described above. This results is a Pauli set, as each pair of connected qubits
in G have two-qubit Pauli settings that allow for the reconstruction of all
the two-body Pauli expectation values.

Unfortunately, this construction does not ensure minimality of the num-
ber of Pauli settings when ω(G) < χ(G). Indeed, there might be a more
efficient covering of G×3 than the one suggested by the above construc-
tion and thus a different Pauli set that solves the partial tomography of G
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Figure 3.8: Connectivity graph G16 of 16 qubits in a square lattice. The two-body
marginals of the first and second neighbours are to be reconstructed. The vertices
are coloured with the minimal number of colours such that no adjacent vertices
have the same colour, hence χ(G16) = 4. Figure taken from [E].

with less settings. We summarise this statement in the following sandwich
equation,

ϕ2(ω(G)) ≤ ϕ2(G) ≤ ϕ2(χ(G)). (3.8)

It is unclear whether ϕ2(G) can be strictly smaller than ϕ2(χ(G)). Trying
to answer this question, we considered a somewhat artificial connectivity
graph with seven vertices (qubits) and edges as shown in Figure 3.10. It is
the only connected graph with seven vertices whose clique number is four,
whereas its chromatic number is five, which leads to 9 ≤ ϕ2(G26) ≤ 11. By
running the binary program of Eq. (3.3), we obtain ϕ2(G26) = 11, certifying
that minimal Pauli sets of G26 have 11 settings. Similarly, we ran Eq. (3.3)
for all 26 non-isomorphic, connected, not weakly perfect graphs with eight
vertices, and did not find an instance where the colouring construction did
not give a minimal Pauli set. In other words, there are no connectivity
graphs with at most eight vertices for which ϕ2(G) ̸= ϕ2(χ(G)). It thus
remains an open question whether there are connectivity graphs for which
the colouring construction does not lead to a minimal Pauli set, and any
counterexample would be for at least nine qubits.

Moreover, since equality between the clique and chromatic numbers
results in an optimal solution for the partial tomography problem, the
colouring construction leads to minimal Pauli sets for many physically mo-
tivated classes of connectivity graphs. It is worth noting that the colouring
construction is also optimal for graphs for which ϕ2(ω(G)) = ϕ2(χ(G))

despite the clique and chromatic numbers being distinct. For example, for
n = 2, 3, 4, ϕ2(n) = 9, and for n = 11, . . . , 20, ϕ2(n) = 15, therefore the
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Figure 3.9: (a) A minimal Pauli set for four qubits where all the two-body marginals
are required. (b) A minimal Pauli set for G of Figure 3.8. The colour of each column
corresponds to the graph colouring of G16 in Figure 3.8, and the Pauli settings are
taken from (a). Figures taken from [E].

colouring construction for any connectivity graph G with e.g. ω(G) = 11
and χ(G) = 12 leads to a minimal Pauli set. This allows us to construct
minimal Pauli sets for many different classes of connectivity graphs.

Proposition 3.2 (Minimal Pauli sets for χ(G) ≤ 4 [E]). Let G be the connectiv-
ity graph of an n-qubit system. If χ(G) ≤ 4, then ϕ2(G) = 9.

For instance, the grid example of Figure 3.8 can be extended to an arbit-
rary large number of qubits, and the cardinality of the minimal Pauli set
remains equal to nine. Notably, it has been shown that planar graphs6 have
chromatic numbers of at most four [43], therefore it follows from Proposition
3.2 that two-body marginal tomography for planar connectivity graphs can
always be performed with nine Pauli settings.

The colouring construction can be generalised to larger strengths, that
is, to k > 2. Given a hypergraph H, a lower bound on ϕk(H) is directly set
by ϕk(ω(H)), where ω(H) is the number of vertices in the largest complete
subgraph of H [22]. The natural extension of strength two suggests to
colour the vertices of H such that vertices contained in the same edge have
different colours. This is known as a strong colouring of H, and the smallest
number of colours is the chromatic number of H, χ(H) [22]. Pauli sets
are then constructed analogously to strength two graphs: One considers
a minimal Pauli set for χ(H) qubits where all the k-body marginals are
desired, and associates a distinct colour to each qubit. Then, the Pauli set
for partial tomography of H is constructed by taking the single-qubit Pauli
settings of the minimal Pauli set for χ(H) following a strong colouring of

6Planar graphs are graphs that can be drawn in the Euclidean plane in such a way that
no edges cross each other.
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Figure 3.10: Connectivity graph G26 for seven qubits. Its clique number is equal to
four, whereas its chromatic number is equal to five. The colouring construction
gives a Pauli set with 11 elements, which turns out to be equal to the number of
settings in the minimal Pauli set according to Proposition 3.1. Figure taken from
[E].

H, exactly as in the case of two-body partial tomography. Similarly, when
ϕk(ω(H)) = ϕk(χ(H)), the Pauli set is minimal. If we look at the ring
hypergraph H7 of Figure 3.3, we have ω(H7) = 3 and χ(H7) = 4, and since
ϕ3(3) = ϕ3(4) = 27, we recover that the partial tomography of H7 can be
performed with a minimal number of 27 global Pauli settings.

We note that the authors of [51] already realised that for line connectiv-
ities, marginal tomography can always be realised with 3k settings, as in
that case, χ(H) = k. The case of ring connectivites is thus less trivial, as the
chromatic number depends on n and k, as discussed in the next paragraph.

The colouring construction generalises and unifies the results of Araújo
and coauthors in [5] concerning qubits. First, a general construction is
proposed for connectivity hypergraphs where the vertices are ordered in
a lattice, and where the hyperedges have a periodic structure. However,
because of the generality of the construction, it is argued that the number of
Pauli settings is rather wasteful, and one should look at specific cases and
try to reduce the number of Pauli settings. Then, a similar idea to the graph
colouring is introduced, however, not connected it to smaller instances.
Concerning strength two, a construction is presented that leads to the costly
number of settings of 3χ(G), given a connectivity graph G. They further
look at a few cases where hypergraphs can be coloured using only k colours
(the size of the hyperedges) that is, χ(H) = k. This is recovered by our
colouring construction, and we add that k-body overlapping tomography of
a connectivity hypergraph H can be done with 3k Pauli settings if χ(H) ≤ k+
1. This comes from the fact that minimal Pauli sets for k-body overlapping
tomography of k + 1 qubits have 3k elements, as stated in Eq. (3.4). Finally,
they turn their attention to cyclic topologies such as cycles and toruses. There
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again, the number of Pauli settings can be improved using the colouring
construction. For instance, it is know that cycle hypergraphs with hyperedge
size k have a chromatic number equal to k+ ⌈r/q⌉ where q is the quotient and
r the remainder of n divided by k (see Theorem 3.1 of [115]). So, when r ≤ q
(which is in particular satisfied when n ≥ k2 − 1), the chromatic number
is at most k + 1 and thus minimal Pauli sets have 3k elements, for which
the method described in [5] needs twice as many settings. The case of H7

is again recovered, as its chromatic number is four, which is equal to k + 1.
The strong colouring of H7 is shown in Figure 3.3.

3.1.5 On the optimality of constructions for strength two

Unfortunately, in the case of complete connectivity graphs, the colouring
construction does not reduce the size of the problem. In this case, it can be
convenient to resolve to explicit constructions, which might come at the cost
of optimality. In [53], the authors propose a method to construct Pauli sets
for two-body overlapping tomography that translates to an upper bound
on ϕ2(n),

ϕ2(n) ≤ 6⌈log3(n)⌉+ 3. (3.9)

Alternatively, a well-known recursive construction for covering arrays
shows that, from two Pauli sets for n1 and n2 qubits, it is possible to build a
Pauli set for n1n2 qubits [34, 143]. We present here a slightly modified ver-
sion that requires one less setting, and show that the recursive construction
also leads to an upper bound on ϕ2.

The recursive construction is exemplified in Figure 3.11 goes as follows.
First, assume we know (not necessarily minimal) Pauli sets for n1 and n2

qubits, with cardinalities m1 ≥ ϕ2(n1) and m2 ≥ ϕ2(n2) respectively. Write
them as M1 = {M1

α}
m1
α=1 and M2 = {M2

α}
m2
α=1. Therein, Mℓ

α is an nℓ-qubit
Pauli operator for ℓ = 1, 2, with α ∈ [mℓ]. Without loss of generality, assume
that X⊗nℓ is part of both Pauli sets, with ℓ = 1, 2. Then, take the Pauli
settings {(M1

α)
⊗n2}m1

α=1, which amounts to m1 Pauli settings acting on n1n2

qubits. A moment’s thought shows that all the two-body marginals can
be obtained for all pairs of qubits, except for the pairs (xn1 + z, yn1 + z)
for x, y = 0, . . . , n2 − 1, provided x < y, and z ∈ [n1]. To amend this, we
complete the set of Pauli settings with m2 additional operators of the form

(M2
α)1,n1+1,2n1+1,... ⊗ (M2

α)2,n1+2,2n1+2,... ⊗ . . . ⊗ (M2
α)n1,2n1,3n1,..., (3.10)

67



Marginal tomography

Figure 3.11: Example of the recursive construction with n1 = 3 and n2 = 4. (a)
Minimal Pauli set for n1 = 3 qubits (see also Figure 3.2). Each row corresponds to a
three-qubit Pauli operator. (b) Minimal Pauli set for n2 = 4 qubits (see Figure 3.9
(a)). Each row corresponds to a four-qubit Pauli operator. (c) Pauli set for two-body
overlapping tomography of 12 qubits, where the colours correspond to the ones
of (a) and (b). From the first nine measurements, all two-body marginals can be
obtained except for pairs which have the same colour, such as for instance the qubit
pair {1, 4}. Similarly, the marginal of the qubit pair {1, 2} cannot be reconstructed
from the last nine measurements alone, as the settings only cover XX, YY, and
ZZ. However, when considering all 18 Pauli settings, any qubit pair is covered
by the nine two-body Pauli operators. Notice that the setting X⊗12 is represented
twice, hence the cardinality of the Pauli set is 9 + 9 − 1 = 17. As a comparison, the
construction from [53] renders a Pauli set with 21 settings. We note that none of
these constructions is optimal, as ϕ2(12) = 15. Figures taken from [E].

with α ∈ [m2], and where the indices indicate on which qubits the Pauli
operators in each M2

α should act. Recall that X⊗nℓ , with ℓ = 1, 2, appears
in M1 and M2 respectively, thus twice in the Pauli set for n1n2 qubits.
We end up with a Pauli set M1×2 for n1n2 qubits containing m1 + m2 − 1
measurement settings. Clearly, ϕ2(n1n2) ≤ m1 + m2 − 1. This holds in
particular when M1 and M2 are minimal Pauli sets, and we obtain

ϕ2(n1n2) ≤ ϕ2(n1) + ϕ2(n2)− 1. (3.11)

Remarkably, the construction leads to an upper bound on ϕ2(n), for all
n ∈ N.
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Figure 3.12: Different upper bounds on the number of Pauli settings for two-body
overlapping tomography on an n-qubit system as a function of n. Green: upper bound
from [53]. Orange: upper bound from the recursive construction with α = 4. Purple:
upper bound from the recursive construction with α = 5. Pink: upper bound from
the recursive construction with α = 7. Figure taken from [E].

Proposition 3.3 (Scaling from covering array construction [E]). The minimal
number of Pauli settings ϕ2(n) to perform two-body overlapping tomography of an
n-qubit system satisfies

ϕ2(n) ≤ (ϕ2(α)− 1) ⌈logα(n)⌉+ 1, (3.12)

for any α ∈ N and α ≥ 2.

Proof. By fixing n1 = α and setting n2 = n, we can rewrite Eq. (3.11) as
ϕ2(αn) ≤ ϕ2(α) + ϕ2(n) − 1. Next, we define k such that n = αk, and
introduce ξ(k) = ϕ2(αk). The inequality thus reads ξ(k + 1) ≤ ϕ2(α) +

ξ(k) − 1. By recurrence and using the fact that ξ(1) = ϕ2(α), we ob-
tain ξ(k) ≤ (k − 1) (ϕ2(α)− 1) + ϕ2(α), which holds for k ∈ N+. Re-
arranging the terms we get ϕ2(αk) ≤ k(ϕ2(α) − 1) + 1, and ultimately
ϕ2(n) ≤ logα(n)(ϕ2(α)− 1) + 1, for all n such that logα(n) ∈ N+. Since ϕ2

is monotonically increasing, Eq. (3.12) is proved for all n ≥ 2.

In Figure 3.12, we compare this scaling for different values of α for which
we know ϕ2(α), to the scaling of [53] given in Eq. (3.9).

Similar recursive constructions exist for k > 2, for instance, it can be
shown that [34, 143]

ϕ3(2n) ≤ ϕ3(n) + 2ϕ2(n). (3.13)

For the explicit construction and for larger strengths, we refer the reader to
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the reviews [34, 143] and to the references therein.
Lastly, we note that significant effort has been deployed by the combin-

atorial designs community to obtain small covering arrays, which directly
translates to Pauli sets. For readers interested by the smallest Pauli sets
known up to date for a given number of qubits and a given strength, we
refer to the online tables [33, 142] and the references therein.

3.2 Minimal settings for overlapping tomography

The previous section aimed to obtain sets of Pauli operators that, once
repeatedly measured on independent copies of an n-qubit state ϱ, enable
the reconstruction of its marginals. Although Pauli settings are an obvious
choice to perform multi-qubit tomography, in most photonic experimental
implementations, linear combinations of Pauli measurement are just as
easy to perform. In the context of minimising the number of settings, this
point is highly relevant. Indeed, we have shown that partial tomography
of strength k with Pauli settings cannot in general be performed with the
minimal number of projective measurement settings of 3k. In this section,
we show that allowing general (product) projective measurements on qubits
reduces the number of settings needed to perform the same task. We first
rigorously state the problem and give keys to solve it in Section 3.2.1, then
consider the particular case of two-body tomography of a six-qubit state for
which we numerically optimise measurement directions in Section 3.2.2.

3.2.1 Random measurement directions

Let us start with a few definitions. We aim to minimise the number L of
measurement settings Mα, with α ∈ [L], defined as

Mα =
n⨂︂

i=1

v(i)
α · (X, Y, Z), (3.14)

where {v(i)
α ∈ R3 | α ∈ [L], i ∈ [n]} are three-dimensional real vectors,

and where we used the notation v · (X, Y, Z) = v1X + v2Y + v3Z, with
v = (v1, v2, v3)T. The settings Mα, with α ∈ [L], are physical n-qubit
observables, thus they correspond to projective measurements (see Section
1.1). We call ⊗n

i=1v(i)
α the measurement direction of the setting α, and v(i)

α the
measurement direction of the setting α on the ith qubit, with α ∈ [L] and
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i ∈ [n]. Without loss of generality, the measurement directions are assumed
to be normalised. Notice that taking the measurement directions to be from
the standard basis renders the Pauli operators as measurement settings.

For the set {Mα}L
α=1 to be tomographically complete for a given k-set of

qubits S , it is necessary and sufficient that the measurement directions on
those k qubits form a (possibly overcomplete) basis of R3k

, i.e.,

span

⎛⎝{︄⨂︂
i∈S

v(i)
α

}︄L

α=1

⎞⎠ = R3k
. (3.15)

Remarkably, by choosing the measurement directions for each setting Mα

randomly, with α ∈ [L], it is sufficient to consider L = 3k measurement
settings to perform k-body overlapping tomography of any n-qubit system,
independently of its size. In order to show this, we first introduce the
following lemma, whose proof is given in [E] and in [157].

Lemma 3.1 (Linear independence of tensor products [E], [157]). Given k, r ∈
N+, let v(i)

α ∈ Rr for all i ∈ [k] and α ∈ [rk] be independently and identically
distributed (i.i.d.) vectors with respect to the uniform distribution on the unit
sphere in Rr. Then, it holds almost surely that

span

⎛⎝{︄ k⨂︂
i=1

v(i)
α

}︄rk

α=1

⎞⎠ = Rrk
, (3.16)

i.e., the products of these vectors are linearly independent and thus form a basis of
Rrk

.

Intuitively this makes sense: Randomly chosen vectors should be linearly
independent, even if tensor products. The connection with Eq. (3.15) is
direct, hence the following proposition holds trivially.

Proposition 3.4 (Measurement directions for partial tomography [E], [157]).
Let

Mα =
n⨂︂

i=1

v(i)
α · (X, Y, Z) ∀α ∈ [3k] (3.17)

be n-qubit measurement settings with i.i.d. measurement directions v(i)
α ∈ R3 for

all i ∈ [k] and α ∈ [3k] with respect to the uniform distribution on the unit sphere
in R3. Then {Mα}3k

α=1 is tomographically complete for all k-sets of qubits.

We note that the proof of Lemma 3.1 does not depend on local dimen-
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sions and thus shows that k-body overlapping tomography of qudit systems
of arbitrary local dimension d can be performed with (d2 − 1)k settings.

3.2.2 Numerically optimised measurement directions

Nevertheless, it is reasonable to expect that all sets of measurement direc-
tions do not perform equally good with respect to confidence regions for
a fixed number of samples. In what follows, we aim to find measurement
directions for two-body overlapping tomography of a six-qubit state, i.e.,
9 × 6 = 54 local measurement directions that lead to small confidence re-
gions for each pair of qubits S ⊂ [6] with |S| = 2. Specifically, we analyse
the confidence region CA of [41], which we have introduced in Section 1.5.
We thus use the linear inversion state estimate ϱ̂ of the true state ϱ, which
we recall from Section 1.5 satisfies

Pr[∥ϱ̂ − ϱ∥ ≤ εσ] ≥ 1 − δ, (3.18)

where 1 − δ ∈ [0, 1] is the confidence level, ε = 3
√

u(
√

u +
√

u + 1), with
u = 2/9N log(8/δ) and where the norm ∥·∥ is the Hilbert-Schmidt norm.
The quantity σ is given by

σ = max
k∈[d2]

⃦⃦
M+

k

⃦⃦
, (3.19)

where M+
k is the kth column vector of M+, the pseudo-inverse of the meas-

urement map M (see Section 1.5, and in particular Eq. (1.41)).
In the context of overlapping tomography, each k-set of qubits S ⊂ [n]

with |S| = k corresponds one estimate ϱ̂S , hence leading to (n
k) confidence

regions, with corresponding σS . We focus our attention on maxS σS = σmax,
such that we can phrase Eq. (3.18) as

Pr[∥ϱ̂S − ϱS∥ ≤ εσmax] ≥ 1 − δ (3.20)

for all pairs of qubits S .
Intuitively, we would expect measurement directions that are spread

out in R9 to lead to smaller confidence regions. Indeed, in Appendix A,
we show how σS is related to the volume spanned by the measurement
directions {v(i)

α ⊗ v(j)
α }9

α=1, for each pair of qubits S = {i, j}. Formally, the
volume VS spanned by the vectors is given by |det(ZS )|, where ZS is the
9 × 9-dimensional matrix whose columns are v(i)

α ⊗ v(j)
α for all α ∈ [9]. We
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use VS as a figure of merit.
Taking a (product) orthonormal basis as measurement directions for the

pair S = {i, j} directly leads to the maximum of VS = 1. One obvious choice
is to take the standard basis, resulting in ZS to be the nine-dimensional
identity matrix. We recall that this corresponds to Pauli measurements (see
Eq. (3.14)). However, since the number of Pauli settings needed for two-body
overlapping tomography of a six-qubit system is given by ϕ2(6) = 12 > 9,
it is not possible to find 54 local measurement directions v(i)

α , with α ∈ [9]
and i ∈ [6], such that for every pair of qubits S = {i, j}, the nine vectors
v(i)

α ⊗ v(j)
α , with α ∈ [9], form the standard basis. As a consequence, our goal

is to find 54 local measurement directions v(i)
α , with α ∈ [9] and i ∈ [6], such

that for each of the 15 pairs of qubits S , the volume VS is large. As a direct
maximisation minS VS is not easy, we introduce the objective function

f
(︂
{v(i)

α ∈ R3 | α ∈ [9], i ∈ [6]}
)︂
= w1 ∑

S
VS − w2 ∑

S
V2
S (3.21)

with weights w1, w2 ≥ 0 and w2
1 + w2

2 = 1, and where the sums run over
all pairs of numbers in [6]. This is inspired by modern portfolio theory, or
mean-variance analysis, which is a framework for assembling a collection of
investments such that the expected return is maximised for a given level of
risk in finance [104]. The theory has initially been introduced by Markowitz
in 1952, for which he was eventually awarded the Nobel Memorial Prize in
Economic Sciences in 1990. Using the Broyden-Fletcher-Goldfarb-Shanno
(BFGS) algorithm, we maximised the objective function Eq. (3.21) for differ-
ent weights, and found that for w2 ≲ cos(π/5), the achieved VS are equal
for all pairs of qubits S (see Figure 3.13). Using this approach, we were able
to find 54 measurement directions with σmax ≃ 7.65. We discuss in the next
section how this reflects on the number of samples.

To further refine our measurements, we arranged the local directions
to form three orthonormal bases. Specifically, for each qubit i ∈ [6], we
partitioned the nine vectors v(i)

α , for all α ∈ [9], into three orthonormal bases.
This approach allowed us to achieve measurement directions with σmax ≃
7.78. These measurement directions and their orthonormal partitioning are
provided in Table A.1 of Appendix A.

The measurement directions obtained through numerical optimisation
were subsequently used in a six-photon experiment to perform two-body
overlapping tomography of the six-photon system [E]. The minimal Pauli
set with 12 settings (see Figure 3.5) has been implemented as well. The

73



Marginal tomography

Figure 3.13: Mean and standard deviation of the volumes. Each point corresponds
to one set of measurement directions, with its x-coordinate being the mean of
all 15 volumes, and its y-coordinate being the standard deviation. The orange
points correspond to randomly-chosen measurement directions as in Proposition
3.4, the purple points correspond to optimised directions with different weights
(see Eq. (3.21)), and the green points correspond to cases where the vectors all are
from the standard basis (i.e., the volumes are either zero or one and correspond to
Pauli settings). Figure taken from [E].

setup of the experiment is presented in Figure 3.14, and we refer to [E] for a
detailed explanation. In a nutshell, ultraviolet pulses (390nm wavelength,
80MHz repetition rate, 300mW power) are directed onto a special type of
crystal (β-barium borate) using a lens to produce three pairs of photons
through spontaneous parametric down-conversion. The photons are then
recollimated using additional lenses, filtered to ensure the desired spectral
and spatial properties, and combined into a single path using a polarising
beam splitter, producing a six photon Dicke state |D6,2,3⟩ = 1/2

√
5 ∑π |π⟩,

where the sum runs over all permutations of (0, 0, 0, 1, 1, 1).
Next, the six indistinguishable photons are randomly distributed into

six different paths using a series of beam splitters. This arrangement gives a
maximum success rate of 5/324 for detecting one photon in each measure-
ment part. Finally, the polarisation of the photons in each path is analysed
using a setup consisting of wave plates and single-photon detectors (the
measurement part), as shown in Figure 3.14. In the measurement part, the
12 Pauli settings of Figure 3.5 are implemented, as well as the nine optimised
measurement directions (see Table A.1 of Appendix A). Each setting was
measured for two hours, with a rate of 7.0 per minute [E].

Using the data of each measurement scheme, all two-qubit marginals
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Figure 3.14: Experimental setup for two-body overlapping tomography of a six-photon
system. A six-photon state is generated, and each photon is detected in a measure-
ment part (MP) by a single-photon avalanche detector (SPAD). PBS: polarising beam
splitter. BBO: β-barium borate crystal. QWP: quarter wave plate. HWP: half wave
plate. IF: interference filter. BS: beam splitter. Figure adapted from [E].

can be reconstructed. As |D6,2,3⟩ is a symmetric state, all its marginal states
of a given dimension are equal. The reconstructed marginals and their
corresponding confidence regions are presented in [40], using the confidence
region CA developed in [41]. For alternative estimates based on maximum
likelihood estimation, see [E]. For completeness, we present in Figure 3.15
the different mixed state fidelities7 of the reconstructed states to the two-
qubit marginal states of the Dicke state |D6,2,3⟩ [E]. However, we emphasise
that the goal of quantum state tomography is to reconstruct the complete
density operator of a quantum system, not merely to estimate a fidelity.

3.3 Discussion on the sample cost

Throughout this chapter, we have given several methods to construct meas-
urement settings for performing k-body overlapping tomography of n-qubit
systems, with k < n. In this section, we compare the different measurement
schemes in terms of the number of samples of the n-qubit state to achieve
the same radius εσ = 0.1 in the confidence region. We specifically look at
the case of n = 6 qubits and k = 2. For each measurement scheme, we com-
pute σmax = maxS σS , which we recall only depends on the measurement
settings.

When quantum state tomography of a two-qubit state is performed with
the nine two-body Pauli settings, the unique σ is equal to five [41]. Therefore,

7Given two density operators ϱ and τ, their mixed state fidelity is F(ϱ, τ) =

tr
(︃√︂√

τϱ
√

τ

)︃
[152].
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Figure 3.15: Mixed state fidelity of each reconstructed state through maximum
likelihood estimation compared to the two-quit marginal state of the six-qubit
Dicke state |D6,2,3⟩. (a) The measurement settings are from the minimal Pauli set
of Figure 3.5. (b) The measurement settings are obtained through the numerical
optimisation presented in this section, and explicitly given in Table A.1 of Appendix
A. Figures adapted from [E].

uniform Pauli sets have σmax = 5 = σPauli. A minimal uniform Pauli set
for two-body overlapping tomography of a six-qubit system is for instance
give by the first six rows of Figure 3.7, and are made of 18 settings. The
12 minimal Pauli settings obtained through Proposition 3.1 (see Figure 3.5)
lead to σmax = 6.52 = σbin. prog.. The measurement settings optimised in the
previous section achieve σmax = 7.65 = σopti. and σmax = 7.78 = σorth. opti. in
the case of unrestricted optimisation and orthonormal basis optimisation
respectively. Finally, we want to compare with the 15 settings from [53] and
the 21 settings from [38], [18], and [165], which respectively have σmax =

7.81 = σ15 and σmax = 10.7 = σ21.
We fix the radius εσmax to 0.1, and report in Table 3.2 how many more

samples are needed when comparing a scheme with a larger σmax to one with
a smaller σmax. First, we directly notice that the construction from [38, 18]
that was experimentally implemented in [165] has the worst performance:
Comparing to minimal Pauli sets, it needs 168% more samples to achieve
the same confidence level. Second, the minimal uniform Pauli set clearly
requires less samples than any other scheme. It comes the closest to the
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σPauli σbin. prog. σopti. σorth. opti. σ15 σ21
σPauli · 69.5% 133% 141% 143% 355%

σbin. prog. 69.5% · 37.5% 42.2% 43.2% 168%
σopti. 133% 37.5% · 3.41% 4.21% 95.1%

σorth. opti. 141% 42.2% 3.41% · 0.769% 88.7%
σ15 143% 43.2% 4.21% 0.769% · 87.3%
σ21 355% 168% 95.1% 88.7% 87.3% ·

Minimal uniform Pauli set, σPauli 18
Minimal Pauli set, σbin. prog. 12
Optimised directions, σopti. 9
Optimised directions (OTB), σorth. opti. 9
Scheme from [53], σ15 15
Scheme from [38, 18], σ21 21

Table 3.2: Comparison of the different measurement schemes. For example, the
optimised directions with orthogonal bases (OTB) with σorth. opti. = 7.78 requires
141% more samples than when using a minimal uniform Pauli set with σPauli = 5
to achieve the same radius εσmax = 0.1. Below the table, we recall the number of
settings for each scheme (OTB stands for orthogonal bases).

minimal Pauli set that (only) requires 69.5% more samples but six settings
less, and the strongest difference is with the scheme from [38, 18], which
requires 355% more samples and three more settings. Table 3.2 also shows
that there is little difference between the unrestricted optimised settings and
the settings partitioned in three orthonormal basis per qubit (3.4% more for
the settings partitioned in basis). Interestingly, the construction by Garcı́a-
Pérez and coauthors [53] has a very similar performance to the optimised
settings, with only 4.21% and 0.769% more sample needing comparing to the
unrestricted and orthonormal bases optimisation respectively. Finally, the
analysis shows that requiring the minimal number of measurement settings
(i.e., nine) for two-body overlapping tomography of six qubits comes at
a cost of more measurement samples (of the order of 40% more) to reach
the same confidence level than the optimal Pauli settings (which require 12
measurement settings).

3.4 Discussion

In this chapter, we presented several methods for the measurement schedul-
ing for marginal tomography of multi-qubit systems. We began by focusing
on Pauli tomography, providing numerical methods and constructions to
obtain minimal Pauli sets. Notably, we proved that for systems having
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a connectivity graph with a chromatic number of at most four, two-body
marginal tomography can always be performed with nine Pauli settings,
regardless of the number of qubits. We further explored the specific case
of overlapping tomography, demonstrating its equivalence to the problem
of finding covering arrays in combinatorial designs, and derived an upper
bound on the number of settings for strength two, which we compared to
previous results.

Next, we demonstrated that when measurement settings are not re-
stricted to Pauli settings, k-body overlapping tomography can always be
performed with 3k projective measurement settings, irrespective of the size
of the multi-qubit system. Additionally, we optimised measurement dir-
ections for the specific case of six qubits and strength two, which were
experimentally implemented in [E], alongside the minimal Pauli set.

Finally, in Section 3.4, we compared the different measurement schemes
based on the number of samples needed to achieve the same level of confid-
ence in the reconstructed states.

Although we addressed a fundamental problem for overlapping tomo-
graphy by finding minimal Pauli sets, several questions remain open. While
we proved that 3k measurement directions can be chosen randomly, this
does not result in a satisfactory sample cost. Better constructions could be
obtained through numerical optimisation, but ideally, an analytical construc-
tion should be found. Moreover, the optimality of the colouring construction
described in Section 3.1.4 is still unresolved: A counterexample or a proof of
optimality would be valuable. Since we have tested every graph with up
to eight vertices, any counterexample would need to involve at least nine
parties.

We conclude this chapter by saying that deciding which measurement
scheme to use depends on the practical implementation of the protocol. If
the implementation is highly sensitive to setting changes, we recommend
using the 3k minimal settings. On the other hand, if the number of settings
is less critical than the number of state samples, minimal uniform Pauli sets
are preferable. As a compromise, minimal Pauli sets offer a small number of
settings (scaling logarithmically with the number of qubits) and appear to
require fewer samples than the minimal settings. Further research into the
sample cost analysis and generalisation to arbitrary strengths and numbers
of qubits would be highly relevant.
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Chapter 4

Entanglement in quantum
networks

Network entanglement is an emerging area of research within multipartite
entanglement theory, explored in works such as [111], [101], and [94]. Sub-
stantial efforts have been dedicated to characterising the states that can be
prepared in quantum networks without the usage of classical communica-
tion. As discussed in Section 1.3.4, the absence of classical communication
prevents the execution of crucial protocols, such as quantum teleportation
or entanglement swapping, which are typically employed to generate global
states shared by distant parties (see e.g. [7]). Despite classical communica-
tion being considered an inexpensive resource in quantum communication
protocols, it introduces practical challenges. The transmission of classical
information between network nodes introduces time delays, which can be
particularly undesirable given the current limitations of quantum memories.

Moreover, with the rapid development in the implementation of quantum
networks [30, 121], there is a growing demand for verification techniques
for network structures. Indeed, to perform tasks across a quantum network,
such as a quantum key distribution protocol, the network parties need
reliable information about the network they share.

In this chapter, we contribute to the topic of network entanglement and
certification through several key investigations. We begin by conducting
a thorough analysis of the covariance matrices (CMs) of network states in
Section 4.1, by presenting alternative proofs for their block decomposition
[3]. These results provide insights into the structural constraints imposed
on the CM by the network states. Next, we focus on states with symmet-
ric properties, where we demonstrate in Section 4.2 that large classes of
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symmetric states cannot be prepared within quantum networks. Finally,
we turn our attention to certification techniques of network elements by
considering two different aspects: First, we derive in Section 4.3 simple
testable inequalities that allow to verify that a certain link in the network
is properly working, i.e., distributing entanglement. Second, in Section 4.4
we aim to certify the topology of the whole network by deriving rigorous
hypotheses tests based on fidelities to the source states. This protocol has
been experimentally implemented, and the hypotheses are tested based on
the experimental data.

4.1 Covariance matrices of network states

As a first tool for the investigation of network states, we consider covariance
matrices (see Section 1.3.3 for definitions) and restrict our attention to net-
works without shared randomness. The results of this section are published
in [C] and we closely follow the presentation in the article. Covariance
matrices have already been used to derive necessary criteria for network
entanglement without shared randomness in [3, 94, 162, 11]. In [3], the au-
thors formulate a necessary condition for a probability distribution to arise
from measurements performed on a quantum network state. The condition
expresses that the covariance matrix of the probability distribution can be
decomposed into a sum of PSD block matrices,1 and can be formulated as an
SDP. This result was applied in [94] to derive practical analytical criteria for
networks with dichotomic measurements and for networks with bipartite
sources. More recently, similar SDPs were developed in [162] for the case of
LOSR networks, with extra assumptions on rank and purity. Finally, striking
generality, the authors of [11] showed that in the case of NCDS networks, the
block decomposition criterion holds for all generalised probabilistic theories
[120].

In this section, we propose an alternative proof to the block decomposi-
tion of the CM of triangle network state derived in [3]. From it, we obtain an
analytical, computable necessary criterion for a state to arise from a triangle
network. We later show how this result can be extended to NCDS networks.
Although the results presented in this chapter are valid only in the context
of finite-dimensional Hilbert spaces, as mentioned in Section 1.3.3 CMs are
also well suited for continuous variable systems. Thus, a potential future

1We call this decomposition into a sum of PSD block matrices the block decomposition of a
covariance matrix.
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research direction is to investigate how these results can be extended to the
infinite-dimensional case since.

4.1.1 Covariance matrices for tripartite states

Since in network scenarios the parties can only access their local systems,
it is sensible to choose observables that only act on one party at a time.
Explicitly, we choose N observables per party, Ai ⊗ 1B ⊗ 1C, 1A ⊗ Bi ⊗ 1C,
and 1A ⊗ 1B ⊗ Ci, with i ∈ [N], and we use the notation {Ai, Bi, Ci}N

i=1 =

{Ai ⊗ 1B ⊗ 1C}N
i=1 ∪ {1A ⊗ Bi ⊗ 1C}N

i=1 ∪ {1A ⊗ 1B ⊗ Ci}N
i=1. Similarly to

Eq. (1.15), the CM of a tripartite state ϱ has the following block structure,

Γ({Ai, Bi, Ci}N
i=1, ϱ) =

⎛⎜⎝ΓA γE γF

γT
E ΓB γG

γT
F γT

G ΓC

⎞⎟⎠ (4.1)

where ΓA = Γ({Ai}N
i=1, ϱ(A)) is a CM of the marginal ϱ(A). The matrices ΓB

and ΓC have analogous expressions. The entries of the off-diagonal block
γE are given by the real numbers

[γE]mn = ⟨Am ⊗ Bn⟩ϱ − ⟨Am⟩ϱ⟨Bn⟩ϱ ∀m, n ∈ [N], (4.2)

with identity operators padded where needed. Notice that Eq. (4.2) can be
defined equivalently by taking the expectation values on ϱ(AB). Again, the
matrices γF and γG are defined in a similar way.

4.1.2 Basic triangle network

In this section, we derive the explicit structure of CMs of BTN states. Given
three source states ϱa ∈ S(HB2 ⊗ HC1), ϱb ∈ S(HC2 ⊗ HA1), and ϱc ∈
S(HA2 ⊗HB1), we recall that the BTN state reads

ϱBTN = ϱb ⊗ ϱc ⊗ ϱa, (4.3)

as defined in Definition 1.8. This network is represented in Figure 4.1 (a). Let
us first define what we call the reduced observable A(2)

i of Ai, with i ∈ [N],
which describes an effective observable on the system A2. It is given by

A(2)
i = trA1

(︂
Ai(ϱ

(A1)
BTN ⊗ 1A2)

)︂
∀i ∈ [N]. (4.4)
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Figure 4.1: Illustration of the four definitions of triangle network states. (a) BTN: Three
potentially entangled source states ϱa, ϱb and ϱc are distributed to three nodes
A = A1 A2, B = B1B2 and C = C1C2. (b) UTN: The three parties A, B and C
perform unitary operations UA, UB and UC on their respective systems. (c) CTN:
The operations are no longer restricted to unitary operation, but may be any CPTP
maps EA, EB and EC. (d) LOSR triangle network: The local operation may be
coordinated by a shared random variable λ ∈ [L].

We note that Ai acts both on system A1 and on system A2, so A(2)
i is an

operator acting on states of A2, where the effect of ϱb = ϱ
(A1C2)
BTN has been

taken into account, with i ∈ [N]. We define B(1)
i for all i ∈ [N] similarly and

use the notation {A(2)
i , B(1)

i }N
i=1 = {A(2)

i ⊗ 1B1}N
i=1 ∪ {1A2 ⊗ B(1)

i }N
i=1. The off-

diagonal blocks of Eq. (4.1) can be expressed using the reduced observables,
that is,

[γE]mn = ⟨A(2)
m ⊗ B(1)

n ⟩
ϱ
(A2B1)
BTN

− ⟨A(2)
m ⟩

ϱ
(A2B1)
BTN

⟨B(1)
n ⟩

ϱ
(A2B1)
BTN

∀m, n ∈ [N]. (4.5)

To see this, notice that the reduces state ϱ
(AB)
BTN is a product state with respect

to the partition A1 | A2B1 | B2 and use a local basis decomposition of the
observables Am and Bn, for all m, n ∈ [N] (see Appendix B). All expectation
values in Eq. (4.5) are taken with respect to the state ϱ

(A2B1)
BTN , which is nothing

but ϱc.
This representation shows that γE can be computed using only the

reduced observables on the state ϱ
(A2B1)
BTN , which is ultimately crucial for the
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block decomposition of CMs of BTN states. This is a direct consequence of
the fact that the marginal states on A, B and C are product states. Let us
now introduce our first proposition.

Proposition 4.1 (Block decomposition for CMs of BTN states [C]). The CM of
a BTN state with local observables {Ai, Bi, Ci}N

i=1 can be decomposed as

ΓBTN = Γ({Ai, Bi, Ci}N
i=1, ϱBTN)

=

⎛⎜⎝ΓA2 γE 0
γT

E ΓB1 0
0 0 0

⎞⎟⎠
⏞ ⏟⏟ ⏞

Tc

+

⎛⎜⎝ΓA1 0 γF

0 0 0
γT

F 0 ΓC2

⎞⎟⎠
⏞ ⏟⏟ ⏞

Tb

+

⎛⎜⎝0 0 0
0 ΓB2 γG

0 γT
G ΓC1

⎞⎟⎠
⏞ ⏟⏟ ⏞

Ta

+

⎛⎜⎝RA 0 0
0 RB 0
0 0 RC

⎞⎟⎠
⏞ ⏟⏟ ⏞

R

(4.6)

where the matrices Ta, Tb and Tc are CMs for the state-dependent reduced observ-
ables, i.e.,

Tc = Γ({A(2)
i , B(1)

i }N
i=1, ϱ

(A2B1)
BTN ). (4.7)

and analogously for Tb and Ta. The matrix R is PSD.

Using Eq. (4.5), it is only left to show that RA = ΓA − ΓA1 − ΓA2 is PSD,
as well as RB and RC. To do this, we show that x†RAx can be written as
the trace of a product of PSD matrices for all x ∈ CN . The proof is given in
Appendix B.

Armed with this, we can now derive the structure of the CM of a BTN state
in the case of the observables being full sets of local orthogonal observables.
More precisely, we take {Ai}d4

i=1 = {σ
(A1)
α ⊗ σ

(A2)
β }d2

α,β=1, where {σ
(Ak)
α }d2

α=1
is a set of orthogonal observables acting on states of the system Ak such
that tr

(︂
σ
(Ak)
α σ

(Ak)
α′

)︂
= dδαα′ , with α, α′ ∈ [d2] and k = 1, 2. This is done

in a similar way for the systems B and C. When the situation is explicit
enough, we drop the superscripts. For qubit systems, the Pauli operators
together with the identity operator are an obvious choice. With such sets of
observables, a direct computation (see Appendix B) shows that

RX =ΓX − ΓX1 − ΓX2

=Γ
(︂
{σα}d2

α=1, ϱ
(X1)
BTN

)︂
⊗ Γ

(︂
{σα}d2

α=1, ϱ
(X2)
BTN

)︂
, ∀X = A, B, C

(4.8)

and since CMs are PSD matrices, Proposition 4.1 is trivially satisfied. The
structure of the matrices Ta, Tb and Tc can also be further explored. First, let

83



Entanglement in quantum networks

us compute the reduced observables

A(2)
(α−1)d2+β

= tr
(︂

σαϱ
(A1)
BTN

)︂
σβ = a(1)α σβ (4.9)

where the coefficients a(1)α = tr
(︂

σαϱ
(A1)
BTN

)︂
are nothing but the (real) Bloch

coefficients of the marginals, with α, β ∈ [d2]. A direct calculation shows
that [C]

ΓA2 = a(1)(a(1))T ⊗ Γ({σα}d2

α=1, ϱ
(A2)
BTN ) (4.10)

and that

γE = a(1)(b(2))T ⊗ γ({1 ⊗ σα, σα ⊗ 1}d2

α=1, ϱ
(A2B1)
BTN ) (4.11)

with a(1) = (a(1)1 , . . . , a(1)d2 )
T∈ Rd2

and similarly for b(2). The matrix γ({1 ⊗
σα, σα ⊗ 1}d2

α=1, ϱ
(A2B1)
BTN ) is the off-diagonal block of the CM with the same

observables and state. Finally, we can write

Tc =
[︂
(a(1) ⊕ b(2))(a(1) ⊕ b(2))T

]︂
⋆ Γ
(︂

ϱ
(A2B1)
BTN

)︂
, (4.12)

where we omitted the observables {1 ⊗ σα, σα ⊗ 1}d2

α=1 of the CM, and where
⋆ is the block-wise Kronecker product, the Khatri-Rao product [86, 99]. If A
and B are N × N block matrices, the i, j-th block of their Khatri-Rao product
(A ⋆ B)i,j is the Kronecker product of the i, j-th block of A and B, Ai,j ⊗ Bi,j,
with i, j ∈ [N]. For instance, if A and B are 2 × 2 block matrices,

A =

(︄
A0,0 A0,1

A1,0 A1,1

)︄
, B =

(︄
B0,0 B0,1

B1,0 B1,1

)︄
, (4.13)

we obtain

A ⋆ B =

(︄
A0,0 ⊗ B0,0 A0,1 ⊗ B0,1

A1,0 ⊗ B1,0 A1,1 ⊗ B1,1

)︄
. (4.14)

Putting the results together, we obtain the following proposition.

Proposition 4.2 (CMs of BTN states with orthogonal observables [C]). Using
complete sets of orthogonal observables acting locally, the CM of a BTN state can be
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decomposed as

ΓBTN =
[︂
(a(1) ⊕ b(2)) · (a(1) ⊕ b(2))T

]︂
⋆ Γ
(︂

ϱ
(A2B1)
BTN

)︂
+
[︂
(b(1) ⊕ c(2)) · (b(1) ⊕ c(2))T

]︂
⋆ Γ
(︂

ϱ
(B2C1)
BTN

)︂
+
[︂
(c(1) ⊕ a(2)) · (c(1) ⊕ a(2))T

]︂
⋆ Γ
(︂

ϱ
(C2 A1)
BTN

)︂
+ diag

(︃{︂
Γ
(︂

ϱ
(X1)
BTN

)︂
⊗ Γ

(︂
ϱ
(X2)
BTN

)︂}︂
X∈{A,B,C}

)︃
.

(4.15)

Therefore, in order to test compatibility with the BTN scenario for a given
state, one can check if its CM can be written like the right-hand side of the
above equation. While this may be cumbersome to test, we notice that the
matrix ΓBTN − R is also PSD, which can also be used to check compatibility
in the following way.

Proposition 4.3 (Positivity condition [C]). The matrix

Ξ(ϱBTN) = Γ
(︂
{σA1

α ⊗ σA2
β , σB1

α ⊗ σB2
β , σC1

α ⊗ σC2
β }d2

α,β=1, ϱBTN

)︂
− diag

(︃{︂
Γ
(︂
{σX1

α }d2

α=1, ϱ
(X1)
BTN

)︂
⊗ Γ

(︂
{σX2

α }d2

α=1, ϱ
(X2)
BTN

)︂}︂
X∈{A,B,C}

)︃
(4.16)

is PSD.

We note that neither term of the right-hand side of Eq. (4.16) contains
the reduced observables, which makes Ξ easy to compute.

An advised reader might point out that in order to verify if a given state
is compatible with the BTN scenario, it suffices to test whether ϱBTN is equal
to ϱ

(A2B1)
BTN ⊗ ϱ

(B2C1)
BTN ⊗ ϱ

(C2 A1)
BTN , up to reordering of the subsystems. We stress

that although this simple equation does answer the question, it requires the
knowledge of the full density operator, whereas CM-based criteria only need
expectation values of some chosen observables in order to be evaluated.

To close the section on BTN states, we present a few examples. First,
we note that the lowest dimensional achievable states are 64-dimensional
states (six qubits, or three ququarts2) and that the local dimensions cannot
be prime numbers. We start with the three-ququart GHZ state

|ψ⟩ = 1√
2
(|000⟩+ |333⟩), (4.17)

2A ququart (sometimes ququad) is a four-dimensional quantum system.
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to which we apply a depolarising channel such that the resulting state reads

ϱ(v) = v |ψ⟩⟨ψ|+ (1 − v)
164

64
, (4.18)

where v ∈ [0, 1] is called the visibility. The corresponding Ξ matrix is PSD

only for v = 0, meaning that the GHZ state cannot be prepared in a BTN

network even with a very high amount of noise. The same result is obtained
when applied to the state 1/2(|000⟩+ |111⟩+ |222⟩+ |333⟩).

Proposition 4.3 may also be applied to three-ququart Dicke states, which
are defined by

|D3,4,k⟩ = N
3

∑
i1,i2,i3=1

δi1+i2+i3,k |i1i2i3⟩ ∀k ∈ [8], (4.19)

with N being a normalisation factor. For k = 1, the preparation of the Dicke
state after a depolarising channel in the BTN scenario is ruled out for v ̸= 0
and v ̸= 1. For k = 2, . . . , 7, the preparation of the Dicke states after a
depolarising channel are excluded from the BTN scenario for v ̸= 0.

More generally, by directly applying the result of Proposition 4.2, we
can check whether the CM of a BTN state can be written like the right-hand
side of Eq. (4.15). By doing that for |D3,4,1⟩, whose preparation could not be
ruled out by the positivity condition, we conclude that this state cannot be
generated in the BTN scenario. On the other hand, the CM of the maximally
mixed state 1/64 has such a decomposition.

4.1.3 Triangle network with local operations

Let us now consider the situation where the parties can perform unitary
operations on their respective systems. Following Definition 1.9, the global
state now reads

ϱUTN =(UA ⊗ UB ⊗ UC)ϱBTN(U†
A ⊗ U†

B ⊗ U†
C). (4.20)

The generation of this state is illustrated in Figure 4.1 (b). First, we note that
in general, for any observable set {Mi}N

i=1, any unitary U ∈ L(H) and any
state ϱ ∈ S(H), there exists an orthogonal matrix O ∈ L(H) such that [56]

Γ({Mi}N
i=1, UϱU†) = Γ({U† MiU}N

i=1, ϱ) = OTΓ({Mi}N
i=1, ϱ)O. (4.21)
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Not all orthogonal transformations of CMs correspond to a physical unitary
transformation on the system [56]. From that we obtain to the following
proposition.

Proposition 4.4 (CMs of UTN states [C]). Consider the CM of a UTN state with
observables {Ai, Bi, Ci}N

i=1. There exist an orthogonal matrix O = OA ⊕OB ⊕OC

and a BTN state ϱBTN such that the CM of ϱUTN can be written as

ΓUTN = Γ({Ai, Bi, Ci}N
i=1, ϱUTN) = OTΓBTNO, (4.22)

with ΓBTN as in Eq. (4.6).

Thus, the CM of ϱUTN can always be decomposed as a sum of PSD matrices
with the following block decomposition

ΓUTN =

⎛⎜⎝■ ■ 0
■ ■ 0
0 0 0

⎞⎟⎠
⏞ ⏟⏟ ⏞

OT TcO

+

⎛⎜⎝■ 0 ■
0 0 0
■ 0 ■

⎞⎟⎠
⏞ ⏟⏟ ⏞

OT TbO

+

⎛⎜⎝0 0 0
0 ■ ■
0 ■ ■

⎞⎟⎠
⏞ ⏟⏟ ⏞

OT TaO

+

⎛⎜⎝■ 0 0
0 ■ 0
0 0 ■

⎞⎟⎠
⏞ ⏟⏟ ⏞

OT RO

,

(4.23)
where Tc, Tb, Ta, and R are such as in Eq. (4.6). We may also look at this
situation by noticing that the CMs of UTN states can be written as

ΓUTN = Γ({U†
A AiUA, U†

BBiUB, U†
CCiUC}N

i=1, ϱBTN)

= TU
c + TU

b + TU
a + RU ,

(4.24)

with TU
c being the CMs of ϱ

(A2B1)
BTN with the following reduced observables

A(2)
U,i =(U†

A AiUA)
(2)

=
d2

∑
α,β=1

tr
(︂

U†
A AiUA σα ⊗ σβ

)︂
tr(σαϱA1)σβ ∀i ∈ [N]

(4.25)

and B(1)
U,i, with i ∈ [N], build in a similar manner. The matrices TU

b and TU
a

are defined analogously. The matrix RU
A is equal to AU − EU

A − FU
A . The issue

with this formulation is that the unitaries UA, UB and UC and the state ϱBTN

corresponding to the decomposition of ϱUTN are in general not known, thus
there is no way to explicitly know the reduced observables and use Eq. (4.24)
to test whether a given state is compatible with the UTN scenario.

We now move to triangle networks where the local operations can be
any quantum channel as presented in Definition 1.10 and Figure 4.1 (c), i.e.,
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not longer restricted to unitary operations. By making use of the Stinespring
dilation theorem [71], we can show that CTN states also lead to CMs that
possess a block decomposition. As a matter of fact, any quantum channel
can be implemented by performing a unitary transformation on the system
together with an ancilla, and then tracing out the ancilla. The CM of any
state ϱ after applying a channel E with observables {Mi}N

i=1 therefore has
the same expression as taking the CM of the state together with an ancilla
ϱancilla and applying the corresponding unitary U, that is, U(ϱ ⊗ ϱancilla)U†,
with observables {Mi ⊗ 1ancilla}N

i=1. We can also see this by noticing that the
CM of a marginal state is just a principal submatrix of the CM of the global
state. Applying this to each node of the triangle network, we obtain the
following proposition.

Proposition 4.5 (Block decomposition for CMs of CTN states [C]). Let ΓCTN be
the covariance matrix of ϱCTN = EA ⊗EB ⊗EC(ϱBTN) with observables {Ai, Bi, Ci}N

i=1
as in Eq. (4.1). There exist matrices ΥX

i , with X = A, B, C and i = 1, 2, such that

ΓCTN =

⎛⎜⎝ΥA
2 γE 0

γT
E ΥB

1 0
0 0 0

⎞⎟⎠
⏞ ⏟⏟ ⏞

⪰0

+

⎛⎜⎝ΥA
1 0 γF

0 0 0
γT

F 0 ΥC
2

⎞⎟⎠
⏞ ⏟⏟ ⏞

⪰0

+

⎛⎜⎝0 0 0
0 ΥB

2 γG

0 γT
G ΥC

1

⎞⎟⎠
⏞ ⏟⏟ ⏞

⪰0

. (4.26)

Comparing to Eq. (4.23), we consider that we distributed the diagonal
blocks of OTRO to the first three matrices. Although the proof techniques
differ notably, the block decomposition has already been presented in a
previous work on CMs of network states [3]. As demonstrated in that same
work, Proposition 4.5 can be evaluated as an SDP. However, we are seeking
practical analytical methods and criteria to determine if a state cannot be
prepared in a network setting: In the next section, we present such a criterion
that follows from Proposition 4.5.

Let us here briefly comment on how this proposition behaves for LOSR

triangle network states ϱ∆ defined in Eq. (1.20) and illustrated in Figure 4.1
(d). We recall that in this set up, the sources and the local operations may
be coordinated by a classical random variable λ ∈ [L]. From the concavity
property in [56], we know that

Γ({Mi}N
i=1, ϱ∆)−

L

∑
λ=1

pλΓ
(︂
{Mi}N

i=1, E (λ)
A ⊗ E (λ)

B ⊗ E (λ)
C (ϱBTN)

)︂
⪰ 0. (4.27)

Using Proposition 4.5, we directly obtain that there exist block matrices such
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that

Γ(ϱ∆) ⪰

⎛⎜⎝■ ■ 0
■ ■ 0
0 0 0

⎞⎟⎠
⏞ ⏟⏟ ⏞

⪰0

+

⎛⎜⎝■ 0 ■
0 0 0
■ 0 ■

⎞⎟⎠
⏞ ⏟⏟ ⏞

⪰0

+

⎛⎜⎝0 0 0
0 ■ ■
0 ■ ■

⎞⎟⎠
⏞ ⏟⏟ ⏞

⪰0

. (4.28)

While a similar trick can lead to powerful necessary criteria for separability
in the case of entanglement [56], it is not the case here. This is because
the extreme points in the case of LOSR triangle network states are not well
characterised, as already discussed in Section 1.3.4. Nevertheless, when
additional properties of the states are known, such as the purity or the rank,
SDP-based criteria for LOSR networks can be obtained, as shown in [162].

4.1.4 Covariance matrix criterion for triangle network states

As seen in the previous section, CMs of CTN states with observables {Ai, Bi, Ci}N
i=1

possess a block decomposition. From Proposition 4.5, we obtain inequalities
valid for any unitarily invariant norm ∥·∥, 2∥γE∥ ≤ ∥A2∥+ ∥B1∥ [75], for
which we can take the trace norm and obtain

2∥γE∥tr + 2∥γF∥tr + 2∥γG∥tr ≤ tr(A1 + A2 + B1 + B2 + C1 + C2). (4.29)

This gives us a direct necessary criterion for triangle network states.

Proposition 4.6 (CMs and trace norm criterion for triangle network states
[C]). Let Γ be the CM of a triangle network state ϱCTN = EA ⊗ EB ⊗ EC(ϱBTN)

with local observables {Ai, Bi, Ci}N
i=1. Then

tr(Γ) ≥ 2∥γE∥tr + 2∥γF∥tr + 2∥γG∥tr (4.30)

has to hold, with γE, γF and γG as in Eq. (4.1).

Let us now consider a few examples. First, we notice that contrarily to
BTN states, three-qubit states can be generated in the CTN scenario. There-
fore, we consider the three-qubit GHZ state after a depolarising channel,
i.e.,

ϱ(v) = v |GHZ⟩⟨GHZ|+ (1 − v)
18

8
, (4.31)

with v ∈ [0, 1]. By taking the three-qubit observable set {Z11, 1Z1, 11Z},
the CM and trace norm criterion prevents ϱ(v) to be generated in a CTN for
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v > 1/2. Proposition 4.6 with observables {X11, Y11, 1X1, 1Y1, 11X, 11Y}
is also not satisfied by the state |W⟩ = 1/

√
3(|100⟩+ |010⟩+ |001⟩) after a

depolarising channel for v > 3/4.

4.1.5 NCDS networks

In this section, we show that the block decomposition of CMs of network
states can also hold for larger networks. Indeed, if we consider networks
where two network nodes share parties from at most one common source
(NCDS networks), the triangle network results can be extended. Although
this may seem like a strong restriction on the network structure, we note
that the condition is fulfilled by networks with only bipartite sources, which
are the easiest to implement physically.

More explicitly, consider an n-node NCDS network with a set of sources
S. The number of sources is given by |S|, and each source s ∈ S is the
set of nodes the source connects. Let ΓNCDS be the CM of a global state of
such a network with observables {Ax|i | x ∈ [n]}N

i=1, where Ax|i is the ith
observables that only acts on the node x, with i ∈ [N] and x ∈ [n]. Then
ΓNCDS has a block form analogous to Eq. (4.1), where the diagonal blocks
are labelled Γx and the off-diagonal block are γxy = γT

yx, with x ̸= y and
x, y ∈ [n].

Proposition 4.7 (Block decomposition for CMs of NCDS network states [C]).
There exist matrices Υs

x for all s ∈ S and x ∈ s such that ΓNCDS can be decomposed
as a sum of |S| PSD block matrices Ts, where the off-diagonal blocks of each Ts are
γxy for {x, y} ⊂ s and 0 for {x, y} ̸⊂ s, and where the diagonal blocks are Υs

x,
with s ∈ S, x ̸= y and x, y ∈ [n].

For a technical proof, see Appendix B. Therein, we prove that in the case
of basic (i.e., without local operations) networks with no common double
source, the proposition holds. Following a similar line of reasoning to the
proofs for triangle networks, the proposition naturally extends to NCDS

networks with local operations.
Let us consider an easy example for the sake of clarity. Figure 4.2

shows a five-partite network consisting of two tripartite sources ϱa and
ϱb, and one bipartite ϱc. The set of sources is given by S = {a, b, c} =

{{1, 2, 3}, {3, 4, 5}, {1, 5}}. Following the notation of Proposition 4.7, there
must exist eight matrices Υa

1, Υa
2, Υa

3, Υb
3, Υb

4, Υb
5, Υc

1, and Υc
5 such that the CM
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Figure 4.2: Five-partite network. The two sources ϱa and ϱb are tripartite, and the
source ϱc is bipartite. The parties 1, 2, 3, 4 and 4 may perform a local channel Ei on
their corresponding system i, with i ∈ [5]. Figure adapted from [C].

of the global network state

ϱNCDS = E1 ⊗ E2 ⊗ E3 ⊗ E4 ⊗ E5(ϱa ⊗ ϱb ⊗ ϱc) (4.32)

may be decomposed as

ΓNCDS =⎛⎜⎜⎜⎜⎜⎜⎝
Υa

1 ■ ■ 0 0
■ Υa

2 ■ 0 0
■ ■ Υa

3 0 0
0 0 0 0 0
0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎠
⏞ ⏟⏟ ⏞

Ta

+

⎛⎜⎜⎜⎜⎜⎜⎝
0 0 0 0 0
0 0 0 0 0
0 0 Υb

3 ■ ■
0 0 ■ Υb

4 ■
0 0 ■ ■ Υb

5

⎞⎟⎟⎟⎟⎟⎟⎠
⏞ ⏟⏟ ⏞

Tb

+

⎛⎜⎜⎜⎜⎜⎜⎝
Υc

1 0 0 0 ■
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
■ 0 0 0 Υc

5

⎞⎟⎟⎟⎟⎟⎟⎠
⏞ ⏟⏟ ⏞

Tc

,

(4.33)

where the off-diagonal blocks are simply the ones from ΓNCDS. We see that
we can extend Proposition 4.6.

Proposition 4.8 (CMs and trace norm criterion for NCDS network states [C]).
Let ΓNCDS be as above. Then

tr(ΓNCDS) ≥ 2
N

∑
x>y=1

⃦⃦
γxy
⃦⃦

tr (4.34)

holds.

We note that this criterion does not take network topology into account:
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It treats a network with a single (N − 1)-partite source the same way it treats
a line network with N − 1 bipartite sources. This is interesting because if a
state does not satisfy Proposition 4.8, its preparation in any network structure
is ruled out. However, we also expect this proposition to be weaker than
criteria designed for specific network topologies. On top of that, Proposition
4.8 only takes into account that the principal submatrices of each matrix Ts

are PSD, not that the matrices themselves are PSD.
As an example, let us consider an n-qubit GHZ state |GHZn⟩ = 1/

√
2(|0 . . . 0⟩

+ |1 . . . 1⟩) on which we apply a depolarising channel,

ϱ(v) = v |GHZn⟩⟨GHZn|+ (1 − v)
1

2n , v ∈ [0, 1]. (4.35)

As observables, we take the Pauli observable Zx on each qubit x ∈ [n], where
the index specifies on which qubit the observable act, i.e., {Z1, . . . , Zn}. The
resulting CM has diagonal entries equal to one, whereas the off-diagonal
entries are equal to v. Applying the previous proposition, we show that
n-partite depolarised GHZ states cannot be prepared in NCDS networks for

v >
1

n − 1
. (4.36)

With n = 3, we recover the result of the example for the triangle network.
Nevertheless, we are forced to observe that the criterion only considers

two-body correlation, therefore cannot fully capture the entanglement in
the target states. To see this, let us consider the four-qubit cluster state

|C4⟩ =
1
2
(|+0 + 0⟩+ |+0 − 1⟩+ |−1 − 0⟩+ |−1 + 1⟩), (4.37)

with |±⟩ = 1/
√

2(|0⟩ ± |1⟩) as defined in Eq. (1.25). The four-qubit cluster
state is a stabiliser state, and its generators are XZ11, ZXZ1, 1ZXZ and
11ZX, where the only two-body correlators in its stabiliser are given by
XZ11 and 11ZX (see Section 1.4.1). A possible set of observables is O =

{X111, 1Z11, 11Z1, 111X}, and we obtain

Γ(O, |C4⟩) =

⎛⎜⎜⎜⎝
1 1 0 0
1 1 0 0
0 0 1 1
0 0 1 1

⎞⎟⎟⎟⎠ . (4.38)

The trace criterion is satisfied and thus we cannot rule out the preparation of

92



Entanglement in quantum networks

|C4⟩ in NCDS network scenarios by means of Proposition 4.8. Moreover, we

directly see that the matrix has a block decomposition, namely

(︄
1 1
1 1

)︄
⊕(︄

1 1
1 1

)︄
, which a priori could arise from a network with two bipartite

sources. However, we show in the next section that the four-qubit cluster
state cannot be generated in networks with only bipartite sources.

4.2 Symmetric states in quantum networks

As discussed in Section 1.3.3, CMs are powerful tools to characterise network
entanglement, but reach their limits when it comes to more than two-body
correlations and to LOSR networks. In this section, we aim to derive exclu-
sion criteria that hold for LOSR network states (see Figure 4.1 (d)), which we
recall from Definition 1.11 are of the form

ϱ∆ =
L

∑
λ=1

pλE (λ)
A ⊗ E (λ)

B ⊗ E (λ)
C (ϱBTN). (4.39)

The results of this section are presented in [A], and we closely follow the
structure of the article.

We first turn our attention to GHZ states, then to graph states and finally
consider permutationally symmetric states. These three classes contain
states that are invariant under some transformations, as detailed in Section
1.4, and we show that these strong characteristics make them impossible to
be prepared in LOSR network scenarios.

Our method is based on the inflation technique [160, 161]. This technique
has been developed in the context of classical causal inference, which aims to
answer the question whether a given probability distribution can arise from
a certain causal structure. The classical inflation technique can be formulated
as a hierarchy of SDPs and, remarkably, is complete (i.e., if a distribution is
not compatible with the structure considered, it is detected at some level
of the hierarchy) [160]. A version that is valid for probability distributions
arising from measurement on quantum systems has been proposed shortly
after, albeit not complete [161]. In [97], the authors propose a different
hierarchy for the quantum case (where they introduce extra parameters)
that they prove to be complete. The derivation and analysis of the different
inflation techniques are a topic of research in themselves, and we solely
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Figure 4.3: Triangle network and three of its inflations. (a) Schematic representation of
the triangle network (see Figure 1.2). (b), (c) Respectively the τ- and γ-inflation of
the triangle network. (d) An example of a higher order inflation. Edges with the
same colour correspond to sources in the same state. Figures adapted from [A].

present here the results that are needed for the derivation of our results.

4.2.1 Inflation technique

In a nutshell, the inflation technique puts restrictions on correlations arising
from network structures by considering ‘inflated networks’. We describe
here how it applies to the triangle network.

Consider the triangle network as depicted in Figure 1.2 (d). If a tripartite
state ϱ ∈ S(Hd3

) can be prepared in the LOSR triangle network, then it
should be possible to prepare a state τ ∈ S(Hd3 ⊗Hd3

) using two copies of
the sources and channels used to prepare the state ϱ. This is presented in
a schematic way in Figure 4.3 (b). Therein, the state τ is the state of a six-
partite system ABCA′B′C′, where edges between parties represent a shared
source state and the colour indicates which source of ϱ is used, conformably
to the colours in Figures 1.2 (d) and Figure 4.3 (a). In other words, the source
ϱb is distributed both between AC and between A′C′ (analogously for ϱa and
ϱc, following Figure 4.3 (b)). Then, the channels are performed according to
the random parameter λ ∈ [L]. Both on primed and non-primed A nodes,
the same channel E (λ)

A is applied and similarly for B and C.
Alternatively, by ‘rewiring’ the sources following Figure 4.3 (c), a third

state γ ∈ S(Hd3 ⊗ Hd3
) can be prepared following the same idea. This

leaves us with two network states, τ and γ. Those operators are physical
states, i.e., they have a unit trace and are PSD. Formally, they can be written
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as

τ =
L

∑
λ=1

pλ

[︂
E (λ)

A ⊗ E (λ)
B ⊗ E (λ)

C

(︁
ϱABC

)︁]︂
⊗
[︂
E (λ)

A′ ⊗ E (λ)
B′ ⊗ E (λ)

C′
(︁
ϱA′B′C′

)︁]︂
(4.40)

and

γ =
L

∑
λ=1

pλE (λ)
A ⊗ E (λ)

B ⊗ E (λ)
C ⊗ E (λ)

A′ ⊗ E (λ)
B′ ⊗ E (λ)

C′
(︁
ϱABCA′B′C′

)︁
, (4.41)

where ϱABC = ϱA′B′C′ = ϱc ⊗ ϱb ⊗ ϱa and ϱABCA′B′C′ = ϱc ⊗ ϱb ⊗ ϱa ⊗ ϱc ⊗
ϱb ⊗ ϱa, with the ordering of parties being different on both sides. Here, one
needs to carefully pay attention to which channel acts on which party (this
is depicted in Figure 4.3). Clearly, given only the knowledge of ϱ, the precise
form of τ and γ is not known. Still, due to the way they are constructed,
some of their marginals have to be equal, e.g.,

τ(ABC) = τ(A′B′C′) = ϱ, (4.42a)

γ(ABC) = γ(A′B′C′), (4.42b)

trXX′(τ) = trXX′(γ) ∀X = A, B, C. (4.42c)

Furthermore, from Eq. (4.40) it is clear that τ and γ are permutationally
symmetric under the exchange of all non primed and primed vertices and
that τ is separable with respect to the partition ABC | A′B′C′. If, for some
given state ϱ, it is not possible to find states τ and γ that satisfy those
conditions, then ϱ cannot be generated in the considered network.

A notable point is that the question for the existence of τ and γ with
the desired properties can be directly formulated as an SDP [111]. This can
be used to prove that such inflations do not exist, and the corresponding
dual program can deliver an witness-like construction that can be used to
rule out the preparation of a state in the network. Still, these approaches
are memory intensive. For instance, as the authors of [111] acknowledge, it
is difficult to derive tests for tripartite qutrit states in a standard computer.
The strength of the approach present in the next subsection hence lies in the
fact that the constraints of inflation technique are applied analytically.

Finally, let us note that other triangle inflations may be considered, for
instance inflations with 3n nodes, n = 3, 4, . . . , and wired differently than τ

and γ. Figure 4.3 (d) depicts such an example.

95



Entanglement in quantum networks

4.2.2 GHZ state

Let us start with the usual GHZ state of three qubits, |GHZ⟩ = 1/
√

2(|000⟩+
|111⟩). It is a stabiliser state, for which we can choose the following three
generators

g1 = XXX, g2 = 1ZZ, g3 = ZZ1. (4.43)

We recall that a stabiliser is composed of the products of the generators,
in this case S = {1, g1, g2, g3, g1g2, g1g3, g2g3, g1g2g3} (see Section 1.4.1 for
more details). In what follows, we omit the identity operator and specify
with a subscript on which qubit the Pauli operators act, e.g., for g2 we write
ZBZC.

We first consider the expectation value of ZAZB and of ZBZC on ϱ∆, a
LOSR triangle state, and on its τ- and γ-inflations. The values are equal
in all three states, which is one of the constraints imposed by the inflation
technique, i.e.,

⟨ZAZB⟩ϱ∆ = ⟨ZAZB⟩τ = ⟨ZAZB⟩γ, (4.44a)

⟨ZBZC⟩ϱ∆ = ⟨ZBZC⟩τ = ⟨ZBZC⟩γ. (4.44b)

Note that these should be large if ϱ∆ is close to a GHZ state, as g2 = 1ZZ
and g3 = ZAZB are elements of the stabiliser. Using the general relation

⟨ZAZB⟩ρ + ⟨ZBZC⟩ρ − 1 ≤ ⟨ZAZC⟩ρ (4.45)

that holds for all states ρ ∈ S(HA ⊗ HB ⊗ HC) [111], we can estimate
⟨ZAZC⟩γ. The key observation is that the observables XAXBXC and ZA′ZC

anticommute. We know from Chapter 2 that for such observables, the sum
of the squares of their expectation values is upper bounded by one, and in
particular on the state τ we have

⟨XAXBXC⟩2
τ + ⟨ZA′ZC⟩2

τ ≤ 1. (4.46)

From the inflation technique’s marginal relations, we know that ⟨XAXBXC⟩2
τ

= ⟨XAXBXC⟩2
ϱ∆

and ⟨ZA′ZC⟩τ = ⟨ZAZC⟩γ have to hold. Applying Eq. (4.45)
to the state γ and using the marginal relations of Eq. (4.44), we have proved
the following proposition.

Proposition 4.9 (Network inequality [A]). If ϱ∆ is a LOSR triangle state as in

96



Entanglement in quantum networks

Eq. (4.39), then

⟨XAXBXC⟩2
ϱ∆

+ (⟨ZAZB⟩ϱ∆ + ⟨ZBZC⟩ϱ∆ − 1)2 ≤ 1 (4.47)

has to hold.

This is clearly not satisfied by the GHZ state, as the operators involved
belong to its stabiliser. In fact, applying Proposition 4.9 to a depolarised
GHZ state v |GHZ⟩⟨GHZ|+ (1 − v)1/8 rules out its preparation in the LOSR

triangle for v ∈]4/5, 1]. Note that using the other observables of the stabiliser
and permutations of the parties, other conditions such as ⟨YAYBXC⟩2

ϱ +

(⟨ZAZB⟩ϱ + ⟨ZAZC⟩ϱ − 1)2 ≤ 1 can be derived.
Remarkably, Proposition 4.9 can also be used to bound the fidelity of

LOSR triangle states to the GHZ state, which we recall to be FGHZ(ϱ) =

⟨GHZ| ϱ |GHZ⟩ (see Eq. (1.12)).

Proposition 4.10 (Network fidelity to the GHZ state [A]). If ϱ∆ is a LOSR

triangle state as in Eq. (4.39), then its fidelity to the GHZ state satisfies

FGHZ(ϱ∆) ≤
1
16

(︂
5 +

√
73
)︂
≃ 0.8465. (4.48)

Proof. The fidelity of any three-qubit state ϱ to the GHZ state is given by
FGHZ(ϱ) = 1/8 ∑s∈S⟨s⟩ϱ, where S is the stabiliser of the GHZ state. The
symmetry of GHZ implies that one can assume that the LOSR triangle state
ϱ∆ that maximises the fidelity satisfies ⟨ZAZB⟩ϱ∆ = ⟨ZBZC⟩ϱ∆ = ⟨ZAZC⟩ϱ∆

and ⟨XAYBYC⟩ϱ∆ = ⟨YAXBYC⟩ϱ∆ = ⟨YAYBXC⟩ϱ∆ . Hence it follows that

FGHZ(ϱ∆) ≤max
a,b,c

1
8
(1 + a + 3b + 3c) (4.49a)

such that a, b, c ∈ [−1, 1], (4.49b)

a2 + (2b − 1)2 ≤ 1, (4.49c)

c2 + (2b − 1)2 ≤ 1. (4.49d)

Using a computer algebra system, the right hand side evaluates to 1/16(5 +√
73).

4.2.3 Cluster state

We now consider the four-qubit cluster state |C4⟩ (see Eq. (4.37)), and wonder
whether it can be prepared in a LOSR square network depicted in Figure
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Figure 4.4: Square network. Four bipartite source states ϱa, ϱb, ϱc, and ϱd are
distributed to the four nodes of the network, A, B, C, and D. The parties apply
on their respective subsystems local channels E (λ)

A , E (λ)
B , E (λ)

C , and E (λ)
D that are

coordinated by a random variable λ ∈ [L].

4.4. The four-qubit cluster states is the graph state associated to the square
graph (see Section 1.4.1 for details on graph states), whose generators are

g1 = XZ1Z, g2 = ZXZ1, g3 = 1ZXZ, g4 = Z1ZX. (4.50)

We again employ the inflation technique, and notice that if a four-qubit
state ϱ□ can be prepared in the square network, then there must exist
eight-qubit and 12-qubit states preparable following Figure 4.5 (b) and
(c) respectively. In the ξ-inflation (Figure 4.5 (c)), the observables XB′′XD,
ZB′XCZD and XAYBYD all pairwise anticommute. Moreover, their expect-
ation values satisfy ⟨XB′′XD⟩ξ = ⟨XBXD⟩ϱ□ , ⟨ZB′XCZD⟩ξ = ⟨ZBXCZD⟩ϱ□

and ⟨XAYBYD⟩ξ = ⟨XAYBYD⟩ϱ□ . Thus, for any LOSR square state ϱ□, the
following must hold

⟨XBXD⟩2
ϱ□

+ ⟨ZBXCZD⟩2
ϱ□

+ ⟨XAYBYD⟩2
ϱ□

≤ 1, (4.51)

and similar strategy in the τ-inflation leads to

⟨XBXD⟩2
ϱ□

+ ⟨YAYBZCZD⟩2
ϱ□

≤ 1. (4.52)

Together, these inequalities can be used to prove the following proposition.

Proposition 4.11 (Network fidelity to the four-qubit cluster state [A]). If ϱ□
is a LOSR square network state as in a generalisation of Eq. 4.39 following Figure
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Figure 4.5: Square network and two of its inflations. (a) Square network. (b) τ-inflation
of the square network. (c) ξ-inflation of the square network. Figures adapted from
[A].

4.4, then its fidelity to the four-qubit cluster state satisfies

FC4(ϱ□) ≤
1
8

(︃
1 +

√︂
13 + 8

√
2
)︃
≃ 0.7414. (4.53)

Proof. The proof follows the same logic as the proof of Proposition 4.10. The
stabiliser elements of |C4⟩ are presented in Table 4.1. The symmetries of |C4⟩
allow us to consider that the expectation values of elements of the same
column on ϱ□ are equal. Using Eqs. (4.51–4.52), we can write

FC4(ϱ□) ≤ max
a,b,c,d,e

1
16

(1 + 4a + 4b + 2c + 4d + e) (4.54a)

such that a, b, c, d, e ∈ [−1, 1], (4.54b)

c2 + d2 + a2 ≤ 1, (4.54c)

c2 + b2 ≤ 1. (4.54d)

We evaluate the right hand side with a computer algebra system and obtain
1/8
(︂

1 +
√︁

13 + 8
√

2
)︂

.

Remarkably, both propositions are analytical results, facilitating a gener-
alisation to higher-dimensional systems.

4.2.4 Graph states

The method presented in the previous section mostly relies on properties
of stabiliser states, and can thus directly be generalised to more parties and
more intricate networks. In [A], we prove several theorems that state that, if
a graph fulfils certain graph-theoretic properties, its corresponding graph
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Stabiliser elements of |C4⟩
s1 = XZ1Z s5 = YYZZ s9 = X1X1 s11 = −YXY1 s15 = XXXX
s2 = ZXZ1 s6 = YZZY s10 = 1X1X s12 = −1YXY
s3 = 1ZXZ s7 = ZYYZ s13 = −Y1YX
s4 = Z1ZX s8 = ZZYY s14 = −XY1Y
⟨·⟩ϱ□ = a ⟨·⟩ϱ□ = b ⟨·⟩ϱ□ = c ⟨·⟩ϱ□ = d ⟨·⟩ϱ□ = e

Table 4.1: Elements of the stabiliser of the four-qubit cluster states. The qubit
indices A, B, C, D are suppressed and the tensor product symbol omitted.

state cannot be prepared in LOSR networks. The results can be summarised
in the following proposition.

Proposition 4.12 (Graph states in networks [A]). 1. If an n-vertex graph
contains a vertex with degree strictly less than four, then its corresponding
graph state cannot be prepared in an n-partite LOSR network with only
bipartite sources.

2. The n-qubit two- and three-dimensional cluster states cannot be prepared in
n-partite LOSR networks with only bipartite sources.

3. For n ≤ 12, n-qubit graph states cannot be prepared in an n-partite LOSR

network with only bipartite sources.

For the proofs and more technical results, we refer the interested reader
to the original reference, [A]. Although highly technical, the proofs are
based on the ideas introduced in the previous sections: If a graph contains
a triangle, then under simple and weak conditions a statement similar to
Proposition 4.9 holds. This then rules out the preparation of noisy graph
states from any network with only bipartite sources. At first sight, the
identification of a specific triangle in the graph may seem a weak condition,
but here the entanglement theory of graph states helps. By applying local
complementations on the considered graph, which corresponds to local
operations on the nodes of the network (see Section 1.4.1), triangles may
appear. This is for instance doable for graphs with n ≤ 12 vertices, as
reflected by the third point of the above proposition.

In the same work, we conjectured that the third point of Proposition
4.12 holds for all numbers of qubits n ∈ N. In [103, 151], this was later
shown to be true. Specifically, the authors of [103] consider qudit graph
states. They show that, when the local dimension is prime, if a n-vertex
graph with n ≥ 3 has at least one vertex that is connected to at least two
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Figure 4.6: Square network with four tripartite sources. The tripartite sources
distribute their parties to the nodes of the network as shown in the figure. The
nodes apply on their respective subsystems local channels that are coordinated by
a classical variable λ ∈ [L]. Figure adapted from [A].

other vertices, then the corresponding qudit graph state cannot be prepared
in a LOSR network with only bipartite sources. This excludes form the set of
LOSR network states all qubit graphs states whose graphs are connected. In
[151], the authors show that if a state has a fidelity higher than 9/10 to any
qubit graph state, than it cannot be prepared in a LOSR network with only
bipartite sources. Both works also present upper bounds on fidelities to
qudit graph states for particular local dimensions and/or particular graph
properties.

4.2.5 Networks with tripartite sources

So far, the results for LOSR networks concerned networks with only bipartite
sources. We may wonder whether the proof techniques introduced above
could be used to derive inequalities holding for networks where the source
are of higher order. We therefore discuss here an example of a network with
tripartite sources. Consider the fully connected four-partite graph state ϱ∗,
whose generators are

g1 = XZZZ, g2 = ZXZZ, g3 = ZZXZ, g4 = ZZZX. (4.55)

It is locally equivalent to the four-partite GHZ state, and let us show that it
cannot be prepared in the four partite network with four tripartite sources,
illustrated in Figure 4.6. Let ϱ be a LOSR network state prepared in the
network of Figure 4.6, and let us introduce the τ- and ν-inflations of that
network, depicted in Figure 4.7, following a similar construction to what
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Figure 4.7: Two inflations of the square network with tripartite sources. (a), (b) Respect-
ively the τ- and ν-inflations of the square network with tripartite sources. Figures
adapted from [A].

was done for the triangle network. Any n-qubit state ρ ∈ S(H⊗n) verifies
⟨YiYk⟩ρ ≥ ⟨YiYj⟩ρ + ⟨YjYk⟩ρ − 1, for all distinct i, j, k ∈ [n]. In particular, by
combining the inequalities on the state ν for {i, j, k} = {A, A′, B}, {i, j, k} =

{B, A′, C′}, and {i, j, k} = {C′, A′, D′} we obtain ⟨YAYA′⟩ν ≥ ⟨YAYB⟩ν +

⟨YBYC′⟩ν + ⟨YC′YD′⟩ν + ⟨YD′YA′⟩ν − 3. Then, using the marginal relations
between ν, τ, and ϱ,

⟨YAYA′⟩τ ≥ ⟨YAYB⟩ϱ + ⟨YBYC⟩ϱ + ⟨YCYD⟩ϱ + ⟨YDYA⟩ϱ − 3 (4.56)

has to hold.
On the other hand, the observables YAYA′ and XAZBZCZD anticommute,

thus the sum of the squares of their expectation values is upper bounded by
one, in particular evaluated on the state τ. Using the fact that τ(ABCD) = ϱ,
we obtain

⟨YAYA′⟩2
τ + ⟨XAZBZCZD⟩2

ϱ ≤ 1. (4.57)

Combining this equation with Eq. (4.56) and making use of the symmetries
of the fully connected graph state ϱ∗, for any state ϱ preparable in the
network of Figure 4.6, we obtain an upper bound on its fidelity to ϱ∗

Fϱ∗(ϱ) ≤max
a,b,x

1
16

(4a + 4b + 8) (4.58a)

such that a, b, x ∈ [−1, 1], (4.58b)

x ≥ 4a − 3, (4.58c)

x2 + b2 ≤ 1, (4.58d)

whose right hand side evaluates to 1/16(
√

17 + 11) ≃ 0.9452, using a com-
puter algebra system. Thus, we certify that a fidelity higher than 0.9452 to
the the fully connected graph state cannot be achieved by the four-partite
network state of Figure 4.6.
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From this example, we see that the anticommutation relation method
also works for networks with more than bipartite sources. However, it
remains an open question whether it leads to general results similar to those
of Proposition 4.12.

4.2.6 Permutationally symmetric states

We now consider permutationally symmetric states, which were introduced
in Section 1.4.2. Again, we first present our method with a three-qubit
example, and present the general results later on.

Consider a tripartite permutationally symmetric ϱ∆ state that can be
prepared in a LOSR triangle network, and its inflated states γ and τ from
Figure 4.3. First, we notice that τ is permutationally symmetric for the pairs
{A, B}, {B, C}, {A, C}, {A′, B′}, {B′, C′} and {A′, C′}. This comes from the
fact that the marginals of τ on those pairs are equal to the corresponding
ones of ϱ, and that a state is permutationally invariant for a given pair if and
only if its marginal on that pair also is (see Proposition 1.2).

Concerning the state γ, using a similar reasoning, we know that it is per-
mutationally symmetric for the pairs {A, B} and {B, C}. Since FABFBCFAB =

FAC, it follows that γ(AC) also is permutationally symmetric. Moreover,
from the marginal conditions we know that γ(AC) = τ(A′C), hence τ is
permutationally symmetric for the pair {A′, C}.

Since permutations of the pairs {A, B}, {B, C}, {C, A′}, {A′, B′} and
{B′, C′} generate the full permutation group [128], we conclude that τ is
totally permutationally symmetric. However, τ is separable with respect
to the bipartition ABC | A′B′C′, so τ and hence ϱ∆ = τ(ABC) must be fully
separable.

The same argument can easily be extended to more complex networks
(e.g., not restricted to use bipartite sources) and holds for states of arbitrary
local dimension.

Proposition 4.13 (Permutationally symmetric states in networks [A]).

1. Unless they are fully separable, permutationally symmetric states of n parties
cannot be prepared in LOSR networks with (n − 1)-partite sources.

2. Permutationally antisymmetric states of n parties cannot be prepared in
LOSR networks with (n − 1)-partite sources.

Proof. Let ϱ be an n-partite permutationally (anti-)symmetric state, and let
us assume that it can be generated in an n-node network with at most
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(n − 1)-partite sources. Any state that can be produced in a network with n
nodes and no n-partite sources can also be created in a network of n nodes
using n different (n − 1)-partite sources. The sources used to prepare ϱ are
denoted ςi and they distribute parties to all nodes except the ith one, for all
i ∈ [n].

We construct an inflated network of 2n nodes ∪n
i=1{Ai, A′

i} and 2n
sources ∪n

k=1{ζk, ζ ′k} that distribute parties to

ζk → A1 . . . Ak−1 A′
k+1 . . . A′

N , (4.59a)

ζ ′k → A′
1 . . . A′

k−1 Ak+1 . . . AN , (4.59b)

where ζk = ζ ′k = ςk for all k ∈ [n]. Following the inflation formalism, the
global state η of this inflation is built with the same sources and the same
channels on the nodes than ϱ. So, the marginals must satisfy

ηAi Ai+1 = ηA′
i A

′
i+1

= ϱAi Ai+1 ∀i ∈ [n − 1], (4.60a)

ηA1 A′
n
= ηA′

1 An = ϱA1 An . (4.60b)

Since the state ϱ is totally (anti-)symmetric, Proposition 1.2 and Eq. (4.60)
imply that the state η is also totally (anti-)symmetric.

Now, we consider the inflated state τ, whose sources ∪n
k=1{ωk, ω′

k} dis-
tribute states to

ωk → A1 A2 A3 . . . Ak−1 Ak+1 . . . An

ω′
k → A′

1 A′
2 A′

3 . . . A′
k−1 A′

k+1 . . . A′
n.

(4.61)

This is the generalisation of the two-copy inflation considered in Figure 4.3
(b) and Figure 4.5 (b), and it follows that

τA1 ...An = τA′
1 ...A′

n
= ϱ. (4.62)

Moreover,
τAi A′

i
= ηAi A′

i
, (4.63)

hence τ is totally permutationally (anti-)symmetric. Since τ is separable
with respect to the bipartition A1 . . . An | A′

1 . . . A′
n, it is fully separable.

Therefore ϱ is also fully separable. If ϱ is permutationally symmetric, the
proof is concluded. In the case of anti-symmetric ϱ, we reach a contradiction,
which also finishes the proof.
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Figure 4.8: Illustration of the link certification method. (a) Four-partite network in the
case of a broken AC link. (b) Its τ-inflation.

Finally, we note that states invariant under cyclic permutations may be
prepared in LOSR networks, as already pointed out in [101]. As an example,
we consider three Bell pairs |Φ+⟩ as sources in the LOSR triangle network,
and no channels applied on the nodes. The global (3 × 4)-partite state reads
|Ψ⟩ABC = |Φ+⟩A2B1

|Φ+⟩B2C1
|Φ+⟩C2 A1

. With the appropriate reordering
of the parties and by mapping |ij⟩X ↦→ |2i + j⟩X, for all X = A, B, C and
i, j = 0, 1, we obtain

|Ψ⟩ABC =
1√
8

(︁
|000⟩+ |012⟩+ |120⟩+ |201⟩

+ |132⟩+ |321⟩+ |213⟩+ |333⟩
)︁
,

(4.64)

which is invariant under cyclic permutations of (A, B, C).

4.3 Certification of network links

For the experimental implementation of quantum networks, it is important
to have access to methods that certify that the different network components
are working properly. Here, we propose a method that detects if network
links (to be understood as entanglement distribution) work properly. Con-
sider a network where the link between two parties is absent or simply
not working properly. For definiteness, we may consider the four-partite
network in Figure 4.8 (a) and want to test whether the AC source distributed
its parties to A and C correctly. We thus consider the LOSR network without
the edge between A and C. In two-copy inflation (see Figure 4.8 (b)), the
observables YAYC and ZA′ZC anticommute. Moreover, the state τ of this
inflation verifies τ(AC) = τ(A′C) = ϱ(AC), so we have

⟨YAYC⟩2
ϱ + ⟨ZAZC⟩2

ϱ ≤ 1, (4.65)
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for LOSR network states ϱ such as in Figure 4.8 (a), without the link AC. Us-
ing higher-order inflations, this reasoning can be extended and formulated
for general networks.

Proposition 4.14 (Network link certification [A]). If an n-qubit state ϱ verifies

⟨XAXCPR1⟩2
ϱ + ⟨YAYCPR2⟩2

ϱ + ⟨ZAZCPR3⟩2
ϱ > 1, (4.66)

then it cannot have been prepared in an n-partite LOSR network with bipartite
sources and a missing link AC. Therein, PR1 , PR2 , and PR3 , are arbitrary observables
on disjoint subsets of qubits (except qubits A and C), i.e., observables on subsets
Ri ⊉ {A, C} such that Ri ∩ Rj = ∅ for all i ̸= j, i, j ∈ [3].

For a detailed proof of this statement, see [A]. Finally, we give a simple
example where this criterion can detect the functionality of a link. Consider
the four-qubit target state

ϱ(v) =
(︃

v
⃓⃓
Φ+
⟩︁⟨︁

Φ+
⃓⃓
+

1 − v
4

1

)︃
AC

⊗ |00⟩⟨00|BD , v ∈ [0, 1]. (4.67)

We want to check whether the link AC works or not, i.e., check that the
entanglement between A and C was properly distributed. It is easy to verify
that

− ⟨YAYCZD⟩ϱ = ⟨ZAZC⟩ϱ = v. (4.68)

Equation (4.65) thus certifies that ϱ(v) cannot have been prepared in a
network with a broken link when v ∈]1/√

2, 1].

4.4 Certification of network topology

In this final section, we aim to certify the whole topology of a quantum
network. Specifically, we analyse networks where n distant parties share
an n-qubit basic network state, i.e., each of the parties holds a qubit from
a single source and no operations are performed on the nodes. We note
that the case of multiple qubits per node can be considered by treating each
qubit as an individual node. The results in this section are published in [D].

4.4.1 Statistical hypotheses test

In order to be able to make rigorous claims about the topology of a basic
network, we formulate our protocol in the language of hypothesis testing.
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Figure 4.9: Two possible topologies for an eight-partite network. (a) Parties 1, 2, 3, 4
and 5 share a |GHZ5⟩ state (in green) and parties 6, 7 and 8 share a |GHZ3⟩ state (in
pink). (b) Parties 1, 2, 3 and 4 share a |GHZ4⟩ state (in purple) and parties 5 and 6,
and 7 and 8 both share |GHZ2⟩ states (in orange). Figures adapted from [D].

This goes as follows: The n parties sharing a basic network state identify the
possible network topologies they may share, and to each possible topology,
they associate a hypothesis based on the fidelities to the possible source
states. The hypotheses should be mutually exclusive and the general pro-
tocol should tolerate a certain amount of noise in the source states, should
require few state samples, and should be implementable with product meas-
urements.

The protocol derived in [D] is best explained by example: Consider
eight parties who each receive a qubit. They want to distinguish for in-
stance between two possible topologies, which are represented in Figure
4.9. We label the networks by the partitioning of the parties following the
source distribution, i.e., Ta = {{1, 2, 3, 4, 5}, {6, 7, 8}} corresponds to the to-
pology of Figure 4.9 (a), and Tb = {{1, 2, 3, 4}, {5, 6}, {7, 8}} to Figure 4.9 (b).
Clearly, other eight-qubit network topologies are possible, but omitted in
this example for simplicity. Here and in the following, we aim to certify that
the sources distribute (possibly noisy) multi-qubit GHZ states. As already
mentioned, GHZ states are highly relevant states in quantum information
theory, as they are key elements of many important applications, such as
quantum key distribution [110].

We construct the hypotheses associated to the topologies under consid-
eration based on the fidelities to the possible source states, i.e.,

Fs =
⟨︁

GHZ|s|
⃓⃓

ϱ(s)
⃓⃓
GHZ|s|

⟩︁
∀s ∈ Ta ∪ Tb, (4.69)

where we recall that |s| is the cardinality of the set s, and ϱ(s) stands for the
marginal of the global eight-qubit state ϱ ∈ S((H2)⊗8) on the qubits in s,
with s ∈ Ta ∪ Tb.
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From a physical point of view, it is important to certify that a work-
ing source s produces GHZ states with a fidelity Fs > 1/2, as GHZ fidelity
witnesses then guarantee the presence of GME (see Section 1.3.3). On the
other hand, if Fs is close to one, the fidelity to any m-qubit GHZ state with
m < |s| is close to one half, due to the common entries on the diagonals of
the density operators. Therefore, since we want the different hypotheses to
be mutually exclusive, requiring that the fidelities to source states of a given
topology are larger than one half may not be sufficient.

These considerations motivate the following strategy to formulate exclus-
ive hypotheses for the L different topologies Ti, with i ∈ [L]. Any topology
Ti is characterised by a set of fidelities to the sources of Ti, {Fs}s∈Ti . We thus
construct the hypothesis Hi corresponding to the network topology Ti as

Hi =

{︃
Fs − max

{︂
Fs′ | s′ ⊃ s, s′ ∈ ∪L

i=1Ti

}︂
>

1
2

}︃
s∈T

∀i ∈ [L], (4.70)

and we note that s′ must be a strict superset of s. For convenience, we define

Ds = Fs − max
{︂

Fs′ | s′ ⊃ s, s′ ∈ ∪L
i=1Ti

}︂
∀s ∈ ∪L

i=1Ti. (4.71)

In the example of Figure 4.9, the two hypotheses are

Ha =

⎧⎨⎩ F{1,2,3,4,5} > 1/2 and

F{6,7,8} > 1/2,
(4.72a)

Hb =

⎧⎪⎪⎨⎪⎪⎩
F{1,2,3,4} − F{1,2,3,4,5} > 1/2,

F{5,6} > 1/2 and

F{7,8} − F{6,7,8} > 1/2.

(4.72b)

Additionally, we consider the null hypothesis H0, which can account for
instance for cases where states different from GHZ states have been distrib-
utes.

4.4.2 Simultaneous fidelity estimation

It remains to be shown how to compute the values of the fidelities to the
possible source states efficiently. We recall that the fidelity of an arbitrary
n-qubit state ϱ ∈ S((H2)⊗n) to the n-qubit GHZ state can be obtained as
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follows: |GHZn⟩ can be decomposed as

|GHZn⟩⟨GHZn| =
1
2

⎛⎜⎝|0⟩⟨0|⊗n + |1⟩⟨1|⊗n⏞ ⏟⏟ ⏞
Dn

+ |0⟩⟨1|⊗n + |1⟩⟨0|⊗n⏞ ⏟⏟ ⏞
An

⎞⎟⎠ , (4.73)

where Dn and An correspond to the diagonal and antidiagonal terms re-
spectively. The GHZ fidelity F[n] of ϱ is thus equal to 1/2(tr(Dnϱ) + tr(Anϱ)).
The first term can be evaluated from the data of measuring Z⊗n, as |0⟩⊗n

and |1⟩⊗n are part of its eigenstates. The antidiagonal term can be evaluated
from the data of n further settings. Indeed, notice that it can be written as a
linear combination of the Pauli observables X and Y [64],

An =
1
n

n

∑
i=1

(−1)i−1M⊗n
i , (4.74)

where

Mi = cos
(︃
(i − 1)π

n

)︃
X + sin

(︃
(i − 1)π

n

)︃
Y, ∀i ∈ [n]. (4.75)

Using the expectation values M⊗n
i for all i ∈ [n] and Z⊗n, the fidelity F[n]

can thus be estimated with n + 1 product measurement settings.
Remarkably, the data of those n + 1 measurement settings is sufficient to

compute the fidelity of the marginal states of ϱ to any m-qubit GHZ state, for
m ≤ n. This follows from the fact that the decomposition of An is not unique,
thus other sets of measurements that are linear combination of X and Y also
allow us to determine An [64]. This paves the way for the simultaneous
estimation of several GHZ fidelities: The expectation values ⟨M⊗|s|

k ⟩ϱ(s) , for
the sources s ∈ ∪L

i=1Ti of all topologies under consideration can be obtained
from the same data set, which allows for the computation of the fidelity Fs

for all sources s appearing in the topologies Ti, i ∈ [L]. For technical details
and explicit formulas, see [D]. We emphasise that the protocol requires only
n + 1 measurement settings, independently of the number of topologies
under consideration.

4.4.3 Certification based on experimental data

In the following, we demonstrate our protocol for six-partite photonic net-
work states. The topologies under consideration are presented in Figure
4.10, still with the aim to certify GHZ sources. These four topologies are
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Figure 4.10: Four possible topologies for a six-partite network. Six parties share a basic
network state with GHZ sources, but are unsure about its topology. (a), (b) (c), (d)
Network topologies Ta, Tb, Tc, and Td respectively.

identified on the basis of the experimental set up: By different program-
ming of the same experiment, four different global states can be generated,
namely |GHZ2⟩ ⊗ |GHZ2⟩ ⊗ |GHZ2⟩, |GHZ4⟩ ⊗ |GHZ2⟩, |GHZ2⟩ ⊗ |GHZ4⟩, and
|GHZ6⟩. These are associated to the topologies Ta, Tb, Tc, and Td of Figure
4.10 respectively. The hypothesis formulated on this basis are given by

Ha =

⎧⎪⎪⎨⎪⎪⎩
F{1,2} − max{F{1,2,3,4}, F{1,2,3,4,5,6}} > 1/2,

F{3,4} − max{F{1,2,3,4}, F{3,4,5,6}, F{1,2,3,4,5,6}} > 1/2 and

F{5,6} − max{F{3,4,5,6}, F{1,2,3,4,5,6}} > 1/2,

(4.76a)

Hb =

⎧⎨⎩ F{1,2,3,4} − F{1,2,3,4,5,6} > 1/2, and

F{5,6} − max{F{3,4,5,6}, F{1,2,3,4,5,6}} > 1/2,
(4.76b)

Hc =

⎧⎨⎩ F{1,2} − max{F{1,2,3,4}, F{1,2,3,4,5,6}} > 1/2, and

F{3,4,5,6} − F{1,2,3,4,5,6} > 1/2,
(4.76c)

Hd =
{︂

F{1,2,3,4,5,6} > 1/2. (4.76d)

We briefly explain how the experiment is implemented, and refer to [D]
for a detailed description. As shown in Figure 4.11, a source first generates
polarisation entangled photons in a GHZ state. Then, one of the two photons
is detected, while its partner is stored in a quantum memory. It is then either

110



Entanglement in quantum networks

Figure 4.11: Experimental setup for the certification of six-partite network topologies.
Three Bell pairs are successively produced by a probabilistic dispersion-engineered
integrated source. One of the photons of the pair is detected, generating a feed-
forward signal to the quantum memory. Following this, photons from different
pairs are either swapped or interfered, producing one of the four states |GHZ2⟩ ⊗
|GHZ2⟩ ⊗ |GHZ2⟩, |GHZ4⟩ ⊗ |GHZ2⟩, |GHZ2⟩ ⊗ |GHZ4⟩, or |GHZ6⟩. HWP: half-wave
plate. QWP: quarter-wave plate. PBS: polarising beam splitter. Figure adapted from
[D].

swapped or interfered with a photon from a successive Bell pair, respectively
leading to the generation of |GHZ2⟩ ⊗ |GHZ2⟩ or of |GHZ4⟩. A third Bell pair
is used similarly, such that in the end, one of the four states depicted in
Figure 4.10 is produced. We note that in the setup, the four-photon GHZ

state has a phase of
⃓⃓
GHZ−

4

⟩︁
= 1/

√
2(|0000⟩ − |1111⟩), we thus formulate the

hypotheses for this four-photon state. By abuse of notation, we still refer to
this four-qubit GHZ state by |GHZ4⟩.

For each of the four possible states, the six observables M⊗6
i , for all

i ∈ [6], and the observable Z⊗6 are measured around a thousand times to
estimate their expectation values [D]. From this data, the fidelities to the six
possible sources are computed and reported in green in Figure 4.12 [D]. The
values of Ds, defined in Eq. (4.71), are plotted in purple in Figure 4.12 as well.
Using Hoeffding’s inequality [73], upper bounds on the p-values associated
to each of the hypotheses are computed in [D], which we report in Table
4.2. We recall that the p-value of a hypothesis H describes the probability of
observing the experimental data given that the hypothesis H is true. For the
details concerning the evaluation of the upper bounds, see [D].

We note that on top of certifying the topology of the network, for each
data set the parties characterised the quality of their sources through the
fidelity to the different GHZ states.
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Figure 4.12: Graphical depiction of the fidelities Fs (green curves) and the differences of
the fidelities Ds (purple curves) considered in the hypotheses for the four different
experimental data sets, with s ∈ ∪i=a,b,c,dTi. Recall that the hypothesis Hi requires
that Ds is strictly larger than one half for all the sources s of the topology Ti, with
i = a, b, c, d. Figures adapted from [D].

4.4.4 Device-independent approach

An important point of the certification method introduced is that the meas-
urement performed on the physical systems are assumed to be fully charac-
terised. However, this is in general not the case. To remedy this situation,
we briefly discuss how such a method could be implemented in a device-
independent manner.

We consider the Bell operator Bn from the n-partite Mermin inequality
[105], which contains products of two dichotomic observables that we label
by A and B and reads

Bn =
1
2
[︁
(A + iB)⊗n + (A − iB)⊗n]︁ . (4.77)

Notably, the expectation value ⟨Bn⟩ϱ can be used to bound the fidelity of
the state ϱ to the n-qubit GHZ state, in the sense that if ⟨Bn⟩ϱ is close to 2n−1,
the fidelity to |GHZn⟩ (up to local operations) must be high. For the detailed
computations, we refer to [D].

The n parties involved in the certification protocol would have to obtain
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Ha Hb
Data set 1 1 2.3724 × 10−139

Data set 2 8.3274 × 10−92 1
Data set 3 6.1789 × 10−93 6.8294 × 10−259

Data set 4 1.1810 × 10−32 3.7960 × 10−174

Hc Hd H0
9.2153 × 10−146 3.0256 × 10−116 9.4765 × 10−8

1.6231 × 10−258 1.6231 × 10−258 1.4347 × 10−13

1 8.8629 × 10−272 1.3010 × 10−23

4.9169 × 10−188 1 2.3295 × 10−22

Table 4.2: Upper bound on the p-value of the different hypotheses for the four
different data sets. Each data set corresponds to one of the four possible combina-
tions of operations “swap” and “interfere”. The hypotheses Ha, Hb, Hc, and Hd are
explicitly given by Eq. (4.76), and H0 is the null hypothesis.

the expectation values of all 2n combinations of A and B, which they could
then use to evaluate the expectation values of ⟨Bm⟩(s)ϱ for all s ∈ ∪L

i=1Ti,
where Ti with i ∈ [L] are the L different topologies under consideration. As
the number of settings scales exponentially with the number of qubits, such
a protocol is in practice not feasible for large systems. Nevertheless, if we
can reasonably assume that the GHZ sources are made up of at most m qubits
with m < n, not all 2n combinations of A and B have to be measured, but
rather all 2m combinations of A and B on all subsets of m parties. Settings
that fulfil this are nothing but covering arrays CA(n, m, 2) with symbols A
and B, for which it has been shown that [34]

CAN(n, m, 2) ≤ 2nnOlog(n) log(m). (4.78)

When all the sources of the network are bipartite, i.e., when m = 2, it is
known that CAN(n, 2, 2) is the smallest natural number x such that [143]

n ≤
(︃

x − 1
⌈x/2⌉

)︃
(4.79)

holds. Moreover, there exists an algorithm which, for a given numbers
n and x, constructs a CA(x; n, 2, 2) in polynomial time [143]. Therefore,
settings based on covering arrays are a potential candidate for the device
independent implementation of the network topology certification protocol.
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4.5 Discussion

This chapter dealt with states preparable in quantum network structures
with no access to classical communication. We presented four distinct
approaches to characterise network states.

First, we investigated how such network states impose strong conditions
on the structure of their covariance matrices. We presented alternative
proofs for the block decomposition of covariance matrices and derived
analytical and computable necessary criteria for network states without
shared randomness.

Second, we turned our attention to states with symmetric properties,
demonstrating that large classes of states, such as noisy graph states with
up to 12 qubits and permutationally symmetric states, cannot be prepared
in quantum networks with shared randomness. We presented analytical
techniques to derive upper bounds on the fidelity of LOSR network states
to some target GME states, notably showing that state with a fidelity to the
GHZ state higher than 1/16(5 +

√
73) ≃ 0.8465 cannot have been prepared

in the LOSR triangle network. Beyond excluding the preparation of certain
states in network scenarios, the proof techniques employed, analytically
combining the inflation technique with general expectation value bounds,
are valuable in their own right. The techniques can be used on different
target states, and have since been used in the works [103] and [151].

Finally, we introduced methods for the certification of network links as
well as network topology. Notably, the latter only requires n + 1 measure-
ment settings, regardless of the number of topologies under consideration,
with n being the number of qubits in the network. The topology certifica-
tion protocol was experimentally performed for six-qubit networks using
entangled photon pairs.

As the field of network entanglement and its potential applications in
quantum information theory continues to grow, it is valuable to investigate
additional avenues for identifying compatible network states. Specifically,
finding sufficient criteria for network states, as current results provide only
necessary criteria, represents a crucial area of future research. Developing
such criteria will lead to a better understanding of states that can be gen-
erated in networks without classical communication and their potential
applications, such as in quantum conference key agreement. In this context,
it is interesting to also consider noisy networks: This would translate to
imposing additional conditions on the sources states, e.g., by making them
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travel through depolarisation channels or by constraining their purity.
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Conclusion

In this thesis, we aimed to contribute to the vast field of quantum informa-
tion theory in two main ways: We both addressed foundational problems
and developed innovative certification methods for quantum systems. All
the problems addressed in this thesis were, in a sense, connected to notions
in graph theory. These connections helped us to gain insight into physical
problems, which we summarise here.

First, we focused our attention on the problem of bounding sums of
squares of expectation values. The first connection to graph theory arises
here, as we have shown that this function of expectation values is upper
bounded by the Lovász number of their anticommutativity graph. Although
this problem may seem highly specific at first glance, we have demonstrated
that it has broader implications, particularly in the context of entanglement
detection. Specifically, we illustrated that this bound can be used to de-
rive entanglement and Schmidt number witnesses, and other authors later
found applications in ground state energy estimation [4] and quantum state
tomography [90]. Even after the follow-up works [163] and [106], several
fundamental questions remain open that we hope will be answered in the
upcoming years.

Moving towards the certification of quantum devices, we discussed the
topic of marginal tomography. Quantum state tomography is essential for
characterising quantum systems, but traditional methods become imprac-
tical for large systems. We presented different measurement scheduling
schemes for marginal tomography of multi-qubit systems that are all op-
timal according to different figures of merit. In the case of Pauli tomography,
we translated the problem of finding the minimal number of settings for
the reconstruction of marginals to a graph covering problem. This allowed
us to compute minimal Pauli sets for specific examples, and to discuss the
optimality of previous construction. We also briefly discussed its connection
to the concepts of covering and orthogonal arrays in combinatorial design
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theory. Notably, we showed that the minimum of 3k projective measurement
settings is tomographically complete for any subset of k qubits when chosen
randomly (according to the uniform distribution on the unit sphere). An
analytical construction of measurement settings for any number of qubits
n and any k is still left to be found. This presents a significant challenge
and opportunity for future research. An experimental demonstration of
two-body marginal tomography of a six-qubit system using measurement
scheduling introduced in this thesis is presented in [E].

The last and largest chapter of this thesis was devoted to quantum net-
works. First, we were interested in the concept of network entanglement
and derived necessary criteria for network entangled states that allowed us
to rule out the preparation of well-known states in network scenarios. As
discussed, there are two main definitions of network entanglement, with
the difference of access or not to shared randomness. Criteria for networks
without shared randomness were derived using covariance matrices, and
using a combination of the inflation technique and expectation value bounds
we proved propositions for network entanglement with shared randomness.
Notably, for the latter, we showed that large classes of symmetric states
cannot be prepared in network scenarios. This insight is crucial for under-
standing the limitations and potentials of quantum networks. Afterwards,
we used these results to devise certification methods for network links, and
finally tackled the certification of the whole topology of the network with
few measurement settings. The topology certification protocol stands out as
it is based on fidelity estimation, thus can certify that entanglement is indeed
present in the shared network, distinguishing it from classical correlations.
This protocol thus represents a significant advancement in the practical
benchmarking of quantum networks.

In each chapter, many open problems remain. We also hope that the
results and techniques developed in this thesis will be of use to others in the
future.
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Appendix A

Appendix to Chapter 3

In this appendix, we present the connection between σS and the volume
spanned by the measurement directions of a given measurement map MS .
We first adapt the measurement map of Eq. (1.38) and define the matrix
MS ∈ CL×d2

such that
MSv(ϱS ) = p, (A.1)

where v : Cd×d → Cd2
is a vectorisation satisfying v(A) · v(B) = tr

(︁
A†B

)︁
.

Since we are interested in measurement direction for two-body tomography
of a six-qubit system, d = 4 and L = 36. We further decompose MS as
MS = ASB, where the matrix B is such that its ith row is given by the
vectorisation of the ith Pauli operator ordered as

(11, X1, Y1, Z1, 1X, 1Y, 1Z, XX, XY, XZ, YX, YY, YZ, ZX, ZY, ZZ), (A.2)

for all i ∈ [16]. The matrix AS is given by the 36 × 16 real matrix

AS =
1
36

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 v(i)
1 v(j)

1 v(i)
1 ⊗ v(j)

1

1 v(i)
1 −v(j)

1 −v(i)
1 ⊗ v(j)

1

1 −v(i)
1 v(j)

1 −v(i)
1 ⊗ v(j)

1

1 −v(i)
1 −v(j)

1 v(i)
1 ⊗ v(j)

1

1 v(i)
2 v(j)

2 v(i)
2 ⊗ v(j)

2
...

...
...

...

1 −v(i)
9 −v(j)

9 v(i)
9 ⊗ v(j)

9

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (A.3)
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We define the 16 × 16 matrix XS = M†
S MS = B† AT

S ASB and compute

AT
S AS =

4
362

⎛⎜⎜⎜⎜⎝
9 0 0 0

0 ∑9
α=1 v(i)

α (v(i)
α )T 0 0

0 0 ∑9
α=1 v(j)

α (v(j)
α )T 0

0 0 0 ∑9
α=1(v

(i)
α ⊗ v(j)

α )(v(i)
α ⊗ v(j)

α )T

⎞⎟⎟⎟⎟⎠ .

(A.4)

On the other hand, we can express σS as

σS = max
e

⃦⃦
M+

S e
⃦⃦
= max

e

√︂
eT(M+

S )
† M+

S e, (A.5)

where the maximum is taken over vectors e from the standard basis, and
where the norm is the Euclidean norm [41]. The pseudoinverse is chosen
to be the Moore-Penrose inverse, and from the singular value decompos-
ition of the measurement map MS = ∑16

i=1 µiuiw†
i , we can write M+

S =

∑16
i=1

1/µiwiu†
i , such that

σS ≤

⌜⃓⃓⎷ 16

∑
i=1

1
µ2

i
=

⌜⃓⃓⎷ 16

∑
i=1

1
νi

, (A.6)

where νi, i ∈ [16] are the eigenvalues of XS . We denote the last 9 × 9 block
of AT

S AS by YS , that is,

YS =
9

∑
α=1

(v(i)
α ⊗ v(j)

α )(v(i)
α ⊗ v(j)

α )T, (A.7)

and its eigenvalues are non-negative numbers λi, i ∈ [9]. The matrix

ZS = (v(i)1 ⊗ v(j)
1 , v(i)2 ⊗ v(j)

2 , . . . , v(i)9 ⊗ v(j)
9 ) (A.8)

is such that YS = ZSZT
S , and therefore ZS has singular values

√
λi, i ∈ [9].

Finally, we can write the determinant of ZS as |det(ZS )| = ∏9
i=1

√
λi. By

denoting the second and third block of AS by Yi and Yj respectively, we can
write det(XS ) = 1/36 det

(︁
BB†)︁det

(︁
YiYj

)︁
det(ZS )

2. Due to Eq. (A.6), we can
expect that large |det(ZS )| lead to small σS .

The measurement directions obtained through the numerical optimisa-
tion of all volumes as described in Chapter 3 are presented in Table A.1. The
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α Qubit 1 Qubit 2 Qubit 3
1 [1.34851,−1.7187] [0.74451, 1.85896] [2.81234,−1.66384]
2 [1.62452,−0.16006] [0.83181,−1.13389] [1.24291,−1.56911]
3 [0.2289, 1.17782] [0.83405,−0.17509] [2.33714, 0.27682]
4 [0.88628, 0.06155] [0.98653,−2.38924] [2.63105,−1.5318]
5 [0.9695, 2.22663] [1.64509, 0.36903] [1.06042,−1.5596]
6 [1.01301,−2.04348] [1.83028, 0.04163] [2.21489, 2.65553]
7 [2.70374, 0.28677] [2.08781,−1.20394] [1.16136, 1.41667]
8 [1.69042,−1.54368] [1.55645,−1.52536] [1.54184, 3.13342]
9 [1.9898, 3.11515] [2.88169,−3.04215] [1.58265,−3.12376]

Qubit 4 Qubit 5 Qubit 6
[1.22444,−2.24737] [2.62025,−1.56922] [1.61654, 2.41608]
[1.86266, 1.89939] [0.78386, 2.4564] [0.32988, 0.14995]
[0.74332,−0.27308] [2.61964,−1.73379] [1.32478,−1.55164]
[0.94539, 2.20137] [1.04552, 0.26519] [1.65486, 1.47209]
[1.70326,−2.5176] [1.60308, 3.08691] [2.42079,−0.27072]
[2.12737, 2.11179] [1.05058,−1.644] [1.56836,−2.29642]
[2.56575,−0.74011] [2.09094, 1.49761] [0.04581, 2.36286]
[2.56242,−2.33567] [1.532, 3.04614] [0.91042, 0.21545]
[1.08649,−2.97173] [2.09094, 1.49761] [1.2526, 3.01513]

Table A.1: Measurement directions used for the 6-qubit experimental implementation.
Each entry is a pair of Bloch vector angles [θ, ϕ] in radians. Each row (continued
on both tables) corresponds to one 6-qubit measurement setting Mα as defined in
Eq. (3.14), with α ∈ [9].

single-qubit i ∈ [6] directions are partitioned in orthonormal bases following

{{1, 2, 3}, {4, 5, 6}, {7, 8, 9}},
{{1, 2, 5}, {3, 4, 7}, {6, 8, 9}},
{{1, 2, 8}, {3, 6, 7}, {4, 5, 9}},
{{1, 3, 4}, {2, 8, 9}, {5, 6, 7}},
{{1, 5, 9}, {2, 4, 7}, {3, 6, 8}}, and
{{1, 6, 7}, {2, 4, 9}, {3, 5, 8}}

(A.9)

respectively.
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Appendix to Chapter 4

In this appendix, we prove the technical results from Chapter 4.

B.1 Off-diagonal blocks in terms of reduced observ-
ables

Here we prove that the off-diagonal blocks of the CM of a BTN state can be
expressed using the reduced observables, that is,

[γE]mn = ⟨A(2)
m ⊗ B(1)

n ⟩
ϱ
(A2B1)
BTN

− ⟨A(2)
m ⟩

ϱ
(A2B1)
BTN

⟨B(1)
n ⟩

ϱ
(A2B1)
BTN

∀m, n ∈ [N]. (B.1)

with

A(2)
i = trA1

(︂
Ai(ϱ

(A1)
BTN ⊗ 1A2)

)︂
∀i ∈ [N] (B.2)

and similarly for B(1)
i , i ∈ [N].

Proof of Eq. (4.5). Let us decompose Am and Bn respectively in orthogonal
bases {σ

(A1)
α ⊗ σ

(A2)
β }d2

α,β=1 and {σ
(B1)
γ ⊗ σ

(B2)
δ }d2

γ,δ=1 as (we drop the super-
scripts)

Am =
1
d2

d2

∑
α,β=1

tr
(︁
σα ⊗ σβ Am

)︁
σα ⊗ σβ (B.3)

and

Bn =
1
d2

d2

∑
γ,δ=1

tr(σγ ⊗ σδBn)σγ ⊗ σδ, (B.4)
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and notice that the reduced states of ϱBTN are product states,

ϱ
(AB)
BTN = ϱ

(A1)
BTN ⊗ ϱ

(A2B1)
BTN ⊗ ϱ

(B2)
BTN , (B.5)

ϱ
(A)
BTN = ϱ

(A1)
BTN ⊗ ϱ

(A2)
BTN , (B.6)

ϱ
(B)
BTN = ϱ

(B1)
BTN ⊗ ϱ

(B2)
BTN . (B.7)

Combining this, [γE]mn straightforwardly decomposes as

⟨A(2)
m ⊗ B(1)

n ⟩
ϱ
(A2B1)
BTN

− ⟨A(2)
m ⟩

ϱ
(A2)
BTN

⟨B(1)
n ⟩

ϱ
(B1)
BTN

(B.8)

for all m, n ∈ [N], and the proof is complete.

B.2 Block decomposition for CMs of BTN states

We prove here one of our central results, Proposition 4.1, which states that
the CM of a BTN state can be decomposed into the sum of CMs with reduced
observables.

Proof of Proposition 4.1. Following Eq. (4.6), the matrix RA is given by

RA = ΓA − ΓA1 − ΓA2 , (B.9)

where the entries of ΓA2 are

[ΓA2 ]mn = ⟨A(2)
m A(2)

n ⟩
ϱ
(A2)
BTN

− ⟨A(2)
m ⟩

ϱ
(A2)
BTN

⟨A(2)
n ⟩

ϱ
(A2)
BTN

∀m, n ∈ [N], (B.10)

which is a CM for the reduced observables, evaluated on the state ϱ
(A2)
BTN only.

Let us now show that such a matrix RA is PSD by showing that x†RAx ≥ 0
for all x ∈ CN . Using the definition

M =
N

∑
i=1

xi Ai (B.11)

and the fact that

M(1) =
N

∑
i=1

xi A
(1)
i and M(2) =

N

∑
i=1

xi A
(2)
i , (B.12)
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we have that

x†RAx =
(︂
⟨M† M⟩ − ⟨M†⟩⟨M⟩

)︂
−
(︂
⟨(M(1))† M(1)⟩ − ⟨M†⟩⟨M⟩

)︂
−
(︂
⟨(M(2))† M(2)⟩ − ⟨M†⟩⟨M⟩

)︂
=⟨M† M⟩+ ⟨M†⟩⟨M⟩ − ⟨(M(1))† M(1)⟩ − ⟨(M(2))† M(2)⟩,

(B.13)

where the expectation values are taken on ϱ
(A1 A2)
BTN . Since M acts on A1 A2,

we can use a Schmidt-like decomposition for the bipartition A1 | A2,

M =
N

∑
i=1

Pi ⊗ Qi (B.14)

and use the fact that ϱ
(A1 A2)
BTN is a product state. We then obtain

x†RAx =
N

∑
i,j=1

(︂
⟨P†

i Pj⟩⟨Q†
i Qj⟩+ ⟨P†

i ⟩⟨Pj⟩⟨Q†
i ⟩⟨Qj⟩

− ⟨P†
i Pj⟩⟨Q†

i ⟩⟨Qj⟩ − ⟨P†
i ⟩⟨Pj⟩⟨Q†

i Qj⟩
)︂

= tr
(︂(︁

Γ(P)
)︁TΓ(Q)

)︂
,

(B.15)

where
[Γ(P)]ij = ⟨P†

i Pj⟩ϱ
A1
BTN

− ⟨P†
i ⟩ϱ

A1
BTN

⟨Pj⟩ϱ
A1
BTN

∀i, j ∈ [N] (B.16)

and similarly Γ(Q) are CMs of the observables {Pi}N
i=1 and {Qi}N

i=1 in the
state ϱA1

BTN and ϱA2
BTN, respectively. These matrices are PSD, so we have

tr
(︂(︁

Γ(P)
)︁TΓ(Q)

)︂
≥ 0, which finishes the proof.

B.3 Matrix entries of R

In the main text, Eq. (4.8) reads

RX =ΓX − ΓX1 − ΓX2

=Γ
(︂
{σα}d2

α=1, ϱ
(X1)
BTN

)︂
⊗ Γ

(︂
{σα}d2

α=1, ϱ
(X2)
BTN

)︂
, ∀X = A, B, C.

(B.17)

A proof is given by direct calculation.

Proof of Eq. (4.8). We show the statement for X = A. The matrices ΓA, ΓA1
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and ΓA2 have respectively the following matrix entries

[ΓA]αβ|α′β′ = ⟨(σα ⊗ σβ)(σα′ ⊗ σβ′)⟩ − ⟨σα ⊗ σβ⟩⟨σα′ ⊗ σβ′⟩, (B.18)

[ΓA1 ]αβ|α′β′ = ⟨σασα′⟩⟨σβ⟩⟨σβ′⟩ − ⟨σα⟩⟨σα′⟩⟨σβ⟩⟨σβ′⟩, (B.19)

[ΓA2 ]αβ|α′β′ = ⟨σα⟩⟨σα′⟩⟨σβσβ′⟩ − ⟨σα⟩⟨σα′⟩⟨σβ⟩⟨σβ′⟩, (B.20)

for all α, β, α′, β′ ∈ [d2] and where the expectation values are taken on the
state ϱ

(A)
BTN, with identity operators padded where needed. So, the matrix

entries of RA are

[RA]αβ|α′β′ =⟨(σα ⊗ σβ)(σα′ ⊗ σβ′)⟩ − ⟨σασα′⟩⟨σβ⟩⟨σβ′⟩ − ⟨σα⟩⟨σα′⟩⟨σβσβ′⟩

+ ⟨σα⟩⟨σα′⟩⟨σβ⟩⟨σβ′⟩
=(⟨σασα′⟩ − ⟨σα⟩⟨σα′⟩)(⟨σβσβ′⟩ − ⟨σβ⟩⟨σβ′⟩)

=[Γ({σα}, ϱ
(A1)
BTN ]αα′ [Γ({σβ}, ϱ

(A2)
BTN ]ββ′

=[Γ({σα}, ϱ
(A1)
BTN )⊗ Γ({σβ}, ϱ

(A2)
BTN )]αβ|α′β′

(B.21)

for all α, β, α′, β′ ∈ [d2], and therefore

RA = Γ({σα}, ϱ
(A1)
BTN )⊗ Γ({σβ}, ϱ

(A2)
BTN ). (B.22)

We note that in general, for a product state ϱ = ϱ1 ⊗ ϱ2 and product
observables {Ak ⊗ Bl}N

k,l=1, it holds that

Γ({Ak ⊗ Bl}N
k,l=1, ϱ) =aaT ⊗ Γ({Bl}N

l=1, ϱ2) + Γ({Ak}N
k=1, ϱ1)⊗ bbT

+ Γ({Ak}N
k=1, ϱ1)⊗ Γ({Bl}N

l=1, ϱ2),
(B.23)

where a and b are the vector with entries ⟨Ak⟩ϱ1 and ⟨Bl⟩ϱ2 respectively,
k, l ∈ [N]. In the case of complete sets of orthogonal observables, a and b
are the Bloch vectors of ϱ1 and ϱ2 respectively.

B.4 Block decomposition for CMs of NCDS network
states

In this appendix, we give the proof of Proposition 4.7. Let us first recall
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notations from the main text. We have an N-node NCDS network with a
set of sources S. The number of sources is given by |S|, and each source
s ∈ S is the set of nodes the source connects where the nodes themselves
are labelled by x ∈ [n]. The sources states are denotes ϱs, with s ∈ S. Each
party x receives nx qudits from nx different sources, with x ∈ [n], and any
two distinct parties share at most one source.

Let ΓNCDS be the CM of a global state of such a network with observables
{Ax|i | x ∈ [n]}N

i=1, where Ax|i is the ith observables that only acts on the
node x, with i ∈ [N] and x ∈ [n]. As mentioned in the main text, we
first prove the proposition for basic networks with no common double
source (BNCDS networks). The extension to NCDS networks without local
operations follows using similar techniques to the triangle network scenario.

To do so, we extend Eq. (B.23) to n parties, which can be verified through
direct calculation (see [C]).
Lemma B.1 ([C]). Let ϱ = ϱ1 ⊗ · · · ⊗ ϱn be a product state and {A(1)

i1
⊗ · · · ⊗

A(n)
in

}n
i1,...,in=1 be a set of product observables. The covariance matrix of these

observables reads

Γ (ϱ) =
n⨂︂

x=1

(︂
axaT

x + Γ({A(x)
ix

}N
ix=1, ϱx)

)︂
−

n⨂︂
x=1

axaT
x , (B.24)

where ax is the vector with entries ⟨A(x)
ix

⟩ϱx , ix ∈ [N], x ∈ [n].

We are now ready to prove the block decomposition of a CM of a BNCDS

state with product observables, that is, we furthermore require that the
observables are of the form Ax|i = Ax1|i ⊗ · · · ⊗ Axnx |i, with Ax1|i acting on
the first qudit of the party x, labelled x1, and similarly for the others, with
x ∈ [n] and i ∈ [N].

Lemma B.2 ([C]). Let ϱ be a BNCDS network state. Then

Γ
(︂
{Ax|i | x ∈ [n]}N

i=1, ϱ
)︂
= ∑

s∈S

Γ
(︂
{ARED

xα|i | xα ∈ s}N
i=1, ϱs

)︂
+

n⨁︂
x=1

Rx, (B.25)

where Rx are PSD matrices and

ARED
xα|iα

=

(︄
nx

∏
β ̸=α,β=1

⟨Axβ|iβ
⟩

ϱ(xβ)

)︄
Axα|iα

. (B.26)

We note that the matrices Γ
(︂
{ARED

xα|i : xα ∈ s}N
i=1, ϱs

)︂
are padded with blocks of
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zeros where needed, such that they are partitioned in N × N blocks with the xth
diagonal block corresponding to the xth party.

Proof. From the fact that each subset of observables {Ax|i}N
i=1 only acts on

the party x of the network, with x ∈ [n], it directly follows that ΓNCDS has a
block structure,

ΓNCDS =

⎛⎜⎜⎜⎜⎝
Γ1 γ12 . . . γ1N

γT
12 Γ2 . . . γ2N
...

...
. . .

...
γT

1N γT
2N . . . ΓN

⎞⎟⎟⎟⎟⎠ . (B.27)

Let us investigate the structure of Γx for a BNCDS network state ϱBNCDS,
with x ∈ [n]. We recall that

Γx = Γ
(︂
{Ax1|i ⊗ · · · ⊗ Axnx |i}N

i=1, ϱ
(x)
BNCDS

)︂
(B.28)

where ϱ
(x)
BNCDS = trx̂(ϱBNCDS), x̂ = [n] \ {x}. For the sake of readability, we

drop the subscript BNCDS until the end of the proof. As ϱ(x) is a product
state, Γx can be decomposed following Lemma B.1, i.e.,

Γx =
n⨂︂

α=1

(︂
xαxT

α + Γ({Axα|iα
}N

iα=1, ϱ(xα))
)︂
−

n⨂︂
α=1

xαxT
α , (B.29)

with ⟨Axα|iα
⟩ϱ(xα) being the vector entries of xαxT

α , for all iα ∈ [N]. Therein,
the summands

Γ({Axα|iα
}, ϱ(xα))

nx⨂︂
β ̸=α,β=1

⃓⃓
xβ

⟩︁⟨︁
xβ

⃓⃓
(B.30)

can be written as
Γ
(︂
{ARED

xα|iα
}, ϱ(xα)

)︂
, (B.31)

with

ARED
xα|iα

=

(︄
nx

∏
β ̸=α,β=1

⟨Axβ|iβ
⟩

ϱ(xβ)

)︄
Axα|iα

. (B.32)

Now, we analyse the off-diagonal blocks for x ̸= y, x, y ∈ [n] that have
matrix entries[︁

γxy
]︁

ij = ⟨Ax|i ⊗ Ay|j⟩ϱ(xy) − ⟨Ax|i⟩ϱ(x)⟨Ay|j⟩ϱ(y) ∀i, j ∈ [N]. (B.33)

They are trivially equal to zero when the nodes x and y are not connected as
in that case, ϱ(xy) = ϱ(x) ⊗ ϱ(y). On the other hand, if they do are connected,
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it is by one source exactly. Without loss of generality, we assume that x1 and
y1 are connected by the same source, and the state can be written as

ϱ(xy) = ϱ(x1y1)
nx⨂︂

α=2

ϱ(xα)
ny⨂︂

β=2

ϱ(y
β). (B.34)

Therefore, Eq. (B.33) reads

[︁
γxy
]︁

ij =
(︂
⟨Ax1|i1 ⊗ Ay1|j1⟩ϱ(x1y1) − ⟨Ax1|i1⟩ϱ(x1)⟨Ay1|i1⟩ϱ(y

1)

)︂
nx

∏
α=2

⟨Axα|iα
⟩ϱ(xα)

ny

∏
β=2

⟨Ayβ|iβ
⟩

ϱ(y
β) ,

(B.35)

which, with the reduced observables of Eq. (B.32) can be written as[︁
γxy
]︁

ij = ⟨ARED
x1|i1 ⊗ ARED

y1|j1⟩ϱ(x1y1) − ⟨ARED
x1|i1⟩ϱ(x1)⟨ARED

y1|i1⟩ϱ(y
1) . (B.36)

Finally, putting everything together, we obtain

Γ
(︂
{Ax|i | x ∈ [n]}N

i=1, ϱ
)︂
= ∑

s∈S

Γ
(︂
{ARED

xα|i | xα ∈ s}N
i=1, ϱs

)︂
+

n⨁︂
x=1

Rx, (B.37)

where

Rx =
nx⨂︂

α=1

(︂
xαxT

α + Γ({Axα|iα
}, ϱα)

)︂
−

nx⨂︂
α=1

|xα⟩⟨xα|

−
nx

∑
α=1

⎛⎝Γ({Axα|iα
}, ϱα)

nx⨂︂
β ̸=α,β=1

xβxT
β

⎞⎠ (B.38)

is PSD.

Now that we have the explicit structure of CMs for product observables
on BNCDS network states, it directly follows that in this case, the CMs have a
block decomposition as described in Proposition 4.7. We use the following
lemma to argue that the block decomposition holds for any set of local
observables, which follows from a direct calculation [C].

Lemma B.3 ([C]). Let Γ
(︁
{Xi}N

i=1}, ϱ
)︁

be a CM. Let C be a real matrix such that
Yj = ∑N

i=1 CijXi, j = 1, . . . , M. Then

Γ
(︂
{Yj}M

j=1, ϱ
)︂
= CTΓ

(︂
{Xi}N

i=1, ϱ
)︂

C. (B.39)
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Combining all those results, we are now ready to prove Proposition 4.7.

Proof of Proposition 4.7. From Lemma B.2, we know that the block decom-
position holds for BNCDS network states with product observables. When
those product observables are chosen to be a complete set of observables,
Lemma B.3 shows that the block decomposition holds for any observable
set acting on BNCDS network states. Finally, an analogous reasoning to the
cases of UTN and CTN leads to the conclusion that the block decomposition
holds for states of NCDS networks with local operations.
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Indian Journal of Statistics, Series A, page 167, 1968.

[87] S. Khatri, C. T. Matyas, A. U. Siddiqui, and J. P. Dowling. Practical fig-
ures of merit and thresholds for entanglement distribution in quantum net-
works. Physical Review Research, 1:023032, 2019. DOI: 10.1103/PhysRevRe-
search.1.023032.

[88] H. J. Kimble. The quantum internet. Nature, 453:1023, 2008. DOI:
10.1038/nature07127.

[89] G. Kimura. The Bloch vector for N-level systems. Physics Letters A, 314:339,
2003. DOI: 10.1016/S0375-9601(03)00941-1.

[90] R. King, D. Gosset, R. Kothari, and R. Babbush. Triply efficient
shadow tomography. ArXiv preprint, arXiv:2404.19211, 2024. DOI:
10.48550/arXiv.2404.19211.

[91] C. M. Knaut, A. Suleymanzade, Y.-C. Wei, D. R. Assumpcao, P.-J. Stas, Y. Q.
Huan, B. Machielse, E. N. Knall, M. Sutula, G. Baranes, N. Sinclair, C. De-
Eknamkul, D. S. Levonian, M. K. Bhaskar, H. Park, M. Lončar, and M. D.
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[167] M. Żukowski, A. Zeilinger, M. A. Horne, and A. K. Ekert. “Event-ready-
detectors” Bell experiment via entanglement swapping. Physical Review
Letters, 71:4287, 1993. DOI: 10.1103/PhysRevLett.71.4287.

143

https://doi.org/10.1007/BF02055756
https://doi.org/10.1515/jci-2017-0020
https://doi.org/10.1103/PhysRevX.11.021043
https://doi.org/10.1103/PhysRevX.11.021043
https://doi.org/10.1103/PhysRevA.108.L040201
https://doi.org/10.1103/PRXQuantum.5.020318
https://doi.org/10.1103/PhysRevResearch.4.013153
https://doi.org/10.1103/PhysRevLett.130.050804
https://doi.org/10.1126/science.aan3211
https://doi.org/10.1103/PhysRevLett.71.4287

	Title page
	Abstract
	Zusammenfassung
	Acknowledgements
	Contents
	List of abbreviations
	Preface
	Preliminaries
	Quantum states and measurements
	Uncertainty relations
	Quantum entanglement
	Bipartite entanglement
	Multipartite entanglement
	Entanglement detection and quantification
	Network entanglement

	Symmetric states
	Stabiliser and graph states
	Permutationally symmetric states

	Quantum state tomography
	Mathematical toolbox
	Mathematical optimisation
	Graph theory


	Uncertainty relations
	Multi-observable uncertainty relations
	Reformulation
	Including commutation relations
	Imprecise observables

	Application to entanglement detection
	Entanglement witnesses
	Imprecise observables
	Schmidt number witnesses

	Discussion

	Marginal tomography
	Pauli tomography
	Two-body marginal tomography
	Marginal tomography of arbitrary strength
	Overlapping tomography of arbitrary strength
	Reduction for large number of qubits
	On the optimality of constructions for strength two

	Minimal settings for overlapping tomography
	Random measurement directions
	Numerically optimised measurement directions

	Discussion on the sample cost
	Discussion

	Entanglement in quantum networks
	Covariance matrices of network states
	Covariance matrices for tripartite states
	Basic triangle network
	Triangle network with local operations
	Covariance matrix criterion for triangle network states
	Ncds networks

	Symmetric states in quantum networks
	Inflation technique
	Ghz state
	Cluster state
	Graph states
	Networks with tripartite sources
	Permutationally symmetric states

	Certification of network links
	Certification of network topology
	Statistical hypotheses test
	Simultaneous fidelity estimation
	Certification based on experimental data
	Device-independent approach

	Discussion

	Conclusion
	Appendix to Chapter 3
	Appendix to Chapter 4
	Publication list
	Bibliography



