Citation link: http://dx.doi.org/10.25819/ubsi/10123
Files in This Item:
File Description SizeFormat
Automated_set-up_parameter_estimation.pdf769.66 kBAdobe PDFThumbnail
View/Open
Dokument Type: Article
metadata.dc.title: Automated set-up parameter estimation and result evaluation for SSI-Cov-OMA
Authors: Bonekemper, Lukas 
Wiemann, Marcel 
Kraemer, Peter 
Institute: Department Maschinenbau 
Free keywords: Automated operational modal analysis, Covariance-driven stochastic subspace identification, Sensitivity analysis, Determining input parameters, Modified order reduction, Automatisierte operationelle Modalanalyse, Kovarianzgesteuerte stochastische Unterraumidentifikation, Sensitivitätsanalyse, Bestimmung der Eingangsparameter, Modifizierte Ordnungsreduktion
Dewey Decimal Classification: 620 Ingenieurwissenschaften und zugeordnete Tätigkeiten
GHBS-Clases: WFB
Issue Date: 2020
Publish Date: 2022
Source: Vibroengineering PROCEDIA, Vol. 34 (2020), S. 43-49. - https://doi.org/10.21595/vp.2020.21742
Abstract: 
Traditionally, modal analysis and the extraction of modal parameters from vibration data is a process that requires a more or less extensive amount of manual interaction from setting input parameters up until finding the eigenfrequencies. The growing interest in continuously monitoring mechanical structures e.g. for automated damage detection methods has led to the development of many approaches to automate different aspects of modal analysis. In this context, the Covariance-driven Stochastic subspace identification (Cov-SSI) is a widely used method. The present paper provides an automated Cov-SSI algorithm combined with a peak-picking approach for the automatic determination of input parameters. In this regard, using the Prominence-parameter allows to examine the PSD by finding the most relevant peaks. The herein shown algorithm is currently suitable for systems with a limited number of sensors. Cov-SSI results are arranged in stability plots and interpreted using the hierarchical clustering method. By creating stability plots for a wide range of block rows a sensitivity analysis is used to find the optimal result based on the averaged standard deviation of damping of the clusters in every stability plot. A second aspect of this paper is comparing the common method for order reduction with a modified method described in [1], which preserves the orthogonality of the , and matrix of the singular value decomposition. Exemplary results on both methods are provided using simulated data (state-space, 3 DoF)
Description: 
Finanziert aus dem DFG-geförderten Open-Access-Publikationsfonds der Universität Siegen für Zeitschriftenartikel
DOI: http://dx.doi.org/10.25819/ubsi/10123
URN: urn:nbn:de:hbz:467-22121
URI: https://dspace.ub.uni-siegen.de/handle/ubsi/2212
License: http://creativecommons.org/licenses/by/4.0/
Appears in Collections:Geförderte Open-Access-Publikationen

This item is protected by original copyright

Show full item record

Page view(s)

394
checked on Nov 28, 2024

Download(s)

147
checked on Nov 28, 2024

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons