Citation link:
http://dx.doi.org/10.25819/ubsi/8818
DC Field | Value | Language |
---|---|---|
crisitem.author.orcid | 0000-0001-9068-5696 | - |
dc.contributor.author | Kelter, Riko | - |
dc.date.accessioned | 2021-02-18T09:38:39Z | - |
dc.date.available | 2021-02-18T09:38:39Z | - |
dc.date.issued | 2020 | de |
dc.description | Finanziert aus dem Open-Access-Publikationsfonds der Universität Siegen für Zeitschriftenartikel | de |
dc.description.abstract | Typical situations in research include the comparison of two groups regarding a metric variable, in which case usually the two-sample t-test is applied. While common frequentist two-sample t-tests focus on the difference of means of both groups via a p-value, the quantity of interest in applied research most often is the effect size. Existing Bayesian alternatives of the two-sample t-test replace frequentist significance thresholds like the p-value with the Bayes factor, taking the same testing stance. The R package bayest implements a Markov-Chain-Monte-Carlo algorithm to conduct a Bayesian two-sample t-test which estimates the effect size between two groups, while also providing detailed visualization and analysis of all parameters of interest. Because of its focus on the ease of use and interpretability, clinicians and other users can run this t-test within a few lines of code and find out if differences between two groups are scientifically meaningful, instead of significant. | en |
dc.identifier.doi | http://dx.doi.org/10.25819/ubsi/8818 | - |
dc.identifier.uri | https://dspace.ub.uni-siegen.de/handle/ubsi/1851 | - |
dc.identifier.urn | urn:nbn:de:hbz:467-18511 | - |
dc.language.iso | en | de |
dc.source | Journal of Open Research Software, 8 (1), S.14. - DOI: http://doi.org/10.5334/jors.290 | de |
dc.subject.ddc | 510 Mathematik | de |
dc.subject.other | Two-sample t-test | de |
dc.subject.other | Effect size | de |
dc.subject.other | Treatment effect between two groups | de |
dc.subject.other | Markov-Chain-Monte-Carlo | de |
dc.subject.other | Bayesian statistics | de |
dc.subject.swb | t-Test | de |
dc.subject.swb | A-priori-Verteilung | de |
dc.subject.swb | Markov-Kette | de |
dc.subject.swb | Monte-Carlo-Simulation | de |
dc.subject.swb | R <Programm> | de |
dc.title | bayest: an R-package for effect-size targeted Bayesian two-sample t-tests | en |
dc.type | Article | de |
item.fulltext | With Fulltext | - |
ubsi.origin.dspace5 | 1 | - |
ubsi.publication.affiliation | Department Mathematik | de |
ubsi.source.issn | 2049-9647 | - |
ubsi.source.issued | 2020 | de |
ubsi.source.issuenumber | 1 | de |
ubsi.source.link | https://www.ubiquitypress.com/ | de |
ubsi.source.pages | 4 | de |
ubsi.source.place | London | de |
ubsi.source.publisher | Ubiquity Press | de |
ubsi.source.title | Journal of Open Research Software | de |
ubsi.source.volume | 8 | de |
ubsi.subject.ghbs | TKM | de |
ubsi.subject.ghbs | TKWM | de |
ubsi.subject.ghbs | TKF | de |
ubsi.subject.ghbs | TKKC | de |
Appears in Collections: | Geförderte Open-Access-Publikationen |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Kelter_bayest.pdf | 706.18 kB | Adobe PDF | View/Open |
This item is protected by original copyright |
Page view(s)
494
checked on Dec 1, 2024
Download(s)
129
checked on Dec 1, 2024
Google ScholarTM
Check
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.