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Kurzfassung

Das TerraSAR-X/PAMIR Experiment ist ein Raum- und Luftfahrt basiertes bistatisches 
Synthetisches-Apertur-Radar (SAR) Experiment, in welchem der deutsche 
Erdbeobachtungssatellit TerraSAR-X als Sender und das Fraunhofer-FHR Flugradarsystem 
PAMIR als Empfänger fungieren. Durch den unabhängigen Betrieb von Sender und 
Empfänger bildet die hochgenaue Bestimmung der Position, Geschwindigkeit und Lage 
insbesondere des Empfängers auf dem Flugzeug eine zwingend notwendige Vorraussetzung 
für die Synchronisierung, als auch für die nachfolgende Radarbildererstellung. Die genannten 
Parameter können unter Nutzung von GPS (Global Positioning System) bestimmt werden. 
Diese Dissertation beschäftigt sich mit der Lagebestimmung durch ein GPS-
Mehrantennensystem unter der zusätzlichen Verwendung eines konstanten Drehratenmodells.  

Die trägerphasenbasierte differenzielle Positionierung stellt ein typisches Verfahren zur 
hochgenauen Positionierung dar. Eine Vorraussetzung für die Verwendung von 
Trägerphasendaten ist die Erkennung und Korrektur von Cycle-Slips. Basierend auf einer 
Analyse von traditionellen Zweifrequenz-Ansätzen wurde in dieser Arbeit ein neuartiger 
Algorithmus für die Cycle-Slip Erkennung, Bestimmung und Validierung für ein 
Dreifrequenz-GPS entwickelt.   

Die differentielle Positionierung kann für die Lagebestimmung mit einem GPS-
Mehrantennensystem erweitert werden. Hierfür wurde eine Software für die 
Postprozessierung von GPS Rohdaten entwickelt. Um die, aufgrund eines relativ kleinen 
Antennenabstandes auf dem Flugzeugrumpf, eingeschränkte Genauigkeit zu erhöhen, kann 
das GPS Mehrantennensystem zusammen mit einem konstanten Drehratenmodell innerhalb 
eines Kalman-Filters integriert werden. Nach Vergleich unterschiedlicher nichtlinearer 
Kalman-Filter in Bezug auf Genauigkeit und Rechenlast, wurde das erweiterte Kalman-Filter 
als geeignete Methode für diese Anwendung ausgewählt. Allerdings kann die Approximation 
der realen Dynamik durch ein konstantes Drehratenmodell zu Fehlern führen. Daher wird ein 
adaptiver Interaktiv-Multiple-Modell-Ansatz vorgeschlagen, um die von Modellübergängen 
verursachten Fehler zu reduzieren und das Prozessrauschen autonom zu optimieren.  

Die Genauigkeit der Positions-, Lage- und Geschwindigkeitsparameter aus GPS wird 
bestimmt, um die Fortpflanzung dieser Fehler auf die Parameter der Radar-
Bewegungskompensation zu analysieren. Basierend auf einer geometrischen Darstellung des 
Radar-Antennen-Phasenzentrum (APC) in Bewegungs-/ und Querrichtungen wurde eine 
Reihe von Fehleranalysen durchgeführt, um die potentiellen Fehler der Dopplermittelfrequenz 
und des APC Positionsfehler abzuleiten. 



Abstract

The TerraSAR-X/PAMIR experiment is a spaceborne/airborne hybrid bistatic synthetic 
aperture radar (SAR) experiment using the German earth-observation satellite TerraSAR-X as 
transmitter and the Fraunhofer-FHR's airborne radar system PAMIR as receiver. Due to the 
independent operation of the transmitter and receiver, accurate position, attitude and velocity 
parameters of the airborne platform serve as necessary parameters for the synchronization 
procedure and the subsequent generation of radar images. All these parameters can be 
obtained by using Global Positioning System (GPS) system. This thesis highlights the attitude 
determination technique using GPS multi-antenna system augmented by a constant angular 
rate model. 

Differential positioning technique with carrier phase data is usually applied for accurate 
positioning. Cycle-slip detection and repair are prerequisites for processing the carrier phase 
data. By analyzing and refining the traditional dual-frequency approaches, a novel algorithm 
is elaborated for cycle-slip detection, determination and validation in triple-frequency GPS.  

The differential positioning technique can be expanded onto the multiple GPS antennas for 
attitude determination. Regarding to this technique, a software package is developed and 
presented to process the GPS raw data in a post-processing. In order to improve the accuracy 
limited by the short antenna space on the airplane fuselage, the GPS multi-antenna system can 
be incorporated with a constant angular rate model through Kalman filters for less-
maneuvering airplanes. By comparing different nonlinear Kalman filters in terms of the 
estimation accuracy and the computational burden, the extended Kalman filter is identified as 
a proper choice for this application. However, approximating the real dynamics by a constant 
angular rate model might lead to mismodeling errors. An adaptive interacting multiple-model 
approach is proposed to reduce the model transition errors as well as to tune the process noise 
online for an improved accuracy.  

The precision of position, attitude and velocity parameters obtained from GPS is calculated 
first in order to analyze the error propagation from GPS measurements to the parameters for 
radar motion compensation. Based on a geometric representation of the radar Antenna Phase 
Center (APC) in the along/cross-track frame, a series of error analysis is carried out to derive 
the potential errors on the Doppler centroid frequency and the positioning error of the APC.   
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1.  Introduction 

1.1 Motivation 

The Bistatic Synthetic Aperture Radar (BiSAR) is characterized by the spatial separation 
between transmitter and receiver and hence offers a considerable flexibility in designing 
remote sensing missions. Recently, a spaceborne/airborne hybrid configuration has become an 
interesting research field. Such a configuration offers more robustness to deliberate jamming 
than both the spaceborne and the airborne radar systems operated monostatically. Additionally, 
its performance, for equivalent synthetic apertures, is better than the monostatic spaceborne 
SAR in terms of radar resolution and signal-to-noise-ratio (SNR). Such a hybrid experiment 
has been under investigation in German radar community, where the TerraSAR-X (the 
German high-resolution radar satellite) serves as the illuminator in the sliding spotlight mode 
and the airborne SAR system (Fraunhofer-FHR’s Phased Array Multifunctional Imaging 
Radar, abbreviated as PAMIR) as the passive receiver in the inverse sliding spotlight mode. 
The basic configuration of the TerraSAR/PAMIR experiment is illustrated in Figure 1-1, 
where the point “P” represents a point target within the composite footprint.  

 
Transmitter: 

TerraSAR-X  satellite

Bistatic Receiver:
PAMIR plane

P

Composite Footprint  
Figure 1-1 Bistatic configuration in the TerraSAR-X/PAMIR experiment 

 
One crucial problem in this experiment is to accurately determine the flight trajectory, the 

attitude and velocity parameters of the airplane. These parameters can be obtained by using the 
Global Positioning System (GPS). The trajectory of the PAMIR airplane can be determined 



  2

using differential positioning technique, where a ground station or a station network needs to be 
established to transfer the correction values to the onboard rover antenna(s). Usually, the 
attitude parameters are provided by inertial sensors. However, the results offer only short-term 
accuracy, if there are no aiding sensors available (e.g., GPS signals) for the detection and 
compensation of inertial sensor errors over time. As an alternative method, a GPS 
multi-antenna system can be used for attitude determination. This technique employs 
off-the-shelf devices and offers long-term accurate attitude solutions. In this thesis, the existing 
techniques for GPS multi-antenna systems are extended to obtain a more reliable and accurate 
attitude estimation. The overview scheme of system design proposed in the thesis is depicted in 
Figure 1-2. 

 

 
Figure 1-2 Overview scheme of system design 

 
Such a system does not only employ the GPS measurements for attitude determination, but 

also takes advantages of the attitude dynamic information. The measurement model refers to 
the calculation of attitude using GPS carrier phase measurements, and hence the pre-processing 
of GPS carrier phase should be carried out first for resolving the integer ambiguities. Then, the 
attitude can be derived using proper mathematic models and GPS measurements. The attitude 
dynamics is subject to the application scenario and can be integrated with the measurement 
model by an optimal and robust data fusion algorithm. Last but not least, the potential errors in 
SAR processing parameters introduced by GPS need to be investigated. 

The use of carrier phases is the basis for accurate position and attitude determination. The 
preprocessing should be performed to quantify and monitor the integer phase ambiguities, 
namely the ambiguity resolution and cycle-slip fixing. The cycle-slip fixing is still a 
challenging task, leaving space for innovation. Firstly, the published materials show great 
efforts in the cycle-slip detection for single- and dual-frequency GPS, but the research 

Hybrid 
algorithm 

Measurement 
model

Dynamic model 

Pre-processing of 
carrier phase data 

Mathematic model 
based on multiple 

GPS antennas 

Error analysis for attitude results and related 
SAR processing parameters 

Attitude 
determination 

algorithm 
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regarding to triple-frequency GPS is missing so far. Although the developed cycle-slip 
detection algorithms for single- or dual-frequency GPS can be applied to triple-frequency GPS, 
this method cannot take full advantages of triple-frequency signals and needs a large 
computational burden.  A new approach is therefore desired especially for triple-frequency 
signals. Secondly, in the previous research, once the cycle-slips are detected, the ambiguity 
resolution procedure is normally restarted. However, once the cycle-slips can be quantified and 
removed from carrier phase raw data, the restart of ambiguity resolution might be replaced by 
the determination of cycle-slip sizes. Due to the similarity in the integer properties of 
cycle-slips and ambiguities, the technique for ambiguity resolution can be applied to determine 
cycle-slip sizes as well. However, it is not thoroughly discussed in the existing literature. 
Thirdly, the determined cycle-slip values need to be validated. There is still a research gap in 
the cycle-slip validation for a stand-alone receiver. A fast and reliable approach for cycle-slip 
validation is required as well. 

With the resolved ambiguities, GPS carrier phase measurements acquired from multiple 
antennas can be fused to estimate attitude parameters. The applied strategy is mainly 
software-oriented, making it possible to implement a receiver independent software package 
for attitude determination. It is not only the framework for carrying out research activities, but 
also builds up a basis for further expansion and integration with other sensor systems. Driven 
by these motivations, such a software package has been implemented and will be presented in 
the thesis. 

The estimation accuracy of attitude parameters deteriorates with short baselines between 
antennas. In this case, coupling with the attitude dynamics might help to improve the accuracy. 
For the less-maneuvering airplanes with high GPS data rate, a constant angular rate model can 
be used when the inertial sensors are not available. Though the integration of the GPS 
measurements and such a dynamic model using an extended Kalman filer has been studied, this 
technique still needs to be refined and improved in the following aspects: (1) There are some 
other nonlinear Kalman filters theoretically providing better performance than the extended 
Kalman filter, but they are always more time-consuming. A comparison of these filters in terms 
of accuracy and computational time should be carried out in order to select a proper filter in this 
application. (2) Due to the changing dynamics of airplanes, a constant angular rate model 
cannot fully reflect the variation of attitudes during the entire trajectory, yielding the 
mismodeling errors. The first type of mismodeling errors occurs when the airplane transits the 
motion models. In this case, the errors introduced by the model transition may not be correctly 
described by the predefined process noise parameters, leading to a temporary failure of the 
dynamic model. Solutions to the model transition should be sought for. The second type of 
mismodeling errors lies in the fixed and conservatively initialized process noise parameters. In 
order to benefit more from the dynamic model, the filter should identify the process noises 
online. Thus, a hybrid algorithm is needed to deal with both types of mismodeling errors.  
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Although GPS technique has been successfully applied in the motion compensation of 
many SAR experiments, a rigorous error analysis is in demand to quantify the effect of GPS 
measurement errors on the bistatic SAR motion compensation, especially when multiple 
onboard GPS antennas are used. The relevant studies are missing and need to be investigated.   

1.2 Outline 

This thesis includes six chapters. Some fundamentals of GPS positioning are discussed in 
Chapter 1, including single-point positioning and differential positioning. GPS modernization 
and multiple GNSS integration are briefly explained as well.  

Chapter 2 highlights cycle-slip processing. Firstly, the popular algorithms for ambiguity 
resolution and cycle-slip detection using single/dual-frequency GPS are reviewed. After that, 
novel algorithms for cycle-slip detection, determination and validation using triple-frequency 
GNSS are elaborated. Simulations in different scenarios demonstrate the reliability of the 
algorithms. 

Chapter 3 introduces the attitude determination approaches, i.e. the least-squares attitude 
estimation and direct attitude computation. Both algorithms are categorized into dual-antenna 
and triple/more antennas cases. A self-developed software package for attitude determination 
using GPS raw data is also presented. 

Based on the techniques given in Chapter 3, Chapter 4 presents an augmented system based 
on the integration of GPS measurements with attitude dynamics. The major objective is to 
improve the accuracy limited by the short antenna baselines. With a less-maneuvering platform 
and a high GPS data rate, a constant angular rate model can approximate the dynamics very 
well. In order to choose a proper filter to integrate the GPS measurements with the dynamic 
model, different nonlinear Kalman filters are compared in terms of accuracy and computational 
burden. Simulations with different initialization errors are conducted to evaluate these filters. 

Chapter 5 refers to the solutions of inherent mismodeling errors. Two kinds of 
mismodeling errors caused by the constant angular model are introduced at first. In order to 
handle the model transition problem, several approaches are presented and then compared, e.g. 
using different nonlinear filters, fading-memory filter and interacting multiple-model approach. 
In order to automatically identify the changing dynamics, the adaptive tuning of process noises 
is analyzed. In the end, an adaptive interacting multiple-model approach is proposed, which 
integrates the robustness of multiple-model approach to the model transition and the adaptive 
tuning of process noises. 

In Chapter 6, error analysis is carried out to show the error propagation from GPS carrier 
phase measurements onto the parameters related to the SAR motion compensation, including 
the position of SAR antenna phase center in the along/cross track directions and Doppler 
centroid frequency. Finally, conclusions are drawn and future works are proposed. 
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1.3 GPS Principles 

The Global Positioning System (GPS) is a radio-based Global Navigation Satellite System 
(GNSS) established by the U.S. Department of Defense. GPS satellites offer three kinds of 
measurements for positioning and navigation, including the pseudorange, the carrier phase 
and the instantaneous Doppler. We will firstly introduce the basic observation equations of 
pseudorange measurements and carrier phase measurements. Then, the models for 
ionospheric errors and multipath errors will be highlighted due to their importance in the 
simulation generation in the latter chapters. The GPS modernization and the integration of 
GPS with other GNSS will also be briefly presented in this chapter.  

1.3.1 Observation equations 

GPS observation equations are the basis for the GPS data processing. The pseudorange 
measurements reflect the time difference between the signal transmission from the satellite 
and the signal reception at the antenna. It can obtained by “multiplying the speed of light with 
the time shift needed for aligning the receiver-replicated code with the real code received 
from a GPS satellite” (Wells et al. 1986). For this reason, the pseudorange data is always 
simply referred to as the code measurements. The pseudorange observation equation at epoch 
t can be expressed as: 

where  
iL  (subscript) indicates the corresponding signal;  
 is the wavelength of the corresponding GPS signal; 

R  is the pseudorange measurement;  
 is the geometric distance from the GPS receiver's antenna phase center at the epoch of 

signal reception to the GPS satellite's antenna phase center at the epoch of signal transmission; 
I  is the ionospheric delay;  
T  is the tropospheric delay; 
S  is the satellite orbit bias;  
c  is the speed of light; 

st  is the satellite clock bias in units of time; 
rt  is the receiver clock bias in units of time;  

e  is the thermal noise contained in the pseudorange data;  
M  is the multipath error.  
Note that all terms except for clock biases are given in units of length. 
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The carrier phase measurements reflect the difference between the phase of the incoming 
signal from a GPS satellite and the generated signal in the receiver. A carrier phase 
measurement is composed of four parts: 

where output  represents the carrier phase measurements from the receiver; f  is the 
fractional part of the measured carrier phase, whereas i  is the number of integer cycles 
accumulated from the first observation epoch to the current epoch; e is the error term; N  is 
the integer phase ambiguity. “This integer refers to the first epoch of observation and remains 
constant during the period of observation. During this period, the receiver accumulates the 
phase differences between arriving phases and internally generated receiver phases. The 
receiver, therefore, effectively generates an accumulate carrier phase observables that reflects 
the changes in distance to the satellite”(Leick 2004). The integer ambiguity should be 
resolved a priori and subtracted from the carrier phase measurements obtained from the 
receiver. As the integer ambiguity remains constant epoch by epoch, the time dependence can 
therefore be dropped. The carrier phase observation equation can be formulated as: 

Note that terms  and N are expressed in units of cycles. In comparison with Eq. (1-1), the 
carrier phase observation equation has the following differences: 
1. The ionospheric error I has the same magnitude but opposite sign. 
2. Thermal noise e on carrier phase is three or four orders of magnitude lower than that of 

code measurements. “The precision of a pseudorange derived from code measurements 
has been traditionally about 1% of the chip length. Therefore, a chip length of 300 m for a 
coarse code would yield a precision of 3 m and an assumed chip length of 30m for a 
precise code would yield a precision of 0.3m. The phase of an electromagnetic wave can 
be measured to better than 0.01 cycles which corresponds to millimeter precision for a 
frequency in the gigahertz range” (Hofmann-Wellenhof et al. 2003). 

3. Multipath errors M on the carrier phases are normally several orders of magnitude lower 
than that on the pseudoranges in the measurement domain. Maximal multipath error can 
reach 150m on pseudoranges with a wide correlator and 4.75 cm on carrier phases with 
wide or narrow correlator (Ray 2000). This allows a reduction of multipath effects on 
pseudoranges by a smoothing the pseudorange measurements with the previous carrier 
phases (Hatch 1982). 

output f it t t N t e t  (1-2) 
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1.3.2 Observation errors 

The prerequisite of an accurate GPS positioning is to reduce the errors contained in the GPS 
measurements. Error modeling and signal combinations are commonly used techniques for the 
error reduction or the error removal. In this section, we will highlight the error models for 
ionospheric error and multipath error because these models will be used to generate the 
simulation scenarios in the following parts of the thesis. Other error sources will also be 
overviewed. 

1.3.2.1.The modeling of ionospheric error 

The ionospheric delay can be modeled as a function of the electron density represented by the 
Total Electron Content (TEC). A simplified Klobuchar model can be used to simulate the TEC. 
This model assumes that the vertical ionospheric delay can be approximated by half a cosine 
function of the local time during daytime and by a constant level during nighttime (Kaplan 
and Hegarty 2006). During the daytime the maximal TEC occurs at 14:00 local time. The 
simulated TEC is subject to the following model (Kaplan and Hegarty 2006): 

where min and max are the predefined minimal and maximal values of TEC in units of 
number of electrons per square-meter; t is the local time;  indicates the time phase in a 
28-hour period. The obtained TEC is assumed at the ionosphere point, namely the intersection 
point of the signal propagation path and the ionospheric layer. In order to explore the 
ionospheric error in the measurement domain of a GPS antenna, the geometric relation between 
the GPS antenna and the ionospheric point should be employed (Kaplan and Hegarty 2006): 

where Iphase and Icode denote the generated ionospheric error of phase and code 
measurements, respectively; Re is the mean radius of the earth; h is the mean height of the 
ionosphere to the earth surface;  is the azimuth angle at the ionospheric point; f is the carrier 
frequency of GPS signals. The ionospheric error contributes the same magnitude but different 
signs to the carrier phase and code noise. The ionospheric delay is related to the signal 
frequency and hence can be eliminated by a proper combination of the carrier signals, and this 
is an important reason why GPS satellites transmit on two or more carrier frequencies.  
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1.3.2.2.The modeling of multipath error 

The multipath effect describes “the phenomenon whereby a satellite-emitted signal arrives at 
a receiver’s antenna by more than one path” (Hofmann-Wellenhof et al. 2001). The difference 
in path lengths causes the signal interferes at the antenna. For GPS, multipath is usually noted 
when the antenna is operating near large reflecting obstacles. If the antenna is located at a 
fixed position, the periodical variation of multipath effects can be estimated by long-term 
observation (Teunissen and Kleusberg 1998). Referring to dynamic applications in unknown 
environments, there is no general model of the multipath effect because of the time- and 
location-dependent geometric situation (Hofmann-Wellenhof et al. 2001). In a simulation, the 
zero-angle multipath error for GPS code measurements is usually generated using an 
autoregressive model (Braasch 1999): 

where 0
tm  represents the multipath error to be generated at epoch t; b and a are predefined 

index vectors with the length of nb and na, respectively; x is a vector with each component 
having a time-uncorrelated white Gaussian noise. Index vectors a and b can be obtained as the 
numerator and denominator of the coefficients of a 1-order Butterworth filter with a cut-off 
frequency of 0.007 (Yang 1998), respectively. In (1-6), the second sum operation reflects the 
correlation of multipath errors over time. The multipath error obtained from (1-6) is under the 
assumption that the satellite is vertical to the antenna. Considering the motion of satellites, the 
multipath error on the code measurements will be scaled by the cosine of the satellite elevation 
angle t as follows: 

where  is the scaling factor used to identify a high-multipath environment or a 
low-multipath environment. The multipath errors on the code measurements are significantly 
larger than that on the phase measurements. The following equation reflects the difference and 
will be used for the simulation (Leick 2004): 

where  is the wavelength of the associated GPS signal. 

1.3.2.3.Reduction of other observation errors 

The GPS data processing algorithms presented in this thesis mainly rely on the signal 
combinations or differential positioning. Both techniques aim at reducing or eliminating the 
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GPS observation errors. Non-dispersive errors, including the tropospheric error, the satellite 
clock error, the satellite orbit error and the receiver clock error, can be eliminated by 
differencing the observations of different signals per satellite, because they contribute with the 
same amount to the observation of each signal. The error reduction using differential 
positioning will be discussed in section 1.3.3.2. The thermal noises arise randomly on each 
signal and each satellite, and hence they cannot be eliminated by signal combinations or the 
differential positioning technique. The thermal noises are normally modeled as Gaussian 
errors, which will be elaborated in the following chapters.  

1.3.3 GPS positioning modes 

The GPS positioning modes can be categorized according to the number of antennas involved. 
Providing a stand-alone receiver, we have Single Point Positioning (SPP) and precise point 
positioning. The former one uses the GPS code measurements and the latter one mainly relies 
on the carrier phase measurements. Once two or more antennas are used, we have Differential 
GPS positioning (DGPS) and relative positioning, where both code measurements and carrier 
phase measurements can be processed.   

1.3.3.1.Single-point positioning 

In the SPP, the receiver clock error is taken as another unknown value besides the three 
dimensional positioning parameters, and hence the observations from at least 4 satellites are 
needed. The mathematic model for SPP is given below: 

where all terms are related to a certain epoch so that the time dependence is dropped from the 
equation; the subscript u denotes the user position (namely the antenna position); the 
superscript sn denotes the n-th satellite position; tr is the receiver clock error; r is the original or 
corrected pseudorange measurement; e contains the remaining errors of Eq. (1-1). After the 
linearization we obtain the following equation given in a vector form: 

where A is the design matrix. Eq. (1-10) can be solved by the least-squares adjustment 
initialized with a position near the earth surface. 
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1.3.3.2. Differential and relative positioning 

The differential and relative positioning techniques are based on the idea that some common 
errors can be cancelled or reduced by differencing the measurements between the satellites and 
the receivers. For this purpose, two or more receivers are involved. A simple example for the 
differential positioning is illustrated in Figure 1-3. 
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Figure 1-3: An illustration for differential/relative positioning 

 Using the observation equation (1-3) to express the carrier phase measurements of both 
antennas to a common satellite s1, we have: 

where the subscript u1 and u2 indicate the user (antenna); s1 indicate the satellite.  In both 
equations of (1-11), the satellite clock error 1st  and orbits error 1sS are common errors. Thus, 
differencing both equations yields: 

where the operator  indicates the differencing, for example 1
1 2

s
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If both antennas are located closely to each other, for example less than 10 kilometers on the 
ground plane, the atmospheric effects on the observation equations in (1-11) are approximately 
same, so that the differenced tropospheric error T and ionospheric error I might be neglected. 
In this case, Eq. (1-12) can be further simplified to: 

Such a differential processing is referred to as the “single-differential positioning”, namely 
differencing the measurements of two receivers with respect to a common satellite. However, 
the receiver clock error 1 2u ut  still exists. In order to eliminate it, we first apply the 
single-differential positioning to satellite s2: 

The receiver clock error ( 1 2u ut ) is a common error term in (1-13) and (1-14) and hence can be 
eliminated by further differencing both equations, so that we have: 

The operator  denotes a further difference between the “single-differential” measurements 
associated to a common receiver. For example, 1 2

1 2
s s
u u  stands for 

1 1 2 2
1 2 1 2

s s s s
u u u u . This procedure is called “double-differential positioning”. So 

far, the satellite clock error, satellite orbit error and receiver clock error have been eliminated. In 
case of short antenna baseline, the remaining ionospheric and tropospheric errors can also be 
neglected. For these reasons, the differential positioning leads to the accuracy improvement. 
However, a drawback of the differential positioning is that the thermal noise and multipath 
errors will be accumulated.   

The relative positioning is also based on the same idea of differential positioning. However, 
both techniques have some differences. Firstly, the differential positioning mode (e.g. DGPS) 
aims at determining the precise position of the rover receiver, whereas the relative positioning 
aims at determining a precise baseline vector between two receivers. In DGPS, a reference 
receiver (also called reference station) is stationary and located at a known position. In relative 
positioning, both receivers can be moving and their individual position might not be precisely 
determined. The second difference lies in the latency. The relative positioning needs the 
simultaneous and synchronized observations from both receivers, whereas in DGPS, “the 
reference station commonly calculates pseudorange correction and range rate correction which 
are transmitted to the remote receiver in real-time” (Hofmann-Wellenhof et al. 2003). The range 
rate correction is actually introduced to correct the errors caused by the time delay in the data 
transmission.  

The real-time relative positioning based on the carrier phase measurements is usually 
termed as Real-Time Kinematic (RTK) technique. The RTK technique needs the simultaneous 
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processing of carrier phase measurements of the base and rover stations. The RTK is the basis 
for multi-antenna attitude determination and real-time precise positioning. The following 
experiment shows the different accuracies of SPP and RTK. As seen in Figure 1-4, a platform 
with a GPS antenna moves from P1 to P2 and then back to P3 in front of the building of Center 
for Sensorsystems (ZESS). The whole trajectory is close to a straight line. A base station 
marked as solid rectangular is located near P1. The trajectories processed using the single-point 
positioning and RTK are depicted in different colors. The base station is built using a Novatel 
ProPak-V3 receiver and a Novatel 702GG antenna, and the rover station is built using a 
Novatel DL-4 receiver and a Novatel 702 antenna. The code measurements on L1 signal are 
employed in the single-point positioning. Ionospheric and tropospheric errors are estimated 
using the Klobuchar model and Hopfield model (Hofmann-Wellenhof et al. 2001), respectively. 
The carrier phase ambiguities are resolved using the signal combination technique (Horemuž 
and Sjöberg 2002). 

Figure 1-4: Trajectories made by SPP and RTK1 

The trajectory generated using RTK is clearly closer to the reality. Large jumps can be 
observed in the trajectory generated using SPP. These are mainly due to the multipath effects 
caused by the surrounding environments and the large thermal noises of code measurements. 
                                                 
1 The map information is obtained on 8-Feb-2011 from Google Map. The presented map reflects the situation when the map 

was captured rather than the situation when the experiments were carried out. The car seen in the map did not really exist in the 

experiments.  

Base station 
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We can also observe biases between the two trajectories. These biases are mainly due to the 
remaining atmospheric errors in the SPP.  

1.3.4 GPS modernization 

The GPS modernization manifests itself in the new civilian code measurements (L2C), new 
carrier frequencies (L5), new signal structures and the increased signal availability and power 
from GPS spacecraft, etc (McDonald 2002). As an important improvement, a new civilian L5 
signal centered at 1176.45 MHz will be available at the first GPS IIF satellite as an addition to 
the L1 signal at 1575.42 MHz and the L2 signal at 1227.60 MHz. The triple-frequency signal 
results in a faster ambiguity resolution (Han and Rizos 1999; Hatch 1996; Julien et al. 2004), 
better estimation of the multipath error (Simsky 2006) and ionospheric refection (Wang et al. 
2005). Another significant advantage of triple-frequency signal manifests itself in the 
improvement of success rate of the cycle-slip detection (Dai et al. 2009a), which will be 
elaborated in the thesis.  

1.3.5 Integration of GPS with other GNSS 

Besides GPS, there are other coexisting GNSS, including the Russian GLONASS system, the 
European GALILEO which is still in experimental phase and the second generation of the 
Chinese COMPASS system. Integrating GPS with other GNSS will bring in improved 
availability, satellite coverage, interference susceptibility, accuracy and safety 
(Hofmann-Wellenhof et al. 2003). An example is given below to show the benefit of the 
multiple GNSS constellations. The GPS and GLONASS measurements are collected from the 
“UNGJ” station of International GNSS Service (IGS). Note that only the satellites 
simultaneously providing P1 and P2 code measurements are employed. The settings for the 
positioning algorithm are listed in Table 1-1. 

Table 1-1: Parameters used for SPP 

Measurement used Code measurements 
Cut-off angle 15º 

GPS orbit determination broadcast ephemeris 
GLONASS orbit determination IGS final precise orbit data 

Starting time (Coordinated Universal 
Time, or UTC) 

10:00 30. April. 2009 

Epoch interval 30 s 
Ionospheric correction dual-frequency correction 

Tropospheric correction Hopfield model 

Figure 1-5 shows the positioning accuracy and Dilution of Precision (DOP) with (solid 
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line) or without GLONASS (dashed line). The calculation of DOP values for SPP is 
formulated in Appendix I. 

Figure 1-5: Positioning error from GPS and GPS+GLONASS 

From Figure 1-5 it can be seen that the GLONASS satellites will apparently enlarge the 
satellite sky coverage, so that the DOP values are decreased. The horizontal and vertical errors 
from the integrated GPS/GLONASS system are lower than that in the GPS-only case.  
 The reduced DOP values from the multiple GNSS constellations in a global area can be 
simulated using predefined satellite orbits. Figure 1-6 shows DOP values under integrated 
GNSS constellations. The resolution for each grid is 1 degree for longitude and latitude. At 
each grid point, the DOP values are calculated using all satellites viewed at the corresponding 
location. At each grip point, the DOP values are firstly collected for 14 hours with a sampling 
interval of 15 minutes, and then the averaged DOP value is calculated and presented. We 
assume that all GNSS are operating under full constellation. This means 24 satellites for GPS, 
24 satellites for GLONASS and 30 satellites for GALILEO. 

GPS only: dashed line 
GPS+GLONASS: solid line 
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Figure 1-6: HDOP for GNSS combinations Figure 1-7: PDOP for GNSS combinations 

By integrating more GNSS systems, the DOP values are remarkably decreased. It does 
not only imply the potential improvement in the positioning accuracy, but also means the 
increased safety and availability. In this thesis, we will focus on the use of GPS. Due to the 
similarity of positioning model for different GNSS systems, the algorithms referred in the 
thesis can be augmented to other GNSS systems. 
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2. GPS data pre-processing 

The pre-processing of carrier phase mainly comprises two steps, namely the ambiguity 
resolution and the cycle-slip fixing. In this chapter, both techniques will be overviewed at first, 
and the cycle-slip detection and repair for triple-frequency GPS are highlighted in the 
following. 

2.1 Overview of ambiguity resolution approaches 

Resolving the integer ambiguities N(t) is a prerequisite of positioning applications based on 
GPS carrier phase measurements. As seen from Eq. (1-15), the double-differenced carrier 
phase observation equation is an underdetermined equation and the ambiguities cannot be 
solved directly. When coupling with GPS code measurements, the non-dispersive terms can 
be eliminated. However, the remaining high thermal noises of pseudorange measurements, the 
ionospheric errors as well as the multipath errors make it difficult to derive the true integer 
values of ambiguities instantaneously.  

The ambiguity resolution aims at defining a search space for ambiguity candidates and 
identifying the correct candidate. It mainly involves three sequential steps 
(Hofmann-Wellenhof et al. 2001). The first step is to resolve the float ambiguities, namely to 
calculate the float values of ambiguities through a proper mathematic model. The second step 
is to generate integer candidates around the float values and choose the best one. The first two 
steps determine the center and the size of the search space. The final step is the ambiguity 
validation, namely to verify whether or not the best ambiguity candidate is the correct one.   

2.1.1 Generation of float ambiguities 

In the single-frequency GPS, the float ambiguities can be calculated by incorporating the code 
measurements. The double-differenced code and carrier phase observation equations can be 
simplified as: 

where 1L  and 1LR  are the double-differenced carrier phase and code measurements 
on L1 signal in a vector form; , 1phase Le  and , 1code Le  are remaining errors for carrier 
phase and code measurements, respectively. Although the ambiguity term is identified with 
the time dependence, it should be constant value without cycle-slips or loss of lock. The 

Carrier phase: 1 1 1 1 , 1L L L L phase Lt t t tN e  

Code: 1 , 1L code Lt t tR e  
(2-1) 
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geometric term  is equivalent for both equations, and hence it can be computed firstly using 
code measurements and then substituted into the carrier phase equation. After that, the float 
ambiguity is ready to be calculated.  

Compared to single-frequency receivers, dual-/multi-frequency receivers allow a much 
faster ambiguity resolution by using linear phase combinations. Commonly used 
combinations include the ionosphere-free combination, the geometry-free combination and  
the time-variance combination (Teunissen and Kleusberg 1998). The combined signals may 
present much longer wavelengths than each individual signal and hence the integer solution of 
ambiguities on the combined signals can be immediately achieved. Following that, the 
candidates of NL1 can be restricted to a smaller search space by the decorrelation (Horemuž 
and Sjöberg 2002). 

2.1.2 Search of ambiguity candidates 

The float ambiguities determine the center of the search space for integer ambiguity 
candidates, whereas the size of the search space is another important factor. Referring to a 
certain observation epoch t, the search space for each ambiguity can be expressed by: 

where ˆ
iN  is the float ambiguity and iN  is an integer ambiguity candidate;  is the 

size of the search space in one dimensional case. A proper choice of the term  is a crucial 
step for ambiguity resolution. If the search range is too small, the true value might be 
excluded and the ambiguity resolution might fail. If the search range is too large, it yields 
huge computational burden and severely delays the ambiguity resolution. A correct set of 
ambiguities should offer the minimal sum of residuals. Here the term “residuals” means the 
deviation between the estimated double-differenced GPS carrier phase measurements and the 
actual measurements. In this case, the search of the ambiguity candidates can be considered as 
a minimization procedure as follows (Teunissen and Kleusberg 1998): 

where ˆ iz  is the i-th double-differenced phase measurements related to the ambiguity 
candidate ˆ

iN ; zi is the actual double-differenced phase measurements; ˆCov z  is the 
error covariance matrix of measurements. The size of the search range can be determined 
through the following approaches: 
 
 Using the fixed variance of each ambiguity  

Assuming that the ambiguities have a covariance matrix Cov N  and neglecting the 
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correlation between the ambiguities, the search range for each ambiguity candidate is then: 

where  is a scaling factor determining the confidence level used for searching. All terms 
given above are referred to a specific epoch. The determination of ambiguity covariance 
matrix is a quite flexible task, which can be affected by the observation model used, the 
satellite geometry, the measurement qualities, etc (Abidin 1993; Kim and Langley 2000; 
Teunissen and Kleusberg 1998).  
 
 The reduction of the search space by the search domain transformation 

The reduction of the search space can be realized by transforming the original ambiguity sets 
into a decorrelated space (Kim and Langley 2000; Teunissen 1995). 
 
 The sequential conditional search 

Due to the integer properties of ambiguities and the correlation in Cov(N), once the 
ambiguities 1N̂ ,…, ˆ

iN  have been fixed, the variance of the next ambiguity Cov(N)i+1,i+1 may 
be reduced in comparison with its original value. Starting from 1990, it becomes the most 
popular approach for the ambiguity resolution, and many studies have been investigated based 
on this idea, for example the Fast Ambiguity Resolution Approach (Frei and Beuler 1990), the 
Least-Squares Ambiguity Search Technique (Hatch 1990) and the LAMBDA (Least-squares 
AMBiguity Decorrelation Adjustment) technique (Teunissen 1995), where the LAMBDA 
approach provides not only the highest success rate of the ambiguity resolution but also an 
effective ambiguity validation (Teunissen 1999; Verhagen 2004).  
 
 The reduction of the search space using constraints 

In some specific applications, the geometry and the distance between the base and rover 
antennas serve as constraints for ambiguity searching and might significantly reduce the 
searching time. In a GPS multi-antenna system, the baseline lengths between antennas can be 
used. Considering a general model for ambiguity resolution: 

where A is the design matrix containing line-of-sight vectors; x is the antenna coordinate to 
be estimated. The squared baseline length l is equal to the state vector multiplied by its 
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transpose. 

By applying the decomposition to the design matrix A, the relation between the ambiguity 
candidates N  and the baseline length l can be established. Lu proposed the use of 
Cholesky decomposition (Lu et al. 1994) for the primary four satellites. The application of 
QR decomposition (Sutton 1997) and Singular Value Decomposition (Park et al. 1996) have 
already been studied. These algorithms sequentially add constraints to each ambiguity 
candidate. The shorter the baseline is, the fewer candidates lie in the search scope, and hence 
the faster the ambiguity resolution will be. However, a short baseline yields less precise 
attitude parameters. For these reasons, a trade-off between the precision and the efficiency is 
usually in need. 

2.1.3 Ambiguity validation 

The ambiguity candidate that leads to the minimal sum of squared residuals can be identified 
as the best candidate within the search space. However, the best candidate does not implicitly 
mean the correct one. In order to judge the success of the ambiguity resolution, the ambiguity 
validation is needed. The ambiguity validation comprises two steps. Firstly, the best candidate 
should make the carrier phase measurements obey the stochastic behavior of the adjustment 
procedure. Secondly, the best candidate should contribute significantly lower sum of squared 
residuals than the second best one. More details can be found in (Verhagen 2004). 

Once the ambiguities are resolved, they should keep unchanged if the associated carrier 
phase measurements are still available. However, anomalies might occur on the carrier phase 
measurements, so that a one-time ambiguity resolution cannot guarantee the safe use of 
carrier phase measurements during the entire observation session. In many GPS positioning 
applications, especially for single-frequency receivers, the real-time ambiguity resolution is 
still a challenging task. It is therefore not applicable to carry out the ambiguity resolution 
epoch by epoch to exclude these phase anomalies. Instead, we can implement rapid and 
sensitive approaches to detect and repair these anomalies. This technique is called “cycle-slip 
detection and repair”, which will be elaborated in the following sections. 

2.2 Overview of cycle-slip detection and repair 

“A cycle-slip is a sudden jump in the carrier phase observable by an integer number of cycles” 
(Leick 2004). Reasons of cycle-slips come from the failure of GPS receivers, the signal 
interruption, the low signal-to-noise ratio, or the high receiver dynamics. Cycle-slips may 
occur independently on each carrier frequency per GPS satellite and remain in the phase 
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TT T
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measurements. The handling of cycle-slips is conventionally composed of four sequential 
stages:  

(1) cycle-slip detection, which checks the occurrence of cycle-slips.  
(2) cycle-slip determination, which quantifies the sizes of cycle-slips. 

  (3) cycle-slip validation, which tests whether the cycle-slips are correctly resolved (Kim 
and Langley 2001). 
  (4) cycle-slip removal, which removes the cycle-slips from the associated phase 
measurement. 

The occurrence of cycle-slips is a random event, and therefore the cycle-slip detection 
should be applied epoch by epoch. For this reason, it should be a rapid algorithm with small 
computational burden. Cycle-slip determination and validation will be performed on the phase 
measurements contaminated by cycle-slips. After the cycle-slip values are calculated and 
validated, the cycle-slips can be simply removed by subtracting the cycle-slip values from the 
original phase measurements. 

The processing of cycle-slips can be applied either to the stand-alone positioning or to the 
differential positioning. In each case, the cycle-slip detection and determination can be further 
categorized according to the number of available signals. Listed below are the commonly 
used cycle-slip detection and determination methods and their application scenarios: 

Table 2-1: Application scenarios of cycle-slip detection/determination algorithms 

Method Stand-alone positioning Differential positioning 
Single-Freq. Dual-Freq. Single-Freq. Dual-Freq.

polynomial fitting 
(Beutler et al. 1984) 

x x x x 

high order differences 
(Hofmann-Wellenhof et al. 2001) 

x x x x 

Kalman filter prediction 
(De Jong 1998) 

 x  x 

phase combinations 
(Bisnath and Langley 2000; Blewitt 

1990) 

 x  x 

phase/code combination 
(Hofmann-Wellenhof et al. 2001) 

 x  x 

quality control 
(Kim and Langley 2001; Teunissen 

and Kleusberg 1998) 

   x 

The algorithms oriented to stand-alone receivers can also be applied to differential 
positioning and therefore have a wide range of application scenarios. For this reason, the 
techniques presented in the following text are dedicated to stand-alone receivers. 
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2.3 Cycle-slip detection for triple-frequency GPS 

In this section, we will firstly overview the cycle-slip detection techniques for single- and 
dual-frequency GPS and then elaborate the approach for triple-frequency GPS. 

2.3.1 Cycle-slip detection for single/dual-frequency GPS 

Considering the carrier phase measurements of a satellite tracked by a stand-alone GPS 
receiver, a general formulation for cycle-slips can be obtained by differencing the carrier 
phase observation equations between two adjacent epochs: 

where the operator t stands for the between-epoch differencing made between epoch t and 
t-1. The cycle-slip term is denoted by t LiN , namely the between-epoch difference of integer 
ambiguity. The other notations were clarified in (1-1) and (1-3). Note that the thermal noise e is 
given in units of cycles. In (2-7), the only output from the GPS receiver is the carrier phase 
measurement, and therefore the foundation for cycle-slip detection is to derive the relation 
between the cycle-slip term t LiN  and the carrier phase measurements t Li . For this reason, 
the other errors should be eliminated or reduced.   

For single-frequency GPS receivers, the cycle-slip detection faces a problem because the 
geometry term  is unknown. If the GPS antenna is not moving, the geometry term is mainly 
affected by the satellite motion. In this case, the phase measurements could obey a high-order 
polynomial. This allows a cycle-slip detection approach by testing whether or not the 
high-order differenced phase measurements agree with a Gaussian distribution. An example for 
third-order differencing is illustrated below:  

2
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Li
Li t Li t Li t Li t L t t t r t s Li t Li t Li

L

N I T S t c t c e M  (2-7) 
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The operator n
t  represents a n-order differencing ended at epoch t. If the antenna is stationary 

or moving with low maneuver and the epoch interval is not large, the remaining geometric term, 
the atmospheric and clock errors approach zero-values after differencing, so that the effect of 
cycle-slips can be remarkably demonstrated. A static experiment is carried out in order to show 
the performance of this approach. The GPS antenna is mounted on the roof of the institute 
building. The L1 phase measurements of the satellite PRN 16 are collected starting from 16:00 
on the 11th April 2008 (UTC time) with a sampling frequency of 1 Hz. The original and 
differenced phase measurements are plotted versus time in Figure 2-1, where the last two 
subplots are the histograms for the second- and the third-order differenced phase 
measurements.  
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Figure 2-1: Differenced phase measurements without cycle-slips 

Denoting the second- and third-order differenced phase measurements as 2d  and 3d , 
respectively, the experimental results show that 3d  obeys a Gaussian distribution with a 
zero-valued mean value and standard deviation of 0.08 cycles, if no cycle-slip occurs. 
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Suppose that a cycle-slip with the magnitude of 1 cycle arises at 500th epoch, we have the 
following second- and third-order differenced phase measurements. 
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Figure 2-2: Differenced phase measurements with cycle-slips 

There is an apparent jump at 500th epoch due to the cycle-slip, even if the magnitude of 
the slip is only 1 cycle. The previous discussions shows that the occurrence of a cycle-slip can 
be probably identified by checking whether the third-order differenced phase measurements 
agree with a predefined zero-mean Gaussian distribution. This algorithm employs only the 
phase measurements and hence it is less affected by the thermal noises and the multipath 
errors. However, the results given above are obtained from a static antenna, where the 
variation of the carrier phase measurement mainly reflects the motion of the GPS satellite 
along its orbit. If the antenna is moving, the third-order differenced phase measurements 
might lose the Gaussian behavior. Some techniques have then been developed to incorporate a 
proper dynamic model into a Kalman filter (Jia and Wu 2001). However, when the antenna is 
undergoing a complex motion, like a sharp change in the moving direction, the dynamic 
model may not fit well the actual maneuver. For this reason, the single-frequency cycle-slip 
detection is still challenging in dynamic scenarios. 

Dual-frequency GPS receivers have a distinct superiority over the single-frequency 
receivers in the cycle-slip detection, because the geometry term and the non-dispersive errors 
can be fully eliminated by a geometry-free phase combination (Leick 2004):  
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The remaining errors include the ionospheric error t I  , the phase thermal noise te  and 
the multipath error t M . The thermal noise can be considered as a zero mean white 
Gaussian noise and its standard deviation is dependent on the quality of the receiver. The 
variation of ionospheric errors is just at sub-millimeter level if the GPS data rate is high 
(Borre 2003). Moreover, the geometry-free combination furthermore reduces the magnitude of 
the L1 ionospheric error by 35% due to the term 2 2 2

1 2 1L L L . For theses reasons, we can 
often neglect the ionospheric error in case of a high GPS data rate. The multipath errors 
depend on the environment nearby and normally do not obey a Gaussian distribution. Its 
effect on the cycle-slip detection and determination for triple-frequency cases will be 
demonstrated with numerical results in section 2.7.3 and section 2.7.4. If we first neglect the 
multipath terms, Eq. (2-9) can be simplified to: 

If no cycle-slip arises, t N  term should be zero, implying that the value of t  term 
should fall within the error range bounded by te , otherwise we can confirm an occurrence 
of the cycle-slips either on L1 or L2 or simultaneously on both signals. Due to the elimination 
of the geometry term, the cycle-slip detection for a dual-frequency GPS receiver is applicable 
for any dynamic application. A major limitation lies in the insensitive cycle-slip pairs, for 
example when the cycle-slip on L1 ( 1t LN ) is 9 cycles and on L2 ( 2t LN ) is 7 cycles. Since 
their ratio is approximately equal to the ratio of their corresponding carrier frequencies, the 
right-hand side of Eq. (2-10) is close to zero. These insensitive cycle-slips leave a hidden 
danger for cycle-slip detection.  

2.3.2 Cycle-slip detection for triple frequency GPS 

Due to the introduction of the new GPS L5 signal, the traditional approaches dealing with 
cycle-slip problems should be expanded to triple-frequency cases. Literature regarding 
triple-frequency cycle-slip detection and correction is still scarce, leaving a space for 
innovation. It is quite straightforward to construct the geometry-free combination for 
cycle-slip detection, as already presented for dual-frequency GPS. A general phase 
combination for triple-frequency GPS signals can be formulated as:   

1 1 2 2
2 2
1 2

1 1 2 2 1 1 1 2 2 1 22
1

L t L L t L

L L
L t L L t L t L L t L L t L t L t L
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In order to adapt the model (2-11) to the cycle-slip detection, the non-dispersive error f(d), 
including the geometric term, the tropospheric error, the satellite orbit and clock errors as well 
as the receiver clock error, can be eliminated by assuring 1 2 5 0w w w . Meanwhile, the 
dispersive error term f(e) needs to be minimized, which will be detailed in section 2.3.3. Let 
us first assume that f(e) has be optimally minimized and the remaining value is ignorable, the 
following relation holds true: 

The carrier phase noise t Lie  is assumed to be white Gaussian noise. It is further assumed 
that the signals have the same resolution in units of cycles (Leick 2004), i.e. 

1, 2, 5,L cycle L cycle L cycle  where  stands for the standard deviation. Applying the variance 
propagation law yields the noise of the left-hand side of Eq. (2-12), expressed by c : 

where 2  reflects the between-epoch differencing. 
By choosing a proper confidence level, we have a critical value cf  to test the 

occurrence of the cycle-slips, where the scalar f  is a multiplication factor usually chosen as 
3 (99.7% confidence level) or 4 (99.9% confidence level) in GPS applications. Summarizing 
the discussions above, we can conclude the occurrence of a cycle-slip if the following 
inequality holds true, 

As there are more geometry-free combinations available for triple-frequency signals, 
there are two questions to be considered, one is how to find the optimal combination(s), the 
other one is how to benefit from the increased number of geometry-free combinations. These 
two questions will be explored in section 2.3.3 and section 2.3.4, respectively. 
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2.3.3 Selection of the optimal geometry-free combinations 

The optimization of the geometry-free phase combination focuses on minimizing the 
dispersive term f e  in Eq. (2-11). Substituting the complete dispersive terms identified in 
(2-11) into (2-14) yields a rigorous cycle-slip detection model: 

Denoting the denominator as Scomb, we can see that the term to be minimized is actually not 
f e  itself but combf e S , namely the error with respect to the combined carrier 

wavelength. Such a minimization procedure for the thermal noise, the ionospheric delay and 
the multipath error can be formulated from (2-16) to (2-18), respectively. 

Relation (2-16) is obtained under the assumption that the carrier phase has the same 
standard deviation for each signal. Due to the known difficulties in the modeling of multipath 
errors, we will not explore the effect of multipath on the cycle-slip detection mathematically. 
The performance of cycle-slip detection under a high-multipath environment will be shown 
later using simulations. A similar determination procedure for scalars can be read from (Fan et 
al. 2006), where only the reduction of thermal noise is considered.  

The thermal noise reduction shown in (2-16) requires that the scalars 1,2,5i iw  are small 
and therefore we fix the search range of each scalar from -4 to +4 cycles. Within this range, 
the scalars presented in Table 2-2 yield the geometry-free combinations having relatively 
small ionospheric residuals, where the title “ionospheric residuals” represents the result of the 
left-hand side of (2-17). 

1 1 1 2 2 2 5 5 5
1,2 2 2 2 2 2

1 1 2 2 5 52
L t L L t L L t L

L cycle

L L L

w w w f e
f
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 (2-15) 

Thermal noise: 2 2 2 2 2 2
1 1 2 2 5 5 minL L L combw w w S  (2-16) 

Ionospheric delay: 2 2 2 2
1 2 2 1 5 5 1 minL L L L combw w w S  (2-17) 

Multipath error: 1 1 2 2 5 5 mint L t L t L combw M w M w M S  (2-18) 
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Table 2-2: Geometry-free combinations with small ionospheric residuals 

1 2 5( , , )w w w  
Ionospheric 

residuals 1 2 5( , , )w w w  
Ionospheric 

residuals 
(-1, 4, -3) 0.166 IL1 (-2, 3, -1) 1.328 IL1 
(-1, 3, -2) 0.388 IL1 (-3, 4, -1) 1.547 IL1 
(-1, 2, -1) 0.859 IL1 (-1, -1, 2) 1.576 IL1 
(-1, -3, 4) 0.971 IL1 (-2, -1, 3) 1.951 IL1 
(-1, -2, 3) 1.171 IL1 (-3, -1, 4) 2.116 IL1 

Based on the scalars presented in Table 2-2 we can make a trade-off between the 
reduction of thermal noise and ionospheric errors. It should be stressed that the scalars should 
be non-zero values. A zero-valued scalar implies the exclusion of the cycle-slip detection on 
the corresponding signal.  

2.3.4 Detection of the insensitive cycle-slips   

Similar as dual-frequency signals, there are also insensitive cycle-slips for triple-frequency 
signals. These cycle-slips usually fulfill the relation: 

It can be understood that the insensitive cycle-slips are related to the scalars 1,2,5i iw . 
The insensitive cycle-slips ranging from 0 to 10 cycles belonging to the combination 
( 1 2 51, 1, 2w w w ) are given in Table 2-3, where the “detection value” indicates the 
value of the left-hand side of (2-19). 
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Table 2-3: Insensitive cycle-slips 

Cycle-slips Detection values 
(0, 2, 1) 0.0213 
(3, 4, 3) 0.0188 
(3, 6, 4) 0.0025 
(3, 8, 5) 0.0237 
(4, 1, 2) 0.0139 

(6, 10, 7) 0.0163 
(7, 5, 5) 0.0048 
(7, 7, 6) 0.0164 
(8, 0, 3) 0.0066 

(10, 9, 8) 0.0236 

In case of dual-frequency GPS, these insensitive cycle-slips are usually ignored due to their 
low probability. In triple-frequency GPS, the number of insensitive cycle-slips can be reduced 
due to the fact that the insensitive cycle-slips associated to a specific geometry-free 
combination could be detected by applying other geometry-free combinations. Nevertheless, 
the following cycle-slips are immune to geometry-free combinations as they are proportional 
to their individual frequencies:  

We define the cycle-slips in (2-20) as the most insensitive cycle-slips. For the sake of 
computational efficiency, it is expected to detect maximal number of cycle-slips using minimal 
number of geometry-free combinations. The study reveals that all the cycle-slips except for the 
most insensitive ones can be detected by properly choosing two geometry-free combinations 
from Table 2-2. These phase combinations are presented in Table 2-4, where the last column 
shows the sum of the ionospheric residuals. 

Table 2-4: Two geometry-free phase combinations for cycle-slip detection 

No First combination Second combination Sum of ionospheric residuals 
1 (-1, -1, 2) (-1, 4, -3) 1.7414 IL1 
2 (-1, 2, -1) (-1, -3, 4) 1.9639 IL1 
3 (-1, -1, 2) (-1, 3, -2) 1.8295 IL1 
4 (-1, 2, -1) (-1, -2, 3) 2.0305 IL1 

By comparison, we use the geometry-free combinations constructed by scalars (-1, -1, 2) 
and (-1, 4, -3) simultaneously for cycle-slip detection, because they contribute the smallest 
ionospheric residuals. We define them as the first optimal phase combination and the second 

1 2 5 1 2 5, , | 154 , 120 , 115 ,L L L L L LN N N N a N a N a a  (2-20) 
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optimal phase combination, respectively.   
Such a selection criteria for scalars can also be applied to GALILEO system, where the 

scalars (-1, 2, -1) and (-1, -4, 5) can be used for E1, E5a and E5b signals (Dai et al. 2008). 

2.4 Cycle-slip validation for triple-frequency GPS 

Traditionally, the cycle-slip validation is the next step following the cycle-slip determination. 
But in this study, the cycle-slip validation is embedded into the cycle-slip determination to test 
the cycle-slip candidates. For this reason, we will firstly introduce the cycle-slip validation in 
this section and then the cycle-slip determination afterwards.  

The aforementioned cycle-slip detection approach can serve as the cycle-slip validation 
approach with a slight modification:  

In comparison with formula (2-14), the difference of (2-21) lies in the superscript “repair”, 
which implies that the carrier phase measurements is already corrected by subtracting the 
calculated cycle-slip values from the original phase measurements. Once the repaired phase 
measurements do not agree with (2-21), it means that this cycle-slip candidate under test is 
not the correct one. 

2.5 Cycle-slip determination for triple-frequency GPS 

Once the cycle-slips on a satellite have been detected, the next step is to quantify the sizes of the 
slips. A general model for cycle-slip determination can be formulated as:  

where the non-dispersive errors, including the tropospheric delay, satellite and receiver clock 
bias, are put into the term t , since they contribute the same amount to all signals; the 
column vector e contains the thermal noise, multipath error and the remaining ionospheric 
error after being differenced. It is worth noting that the ˆ

tN  represents the float cycle-slips 
rather than its integer counterpart to be determined. The term t  is shifted to the left-hand 
side of the equation as a known value in order to avoid an underdetermined model. However, 
this term is still unknown and should be estimated a priori using additional measurements 
immune to cycle-slips. Referring to stand-alone receivers, the following data can be employed 
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to estimate t : (a) the predicted phase measurements based on a polynomial fitting; (b) the 
code measurements; (c) the Doppler frequency data. The Doppler frequency data, however, are 
not available for some receivers. For this reason, we mainly focus on the first two types of 
measurements.  

2.5.1  Measurements used for cycle-slip determination 

The predicted phase based on a polynomial fitting can be used for cycle-slip determination. 
The phase at epoch t is assumed to fit a n-order polynomial as:  

so that the t  of Eq. (2-22) can be estimated by ˆ
t t t  , where ˆ

t  denotes the 
predicted phase; t  is the received phase measurement; 1,2...i i na  are the coefficients of the 
polynomial. The coefficients can be estimated using the least-squares principle based on the 
previous phase measurements of at least n+1 epochs.   
 We can also use the code measurements to estimate the t  term from the following 
relation:  

where the symbol tR represents the between-epoch code measurements; I stands for [1 1 1]T; 
et,code contains the thermal noises of the code measurement.  

Both kinds of measurements fit different scenarios. The phase prediction based on the 
polynomial fitting employs only the phase measurements, and hence it provides high quality 
phase estimation in static or low dynamic case and is less affected by multipath errors. If the 
antenna undergoes a complex motion, this method might provide unexpected results. The 

t  related to the code measurements is not affected by the maneuver of the antenna, but 
using code measurements might cause the problems in the following two aspects. Firstly, the 
large thermal noises of code measurements might severely enlarge the search space. Secondly, 
in a rich-multipath environment, the multipath error contained in the code measurements 
might bias the center of the search space and moreover excluded the true cycle-slip value 
from the search space. For these reasons, both measurements can be adaptively used in order 
to take their advantages in different scenarios. The first choice is the predicted carrier phase 
measurements. If the cycle-slip values cannot be determined in this case, the code 
measurements can be used instead. If the true cycle-slip values are still not resolvable, it can 
be concluded that the cycle-slip determination cannot offer a reliable estimation of cycle-slips, 
and hence the phase measurements of the current epoch cannot be further used for positioning. 
In this case, either the ambiguity resolution should be performed again or the handling of 
cycle-slips should be shifted to the next epoch.  

1
1 1 0

ˆ ...n n
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2.5.2 Search of cycle-slip candidates 

After t  is determined, we can invoke the Least-squares AMBiguity Decorrelation 
Adjustment (LAMBDA) technique (Teunissen 1995) to determine the cycle-slip values. The 
covariance matrix of cycle-slips and the estimated float cycle-slip values are required by the 
LAMBDA technique. In Eq. (2-22), the covariance matrix of known values tCov l  and that 
of float cycle-slips ˆ

tCov N  read: 

where tCov  is the variance of t and depends on the measurements used, as 
presented in (2-23) and (2-24); tCov  is the error covariance matrix of the carrier phase 
measurements on the triple-frequency signals; I is a three-dimensional identity matrix; the 
factor 2 in the expression of tCov l  reflects the between-epoch differencing; the other 
short-hand notations are introduced in model (2-22). 

The estimated float cycle-slips ˆ
tN  can be obtained following the least-squares principle:  

The three-dimensional cycle-slip search space is defined as: 

where tx  contains the cycle-slip candidates at epoch t; ˆ
tN  represent the float cycle-slip 

values and tN  is the integer cycle-slips to be searched. The search space might contain 
more than one cycle-slip candidate. These cycle-slip candidates should be tested individually 
by the cycle-slip validation criteria given in (2-21). If just one candidate passes the validation, 
it can be concluded that the cycle-slip is correctly resolved.  

The original search space usually manifests itself as an elongated ellipsoid due to the 
correlation between cycle-slips of different signals. In order to reduce the search time, the 
search space should be decorrelated. The decorrelation is achieved by iteratively applying the 
integer approximations of the conditional least-squares transformations (Teunissen 1995). An 
example for decorrelation of the search space is illustrated in Figure 2-3, where the ellipsoid 
represents the three dimensional search space and the ellipse represents the search area 
projected onto each two-dimensional plane: 
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Figure 2-3: Original and decorrelated ellipsoidal search space of cycle-slip candidates 

It can be seen that the originally elongated search space has been flattened by the 
decorrelation. Note that the center of search space is also shifted by the decorrelation, and 
hence the selected cycle-slip candidates need to be retransformed into the original space.  

2.6 Flowchart of cycle-slip handling for triple-frequency GPS 

A flowchart of the proposed cycle-slip detection, determination, and validation approaches for 
triple-frequency GPS is presented in Figure 2-4. 
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search space 

Decorrelated 
search space 
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Figure 2-4: Flowchart of triple-frequency cycle-slip detection and repair 
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2.7 Test of cycle-slip detection and repair approaches using 

synthetic data 

Simulations are carried out to test the proposed cycle-slip detection, determination and 
validation approaches. The code and carrier phase measurements are generated using the 
commercial GNSS software simulator SatNav Toolbox 3.0 for MATLAB® by GPSoft®. The 
ionospheric and multipath errors are generated using the models given in section 1.3.2. 
Tropospheric errors are neglected as they will be totally removed by geometry-free 
combinations. The satellite trajectory is calculated using the ephemeris data of GPS satellites. 
The error-free phase and code measurements are generated at first according to the satellite 
coordinates and the antenna location. Then the errors are added to the phase and code 
measurements, where the thermal noises are produced as white Gaussian noises. The standard 
deviation of the code noise is related to the carrier phase noise by (Leick 2004): 

where k is a constant multiplication factor indicating the error level of the code measurements.    
The antenna is undergoing a movement along a trajectory illustrated in Figure 2-5. Given 

in the axes are the coordinates in X and Y direction in the Earth-Centered-Earth-Fixed (ECEF) 
frame. We assume that the antenna is always moving at the ellipsoidal height of 360 m, i.e. Z 
value is a constant value. The numbers marked in the figure represent the epochs.   

1

1

1

1

Li L

Li L

Li L

R Li L k
 (2-28) 
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Figure 2-5: Motion trajectory of the antenna 

Figure 2-6 shows the multipath errors contained in the carrier phase measurements and 
the code measurements in a low-multipath environment, whereas Figure 2-7 shows the 
multipath errors in a high-multipath environment. They have the same pattern but different 
magnitudes.  
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Figure 2-6: Generated low multipath errors 

 



  36

10 20 30 40 50 60 70 80 90 100
-0.04

-0.02

0

0.02

0.04

Epoch

M
ul

tip
at

h 
er

ro
r [

m
]

 

 

Phase L1
Phase L2
Phase L5

10 20 30 40 50 60 70 80 90 100
-40

-20

0

20

40

Epoch

M
ul

tip
at

h 
er

ro
r [

m
]

 

 

Code L1
Code L2
Code L5

 

Figure 2-7: Generated high multipath errors 

Other parameters for the simulation are listed in Table 2-5:  

Table 2-5: Parameters for the simulation 

Parameter  value Remarks 
f  in (2-14), the multiplication 
factor for cycle-slip detection 

3 3-sigma standard deviation is adopted to detect 
the cycle-slips.  

n in (2-23), the order of 
polynomial  

3 3-order polynomial is used to predict the 
carrier phase of current epoch, namely the 
previous 4 epochs are involved.  

k in (2-28) 154 It corresponds to the P code chipping rate on L1 
signal. For C/A code, this value should be 
enlarged depending on the technique used. 

Sampling rate of GPS 1 Hz The problem with low sampling rate will be 
shown in the later context.  

1L
 in (2-28) 0.01 cycles The standard deviation of the carrier phase 

noise is set as 1% of the wavelength. 

The original phase measurements signal are proven to be cycle-slip free, and hence some 
cycle-slips should be deliberately added to the original carrier phase measurements in order to 
test the algorithms. After the cycle-slips are fixed, they will be removed directly from the 
original phase measurements and hence will not affect the following epochs any more. 
Therefore, even when the cycle-slips occur epoch by epoch, the algorithms still works 
properly. 
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2.7.1 Cycle-slip detection in a low-multipath environment 

Small cycle-slips ranging from 0 to 2 cycles, i.e. from (0, 0, 1) to (2, 2, 2), have been added to 
the phase measurements starting from the 2nd epoch with an interval of 4 epochs. Figure 2-8 
shows the detection values of cycle-slips using only the first optimal phase combination. 
According to the parameters given in Table 2-5, the threshold for cycle-slip detection is 0.03 
cycles. 
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Figure 2-8: Cycle-slip detection results in low-multipath environment 

Except for the cycle-slip (0, 2, 1) at the 26th epoch, the detection value of the other small 
cycle-slips exceed the threshold. Thus, this detection algorithm is sensitive to small 
cycle-slips.    

Problems with detection are shown by using the cycle-slips given in Table 2-3.   
According to the previous analysis, these cycle-slips cannot be detected by using the first 
optimal phase combination. This also explains why the cycle-slip (0, 2, 1) lies within the 
thresholds in Figure 2-8. We add these insensitive cycle-slips into the original phase 
measurements at the epochs marked in Figure 2-9. Figure 2-10 demonstrates the different 
detection values when detecting cycle-slips using the aforementioned two optimal phase 
combinations.   

Insensitive 
cycle-slip 
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Figure 2-9: Trajectory with cycle-slip epochs identified 
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Figure 2-10: Detection values using both optimal phase combinations 

The lower figure indicates that the detection values from the second optimal phase 
combination apparently exceed the threshold of ±0.03 cycles. It implies that these cycle-slips 
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insensitive to the first optimal phase combination have been detected by the second optimal 
phase combination.  

2.7.2 Test of cycle-slip determination in a low-multipath environment 

We use the cycle-slips in Table 2-3 again to test the cycle-slip determination and add them to 
the phase measurements at the epochs given in Figure 2-9. Multipath errors are illustrated in 
Figure 2-6. The results obtained using the predicted phase measurements and the code 
measurements are given in Table 2-6, where the notation “None” implies that none of the 
results from LAMBDA has passed the cycle-slip validation, or in other words, this cycle-slip 
is not correctly determined.  

Table 2-6: Cycle-slip determination results under a low-multipath environment 

Epoch True 
Value 

Float value 
(phase prediction) 

Float value 
(code 

measurements) 

Integer 
value(phase 
prediction) 

Integer value 
(code 

measurements)
7 0,2,1 0.015,1.953,0.925 3.442,4.678,3.560 0,2,1 0,2,1 

17 3,4,3 3.007,4.020,2.984 1.734,3.023,2.063 3,4,3 3,4,3 
25 3,6,4 3.020,6.047,4.090 2.336,5.489,3.508 3,6,4 3,6,4 
36 3,8,5 2.948,7.994,5.085 6.224,10.508,7.425 3,8,5 3,8,5 
40 4,1,2 3.991,1.055,2.047 2.923,0.183,1.230 4,1,2 4,1,2 
50 6,10,7 6.064,9.990,6.945 6.338,10.236,7.216 6,10,7 6,10,7 
60 7,5,5 6.957,4.966,5.017 11.495,8.505,8.376 7,5,5 7,5,5 
72 7,7,6 -27.197,-19.627,-19.565 -0.426,1.207,0.438 None 7,7,6 
77 8,0,3 7.897,-0.093,2.918 9.215,0.957,3.910 8,0,3 8,0,3 
82 10,9,8 15.084,13.039,11.830 1.513,2.390,1.658 None 10,9,8 

 
It can be seen that the method based on the phase prediction fails at the 72nd and 82nd 

epochs. At the 72nd epoch, the antenna is changed from a sinuous motion to a straight line 
motion. At the 82nd epoch, the antenna has just made a sharp turn between two straight line 
motions. Since we use a three-order polynomial fitting, once the antenna has undergone a 
significant change in the motion direction in the previous four epochs, the phase prediction 
may provide a wrong result. However, the incorrectly estimated cycle-slips can be filtered out 
by the cycle-slip validation.  

As discussed before, the cycle-slip determination based on the code measurements is 
independent of the motion status of the antenna. Under the low-multipath environments, the 
multipath errors on the code measurements will not severely bias the float cycle-slip estimates, 
so that the LAMBDA technique will output the correct integer cycle-slip values. The results 
listed in the last column of Table 2-6 reveal that these cycle-slips are correctly identified since 
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the estimated integer values equal the corresponding true values. 

2.7.3 Test of the cycle-slip detection in high-multipath environment 

The multipath errors on the carrier phase measurements are several orders of magnitude lower 
than that on the code measurements. The detection part is mainly related to carrier phase 
measurements and hence less affected by the multipath. 

We use insensitive cycle-slips given in Table 2-3 to check the different detection values in 
different multipath environments. The detection results using the first optimal phase 
combination are depicted in Figure 2-11.  
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Figure 2-11: Cycle-slip detection under low multipath 

The “detection values” refers to the left-hand side Eq. (2-19). Although different 
multipath errors yield different detection values, these detection values are still limited within 
the thresholds. Figure 2-12 shows the detection values when adding small cycle-slips ranging 
from (0, 0, 1) to (2, 2, 2) into the original phase measurements with the interval of 4 epochs.  
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Figure 2-12: Cycle-slip detection under high multipath 

Comparing with Figure 2-10 we can observe similar detection values in low- and 
high-multipath environments. These results agree with our analysis that the multipath errors 
do not affect the cycle-slip detection significantly. 

2.7.4 Test of the cycle-slip determination in a high-multipath environment 

The cycle-slip determination will employ either the predicted phase measurements or the code 
measurements. The predicted phase is less affected by the multipath, whereas the large 
multipath on the code measurements may severely bias the center of the search space, so that 
the initial search space might not contain the true cycle-slip value.  

We utilize again the same insensitive cycle-slips used in low-multipath environment. The 
multipath errors are depicted in Figure 2-7. The determination results are given in Table 2-7.  
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Table 2-7: Cycle-slip determination under a high-multipath environment 

Epoch True 
Value 

Float value 
(phase prediction) 

Float value 
(code measurements) 

Integer 
value(phase 
prediction) 

Integer 
value 
(code) 

7 0,2,1 0.038,1.971,0.939 26.081,22.334,20.464 0,2,1 None 
17 3,4,3 2.967,4.036,2.983 3.097,4.089,3.094 3,4,3 3,4,3 
25 3,6,4 2.989,6.063,4.122 18.039,17.741,15.238 3,6,4 3,6,4 
36 3,8,5 2.946,8.010,5.106 24.371,24.653,20.988 3,8,5 None 
40 4,1,2 4.014,1.033,2.046 -20.327,-17.950,-16.158 4,1,2 None 
50 6,10,7 6.017,10.013,6.907 21.938,22.402,18.875 6,10,7 6,10,7 
60 7,5,5 6.946,4.980,4.971 27.186,20.740,20.095 7,5,5 7,5,5 
72 7,7,6 -27.114,-19.593,-19.551 -5.201,-2.526,-3.108 None 7,7,6 
77 8,0,3 7.892,-0.093,2.896 1.297,-5.210,-2.021 8,0,3 8,0,3 
82 10,9,8 15.092,13.051,11.819 -1.531,0.013,-0.628 None 10,9,8 

 
By comparing with Table 2-6 we can see that the cycle-slip determination based on the 

predicted phase measurements shows a similar performance in low- and high-multipath 
environments. When using the code measurements, the cycle-slips at the 7th, 36th and 40th 
epoch cannot be fixed in the high-multipath environment, whereas these cycle-slips can be 
correctly identified in the low-multipath environment.  

2.7.5 Test of the cycle-slip detection with long observation intervals 

The cycle-slip detection criterion is established under a slight ionospheric change between 
adjacent epochs. This assumption is valid for a short observation interval. For a long 
observation interval, the change of the ionospheric delay can be large and remarkably affect 
the cycle-slip detection. We design a static scenario to show the effects of the observation 
interval on the cycle-slip detection. The antenna is fixed at the initial position as given in 
Figure 2-5 and the observation takes 60 epochs. The ionospheric delay on L1 signal under 
different observation intervals is plotted versus time in Figure 2-13. As we are only interested 
in the variation of the ionospheric delay over time, the presented results are in fact obtained 
with respect to the value of the initial epoch. In Figure 2-14, the detection results based on the 
first optimal phase combination are depicted.  
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Figure 2-13: Variation of ionospheric error for different observation intervals 
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Figure 2-14: Cycle-slip detection values under different observation intervals 

With the increasing observation intervals, the detection values are closer to the threshold. 
For the observation interval of 30 seconds, some detection values even exceed the threshold, 
resulting in a wrong judgment on the cycle-slip occurrence. In this sense, the proposed 
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cycle-slip detection method is only applicable under high data rate. 

2.8 Conclusions 

In this chapter, a novel method for cycle-slip detection, determination and validation for 
triple-frequency GPS has been highlighted. This technique is designed for a stand-alone GPS 
receiver and suitable for real-time static or dynamic applications. 

The cycle-slip detection is implemented using two geometry-free phase combinations 
constructed by the scalars  (-1, -1, 2) and (-1, 4, -3) in order to detect a larger number of 
insensitive cycle-slips. The proper performance of the cycle-slip detection relies on the small 
change of ionospheric delay between two adjacent epochs, and hence this approach is only 
applicable given a high GPS data sampling rate. In some extreme cases, for example, 
magnetic storm, the detection approach may provide unexpected results.   

In the cycle-slip determination, the float cycle-slip values can be estimated either from 
the predicted phase measurements or from the code measurements. The phase prediction 
technique is less affected by multipath errors but will probably fail in a complex motion of the 
antenna. The use of code measurements is independent of the antenna motion but will be 
contaminated by large multipath errors. In order to improve the robustness, both techniques 
can be adaptively applied.   

With the improvement of the GPS receiver technology, a phase noise of 1% cycles or 
even lower can be achieved. At such a noise level, the cycle-slip validation allows a sensitive 
test criterion to the cycle-slip candidates.   
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3. Attitude determination using GPS 
After the ambiguities are resolved and the cycle-slips are checked, the carrier phase 
measurements can be used for attitude determination. In this chapter, we will at first explain 
the coordinate frames and the commonly-used attitude representations. Following that, the 
algorithms dedicated to the GPS multi-antenna systems will be overviewed and the 
least-squares attitude determination approach (LSAD) will be highlighted. Finally, the results 
from a site experiment will be presented to evaluate the performance of the system.  

3.1 Introduction to GPS multi-antenna systems 

The GPS multi-antenna systems for attitude determination can be categorized into dedicated 
and non-dedicated systems (Lu 1995). In a dedicated system, the antennas are connected with 
a specially designed receiver with a common oscillator synchronizing the signals. A 
non-dedicated system is composed of several antenna-receiver pairs. The output of the code 
and phase measurements from the receivers will be transferred to a common processing unit 
which performs the synchronization and the signal processing. Compared with dedicated 
systems, non-dedicated systems provide not only comparable results, but also 
cost-effectiveness (since off-the-shelf components can be used) and flexibility. In a dedicated 
system, a common oscillator is used for all antennas, and hence the receiver clock error can be 
cancelled by a single-differential processing. For non-dedicated systems, double-differential 
processing is required to cancel the satellite and receiver clock errors. Figure 3-1 is an 
illustration of a non-dedicated system. 

 

Figure 3-1: Non-dedicated GPS multi-antenna system 
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The basic idea behind the GPS multi-antenna system is to calculate the baselines between 
antennas using RTK technique and then to derive the attitude parameters. Carrier phase 
measurements are employed for high-accurate attitude solutions. Although only processing 
the pseudorange measurements also yields attitude parameters as well, the accuracy will be 
much lower. 

3.2 Coordinate frames 

In order to clarify the attitude determination using GPS multi-antenna systems, several 
coordinate frames needs to be distinguished, including the Earth-Centered-Earth-Fixed (ECEF) 
frame, the Local Level Frame (LLF), the Antenna Body Frame (ABF) and the Plane Body 
Frame (PBF). The ECEF and the LLF are depicted in Figure 3-2. 

 

Figure 3-2: ECEF and LLF 

The ECEF, also referred to as terrestrial equatorial system, is defined as follows: the 
origin is the geocenter; ECEFX  is located in the equatorial plane and points towards the 
Greenwich meridian; ECEFZ  is the rotation axis of the earth; ECEFY  completes the 
right-handed Cartesian system along with ECEFZ  and ECEFX .  

The LLF describes the local coordinate of a point with respect to a reference point, and it 
is usually expressed in East-North-Up (ENU) directions. The origin of the LLF is chosen as 
the reference point. LLFX  points to ellipsoidal east and LLFY  to north; LLFZ  is along with 
the ellipsoidal norm and points upwards. LLF is usually adopted as the reference frame in the 
attitude determination frame. 
 The ABF and PBF are described in Figure 3-3.   
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Figure 3-3: ABF and PBF 

The ABF is formed by the GPS antennas. We assume that the antennas are mounted on a 
rigid platform, i.e. the relative distances between antennas remain unchanged. One antenna is 
chosen as the master antenna, and the other antennas are called slave antennas. Actually, three 
antennas are sufficient to determine the ABF. The origin is chosen as the phase center of 
antenna 1, namely the master antenna. ABFY  is assumed along with the baseline from antenna 
1 to antenna 2. ABFX  is perpendicular to ABFY  and lies in the plane defined by antenna 1, 2 
and 3. ABFZ  is perpendicular to both of the ABFX  and ABFY  axis and points upwards. It 
should be stressed that we define the ABF using a configuration of three antennas, however, it 
does not mean that three antennas are prerequisites for attitude determination. Three or more 
antennas give us three-dimensional attitude parameters, whereas a dual-antenna configuration 
yields two-dimensional attitude parameters. Related information can be found in section 3.5. 

The PBF is defined according to the body architecture of an airplane. In the PBF frame, 
the PBFY  axis is drawn along the center line of the airborne fuselage from tail to front. The 

PBFX  axis is perpendicular PBFY  and parallel to the line from the left wing tip to the right 
wing tip. The PBFZ  points upwards and is perpendicular to both of the PBFX  and PBFY . The 
origin of the PBF can be simply assumed to be overlapped with ABF. 

3.3 Theoretical background for attitude determination 

The three-dimensional coordinate transformation from a-frame to b-frame can be expressed 
using Helmert formulation (Hofmann-Wellenhof et al. 2003): 
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where vectors ax  and bx  represent the coordinates in a-frame and b-frame, respectively; 

0,
b

ax  is the origin of b-frame expressed in a-frame; b
aR  is the rotation matrix from a-frame to 

b-frame;  represents the three-dimensional attitude parameters;  is the scaling factor. The 
complete transformation is composed of three components:  

1. Rotations reflected by b
aR ; 

2. Translations reflected by 0,
b

ax ; 
3. Scaling reflected by . 

In the GPS multi-antenna systems, the attitude represents the misalignment between the ABF 
and the LLF. As a result of the overlapped origin and the same scale of ABF and LLF, the 
only remaining transformation component is rotation. We therefore rewrite (3-1) as: 

where bn and ln represent the baseline vector from antenna n to antenna 1 (master antenna) 
expressed in ABF and LLF, respectively. For example, b2 represents the coordinate of antenna 
2 in ABF with respect to the master antenna (namely the origin of ABF), which can be 
expressed as 2 2, 2, 2,[ ]T

b b bx y zb . 

3.4 Attitude representation 

The three-dimensional attitude parameters can be represented using different parameterization 
frames, including Direction Cosine Matrix (DCM), Euler angles, quaternions, Euler 
Axis/Angle and Gibbs vectors (Wertz 1978). The DCM provides a general mathematical 
model for attitude determination. The Euler angles allow a clear view of the attitude 
information. In comparison with the Euler angles, the quaternions offer a very abstract but 
more robust expression of the attitude information. Different attitude parameterization 
schemes play different roles in attitude determination. The Euler angles are usually used as 
inputs and outputs of an attitude determination system. In some special applications, the 
quaternions can be used instead of Euler angles to yield a robust performance, especially 
when singularity problems take place. Figure 3-4 clarifies a general flow of attitude 
determination with different attitude representations. 

0, 1 2 3, ,b b b a
a ax x R x  (3-1) 

1 2 3, ,ABF
n LLF nb R l  (3-2) 
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Figure 3-4: A general flow of attitude determination 

3.4.1 Direction Cosine Matrix 

The rotation can be expressed by specifying the coordinates of the body frame with respect to 
the reference coordinate frame. Each component of a DCM represents the cosine angle 
between a specific axis in the body frame and its correspondence in the reference frame. 
Therefore, a DCM has nine parameters given in a form of 3 3 matrix. A vector x with the 
components au, av and aw along the reference axes can be projected into the body frame with 
axes xa, xb and xc by: 

Each component of a DCM indicates a cosine angle. For example, ua is the cosine of the angle 
between the u axis of the reference frame and the a axis of the body frame. DCM is a 
fundamental quantity specifying the orientation of a rigid body and a convenient product rule 
for successive rotations (Wertz 1978).  

3.4.2 Euler angles 

A three-dimensional rotation can be decomposed into three individual rotations with each 
around a single axis. Euler angles, which are often called yaw, pitch and roll angles, represent 
the rotation angles with respect to three axes, as shown in Figure 3-5. In physics and 
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engineering, the right-handed frame is usually used, where the Euler angles describe 
counter-clockwise rotations when seeing from the end of the positive axes and clockwise 
rotation when seeing from the origin of the positive axes.  

 
LLF=Local Level Frame 

Figure 3-5: Euler angles 

Each rotation can be described by a DCM. A three-dimensional rotation can be obtained 
by multiplying the three DCMs in a specific order, yielding the combined rotation matrix. An 
example using the yaw-pitch-roll sequence is given below (Hofmann-Wellenhof et al. 2001): 

where bn and ln represent the baseline vector from antenna n to antenna 1 (master antenna) 
expressed in ABF and LLF, respectively; R  is the DCM related to each Euler angle; y, p 
and r are short-hand notations for yaw, pitch and roll angles, respectively; c and s denote the 
cosine and sine operators, respectively. Based on the combined rotation matrix R, the attitude 
determination can be generalized by solving the R firstly and then calculating each Euler 
angle from the implicit relations: 

The above formula works only for the Euler angles ranging from – /2 to /2. For an interval 
from –  to , the quadrant of Euler angles cannot be directly determined. For example, as 
sin(pitch) is equal to sin (  - pitch), we cannot distinguish the true pitch value and its 
ambiguous counterpart. This hidden problem can be solved by checking the compatibility of 

r y r p y r y r p y r p

n n p y p y p n

r y r p y r y r p y r p

c c s s s c s s s c s c
r p y c s c c s

s c c s s s s c s c c c
2 1 3

R

b R R R l l  (3-4) 

1 2 2 1
23 21 22 23

1
21 22

1
13 33

tan sin

tan

tan

pitch

yaw

roll

R R R R

R R

R R

 (3-5) 



  51

the original DCM with the new DCM constructed by Euler angles obtained from (3-5). If both 
are not compatible, one or more Euler angles must lie in wrong quadrants. In this case, we 
have to try possible ambiguous counterparts until both DCMs match each other. 

A combined rotation matrix is subject to the rotation sequence. The selection of a proper 
order should take the singularity issue into account. Model (3-4) shows a singularity when 
pitch angle is 90 degrees, as it results in a zero-valued denominator for the expression of 
yaw and roll. A pitch angle of 90 degrees manifests itself in a vertically upward motion. This 
means that the yaw-pitch-roll sequence is not suitable for rockets or missiles, but should be 
applicable for civilian airplanes. Each Euler angle sequence has at least one singularity point. 
Moreover, in the neighborhood of its singular point, the systemic behavior of tracking 
sequence application is, in general, erratic and often troubled with serious transient errors 
(Kuipers 2002). In order to solve the singularity problem, quaternion representation is usually 
adopted. In the TerraSAR/PAMIR experiment, the singularity problem does not likely occur 
due to the maneuver output of the PAMIR airplane. We therefore consider the use of Euler 
angles in this thesis due to its clear physical interpretation. 

3.5 Attitude determination based on Euler angles 

The attitude determination based on multiple GPS antennas follows the same rule of attitude 
determination based on vector measurements. A general model can be formulated to find a 
rotation matrix yielding the minimized least-squares residuals (Wertz 1978): 

where wi is the weighting factor for each baseline vector from the LLF to the ABF. Several 
methods have been studied since the early 1960s in order to resolve this model. A early 
version is based on the singular value decomposition (Wahba 1965) and further refined by 
(Markley 1988; Markley 1993). Another method utilizes the pseudo-inverse of the rotation 
matrix, so that the rotation matrix can be resolved by (Grass and Braasch 1991): 

As stated in chapter 3.4.2, the “re-check” procedure should be applied to determine the 
quadrant of each Euler angle.  

The aforementioned algorithms employ all available measurements and hence yield an 
optimal solution. However, it is not easy to incorporate the covariance matrix of GPS 
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measurements into the model. In order to overcome this drawback, some dedicated models 
are developed. Cohen refined the loss function by substituting the GPS carrier phase 
measurement into the model (Cohen 1992). However, the potential measuring errors 
contained in the ABF are not considered. Lu proposed a explicit least-squares model to fully 
incorporate all potential errors (Lu et al. 1994). The model proposed by Lu simplifies the error 
analysis for attitude parameters, and moreover, it facilitates a possibility to integrate with 
proper dynamic models or other sensors. A shortcoming is that the Jacobin matrix has to be 
calculated.  

Another commonly used method is referred to as Direct Attitude Computation (Lu et al. 
1994). This is also a dedicated method for multi-antenna system as it smartly using the 
properties of the ABF and the rotation matrix. On the one hand, there are some zero-valued 
components in the ABF according to the definition. On the other hand, the Euler angles can be 
calculated in a one-step wise as shown in Eq. (3-5). These properties allow a direct 
computation of the Euler angles.  

The prerequisite for the attitude determination is to accurately measure the ABF and 
estimate the LLF. The ABF can be determined by its definition given in chapter 3.1, as long as 
the magnitude of antenna baselines can be accurately measured. This can be done by using 
other measuring sensors or by performing a long-term differential positioning. The LLF relies 
on the estimated three-dimensional baseline vectors between the master antenna and slave 
antennas. In most applications, accurate baseline estimation is achieved by RTK technique. 

3.5.1  Least-squares attitude determination approach (LSAD) 

In order to apply the least-squares method to the model (3-6), this model should be linearized 
at first around the Euler angles. Taking the measurement errors into account, Eq. (3-2) can be 
rewritten as: 

where ibe  and il
e  indicate the measurement errors of bi and li , respectively; the unknown 

Euler angle estimates are included in the rotation matrix ABF
LLFR . Linearizing the right-hand 

side with respect to the Euler angles yields: 

Based on this relation, the least-squares adjustment can be performed around the initial Euler 
angle values: 

i i

ABF
i LLF ib lb e R l e  (3-8) 

i i i

i

ABF ABF ABF
LLF i LLF i LLF i

i

y
p

y p r
r

l l l

b

R l e R l e R l e
b e  (3-9) 



  53

where 0R is an approximated DCM determined by the initial values of Euler angles y0, p0 and 

r0; 0i ib R l  is the measurement vector; 0 0 0i i i

y p r
R l R l R l

 is the design matrix; 

Ty p r  is the correction values of the Euler angle estimates; 0i ib le R e  is the 

measurement error vector. The relation given in (3-10) is only valid for a single baseline vector 

composed of two antennas. Assuming that we have totally n antennas, there are n-1 antenna 

baseline vectors with respect to the master antenna (antenna 1). Thus, (3-10) can be expanded to 

all baseline vectors: 

where z is the measurement vector; A is the design matrix; v is the measurement error vector. 
The model (3-11) describes the Least-Squares Attitude Determination approach (LSAD) (Lu 
1995). The correction values for Euler angles associated to a rotation matrix 0R  are 
computed by:  
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where the short-hand notation Cov(·) denotes the error covariance matrix; P is the weight 
matrix determined by the measurement errors. A detailed derivation of the design matrix Ai 
can be seen in Appendix II. The least-squares adjustment proceeds until the correction values 
converge to a certain threshold or the maximal iteration number is reached. 
 The LSAD aims at determine the attitude of the ABF with respect to the LLF using the 
GPS carrier phase measurements. The measurement errors in both LLF and ABF are also 
taken into account. If the attitude dynamics can be described by a proper mathematic model or 
measured by other sensors, the LSAD model can be furthermore integrated with the attitude 
dynamics using proper data fusion techniques, such as Kalman filters, where the LSAD model 
serves as the measurement model. Related content will be presented in Chapter 4 and Chapter 
5. 

3.5.2 Direct attitude computation 

Based on the definition of ABF, the coordinates of antenna 2 (see Figure 3-3) in the ABF can 
be expressed as 2 120 0 Tbb , where 12b  is the baseline length from the master antenna 
to the slave antenna (antenna 2). Substituting the ABF coordinate of the slave antenna into 
(3-4) and using the orthogonality of the rotation matrix yields the LLF coordinate of the slave 
antenna (Lu 1995): 

where the baseline vector of antenna 2 in LLF (l2) is expressed with the concrete 

three-dimensional components [x2,l, y2,l, z2,l]T. Then, the yaw angle and pitch angle can be 

directly calculated: 

From both expressions of pitch it is clear that the pitch angle is acquirable using only the 
LLF coordinate of the slave antenna instead of using the baseline length 12b . This reveals a 
significant advantage of the direct attitude computation that the baseline length does not need 
to be measured in advance. 

The direct attitude computation can also be expended to calculate the roll angle once 
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three or more antennas are available. We can firstly rotate antenna 3 by yaw and pitch obtained 
from (3-14) in order to obtain the rotation matrix including roll: 
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3, 3,

3, 3,

1 0 0 0
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0 0 0 1

l y y l
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l p p l

x c s x
y c s s c y
z s c z

 (3-15) 

Then following relationship holds by employing the ABF coordinate of antenna 3: 
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where the scalars x3,b and y3,b  represent the x- and y-coordinate of antenna 3 in the ABF and 
they do not need to be explicitly specified. From the zero-valued components we can simply 
derive the roll angle: 
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The direct attitude computation and least-squares approaches apply to different scenarios. 
Even if the baselines are not measured in advance, the direct attitude computation can still yield 
the attitude results. However, it does not take all the measurements into calculation and hence 
leads to a sub-optimal solution (Lu 1995).  

3.5.3  Attitude determination using a dual-antenna configuration 

Three-dimensional Euler angles may not be concerned in some applications. For example in 
the maritime application, only the yaw angle (or heading angle) is of great interest. In these 
cases, the single-baseline configuration composed of two GPS antennas can fulfill the 
requirement. From such a configuration we can obtain yaw and pitch angles. The LSAD can 
be applied to this case with a slight modification. The DCM with a yaw-pitch sequence can be 
formulated as: 

The LSAD model can be constructed as: 
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The derivation of the design matrix A2 can be is found in Appendix III. This model can be 
solved by least-squares adjustment. Besides that, the direct attitude computation can be 
directly used for the single-baseline case, which has been clearly shown in Eq. (3-14).  

3.5.4 Error due to non-rigidity of antenna body frame 

A GPS multi-antenna system often aims at measuring the attitude of a vehicle body frame, 
whereas its output is the attitude of the ABF. If both of the ABF and vehicle body frame are 
rigid, the attitude derivations between both frames can be measured a priori, so that the attitude 
information based on the ABF can be simply related to that on the vehicle body frame. If the 
ABF loses the rigidity, the attitude information cannot correctly describe the attitude of the 
vehicle. 

 Regarding to an airplane, the attitude of the fuselage is of great interest. If the antennas are 
mounted on the wings of the airplane, the vibration of the wings during the flight will bring in 
errors into the pre-measured ABF. In order to identify this problem, we use a simple example 
illustrated in Figure 3-6. We assume that two antennas are mounted on the wings with same 
baseline length l to the middle line of fuselage. As explained before, a dual-antenna 
configuration can measure the pitch and yaw of the ABF and we will only consider the pitch 
angle in this example. Referring to the airplane, the pitch angle of the ABF corresponds to the 
roll angle of the airplane body. The wings at rest have an elevation angle  with respect to the 
level plane. The flexure of wings is expressed using deviation angles  and , respectively.  
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Figure 3-6 An illustration of the airplane with two GPS antennas on the wings 

It is assumed that both antennas are levelly mounted on the wings in a stationary state, 
yielding a zero-valued roll angle for the body frame of fuselage (namely also zero-valued 
pitch angle for the ABF). As reported in the literature, “most of fuselage is fairly rigid; 
however, the position of the wing tips of an aircraft may move more than a meter vertically 
relative to the fuselage during flight. Most of the variation of wing flexure is due to changes 
in fuel loading, but turbulence and varying flight conditions also cause wing movements” 
(Gustafsson et al. 1996 ). For a wing length of 10 meters, one meter vertical movement 
corresponds to about 5 degrees for  and  angles. Assuming the wings have a flexure angle 
ranging from -5 to 5 degrees, the roll angle will deviate from its nominal value as follows:  
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Figure 3-7 Deviation of roll angle from its nomial value 

It can be seen that the wing flexure can result in several degrees errors to the attitude related 
to the fuselage. It is therefore recommended to mount the antennas on the fuselage instead of 
on the wing tips.   

3.6 A toolbox for GPS-based attitude determination 

A MATLAB toolbox has been implemented to process the data from multiple GPS antennas 
(Dai et al. 2009b). This toolbox is used for post-processing of the RINEX data from all 
receivers. The interface of the toolbox is depicted below:  
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Figure 3-8: MATLAB Toolbox for attitude determination 

Attitude determination starts with the data synchronization. The GPS measurements of all 
antennas at the same receipt epoch are picked up to implement the data synchronization. The 
position of the master antenna should be calculated prior to performing the differential 
positioning. If there is no ground station available, the position of the master antenna can be 
computed by single-point positioning. Although the associated positioning accuracy can range 
from several meters to several tens of meters with Selective Availability (SA) turned off, it 
will only affect the LLF of the slave antennas at millimeter level (Lu 1995). It implies that the 
accuracy of the attitude parameters will not be significantly degraded due to the application of 
SPP to the master antenna. A proof to this conclusion can be found in Appendix IV.  

Having known the position of the master antenna, the differential positioning can be 
performed in order to derive the baseline vectors between antennas. For this purpose, we need 
to resolve the integer phase ambiguities and detect the phase cycle-slips. Both techniques 
have been addressed in chapter 2. 

In order to apply the LSAD, the ABF should be fixed at first. With two or three antennas, 
the ABF can be determined based on the definition given in chapter 3.1, whereby the length of 
each master-slave antenna pair should be accurately measured. Once more than three antennas 
are available, the redundant antenna(s) can be projected into the ABF. For this operation, the 
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distances from redundant antenna(s) to the first three antennas should be given as well. 
Nevertheless, there will be a multiple-solution problem, since we cannot uniquely identify 
whether the redundant antenna(s) are above or under the ABF. However, taking the redundant 
antenna(s) into calculation should yield compatible attitude parameters with those from other 
algorithms. For this reason, the attitude parameters can be firstly resolved by applying the 
direct attitude computation or the LSAD involving only the first three antennas. The 
computed attitude parameters are then employed to solve this multiple-solution problem. Note 
that the ABF needs to be fixed only one time before the experiment starts. 

The flowchart for the data processing in a GPS multi-antenna system is presented below: 

 
Figure 3-9: Flowchart for attitude determination algorithm 

3.7 Experimental results 

A static experiment has been carried out in order to show the performance of the GPS 
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multi-antenna system. The hardware configuration is shown in Figure 3-10.  

 

 

Figure 3-10: Test devices for GPS dual-antenna experiments 

A frame with three antenna holders is fixed on a turn table. The space between antenna 
holders A, B and C are labeled in the lower part of Figure 3-10. The length of the baseline is 
determined using differential positioning for more than one hour observation. Two 
dual-frequency receiver/antenna pairs are used in this experiment. One is a Novatel DL-4 
receiver with a GPS-702 antenna, the other one is a Novatel ProPak-V3 receiver with a 
GPS-702 GG antenna.   

In the static experiment, the turn table is switched off and the Euler angles should be 
constant values. For each baseline, we record the measurement for 20 minutes at 5Hz 
sampling rate. Integer ambiguities should be resolved prior to the attitude computation. To do 
this, the rapid dual-frequency ambiguity resolution technique is applied (Horemuž and 
Sjöberg 2002). The Novatel receivers output the C1 (on L1 signal) and P2 (on L2 signal) code 
measurements with a root mean square error of 30 cm, which allows the instantaneous 
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ambiguity resolution. After smoothing the code measurements with carrier phase for 400 
epochs, the ambiguities can be correctly resolved epoch by epoch. The satellite constellation 
tracked by the master antenna at the first epoch for the long-baseline (0.952 m) experiment is 
illustrated in Figure 3-11. The red satellites are used for the attitude determination, whereas 
the bright blue satellites are excluded due to their low elevation angles. The key satellite is 
satellite PRN 6 having highest elevation angle. Considering the short distances between both 
antennas, the slave antenna is also tracking the same satellites.  

Figure 3-11: Satellite constellation at the first epoch of experiment 

The least-squares residuals for each double-differenced carrier phase measurement can be 
used to judge whether or not the integer ambiguities are correctly resolved. Due to the 
close-spaced antennas, the atmospheric errors can be almost eliminated. Without large 
multipath errors, the correctly resolved integer ambiguities should lead to Gaussian-form 
carrier phase residuals. Figure 3-12 shows the residuals for three double-differenced carrier 
phase measurements:  



  63

1000 2000 3000 4000
-1

0

1

Epoch

R
es

id
ua

l [
m

m
]

Double Difference: SV 6 - SV 3

-1 -0.5 0 0.5 1
  0%

  2%

  4%

  7%

P
er

ce
nt

ag
e

Residual [mm]

Mean=  0.03 [mm] Std= 0.21 [mm]

1000 2000 3000 4000
-2

0

2

Epoch

R
es

id
ua

l [
m

m
]

Double Difference: SV 6 - SV 19

-2 -1 0 1 2
  0%

  2%

  4%

  7%

P
er

ce
nt

ag
e

Residual [mm]

Mean= -0.05 [mm] Std= 0.40 [mm]

1000 2000 3000 4000
-0.2

0

0.2

Epoch

R
es

id
ua

l [
m

m
]

Double Difference: SV 6 - SV 21

-0.2 -0.1 0 0.1 0.2
  0%

  2%

  4%

  7%

P
er

ce
nt

ag
e

Residual [mm]

Mean=  0.01 [mm] Std= 0.05 [mm]

Figure 3-12: Least-squares residuals with correctly resolved integer ambiguities 

As indicated by Figure 3-12, the double-differenced carrier phase residuals approximately 
obey zero-mean Gaussian distributions with standard deviations at millimeter level. If the 
ambiguities are not correctly resolved, the Gaussian-form error distribution will no longer 
exist. Given below are the residuals once the ambiguity PRN 6-PRN 19 is deliberately added 
with one cycle.  
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Figure 3-13: Least-squares residuals with incorrectly resolved ambiguities 

Although a one-cycle shift in the ambiguity contributes only 20 centimeters error to the 
measurements, it brings large biases into the residuals. Besides, the pair SV6-SV21 (in green) 
clearly lost the Gaussian-form distribution. 

Based on the correctly resolved integer ambiguities, the baseline vector between both 
antennas can be estimated, and then the LSAD approach is carried out to calculate the yaw 
and pitch angles. Both angles estimated at the first 2500 epochs are depicted in Figure 3-14. 
Note that there might be some small variation of both angles when changing the antennas 
from one holder to another. 
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Figure 3-14: Yaw and pitch values with correctly resolved ambiguities 

Comparing the standard deviations presented at the head of each figure it can be seen that, 
a longer baseline yields a smaller standard deviation of the attitude error. A detailed 
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illustration showing the relation between the attitude precision and baseline length will be 
given in chapter 6. 

The baseline length is a fixed value and can serve as an evaluation of the positioning 
accuracy. The estimated baseline lengths are given in Figure 3-15.  
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Figure 3-15: Estimated baselines with correctly resolved ambiguities 

Figure 3-15 shows the compatibility between the estimated baseline lengths and the 
associated reference values given in Figure 3-10. The standard deviation of the estimated 
baseline lengths is of millimeter level.  

When the turn table is turned on, it forces the antennas to rotate at a angular rate set in 
advance. The turn table used in this experiment does not allow a digital display and hence the 
accurate angular rate is not known. Nevertheless, different rotation rates can be clearly seen 
from the increment of the yaw angle. The curves in Figure 3-16 represent the variation of yaw 
angle until it completes the first 360 degrees. The short antenna baseline (0.401 m) is used in 
this experiment. Three different angular rates are set and the corresponding results are 
depicted in different colors, respectively. As we only want to show the increment of yaw angle, 
all the results are shifted with respect to the first epoch.  
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Figure 3-16: Estimated yaw values under different angular rates 

Different angular rates can be clearly seen from the inclination angles of the curves. In 
Figure 3-16, the statistical results for between-epoch yaw variations are also presented. 
Different mean values indicate different angular rates. Similar standard deviations are due to 
the same baseline length used in the experiment. 

3.8 Conclusions 

In this chapter, techniques for attitude determination using multiple GPS antennas have been 
presented. Euler angles reflect the misalignment between the LLF and the ABF, whereby both 
frames refer to the coordinates of slave antennas with respect to the master antenna. The ABF 
coordinates are constant values for a rigid platform, whereas the LLF coordinates are 
determined based on the precise baseline estimation using RTK technique. By linearizing 
DCM with respect to Euler angles we have the LSAD for optimal attitude estimates. By 
exploiting the properties of the ABF we have the direct attitude computation approach for a 
fast but sub-optimal attitude solution. With three or more antennas, three dimensional Euler 
angles can be obtained. With two antennas, the yaw and pitch angles are resolvable. The 
baseline length is a crucial limiting factor for the precision of estimated attitude parameters. 
Considering the overall structure of the thesis, a detailed interpretation of limiting factors for 
attitude parameters will be given in chapter 6. 
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4. GPS based attitude determination using 
Kalman filters and a constant angular rate 
model 

In chapter 3, the mathematic models for GPS multi-antenna systems have been presented. 
They serve as the measurement model to determine the attitude parameters epoch by epoch 
from GPS measurements. However, it does not take information of attitude dynamics into 
account. If gyroscopes are available, attitude dynamics can be acquired and a dynamic model 
can be constructed. This is known as the integration of GPS and gyros for attitude 
determination (Barrows et al. 1996; Hirokawa and Ebinuma 2009; Knedlik et al. 2009). If the 
inertial sensors are not available, it will be difficult to gain the knowledge about vehicle 
dynamics for high-maneuvering vehicles. However, the dynamic model can be described by a 
random walk process in some specific applications (El-Mowafy and Mohamed 2005). The use 
of such a dynamic model normally needs the following prerequisites: 
1. The airplane is of low maneuver, for example, a civilian airplane.  
2. The GPS sampling rate is high enough, for example, higher than 5 Hz.  
3. The airplane has to maintain a relatively level and stable flight in order to fulfill the 
requirement of some particular experiments, for example, the PAMIR airplane in the bistatic 
SAR mission. 

In comparison with the LSAD stated in chapter 3, introducing a dynamic model can 
improve the performance in at least the following cases. The first case arises when the GPS 
observation is lost or cycle-slip occurs. In these cases, the phase ambiguity resolution or 
cycle-slip correction may not be accomplished within one epoch. Consequently the GPS 
phase measurements cannot be used and the dynamic model is the only source to obtain the 
attitude information. Another superiority of introducing a dynamic model manifests itself in 
the accuracy improvement. In a GPS multi-antenna system, the quality of attitude parameters 
will be restricted by many factors, for example the baseline lengths between the antennas. A 
longer baseline results in a higher precision. Nevertheless, long baselines are usually not 
applicable in the real aviation application due to the limited place on the fuselage. In this case, 
the improvement of accuracy can benefit from an appropriate dynamic model. 

Starting from 1960s, the Kalman Filter (KF) becomes one of the most widely used 
methods for sensor data fusion. The Kalman filter has initially been developed for linear 
systems. However, most of engineering applications have nonlinear measurements or dynamic 
models. Thus, some modified versions have been implemented in order to adapt the Kalman 
filter to nonlinear systems, including the Extended Kalman Filter (EKF), the Iterated 
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Extended Kalman Filter (IEKF), the Second-Order Extended Kalman Filter (SOEFK) and the 
Unscented Kalman Filter (UKF), etc. The utilization of the EKF in the GPS-based attitude 
determination system with a random walk process have been investigated (El-Mowafy and 
Mohamed 2005; Wang 2003). The use of other nonlinear filters is still missing and hence will 
be explored in this chapter and chapter 5.  

4.1 Fundamentals of nonlinear Kalman filtering 

A discrete-time Kalman type filter comprises a dynamic model and a measurement model, as 
formulated below: 

where x is the state vector to be estimated; k is the time variable; z is the vector of observables; 
f(·) represents the state transition function; h(·) is the observation function; g(·) is the noise 
gain function; w indicates the process noise; v reflects the measurement noise. The process 
and measurement noise are assumed to be time-uncorrelated white Gaussian noise and have 
the covariance matrices Qk and Rk, respectively: 

In practice, the adaption of Kalman filter to nonlinear systems will lose the accuracy due to 
the inherent approximation. The approximations can be made either to the nonlinear models 
or to the state error distributions. Both approaches will be discussed in section 4.1.1 and 4.1.2. 

4.1.1 Nonlinear Kalman filters with model approximation   

The nonlinear model can be approximated by truncating its Taylor series expansion: 

where kx  is the reference point for the Taylor series expansion; short-hand notation H.O.T 
stands for higher order terms. The discrepancy between the approximated and original model 
lies in the following aspects:  
 The order of expansion 

Assuming that the Taylor expansion is carried out in the same computational environment and 
the reference point is fixed, the accuracy of the approximated Taylor series depends on the 
orders of expansion applied. The most computationally efficient way is to truncate the second 
and the higher orders, leaving only the first order term. The conventional EKF is developed 
based on this idea. Once the nonlinearity is high, a first order truncation might lead to large 

Dynamic model : 1 1 11k k kk k gf wx x  (4-1) 

Measurement model: ,k k k khz x v  (4-2) 

~ 0, kk N Qw  and ~ (0, )k kNv R   (4-3) 
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remaining errors. In this case, we can also take the second order term into consideration, 
namely the SOEKF. 
 The selected reference point for expanding the Taylor series  

The closer the reference point is to the true value, the smaller the error due to the nonlinearity. 
If the nominal values are known, the linearization can be performed at the nominal values. 
This is referred to as the Linearized Kalman Filter (Simon 2006). Without the nominal values, 
the reference points can be initially chosen at the a priori estimates kx . When the 
measurements of epoch k are available, the a posteriori estimates kx  can be obtained. 
Theoretically speaking, choosing kx  instead of kx  as the linearization reference point 
might reduce the linearization error, because the measurements of current epoch are taken into 
consideration. This procedure can be iteratively applied to gradually improve the accuracy of 
the reference point. The IEKF is then developed based on this idea.   
 Round-off error 

The round-off error is caused by the limited number of significant digits supported by a 
processor. It is subject to the digital processors and hence will not be considered in this thesis. 

4.1.2 Nonlinear Kalman filters without model approximation 

Unlike the EKFs approximating the nonlinear model, some other approaches attempt to 
estimate the error distributions of the states using a set of representative points. These 
representative points will go through the actual nonlinear model, and then the mean value and 
the error covariance matrix can be calculated from the propagated representative points. These 
approaches are based on the assumption that the accuracy loss due to the model linearization 
might be larger than the accuracy loss due to the approximation of the Gaussian distribution 
(Simon 2006). Depending on the selection criteria of the representative points, we have the 
UKF and Monte-Carlo filter. In the UKF, the representative points are picked up in a 
deterministic way and always termed as “sigma points” (Julier et al. 2000). The way of 
collecting the sigma points determines that the UKF is dedicated to the systems with Gaussian 
form errors. The Monte-Carlo filter randomly generates the representative points so that it can 
theoretically fit any form of error distribution. Nevertheless, the excellent performance of 
Monte-Carlo filter relies on a great number of representative points, so the computational 
expense is remarkably increased and hence still challenges the real-time applications. We 
therefore mainly consider the UKF in this thesis. 

4.2 Constant angular rate model 

The PAMIR airplane always shows a relatively stable flying status, not only because of its 
own dynamic properties, but also due to the requirement of bistatic SAR experiments. Thus, 
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we can use a constant angular rate model to approximate its attitude dynamics. According to 
this model, the state vector contains not only the Euler angles (yaw, pitch and roll) but also 
their corresponding angular rates: 

The discrete-time random-walk process can be expressed as: 

In order to evaluate the process noise, we can at first consider a one-dimensional case 
regarding the yaw angle for simplicity. In a constant angular rate model, the angular 
acceleration is treated as the noise, and hence it is also referred to as the white noise 
acceleration model (Bar-Shalom et al. 2001). The angular acceleration is related to the angle 
and angular rate in a discrete-time as follows: 
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where t is the sampling interval. Expending (4-7) to three-dimensional Euler angles and 
ignoring the correlation between different angular accelerations of Euler angles we have: 
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In order to define Q, we need the a priori knowledge of the standard deviation of each 
angular acceleration. 

4.3 An extended Kalman filter for dynamic attitude 

determination 

The routine of an EKF starts with the linearization of the dynamic and measurement models. 
At epoch k, the dynamic model is linearized around the a posteriori state estimates at last 
epoch (denoted by 1ˆ kx ) and the measurement model is linearized around the a priori state 
estimates at current epoch (denoted by ˆ kx ), so that the nonlinear relation f(·) and h(·) can be 
replaced by the Jacobian matrices F and H, respectively. The time update and measurement 
update procedures can be formulated as follows (Simon 2006):  
 
 
 

Ty p r y p rx  (4-5) 

1 1 1 1k k k k kx F x G w  (4-6) 
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Initialization: 

Time update: 

Measurement update: 

where P represents the covariance matrix of the states; K is the Kalman gain; s is the 
innovation vector. The formula (4-15) is the Joseph stabilized form of covariance 
measurement update. This form, however, can also be simplified to:  

Both formulations are actually equivalent in mathematics. However, (4-15) guarantees that 
+
kP  is always symmetric positive definite, as long as kP  is symmetric positive definite 

(Simon 2006). In practice, the Kalman gain might have numerical errors from the 
computation, for example, due to the limited computational compatibility of the processor. In 
(4-16), numerical error of Kalman gain might lead +

kP  to be non-positive definite, even if the 

kP  is symmetric positive definite. For these reasons, (4-15) is more robust to the Kalman 
gain errors and hence can improve the stability. 

When using a triple-antenna configuration, we have the corresponding parameters for the 
EKF: 
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where Rc is the rotation matrix computed at the a priori estimates of Euler angles. Rc should 
be distinguished from the measurement error covariance matrix R without the subscript. From 
the form of H it can be seen that the measurement model of the Kalman filter actually comes 
from the LSAD approach introduced in section 3.5.1.  
 Referring to (4-17), the measurement vector is the LLF coordinates of each slave antenna 
(El-Mowafy and Mohamed 2005; Wang 2003). Another form of the measurement vector 
directly employs the carrier phase measurements of all antennas (Hirokawa and Ebinuma 
2009; Knedlik et al. 2009). This allows an easier design of the measurement error covariance 
matrix R since the carrier phase noise is usually considered as a time-uncorrelated Gaussian 
white noise. The system based on this model might possibly work with less than 4 common 
satellites and provides an integrity monitoring for GPS measurements. However, the matrices 
related to coordinate transformation will show up in the design matrix H. This will increase 
the dimension of design matrix H, leave difficulties for linearization and lead to increased 
computational time. Also, the coordinate transformation can be used in advance for ambiguity 
resolution before deriving matrix H (Park et al. 1996; Park and Kim 1998). In this case, it is 
then a duplicated operation to perform the coordinate transformation again in matrix H. In 
this thesis, we will focus on the use of model (4-17). 

The measurement errors are contained in both ABF and LLF. The antenna position in the 
ABF can be precisely determined in the calibration procedure, and hence antenna position 
errors in the LLF are the dominant errors. The error covariance matrix of the antenna position 
in the LLF can be obtained by analyzing the error propagation from the GPS measurement 
domain to the position domain. Considering the structure of the thesis, this derivation will be 
the detailed in chapter 6 from Eq. (6-3) to Eq. (6-8). Thus, the associated content is not shown 
here. Assuming that the error covariance matrix of antenna 2 and antenna 3 are already 
obtained, R can be initialized by: 
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where l2 and l3 represent the LLF coordinates of both slave antennas, respectively;  is a 
multiplication factor slightly larger than 1, because R is normally conservatively estimated in 
order to avoid the filter divergence; t0 implies that the results are obtained at the starting 
epoch. For a short trajectory, the matrix R can be considered as a fixed value calculated at the 
first epoch. For a long trajectory, the matrix R should be calculated in a more rigorous way 
either epoch by epoch or with a specific period.  

Based on the hardware configuration used in chapter 3, we also conduct a dynamic 
experiment, where the rotation of antennas is controlled by the turn table. In this experiment, 
the antennas rotate with a constant angular rate. The GPS data are collected with 10 Hz 
sampling rate. We use the LSAD and the EKF, respectively, to calculate the yaw and pitch 
angles.  

The following parameters are used to tune the filter. The standard deviation of carrier 
phase noise is 2 mm. The matrix R is calculated based on the satellite geometry and the 
position of the master antenna at the first epoch (see Figure 3-11). To set the Q we use 

20.2 deg/ epochy p . In order to initialize P, the standard deviation of yaw and pitch 
are set as 0.2 degrees and 0.3 degrees, respectively, and the standard deviations of angular 
rates are set as 0.5 [deg/ epoch] for both Euler angles. The yaw and pitch estimates are 
initialized using the LSAD results at the first epoch. The initial angular rates are calculated by 
averaging the between-epoch variations of yaw and pitch angles during the entire observation 
session.   
 In Figure 4-1, the yaw angle obtained from the EKF and the LSAD are presented and 
compared. 
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Figure 4-1: Yaw angle and angular rates for the rotating frame 

In the upper figure, the differences in the estimated yaw angles are also presented in order 
to clearly distinguish the nearly overlapping curves. Figure 4-1 indicates that the angular rates 
obtained from the EKF are smoother than from the LSAD. It also implies the benefits of a 
constant angular rate model. In the experiment, the turn table also slightly vibrates in the 
vertical direction due to its mechanical properties, and consequently the pitch angle is not 
always a fixed value. We also present the estimated pitch angle and the angular rate in the 
following figures. 
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Figure 4-2: Pitch angle and angular rates from the rotating frame 

The vibration of pitch can be clearly seen from the upper figure. From the lower figure it 
can be seen that the angular rate is fluctuating around zero. Also, the EKF offers smoother 
results than LSAD. 
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4.4 Other Kalman filters for nonlinear systems 

The wide use of the EKF profits from its straightforward implementation, since the 
conventional Kalman filters can be applied after the nonlinear model has been linearized. 
Nevertheless, the error due to the linearization will degrade its accuracy and probably lead to 
a divergence. As shown before, the EKF truncates the Taylor series to the first order, whereas 
the IEKF and the SOEKF aim at reducing the linearization error and the UKF can avoid the 
linearization error by approximating the Gaussian error distribution using sigma-points. The 
application of these filters in GPS-based attitude determination systems will be presented in 
this section. 

4.4.1 Iterated Extended Kalman Filter 

The IEKF linearizes the nonlinear model iteratively around the updated a posteriori state 
estimates. The whole procedure is formulated below (Simon 2006): 
Initialization: 

Time update: 

Measurement update: 
Initialization of the 
iteration:
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Covariance updates (to be 
performed iteratively): 1 , , , , , ,= +

T+ T
k k i k i k k i k i k i k k iP I K H P I K H K R K  (4-23) 

Estimates after the end of 
iteration:

,

,

ˆ ˆk k N

k k N

x x

P P  

(4-24) 

In Eq. (4-22) the iteration keeps running until the convergence criterion is fulfilled or the 
predefined maximal iteration number is reached. At the final stage, say i=N, the estimated 
states and error covariance at epoch k is given in (4-24). The IEKF will outperform the 
conventional EKF for high-quality measurements, as the update of the a posteriori estimates 
mainly relies on the measurement model. If significant errors of a priori state estimates are 
caused by an improper dynamic model, the IEKF can fully benefit from the measurement 
model to tune the linearization reference point, so that it can improve the accuracy of the a 
posteriori state estimates. 

4.4.2 Second-Order Extended Kalman Filter 

Both EKF and IEKF approximate the nonlinear model by truncating the Taylor expansion to 
the first order, whereas the SOEKF truncates to the second order. Although a higher order 
truncation is possible and theoretically better fit the nonlinear systems, the complexity of the 
filter implementation makes it impractical. In this study, the dynamic model is a linear 
relation, and hence the second-order derivative is only applied to the measurement model. 
Referring to a measurement vector with m elements, the second-order derivative of the 
measurement function with respect to the state vector can be written as:  

where kx  denotes ˆk kx x ; tr( ) denotes the trace of a matrix. ,i kh  denotes the i-th 
measurement function at time k. As the value of T

k kx x  is not known, this term can be 
approximated by its expected value, namely the error covariance matrix of the states ( kP ), so 
that we have: 

This formula applies to a single measurement equation. Referring to all measurements 
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available, the second-order Taylor series expansion of measurement equations can be 
therefore written as: 

where H is Jacobin matrix as used in (4-13) for the conventional EKF. i  is a column vector 
with all zero components except for the i-th entry being 1. This vector indicates the i-th 
measurement equation hi(·). D is the Hessian matrix indicating the second-order partial 
derivative of a nonlinear function. Based on (4-27), we can write the measurement update 
procedure of a SOEFK as follows (Simon 2006): 

A detailed derivation of D in the multi-antenna attitude determination system is given in 
Appendix V.  

4.4.3 Unscented Kalman Filter 

The UKF calculates the mean and covariance of the state estimates by using a deterministic 
“sampling” approach, namely the unscented transformation (Julier et al. 2000; Van der Merwe 
and Wan 2001). The UKF first collects a set of sigma points around the estimated mean values 
of the states. These sigma points are then propagated through the actual nonlinear model. The 
estimated states and covariance are obtained from the propagated sigma points and the 
corresponding weights. The advantages of the UKF can be understood from the following 
aspects. 
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Firstly, the mean values of the state estimates can be accurate to the third-order of Taylor 
series expansion, which is higher than the EKF. The covariance estimated by the UKF is 
calculated to the second order accuracy, which is the same as the EKF (Julier and Uhlmann 
1997; Simon 2006). Secondly, the calculation of the Jacobian matrix or Hessian matrix is 
needed by the EKFs. In some applications, these operations might bring severe computational 
complexity into the algorithm implementation. In some cases, these matrices are even not 
resolvable. The UKF does not rely on the model linearization and allows a simpler realization.   

The routine of a discrete-time UKF can be formulated as follows (Simon 2006): 
Initialization: 

Time update: 

 
Measurement update: 
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where the vector  contains the sigma points; the subscript i indicates the i-th sigma points; 
P  is the matrix square root of P and can be obtained from the low-triangular matrix of the 

Cholesky factorization. It should be stressed that the UKF also relies on the measurement and 
process noises with Gaussian distributions, which can be seen from Q and R matrices in the 
UKF formulations.   

4.5 Simulations with different nonlinear Kalman filters 

In order to show the performance of stochastic systems, Monte-Carlo simulations are 
conducted. In this section, we simulate a straight flight trajectory to the east direction and 
assume that the airplane keeps a level flight at a constant speed of 110 m/s, as shown in 
Figure 4-3.  

 

Figure 4-3: Flight trajectory (level flight) 

The trajectory and the flight dynamics are simulated using the GPS software simulator 
SatNav Toolbox 3.0 for MATLAB® by GPSoft®. Parameters for generating the simulation 
scenarios are listed in Table 4-1. The position of the master antenna will be generated first.  
The ECEF coordinates of the other two slave antennas are calculated according to the position 
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,
T

k k k kk kz zP P K P K  (4-41) 
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of the master antenna, the attitude parameters and the predefined ABF. The GPS errors are 
generated by the same mean like section 2.7. The measurement error covariance matrix R is 
determined using Eq. (4-18) at the first epoch, and the ABF errors are neglected for simplicity. 
Carrier phase ambiguities are set as zeros and no cycle-slips are added to the carrier phase 
measurements.  

 

Table 4-1: Parameters for level-flight simulation   

Sampling rate 5 Hz 
Number of common satellites 6 satellites 

Geometry of multiple 
antennas 

An equilateral triple-antenna configuration with 0.7 m baseline 
length. 

Ionospheric and tropospheric 
delay  

They are ignored due to the closely-spaced antennas. 

Satellite and receiver clock 
error 

They can be eliminated by differential positioning and hence will 
not be simulated herein. 

Multipath  This is described below. 
Nominal attitude values yaw=90 [deg] pitch=0 [deg] roll=0 [deg] 
Thermal noise of carrier 

phase (for R) 
2 mm 

Dynamics of attitude (for Q) 20.2 deg/ epochy  20.3 deg/ epochr p   

Initial value for state error 
covariance matrix P0 

0.5 degy p r  for small initialization errors 

5 degy p r  for large initialization errors 

0.4 deg/ epochy p r  

Initial attitude values They are specified in the following sections. 
Initial attitude rates They are set as zeros.  

The multipath errors are generated by the same method as the low-multipath environment 
described in section 2.7. Note that a common satellite may lead to different multipath errors to 
different antennas. An example is given in Figure 4-4, where the multipath errors on L1 signal 
for a one-run simulation are depicted.  
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Figure 4-4: Multipath errors for multiple antennas (an example)     

Comparisons in terms of accuracy between the estimated Euler angles from the EKF with 
respect to other nonlinear filters are given below. A Monte-Carlo simulation of 100 runs is 
carried out and the Root Mean Square Error (RMSE) is calculated. The performance of 
different filters under large initialization error and small initialization error will be compared. 
The computational burden will also be quantified. The flight starts at the GPS time 1000 so 
that the satellite geometry at the first epoch is identical for all simulations.  

4.5.1 Large initialization error 

At first, we consider a case with large initialization errors. As stated before, the carrier phase 
ambiguities are integer values. Before the integer values are resolved, we can obtain the float 
solutions by incorporating the code measurements. Once the integer ambiguities cannot be 
fixed, the float values can be used for positioning. The baselines estimated using the float 
ambiguities are less accurate than that based on the integer ambiguities, and hence the attitude 
accuracy will also be degraded. According to the test results, the estimated Euler angles 
obtained from float ambiguities can have an error of several degrees. We assume that the 
Euler angles at the first epoch are estimated using the float phase ambiguities. The integer 
ambiguities can be solved starting from the second epoch. The RMSE of Euler angles are 
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depicted from Figure 4-5 to Figure 4-7. For a clear demonstration, the results at the first epoch 
are not shown. Note that the iteration of the IEKF is terminated when the squared norm of 
correction value is less than 10-7 degrees. 
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Figure 4-5: RMSE with large initialization bias (IEKF and EKF) 
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Figure 4-6: RMSE with large initialization bias (SOEKF and EKF) 
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Figure 4-7: RMSE with large initialization bias (UKF and EKF) 

From Figure 4-5 to Figure 4-7 it can be seen that the total 60 epochs can be divided into 
two phases. The first 20 epochs belong to the “converging phase”, where the filter gradually 
approaches to the convergence from a large initialization error. From 21st epoch to the 60th 
epoch, the filter is in a steady-state. In order to evaluate the accuracy of an estimator within a 
specific range of epochs, we use the averaged RMSE. The averaged RMSE is calculated by 
dividing the sum of RMSE within the specific epochs by the total epoch number, which can 
be expressed as: 

Where n is the total number of epochs; eRMSE(i) is the RMSE at epoch i; e  is the averaged 
RMSE. Table 4-2 presents the averaged RMSEs of different nonlinear filters in both 
“converging” phase and “steady-state” phase.  

1

1 n

RMSE
i

e e i
n

 (4-42) 
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Table 4-2: Averaged RMSE of Euler angles with large initialization bias 

 (a) 1st – 20th epochs (filter is converging) 

Algorithm Yaw error [deg] Pitch error [deg] Roll error [deg] 
EKF 0.538 0.888 1.280 
UKF 0.536 0.864 1.220 

SOEKF 0.535 0.872 1.227 
IEKF 0.506 0.830 0.991 

  (b) 21st - 60th  epochs (filter converged) 

Algorithm Yaw error [deg] Pitch error [deg] Roll error [deg] 
EKF 0.228 0.374 0.359 
UKF 0.229 0.374 0.358 

SOEKF 0.228 0.374 0.358 

IEKF 0.228 0.373 0.356 

It can be seen that the IEKF offers the fastest convergence, followed by the UKF and the 
SOEKF. The EKF shows the worst converging performance. A large initialization error means 
that there is a significant deviation between the a priori state estimates and the corresponding 
true value, and hence the linearization error is large. The IEFK, SOEKF and UKF show the 
superiority in reducing the linearization error compared to the conventional EKF. After 20th 
epoch, all these filters show quite similar accuracies.  

4.5.2 Small initialization error 

We initialize the filter with attitude parameters estimated using correctly resolved integer 
ambiguities. According to the error analysis, the mean error of Euler angles will not be larger 
than 0.5 degrees in this case, implying a small initialization error. The averaged RMSE are 
shown below: 

Table 4-3: Averaged RMSE of Euler angles with small initialization bias  

Algorithm Yaw error [deg] Pitch error [deg] Roll error [deg] 
EKF 0.230 0.375 0.360 
UKF 0.228 0.377 0.361 

SOEKF 0.232 0.378 0.357 
IEKF 0.227 0.370 0.355 

Under small initialization errors, all these filters give comparable accuracies with differences 
at milli-degree level.   
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4.5.3 Computational complexity 

A comparison of the processing time for the entire trajectory based on the EKF, SOEKF, 
IEKF and UKF is given below. The time needed for 100 runs of simulations are computed 
firstly under the system environment:  
 CPU: Inter® Core2 Duo CPU E8400@ 3G(Hz)  
 RAM: 3GB RAM 
 Software: MATLAB® R2007a  

After that, the processing time for one filter-routine can be calculated by dividing the total 
processing time by the number of runs. The processing time for a single filter-routine is given 
in Table 4-4.  

Table 4-4: Computational time of different filters  

Algorithm Average time for one run [ms] 
EKF 2.8 

SOEKF 3.5 
UKF 4.0 

IEKF (1 Iteration)  3.1 
IEKF (2 Iteration)  5.2 
IEKF (5 Iteration)  12.1 

The EKF offers the lowest computational burden, followed by the SOEKF and the UKF. 
The computational time of the IEKF depends on the number of iterations performed.  

4.6 Conclusions 

If a platform does not allow long baselines for multiple antennas, the accuracy of computed 
Euler angles can be improved by introducing a dynamic model. With a less-maneuvering 
platform and high data sampling rate, a constant angular rate model can approximate the 
attitude dynamics. If the GPS carrier phase integer ambiguities can be correctly resolved and a 
precise initialization for the filter can be carried out, different nonlinear filters offer 
comparable accuracies. With large initialization errors, the IEKF, SOEFK and UKF lead to a 
faster convergence than the conventional EKF. However, the conventional EKF has the lowest 
computational burden. Summarizing these discussions, the EKF under a precise initialization 
can be a proper choice for this application.  

Besides the large initialization error, the mismodeling error of the dynamic model can 
also yield large innovation vectors to a Kalman filter. The performance of different filters 
under mismodeling errors will be presented in chapter 5.   
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5. Approaches to overcome the limitations of the 

introduced dynamic model 
A constant angular rate model has been introduced as the dynamic model. The “mismodeling
error” of the dynamic model can manifest itself in at least two aspects. Firstly, the constant 
angular rate model cannot fully reflect the model transition of an airplane. Secondly, the 
actual dynamic error of the airplane is unknown, and hence the Kalman filter should be able 
to automatically identify the changing dynamics. Both problems will be identified and solved 
in this chapter.  

5.1 Problem description 

The PAMIR airplane can undergo several “motion models” during a flight trajectory, for 
example (Federal-Aviation-Administration 2007): 
 Straight and level flight, where pitch and roll angles are close to zero and the yaw angle is 

almost unchanged;  
 Pitch (up or down) climb, where the pitch angle is gradually increasing or decreasing;  
 Banked turn, where the airplane will change the direction in the horizontal plane by 

rolling an inclined angle, i.e. roll and yaw will change. 
A constant angular rate model should be valid for each motion model due to the low 

maneuver output of the PAMIR airplane and high GPS data rate. Nevertheless, it cannot fully 
reflect the transition between different motion models. The shortcoming of the constant 
angular rate model in this case is shown by a simulated trajectory shown in Figure 5-1. 
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Figure 5-1: Trajectory of the airplane under different motion models 

We term the phase when the airplane is transiting one motion model to another as “model
transition phase”. The phase in which the airplane maintains a certain motion model is 
termed as “stable motion phase”. In Figure 5-1, the airplane starts with a straight level flight 
to the east direction at the speed of 110 m/s, followed by a “pitch down” climb, and then the 
airplane takes a banked turn of 90 degrees and finally returns to a straight level flight. The 
numbers marked along the trajectory represent the epochs. The GPS data sampling rate is 5 
Hz. We assume that the airplane with three onboard GPS antennas is flying at the geodetic 
height of 1000 meters. The trajectory reflects the coordinates of the master GPS antenna. The 
three GPS antennas form an equilateral configuration with a baseline of 0.5 meters. There are 
7 common GPS satellites in view during the flight. A low-multipath environment is simulated 
as presented in chapter 4. The ionospheric and tropospheric errors are ignored due to the short 
antenna baselines. The nominal attitude values are presented in Figure 5-2, where the red 
points represent the starting epochs of the model transition. 
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Figure 5-2: Nominal attitude values   

We use two approaches to estimate the attitude results, the LSAD with merely the GPS 
carrier phase measurements and the EKF aided by the constant angular rate model. We use the 
attitude results estimated by the LSAD at the first epoch to initialize the EKF. The simulation 
is generated with smaller process noise, whereas the filter is initialized with larger process 
noise. These process noise parameters are set deliberately to show the benefit of adaptive 
Kalman filter introduced in the following sections. The parameters for running the EKF are 
listed in Table 5-1. 
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Table 5-1: Parameters for simulation and filter initialization 

Thermal noise of carrier phase 
(for R) 

2 mm 

Process noise parameters for 
generating the simulation (Q)  

20.2 deg/ epochy  20.3 deg/ epochr p  

Process noise parameters for 
running the filter (Q) 

2 20.35[deg/ epoch ]  0.4[deg/ epoch ]y p r  

Initial value for state error 

covariance matrix 0P  
0.4 degy   0.6 degp r  

0.4 deg/ epochy p r  

Initial attitude values LSAD at first epoch 
Initial attitude rates They are set as zeros.  

Figure 5-3 compares the RMSE of estimated attitude parameters from the EKF and the 
LSAD. The results are obtained based on Monte-Carlo simulations with 100 runs. 
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Figure 5-3: RMSE of EKF and LSAD   

We can observe the following phenomena from Figure 5-3: 
(1) The LSAD approach without the aid of the dynamic model offers a stable attitude 
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estimates during the entire trajectory.  
(2) The errors caused by the model transition can be observed from the EKF results. The 

errors manifest themselves as peak values in the magnitude, which have been marked by 
red circles in the figure. There errors are termed as “model transition errors” in this thesis. 
Seeing again Figure 5-1, it can be observed that the model transition errors occur during 
the model transition phases. At the beginning of a model transition, the Euler angles might 
experience a sharp change whose magnitude might be larger than the associated process 
noise. In this case, the dynamic model cannot fully reflect the change of Euler angles and 
hence bring significant errors into the a priori state estimates.  

(3) The filter outputs can gradually converge after the model transition, because the angular 
rates in each motion model obey a constant variation and hence the dynamic model still 
holds.  

(4) Once the filter has converged, the EKF give more accurate attitude estimates than the 
LSAD due to the benefit of the dynamic model. 
Besides the model transition errors, another type of mismodeling error is caused by a 

conservative initialization of process noise. The constant angular rate model is merely an 
approximation rather than a measure of the attitude dynamics. The process noise parameters 
fitting the entire trajectory are difficult to be determined, as they depend on the environments 
nearby, the application scenarios, the actual maneuver output, etc. In order to avoid filter 
divergence, the process noise covariance matrix is usually conservatively initialized in 
practice. This will, however, make the filter not fully benefit from the attitude dynamic 
information. It is necessary to design an adaptive algorithm to make the Kalman filter for an 
automatically identify the actual process noise parameters.   

Summarizing the previous discussions, the solution to the mismodeling error is a two-fold 
task. On the one hand, the model transition errors need to be detected and reduced. On the 
other hand, the Kalman filter should have an online tuning function of the process noise.  

5.2 Reducing model transition errors using different nonlinear 

Kalman filters  

The failure of the dynamic model will bring large errors to the a priori state estimates. This 
will lead to large innovation vectors and significant linearization errors. As presented in 
chapter 4, the IEKF, SOEKF and UKF might reduce the linearization errors in comparison 
with the conventional EKF. The performances of these filters in the model transition phases 
will be demonstrated in this section. The results are obtained from a one-run simulation in the 
same scenario introduced in section 5.1. 

The IEKF will iteratively update the linearization reference point using the a posteriori 
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state estimates. This procedure will gradually shift the reference point closer to the true value 
and consequently lead to the accuracy improvement, which can be seen from the update of the 
a posteriori state estimates at the first several iterations. In Figure 5-4, the update values of 
the a posteriori Euler angle estimates at the first round iteration, namely ,1 ,0ˆ ˆk kx x , are 
depicted at the left-hand side, and the update values at the second round iteration, namely 

,2 ,1ˆ ˆk kx x , are depicted at the right-hand side.  
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Figure 5-4: The update of the a posteriori state estimates in IEKF  

At the most epochs, the magnitude of update values is small. However, some peak values 
can be observed. Looking back at Figure 5-2 we know that the peak values arise at the start of 
model transition phases. The occurrence of these peak values reflects that the linearization 
reference points are moving from the a priori state estimates towards to the true values, so 
that the linearization error will be reduced. By comparing the figures at left- and right-hand 
sides it can be seen that the first iteration implements much larger corrections to the 
linearization reference points. Due to the very small update values at the second round 
iteration, the third round iteration is normally not required. 

The difference between the SOEKF and the conventional EKF lies in the term  of Eq. 
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(4-28). This term indicates the effects of the second-order Taylor series expansion. The 
corresponding components of Euler angles in vector  are depicted in Figure 5-5. 
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Figure 5-5: The second-order correction in the SOEKF  

In Figure 5-5, some variations with large magnitude are marked. The epochs of these 
distinct variations can be related to the epochs of the peak values shown in Figure 5-4. These 
variations indicate the significant second-order initialization errors at the model transition 
phases. 

Figure 5-6 shows different accuracies of Euler angles estimated by the EKF and the UKF. 
The curves represent Euler angle errors from the EKF minus that from the UKF, so that a 
positive value implies the outperformance of the UKF over the EKF in terms of accuracy.   
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Figure 5-6: Deviations between UKF and EKF under mismodeling error 

In the model transition phases, large positive peak values can be observed, meaning that 
the UKF offers higher accuracies in these cases. However, both filters present comparable 
accuracies of Euler angles at other epochs. 

Although the IEKF, SOEKF and UKF outperform the conventional EKF during the 
model transition phases, the accuracy improvements benefited from the IEKF, SOEFK and 
UKF are small compared to the magnitude of peak values shown in Figure 5-3. We therefore 
need to seek for other solutions to solve this problem. 

5.3 Solutions to the model transition errors 

The propagation of the process noise is reflected in the following step of a Kalman filter 
routine: 

The first term after the equal sign reflects the propagation of state errors from the past epochs 
to the current epoch. The second term reflects the influence of the process noise on the current 
epoch. In order to adapt the filter to the changing dynamics, we can tune either the first term 

1 1= ++ T T
k k-1 k -1 k -1 k k-1 kP F P F G Q G  (5-1) 
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or the second term. By tuning the first term, we have the fading-memory extended Kalman 
filter (FMEKF). Tuning the second term yields the adaptive extended Kalman filter (AEKF). 
Both techniques will be detailed in the following sections. 
 Another commonly used approach to overcome the dependence of a Kalman filter on 
modeling accuracies is the Interacting Multiple-Model (IMM) approach. This approach needs 
more than two filters running in parallel and outputs the weighted results from all sub-filters. 
In a sense of reducing the model transition errors, the IMM is more robust than the FMEKF 
and the AEKF. In order to make the IMM approach better fit the changing dynamics, we 
propose an approach to embed the adaptive tuning function into the IMM. 

5.4 Fading-memory extended Kalman filter 

The state estimates from Kalman filters are obtained by a weighted sum of the information 
from the past epochs and the current epoch. Once the model transition occurs, the Kalman 
filter should give more weight to the measurements of the current epoch and accordingly give 
less weight to the history (Simon 2006). This is the basic idea for the FMEKF. The key step of 
a FMEKF is presented by the following equation: 

where  is the scaling factor. Such a scalar factor reflects how responsive the Kalman filter is 
to the past measurement. The larger the scaling factor, the more weight the filter gives to the 
nearest measurement. If the scaling factor is a fixed value, a FMEKF can be equivalent to a 
conventional EKF. In order to adapt the FMEKF to the changing dynamics, a variant scaling 
factor is expected.  

5.4.1 Calculation of the fading-memory factor 

A variant scaling factor  can be derived for the innovation vector of a Kalman filter (Hu et al. 
2003). The innovation vector can be calculated as:  

After linearizing the measurement model, the error covariance matrix of the innovation reads: 

So that the following inequality holds true if 1: 

1 1= ++ T T
k k-1 k-1 k -1 k k -1 kP F P F G Q G  (5-2) 

k k k khs z x  (5-3) 

, 1 1 , 1 1 1

T
k k k k k

T T T T
k k k k k k k k k k k-1 k k

Cov Cov Covs z H x H

R H F P F H H G Q G H
 (5-4) 

, 1 1 , 1 1 1
T T T T T
k k k k k k k k k k k k k -1 k kTraces s R H F P F H H G Q G H  

or in another form: 
T
k k kTrace Covs s s  

(5-5) 
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where ks  is the estimated innovation vector. For a steady-state Kalman filter, ks  can be 
approximated by the normalized innovation sequence of the previous N epochs, so that the 
trace of ks  can be obtained by: 

Substituting (5-6) into (5-5) yields the following relation: 

We can use (5-7) to calculate the scaling factor . The scaling factor has two functions. The 
first function is to detect the occurrence of the model transition. If the scaling factor is larger 
than 1, it means that the norm of innovation vector at current epoch exceeds the average level 
of the past epochs. This also implies the occurrence of the model transition. Only in this case, 
the fading-memory function can be activated. Otherwise, the conventional EKF will be 
applied. The second function of the scaling factor is to determine the weight given to the 
current measurement. However, as is shown in (5-6), the averaged innovation sequence is 
only an approximation under a specific window size and hence needs to be added with a 
tolerance factor. For this purpose, the fading-memory function can be activated if the 
following relation holds: 

where the multiplication factor  reflects the tolerance and should be slightly larger than 1. If 
the relation (5-8) holds, the scaling factor  can be assigned with the minimal value of 
inequality (5-7), otherwise  is kept as 1. 

5.4.2 Performance comparison of fading-memory and conventional 

extended Kalman filter 

Figure 5-7 shows the RMSE of the estimated Euler angles from a conventional EKF and a 
FMEKF, where the window size N is 10 epochs and the multiplication factor  in (5-8) is 1.1. 
We use the same simulation scenario and initialization parameters as that used in section 5.1. 
The results are obtained from a 100-run Monte Carlo simulation. 
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Figure 5-7: RMSE of FMEKF and conventional EKF 

From Figure 5-7 we can see that the FMEKF shows its superiority during the model 
transition phases as it shows smaller magnitude of model transition errors and faster 
convergence. During the stable motion phases, the fading-memory function is inactive and the 
conventional EKF is resumed.  

The variation of the fading-memory factor  calculated from a one-run simulation is 
illustrated in Figure 5-8.  
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Figure 5-8: Variation of the fading-memory factor 

The fading-memory factor experiences some peak values. By comparing with nominal 
attitude values given in Figure 5-2, we can see that these peak values normally appear at the 
beginning of model transition phases. The peak values reflect the significant increase of the 
norm of the innovation vector and hence indicate the occurrence of the model transition. In 
these cases, the fading-memory function is activated. 

5.5 Adaptive tuning of process noise 

The optimality of the Kalman filter setting is closely related to the quality of the a priori 
knowledge about the process noise and the measurement noise. The measurement noise can 
be referred to the product instructions provided by the manufacture. An appropriate a priori 
process noise is highly dependent on the application scenarios and vehicle dynamics, and 
hence it is difficult to be determined. The use of constant process noise parameters is a major 
drawback in a changing dynamic environment. In order to make the filter adaptively identify 
the changing dynamics, several algorithms are developed for online tuning of the process 
noise. These algorithms can be categorized into innovation-based approaches (Mohamed and 
Schwarz 1999) and residual-based approaches (Wang et al. 1999). The difference is that the 
former one relies on the measurements predicted by the a priori state estimates, whereas the 
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latter one is based on the a posteriori state estimates. However, the calculation of a posteriori 
residuals is not an essential step in a Kalman filter routine and needs extra processing time. In 
this thesis, we only consider the innovation-based algorithms. Different algorithms are 
investigated to tune the parameters of process noise, or the parameters of measurement noise, 
or both simultaneously (Wang et al. 1997). In order to determine the technique to be applied, 
it is necessary to know which one contributes the major error. In our applications, the 
measurement model based on the multi-antenna system gives an accurate estimate of the 
attitude information, if no blunder like cycle-slips or loss of lock occurs. The cycle-slip 
detection and the integer ambiguity resolution have been discussed in chapter 2. As the 
antennas are closely distributed, the ionospheric and tropospheric errors can be cancelled by 
differential positioning. Consequently, the quality of the GPS double-differenced carrier phase 
measurements can be well assessed. In contrary, the changing dynamics of the airplane is 
difficult to be predicted. We therefore focus on the tuning of process noise parameters in this 
thesis. The tuning at epoch k can be expressed by (Hide et al. 2004; Mehra 1972): 

It is worth noting that this formula tunes the entire term for process error propagation rather 
than Q itself. The tuning takes place after the Kalman gain is obtained and will take effects at 
the next epoch.  

The adaptive tuning of the process noise can be evaluated by using the simulation 
scenario and same filter initialization presented in section 5.1. As explained before, we use 
small process noise parameters to generate the simulation and large process noise parameters 
to initialize the filter. The variation of the associated process noise for each Euler angle is 
given in Figure 5-9. The length of time window is 8 epochs. For a clear illustration, we only 
present the first 80 epochs. The results are based on a one-run simulation. 

1

1 ˆ ˆ
k TT T

k k k k j j j j k
j k N

h x h x
N

G Q G K z z K  (5-9) 
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Figure 5-9: Variation of process noise parameters 

The solid curve represents the standard deviation of the associated process noise 
parameter of each Euler angle. Using the notation M= T

k k kG Q G , we have 1,1M  for yaw 
angle, 2, 2M  for pitch angle and 3,3M  for roll angle. The dashed curves represent 
the nominal attitude values. At the first 8 epochs, the process noise parameters are not tuned 
because the adaptive processing will start after the innovation sequence is full. After that we 
can clearly observe a decrease of the process noise caused by the adaptive tuning function. A 
jump in the pitch angle can be observed from 50th epoch to 65th epoch, as the airplane transits 
from a level flight to a “pitch-up climb”. The process noise for pitch angle immediately 
increases, which implies that less weight is given to the dynamic model for estimating the 
pitch angle. The nominal yaw and roll values do not change in this case, so that their 
corresponding process noise parameters are not tuned significantly. After the 65th epoch, the 
airplane continues the pitch-up climb for several epochs with a fixed pitch angle, and 
therefore the constant angular rate model still holds and the filter gives the dynamic model 
increasing weight. As a result, the process noise of pitch is tuned down. The Euler angles 
estimated by the AEKF and the FMEKF are depicted in Figure 5-10.  
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Figure 5-10: RMSE of AEKF and FMEKF 

We can divide the results into two phases. The first phase ranges from the 1st epoch to the 
50th epoch until the “pitch-up climb” occurs. Following that the second phase proceeds to the 
80th epoch. As presented in Eq. (4-42), the averaged RMSEs for both phases are given in 
Table 5-2. 

Table 5-2: Averaged RMSE of AEKF and FMEKF  

(1st – 50th epochs) 

Algorithm Yaw error [deg] Pitch error [deg] Roll error [deg] 
FMEKF 0.262 0.475 0.495 
AEKF 0.252 0.447 0.466 

(51st – 70th epochs) 

Algorithm Yaw error [deg] Pitch error [deg] Roll error [deg] 
FMEKF 0.266 0.480 0.462 
AEKF 0.274 0.614 0.472 

The AEKF outputs more accurate attitude estimates in comparison with the FMEKF from 



  103

10th to 50th epochs, because the AEKF benefits more from the dynamic model. After 50th 
epoch, the model transition occurs and introduces the model transition errors. A serious 
problem is that the process noise at this time has been tuned down, making the Kalman filter 
give larger weight to the dynamic model. In this case, an underestimated process noise will 
contribute more errors on the state estimates. This phenomenon can be seen from 50th -70th 
epochs, where the Euler angle errors from the AEKF clearly show anomaly jumps. This 
reveals a significant disadvantage of the AEKF at the model transition. If the predefined 
stochastic dynamic model does not work properly, the adaptive tuning function can lead the 
filter to a divergence.  

The length of the innovation sequence, also termed as window size, affects the 
performance of the FMEKF as well as the AEKF. The smaller the window size is, the more 
sensitive the filter is to the changing dynamics. However, a small window size might lead to a 
biased estimation, destabilization, even divergence (Mohamed 1999). Therefore, a trade-off 
needs to be made between the sensitivity and the stabilization. In Figure 5-11 the AEKF 
results under time windows of 8 and 20 epochs are presented, respectively.  

50 100 150 200 250 300 350 400 450
0

1

2

E
rro

r [
de

g]

RMSE of yaw angle

 

 
AEKF N=8
AEKF N=20

50 100 150 200 250 300 350 400 450
0

1

2

3

E
rro

r [
de

g]

RMSE of pitch angle

Comparison of adaptive EKF with different time windows

50 100 150 200 250 300 350 400 450
0

2

4

E
rro

r [
de

g]

RMSE of roll angle

Epoch (0.2 s)

 
Figure 5-11: RMSE of AEKF with different window lengths 

A shorter time window, on the one hand, outputs better attitude estimates during the stable 
motion phases. But on the other hand, it also yields higher magnitude of model transition errors. 
Figure 5-11 also shows that the model transition errors cannot be properly solved by the AEKF.   
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5.6 Interacting multiple model approach 

Figure 5-3 shows that the model transition errors exhibited by the EKF normally exceed the 
error level of LSAD approach. It means that a failure of the dynamic model may result in 
larger errors than the measurement errors. A straightforward solution to this problem is to 
enlarge the process noise for the whole trajectory. However, the filter in this case will gain 
less benefit from the dynamic model. Meanwhile, when the dynamic model is adaptively 
tuned, a conservatively defined process noise can be tuned down, and consequently, even 
larger magnitude of model transition errors or filter divergence might occur at the model 
transition.   

In recent years, multiple-model methods have drawn increasing attention in the 
navigation application for handling the motion mode uncertainties. The multiple-model 
approach is a hybrid system which needs a set of sub-filters running in parallel. Each 
sub-filter has its own particular dynamic model. The states are estimated by each sub-filter, 
and then an overall estimation is obtained by fusing the results from these sub-filters. Using 
the notations given in Eq. (4-1) and (4-2), each sub-filter can be described by: 

where Mi indicates i-th model. The sub-filters share the same measurement vector.  
An important limitation of the multiple-model methods in previous applications lies in 

the computational load caused by the filters running in parallel. However, the advance in 
processor technology allows the wide use of multiple-model approaches (Hide et al. 2003). 
The multiple-model approaches can be categorized into static multiple-model approaches and 
dynamic multiple-model approaches. Among different dynamic multiple-model approaches, 
the Interacting Multiple Model (IMM) estimator is one of the most efficient ones (Blom and 
Bar-Shalom 1988). Just as the name implies, there is an interaction step for calculating the 
initial conditions of each sub-filter. In the interaction step, the a posteriori estimates of all 
sub-filters are fused according to the model probabilities and model transition probabilities. A 
comparison between the static multiple-model approach and the IMM based on a dual-filter 
architecture is illustrated in Figure 5-12.  

Dynamic model : 1, 1 1, 1i ik i k M k i k M ikM f M g Mxx w  (5-10) 

Measurement model: , 1ik k M k i k ih M Mz x v  (5-11) 
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Figure 5-12: Static and interacting multiple-model approaches 

A good performance of a static multiple-model approach relies on the following 
prerequisites (Bar-Shalom et al. 2001). Firstly, the correct model should exist among the set of 
models. Secondly, each model should take effect and work properly during the whole 
observation session. The latter requirement will face a problem when the model transition 
occurs. In order to solve this problem, modifications must be made to the static multiple-model 
approaches. A commonly-used method is to add an empirical upper bound to the norm of the 
innovation vector. This upper bound indicates the occurrence of the temporary filter divergence, 
so that this model can be excluded from the set of running sub-filters in order to fulfill the 
prerequisites mentioned above. In the IMM, the interacting procedure is used to maintain the 
proper running of each sub-filter. The sub-filter with large innovation will be less weighted 
instead of being excluded. In this sense, the IMM better fits the model-switching scenarios than 
the static multiple-model approach. 

5.6.1 Implementation of an interacting multiple model approach 

Concerning our application, we can have two sub-filters running in parallel. One sub-filter 
mainly relies on the measurement model, i.e. it has a large process noise and is less affected by 
the mismodeling errors. The other sub-filter has a smaller process noise, like the EKF used in 
chapter 5.1. Both sub-filters can be merged using the IMM approach. A cycle of the IMM 
composed of two sub-filters is illustrated in Figure 5-13.  
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Figure 5-13: Flowchart of an IMM 

The derivation of this algorithm can be found in (Bar-Shalom et al. 2001). The symbols 
shown in the flowchart are briefly explained below and detailed later in the following context: 

k iMP  State estimates and error covariance matrix at time k for sub-filter i 

ˆ k output
x  ˆ

k output
P  State estimates and error covariance matrix for merged output  

 Model transition probability matrix  

 Model probability 

z Measurement vector 
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Mi Sub-filter i  

 Mixing probability matrix 

 Model-matched likelihood  
 
Step 1 : Initialization of IMM: 
 
Before applying the IMM, two probability terms should be initialized. The model transition 
probability matrix T indicates the probability of one model changing to another and is assumed 
to be time-invariant. With two sub-filters, matrix T has a form of 

1,1 1,2
2,1 2,2

T T
T

T T
 

with 
1 1 1,, ,

k k km j i km zi j M M zT  

(5-12) 
 

(1,1) and (2,2) represent the probability of sub-filter 1 and sub-filter 2 taking effects during 
the entire trajectory, respectively; (1,2) and (2,1) represent the probability of one filter 
switching to the other. The sum of each column and each row should be 1. The second 
probability term to be initialized is the model probability denoted by , which indicates the 
weight of each filter taken for the merged output. This term will be updated epoch by epoch in 
each IMM cycle.   
 
Step 2 : Calculation of the mixing probability 
 
The mixing probability matrix  is used for the interaction step. An associated component 

,i j  reflects how the probability of model i at current epoch is affected by the given 
probability of model j of last epoch. To calculate , both the model transition probability 
matrix and model probability  are considered by applying the Bayes’ theorem and total 
probability theorem (Bar-Shalom et al. 2001, Zhang 2010): 
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(5-13) 

where n is the number of sub-filters. Denoting 
k k i km Mz z  with k iM  and using the 

time-invariant model transition probability T in (5-12) we have: 

1
1

1
1

,

,

k i
k i j n

k a
a

i j M
M M

a j M

T

T
 for , =1,2,i j n  

(5-14) 

Note that the model probability  obtained at time k-1 allows the mixing at the beginning of 
each IMM cycle at time k.  
 
Step 3 : Interaction for the filter initial conditions  
 
The mixing probability can be fused with the a posteriori state estimates and the covariance 
matrices of all sub-filters at the last epoch to yield the initial condition for each sub-filter at 
current epoch: 

1 1
1

ˆ ˆ
n

k j k i k i j
i

M M M Mx x   for j=1,2,…n (5-15) 

1 1 1
1

ˆ ˆ ˆ ˆ
n T

k j k i j k i k i k i k i k i
i

M M M M M M M MP P x x x x  

for j=1,2,…n 

(5-16) 

 
Step 4 : Kalman filter routine with model-matched likelihood calculation 
 
Each sub-filter will be executed by taking the initial conditions obtained from Eq. (5-15) and Eq. 
(5-16) into the routine. Once the measurement at time k is available, the model-matched 
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likelihood function can be obtained from the innovation vector as follows: 

where l is the dimension of measurement vector; det(·) denotes the determinant of a matrix; s is 
the innovation vector; Ck is the error covariance matrix of the innovation vector and can be 
calculated by T

k k k k kC H P H R . The equation is valid under the assumption that the 
measurements have Gaussian noises and the measurement model has been linearized.  
 
Step 5 : Model probability update 
 
The model probability of sub-filter j can be related to the model-matched likelihood function , 
the model transition probability matrix T and the previous model probabilities by the following 
equation:  

1
1

1
1 1

,

,

n

k j k j
i

k j n n

k a k i
a i

M i j M
M

M i a M

T

T
 for j=1,2,…n (5-18) 

Eq. (5-18) shows that the model probability of a sub-filter depends on its current 
model-matched likelihood function with respect to the likelihood functions of other sub-filters. 
Implied from term 1k (model probability at last epoch), the history of the model probabilities 
from all sub-filters are taken into account. In other words, the model probability of a sub-filter 
depends on its relative performance with respect to the other sub-filters not only at the current 
epoch but also in the history.  
 
Step 6 : Calculation of the merged output 
 
The output from the IMM is a weighted sum of the a posteriori state estimates and covariance 
matrices of all sub-filters. The weight herein is determined by the model probabilities.  

1

ˆ ˆ
n

k k j k joutput
j

M Mx x  (5-19) 

1

ˆ ˆ ˆ ˆ
n T

k k j k j k k j k k joutput output output
j

M M M MP P x x x x  (5-20) 

It should be stressed that ˆ k output
x  and k output

P  serve as merely the output to the users. They 
will not be fed back to the IMM at next time epoch. 

11 1exp
22 det

T
k j k j k j k jl

k j

M M M M
M

s C s
C

  

for  j=1,2,…n 

(5-17) 
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5.6.2 Performance comparison of IMM and FMEKF 

Concerning the reduction of model transition errors, the IMM outperforms the FMEKF, which 
can be demonstrated using simulations. The IMM is configured with the following parameters: 

Table 5-3: Initialization parameters for IMM 

Process noise for sub-filter 1 20.35[deg/ epoch ]y  

20.4[deg/ epoch ]p r  

Process noise for sub-filter 2 21.5[deg/ epoch ]y p r  

Thermal noise of carrier phase (for R) for 
both sub-filters 

2 mm 

Initial state error covariance matrix 0P  

for both sub-filters 

0.4 degy   0.6 degp r  

0.4 deg/ epochy p r  

Initial attitude values for both sub-filters LSAD at first epoch 
Initial angular rates for both sub-filters They are set as zeros.  

Model transition probability matrix 1,1 1,2 0.9 0.1
2,1 2,2 0.1 0.9

T T
T

T T
 

Initial model probability 
0 1 0 2 0.5M M  

The sub-filter with small process noise parameters has a dominant probability in matrix T, 
meaning that the constant angular model should take effects with large probability during the 
trajectory. Figure 5-14 shows the RMSE of estimated Euler angles using the IMM and the 
FMEKF with a time window of 8 epochs. The FMEKF is configured as in section 5.4.2: 
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Figure 5-14: RMSE of IMM and FMEKF 

The IMM and FMEKF offer similar accuracies if no model transition occurs. However, 
the model transition errors from the IMM are lower than those from the FMEKF during the 
model transition phases. Examples can be seen from 50th-70th epochs for pitch angle and from 
160th-200th epochs for roll angle. This is due to the reduced model probability of the sub-filter 
with small process noise, which can be seen from Figure 5-15.    
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Figure 5-15: Model probability of the sub-filter with small process noise 

In most epochs, the model probability of the sub-filter with small process noise is more 
than 60%. However, it can be remarkably reduced in some epochs, for example, 50th-70th 
epochs, 160th -200th epochs and 360th-380th epochs. Comparing with the Figure 5-3 it is clear 
that the model transitions take place during these epochs. In these cases, the merged output 
from an IMM mainly comes from the sub-filter with larger process noises. 

5.7 Adaptive interacting multiple model approach 

From the comparison given in Figure 5-14 it can be seen that the IMM does not offer higher 
accuracy in stable motion phases, as it has no adaptive tuning function to the process noise. 
By incorporating the adaptive tuning function into the IMM, we can have an adaptive IMM 
approach (AIMM). An AIMM consists of two sub-filters. One sub-filter has fixed and large 
process noise parameters and is robust to the mismodeling errors. The other sub-filter features 
an adaptive tuning function. A routine of AIMM can be seen in the following flowchart. 
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Figure 5-16: Flowchart of an AIMM routine 

 The difference between the AIMM and the IMM only lies in whether or not the adaptive 
tuning function is embedded into the sub-filter with small process noise. The adaptive tuning 
of process noise based on innovation vectors has been introduced in section 5.5. This 
technique can lead the filter to an instable status if an extraordinarily large innovation vector 
exists in the innovation sequence. To solve this problem, the tuning function of process noise 
parameters will be suspended if an innovation anomaly is detected. The tuning function will 
be restored once the sub-filter is in a steady-state. The innovation anomalies can be detected 
by the following methods: 
 Check the norm of the innovation vectors of the current epoch. If it is significantly larger 

than the average value of previous innovation vectors inside the time window, a reset of 
process noise parameters will take place. 
 Check the model probability of the sub-filter with small process noise. This value is very 

small during the model transition phases, which can be known from Figure 5-15. 
Once one of the aforementioned conditions holds true, process noise parameters will be 

reset to their initial values given at the filter initialization and the innovation sequence is 
cleared. This operation aims at invoking the adaptive tuning function only if the sub-filter is 
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running under the predefined stochastic conditions.  
 The RMSE of Euler angles estimated by the AIMM and the IMM are compared in Figure 
5-17. The length of time window is 8 epochs, and the process noise parameters are reset if the 
model probability of sub-filter with small process noise is lower than 30%. 
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Figure 5-17: RMSE of AIMM and conventional IMM   

From Figure 5-17 we can see that the AIMM outperforms the conventional IMM during the 
stable motion phases due to the adaptive tuning function, for example from 200th  to 360th 
epoch. Although the magnitude of model transition errors obtained from the AIMM are slightly 
larger than the conventional IMM, they are still lower than the FMEKF.  

At the beginning of this chapter we have presented the RMSE of the LSAD and the EKF. 
A comparison in terms of accuracy between the AIMM and both approaches is illustrated in 
Figure 5-18.   
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Figure 5-18: RMSE of AIMM, EKF and LSAD 

 At the model transition, the model transition errors from the EKF are clearly reduced by the 
AIMM. During the stable motion phases, the AIMM benefits more from the dynamic model 
and hence offers higher accuracy. The AIMM integrates the robustness to the model transition 
and adaptive tuning function of process noise, and therefore it can be adopted as a proper 
approach to handle the two-fold mismodeling errors introduced at the beginning of this chapter. 

5.8 Computational complexity 

The computational burden of the presented approaches is quantified in Table 5-4. The 
processing time of one cycle is obtained in the same computational environment and by the 
same method presented in section 4.5.3. The processing time of the FMEKF and the AIMM 
depends on the length of time window used.  
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Table 5-4: Computational time of different approaches 

Approach  
(N=length the time window) 

Time needed per cycle [ms] 

EKF 3.5 
FMEKF (N=8 epochs) 6.31 

FMEKF (N=20 epochs) 6.49 
FMEKF (N=40 epochs) 6.69 

IMM 10.1 
Adaptive IMM (N=8 epochs) 11.44 

Adaptive IMM (N=20 epochs) 11.65 
Adaptive IMM (N=40 epochs) 11.77 

5.9 Conclusions 

Using a constant angular model to approximate the attitude dynamics may bring in two kinds of 
mismodeling errors. The first type of mismodeling error takes place when the airplane changes 
the motion model, where the errors from EKF will show model transition errors. This kind of 
error can only be slightly reduced by using other nonlinear Kalman filters. The EKF with 
variant fading-memory factors can better handle the model transition errors. Furthermore, the 
IMM approach is more robust to the model transition than the FMEKF. The second type of 
mismodeling error lies in the fixed and conservatively initialized process noises. The AEKF 
with a tuning function of the process noise parameters is a suitable approach for this case. 
However, it might lead the filter to a divergence under the first kind of mismodeling error. An 
AIMM approach has been proposed to handle both mismodeling errors. Simulation results 
indicate that the AIMM offers higher accuracy in both stable motion phases and model 
transition phases compared to the conventional EKF. 
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6. Error analysis for position, attitude and SAR 

related parameters 

The inaccurately estimated position of SAR Antenna Phase Center (APC) is a primary source of 
undesirable SAR phase errors. The errors during a SAR coherent integration time will introduce 
serious deterioration in the resolution and geometry of the final image. Besides that, an 
incorrect Doppler Centroid Frequency (DCF) might result in the misregistration and 
degradation in azimuth. In order to obtain the APC position and DCF, the position, velocity and 
attitude of the airplane are needed. These states can be obtained from GPS using the 
configuration given in Figure 6-1.  

 

Figure 6-1: Configuration of GPS devices for TerraSAR/PAMIR experiment 

A GPS multi-antenna system allows the attitude determination. A configuration of base 
and rover stations is used for precise positioning. In order to study the feasibility of using only 
GPS in SAR experiment, it is important to know the effects of the potential GPS errors on the 
motion compensation. For this purpose, the relation between the information obtained from 
GPS and the information required by the motion compensation will be established. An error 
analysis will be carried out as well. 
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6.1  Error propagation in position and attitude domain 

The differential positioning technique is not only the technique for precise positioning, but 
also the basis for the attitude determination. The GPS carrier phase measurements are usually 
assumed to contain Gaussian white noise. For short baselines, especially for the multiple 
onboard antennas, atmospheric errors are normally eliminated and hence the thermal noise 
and the multipath error are the major remaining errors. In this chapter, we mainly consider the 
error propagation from thermal noise of GPS carrier phase measurements to the position and 
attitude parameters.  

6.1.1  Error propagation from single to double-differenced measurements 

At first, the double-differential positioning equation (1-15) is recalled here: 

The operator   denotes double-differencing; The subscripts u1 and u2 identify the GPS 
receiver’s antenna 1 and 2, respectively; the superscripts s1 and s2 identify the satellite 1 and 
satellite 2, respectively; the notation of u1-u2 and s1-s2 indicate that the differencing is made 
between two antenna and two satellites; λ is the GPS signal wavelength; the subscript Li 
identifies the carrier signal; Φ is the carrier phase measurement; ρ is the geometry distance from 
the GPS receiver’s antenna to the GPS satellite; N is the integer phase ambiguity; e is the carrier 
phase thermal noise; M is the multipath error. In order to analyze the error propagation from the 
single GPS carrier phase measurements onto the double-differenced carrier phase 
measurements, the term 1 2

1 2
s s
u u

  can be detailed as:  

Considering a two-antenna configuration with n common satellites in view, the 
double-differenced carrier phase measurement Φ  can be formed as:  

1 1
1 1 2 2

Ts sn s sn
DD u u u u      Φ = A  

( 1) 1 ( 1) ( 1) ( 1) 1 ( 1) ( 1)DD n n n n n n             A 1 I 1 I  
 (6-3) 

where the bold “1” indicates the vector with all components being one; I is the identify matrix. 
Note that the satellite 1 is chosen as the key satellite. We assume that the carrier phase 
measurements from different satellites have uncorrelated Gaussian white noise with a 
standard deviation σΦ, so that the double-differenced carrier phase measurements have the 
error of: 

1 2 1 2 1 2 1 2 1 2
1 2 1 2 1 2 1 2 1 2,s s s s s s s s s s

Li Li Liu u u u u u u u u uN e M      
             (6-1) 

   
  

1 2 1 1 2 2
1 2 1 2 1 2

1 2 1 2
1 1 2 21 1 1 1

s s s s s s
u u u u u u

Ts s s s
u u u u


      

      
 (6-2) 



  119

6.1.2 Error propagation from measurement domain to position domain 

The linearized double-difference positioning model can be formulated as:  
1 2 1 2 1 2

1 1 2 1 1 2 1 2 2

1 1 1
1 1 2 1 1 2 1 2

... ...

ECEF

s s s s s s
L u u L u u u u ECEF

ECEF
s sn s sn s sn

L u u L u u u u n ECEF

N x
y

N z
G x

G

G
 

with 
1 1 1

2 2 2 2 2 2
1 1 1

2 2 2 2 2 2

sj s sj s sj s
u u u u u u

j sj s sj s sj s
u u u u u u

x x x x y y y y z z z zG  

(6-5) 

where the terms at the left-hand side have been introduced by Eq. (6-1); at the right-hand side,   
vector ECEFx  includes the ECEF coordinate of the rover antenna which is identified here by 
antenna u2; matrix G comprises the unit direction vectors with 2

sj
u  being the distance from 

satellite j to the rover antenna; j is the satellite number from 1 to total number of satellites; 
The vector  contains the thermal noises of the double-difference phase measurements and 
other remaining errors, including mainly the ionospheric error, tropospheric error and the 
multipath delay. The remaining ionospheric and tropospheric errors are highly dependent on 
the baseline between the base and rover antenna. Given a short-baseline (shorter than 10 km 
on the ground) between the base and rover antenna, the remaining ionospheric and 
tropospheric are negligible. We also ignore multipath errors for simplicity.  

The DOP for single-point positioning has been introduced in 1.3.5 and detailed in the 
appendix. Similar to that, in the differential positioning, the effects of the satellite geometry in 
the position domain can also be quantified by DOP. For example, using the term G in (6-5), 
the PDOP in differential positioning can be calculated as (e.g. Nielsen 1997): 

PDOP trace
-1TG G  (6-6) 

6.1.3 Transformation from ECEF to LLF 

The transformation from the ECEF ( ECEFx ) to the LLF ( LLFx ) can be formulated as:   

sin cos 0
sin cos sin sin cos

cos cos cos sin sin
LLF LLF ECEF

ECEF

l ECEF

l ECEF

l ECEF

x x
y y
z z

x R x

 
(6-7) 

where LLF
ECEFR  is the rotation matrix indicating the projection of a target point from the ECEF 

2 T
DD DDCov A A  (6-4) 
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to the LLF;  and  denote the latitude and longitude of the reference point, respectively. The 
longitude and latitude can be derived from the known Cartesian coordinates 
(Hofmann-Wellenhof et al. 2001). 

6.1.4 Error analysis for double-difference positioning in LLF 

Equations from (6-3) to (6-7) indicate the sequential procedure for calculating the LLF 
coordinate. Since the carrier phase noise is assumed to be Gaussian white noise, the errors in 
the LLF coordinate iCov l  can be derived by applying the error propagation law to the 
double-differenced carrier phase noise:  

112 TLLF T T LLF
i ECEF ECEF

ECEFCov

Cov DD DD

x

l = R G A A G R  
(6-8) 

6.2 Error analysis for attitude determination 

Based on the LSAD model given in (3-11), the errors in the estimated Euler angles can be 
derived by: 

13 -1

0 0
2

T T
i i i

i

Cov att CovA R l R A  (6-9) 

where Cov att  indicates the error covariance matrix of the Euler angles. Here we assume 
that the ABF are precisely measured a priori so that its errors can be neglected. In Eq. (6-9), 
the geometry of antennas is involved in the rotation matrix iA  and will affect the attitude 
precision. The geometry is determined by the baseline lengths between the antennas. Figure 
6-2 show the impacts of baseline length and carrier phase noise on the precision of yaw and 
pitch angles. The results are obtained by simulating a static scenario where the antennas form 
an equilateral triangle. In the simulation, the true values of Euler angles are all zeros. The 
standard deviation of yaw and pitch errors are obtained from (6-9). The baseline length 
reflects the distance between the phase centers of the antennas. Considering the antenna 
dimensions, baseline lengths larger than 0.2 m are taken into account. 
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Figure 6-2: Attitude precision under different baseline and carrier phase noise  

It can be seen that a longer baseline and a smaller phase noise yield a higher attitude 
precision. Note that the errors of each Euler angle will differ according to the satellite 
geometry, the antenna geometry and other factors. The results presented in Figure 6-2 only 
correspond to the specified simulation scenario and cannot generally reflect the precision of 
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the attitude parameters.  

6.3  SAR motion compensation using GPS 

The SAR APC position derived from GPS is given in the LLF, whereas the analysis of 
receiver-to-target range is usually carried out in the frame related to the track directions. In the 
horizontal plane, the LLF coordinates of the APC should be projected into the 
Along-track/Cross-track/Up (ACU) frame, as shown in Figure 6-3. Both frames share the 
same up direction, namely Z-axis in the LLF. The angle  reflects the deviation in the 
cross-track direction and the X-axis of the LLF. 

cro
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-tr
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k d
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cti
on

LLFx

LLFy

Figure 6-3: LLF and along/cross-track frame 

6.3.1 APC and position parameters  

The APC error is illustrated in Figure 6-4, where the nominal coordinate of the airplane is at 
the point APC’ and the estimated coordinate is at the point APC. Point C is located at the 
midswath. R0 is the true slant range and R1 is the estimated slant range. Note that the APC 
position error needed for the motion compensation is actually 0 1R R  rather than the 
magnitude of R2.  
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Figure 6-4: An illustration of APC error in 3D space 

The GPS antennas and SAR antenna will be rigidly mounted on the airplane body, so that 
the coordinate of APC in the ABF ( ABFx ) can be fixed prior to the experiment. However, the 
calculation of the slant range is usually performed in the ACU frame. We therefore need to 
transform the APC coordinate from the ABF to the ACU frame. Applying Helmert formulation 
introduced in Eq. (3-1) yields:  

0,
ACU ACU ACU ABF

ABF ABFx x R x  (6-10) 

where xACU is the coordinate of APC in the ACU frame; 0,
ACU

ABFx  is the origin of the ABF in the 
ACU frame; xABF is the coordinate of APC in the ABF. Note that the master antenna serve as 
the origin for both ABF and LLF, so that 0,

ACU
ABFx  is equivalent to 0,

ACU
LLFx . From GPS we can 

obtain the coordinate of the master antenna in the ECEF frame and the attitude parameter 
between the ABF and the LLF. Substituting these terms into (6-10) yields: 

0,
ACU ABFACU
ABFABF

ACU ACU LLF ECEF ACU LLF ABF
LLF ECEF MA LLF ABF

R xx

x R R x R R x  
(6-11) 

where ACU
LLFR  reflect the rotation from the LLF to the ACU frame (see Figure 6-3); LLF

ECEFR  
reflects the rotation from the ECEF to the LLF centered at the master antenna; The terms 
labeled under the brace are associated with Eq. (6-10) and represent the transition and rotation 
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between the ABF and the ACU frames, respectively. LLF
ECEFR  is determined by the position of 

the master antenna. The position of master antenna in the LLF, even obtained through SPP, 
presents only millimeter-level errors (Lu 1995). In our experiment, the master antenna is 
positioned using RTK technique, and therefore the error in LLF

ECEFR  can be ignored. The term 
ECEF
MAx  is obtained from the GPS position determination. The term LLF

ABFR  is obtained from the 
attitude determination. 

Eq. (6-11) shows that the positioning error of SAR APC in the ACU frame is affected by 
the attitude error and the positioning error. By ignoring the covariance between the position 
and attitude results we have:    

ACU ACU LLF ECEF ACU LLF ABF
LLF ECEF MA LLF ABFCov Cov Covx R R x R R x  (6-12) 

In (6-12) the first term of the right-hand side describes the effects of positioning error. It can 
be calculated from:  

TACU LLF ECEF ACU LLF ACU
LLF ECEF MA LLF LLFCov CovR R x R x R  

cos sin 0
sin cos 0

0 0 1

ACU
LLFR  

(6-13) 

where  is the included angle presented in Figure 6-3. In this case, the origin of LLF is the 
nominal APC position. The term Cov(xLLF) can be calculated from Eq. (6-8). The second term 
of the right-hand side of Eq. (6-12) indicates the influences of attitude error. This can be 
related to the attitude error derived in Eq. (6-9) by the following equation: 

TACU LLF ABF ACU T ACU
LLF ABF APC LLF LLFCov Cov attR R x R R  

LLF ABF LLF ABF LLF ABF
ABF ABF ABF

y p r
R x R x R x  

(6-14) 

Where Cov(att) is the error covariance matrix of the Euler angles calculated from Eq. (6-9).  
From Figure 6-4 it can be seen that the APC error is actually obtained from the 

three-dimensional space. However, the position error in the along-track direction can be 
accurately compensated by re-sampling procedures (Fornaro 1999), and hence the cross-track 
direction is the only error source in the horizontal plane. Consequently, we can project the 
APC error into a two-dimensional plane. Shown in Figure 6-5 is the two-dimensional plane 
formed by the cross-track and up directions, where B represents estimated APC position in the 
two dimensional plane and A is the nominal position of the APC.   



  125

cross-track

up

l

crossx

upx

e

C

A

B

0R

 

Figure 6-5: An illustration of APC error in 2D plane 

The APC position error is expressed by |AC-BC|. The true slant range AC with the 
magnitude of R0 can be considered free of error, so that the APC position error (denoted by 
fAPC) can be calculated from the actual slant range BC as follows: 

2 22
0 0

2 22
0 0

2 sin
sin

2 sin cos

up
up cross

APC l e
e

up cross cross up
l l

xf R x x R

R x x R x x

 (6-15) 

where 0R  is the true slant range to the target point and can be obtained from LLF
lz  with 

LLFz  being the nominal position of APC in the up direction; upx  and crossx  are the actual 
APC coordinates in up and cross-track directions, respectively; e  can be expressed by 

1tan up cross
e x x  as depicted in Figure 6-5; l  is the look angle. From Eq. (6-15) we 

have the APC position error: 
CU T

APC CU CUCov f Cov= a x a  

APC APC
CU up cross

f fa
x x

 

0

2 22
0 0

0

2 22
0 0

cos

2 sin cos
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up
up cross cross up

l l

cross
APC l
cross

up cross cross up
l l

f x R
x R x x R x x

f x R
x R x x R x x

 

(6-16) 

where Cov(xCU) is the error covariance matrix of the APC position in up and cross-track 
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directions. Cov(xCU) can be extracted from Cov(xACU) of Eq. (6-12). The SAR image 
processing needs an APC position error lower than 1/8 SAR wavelength (Wang et al. 2009). 

6.3.2 DCF and attitude parameters  

The Doppler Centroid Frequency (DCF) and attitude parameters are related by:  

sin sin cos sinDC l l along SARf y p v  (6-17) 

where fDC stands for the DCF; valong refers to the velocity of the airplane in the along-track 
direction; l denotes the look angle of the APC; y represents the yaw angle of the PBF (plane 
body frame introduced in chapter 3) and p is the pitch angle of the PBF; SAR refers to the SAR 
signal wavelength used in this bistatic SAR experiment, namely 0.031 m. Except for the yaw 
angle and pitch angle, the velocity term valong is also an unknown parameter in (6-17). 
Applying the error propagation law to (6-17) and neglecting the variance between the attitude 
parameters and the velocity yield: 

2

1 AV T
DC DCF DCF

SAR

Cov f Cova x a  

2

2

2

0
0

0 0
along

y y p
AV

y p p

v

Cov x  

sin cos cos sin
sin sin cos cos

sin sin cos sin

T
l l along

DCF l l along

l l

y p v
y p v

y p
a  

(6-18) 

In the covariance matrix Cov(xAV), the variance and covariance of the yaw and pitch angles 
can be obtained from Eq. (6-9). The calculation of velocity will be discussed in section 6.3.3. 
The DCF error should not exceed 5% of the Pulse Repetition Frequency (PRF). 

6.3.3 Phase and velocity parameters 

As discussed before, the positioning error in the along-track direction can be compensated by 
a re-sampling procedure. The re-sampling procedure depends on the velocity information in 
the along-track direction. This can be seen in Figure 6-6. 
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Figure 6-6: Re-sampling in along-track direction 

In Figure 6-6, the synthetic aperture edge is marked by a hollow circle; Ta is the composite 
exposure time;  is the azimuth time variable and 0R denotes the zero-Doppler time; 0Rr  is 
the zero-Doppler slant range; alongv  represents the nominal along-track velocity of the SAR 
receiver.  

The slant range history of receiver is defined as:  
22

0 02 along
SR R R SARr v  (6-19) 

where SR  is the SAR phase in units of cycles. The velocity in the along-track direction 
( alongv ) can be obtained from various sensors, for example by the embedded speed sensor of 
the airplane, by the inertial sensors or by GPS measurements. In this study, we focus on the 
velocity determination with GPS. Doppler measurements or carrier phase rates are usually 
employed for velocity determination in single-point positioning (Serrano et al. 2004). 
However, Doppler measurements under high dynamics are not known with sufficient 
accuracy (Lipp and Gu 1994) and therefore its error model is difficult to be established. If 
RTK solutions are available, the velocity can be obtained by differentiating the precise 
positions with time. This is always used as reference values to evaluate other velocity 
determination systems (Ding and Wang 2011). The drawback mainly lies in the low data rate 
of GPS output, so that a constant velocity has to be assumed between the two adjacent GPS 
position outputs. Denoting the GPS sampling frequency as fs, the velocity can be calculated 
by: 
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1
along along along

t t sv fx x  (6-20) 

By neglecting the correlation of position errors between two adjacent epochs, the velocity 
error in the along-track direction can be related to the position error by: 

2along along
sStd v f Std x  (6-21) 

where fs is the output rate of the GPS measurement; Std is the short-hand notation of standard 
deviation. The GPS output rate usually ranges from 1 Hz to 20 Hz. From Eq. (6-19) the phase 
error SR caused by the velocity error is given by: 

2
0

222
0 0

2
along

R along
SR

along
SAR R R

v
Std Std v

r v
 (6-22) 

where the time dependence  is a SAR related parameter and its relation with respect to the 
GPS output is hard to be constructed, we therefore need to simplify the error analysis by 
replacing this time dependence. As is known, the maximal error appears at the synthetic 
aperture edge, and hence we treat the composite exposure time Ta as the upper bound. 
Substituting Ta into (6-22) yields: 

2

222
0

22

2

along
a along

SR
alongSAR

R a

v T
Std Std v

r T v
 (6-23) 

For SAR focusing, the SAR phase error on the synthetic aperture edge should be lower than 
/ 4 . 

6.4 Factors affecting the position and attitude accuracies 

From the above discussions we can summarize the affecting factors for the position and attitude 
errors: 

1. Receiver quality. It is mainly reflected by the carrier phase errors. 
2. Satellite geometry. This is shown by the matrix G in Eq. (6-5).  
3. Trajectory of the airplane. This affects the position of the master antenna and 

furthermore changes the matrix LLF
ECEFR  in Eq. (6-11). But the trajectory is usually pre-defined 

according to the experiment scenario and hence its effects are always ignored. 
4. Geometry and separation of the antennas. Both terms are involved in the computation of 

the LLF coordinates of slave antennas. A longer baseline results in an improved precision but 
will delay the carrier phase ambiguity resolution. An orthogonal configuration of antennas is 
optimal for attitude determination (Comp 1993). However, it is usually not practical to set up 
long baselines with an orthogonal geometry due to the limited space of the fuselage. 
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Considering the architecture of the Transall C-160 aircraft, we have the following possible 
locations to mount GPS antennas, which are marked from A to G. 

 

Figure 6-7: Possible locations for mounting antennas on Transall C-1602 

According to Figure 6-7 we have the following antenna configurations: 
(a) B-E-F.  This is a combination of long baselines and orthogonal geometry. However, as 

identified in section 3.5.4, mounting the antennas on the wings is not recommended as the wing 
flexure might significantly degrade the accuracy of the attitude parameters.   

(b) A-D-C. This is an equilateral configuration with short baselines (maximal 2.5 m). In 
the real application, multiple GPS antennas are usually mounted on a rigid frame, and then the 
frame is fixed on the vehicle body. For this reason, such a configuration can simplify the 
installation of the antennas. If the required accuracy is achievable by short baselines, this 
configuration is recommended in the experiment.  

(c) A-G-C. Such a non-orthogonal configuration contains long baselines between A-G 
and C-G, yielding an improved precision of yaw and pitch over (b), but a fast ambiguity 
resolution for single-frequency GPS receivers is then challenging. 

                                                 
2 The origin of the figure comes from the reference document US-Army. (1996). FM 44-80 Visual Aircraft 
Recognition. Department of the US Army, Washington, DC,. 
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6.5 Simulation  

We assume that the airplane is flying in the east direction at the geodetic height of 3000 m 
starting from the position with latitude being 50° and longitude being 8° with a constant 
velocity of 110 m/s. According to the flying direction, ACU

LLFR  turns out to be an identity matrix. 
During the flight, there are 8 satellites in view, leading to a PDOP of 1.6. A ground station is 
located in the middle of the flight trajectory and at the geodetic height of 360 m. We assume that 
the phase integer ambiguities are correctly resolved and no phase cycle-slip occurs during the 
flight. By default, the GPS receivers mounted on the airborne keep tracking the GPS signals and 
output the data at 5 Hz. The observation session takes 1 min. Other relevant parameters for 
performing the simulation are presented in Table 6-1. 

 

Table 6-1: Parameters for simulating bistatic SAR experiment 

Parameter Indication Value 

l  look angle 70º 

SAR  SAR wavelength 0.031  m 

aT  composite exposure time 2.2 s 

 
In the previous sections, we have introduced the accuracy requirements for parameters 

used in the SAR motion compensation. These values are actually the recommended maximal 
errors. Besides that, we have also derived the standard deviation errors of each parameter. It 
should be stressed that the standard deviation cannot be directly related to the maximal errors 
since it covers only 68.2% confidence level. A 3  standard deviation (99.7% confidence level) 
is adopted here to approximate the maximal error.   

6.5.1 GPS positioning error and APC position error in cross-track direction 

We will firstly analyze the effects of different receiver qualities on the APC position errors in 
the cross-track direction. The 3  APC position errors in the cross-track direction based on 
different carrier phase noises are depicted below: 
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Figure 6-8: APC position error under different the carrier phase noise 

From Figure 6-8 we can see that the standard deviation of carrier phase measurements 
should not be larger than 1.7 mm in order to guarantee that the position error will not exceed the 
threshold of 1/8 SAR wavelength (3.1 cm). Figure 6-9 shows the APC position error during the 
flight based on the receiver with 1.5 mm carrier phase noise.   
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Figure 6-9: APC position error during the flight 

Figure 6-9 shows that the APC position errors are almost lower the estimated 3  error 
(99.7% confidence level) except for two exceptional epochs. The outages satisfy the fact that 
there might be 0.03% data out of the confidence level.  

6.5.2 GPS attitude error and APC position error in cross-track direction  

The coordinate of the SAR APC in the ABF can be determined at the calibration procedure. To 
do this, the distance from the SAR APC to the phase center of each GPS antenna needs to be 
measured. Such a lever-arm affects error propagation from the attitude domain to the position 
domain. A longer lever-arm will increase the positioning error of SAR APC in the cross-track 
direction. It has been interpreted that the attitude precision depends on the baselines between 
onboard multiple GPS antennas. In Figure 6-10, these baselines are depicted, where the blue 
solid line is the baseline between GPS antennas and the red dashed line indicates the baseline 
(also lever-arm) from the SAR APC to each GPS antennas. 
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Figure 6-10: Locations of SAR antenna and GPS onboard antennas 

For simplicity we assume that the GPS antennas have the same baseline length between 
each other, also the baseline from SAR APC to each GPS antenna are of the same magnitude, i.e. 
b1=b2=b3 and c1=c2=c3. Based on Eq. (6-12) and Eq. (6-16) the effects of different baselines on 
the positioning error of SAR APC in the cross-track direction can be demonstrated in Figure 
6-11. The standard deviation of the carrier phase noise is 2 mm. 
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Figure 6-11: Baseline effects on the estimated SAR APC positioning error 

Figure 6-11 indicates the significance of lever-arm effects. Although accurate attitude 
information can be provided by multiple GPS antennas, the lever-arm effects can magnify the 
influence of attitude errors in the estimated SAR APC position. A large lever-arm of 5 meters 
will result in a centimeter-level error in the position domain. The SAR antenna is usually 
mounted at the bottom or on a side of the airplane to receive the echoed signals, therefore the 
distance from the SAR APC to the GPS antenna is mainly dependent on the height of the 
airplane body. A large lever-arm is a significant limitation of GPS-based attitude determination 
technique in SAR applications. 

6.5.3 Velocity error and APC positioning error in along-track direction 

As investigated before, the GPS receivers with the standard phase error smaller than 1.7 mm 
should be used in order to meet the APC positioning accuracy. The velocity of the airplane is 
derived from the position parameters in the along-track direction. From Eq. (6-23) it can be 
seen that the threshold of the velocity measuring error depends on the magnitude of the velocity 
parameter as well. Such a relation is depicted in Figure 6-12. Here we use a zero-Doppler slant 
range ( 0Rr ) of 8770 m. 
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Figure 6-12: Velocity error caused by the SAR phase error 

As indicated by Figure 6-12, a lower velocity error is required when a higher velocity is to 
be reached. With a GPS carrier phase noise of 1.7 mm, the velocity can be accurate to 0.05 m/s 
at 5 Hz sampling rate. According to Figure 6-12 such a velocity error threshold is subject to a 
velocity of 150 m/s. The nominal velocity of PAMIR airplane in the bistatic SAR experiments 
is 110 m/s, and therefore the required velocity accuracy is achievable. 

6.5.4 DCF error and the GPS attitude error 

The DCF error is determined by the attitude error and the velocity error. We will at first 
consider the attitude error by treating the velocity as a constant value. Different configurations 
of on-board antennas have been presented in Figure 6-7. For configuration (b), there can be 
different baselines in the fuselage area. The DCF errors associated to different carrier phase 
errors and different baselines are illustrated in Figure 6-13. 
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Figure 6-13: DCF error under different carrier phase noises and baseline lengths 

Figure 6-13 shows that a long baseline and a high receiver quality lead to a higher DCF 
precision, we therefore use the maximal baseline of 2.5 m. In this case, even a receiver having a  
phase error of 3 mm can still provide a DCF error which is much lower than 5% PRF (assuming 
that PRF>3000 Hz).  Figure 6-14 shows the actual and estimated DCF errors during the flight 
trajectory in the same scenario, where the standard deviation of carrier phase thermal noise is 3 
mm and baseline length is 2.5 m.  
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Figure 6-14: Estimated DCF error during the trajectory 

Figure 6-13 and Figure 6-14 indicate a fact that the attitude error will not challenge the 
DCF quality. Besides the attitude error, the velocity is another error source for DCF. From the 
calculation it can be proven that a velocity error at decimeter-per-second level can fulfill the 
accuracy requirement of the DCF. Considering a poor case where the baseline between 
onboard antenna is 0.5 m and standard deviation of GPS carrier phase noise is 3mm, the 
derived standard deviation error of the yaw angle is 0.45 [deg] and of pitch angle is 0.70 [deg]. 
With these attitude errors, once the velocity in along-track direction has an error of 0.5 m/s, 
the outcoming DCF errors are depicted in Figure 6-15. The horizontal plane indicates the 
different combinations of yaw and pitch errors. The vertical axis represents the associated 
DCF error.   
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Figure 6-15: DCF error under different velocity and attitude errors 

Assuming that the PRF is 3000 Hz, the acceptable DCF error should be lower than 5% of 
PRF, namely 150Hz. Figure 6-15 shows that the DCF errors are lower than this threshold. It 
means that even velocity errors at decimeter-per-second level will not introduce significant 
errors to DCF results. With RTK solutions and a high GPS sampling rate, better velocity 
accuracies can be achieved, and therefore velocity errors will not degrade the DCF quality.  

6.6 Conclusions 

In this section, the error propagation from the GPS phase noise to the positioning results and 
results has been analyzed at first. Baselines between antennas are important impacting factors 
for the attitude precision. The analysis of positioning error of the SAR APC can be carried out 
in along-track and cross-track directions. GPS positioning and attitude errors are involved in 
the cross-track direction. Considering only the GPS positioning error, a GPS phase thermal 
noise less than 1.7 mm can fulfill the accuracy requirement. This is not a challenge for current 
GPS receivers. However, as the GPS antenna and SAR antenna are mounted on the upside 
and underside of an airplane, respectively, the potential large lever-arm will introduce 
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significant errors. This can be seen as a major drawback of using GPS multi-antenna systems 
in Terra/SAR PAMIR experiment. In the along-track direction, meeting the required accuracy 
of the DCF is not an issue. 

Another factor needed by the SAR motion compensation is the DCF, which is related to 
the attitude and velocity parameters. Based on a GPS multi-antenna system with 2.5 m 
baseline and the velocity determined by differential positioning, meeting the accuracy of the 
DCF is not an issue. 
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Concluding remarks and future work 
This thesis has discussed four major aspects around the attitude determination using a GPS 
multi-antenna system, including (1) the pre-processing of GPS carrier phase measurements; (2) 
the mathematic model and the implementation of a multi-antenna system (3) the integration of 
GPS measurements and attitude dynamics through nonlinear Kalman filters and the solutions 
to mismodeling errors; (4) the error analysis for position and attitude parameters as well as the 
parameters related to the SAR motion compensation. 

In the pre-processing of GPS carrier phases, the cycle-slip detection, determination and 
validation for triple-frequency GPS have been highlighted. The cycle-slip detection is 
implemented using two geometry-free phase combinations constructed by the scalars  (-1, -1, 
2) and (-1, 4, -3). This approach can detect all cycle-slips except for the most insensitive ones 
and well fit the low- and high-multipath environments. However, with sampling interval 
larger than 30 seconds, the cycle-slip detection might not work properly due to the potential 
large variation of the ionospheric error within the sampling period. The cycle-slip 
determination relies on the adaptive use of predicated phase measurements and code 
measurements. The LAMBDA technique is employed to provide the highest success rate. The 
cycle-slip validation is embedded into the cycle-slip determination to filter out the incorrect 
cycle-slip candidates. The above-mentioned algorithms are dedicated for stand-alone GPS 
receivers and suitable for real-time static or dynamic applications. 

Multiple GPS antennas can form an attitude determination system. For this application, a 
software toolbox has been developed in MATLAB to process the GPS raw data in a 
post-processing. A key step of the attitude determination is the estimation of baseline vectors 
between antennas using the RTK technique. Two dedicated approaches have been presented 
for attitude determination. The LSAD approach needs a predefined ABF and gives an optimal 
solution. The direct attitude computation does not rely on knowing the ABF in advance and 
hence simplifies the implementation. However, it employs only part of the measurements and 
leads to a sub-optimal solution. A reliable pre-processing of carrier phase measurements is the 
prerequisite of precise attitude solutions.  

The attitude dynamics can be incorporated with GPS measurements in order to improve 
the accuracy. If the airplane undergoes low maneuver and inertial sensors are not available, a 
constant angular rate model can be used to approximate the attitude dynamics under a high 
GPS sampling rate. A successful ambiguity resolution of carrier phase measurements enables 
precise attitude estimation, and hence there are small nonlinearity errors within the 
measurement model. In this case, the EKF is a proper technique to fuse the measurement 
model and the dynamic model due to its lower computational complexity than other nonlinear 
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Kalman filters. However, a constant angular model is only an approximation rather than an 
exact description of the attitude dynamics, and hence it might cause mismodeling errors. One 
type of mismodeling error occurs if the actual attitude dynamics is out of the error range 
described by the process noise parameters. In this case, the model mismatch will bring large 
errors into the a priori state estimates and cause model transition errors. The IEKF, SOEKF 
and UKF lead to smaller magnitude of model transition errors than the conventional EKF. 
However, using these nonlinear filters in this case does not improve the estimation accuracy 
to a sufficient extent. Instead, an IMM approach composed of a common measurement model 
and two filters running in parallel with different dynamic models can remarkably reduce the 
magnitude of model transition errors. In the IMM, one sub-filter is given large process noise 
and therefore mainly subject to the measurement model, whereas the other sub-filter gives 
more weight to the dynamic model. Another type of mismodeling error is due to the fact that a 
fixed process noise covariance matrix cannot describe the changing attitude dynamics. The 
innovation-based adaptive tuning of process noise can overcome this shortcoming. By 
embedding the adaptive tuning function into the IMM, an AIMM has been proposed to handle 
both kinds of mismodeling errors.   

The theoretical error ranges of the position and attitude results have been derived from 
the GPS carrier phase noise by analyzing the error propagation. The baseline length is a 
central factor for the attitude precision. In order to determine the distribution and distance of 
the multiple antennas, the following factors should be considered, including the receivers used, 
the accuracy requirement, the locations for the antenna installation, and whether or not the 
baseline information is needed by the pre-processing of carrier phases. The bistatic SAR 
motion compensation needs the position, attitude and velocity information obtained by GPS. 
In the cross-track direction, the desired positioning accuracy of the SAR APC requires a 
standard GPS carrier phase noise smaller than 1.7 mm. However, lever-arm effects might 
introduce significant errors from attitude domain into position domain. In the along-track 
direction, the velocity accuracy can theoretically fulfill the requirement of the experiment. 
Referring to the Doppler centroid frequency, the attitude and velocity parameters derived 
from GPS can limit the errors within the allowable range.  

Continuing with the presented works, future studies can be carried out at least in the 
following aspects: 
1. The fixed baseline length between onboard multiple GPS antennas has been employed for 

ambiguity resolution. Similarly, it can also be used in cycle-slip determination or 
validation. For cycle-slip determination, the baseline length can be transformed into the 
measurement domain to aid the search of cycle-slip candidates.  

2. The cycle-slip issue can be handled with respect to each double-differenced phase 
measurement instead of each single antenna-satellite measurement, so that presented 
algorithms can be simply applied to the differential positioning. The difference is that the 
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a priori measurement noise should be enlarged since four single measurements are 
combined into a double-differenced measurement.  

3. The proposed AIMM approach can also be applied to other navigation applications where 
an appropriate model of vehicle dynamics is hard to be found. 

4. The motion compensation for TerraSAR-X/PAMIR experiment requires position and 
attitude parameters at a high sampling frequency. A significant disadvantage of the GPS 
system lies in the low data output rate. In order to have position, velocity and attitude 
information in high data rate, we can apply the interpolation technique in a 
post-processing or integrate GPS with inertial sensors. The error analysis for both cases 
needs to be investigated. 
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Appendix I: Dilution of precision for single-point positioning 

The geometry of satellites is an important factor for the precision of the positioning results. The 
Dilution Of Precision (DOP) is a measure of the instantaneous geometry of satellites 
(Hofmann-Wellenhof et al. 2003). As already presented in Eq. (1-9), the single-point 
positioning is formulated by: 

where all terms are related to a certain epoch so that the time dependence is dropped from the 
equation; x, y and z are the ECEF coordinate; the subscript u denotes the user position (namely 
the antenna position); the superscript sn denotes the n-th satellite position; tr is the receiver clock 
error; r is the original or corrected pseudorange measurement; e contains the remaining errors 
of the pseudorange measurements; c is the speed of light. The unknown values to be estimated 
include the ECEF coordinate of the user position (the antenna position) and the receiver clock 
error. The least-squares adjustment can be carried out after the linearization around an 
approximated antenna position u0, so that we have: 

where the state vector x includes the increment of coordinate parameters and the receiver clock 
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error; l contains the difference between the estimated measurements and actual measurements; 

0
si
u  is the pseudorange calculated by the i-th satellite position and the antenna coordinate 

estimated in the current round of least-squares adjustment; A is the design matrix. 
Assuming the measurement error has a zero-mean Gaussian distribution, the error 

covariance matrix of vector x can be calculated by rearranging (A-II) and applying the error 
propagation law: 

It can be seen that, the precision of the states are determined by two factors. The first factor is 
the measurement qualities described by the covariance matrix of the pseudorange 
measurements Cov(l). The other factor is reflected by the matrix G which describes the effects 
of satellite geometry. In order to focus on the analysis of satellite geometry, the cofactor matrix 
Qx of the estimated parameters can be calculated by extracting G items from (A-III) and 
rearranging in form of matrix A:  

The DOPs are defined by the diagonal components of ,ECEFxQ , for example 

The DOPs can also be calculated in the equatorial system, namely in the Local Level Frame 
(LLF) or East/North/Up (ENU) frame. It allows the determination of the DOPs in horizontal 
plane and vertical direction. To do this, cofactor matrix Qx should be transformed from ECEF 
into LLF by employing the rotation matrix. The rotation matrix can be expressed as:   
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where LLF
ECEFR  is the rotation matrix indicating the projection of a target point from the ECEF 

to the LLF;  and  denote the latitude and longitude of the reference point, respectively. 
Based on the rotation matrix, the cofactor matrix in the LLF can be calculated by: 

The DOPs could help in the planning of a survey, interpretation of the processed baseline vector 
and projection of errors from measurement domain to the position domain 
(Hofmann-Wellenhof et al. 2003). A satellite geometry with PDOP less than 3 and HDOP less 
than 2 is generally said to be a good geometry.  
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Appendix II: Jacobian matrix for three-dimensional Euler angles  

Three-dimensional attitude parameters can be determined using the following model:  

where subscripts b and l indicate the ABF and LLF, respectively; direction cosine matrix R 
representing the rotation from the LLF to ABF; c(·) and s(·) are the cosine and sine operators, 
respectively. r, p, y represent roll, pitch and yaw angles. In order to apply the least-squares 
adjustment to solve Eq. (A-VIII), we should expand the right-hand side and linearize it with 
respect to Euler angles, yielding the matrix Ai as follows: 

where f1, f2, f3 can be obtained from: 

The components of matrix A are then calculated as follows: 
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Appendix III: Jacobian matrix for a dual-antenna configuration 

For a dual-antenna configuration, only yaw and pitch angles can be determined. This 
procedure is quite similar like the three-dimensional attitude determination given in Appendix 
II. The mathematic model for a dual-antenna configuration can be related to the rotation 
matrix R by: 

The notations can be referred to (A-VIII). An expected linearized form can be expressed by:  

where f1, f2, f3 correspond to: 

Each component of matrix A reads: 
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Appendix IV: Error of local level frame coordinate due to the 

positioning error of the origin 

The transformation of a target point from the ECEF to the LLF centered at a reference point is 
expressed as follows: 

where x, y and z represent the coordinates of the target point. Subscript l and ECEF indicate 
the LLF and ECEF, respectively;  and  represent the latitude and longitude of the 
reference point, respectively. The reference point is the common center of LLF and ECEF, and 
its positioning error in ECEF will also affect the LLF coordinate of the target point. In order to 
analyze this relation, (A-XVI) should be differentiated with respect to the latitude and longitude 
of the reference point. Expanding the right-hand side yields:   

Differentiating the vector m with respect to  and  we have: 

We use a latitude of 50 degrees and a longitude 8 degrees (near Siegen) to test the error range of 
the LLF coordinate. Providing that the single-point positioning can cause up to an error of 0.001 
degrees in latitude as well as longitude, the absolute three-dimensional errors in the LLF 
coordinate are illustrated in Figure A-I.  
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Figure A-I: Absolute positioning error of the target point in LLF 

In order to give a clearer demonstration, we also present the three-dimensional positioning 
error of the reference point in the Cartesian coordinate system (e.g. ECEF in meters). 

 
Figure A-II: Absolute positioning error of the reference point in ECEF 
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From both of Figure A-I and Figure A-II we can see that, if the absolute positioning error of 
the reference point is lower than 20 m in ECEF, the corresponding error in the LLF coordinate 
of the target point is smaller than 5 mm.  
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Appendix V: Hessian matrix for SOEKF 

In order to apply the SOEKF, the Hessian matrix D in (4-28) needs to be determined. The 
Hessian matrix can be obtained by differentiating Jacobian matrix with respect to the Euler 
angles. A Hessian matrix is associated to a row vector of the Jacobian matrix. Denoting [A1 
A2 A3]T as the row vectors of the Jacobian matrix A given in (A-XI), the Hessian matrices D1, 
D2 and D3 are detailed as follows: 
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